EP0423512A2 - Phase controlled antenna array for a microwave landing system (MLS) - Google Patents

Phase controlled antenna array for a microwave landing system (MLS) Download PDF

Info

Publication number
EP0423512A2
EP0423512A2 EP90118430A EP90118430A EP0423512A2 EP 0423512 A2 EP0423512 A2 EP 0423512A2 EP 90118430 A EP90118430 A EP 90118430A EP 90118430 A EP90118430 A EP 90118430A EP 0423512 A2 EP0423512 A2 EP 0423512A2
Authority
EP
European Patent Office
Prior art keywords
phase
antenna
bits
mls
microwave landing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90118430A
Other languages
German (de)
French (fr)
Other versions
EP0423512A3 (en
Inventor
Gerhard Dr Greving
Peter Dr Kölzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent Deutschland AG
Original Assignee
Alcatel SEL AG
Standard Elektrik Lorenz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SEL AG, Standard Elektrik Lorenz AG filed Critical Alcatel SEL AG
Publication of EP0423512A2 publication Critical patent/EP0423512A2/en
Publication of EP0423512A3 publication Critical patent/EP0423512A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital

Definitions

  • the invention relates to a phase-controlled group antenna, in particular a group antenna for a microwave landing system.
  • an antenna system with a phase-controlled group antenna and an associated switching network is known.
  • This antenna system consists of a large number of individual radiators, each of which is connected to a coupling network via an electronically controllable phase shifter.
  • the coupling network serves to distribute the RF energy originating from a high-frequency signal source to the individual radiators.
  • Antennas with high secondary attenuation and good multipath behavior are required for microwave landing systems.
  • Conventional systems work with high accuracy requirements, such as those found for azimuth antennas on runways of 4.5 km in length and for elevation antennas on rising terrain, with a beam width of 1.0 ° and use phase shifters with a phase quantization of 4 bits.
  • the one for the Use in civil aviation requires the properties "high secondary attenuation” and "good multipath behavior" at this beam width can only be achieved by group antennas with about 120 individual radiators and complex convolver networks using "spatial filter” technology. For this reason, such group antennas become very expensive.
  • the object of the invention is to build a phase-controlled group antenna with a smaller number of individual radiators, which nevertheless meets the safety requirements for air traffic.
  • the phase-controlled group antenna according to the invention has the advantage of using the phase shifters with a phase quantization of 6 bits to achieve the required high side-zip attenuation and the good multipath behavior.
  • the higher phase quantization also increases the alignment accuracy of the antenna lobe.
  • a 1 ° / 4 bit antenna system for example, is equivalent to a 2 ° / 6 bit antenna system with regard to the error behavior of an MLS system. In principle, there is thus the possibility of reducing the number of individual radiators required for the antenna system.
  • each individual radiator 11 is connected to a coupling network 14 via a phase shifter designated 12.
  • the high-frequency energy originating from a high-frequency signal source 15 is distributed to the individual radiators 11 of the array antenna 10 with the aid of the coupling network 14.
  • the phase-controlled group antenna works as follows: its main lobe can be pivoted through a certain angle by feeding the individual radiators with linearly progressive phase increases in such a way that a phase difference of a certain size occurs between two neighboring radiators.
  • digital phase shifters are used for this purpose, with which the phase is not set continuously, but in quantized steps. This means that usually the actually desired phase value cannot be set exactly, but only the value closest to it in the quantization grid. With each phase setting, an error is made, the greater the smaller the degree of quantization of the phase shifter.
  • a 4-bit phase shifter can only be switched in steps of 22.5 °, while a 6-bit phase shifter allows a resolution of 5.625 °.
  • the quantization error caused by the digital phase shifters naturally has a decisive influence on the antenna pattern and the swiveling behavior of the group antenna. For example, it decreases with increasing Phase quantization of the levels of the undesirable but unavoidable side lobes in the antenna diagram. Conversely, side lobes increase with decreasing phase quantization.
  • the quadratic mean (RMS) of the side lobe level (SLL) can be expressed as a function of phase quantization with:
  • N the number of individual emitters.
  • P the number of bits
  • N the number of individual emitters.
  • the use of higher-resolution phase shifters not only leads to a weakening of the side lobes generated by the antenna, but also to an improvement in the alignment accuracy of the main lobe. For example, if you compare a 1 ° / 4 bit - with a 2 ° / 6 bit version, the latter theoretically results in an improvement in the alignment accuracy by a factor of 2.
  • Errors caused by multipath interference are proportional to the side lobe level, ie the energy in the side lobes, proportional to the reflection factor of the interferer and proportional to the beam width of the antenna.
  • the values for the side lobe level and the main lobe width must be selected accordingly. For example, if a higher side lobe level is permitted due to a low phase quantization of 4 bits, the main lobe width must be chosen to be correspondingly small, for example 1 °.
  • the same result can also be achieved are that lower side lobe levels are achieved by higher phase resolution of the phase shifter, so that a wider main lobe can be used. This is precisely the subject of the invention described here.
  • a correspondingly low sidelobe level can be achieved by using high-resolution phase shifters (6 bits).
  • the beam width of the main lobe can then be set to 2 °.
  • the following table shows that this leads to a group antenna that manages with a considerably smaller number of individual radiators.
  • table Beam width Number of spotlights Azimuth antenna 1.0 ° 104 1.65 ° 64 2.0 ° 52 Elevation antenna 1.0 ° 96 1.3 ° 64
  • phase shifters with a quantization of 6 bits.
  • the relationship between alignment accuracy - also called beam-pointing-error -, quantization of the phase shifters and number of individual antenna elements illustrates the following formula:
  • fluctuation of the antenna lobe
  • B width of the antenna lobe
  • P quantization of the phase shifters in bits
  • N number of individual radiators in the antenna system.

