EP0455762A1 - Elektrohydraulische ventilsteuervorrichtung für brennkraftmaschinen. - Google Patents

Elektrohydraulische ventilsteuervorrichtung für brennkraftmaschinen.

Info

Publication number
EP0455762A1
EP0455762A1 EP19900915297 EP90915297A EP0455762A1 EP 0455762 A1 EP0455762 A1 EP 0455762A1 EP 19900915297 EP19900915297 EP 19900915297 EP 90915297 A EP90915297 A EP 90915297A EP 0455762 A1 EP0455762 A1 EP 0455762A1
Authority
EP
European Patent Office
Prior art keywords
valve
shut
channel
pressure chamber
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19900915297
Other languages
English (en)
French (fr)
Other versions
EP0455762B1 (de
Inventor
Heinz Stutzenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0455762A1 publication Critical patent/EP0455762A1/de
Application granted granted Critical
Publication of EP0455762B1 publication Critical patent/EP0455762B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • F01L9/12Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem
    • F01L9/14Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem the volume of the chamber being variable, e.g. for varying the lift or the timing of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift

Definitions

  • the invention relates to an electrohydraulic valve control device for internal combustion engines according to the preamble of the main claim.
  • a solenoid valve is assigned to each individual engine valve to be controlled, so that a multi-cylinder internal combustion engine must have solenoid valves corresponding to the number of cylinders.
  • the system is also susceptible to faults.
  • connection cables are available, and the individual outputs for these cables or solenoid valves must have a correspondingly complex switching and programming device in the electronic control unit.
  • the opening stroke curve of the valve corresponds to the curve of the cam track of the drive cam.
  • the opening time cross-section is designed in such a way that it meets the maximum requirements, namely the full load at maximum speed. At low speeds, it is known that the torque and the performance of the internal combustion engine can be improved if the closing time of the engine inlet valve is set earlier. Because of the lower speeds and lower load, the required opening time cross section is of course also smaller.
  • the drain channel is known to be opened by the solenoid valve during the opening process of the engine valve, which is problematic in that there is a high control pressure in the pressure chamber at this time, which also acts on the solenoid valve. In order to be able to overcome this pressure, the solenoid valve must either have a pilot control or a strong opening magnet, a pilot control being time-consuming, while a strong magnet is weight, volume and cost intensive.
  • the electrohydraulic valve control device with the characterizing features of the main claim has the advantage that the high-pressure space for the period in which no control is to take place is separated from the solenoid valve by the shut-off valve in a simple manner.
  • the solenoid valve can thus open as long as the shut-off valve is closed, so that as soon as the shut-off valve opens, the hydraulic oil flows through the solenoid valve to the oil without any load on the control system of the solenoid valve container can flow without pressure.
  • the pressure in the pressure chamber is reduced again to such an extent that the shut-off valve closes automatically. Cavities remaining in the pressure chamber are filled with control oil that flows in via the inlet channel.
  • the solenoid valve can always remain open at low speeds and loads - the time cross section is determined only by the first section of the drive cam track, namely until the valve piston, which is driven indirectly via the pressure chamber, controls the control channel controls and thus opens the shut-off valve, after which the pressure in the pressure chamber is reduced and the engine valve is closed again.
  • the solenoid valve can then be clocked synchronously, and at high speeds and loads, the solenoid valve always remains closed.
  • a check valve opening in the direction of the solenoid valve is arranged in the drain channel between the shut-off valve and the solenoid valve, and according to a further embodiment, further drain channels of other valve control units of the same internal combustion engine open into the drain channel between the check valve and the solenoid valve.
  • the shut-off valve can only be opened when the engine valve has already opened a minimum stroke, ie the drive cam is rotated by a minimum angle of rotation, the overlapping sections are functionally elite beed, that is, control only becomes effective when the angle of rotation range of the camshaft is no longer effective, in which an overlap takes place.
  • the check valve ensures that pressures which set in the further outlet channels, for example through opening pressures in pressure chambers of one of the other engine valves, do not extend into the pressure chamber of the engine valve under consideration.
  • a relief line is provided between the control channel and the drain channel upstream of the shut-off valve, in which a check valve opening towards the drain channel is arranged.
  • the cam path of the drive cam is designed to rise slowly and steeply as seen per angle of rotation of the camshaft. After a long, slow start with an intermediate area approximately constant lifting speed follows shortly A steep sequence persists in the maximum open position of the engine valve, through which the engine valve is closed as quickly as possible, especially after the start of control.
  • the shut-off valve is designed as a slide valve, the slide of which can be pushed against a closing spring can be acted upon by hydraulic oil at the end face under pressure chamber pressure.
  • FIG. 1 shows a longitudinal section through a valve control device with a correspondingly simplified hydraulic circuit diagram
  • FIG. 2 shows a functional diagram of four identical valve control devices for a four-cylinder internal combustion engine. Description of the exemplary embodiment
  • a cam piston 3 is arranged in a bore 2 in a radially sealing and axially displaceable manner, which is pressed by a plunger spring 4 against the outer raceway 5 of a drive cam 6, which is arranged on a camshaft 7 driven at half the engine speed in synchronism with the crankshaft.
  • the camshaft 7 is driven in the direction of arrow I and has a first gradually increasing pressure stroke section II, which is followed by a steep suction stroke section III, the base circle section IV of the cam track 5 acting between these two working sections II and III, for which the cam piston remains in its initial position.
  • the cam piston 3 displaces hydraulic oil during the pressure stroke caused by the drive cam 6 (pressure stroke section II of raceway 5), conveying hydraulic fluid driven into the pressure chamber 8 against the force of the plunger spring 4.
  • the pressure chamber 8, is delimited by a valve piston 9, which is connected to a valve stem 11 of a valve disk 12 of an engine intake valve.
