EP0421286A2 - Piezoelektrischer Wandler - Google Patents

Piezoelektrischer Wandler Download PDF

Info

Publication number
EP0421286A2
EP0421286A2 EP90118633A EP90118633A EP0421286A2 EP 0421286 A2 EP0421286 A2 EP 0421286A2 EP 90118633 A EP90118633 A EP 90118633A EP 90118633 A EP90118633 A EP 90118633A EP 0421286 A2 EP0421286 A2 EP 0421286A2
Authority
EP
European Patent Office
Prior art keywords
layer
transducer elements
piezoelectric transducer
figures
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90118633A
Other languages
English (en)
French (fr)
Other versions
EP0421286B1 (de
EP0421286A3 (en
Inventor
Dagobert Schäfer
Werner Krauss
Peter Jaggy
Helmut Wurster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richard Wolf GmbH
Original Assignee
Richard Wolf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richard Wolf GmbH filed Critical Richard Wolf GmbH
Publication of EP0421286A2 publication Critical patent/EP0421286A2/de
Publication of EP0421286A3 publication Critical patent/EP0421286A3/de
Application granted granted Critical
Publication of EP0421286B1 publication Critical patent/EP0421286B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators

Definitions

  • the invention relates to a piezoelectric transducer for generating focused ultrasonic shock waves for use in lithotripsy with the features of the preamble of claim 1.
  • Piezoelectric transducers are generally known, for example from DE-PS 34 25 992.
  • the use of a coupling medium for coupling the ultrasonic shock waves to the patient's body in such transducers is also well known.
  • the energy densities that can be generated with piezoelectric materials are very high, but only a very small part of the available energy is introduced into the coupling medium (water or oil) in practice, since the sound-generating ceramic and the water / oil are acoustically very strong differentiate from each other.
  • the known transducer is designed such that between the transducer elements and the coupling medium, an intermediate medium is provided at least from one layer, the acoustic impedance of which is between that of the ceramic of the transducer elements and that of the coupling medium and that the thickness of the layer is dimensioned such that the relationship d> ⁇ k .c LA applies, where ⁇ k is the propagation time of the sound in the piezoceramic of the transducer elements and c LA is the speed of sound in the respective intermediate medium.
  • the thickness of the layer of the intermediate medium cannot be measured on the basis of the wavelength of the ultrasound, since the ultrasound shock waves generated by the transducer have a very wide frequency spectrum.
  • an adaptation as known from US-PS 415 6863, does not provide anything for the present task solution. This is because there is only provision for the thickness of one Potting compound, which has the acoustic impedance of the coupling medium (water), to be dimensioned to a quarter of the wavelength of the sound waves emanating from the individual transducers.
  • the requirements for impedance matching are completely different. Here it is not the individual frequency or wavelength, but the transit time of the sound through the individual transducer element that forms the basis of all considerations.
  • a layer of the intermediate medium is introduced between the active surface of each piezoelectric transducer element and the coupling medium, it must have a certain thickness and a certain acoustic impedance in order to achieve optimal results.
  • the acoustic impedance to be selected depends on the acoustic conditions at the interface between the active transducer elements and the layer of the intermediate medium or on the known sound transmission factors at the interface between two media of different acoustic impedance. In any case, it lies between that of the ceramic of the transducer elements and that of the coupling medium.
  • the acoustic thickness of the layer of the intermediate medium must be greater than that of the ceramic of the transducer elements.
  • the effect that more energy gets into the coupling medium can be increased in that several layers of intermediate media are provided between the transducer elements and the coupling medium, the acoustic impedances of which decrease from the first layer on the transducer elements in the direction of radiation of the ultrasonic shock waves.
  • the layer or the layers of the intermediate media can each be assigned to one transducer element, uniformly all transducer elements together or mixed partially uniformly together and partially in each case to one transducer element.
  • the described construction of the transducer according to the invention can be implemented with self-focusing transducers, for example dome-shaped transducers, but also with planar transducers.
  • At least one layer of an intermediate medium is designed as an acoustic lens. This layer then takes on the task of focusing the ultrasonic shock waves onto the focus of the transducer, so that no additional effort is required.
  • the transducer in the direction of radiation of the ultrasonic shock waves, has a layer of an intermediate medium on the transducer elements, which has a surface that electrically connects the transducer elements and faces them. This surface is then connected to one pole of the pulse generator.
  • the first layer is thus used as a common electrode for all transducer elements, which not only considerably reduces the amount of wiring previously required, but also makes the transducer more compact and less prone to malfunctions.
  • the first layer is solid and metallic.
  • Aluminum for example, is suitable for this purpose, the acoustic impedance of which corresponds to the conditions mentioned.
  • this embodiment can advantageously be developed in that the layer is constructed as a solid, acoustic lens. This then again takes on the task of focusing the ultrasonic shock waves on the transducer focus.
  • Each transducer element has a so-called backing, the acoustic impedance is at least as large as that of the ceramic of the individual transducer elements. This measure ensures an almost reflection-free termination of the transducer elements, so that unwanted negative tensile impulses for lithotripsy are limited to a practically possible minimum in the focus of the converter, for example by roughening the back of the backings or by shaping it into a cone, for example.
  • All transducer elements can also be provided with a common backing for their reflection-free termination.
  • the energy density of the ultrasonic shock waves in the transducer focus compared to previous transducers has been increased by "passive" measures through the better coupling of the ultrasonic shock waves into the coupling medium, that is, through the better utilization of the energy generated by the transducer elements.
  • some of the described embodiments also allow the energy density in the converter focus to be increased by "active" measures. This relates in particular to the control of the converter elements by means of higher voltages. Until now, this was primarily not possible due to safety aspects, but also with regard to the converter's service life.
  • the transducer elements with the electrically conductive carrier by means of electrically conductive Be fixing means are clamped, the carrier being connected to the other pole of the pulse generator. This makes it possible to control the converter elements with higher voltages without the converter elements bursting out of their anchoring, which would result in irreparable damage.
  • a higher controllability with higher voltages, whereby the output power of the converter is actively increased, can be achieved in the embodiments of the converter described above, in which the first layer of an intermediate medium on the converter elements is solid and metallic and thus serves as an electrode that the space outlined by the first layer, the common backing, or the support is liquid- and gas-tight by means of electrically non-conductive side walls, and that this space is filled with a highly insulating medium.
  • a gas, oil or also a solid insulator can be considered as a highly insulating medium.
  • the transducer in such a way that an electrically conductive first layer forms the carrier, which is connected to one pole of the pulse generator, and that this carrier encloses, with a housing, a liquid- and gas-tight closed space, which is sealed with a highly insulating Medium is filled.
  • This also results in a relative increase in the energy density of the ultrasonic shock waves generated by the transducer in focus due to a higher radiation power on the one hand and a better coupling of the energy into the coupling medium on the other hand.
  • the first layer consists of a highly insulating potting material which also fills the spaces between the transducer elements.
  • the first layer takes on both the task of impedance matching and the task of lateral electrical insulation of the converter elements from one another, as a result of which the converter can be controlled with higher voltages than previously.
  • Polyurethane epoxy mixtures or silicones are particularly suitable as potting material.
  • FIG. 1 shows a dome-shaped and thus self-focusing transducer that bundles the generated ultrasonic shock wave from the piezoelectric transducer elements onto the focus 15 via a coupling medium 20.
  • the transducer elements 2 are attached to a carrier 8 with their active surface.
  • the carrier 8 is identical to the first layer 3, the thickness of which depends on the relationship d> ⁇ k .
  • c LA is dimensioned, where ⁇ k is the propagation time of the sound in the piezoceramic of the transducer elements 2 and c LA is the speed of sound in the layer 3.
  • a further layer 4 of an intermediate medium serving for impedance matching is applied to layer 3, the acoustic impedance of which lies between that of layer 3 and that of coupling medium 20.
  • the above relationship applies correspondingly to the thickness of layer 4, c LA here being the speed of sound in layer 4.
  • the layer 3 or the carrier 8 is solid and metallic, that is to say electrically conductive. It serves as a common electrode for all transducer elements 2 and is accordingly connected to one pole of a pulse generator 7.
  • the other pole of the generator 7 is connected via a wiring 11 at the rear end of the converter elements 2 via electrically conductive individual backings 6.
  • the conical shape of the backings 6 causes sound coming from its back to be scattered in such a way that it is not focused in the focus 15.
  • Aluminum is considered as material for the layer 3 or the carrier 8 if water is used as a coupling medium 20 is used.
  • the formation of the first layer 3 as a solid support 8 enables it to enclose a liquid and gas-tight space with a housing 21, which is filled with a highly insulating medium 18.
  • the medium 18 prevents a jump of sparks at the individual converter elements 2 at a high voltage applied to the elements 2. Accordingly, this converter can be controlled with a voltage which enables a significantly higher output compared to known converters.
  • FIG. 2 shows an embodiment of a dome-shaped transducer in which the transducer elements 2 are braced on the back with electrically conductive individual backings 6 and with an electrically conductive carrier 8 by means of screws 9.
  • Two layers 3 and 4 of intermediate media are applied to the converter elements 2 in order to adapt the impedance to the coupling medium (not shown).
  • the first layer 3 is electrically conductive. It is used to supply the voltage from the pulse generator 7 to the converter elements 2.
  • the other pole of the generator 7 is connected to the converter elements 2 via the carrier 8, screws 9 and backings 6.
  • FIG. 3 shows a planar transducer in which the transducer elements with the individual backings 6 are clamped to the carrier 8 by screws 9.
  • the adaptation of the acoustic impedance is achieved here by three layers 3, 4 and 5 of intermediate media on the transducer elements 2, wherein of course the conditions mentioned at the beginning for whose acoustic impedances are met.
  • Layer 5 is assigned to all transducer elements 2 together here. It is also designed as an acoustic lens which, together with the first matching layer (3), focuses the emitted ultrasonic shock waves.
  • FIG. 4 also shows a planar transducer, in which three layers 3, 4 and 5 of intermediate media are applied to the transducer elements 2, as already explained in connection with the exemplary embodiment according to FIG. 3, in the radiation direction of the ultrasonic shock waves.
  • the middle layer 4 is provided as a common layer and designed as a focusing acoustic lens.
  • electrically non-conductive side walls 16, the common carrier 8 and the layer 4 outline a liquid and gas-tight space which is filled with a highly insulating medium 18.
  • the converter elements have a common backing 14, which also closes the space outlined by the first layer 3 and the electrically non-conductive side walls 16, in which a highly insulating medium 18 is located.
  • the back of the backing 14 is designed so that sound reflected from it is no longer focused in the focus of the transducer.
  • All layers 3 to 6 are common for All transducer elements are provided, layers 4 and 5 being designed as lenses for focusing the ultrasonic shock waves.
  • FIG. 7 shows, the use of a common backing 14 is also possible with a dome-shaped converter.
  • the layers 3 and 4 of the intermediate media are each assigned to a converter element 2.
  • FIG. 8 shows an extreme case in which the piezoceramic material 2 is in one piece. This is completed on the back by a backing 14. The impedance matching is done by two layers 3 and 4 of coupling media.
  • FIG. 9 shows a particularly preferred embodiment of the converter. Only one layer 3 of an intermediate medium is shown here.
  • Layer 3 consists of a highly insulating potting material, for which, for example, polyurethanes, epoxy mixtures or silicones can be used.
  • the potting material has an acoustic impedance which again lies between that of the ceramic of the transducer elements 2 and that of the coupling medium 20.
  • the spaces 22 between the individual transducer elements 2 are filled with it.
  • this converter can be controlled with higher voltages than known converters.
  • it has the advantage that the transducer elements 2 are embedded in the potting compound with absolute water protection, which results in an outstanding immunity to interference by the transducer.