Abstract

Conventional phased-array antennas for microwave landing systems consist of over 100 individual emitters, use electronically controllable phase shifters with a phase quantisation of 4 bits and have a beam width of 1.0 DEG in the case of stringent requirements. The antenna array described here is driven via electronically controllable phase shifters with a quantisation of 6 bits. With a beam width of 1.65 DEG and only 64 individual emitters, a side lobe attenuation and a multipath behaviour are achieved which corresponds to the conventional antenna arrays. In addition, the alignment accuracy is increased. <IMAGE>

Description

Die Erfindung betrifft eine phasengesteuerte Gruppenantenne, insbesondere eine Gruppenantenne für ein Mikrowellen-Landesystem.The invention relates to a phase-controlled group antenna, in particular a group antenna for a microwave landing system.

Aus der DE-P 29 04 095 C 2 ist ein Antennensystem mit einer phasengesteuerten Gruppenantenne und einem zugehörigen Koppelnetzwerk bekannt. Dieses Antennensystem besteht aus einer großen Zahl von Einzelstrahlern, von denen jeder über einen elektronisch steuerbaren Phasenschieber mit einem Koppelnetzwerk verbunden ist. Das Koppelnetzwerk dient dazu, die aus einer Hochfrequenz-Signalquelle stammende HF-Energie auf die einzelnen Strahler zu verteilen.From DE-P 29 04 095 C 2 an antenna system with a phase-controlled group antenna and an associated switching network is known. This antenna system consists of a large number of individual radiators, each of which is connected to a coupling network via an electronically controllable phase shifter. The coupling network serves to distribute the RF energy originating from a high-frequency signal source to the individual radiators.