  • the valve piston 9 is mounted in a bore 13 of the cylinder head 1 in an axially movable, radially sealing manner and is loaded by a closing spring 14. loads, which presses the valve plate 12 on the valve seat 15 and determines the closing force of this engine intake valve.
  • the working pressure is thus also determined, which arises when the cam piston 3 is actuated by the drive cam 6 in the pressure chamber 8 before the valve piston 9 is displaced by this working pressure and opens the engine valve and the suction channel 16 connects to the combustion chamber of the internal combustion engine.
  • a discharge channel 17 in which a shut-off valve 18, a check valve 19 and a magnetic valve 21 are arranged one after the other in the direction of flow are before the drain channel 17 opens into a hydraulic oil tank 22.
  • the magnetic valve 21 is designed as a 2/2-way valve, which is closed when de-energized.
  • the check valve 19 opens in the direction of flow towards the oil container 22.
  • the shut-off valve 18 is designed as a slide valve, with a control slide 23, which is loaded by a control spring 24 in the closing direction shown.
  • the control slide 23 is actuated by a hydraulic pressure which acts on the control slide 23 on the end face remote from the control spring 24 and which is supplied via a control channel 25, the input 26 of which is controlled by the valve piston 9.
  • a hydraulic pressure which acts on the control slide 23 on the end face remote from the control spring 24 and which is supplied via a control channel 25, the input 26 of which is controlled by the valve piston 9.
  • An inlet channel 29 opens into the pressure chamber 8, in which a check valve 31 opening in the direction of the pressure chamber is arranged.
  • the feed channel 29 is supplied with hydraulic oil from the container 22 by a feed pump 32, the feed pressure of the feed pump 32 being kept largely constant via a pressure maintaining valve 33.
  • discharge channels 34 with check valves 35 from further valve control units belonging to the same engine open into the discharge channel 17 between the check valve 19 and the magnetic valve 21.
  • This exemplary embodiment is a four-cylinder internal combustion engine, the engine valve control units always being hydraulically decoupled from the solenoid valve 21 via the respective shut-off valve 18. where the drive cam 6 is currently not effective.
  • the electro-hydraulic valve control device described works as follows: via the camshaft 7, which is driven synchronously with the crankshaft at half the engine speed, the drive cam 6 is driven in the direction of rotation I and actuates the cam piston 3 via its cam path II to IV against the force of the plunger spring 4, wherein hydraulic oil present in the bore 2 is conveyed into the pressure chamber 8 during the pressure stroke section II of the raceway 5, in order to then take up oil from the pressure chamber 8 again during the suction stroke section III of the raceway 5 as a suction stroke of the cam piston 3.
  • the cam piston 3 remains in the position shown, the plunger spring 4 ensures a positive connection between the cam piston 3 and drive cam track. However, the plunger spring 4 does not affect the pressure in the pressure chamber 8.
  • the valve piston 9 including the valve stem 11 and the valve plate 12 is moved downward against the force of the closing spring 14, as a result of which the valve plate 12 lifts off the valve seat 15 and the suction channel 16 is opened accordingly.
  • the amount of air subsequently flowing into the engine cylinder depends on the one hand on this control stroke and on the other hand on the control duration, which results in the so-called opening time cross section.
  • this opening time cross section is inversely proportional to the rotational speed, ie the opening time cross section is small at high speeds and vice versa large at low speeds.
  • there are influences due to inertia, friction and throttling effects which should not be dealt with in detail here.
  • the check valve 31 and thus the inlet channel 29 are blocked.
  • the drain channel 17 is also initially blocked by the shut-off valve 18.
  • the valve piston 9 As soon as the valve piston 9 is displaced by a minimum stroke, it opens the input 26 of the control channel 25, after which the oil pressure propagates to the front side of the control slide 23 and moves it against the force of the control spring 24, whereby the drain channel 17 is opened.
  • this opening of the shut-off valve 18 does not have a significant effect on the pressure in the pressure chamber 8, so that the valve piston 9 and thus the valve disk 12 are moved further downward as long as the pressure stroke section II of the drive cam 6 is effective is.
  • This pressure stroke section II is designed such that the stroke movement is largely linear, that is to say uniform, with a smooth transition to the stroke end.
  • the Nockenkolbe ⁇ 3 comes at only about 60 to 80 ° angle of rotation of the camshaft ( Q NW) back into the starting position shown - driven by the plunger spring 4 - so that the valve piston 9 and the valve plate 12 are correspondingly quickly upwards by the closing spring 14 be pushed, after which the engine valve closes.
  • the input 26 of the control channel 25 is blocked by the valve piston 9, although, due to the pressure reduction in the pressure chamber 8, the control slide 23 is previously driven in the direction of its blocked position by the control spring 24.
  • the relief line 27 makes it possible for the remaining oil quantities displaced by the control slide 23 to flow back into the outlet channel 17 via the check valve 28 and to ensure the blocking position of the shut-off valve 18.
  • the function of the engine valve control according to the invention in a four-cylinder internal combustion engine is described below with the aid of the diagram shown in FIG. 2, the drain channels 34 leading to the other three engine valve control units and all four engine valve control units of this engine using only one solenoid valve 21 can be controlled.
  • the stroke h (ordinate) of the valve piston 9 or valve plate 12 is plotted over the angle of rotation in ° NW (abscissa).
  • the four engine cylinders are labeled a, b, c and d in the order in which they are arranged side by side.
  • the ignition sequence for this four-cylinder internal combustion engine is c, d, b, a.
  • the actuation of the solenoid valve 21 caused by the electronic control device can thus be such that this solenoid valve always remains closed at high speed and load, in order to achieve an optimal opening time cross-section on the engine valve, and that the solenoid valve at low speeds and loads always remains open in order to keep the opening time cross-section as small as possible, which is then determined by the blocking time of the shut-off valve.
  • the control takes place by clocking the solenoid valve, which can be done, for example, in synchronism with the crank angle. In this way, the range between 100 ° NW and 270 ° NW, ie the final valve closing point, is controlled independently for each of the four cylinders via the solenoid valve 21.