Abstract

Es ist ein piezoelektrischer Wandler zur Erzeugung fokussierter Ultraschall-Stoßwellen für die Applikation in der Lithotripsie beschrieben, dessen pulsweise abgegebenen Ultraschall-Stoßwellen über ein Koppelmedium (20) auf den Körper eines Patienten übertragbar sind. Er besteht aus einer Vielzahl von einzelnen, an die Pole eines Pulsgenerators (7) angeschlossenen piezoelektrischen Wandlerelementen (2) aus Keramik, die auf einem Träger (8) mosaikartig und seitlich voneinander elektrisch isoliert festgelegt sind, wobei der akustische Abschluß der wandlerelemente (2) im wesentlichen reflexionsfrei ist. Es wird vorgeschlagen, daß zwischen den Wandlerelementen (2) und dem Koppelmedium (20) ein Zwischenmedium aus zumindest einer Schicht (3,4,5) vorgesehen ist, dessen akustische Impedanz zwischen jener der Keramik der Wandlerelemente (2) und jener des Koppelmediums (20) liegt und daß die Dicke d der Schicht (3,4,5) bemessen ist, daß die Beziehung d>τk . cLA gilt, wobei τ k die Laufzeit des Schalls in der Piezokeramik der Wandlerelemente (2) und CLA die Schallgeschwindigkeit in dem jeweiligen Zwischenmedium ist. <IMAGE>