Für Mikrowellen-Landesysteme sind Antennen mit hoher Nebenzipfeldämpfung und gutem Multipath-Verhalten erforderlich. Gebräuchliche Anlagen arbeiten bei hohen Genauigkeitsanforderungen, wie sie sich für Azimutantennen bei Landebahnen von 4,5 km Länge und für Elevationsantennen bei ansteigendem Gelände ergeben, mit einer Strahlbreite von 1,0° und verwenden Phasenschieber mit einer Phasenquantisierung von 4 Bit. Die für den Einsatz im zivilen Luftverkehr geforderten Eigenschaften "hohe Nebenzipfeldämpfung" und "gutes Multipath-Verhalten" sind bei dieser Strahlbreite nur durch Gruppenantennen mit etwa 120 Einzelstrahlern und aufwendigen Konvolver-Netzwerken in "Spatial-filter"-Technik zu erreichen. Aus diesem Grunde werden solche Gruppenantennen sehr teuer.Antennas with high secondary attenuation and good multipath behavior are required for microwave landing systems. Conventional systems work with high accuracy requirements, such as those found for azimuth antennas on runways of 4.5 km in length and for elevation antennas on rising terrain, with a beam width of 1.0 ° and use phase shifters with a phase quantization of 4 bits. The one for the Use in civil aviation requires the properties "high secondary attenuation" and "good multipath behavior" at this beam width can only be achieved by group antennas with about 120 individual radiators and complex convolver networks using "spatial filter" technology. For this reason, such group antennas become very expensive.

Aufgabe der Erfindung ist es, eine phasengesteuerte Gruppenantenne mit einer kleineren Anzahl von Einzelstrahlern aufzubauen, die dennoch den Sicherheitsanforderung für den Luftverkehr entspricht.The object of the invention is to build a phase-controlled group antenna with a smaller number of individual radiators, which nevertheless meets the safety requirements for air traffic.

Gelöst wird diese Aufgabe durch eine phasengesteuerte Gruppenantenne mit der Merkmalskombination des Hauptanspruches. Die Unteransprüche enthalten Weiterbildungen und Ausgestaltungen der Erfindung.This task is solved by a phase-controlled group antenna with the combination of features of the main claim. The subclaims contain further developments and refinements of the invention.

Die phasengesteuerte Gruppenantenne gemäß der Erfindung hat den Vorteil, durch den Einsatz von Phasenschiebern mit einer Phasenquantisierung von 6 Bit die geforderte hohe Nebenzipfeldampfung und das gute Multipath-Verhalten zu erreichen. Darüberhinaus wird durch die höhere Phasenquantisierung die Ausrichtgenauigkeit der Antennenkeule erhöht. Dies hat zur Folge, daß bezüglich des Fehlerverhaltens eines MLS-Systems beispielsweise eine 1°/4 Bit-Antennenanlage einer 2°/6 Bit-Antennenanlage äquivalent ist. Damit besteht prinzipiell die Möglichkeit, die Zahl der für die Antennenanlage erforderlichen Einzelstrahler zu reduzieren.The phase-controlled group antenna according to the invention has the advantage of using the phase shifters with a phase quantization of 6 bits to achieve the required high side-zip attenuation and the good multipath behavior. The higher phase quantization also increases the alignment accuracy of the antenna lobe. As a result, a 1 ° / 4 bit antenna system, for example, is equivalent to a 2 ° / 6 bit antenna system with regard to the error behavior of an MLS system. In principle, there is thus the possibility of reducing the number of individual radiators required for the antenna system.

Ein Ausführungsbeispiel der Erfindung wird im folgenden anhand der einzigen Figur beschrieben und erläutert.An embodiment of the invention is described and explained below with reference to the single figure.

Die einzige Figur zeigt
- ein Prinzipschaltbild der phasengesteuerten Gruppenantenne
The only figure shows
- A schematic diagram of the phase-controlled group antenna

Mit 10 ist eine Gruppenantenne bezeichnet, die aus einer großen Zahl von Einzelstrahlern 11 besteht. Jeder Einzelstrahler 11 ist über einen mit 12 bezeichneten Phasenschieber mit einem Koppelnetzwerk 14 verbunden. Die aus einer Hochfrequenz-Signalquelle 15 stammende Hochfrequenz-Energie wird mit Hilfe des Koppelnetzwerk 14 auf die Einzelstrahler 11 der Gruppenantenne 10 verteilt.10 with a group antenna is referred to, which consists of a large number of individual radiators 11. Each individual radiator 11 is connected to a coupling network 14 via a phase shifter designated 12. The high-frequency energy originating from a high-frequency signal source 15 is distributed to the individual radiators 11 of the array antenna 10 with the aid of the coupling network 14.