Description

Elektrohydraulische Ventilsteuervorrichtung für Brennkraftmaschinen
Stand der Technik
Die Erfindung geht aus von einer elektrohydraulischen Ventilsteuervorrichtung für Brennkraftmaschinen nach der Gattung des Hauptanspruchs . Bei einer bekannten Ventilsteuervorrichtung dieser Art ist jedem einzel¬ nen zu steuernden Motorventil ein Magnetventil zuge¬ ordnet, so daß bei einer Mehrzylinder-Brennkraft¬ maschine entsprechend der Zylinderzahl Magnetventile vorhanden sein müssen. Hierdurch sind nicht nur die Kosten der gesamten Steuereinrichtung hoch, sondern es ist auch die Störanfälligkeit der Anlage groß. So müssen beispielsweise zwischen den einzelnen Magnet¬ ventilen und dem elektronischen Steuergerät einzelne Anschlußkabel vorhanden sein, und es müssen die ein¬ zelnen Ausgänge für diese Kabel bzw. Magnetventile eine entsprechend aufwendige Schalt- und Programmein¬ richtung im elektronischen Steuergerät aufweisen.
Bei einem ungesteuerten Motorventil entspricht der Öffnungshubverlauf des Ventils dem Verlauf der Nockenbahn des Antriebsnockens. Hierbei ist der Öff¬ nungszeitquerschnitt so gestaltet, daß er den Maxi¬ malforderungen, nämlich der Vollast bei Höchstdreh¬ zahl, genügt. Bei niederen Drehzahlen kann bekannt¬ lich das Drehmoment und die Leistung der Brennkraft¬ maschine verbessert werden, wenn der Schließzeitpunkt des Motoreinlaßventils früher gelegt wird. Aufgrund der niederen Drehzahlen und geringerer Last ist natürlich auch der erforderliche Öffnungszeitquer¬ schnitt geringer. Für die Verkürzung des Öffnungs¬ zeitquerschnitts wird bekanntlich der Ablaufkanal während des Aufsteuervorgangs des Motorventils durch das Magnetventil geöffnet, was insofern problematisch ist, als im Druckraum zu diesem Zeitpunkt ein hoher Au fSteuerdruck herrscht, der auch das Magnetventil beaufschlagt. Um diesen Druck überwinden zu können, muß das Magnetventil entweder eine Vorsteuerung auf¬ weisen oder einen starken Öffnungsmagnet, wobei eine Vorsteuerung zeitintensiv ist, während ein starker Magnet gewichts-, volumen- und kostenintensiv ist. Vorteile der Erfindung
Die erfindungsgemäße elektrohydraulische Ventilsteu¬ ervorrichtung mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß in einfacher Weise der Hochdruckraum für den Zeitab¬ schnitt, in dem ohnehin keine Steuerung stattfinden soll, durch das Absperrventil vom Magnetventil ge¬ trennt ist. Besonders im speziellen Betriebsbereich für niedrige Last und Drehzahl kann somit das Magnet¬ ventil aufsteuern, solange das Absperrventil ge¬ schlossen ist, so daß, sobald das Absperrventil dann öffnet, das Hydrauliköl ohne Belastung der Steueran¬ lage des Magnetventils über das Magnetventil zum Öl¬ behälter drucklos abströmen kann. Sobald dann die Nockenbahn des Antriebsnockens abgelaufen ist und damit der Nockenkolben vom Druckhub zum Saughub über¬ geht, baut sich der Druck im Druckraum wieder soweit ab, daß das Absperrventil automatisch schließt. Im Druckraum verbleibende Hohlräume werden mit Steueröl aufgefüllt, das über den Zulaufkanal einströmt.
Vorteilhafterweise kann aufgrund der funktionsbeding¬ ten Gegebenheiten das Magnetventil bei niederen Dreh¬ zahlen und Lasten stets geöffnet bleiben - der Zeit- querschnit wird nur durch den ersten Abschnitt der Antriebsnockenbahn bestimmt, nämlich solange, bis der über den Druckraum mittelbar angetriebene Ventilkol¬ ben den Steuerkänal aufsteuert und damit das Absperr¬ ventil öffnet, wonach der Druck im Druckraum abgebaut und das Motorventil wieder geschlossen wird. Bei Zwischendrehzahlen kann dann das Magnetventil bedarfssynchron getaktet werden und bei hohen Dreh¬ zahlen und Lasten bleibt das Magnetventil stets ge¬ schlossen.
Natürlich ist für die Steuerung des Absperrventils eine Abstimmung zwischen den Drücken und Schließkräf¬ ten von Druckraum und Absperrventil erforderlich, wo¬ bei der Druck im Druckraum durch die Schließkraft des Motorventils und damit dessen Öffπungskraft bestimmt wird.
Nach einer vorteilhaften Ausgestaltung der Erfindung ist im Ablaufkanal zwischen Absperrventil und Magnet¬ ventil ein in Richtung Magnetventil öffnendes Rück¬ schlagventil angeordnet, wobei nach einer weiteren Ausgestaltung in den Ablaufkanal zwischen Rückschlag¬ ventil und Magnetventil weitere Ablaufkanäle anderer Ventilsteuereinheiten der gleichen Brennkraftmaschine münden. Die Erfindung bietet vor allem bei mehrzylin- drigen Brennkraftmaschinen die Möglichkeit, mit nur einem Magnetventil eine Reihe von Motorventilen zu steuern und dies, obwohl es zwischen den Aufsteuer¬ zeiten der einzelnen Motorventile Überschneidungen gibt. Da das Absperrventil immer erst dann aufgesteu¬ ert werden kann, wenn das Motorventil bereits einen Mindesthub geöffnet hat, d. h. der Antriebsnocken um einen Mindestdrehwinkel verdreht ist, wird erreicht, daß die überschneidenden Abschnitte funktioneil eli- iniert werden, d, h., daß Steuerung erst dann wirk¬ sam wird, wenn der Drehwinkelbereich der Nockenwelle nicht mehr wirksam ist, in dem eine Überschneidung stattfindet. In jedem Fall wird durch das Rückschlag¬ ventil erreicht, daß sich in den weiteren Ablaufkanä¬ len einstellende Drücke, beispielsweise durch Öff¬ nungsdrücke in Druckräumen eines der anderen Motor¬ ventile, nicht in den Druckraum des betrachteten Motorventils ausdehnen.