EP0478956B1 - Micromechanical element - Google Patents

Micromechanical element Download PDF

Info

Publication number
EP0478956B1
EP0478956B1 EP91114504A EP91114504A EP0478956B1 EP 0478956 B1 EP0478956 B1 EP 0478956B1 EP 91114504 A EP91114504 A EP 91114504A EP 91114504 A EP91114504 A EP 91114504A EP 0478956 B1 EP0478956 B1 EP 0478956B1
Authority
EP
European Patent Office
Prior art keywords
substrate
conductive material
micromechanical element
microstructure body
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91114504A
Other languages
German (de)
French (fr)
Other versions
EP0478956A2 (en
EP0478956A3 (en
Inventor
Peter Dr. Bley
Jürgen Dr. Mohr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP0478956A2 publication Critical patent/EP0478956A2/en
Publication of EP0478956A3 publication Critical patent/EP0478956A3/en
Application granted granted Critical
Publication of EP0478956B1 publication Critical patent/EP0478956B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/01Details
    • H01H61/013Heating arrangements for operating relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H2061/006Micromechanical thermal relay

Definitions

  • the invention relates to a micromechanical element according to the preamble of claim 1.
  • Such an element is known from DE 38 09 597 A1. It consists of a substrate to which a tongue partially adheres and an etching pit in the substrate into which the tongue moves when the temperature changes.
  • the heating element that triggers this movement is - viewed from above - arranged symmetrically as a plate on the tongue.
  • the disadvantage here is that the heating resistor is attached to the partially movable tongue and that the connection surface between the heating resistor and tongue is mechanically stressed during the movement, so that there is a risk that the heating resistor detaches.
  • the known element only allows movements perpendicular to the substrate.
  • a movement parallel to the substrate is usually cheaper because Have racks or gears and the like driven.
  • DE-37 16 996 A1 discloses a deformation element which is formed from two interconnected strips of material with different expansion coefficients and has an electrical heater for heating and thus deforming the deformation element, in which the electrical heater is a film heating element which is firmly connected to the deformation element .
  • the film heating element consists of a plastic film that is thinly metallized on one side and is again covered with a plastic film as protection or insulation.
  • the metal layer of the film heating element can be structured.
  • the object of the invention is to eliminate the disadvantages shown in the micromechanical element of the type mentioned.
  • a micromechanical element of the type mentioned at the outset is to be proposed, in which the connection surface between the electrically conductive and the non-conductive material is subjected to less mechanical stress.
  • the main advantage of the micromechanical element according to the invention in addition to the fact that the deflection takes place parallel to the substrate, is that the heating resistor 4 forms a much stronger connection with the plastic material of the tongue. This connection is strengthened if the heating resistor is at least partially meandering. Alternatively, if necessary, it can also be provided with toothing elements in one process step.
  • control elements such. B. for gas or liquid flows, gears or racks and the like can be driven, which are on the same substrate with the same irradiation, development, etching and electroplating step.
  • FIG. 1 shows a top view of the micromechanical element.
  • FIG. 2 shows a further development, the microstructure body being partially surrounded by a metal jacket.
  • Figures 3, 4 and 5 show different steps of a manufacturing process for the elements according to the invention.
  • FIG. 1 shows a micromechanical element in which a microstructure body made of plastic and metal is located on an electrically non-conductive substrate 1, for example a silicon wafer, a glass or ceramic substrate.
  • the microstructure body consists of a base body 2 which adheres firmly to the substrate and of a tongue 3 which is at a distance of a few micrometers from the substrate.
  • a heating resistor 4 which has a U-shape, is embedded asymmetrically on one side of the tongue 3, one leg of the U-shape being meandering.
  • the dimensions of the heating resistor are selected so that, on the one hand, in this area of the tongue 3 the metal surface is very high, for example over 50%, and on the other hand its electrical resistance is in a range suitable for the intended use. High resistances are advantageous because they allow the tongue to be heated quickly and with small currents.
  • the heating resistor is connected to larger metal structures 5 (bond pads) which represent contacts to which a power source is connected from the outside.
  • the tongue When an electrical voltage is applied to the two contacts 5, a current flows through the heating resistor of the tongue and heats it up. Since the tongue is made of plastic and a plastic-metal composite, the coefficients of thermal expansion of which differ, internal stresses occur. As a result of the asymmetrical arrangement of the heating resistor, the tongue moves parallel to the substrate when the temperature changes.
  • the height of the tongue measured perpendicular to the substrate, is typically in the range of 300 »m, its width between 50 and 150» m.
  • micromechanical element according to FIG. 1 can be produced by a method which is shown in FIGS. 3, 4 and 5.
  • Figure 5 shows the finished element.
  • Figure 3 shows a plan view and Figure 4 shows a section (B-B in Figure 1) through the micromechanical element during manufacture.
  • a metal layer 6 with a thickness of preferably less than 1 »m is first applied by vapor deposition or sputtering, which is structured with the known steps of microelectronics (coating, exposure, development, selective etching).
  • a spacer layer 7 with a thickness of preferably less than 10 »m is applied using the same methods and is structured analogously (FIG. 3). It must this spacer layer 7 can be selectively etched away. This is possible, for example, if one chooses silver, chrome, copper, nickel or gold as the metal layer 6 and titanium as the spacer layer 7.
  • the part 6a of the metal layer 6 is used for the subsequent connection of the electroplating electrode.
  • a plastic layer that is metallized can also be used as the spacer layer.
  • a resist layer is then applied to this prepared substrate, which later forms both the non-conductive part of the microstructure body 2, 3 and the shape for the electrodeposition of the heating resistor 4 and the metal structures 5.
  • the resist e.g. irradiated with X-rays 8 via an X-ray mask 9.
  • the irradiated partial areas 10 and 11 of the resist are removed with a suitable developer, the unexposed areas remaining.
  • the spacer layer 7 is removed by selective etching.
  • the metal 4 must of course be resistant to the etchant with which the spacer layer is removed. If you take titanium as the spacer layer, you can use it for the metal structure many other materials, such as chrome, silver, copper, nickel or gold can be selected.
  • a 5% hydrofluoric acid solution can be used as the etchant.
  • FIG. 5 shows the finished micromechanical element according to FIG. 1 in section B-B.
  • the microstructure body 2, 3 can also be constructed on a metallic substrate. In this case, the metal layer 6 is omitted. However, it must be ensured that the galvanic metal deposition takes place only at the points that form the heating resistor 4 and the contacts 5. This can be done either by a structured insulation layer, e.g. a photoresist, which is applied to the metallic substrate before the resist is applied.
  • a structured insulation layer e.g. a photoresist
  • the contacts 5 must be moved into the self-supporting, movable part 3 of the microstructure body in order to ensure the necessary insulation.
  • the element shown in FIG. 1 can be produced with a single irradiation, in which both the resist regions 10, which serve as a mold for the electrically conductive material, and the resist regions 11 to be removed are irradiated.
  • the micromechanical element according to FIG. 2 is produced by two adjusted irradiations.
  • the first step all areas that are to be filled with metal are irradiated and developed. After the electroplating, the resist areas that are not required are irradiated and removed by the developer.