Description

  • Die Erfindung betrifft einen piezoelektrischen Wandler zur Erzeugung fokussierter Ultraschall-Stoßwellen für die Applikation in der Lithotripsie mit den Merkmalen des Ober­begriffs des Anspruchs 1.
  • Piezoelektrische Wandler sind grundsätzlich bekannt, bei­spielsweise aus der DE-PS 34 25 992. Auch die Verwendung eines Koppelmediums zur Ankopplung der Ultraschall-Stoß­wellen an den Patientenkörper bei derartigen Wandlern ist hinlänglich bekannt.
  • Wenn die bekannten wandler zwar in der Praxis mit Erfolg in der Therapie eingesetzt werden, so stellt sich häufig das Problem, daß die Baumaße des Wandlers sehr groß sind, um die für die Desintegration des zu zerstörenden Kon­krements erforderliche Energiedichte in seinem Fokus zu erhalten.
  • Die mit piezoelektrischen Materialien erzeugbaren Energie­dichten sind sehr hoch, doch nur ein sehr geringer Teil der zur Verfügung stehenden Energie wird in der Praxis in das Koppelmedium(Wasser oder Öl) eingeleitet ,da sich die schall­erzeugende Keramik und das Wasser/Öl akustisch sehr stark voneinander unterscheiden.
  • Vor dem Hintergrund der vorstehenden Ausführungen ist es nun die Aufgabe der vorliegenden Erfindung, einen Wandler der eingangs erwähnten Art so weiterzubilden, daß die Ener­giedichte der von ihm erzeugten Ultraschall-Stoßwellen in seinem Fokus so groß ist, daß eine Reduzierung seiner Bau­maße möglich ist.
  • Gelöst wird diese Aufgabe durch die Merkmale des Anspruches 1. Demgemäß wird der bekannte Wandler so ausgebildet, daß zwischen den Wandlerelementen und dem Koppelmedium ein Zwischenmedium zumindest aus einer Schicht vorgesehen ist, dessen akustische Impedanz zwischen jener der Keramik der Wandlerelemente und jener des Koppelmediums liegt und daß die Dicke der Schicht so bemessen ist, daß die Beziehung d>τk.cLA gilt, wobei τk die Laufzeit des Schalls in der Piezokeramik der Wandlerelemente und cLA die Schallge­schwindigkeit in dem jeweiligen Zwischenmedium ist.
  • Die Bemessung der Dicke der Schicht des Zwischenmediums kann vorliegend nicht anhand der Wellenlänge des Ultra­schalls vorgenommen werden, da die vom Wandler erzeugten Ultraschall-Stoßwellen ein sehr breites Frequenzspektrum aufweisen. Insofern gibt eine Anpassung, wie aus der US-PS 415 6863 bekannt, für die vorliegende Aufgabenlösung nichts her. Dort ist nämlich lediglich vorgesehen, die Dicke einer Vergußmasse, welche die akustische Impedanz des Ankopplungs­mediums (Wasser) aufweist, zu einem Viertel der Wellen­länge der von den Einzelschwingern ausgehenden Schallwellen zu bemessen. Vorliegend sind die Voraussetzungen für die Impedanzanpassung ganz andere. Hier ist nicht die Einzel­frequenz bzw. - wellenlänge, sondern die Laufzeit des Schalls durch das einzelne Wandlerelement die Grundlage aller Überlegungen.
  • Wird zwischen die aktive Oberfläche jedes piezoelektrischen Wandlerelements und das Koppelmedium einer Schicht des Zwischenmediums eingebracht, so muß diese zur Erzielung optimaler Resultate eine bestimmte Dicke und eine bestimmte akustische Impedanz aufweisen.
  • Da es vorliegend nicht um eine Resonanzabstimmung geht, ist die Dämpfung in den Zwischenschichten nicht von großer Bedeutung, solange diese nicht extreme Werte annimmt und die notwendige Dicke, welche durch die oben genannte Be­messungsvorschrift gegeben ist, nicht um ein Vielfaches überschritten wird.
  • Die zu wählende akustische Impedanz richtet sich nach den akustischen Gegebenheiten an der Grenzfläche zwischen den aktiven Wandlerelementen und der Schicht des Zwischenme­diums bzw. nach den bekannten Schalldurchgangsfaktoren an der Grenzfläche zwischen zwei Medien unterschiedlicher akustischer Impedanz. In jedem Falle liegt sie zwischen jener der Keramik der Wandlerelemente und jener des Koppel­mediums.
  • Die akustische Dicke der Schicht des Zwischenmediums muß größer sein als die der Keramik der Wandlerelemente.
  • Der Effekt, daß mehr Energie in das Koppelmedium gelangt, kann erhöht werden dadurch, daß mehrere Schichten von Zwischenmedien zwischen den Wandlerelementen und dem Koppel­medium vorgesehen sind, deren akustische Impedanzen von der ersten Schicht auf den Wandlerelementen her in Abstrahlungsrichtung der Ultraschall-Stoßwellen ab­nehmen.
  • Stets wird der Schall jede Grenzschicht nur teilweise passieren, weil ein Anteil immer reflektiert wird. Diese Reflexion wird stets weich sein, das heißt eine Phasen­umkehr wird eintreten, da die Impedanz jedes Zwischenmediums größer ist als jene des nächsten bzw. des Wassers. Trifft der reflektierte Anteil des Schalls dann an die vorangegangene Grenzschicht, wird er hart, das heißt ohne Phasenumkehr, reflektiert und läuft dann teilweise in die nächste Schicht eines Zwischenmediums bzw. am Ende in das Koppelmedium ein.
  • Gemäß vorteilhafter Ausgestaltungen kann die Schicht bzw.können die Schichten der Zwischenmedien jeweils einem Wandlerelement, ein­heitlich allen Wandlerelementen gemeinsam oder gemischt teilweise einheitlich gemeinsam und teilweise jeweils einem Wandlerelement zugeordnet sein.
  • Grundsätzlich läßt sich der geschilderte Aufbau des er­findungsgemäßen Wandlers realisieren bei selbstfokussierenden, also beispielsweise kalottenförmigen Wandlern, aber auch bei planaren Wandlern.
  • Bei letzteren kann vorteilhaft vorgesehen werden, daß zu­ mindest eine Schicht eines Zwischenmediums als akustische Linse ausgebildet ist. Diese Schicht übernimmt dann die Aufgabe der Fokussierung der Ultraschall-Stoßwellen auf den Fokus des Wandlers, so daß ein zusätzlicher Mehrauf­wand nicht betrieben werden muß.