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist zwischen Steuerkanal und Ablaufkanal stromauf des Absperrventils eine Entlastungsleitung vorhanden, in der ein zum Ablaufkanal hin öffnendes Rückschlagventil angeordnet ist. Immer dann, wenn im Druckraum der Druck wieder abgebaut ist und der Steu¬ erkanal bereits wieder durch den Nockenkolben ge¬ sperrt wurde, kann das Absperrventil für seinen Schließvorgang Hydrauliköl über diese Entlastungslei¬ tung zum Druckraum hin zurückdrängen. Während des Aufsteuervorgangs hingegen wird dieses Rückschlagven¬ til durch den hohen Druck im Druckraum gesperrt ge¬ halten.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist die Nockenbahn des Antriebsnockens pro Drehwinkel Nockenwelle gesehen langsam ansteigend und steil abfallend ausgebildet. Nach einem langen, lang¬ samen Anlauf mit einem Zwischenbereich näherungswei¬ se konstanter Hubgeschwindigkeit folgt nach kurzem Verharren in maximaler Öffnungsstellung des Motorven¬ tils ein steiler Ablauf durch den insbesondere nach Steuerbeginn ein schnellstmögliches Schließen des Motorventils erzielt wird.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist das Absperrventil als Schieberventil ausgebildet, dessen gegen eine Schließfeder ver¬ schiebbarer Schieber stirnseitig von Hydrauliköl unter Druckraumdruck beaufschlagbar ist.
Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung sind der nachfolgenden Beschreibung, der Zeichnung und den Ansprüchen entnehmbar.
Zeichnung
Ein Ausführungsbeispiel des Gegenstandes der Erfin¬ dung ist in der Zeichnung dargestellt und im folgen¬ den näher beschrieben. Es zeigen Fig. 1 einen Längs¬ schnitt durch eine stark vereinfacht dargestellte Ventilsteuervorrichtung mit dazugehörigem Hydraulik¬ schaltplan und Fig. 2 ein Funktionsdiagramm von vier gleichen Ventilsteuervorrichtungen für eine Vier- Zylinder-Brennkraftmaschine. Beschreibung des Aus führungsbeispiels
Bei dem in Fig. 1 im Schnitt dargestellten Teil eines Zylinderkopfes 1 ist in einer Bohrung 2 ein Nocken¬ kolben 3 radial dichtend und axial verschiebbar ange¬ ordnet, der durch eine Stößelfeder 4 an die Außen¬ laufbahn 5 eines Antriebsnockens 6 gepreßt wird, der auf einer mit halber Motordrehzahl synchron zur Kur¬ belwelle angetriebenen Nockenwelle 7 angeordnet ist. Die Nockenwelle 7 wird in Drεhrichtung des Pfeiles I angetrieben und weist einen ersten allmählich anstei¬ genden Druckhubabschnitt II auf, an den sich ein steiler Saughubabschnitt III anschließt, wobei zwischen diesen beiden Arbeitsabschnitten II und III der Grundkreisabschnitt IV der Nockenbahn 5 wirksam ist, für den der Nockenkolben in seiner Ausgangslage bleibt.
Der Nockenkolben 3 verdrängt Hydraulikol während des durch den Antriebsnocken 6 bewirkten Druckhubs (Druckhubabschnitt II von Laufbahn 5), wobei er ent¬ gegen der Kraft der Stößelfeder 4 angetrieben Hydrau¬ likol in einen Druckraum 8 fördert.
Der Druckraum 8 ist andererseits durch einen Ventil¬ kolben 9 begrenzt, der mit einem Ventilschaft 11 eines Ventiltellers 12 eines Motoreinlaßventils ver¬ bunden ist. Der Ventilkolben 9 ist in einer Bohrung 13 des Zylinderkopfes 1 axial beweglich radial dich¬ tend gelagert und wird durch eine Schließfeder 14 be- lastet, die den Ventilteller 12 auf den Ventilsitz 15 preßt und die Schließkraft dieses Motoreinlaßventils bestimmt. In Verbindung mit der den Druckraum zuge¬ wandten Stirnseite des Ventilkolbens 9 wird damit auch der Arbeitsdruck bestimmt, der beim Betätigen des Nockenkolbens 3 durch den Antriebsnocken 6 im Druckraum 8 entsteht, bevor der Ventilkolben 9 durch diesen Arbeitsdruck verschoben das Motorventil öffnet und den Saugkanal 16 mit dem Brennraum der Brenn¬ kraftmaschine verbindet.
Vom Druckraum 8, der mit dem Nockenkolben 3 der Stößelfeder 4 und dem Ventilkolben 9 einen hydrauli¬ schen Ventilstößel bildet, zweigt ein Abflußkanal 17 ab, in dem in Strömungsrichtung nacheinander ein Ab¬ sperrventil 18, ein Rückschlagventil 19 und ein Mag¬ netventil 21 angeordnet sind, bevor der Ablaufkanal 17 in einen Hydraulikölbehälter 22 mündet. Das Mag¬ netventil 21 ist als 2/2-Wegeventil ausgebildet, das stromlos geschlossen ist. Das Rückschlagventil 19 öffnet in Strömungsrichtung zum Ölbehälter 22 hin. Das Absperrventil 18 ist als Schieberventil ausgebil¬ det, mit einem Steuerschieber 23, welcher durch eine Steuerfeder 24 in die dargestellte Schließrichtung belastet ist. Betätigt wird der Steuerschieber 23 durch einen hydraulischen Druck, der den Steuerschie¬ ber 23 auf der der Steuerfeder 24 abgewandten Stirn¬ seite beaufschlagt und der über einen Steuerkanal 25 zugeführt wird, dessen Eingang 26 durch den Ventil¬ kolben 9 gesteuert wird. Sobald der Ventilkolben 9 einen bestimmten Weg entgegen der Kraft der Schlie߬ feder 14 zurückgelegt hat, steuert er mit seiner oberen Stirnkante den Eingang 26 des Steuerkanals 25 auf, so daß sich der Druck vom Druckraum 8 über den Steuerkanal 25 zur Stirnseite des Steuerschiebers 23 überträgt und diesen entgegen der Kraft der Steuer¬ feder 24 verschiebt, wonach der Abflußkanal 17 aufge¬ steuert ist. Zwischen dem Steuerkanal 25 und dem Ab¬ flußkanal 17 ist ein Entlastungskanal 27 vorhanden, in dem ein in Richtung Ablaufkanal 17 öffnendes Rück¬ schlagventil 28 angeordnet ist.