Die phasengesteuerte Gruppenantenne arbeitet wie folgt: Ihre Hauptkeule kann um einen bestimmten Winkel geschwenkt werden, in dem die Einzelstrahler um linear progressive Phasenzuwächse in der Form gespeist werden, daß sich zwischen zwei benachbarten Strahlern eine Phasendifferenz bestimmter Größe einstellt. In der Regel werden für diese Zwecke digitale Phasenschieber eingesetzt, mit denen die Phase nicht kontinuierlich, sondern in quantisierten Stufen eingestellt wird. Dies führt dazu, daß zumeist der eigentlich gewünschte Phasenwert nicht exakt eingestellt werden kann, sondern nur der ihm am nächsten liegende Wert im Quantisierungsraster. Bei jeder Phaseneinstellung wird also ein Fehler gemacht, der um so größer ist, je geringer der Quantisierungsgrad des Phasenschiebers ist. Ein 4-Bit-Phasenschieber läßt sich nur in Stufen von 22,5° schalten, während ein 6-Bit-Phasenschieber eine Auflösung von 5,625° erlaubt. Der durch die digitalen Phasenschieber hervorgerufene Quantisierungsfehler hat natürlich einen entscheidenden Einfluß auf das Antennendiagramm und das Schwenkverhalten der Gruppenantenne. So sinkt beispielsweise mit zunehmender Phasenquantisierung der Level der unerwünschten, aber nicht vermeidbaren Nebenkeulen im Antennendiagramm. Umgekehrt nehmen Nebenkeulen mit abnehmender Phasenquantisierung zu. Mathematisch läßt sich der quadratische Mittelwert (RMS) des Nebenkeulenlevels (Side-Lobe-Level, SLL) als Funktion der Phasenquantisierung ausdrücken mit:

Figure imgb0001
The phase-controlled group antenna works as follows: its main lobe can be pivoted through a certain angle by feeding the individual radiators with linearly progressive phase increases in such a way that a phase difference of a certain size occurs between two neighboring radiators. As a rule, digital phase shifters are used for this purpose, with which the phase is not set continuously, but in quantized steps. This means that usually the actually desired phase value cannot be set exactly, but only the value closest to it in the quantization grid. With each phase setting, an error is made, the greater the smaller the degree of quantization of the phase shifter. A 4-bit phase shifter can only be switched in steps of 22.5 °, while a 6-bit phase shifter allows a resolution of 5.625 °. The quantization error caused by the digital phase shifters naturally has a decisive influence on the antenna pattern and the swiveling behavior of the group antenna. For example, it decreases with increasing Phase quantization of the levels of the undesirable but unavoidable side lobes in the antenna diagram. Conversely, side lobes increase with decreasing phase quantization. Mathematically, the quadratic mean (RMS) of the side lobe level (SLL) can be expressed as a function of phase quantization with:
Figure imgb0001

Dabei ist P die Anzahl der Bit, N die Anzahl der Einzelstrahler. Der Einsatz höher auflösender Phasenschieber führt jedoch nicht nur zu einer Abschwächung der von der Antenne erzeugten Nebenkeulen, sondern auch zu einer Verbesserung der Ausrichtgenauigkeit der Hauptkeule. Vergleicht man beispielsweise eine 1°/4 Bit - mit einer 2°/6 Bit-Version, so ergibt sich für die letztere theoretisch eine Verbesserung in der Ausrichtgenauigkeit um den Faktor 2.P is the number of bits, N the number of individual emitters. However, the use of higher-resolution phase shifters not only leads to a weakening of the side lobes generated by the antenna, but also to an improvement in the alignment accuracy of the main lobe. For example, if you compare a 1 ° / 4 bit - with a 2 ° / 6 bit version, the latter theoretically results in an improvement in the alignment accuracy by a factor of 2.