  • Gemäß einer weiteren vorteilhaften Ausführungsform weist der Wandler in Abstrahlungsrichtung der Ultraschall-Stoß­wellen eine Schicht eines Zwischenmediums auf den Wandler­elementen auf, die eine die Wandlerelemente elektrisch miteinander verbindende, diesen zugekehrte Oberfläche auf­weist. Diese Oberfläche ist dann mit dem einen Pol des Pulsgenerators verbunden. Die erste Schicht wird damit als gemeinsame Elektrode für alle Wandlerelemente genutzt, wo­durch sich nicht nur der Aufwand bislang erforderlicher Verdrahtung erheblich reduziert, sondern der Wandler ins­gesamt kompakter und störungsunanfälliger wird.
  • Diese vorteilhafte Weiterbildung kann dadurch in einfacher Weise realisiert werden, daß die erste Schicht massiv und metallisch ist. Hierzu eignet sich beispielsweise Aluminium, dessen akustische Impedanz den erwähnten Bedingungen ent­spricht.
  • Im Falle eines planaren Wandlers kann diese Ausführungsform vorteilhaft dadurch weitergebildet werden, daß die Schicht als massive, akustische Linse aufgebaut ist. Diese übernimmt dann wieder die Aufgabe der Fokussierung der Ultraschall­Stoßwellen auf den Wandlerfokus.
  • Jedes Wandlerelement weist ein sogenanntes Backing auf, dessen akustische Impedanz mindestens so groß ist wie jene der Keramik der einzelnen wandlerelemente. Diese Maßnahme sichert einen nahezu reflexionsfreien Abschluß der Wandlerelemente, so daß für die Lithotripsie unerwünschte negative Zugimpulse auf ein praktisch mögliches Mindestmaß beschränkt werden.Die Backings können so ausgebildet sein, daß der von der Keramik herkommende Schall an ihrer Rückseite so gestreut wird,daß er nicht im Fokus des Wandlers gebündelt wird.Dies kann beispielsweise durch Aufrauhen der Rückseite der Backings oder durch entsprechende Formgebung zu beispiels­weise einem Kegel erzielt werden.
  • Alle Wandlerelemente können aber auch mit einem gemeinsamen Backing für ihren reflexionsfreien Abschluß versehen sein.
  • Bei allen vorerwähnten Ausbildungen des Wandlers ist die Energiedichte der Ultraschall-Stoßwellen im Wandlerfokus gegenüber bisherigen Wandlern durch "passive" Maßnahmen erhöht worden durch die bessere Ankopplung der Ultraschall-­Stoßwellen in das Koppelmedium, also durch die bessere Ausnutzung der von den wandlerelementen erzeugten Energie. Einige der beschriebenen Ausführungen gestatten aber auch zusätzlich zu dieser Maßnahme eine Erhöhung der Energie­dichte im Wandlerfokus durch "aktive" Maßnahmen. Nament­lich bezieht sich dies auf die Ansteuerung der Wandler­elemente durch höhere Spannungen. Dies war bislang in erster Linie aufgrund von Sicherheitsaspekten, aber auch mit Rück­sicht auf die Standzeit des Wandlers nicht ohne weiteres möglich.
  • Demgemäß ist es bei einer vorteilhaften Weiterbildung des Wandlers vorgesehen, daß die Wandlerelemente mit dem elek­trisch leitenden Träger mittels elektrisch leitender Be­ festigungsmittel verspannt sind, wobei der Träger mit dem anderen Pol des Pulsgenerators verbunden ist. Hierdurch wird die Ansteuerung der Wandlerelemente mit höheren Spannungen möglich, ohne daß die Wandlerelemente aus ihrer Verankerung platzen, wodurch ein irreparabler Schaden entstünde.
  • Eine höhere Ansteuerbarkeit mit höheren Spannungen, wodurch die Abgabeleistung des Wandlers aktiv erhöht wird, kann bei den weiter oben beschriebenen Ausführungsformen des Wandlers, bei denen die erste Schicht eines Zwischenmediums auf den Wandlerelementen massiv und metallisch ist und somit als eine Elektrode dient, dadurch erreicht werden, daß der durch die erste Schicht, dem gemeinsamen Backing, bzw. den Träger umrissene Raum mittels elektrisch nicht leitenden Seiten­wänden flüssigkeits- und gasdicht abgeschlossen ist, und daß dieser Raum mit einem hochisolierenden Medium gefüllt ist. Als hochisolierendes Medium kann beispielsweise ein Gas, Öl oder auch ein fester Isolator in Betracht kommen.
  • Es ist auch möglich, den Wandler so auszubilden, daß eine elektrisch leitende erste Schicht den Träger bildet, welche mit dem einen Pol des Pulsgenerators verbunden ist, und daß dieser Träger mit einem Gehäuse einen flüssigkeits- und gasdicht abgeschlossenen Raum umschließt, welcher mit einem hochisolierenden Medium gefüllt ist. Auch hierdurch ergibt sich eine relative Erhöhung der Energiedichte der von dem Wandler erzeugten Ultraschall-Stoßwellen im Fokus durch einerseits eine höhere Abstrahlleistung und andererseits durch eine bessere Einkoppelung der Energie in das Koppel­medium.
  • Eine weitere Ausführungsform des Wandlers, bei dem aktiv und passiv für die Erhöhung der Energiedichte im Fokus gesorgt ist, ergibt sich, wenn die erste Schicht aus einem hoch isolierenden Vergußmaterial besteht, welches auch die Zwischenräume zwischen den Wandlerelementen ausfüllt. Hier­bei übernimmt die erste Schicht sowohl die Aufgabe der Im­pedanzanpassung als auch die Aufgabe der seitlichen elek­trischen Isolation der Wandlerelemente voneinander, wodurch der Wandler mit höheren Spannungen als bisher angesteuert werden kann.
  • Als Vergußmaterial eignen sich besonders Polyurethane Epoxigemische oder Silikone.
  • Die Erfindung wird anhand einiger Ausführungsbeispiele näher erläutert. Hierbei zeigt:
    • Figur 1 ein erstes Ausführungsbeispiel des Wandlers,
    • Figur 2 ein zweites Ausführungsbeispiel,
    • Figur 3 ein drittes Ausführungsbeispiel,
    • Figur 4 ein viertes Ausführungsbeispiel,
    • Figur 5 ein fünftes Ausführungsbeispiel,
    • Figur 6 ein sechstes Ausführungsbeispiel,
    • Figur 7 ein siebentes Ausführungsbeispiel,
    • Figur 8 ein achtes Ausführungsbeispiel,
      und
    • Figur 9 ein neuntes Ausführungsbeispiel,
      jeweils in schematischer Schnittansicht.
  • In den Zeichnungen sind gleiche Teile mit denselben Be­zugszeichen versehen.
  • Figur 1 zeigt einen kalottenförmigen und damit selbst­fokussierenden Wandler, der von den piezoelektrischen Wandlerelementen die erzeugte Ultraschall-Stoßwelle über ein Koppelmedium 20 auf den Fokus 15 bündelt. Die Wandler­elemente 2 sind mit ihrer aktiven Oberfläche an einem Träger 8 verhaftet.