In den Druckraum 8 mündet ein Zulaufkanal 29, in dem ein in Richtung Druckraum öffnendes Rückschlagventil 31 angeordnet ist. Der Zulaufkanal 29 wird durch eine Förderpumpe 32 von dem Behälter 22 her mit Hydraulik¬ ol versorgt, wobei der Förderdruck der Förderpumpe 32 über ein Druckhalteventil 33 weitgehend konstant ge¬ halten wird .
Um mit dem einen Magnetventil 21 mehrere oben be¬ schriebene Ventilsteuereinheiten steuern zu können, münden in den Abflußkanal 17 zwischen dem Rückschlag¬ ventil 19 und dem Magnetventil 21 Abflußkanäle 34 mit Rückschlagventilen 35 von weiteren, aber zum gleichen Motor gehörenden Ventilsteuereinheiten. Bei diesem Ausführungsbeispiel handelt es sich um eine Vier- Zylinder-Brennkraftmaschine, wobei immer die Motor- ventilsteuereinheiten vom Magnetventil 21 hydraulisch über das jeweilige Absperrventil 18 abgekoppelt sind, bei denen der Antriebsnocken 6 gerade nicht wirksam ist.
Die beschriebene elektrohydraulische Ventilsteuervor¬ richtung arbeitet wie folgt: Über die mit halber Motordrehzahl synchron zur Kurbelwelle angetriebene Nockenwelle 7 wird der Antriebsnocken 6 in Drehrich¬ tung I angetrieben und betätigt dabei über seine Nockeπbahn II bis IV den Nockenkolben 3 entgegen der Kraft der Stößelfeder 4, wobei in der Bohrung 2 vor¬ handenes Hydraulikol während des Druckhubabschnittes II der Laufbahn 5 in den Druckraum 8 gefördert wird, um danach während des Saughubabschnittes III der Laufbahn 5 als Saughub des Nockenkolbens 3 wieder Öl aus dem Druckraum 8 aufzunehmen. Während des Bahnab¬ schnittes IV, der dem Grundkreis des Antriebsnockens entspricht, verharrt der Nockenkolben 3 in der darge¬ stellten Stellung, wobei die Stößelfeder 4 für einen Formschluß zwischen Nockenkolben 3 und Antriebs¬ nockenlaufbahn sorgt. Die Stößelfeder 4 wirkt sich jedoch nicht auf den Druck im Druckraum 8 aus.
Aufgrund der Förderung des Nockenkolbens 3 wird der Ventilkolben 9 einschließlich Ventilschaft 11 und Ventilteller 12 entgegen der Kraft der Schließfeder 14 nach unten verschoben, wodurch der Ventilteller 12 vom Ventilsitz 15 abhebt und der Saugkanal 16 ent¬ sprechend aufgesteuert wird. Die danach in den Motor¬ zylinder einströmende Luftmenge hängt einerseits von diesem Aufsteuerhub und andererseits von der Aufsteu- erdauer ab, wodurch sich der sogenannte Öffnungszeit¬ querschnitt ergibt. Solange aus dem Druckraum 8 kein Hydraulikol abströmen kann, ist dieser Öffnungszeit¬ querschnitt umgekehrt proportional zur Drehzahl, d. h. , bei hohen Drehzahlen ist der Öffnungszeitquer¬ schnitt klein und umgekehrt bei niederen Drehzahlen groß. Hinzu kommen Einflüsse durch Massenträgheit, Reibung und Drosseleffekte, die hier jedoch nicht im einzelnen behandelt werden sollen. Während dieser Förderphase des Nockenkolbens 3 ist das Rückschlag¬ ventil 31 und damit der Zulaufkanal 29 gesperrt. Auch der Ablaufkanal 17 ist zunächst durch das Absperrven¬ til 18 gesperrt. Sobald der Ventilkolben 9 um einen Mindesthub verschoben ist, steuert er den Eingang 26 des Steuerkanals 25 auf, wonach sich der Öldruck zur Stirnseite des Steuerschiebers 23 fortpflanzt und diesen entgegen der Kraft der Steuerfeder 24 ver¬ schiebt, wodurch der Ablaufkanal 17 aufgesteuert wird. Solange das Magnetventil 21 gesperrt ist, wirkt sich dieses Aufsteuern des Absperrventils 18 nicht wesentlich auf den Druck im Druckraum 8 aus, so daß der Ventilkolben 9 und damit der Ventilteller 12 weiter nach unten bewegt werden, solange der Druck¬ hubabschnitt II des Antriebsnockens 6 wirksam ist. Dieser Druckhubabschnitt II ist so ausgebildet, daß die Hubbewegung weitgehend linear, also gleichmäßig, erfolgt mit einem weichen Übergang zum Hubende hin.
Wenn der Saughubabschnitt III des Antriebsnockens 6 wirksam wird, der verhältnismäßig steil ausgebildet ist, gelangt der Nockenkolbeπ 3 bei nur etwa 60 bis 80° Drehwinkel der Nockenwelle (QNW) wieder in die dargestellte Ausgangslage - angetrieben durch die Stößelfeder 4 - so daß entsprechend schnell auch der Ventilkolben 9 und der Ventilteller 12 durch die Schließfeder 14 nach oben geschoben werden, wonach das Motorventil schließt. Hierbei wird der Eingang 26 des Steuerkanals 25 durch den Ventilkolben 9 ge¬ sperrt, wobei jedoch bereits vorher aufgrund des Druckabbaus im Druckraum 8 der Steuerschieber 23 durch die Steuerfeder 24 angetrieben in Richtung seiner Sperrlage verschoben wird. In jedem Fall wird durch die Entlastungsleitung 27 ermöglicht, daß rest¬ liche vom Steuerschieber 23 verdrängte Ölmengen über das Rückschlagventil 28 zurück in den Ablaufkanal 17 strömen und die Sperrstellung des Absperrventils 18 gewährleisten.