Fehler, die durch Multipath-Störungen hervorgerufen werden, sind proportional zum Side-Lobe-Level, d.h. der in den Nebenkeulen steckenden Energie, proportional zum Reflexionsfaktor des Störers und proportional zur Strahlbreite der Antenne. Zur Erreichung der für Mikrowellen-Landesysteme geforderten Grenzwerte für diese Fehler müssen die Werte für die Nebenkeulenlevel und die Hauptkeulenbreite entsprechend gewahlt werden. Wird beispielsweise auf Grund einer geringen Phasenquantisierung von 4 Bit ein höherer Nebenkeulenlevel zugelassen, muß die Hauptkeulenbreite entsprechend klein gewählt werden, beispielsweise 1°. Das gleiche Ergebnis kann jedoch auch dadurch erreicht werden, daß durch höhere Phasenauflösung der Phasenschieber niedrigere Nebenkeulenlevel erreicht werden, so daß eine breitere Hauptkeule benutzt werden kann. Genau das ist Gegenstand der hier beschriebenen Erfindung. Durch den Einsatz von hochauflösenden Phasenschiebern (6 Bit) kann ein entsprechend geringer Nebenkeulenlevel erreicht werden. Die Strahlbreite der Hauptkeule kann dann auf 2° festgelegt werden. Die nachfolgende Tabelle zeigt, daß dies zu einer Gruppenantenne führt, die mit einer erheblich geringeren Anzahl von Einzelstrahlern auskommt. Tabelle Strahlbreite Anzahl der Strahler Azimutantenne 1.0° 104 1.65° 64 2.0° 52 Elevationsantenne 1,0° 96 1,3° 64 Errors caused by multipath interference are proportional to the side lobe level, ie the energy in the side lobes, proportional to the reflection factor of the interferer and proportional to the beam width of the antenna. To achieve the limit values for these errors required for microwave landing systems, the values for the side lobe level and the main lobe width must be selected accordingly. For example, if a higher side lobe level is permitted due to a low phase quantization of 4 bits, the main lobe width must be chosen to be correspondingly small, for example 1 °. However, the same result can also be achieved are that lower side lobe levels are achieved by higher phase resolution of the phase shifter, so that a wider main lobe can be used. This is precisely the subject of the invention described here. A correspondingly low sidelobe level can be achieved by using high-resolution phase shifters (6 bits). The beam width of the main lobe can then be set to 2 °. The following table shows that this leads to a group antenna that manages with a considerably smaller number of individual radiators. table Beam width Number of spotlights Azimuth antenna 1.0 ° 104 1.65 ° 64 2.0 ° 52 Elevation antenna 1.0 ° 96 1.3 ° 64

Ein weiterer Vorteil der Verwendung von Phasenschiebern mit einer Quantisierung von 6 Bit liegt darin, daß die Ausrichtgenauigkeit der Antennenkeule wesentlich verbessert wird. Den Zusammenhang zwischen Ausrichtgenauigkeit - auch beam-pointing-error genannt -, Quantisierung der Phasenschieber und Zahl der Einzelstrahler der Antenne verdeutlicht die folgende Formel:

Figure imgb0002
Another advantage of using phase shifters with a quantization of 6 bits is that the alignment accuracy of the antenna lobe is significantly improved. The relationship between alignment accuracy - also called beam-pointing-error -, quantization of the phase shifters and number of individual antenna elements illustrates the following formula:
Figure imgb0002

Darin sind:
Δ⊖ = Schwankung der Antennenkeule
B= Breite der Antennenkeule
P = Quantisierung der Phasenschieber in Bit
N = Zahl der Einzelstrahler der Antennenanlage.
In it are:
Δ⊖ = fluctuation of the antenna lobe
B = width of the antenna lobe
P = quantization of the phase shifters in bits
N = number of individual radiators in the antenna system.