  • Der Träger 8 ist im gezeigten Ausführungsbeispiel identisch mit der ersten Schicht 3, deren Dicke nach der Beziehung d>τk . cLA bemessen ist, wobeiτk die Laufzeit des Schalls in der Piezokeramik der Wandlerelemente 2 und cLA die Schallgeschwindigkeit in der Schicht 3 ist.
  • Auf die Schicht 3 ist eine weitere, der Impedanzanpassung dienenden Schicht 4 eines Zwischenmediums aufgebracht, dessen akustische Impedanz zwischen jener der Schicht 3 und jener des Koppelmediums 20 liegt. Für die Dicke der Schicht 4 gilt die obige Beziehung entsprechend, wobei hier cLA die Schallgeschwindigkeit in der Schicht 4 ist.
  • Die Schicht 3 bzw. der Träger 8 ist hier massiv und me­tallisch, also elektrisch leitend. Er dient als eine ge­meinsame Elektrode für alle wandlerelemente 2 und ist ent­sprechend mit dem einen Pol eines Pulsgenerators 7 ver­bunden. Der andere Pol des Generators 7 ist über eine Ver­drahtung 11 am rückseitigen Ende der Wandlerelemente 2 über elektrisch leitende Einzelbackings 6 angeschlossen. Die kegelförmige Gestalt der Backings 6 bewirkt, daß von ihrer Rückseite herkommender Schall so gestreut wird, daß er nicht im Fokus 15 gebündelt wird.
  • Als Material für die Schicht 3 bzw. den Träger 8 kommt vorliegend Aluminium in Betracht, wenn Wasser als Koppel­ medium 20 Verwendung findet.
  • Die Ausbildung der ersten Schicht 3 als massiven Träger 8 ermöglicht es, daß dieser mit einem Gehäuse 21 einen flüssigkeits- und gasdichten Raum umschließt, der mit einem hochisolierenden Medium 18 gefüllt ist. Das Medium 18 ver­hindert einen Übersprung von Funken an den einzelnen Wandlerelementen 2 bei einer hohen, an die Elemente 2 ge­legten Spannung. Dementsprechend kann dieser Wandler mit einer Spannung angesteuert werden, welche eine wesentlich höhere Abgabeleistung im Vergleich zu bekannten Wandlern ermöglicht.
  • Figur 2 zeigt eine Ausführungsform eines kalottenförmigen Wandlers, bei dem die Wandlerelemente 2 rückseitig mit elektrisch leitenden Einzelbackings 6 und mit einem elek­trisch leitenden Träger 8 durch Schrauben 9 verspannt sind.
  • Auf den Wandlerelementen 2 sind zwei Schichten 3 und 4 von Zwischenmedien aufgebracht zur Anpassung der Impedanz an das nicht dargestellte Ankoppelmedium.
  • Die erste Schicht 3 ist elektrisch leitend. Sie wird zur Zuführung der Spannung vom Pulsgenerator 7 an die Wandler­elemente 2 genutzt. Der andere Pol des Generators 7 ist mit den Wandlerelementen 2 über den Träger 8, Schrauben 9 und Backings 6 verbunden.
  • Figur 3 zeigt einen planaren Wandler, bei dem die Wand­lerelemente mit den Einzelbackings 6 durch Schrauben 9 mit dem Träger 8 verspannt sind. Die Anpassung der akustischen Impedanz wird hier durch drei Schichten 3,4 und 5 von Zwischenmedien auf den Wandlerelementen 2 erzielt, wobei selbstverständlich die eingangs genannten Bedingungen far deren akustische Impedanzen erfüllt sind.
  • Die Schicht 5 ist hier allen Wandlerelementen 2 gemeinsam zugeordnet. Sie ist darüber hinaus als akustische Linse ausgebildet, die gemeinsam mit der ersten Anpaßschicht(3)die Fokussierung der abgestrahlten Ultraschall-Stoßwellen bewerk­stelligt.
    Figur 4 zeigt ebenfalls einen planaren Wandler, bei dem in Abstrahlungsrichtung der Ultraschall-Stoßwellen drei Schichten 3,4 und 5 von Zwischenmedien auf die wie schon in Verbindung mit dem Ausführungsbeispiel gemäß Figur 3 erläutert verspannten Wandlerelemente 2 aufgebracht sind. Hier ist die mittlere Schicht 4 als gemeinsame Schicht vor­gesehen und als fokussierende Akustische Linse gestaltet.
  • Vorliegend umreißen elektrisch nichtleitende Seitenwände 16, der gemeinsame Träger 8 und die Schicht 4 einen flüssig­keits- und gasdichten Raum, der mit einem hochisolierenden Medium 18 gefüllt ist.
  • Eine ähnliche Ausführungsform zeigt im übrigen Figur 5. Hier sind allerdings alle Schichten 3,4 und 5 einheitlich für alle Wandlerelemente 2 gemeinsam vorgesehen, von denen die Schichten 4 und 5 eine Linsenfunktion innehaben.
  • Bei dem in Figur 6 gezeigten Ausführungsbeispiel weisen die Wandlerelemente ein gemeinsames Backing 14 auf, welches zu­dem den von der ersten Schicht 3 und den elektrisch nicht­leitenden Seitenwänden 16 umrissenen Raum abschließt, in welchem sich ein hochisolierendes Medium 18 befindet. Die Rückseite des Backings 14 ist so gestaltet, daß an ihr reflektierter Schall nicht mehr im Fokus des Wandlers ge­bündelt wird. Alle Schichten 3 bis 6 sind gemeinsam für alle Wandlerelemente vorgesehen, wobei die Schichten 4 und 5 der Fokussierung der Ultraschall-Stoßwellen dienend als Linsen ausgebildet sind.
  • Wie Figur 7 zeigt, ist die Verwendung eines gemeinsamen Backings 14 auch bei einem kalottenförmigen Wandler möglich. Hier sind die Schichten 3 und 4 der Zwischenmedien jeweils einem Wandlerelement 2 zugeordnet.
  • In Figur 8 ist ein extremer Fall dargestellt, indem das piezokeramische Material 2 einstückig ist. Dieses ist durch ein Backing 14 rückseitig abgeschlossen. Die Impedanzan­passung erfolgt durch zwei Schichten 3 und 4 von Koppel­medien.
  • In Figur 9 ist schließlich eine besonders bevorzugte Aus­führungsform des Wandlers dargestellt. Vorliegend ist nur eine Schicht 3 eines Zwischenmediums dargestellt. Die Schicht 3 besteht aus einem hochisolierenden Vergußmaterial, wofür beispielsweise Polyurethane, Epoxigemische oder Silikone verwendet werden können.
  • Das Vergußmaterial hat eine akustische Impedanz, die wieder zwischen jener der Keramik der Wandlerelemente 2 und jener des Koppelmediums 20 liegt. Mit ihm sind die Zwischenräume 22 zwischen den einzelnen Wandlerelementen 2 ausgefüllt.
  • Dieser Wandler kann aufgrund der Isolation mit höheren Spannungen angesteuert werden als bekannte Wandler. Darüber hinaus hat er den Vorteil, daß die Wandlerelemente 2 absolut wassergeschützt in der Vergußmasse eingebettet sind, wo­durch sich eine überragende Störunanfälligkeit des Wandlers ergibt.