Sofern sich im Druckraum 8 aufgrund abgeströmter Öl¬ mengen ein Unterdruck einstellt, wird über den Zu¬ laufkanal 29 von der Förderpumpe 32 her dieses ausge¬ glichen, wobei das Hydraulikol über das Rückschlag¬ ventil 31 einströmt und im Druckraum 8 für die darge¬ stellte Ausgangslage, in der der Grundkreisabschnitt IV des Antriebsnockens 6 wirksam ist, einen konstan¬ ten Fülldruck entsprechend dem Förderdruck des Druck¬ halteventils 33 einstellt.
Wenn jedoch das Magnetventil 21 bei dem Arbeitshub des Antriebsnockens 6 geöffnet ist, strömt, nachdem das Absperrventil 18 nach dem bestimmten Vorhub des Ventilkolbens 9 geöffnet ist, Hydraulikol aus dem Druckraum 8 über diesen Abflußkanal 17, das Rück¬ schlagventil 19 und das Magnetventil 21 in den Ölbe¬ hälter 22. Ab diesem Zeitpunkt also wird der Aufsteu¬ erhub des Ventilkolbens 9 gestoppt, da im Druckraum 8 kein ausreichender Druck mehr vorhanden ist, und die weitere vom Nockenkolben 3 geförderte Ölmenge strömt direkt zum Behälter 22. Während dieses FörderVorgangs wird durch diesen Förderdruck der Steuerschieber 23 in der Aufsteuerlage gehalten, um dann wie oben be¬ schrieben beim Einsetzen des Saughubs des Nockenkol¬ bens 3 wieder in die dargestellte Ausgangslage zu ge¬ langen.
Anhand dem in Fig. 2 dargestellten Diagramm wird im folgenden die Funktion der erfindungsgemäßen Motor¬ ventilsteuerung bei einer Vier-Zylinder-Brennkraft- maschine beschrieben, wobei die Abflußkanäle 34 zu den weiteren drei Motorventilsteuereinheiten führen und wobei alle vier Motorventilsteuereinheiten dieses Motors über nur ein Magnetventil 21 gesteuert werden. In Fig. 2 ist über dem Drehwinkel in °NW (Abzisse) der Hub h (Ordinate) des Ventilkolbens 9 bzw. Ventil¬ tellers 12 aufgetragen. Die vier Motorzylinder sind in der Reihenfolge wie sie nebeneinander angeordnet sind mit a, b, c und d bezeichnet. Die Zündfolge bei dieser Vier-Zylinder-Brennkraf maschine ist c, d, b, a. Wie den in den vier übereinander angeordneten Dia¬ grammen dargestellten Kurven entnehmbar ist, weisen diese entsprechend der Laufbahn 5 des Antriebnockens 6 einen langsamen Anlauf mit näherungsweiser konstan¬ ter Hubveränderung auf und einen steilen Abfall je¬ weils etwa bei 180° NW Aufsteuerhub und 60° bis 80° NW Schließhub.
Wie dem Diagramm für den Zylinder c in Fig. 2 ent¬ nehmbar ist, wird, wenn bei 100° NW und einem ent¬ sprechenden Hub des Ventilkolbens 9 das Absperrventil 18 und damit der Abflußkanal 17 aufgesteuert werden, der Schließzeitpunkt des Motorventils, d. h. das Auf¬ liegen des Ventiltellers 12 auf seinem Sitz 15, wie durch die gestrichtelte Linie dargestellt, bei 180° NW erreicht. Das heißt also, wenn das Magnetventil 21 offen ist, wird bei etwa 100° NW der Aufsteuerhub des Motorventils beendet, so daß dieses bei etwa 180° NW geschlossen hat. Bis zu 100° NW kann also keinerlei Schließsteuerung stattfinden, da das Absperrventil 18 bis dann grundsätzlich geschlossen ist. Dem Zylinder a der Brennkraftmaschine entsprechenden Diagramm ist wiederum entnehmmbar, daß bei 60° bis 80° NW der Schließvorgang des Motorventils beendet ist, selbst wenn der Saughub des Nockenkolbens 3 bei 0° NW begon¬ nen hat. Das heißt wiederum, daß bei sich überschnei¬ denden Öffnungszeiten der einzelnen Motorventile, wie es der Fall für den Motorzylinder a und c ist, eine Aufsteuerung des Abflußkanals der Ventilsteuereinheit zu Zylinder a keinen Steuerungseinfluß auf die Ven- tiIsteuereinheit des Zylinders c haben kann, da bei c der Abflußkanal 17 noch grundsätzlich durch das Ab- Sperrventil 18 gesperrt ist und erst bei etwa 100° NW geöffnet wird. Hierdurch können mit nur einem Magnet¬ ventil 21 alle Ventilsteuereinheiten des 4-Zylinder- Motors gesteuert werden, da es bzgl. der Steuerzeit eines dieser Steuereinheiten keine Überschneidung mit jener eines der anderen Steuereinheiten geben kann.
Die durch das elektronische Steuergerät bewirkte Be¬ tätigung des Magnetventils 21 kann somit derart sein, daß bei hoher Drehzahl und Last dieses Magnetventil stets geschlossen bleibt, um somit einen optimalen Öffnungszeitquerschnitt am Motorventil zu erzielen, und daß bei niedrigen Drehzahlen und Lasten das Mag¬ netventil immer offen bleibt, um so den Öffnungszeit¬ querschnitt so klein wie möglich zu halten, wobei dieser dann durch die Sperrzeit des Absperrventils bestimmt wird. In dem Zwischendrehzahl- bzw. auch Lastbereich, also in dem Drehzahlbereich zwischen dem Aufsteuerzeitpunkt des Absperrventils 18 und der Steuersituation, in der das Magnetventil 21 stets ge¬ sperrt ist, erfolgt die Steuerung durch Takten des Magnetventils, was beispielsweise kurbelwinkelsyn- chron erfolgen kann. Auf diese Weise wird der Bereich zwischen 100° NW und 270° NW, also dem endgültigen Ventilschließpunkt, über das Magnetventil 21 und zwar für jeden der vier Zylinder unabhängig gesteuert.
Alle in der Beschreibung, den nachfolgenden Ansprü¬ chen und der Zeichnung dargestellten Merkmale können sowohl einzeln als auch in beliebiger Kombination miteinander erfindungswesentlich sein.