Man erkennt, daß die Quantisierung exponentiell in die auf die Strahlbreite bezogene Ausrichtgenauigkeit eingeht.It can be seen that the quantization exponentially affects the alignment accuracy related to the beam width.

Zusammenfassend kann gesagt werden, daß die Verwendung von 6 Bit-Phasenschiebern in phasengesteuerten MSL-Gruppenantennen den Bau kleinerer Antennen (weniger Einzelstrahler) mit breiteren Hauptkeulen ermöglicht. Diese Antennen stehen jedoch hinsichtlich der MLS-Genauigkeit (Multipah-Verhalten, Nebenzipfeldämpfung) in nichts den Antennen mit schmaleren Hauptkeulen (1°) nach, sind sogar hinsichtlich der Ausrichtgenauigkeit besser.In summary, it can be said that the use of 6-bit phase shifters in phase-controlled MSL group antennas enables the construction of smaller antennas (fewer individual radiators) with wider main lobes. However, these antennas are in no way inferior to antennas with narrower main lobes (1 °) in terms of MLS accuracy (multipah behavior, secondary zip field attenuation), and are even better in terms of alignment accuracy.

Claims (3)

1. Phasengesteuerte Gruppenantenne mit einer Vielzahl von Einzelstrahlern, die über elektronisch steuerbare Phasenschieber mit einer gemeinsamen Hochfrequenz-Signalquelle verbunden sind,
gekennzeichnet durch
Phasenschieber mit einer Phasenquantisierung von 6 Bit.
1. phase-controlled group antenna with a large number of individual radiators which are connected to a common high-frequency signal source via electronically controllable phase shifters,
marked by
Phase shifter with a phase quantization of 6 bits.
2. Phasengesteuerte Gruppenantenne nach Anspruch 1,
gekennzeichnet durch ihre Verwendung in einem Mikrowellen-Landesystem (MLS).
2. phase-controlled array antenna according to claim 1,
characterized by their use in a microwave landing system (MLS).
3. Phasengesteuerte Gruppenantenne nach den Ansprüchen 1 und 2,
gekennzeichnet durch eine Strahlbreite von
1,3° für Elevationsantennen und
1,65° für Azimutantennen.
3. phase-controlled group antenna according to claims 1 and 2,
characterized by a beam width of
1.3 ° for elevation antennas and
1.65 ° for azimuth antennas.
EP19900118430 1989-10-18 1990-09-26 Phase controlled antenna array for a microwave landing system (mls) Withdrawn EP0423512A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19893934716 DE3934716A1 (en) 1989-10-18 1989-10-18 PHASE-CONTROLLED GROUP ANTENNA FOR A MICROWAVE LANDING SYSTEM (MLS)
DE3934716 1989-10-18

Publications (2)

Publication Number Publication Date
EP0423512A2 true EP0423512A2 (en) 1991-04-24
EP0423512A3 EP0423512A3 (en) 1991-06-12

Family

ID=6391697

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900118430 Withdrawn EP0423512A3 (en) 1989-10-18 1990-09-26 Phase controlled antenna array for a microwave landing system (mls)

Country Status (4)

Country Link
EP (1) EP0423512A3 (en)
JP (1) JPH03145304A (en)
AU (1) AU6387990A (en)
DE (1) DE3934716A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198458B1 (en) 1994-11-04 2001-03-06 Deltec Telesystems International Limited Antenna control system
US6573875B2 (en) 2001-02-19 2003-06-03 Andrew Corporation Antenna system
US6677896B2 (en) 1999-06-30 2004-01-13 Radio Frequency Systems, Inc. Remote tilt antenna system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611401A (en) * 1968-09-24 1971-10-05 Gen Electric Beam steering system for phased array antenna
US3699584A (en) * 1970-12-30 1972-10-17 Us Army Insertion phase correction of phase shifters by presetting binary counters
US4586047A (en) * 1983-06-29 1986-04-29 Rca Corporation Extended bandwidth switched element phase shifter having reduced phase error over bandwidth
EP0254649A1 (en) * 1986-07-25 1988-01-27 Thomson-Csf Process and device for compensating the frequency dispersion in an electronically scanned antenna and its use in a landing system of the MLS type