Claims (17)

1. Piezoelektrischer Wandler zur Erzeugung fokussierter Ultraschall-Stoßwellen für die Applikation in der Litho­tripsie, dessen pulsweise abgegebenen Ultraschall-Stoß­wellen über ein Koppelmedium (20) an den Körper eines Patienten übertragbar sind, bestehend aus einer Vielzahl von einzelnen, an die Pole eines Pulsgenerators (7) ange­schlossenen piezoelektrischen Wandlerelementen (2) aus Keramik oder dergleichen, die auf einem Träger (8) mosaik­artig und seitlich voneinander elektrisch isoliert fest­gelegt sind, wobei der akustische Abschluß der Wandler­elemente im wesentlichen reflexionsfrei ist,
dadurch gekennzeichnet,
daß zwischen den Wandlerelementen (2) und dem Koppel­medium (20) ein Zwischenmedium aus zumindest einer Schicht (3,4,5) vorgesehen ist, dessen akustische Impedanz zwischen jener der Keramik der Wandlerelemente (2) und jener des Koppelmediums (20) liegt, und
daß die Dicke der Schicht (3,4,5) so bemessen ist, daß die Beziehung d>τk . cLA gilt, wobei τ k die Laufzeit des Schalls in der Piezokeramik der Wandlerelemente (2) und cLA die Schallgeschwindigkeit in dem jeweiligen Zwischen­medium ist. (Figuren 1 - 9).
2. Piezoelektrischer Wandler nach Anspruch 1, dadurch gekenn­zeichnet, daß mehrere Schichten (3,4,5) von Zwischenmedien zwischen den Wandlerelementen (2) und dem Koppelmedium (20) vorgesehen sind, deren akustische Impedanzen von der ersten Schicht (3) auf den Wandlerelementen (2) her in Richtung auf die Abstrahlungsrichtung der Ultraschall-Stoßwellen gesehen zum Koppelmedium (20) abnehmen. (Figuren 1 - 8).
3. Piezoelektrischer Wandler nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Schicht bzw. Schichten (3,4,5) der Zwischenmedien jeweils einem Wandlerelement (2) zugeordnet ist bzw. sind. (Figuren 2,7).
4. Piezoelektrischer Wandler nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Schicht bzw. Schichten (3,4,5) ein­heitlich allen Wandlerelementen (2) gemeinsam zugeordnet ist bzw. sind. (Figuren 1,5,6,8,9)
5. Piezoelektrischer Wandler nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Schichten (3,4,5) teilweise einheit­lich gemeinsam und teilweise jeweils einem Wandlerelement (2) zugeordnet sind. (Figuren 3, 4).
6. Piezoelektrischer Wandler nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zumindest ein Zwischenmedium (3,4, 5)als akustische Linse ausgebildet ist. (Figuren 3 - 6).
7. Piezoelektrischer Wandler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die in Abstrahlungsrichtung der Ultraschall-Stoßwellen erste Schicht (3) auf den Wandler­elementen (2) eine die Wandlerelemente (2) elektrisch imt­einander verbindende, diesen zugekehrte Oberfläche auf­weist, welche mit dem einen Pol des Pulsgenerators (7) ver­bunden ist. (Figuren 1,2,5,6,8).
8. Piezoelektrischer Wandler nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die erste Schicht (3) auf den Wandlerelementen (2) massiv und metallisch ist. (Figuren 1-8).
9. Piezoelektrischer Wandler nach Anspruch 8, dadurch ge­kennzeichnet, daß eine Schicht (3) als eine massive, akustische Linse ausgebildet ist (Figuren 4-6).
10. Piezoelektrischer Wandler nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß jedes Wandlerelement ein Backing (6) aufweist, dessen akustische Impedanz mindes­tens so groß ist wie jene der Keramik der Wandlerelemente (2). (Figuren 1-8).
11. Piezoelektrischer Wandler nach Anspruch 10, dadurch ge­kennzeichnet, daß die Backings (6,14) so ausgebildet sind, daß der von der Rückseite der Backings her kommende Schall so gestreut wird, daß er nicht im Fokus gebündelt wird.
12. Piezoelektrischer Wandler nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß ein gemeinsames Backing (14) für alle Wandlerelemente (2) zu deren reflektions­freiem Abschluß ausgebildet ist (Figuren 6,7,8).
13. Piezoelektrischer Wandler nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Wandlerelemente (2) mit dem elektrisch leitenden Träger (8) mittels elektrisch leitender Befestigungsmittel (9) verspannt sind, und daß der Träger (8) mit dem anderen Pol des Pulsgenerators (7) verbunden ist. (Figuren 2-5).
14. Piezoelektrischer Wandler nach Anspruch 7,8 oder 9 in Verbindung mit Anspruch 13, dadurch gekennzeichnet, daß der durch eine Schicht (3,4), dem gemeinsamen Backing (14), bzw. den Träger (8) umrissene Raum mittels elek­trisch nicht leitenden Seitenwänden (16) flüssigkeits- und gasdicht abgeschlossen ist, und daß dieser Raum mit einem hoch isolierenden Medium (18) gefüllt ist. (Figuren 4,5,6).
15. Piezoelektrischer Wandler nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß eine elektrisch leitende erste Schicht (3) den Träger (8) bildet, welcher mit dem einen Pol des Pulsgenerators (7) verbunden ist, und daß dieser Träger (8) mit einem Gehäuse (21) einen flüssig­keits- und gasdicht abgeschlossenen Raum umschließt, welcher mit einem hoch isolierenden Medium (18) gefüllt ist. (Figur 1).
16. Piezoelektrischer Wandler nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die erste Schicht (3) aus einem hoch isolierenden vergußmaterial besteht, welches auch die Zwischenräume (22) zwischen den Wandlerelementen (2) ausfüllt (Figur 9).
17. Piezoelektrischer Wandler nach Anspruch 16, dadurch ge­ kennzeichnet, daß das Vergußmaterial aus Polyurethanen, Epoxigemischen oder Silikonen besteht.
EP90118633A 1989-10-03 1990-09-28 Piezoelektrischer Wandler Expired - Lifetime EP0421286B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3932959A DE3932959C1 (de) 1989-10-03 1989-10-03
DE3932959 1989-10-03