Claims

Patentansprüche
Elektrohydraulische Ventilsteuervorrichtung für Breπnkraftmaschinen
- mit einem durch den Antriebsnocken einer Motor¬ nockenwelle über einen Ventilstößel axial ange¬ triebenen Motorventil
- mit einem die wirksame Länge des Ventilstößels bestimmenden, mit Hydraulikol gefüllten Druck¬ raum änderbaren Volumens, der einerseits durch einen vom Antriebsnocken betätigten Nockenkol¬ ben und andererseits durch einen auf den Ven¬ tilschaft wirkenden Ventilkolben begrenzt ist
- mit einem vom Druckraum abzweigenden Ablauf¬ kanal des Hydrauliköls
- mit einem in den Druckraum mündenden, ein zum Druckraum hin öffnendes Rückschlagventil ent¬ haltenden, Zulaufkanal für das Hydraulikol und
- mit einem über ein Motorkenngrößen verarbeiten¬ des elektronisches Steuergerät angesteuerten Magnetventil zur Steuerung des Ablaufkanals und damit des Druckraumvolumens. d a d u r c h g e k e n n z e i c h n e t,
- daß der Ablaufkanal (17) über ein Absperrventil (18) gesperrt ist, welches hydraulisch auf¬ steuerbar ist
- daß der Ventilkolben (9) nach Zurücklegung eines einem bestimmten Drehwinkel (°NW) der Nockenwelle (7) entsprechenden Hubes einen Steuerkanal (25) aufsteuert und
- daß der Steuerkanal (25) zum Absperrven il (18) führt zur Übertragung des Druckraumdruckes als Steuerdruck am Absperrventil, so daß nach Aufsteuerung des Steuerkanals (25) durch den Ventilkolben (9) das Absperrventil (18) durch den Arbeitsdruck im Druckraum (8) geöffnet wird .
2. Ventilsteuervorrichtung nach Anspruch 1, d a¬ d u r c h g e k e n n z e i c h n e t, daß im - 1ό -
Ablaufkanal (17) zwischen Absperrventil (18) und Magnetventil (21) ein in Richtung Magnetventil (21) öffnendes Rückschlagventil (19) angeordnet ist.
Ventilsteuervorrichtung nach Anspruch 2, d a- d u r c h g e k e n n z e i c h n e t, daß in den Ablaufkanal (17) zwischen Rückschlagventil (19) und Magnetventil ((21) weitere Ablaufkanäle (34) anderer Ventilsteuereinheiten der gleichen Brennkraftmaschine münden.
Ventilsteuervorrichtung nach einem der vorherge¬ henden Ansprüche, d a d u r c h g e k e n n¬ z e i c h n e t, daß zwischen dem Steuerkanal (25) und dem Ablaufkanal (17) stromauf des Ab¬ sperrventils (18) eine Entlastungsleitung (27) vorhanden ist, in der ein zum Ablaufkanal (17) hin öffnendes Rückschlag entil (28) angeordnet ist .
Ventilsteuervorrichtung nach einem der vorherge¬ henden Ansprüche, d a d u r c h g e k e n n¬ z e i c h n e t, daß der Antriebsnocken (6) eine Laufbahn (5) (II bis IV) aufweist, die für den Förderhub des anzutreibenden Nockenkolbens (3) langsam ansteigt (Druckhubabschnitt II) und für den Saughub steil abfällt (Saughubabschnitt III). Ventilsteuervorrichtung nach einem der vorherge¬ henden Ansprüche, d a d u r c h g e k e n n¬ z e i c h n e t, daß das Absperrventil (18) als Schieberventil ausgebildet ist, dessen gegen eine Rückstellfeder (24) aus der Sperrlage heraus verschiebbarer Schieber (23) auf der der Rück¬ stellfeder (24) abgewandten Stirnseite vom durch den Steuerkanal (25) zugeführten Hydraulikol be¬ aufschlagbar ist.
EP90915297A 1989-11-25 1990-10-26 Elektrohydraulische ventilsteuervorrichtung für brennkraftmaschinen Expired - Lifetime EP0455762B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3939066A DE3939066A1 (de) 1989-11-25 1989-11-25 Elektrohydraulische ventilsteuervorrichtung fuer brennkraftmaschinen
DE3939066 1989-11-25

Publications (2)

Publication Number Publication Date
EP0455762A1 true EP0455762A1 (de) 1991-11-13
EP0455762B1 EP0455762B1 (de) 1993-12-29

Family

ID=6394205

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90915297A Expired - Lifetime EP0455762B1 (de) 1989-11-25 1990-10-26 Elektrohydraulische ventilsteuervorrichtung für brennkraftmaschinen

Country Status (7)

Country Link
US (1) US5154143A (de)
EP (1) EP0455762B1 (de)
JP (1) JPH04502661A (de)
KR (1) KR920701615A (de)
DE (2) DE3939066A1 (de)
ES (1) ES2048508T3 (de)
WO (1) WO1991008383A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033919A1 (en) * 1994-06-02 1995-12-14 Christos Valasopoylos Piston internal combustion engine variable action valve lifter system
US5499606A (en) * 1995-01-11 1996-03-19 Siemens Automotive Corporation Variable timing of multiple engine cylinder valves
US5503120A (en) * 1995-01-18 1996-04-02 Siemens Automotive Corporation Engine valve timing control system and method
CN1139178A (zh) * 1995-06-23 1997-01-01 张宇坤 偏心轮(凸轮)式液压气门机构
US5829397A (en) * 1995-08-08 1998-11-03 Diesel Engine Retarders, Inc. System and method for controlling the amount of lost motion between an engine valve and a valve actuation means
US5816226A (en) * 1997-07-09 1998-10-06 Jernigan; Carl L. In-line fuel treatment device
KR20010032344A (ko) * 1997-11-21 2001-04-16 디이젤 엔진 리타더스, 인코포레이티드 밸브 액츄에이션 시스템으로부터 공기 및 찌꺼기를제거하기 위한 시스템 시동 장치 및 방법
JP3814462B2 (ja) * 2000-05-30 2006-08-30 株式会社日立製作所 内燃機関のバルブリフタ
AT4872U1 (de) * 2000-11-20 2001-12-27 Avl List Gmbh Variabler ventiltrieb für ein nockenbetätigtes hubventil einer brennkraftmaschine
DE10064650B4 (de) * 2000-12-22 2016-04-28 Robert Bosch Gmbh Elektronische Verfahren und Einrichtung der Steuerung von Gaswechselventilen eines Verbrennungsmotors mit variabler Öffnungsfunktion
US6694933B1 (en) * 2002-09-19 2004-02-24 Diesel Engine Retarders, Inc. Lost motion system and method for fixed-time valve actuation
DE102004011638A1 (de) * 2004-03-10 2005-09-29 Ina-Schaeffler Kg Elektrohydraulisches Schaltmodul
US6886511B1 (en) 2004-04-07 2005-05-03 General Motors Corporation Lost motion assembly for a poppet valve of an internal combustion engine
DE102004024266A1 (de) * 2004-05-15 2005-12-01 Daimlerchrysler Ag Vorrichtung zur Betätigung eines Gaswechselventils einer Brennkraftmaschine
CA2693529C (en) * 2007-08-07 2013-02-12 Scuderi Group, Llc Split-cycle engine with a helical crossover passage
US20090308340A1 (en) * 2008-06-11 2009-12-17 Gm Global Technology Operations, Inc. Cam-Driven Hydraulic Lost-Motion Mechanisms for Overhead Cam and Overhead Valve Valvetrains
US8011331B2 (en) * 2008-09-12 2011-09-06 GM Global Technology Operations LLC Eight-stroke engine cycle
AT505832B1 (de) * 2008-09-18 2011-01-15 Avl List Gmbh Motorbremseinrichtung für eine brennkraftmaschine
DE102008049181A1 (de) * 2008-09-26 2010-04-01 Schaeffler Kg Elektrohydraulische Ventilsteuerung
US8191516B2 (en) * 2009-03-09 2012-06-05 GM Global Technology Operations LLC Delayed exhaust engine cycle
KR101154401B1 (ko) 2009-12-04 2012-06-15 현대자동차주식회사 전기-유압 가변 밸브 리프트 장치
KR101154412B1 (ko) * 2010-11-11 2012-06-15 현대자동차주식회사 유압 가변 밸브 리프트 장치
US8689541B2 (en) 2011-02-16 2014-04-08 GM Global Technology Operations LLC Valvetrain control method and apparatus for conserving combustion heat
US8701607B2 (en) * 2011-08-25 2014-04-22 Chrysler Group Llc System and method for engine valve lift strategy
US8707679B2 (en) 2011-09-07 2014-04-29 GM Global Technology Operations LLC Catalyst temperature based valvetrain control systems and methods
US8788182B2 (en) 2011-09-07 2014-07-22 GM Global Technology Operations LLC Engine speed based valvetrain control systems and methods
EP2597276B1 (de) * 2011-11-24 2014-04-16 C.R.F. Società Consortile per Azioni Brennkraftmaschine mit variablem Ventiltrieb mit einem Drei-Wege-Solenoidventil
EP2693008B1 (de) 2012-07-31 2014-12-03 C.R.F. Società Consortile per Azioni Verbrennungsmotor mit einem System zur variablen Betätigung der Einlassventile mit Dreiwege-Magnetventilen und Verfahren zur Steuerung des Motors
CN104265393A (zh) * 2014-07-25 2015-01-07 贵州大学 新型可变气门正时系统
US9494115B2 (en) * 2014-09-22 2016-11-15 Continental Automotive Systems, Inc. Pump control apparatus and method
JP6252995B2 (ja) * 2016-03-14 2017-12-27 マツダ株式会社 エンジンの制御装置
DE102016219297B4 (de) * 2016-10-05 2021-12-30 Schaeffler Technologies AG & Co. KG Hydraulikeinheit für eine Brennkraftmaschine mit hydraulisch variablem Gaswechselventiltrieb