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611401A (en) * 1968-09-24 1971-10-05 Gen Electric Beam steering system for phased array antenna
US3699584A (en) * 1970-12-30 1972-10-17 Us Army Insertion phase correction of phase shifters by presetting binary counters
US4586047A (en) * 1983-06-29 1986-04-29 Rca Corporation Extended bandwidth switched element phase shifter having reduced phase error over bandwidth
EP0254649A1 (en) * 1986-07-25 1988-01-27 Thomson-Csf Process and device for compensating the frequency dispersion in an electronically scanned antenna and its use in a landing system of the MLS type

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198458B1 (en) 1994-11-04 2001-03-06 Deltec Telesystems International Limited Antenna control system
US6346924B1 (en) 1994-11-04 2002-02-12 Andrew Corporation Antenna control system
US6538619B2 (en) 1994-11-04 2003-03-25 Andrew Corporation Antenna control system
US6567051B2 (en) 1994-11-04 2003-05-20 Andrew Corporation Antenna control system
US6590546B2 (en) 1994-11-04 2003-07-08 Andrew Corporation Antenna control system
US6600457B2 (en) 1994-11-04 2003-07-29 Andrew Corporation Antenna control system
US6603436B2 (en) 1994-11-04 2003-08-05 Andrew Corporation Antenna control system
US8558739B2 (en) 1994-11-04 2013-10-15 Andrew Llc Antenna control system
US6677896B2 (en) 1999-06-30 2004-01-13 Radio Frequency Systems, Inc. Remote tilt antenna system
US6573875B2 (en) 2001-02-19 2003-06-03 Andrew Corporation Antenna system
US6987487B2 (en) 2001-02-19 2006-01-17 Andrew Corporation Antenna system

Also Published As

Publication number Publication date
EP0423512A3 (en) 1991-06-12
AU6387990A (en) 1991-04-26
JPH03145304A (en) 1991-06-20
DE3934716A1 (en) 1991-04-25

Similar Documents

Publication Publication Date Title
DE69912420T2 (en) PATCH ANTENNA
DE4106250C2 (en)
DE2631026C2 (en)
DE4026432A1 (en) PLANAR ANTENNA
DE69839348T2 (en) TWO BAND ANTENNA
DE3042456C2 (en)
EP3427340A1 (en) Antenna device for a radar sensor
DE2158416A1 (en) Antenna arrangement
EP2862235A1 (en) Antenna arrangement and method
DE2509923A1 (en) ANTENNA ARRANGEMENT FOR RADIATING DIRECTIONAL BEAM CHARACTERISTICS
DE2812575C2 (en) Phased antenna field
DE3217437A1 (en) MICROWAVE DIRECTIONAL ANTENNA FROM A DIELECTRIC LINE
DE60019412T2 (en) ANTENNA WITH VERTICAL POLARIZATION
DE1042674B (en) Rotary beacon antenna with improved vertical radiation
EP0423512A2 (en) Phase controlled antenna array for a microwave landing system (MLS)
DE3839945C2 (en) Phased array antenna
EP0021193B1 (en) Combined antenna system
DE69630299T2 (en) ANTENNA ELEMENT FOR TWO ORTHOGONAL POLARISATIONS
WO2006103128A1 (en) Antenna array with high-density integration
DE102017201321A1 (en) Zig zag antenna
EP0304668A1 (en) Dipole antenna curtain for the transmission of short waves
EP0573970A1 (en) Omnidirectional antenna
DE1516895C3 (en) Antenna made up of several individual radiators
DE2029412A1 (en) Antenna made up of several individual radiators
DE2650220A1 (en) ANTENNA WITH ELECTRONIC DIAGRAM PIVOT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19911213