Publications (3)

Publication Number Publication Date
EP0421286A2 true EP0421286A2 (de) 1991-04-10
EP0421286A3 EP0421286A3 (en) 1992-06-03
EP0421286B1 EP0421286B1 (de) 1994-11-09

Family

ID=6390734

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90118633A Expired - Lifetime EP0421286B1 (de) 1989-10-03 1990-09-28 Piezoelektrischer Wandler

Country Status (3)

Country Link
US (1) US5111805A (de)
EP (1) EP0421286B1 (de)
DE (2) DE3932959C1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0436809A2 (de) * 1990-01-09 1991-07-17 Richard Wolf GmbH Ultraschallwandler mit piezoelektrischen Wandlerelementen
DE4117638A1 (de) * 1990-05-30 1991-12-05 Toshiba Kawasaki Kk Stosswellengenerator mit einem piezoelektrischen element
WO1996027408A1 (de) * 1995-03-03 1996-09-12 Siemens Aktiengesellschaft Therapiegerät zur behandlung mit fokussiertem ultraschall
CN111940098A (zh) * 2020-04-08 2020-11-17 珠海艾博罗生物技术股份有限公司 侧面励振式超声处理器及处理方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE465552B (sv) * 1989-03-21 1991-09-30 Hans Wiksell Anordning foer soenderdelning av konkrement i kroppen paa en patient
DE3932967A1 (de) * 1989-10-03 1991-04-11 Wolf Gmbh Richard Ultraschall-stosswellenwandler
DE4307669C2 (de) * 1993-03-11 1995-06-29 Wolf Gmbh Richard Gerät zur Erzeugung von Schallimpulsen für den medizinischen Anwendungsbereich
US5415175A (en) * 1993-09-07 1995-05-16 Acuson Corporation Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5438998A (en) * 1993-09-07 1995-08-08 Acuson Corporation Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5743855A (en) * 1995-03-03 1998-04-28 Acuson Corporation Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
DE4336149A1 (de) * 1993-10-22 1995-04-27 Siemens Ag Ultraschallwandler, der aus einer Vielzahl von Wandlerelementen zusammengesetzt ist
US5371483A (en) * 1993-12-20 1994-12-06 Bhardwaj; Mahesh C. High intensity guided ultrasound source
FI95781C (fi) * 1994-04-19 1996-03-25 Outokumpu Mintec Oy Menetelmä ja laitteisto imukuivainlaitteen suodatinväliaineen puhdistamiseksi
US5713371A (en) * 1995-07-07 1998-02-03 Sherman; Dani Method of monitoring cervical dilatation during labor, and ultrasound transducer particularly useful in such method
DE19543741C1 (de) * 1995-11-24 1997-05-22 Wolf Gmbh Richard Elektroakustischer Wandler
DE19624443C2 (de) * 1996-06-19 1998-05-14 Wolf Gmbh Richard Elektroakustischer Wandler
US6669655B1 (en) * 1999-10-20 2003-12-30 Transurgical, Inc. Sonic element and catheter incorporating same
DE19954020C2 (de) * 1999-11-10 2002-02-28 Fraunhofer Ges Forschung Verfahren zur Herstellung eines piezoelektrischen Wandlers
US6571444B2 (en) * 2001-03-20 2003-06-03 Vermon Method of manufacturing an ultrasonic transducer
US7867178B2 (en) * 2003-02-26 2011-01-11 Sanuwave, Inc. Apparatus for generating shock waves with piezoelectric fibers integrated in a composite
DE10340624B4 (de) * 2003-09-03 2005-08-18 Siemens Ag Stoßwellenquelle zum Erzeugen einer fokussierten Stoßwelle
US7302744B1 (en) 2005-02-18 2007-12-04 The United States Of America Represented By The Secretary Of The Navy Method of fabricating an acoustic transducer array
US20070239082A1 (en) * 2006-01-27 2007-10-11 General Patent, Llc Shock Wave Treatment Device
EP2092916A1 (de) * 2008-02-19 2009-08-26 Institut National De La Sante Et De La Recherche Medicale (Inserm) Verfahren zur Behandlung einer Augenkrankheit durch Verabreichung hochintensiven fokussierten Ultraschalls und entsprechende Vorrichtung
US7709997B2 (en) * 2008-03-13 2010-05-04 Ultrashape Ltd. Multi-element piezoelectric transducers
DE102009049487B4 (de) * 2009-10-15 2015-05-13 Richard Wolf Gmbh Elektroakustischer Wandler
CA2809746C (en) 2010-08-27 2019-02-12 Socpra Sciences Et Genie S.E.C. Mechanical wave generator and method thereof
WO2013082352A1 (en) 2011-12-01 2013-06-06 Microbrightfield, Inc. Acoustic pressure wave/shock wave mediated processing of biological tissue, and systems, apparatuses, and methods therefor
US20130340530A1 (en) * 2012-06-20 2013-12-26 General Electric Company Ultrasonic testing device with conical array
US9555267B2 (en) 2014-02-17 2017-01-31 Moshe Ein-Gal Direct contact shockwave transducer
CN109939914A (zh) * 2017-12-20 2019-06-28 深圳先进技术研究院 一种复合材料物理聚焦式换能器及其制造方法
DE102021203544A1 (de) * 2021-04-09 2022-10-13 Richard Wolf Gmbh Elektroakustischer Wandler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926182A1 (de) * 1979-06-28 1981-01-22 Siemens Ag Ultraschallwandleranordnung
EP0033071A1 (de) * 1980-01-25 1981-08-05 Siemens Aktiengesellschaft Ultraschallwandler
EP0118837A2 (de) * 1983-03-15 1984-09-19 Siemens Aktiengesellschaft Ultraschallwandler
EP0173864A1 (de) * 1984-08-16 1986-03-12 Siemens Aktiengesellschaft Poröse Anpassungsschicht in einem Ultraschallapplikator
EP0183236A2 (de) * 1984-11-28 1986-06-04 Wolfgang Prof. Dr. Eisenmenger Einrichtung zur berührungsfreien Zertrümmerung von Konkrementen im Körper von Lebewesen
EP0372198A2 (de) * 1988-12-03 1990-06-13 Dornier Medizintechnik Gmbh Piezokeramische Stosswellenquelle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156863A (en) * 1978-04-28 1979-05-29 The United States Of America As Represented By The Secretary Of The Navy Conical beam transducer array
DE3165302D1 (en) * 1980-03-20 1984-09-13 Deritend Eng Co Stripper
DE3040563A1 (de) * 1980-10-28 1982-05-27 Siemens AG, 1000 Berlin und 8000 München Elektrisch zu betaetigendes stellglied
US4539554A (en) * 1982-10-18 1985-09-03 At&T Bell Laboratories Analog integrated circuit pressure sensor
DE3319871A1 (de) * 1983-06-01 1984-12-06 Richard Wolf Gmbh, 7134 Knittlingen Piezoelektrischer wandler zur zerstoerung von konkrementen im koerperinnern
US4704556A (en) * 1983-12-05 1987-11-03 Leslie Kay Transducers
DE3425992C2 (de) * 1984-07-14 1986-10-09 Richard Wolf Gmbh, 7134 Knittlingen Piezoelektrischer Wandler zur Zerstörung von Konkrementen im Körperinneren
DE3437488A1 (de) * 1984-10-12 1986-04-17 Richard Wolf Gmbh, 7134 Knittlingen Schallsender
JPS61144565A (ja) * 1984-12-18 1986-07-02 Toshiba Corp 高分子圧電型超音波探触子
EP0209053A3 (de) * 1985-07-18 1987-09-02 Wolfgang Prof. Dr. Eisenmenger Verfahren und Einrichtung zur berührungsfreien Zertrümmerung von Konkrementen im Körper von Lebewesen
US4879993A (en) * 1986-10-29 1989-11-14 Siemens Aktiengesellschaft Shock wave source for generating a short initial pressure pulse
DE8710118U1 (de) * 1987-07-23 1988-11-17 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
EP0324948A3 (de) * 1988-01-21 1989-10-25 Dornier Medizintechnik Gmbh Vorrichtung zur Steinzerkleinerung
US4869768A (en) * 1988-07-15 1989-09-26 North American Philips Corp. Ultrasonic transducer arrays made from composite piezoelectric materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926182A1 (de) * 1979-06-28 1981-01-22 Siemens Ag Ultraschallwandleranordnung
EP0033071A1 (de) * 1980-01-25 1981-08-05 Siemens Aktiengesellschaft Ultraschallwandler
EP0118837A2 (de) * 1983-03-15 1984-09-19 Siemens Aktiengesellschaft Ultraschallwandler
EP0173864A1 (de) * 1984-08-16 1986-03-12 Siemens Aktiengesellschaft Poröse Anpassungsschicht in einem Ultraschallapplikator
EP0183236A2 (de) * 1984-11-28 1986-06-04 Wolfgang Prof. Dr. Eisenmenger Einrichtung zur berührungsfreien Zertrümmerung von Konkrementen im Körper von Lebewesen
EP0372198A2 (de) * 1988-12-03 1990-06-13 Dornier Medizintechnik Gmbh Piezokeramische Stosswellenquelle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0436809A2 (de) * 1990-01-09 1991-07-17 Richard Wolf GmbH Ultraschallwandler mit piezoelektrischen Wandlerelementen
EP0436809A3 (en) * 1990-01-09 1992-07-22 Richard Wolf Gmbh Ultrasonic transducer using piezoelectric elements
DE4117638A1 (de) * 1990-05-30 1991-12-05 Toshiba Kawasaki Kk Stosswellengenerator mit einem piezoelektrischen element
FR2662884A1 (fr) * 1990-05-30 1991-12-06 Toshiba Kk Generateur d'ondes de choc utilisant un element piezoelectrique.
US5247924A (en) * 1990-05-30 1993-09-28 Kabushiki Kaisha Toshiba Shockwave generator using a piezoelectric element
WO1996027408A1 (de) * 1995-03-03 1996-09-12 Siemens Aktiengesellschaft Therapiegerät zur behandlung mit fokussiertem ultraschall
CN111940098A (zh) * 2020-04-08 2020-11-17 珠海艾博罗生物技术股份有限公司 侧面励振式超声处理器及处理方法
CN111940098B (zh) * 2020-04-08 2021-11-12 珠海艾博罗生物技术股份有限公司 侧面励振式超声处理器及处理方法