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2825316A1 (de) * 1978-06-09 1979-12-20 Maschf Augsburg Nuernberg Ag Regelbare hydraulische ventilsteuerung fuer hubkolbenkraft- oder arbeitsmaschinen
SU1023116A1 (ru) * 1978-12-28 1983-06-15 Ворошиловградский машиностроительный институт Гидравлический привод клапанов двигател внутреннего сгорани
DE2926327A1 (de) * 1979-06-29 1981-01-29 Volkswagenwerk Ag Mechanisch-hydraulische ventilsteuerung
DE3135650A1 (de) * 1981-09-09 1983-03-17 Robert Bosch Gmbh, 7000 Stuttgart "ventilsteuerung fuer hubkolben-brennkraftmaschinen mit mechanisch-hydraulischen bewegungsuebertragungsmitteln"
JPH0612058B2 (ja) * 1984-12-27 1994-02-16 トヨタ自動車株式会社 可変バルブタイミング・リフト装置
DE3511819A1 (de) * 1985-03-30 1986-10-09 Robert Bosch Gmbh, 7000 Stuttgart Ventilsteuervorrichtung
DE3511820A1 (de) * 1985-03-30 1986-10-02 Robert Bosch Gmbh, 7000 Stuttgart Ventilsteuervorrichtung fuer eine hubkolben-brennkraftmaschine
US4716863A (en) * 1985-11-15 1988-01-05 Pruzan Daniel A Internal combustion engine valve actuation system
DE3815668A1 (de) * 1988-05-07 1989-11-16 Bosch Gmbh Robert Ventilsteuervorrichtung mit magnetventil fuer brennkraftmaschinen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9108383A1 *

Also Published As

Publication number Publication date
ES2048508T3 (es) 1994-03-16
DE3939066A1 (de) 1991-05-29
JPH04502661A (ja) 1992-05-14
EP0455762B1 (de) 1993-12-29
US5154143A (en) 1992-10-13
WO1991008383A1 (de) 1991-06-13
DE59004045D1 (de) 1994-02-10
KR920701615A (ko) 1992-08-12

Similar Documents

Publication Publication Date Title
EP0455762B1 (de) Elektrohydraulische ventilsteuervorrichtung für brennkraftmaschinen
DE4311627B4 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
EP0898650B1 (de) Kraftstoffeinspritzeinrichtung für brennkraftmaschinen
DE2213776A1 (de) Kraftstoffeinspritzanlage fuer brennkraftmaschinen
EP0455761B1 (de) Hydraulische ventilsteuervorrichtung für brennkraftmaschinen
DE2126787A1 (de) Kraftstoffeinspntzeinrichtung fur Brennkraftmaschinen
DE19716750C2 (de) Motorbremssystem für einen Verbrennungsmotor
WO1991008382A1 (de) Hydraulische ventilsteuervorrichtung für brennkraftmaschinen
EP0455763B1 (de) Hydraulische ventilsteuervorrichtung für eine mehrzylinder-brennkraftmaschine
EP0281580B1 (de) Brennstoffeinspritzvorrichttung für eine dieselbrennkraftmaschine
EP0282508B1 (de) Brennstoffeinspritzvorrichtung für eine dieselbrennkraftmaschine mit voreinspritzung
EP1925812B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10139055A1 (de) Verfahren, Computerprogramm, Steuer- und/oder Regelgerät sowie Kraftstoffsystem für eine Brennkraftmaschine
EP1185785B1 (de) Einspritzsystem
DE2913909C2 (de)
DE3819996A1 (de) Hydraulische steuereinrichtung insbesondere fuer kraftstoffeinspritzanlagen von brennkraftmaschinen
DE3008070C2 (de)
DE19540549A1 (de) Einspritz- und Motorbremssystem für eine Brennkraftmaschine mit mehreren Zylindern
DE10229395A1 (de) Verdrängermaschine, insbesondere Radialkolbenpumpe in einem Kraftstoffsystem einer Brennkraftmaschine, sowie hydraulisches System
DE3700358A1 (de) Kraftstoffeinspritzeinrichtung fuer brennkraftmaschinen, insbesondere pumpeduesen
DE6918188U (de) Ventilsteuervorrichtung fuer brennkraftmaschinen.
DE3700357C2 (de) Kraftstoffeinspritzverfahren und Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen, insbesondere Pumpedüsen
AT230145B (de) Ventilbetätigungseinrichtung für Brennkraftmaschinen
DE19907931A1 (de) Dosiervorrichtung
DE2535845A1 (de) Lastregelung fuer gemischverdichtende brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17Q First examination report despatched

Effective date: 19920925

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940111

REF Corresponds to:

Ref document number: 59004045

Country of ref document: DE

Date of ref document: 19940210

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2048508

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90915297.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971010

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19971027

Year of fee payment: 8

Ref country code: FR

Payment date: 19971027

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19971031

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971229

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981027

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19981027

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981026

EUG Se: european patent has lapsed

Ref document number: 90915297.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990803

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051026