Also Published As

Publication number Publication date
EP0421286B1 (de) 1994-11-09
DE3932959C1 (de) 1991-04-11
DE59007688D1 (de) 1994-12-15
US5111805A (en) 1992-05-12
EP0421286A3 (en) 1992-06-03

Similar Documents

Publication Publication Date Title
EP0421286B1 (de) Piezoelektrischer Wandler
DE4117638C2 (de)
DE3611669C2 (de)
DE4302538C1 (de) Therapiegerät zur Ortung und Behandlung einer im Körper eines Lebewesens befindlichen Zone mit akustischen Wellen
EP0298334B1 (de) Stosswellenquelle
EP0300315B1 (de) Stosswellengenerator für eine Einrichtung zum berührungslosen Zertrümmern von Konkrementen im Körper eines Lebewesens
DE2541492C3 (de) Ultraschallwandler
DE3119295A1 (de) Einrichtung zum zerstoeren von konkrementen in koerperhoehlen
DE1105210B (de) Elektromechanischer UEbertrager fuer hochfrequente Druckwellen in Stroemungsmitteln
DE3390293T1 (de) Ultraschallwandler
EP0308644A2 (de) Fokussierender Ultraschallwandler
DE3304666A1 (de) Ultraschallwandler-abschirmung
EP0166976B1 (de) Ultraschallwandlersystem
DE3214789A1 (de) Dynamisch fokussierender ultraschallwandler
DE1270197B (de) Verzoegerungsanordnung mit Dispersion fuer akustische Wellen
DE3520133C2 (de)
EP0111047B1 (de) Vorrichtung zur Erzeugung von Stosswellenimpulsfolgen
DE4000362C2 (de) Ultraschallwandler mit piezoelektrischen Wandlerelementen
DE112015007231T5 (de) Ultraschallwandler
DE3135096A1 (de) Schallgeber mit piezowandler
DE2742492C3 (de) Ultraschallwandler
EP0240923A1 (de) Stosswellenquelle mit piezokeramischer Druckquelle
DE1114957B (de) Elektromechanische Verzoegerungsvorrichtung
DE19512417A1 (de) Piezoelektrischer Ultraschallwandler
DE3215242C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19921010

17Q First examination report despatched

Effective date: 19931022

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

REF Corresponds to:

Ref document number: 59007688

Country of ref document: DE

Date of ref document: 19941215

ITF It: translation for a ep patent filed

Owner name: FUMERO BREVETTI S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950109

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950804

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960930

BERE Be: lapsed

Owner name: RICHARD WOLF G.M.B.H.

Effective date: 19960930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970714

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970717

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980928

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050928