Abstract

The invention relates to a microchemical element, consisting of a substrate, a microstructure body, which is bonded to the substrate and can move partially with respect to it as a result of a temperature change and, for its part, is constructed from an electrically non-conductive and an electrically conductive material, at least a portion of the electrically conductive material forming a heating resistor. The object of the invention is to specify such an element of this type in which the movement of the microstructure body takes place parallel to the substrate. The object is achieved in that the heating resistor is arranged asymmetrically offset, seen in the vertical direction onto the substrate, in the moving part of the microstructure body, and is completely immersed in the microstructure body, its thickness in the specified direction corresponding to the thickness of the microstructure body.

Description

Die Erfindung betrifft ein mikromechanisches Element entsprechend dem Oberbegriff von Anspruch 1.The invention relates to a micromechanical element according to the preamble of claim 1.

Ein solches Element ist aus der DE 38 09 597 A1 bekannt. Es besteht aus einem Substrat, an dem eine Zunge teilweise haftet, und einer Ätzgrube im Substrat, in die sich die Zunge bei Temperaturveränderung bewegt. Das Heizelement, das diese Bewegung auslöst, sitzt -von oben gesehen- symmetrisch angeordnet als Plättchen auf der Zunge.Such an element is known from DE 38 09 597 A1. It consists of a substrate to which a tongue partially adheres and an etching pit in the substrate into which the tongue moves when the temperature changes. The heating element that triggers this movement is - viewed from above - arranged symmetrically as a plate on the tongue.

Nachteilig ist hierbei, daß der Heizwiderstand auf der teilweise beweglichen Zunge angebracht ist und daß bei der Bewegung die Verbindungsfläche zwischen Heizwiderstand und Zunge mechanisch stark beansprucht wird, so daß die Gefahr besteht, daß sich der Heizwiderstand ablöst. Ferner läßt das bekannte Element nur Bewegungen senkrecht zum Substrat zu. Meist ist jedoch eine Bewegung parallel zum Substrat günstiger, weil sich damit z.B. Zahnstangen oder Zahnräder und dergleichen antreiben lassen.The disadvantage here is that the heating resistor is attached to the partially movable tongue and that the connection surface between the heating resistor and tongue is mechanically stressed during the movement, so that there is a risk that the heating resistor detaches. Furthermore, the known element only allows movements perpendicular to the substrate. However, a movement parallel to the substrate is usually cheaper because Have racks or gears and the like driven.

Aus der DE-37 16 996 A1 ist ein Verformungselement bekannt, welches aus zwei miteinander verbundenen Materialstreifen mit unterschiedlichen Dehnungskoeffizienten gebildet ist und eine elektrische Heizung zum Erwärmen und damit Verformen des Verformungselements aufweist, bei dem die elektrische Heizung ein fest mit dem Verformungselement verbundenes Folienheizelement ist. Das Folienheizelement besteht aus einer Kunststoff-Folie, die einseitig dünn metallisiert und als Schutz oder Isolierung wieder mit einer Kunststoff-Folie überzogen ist. Die Metallschicht des Folienheizelements kann strukturiert sein.DE-37 16 996 A1 discloses a deformation element which is formed from two interconnected strips of material with different expansion coefficients and has an electrical heater for heating and thus deforming the deformation element, in which the electrical heater is a film heating element which is firmly connected to the deformation element . The film heating element consists of a plastic film that is thinly metallized on one side and is again covered with a plastic film as protection or insulation. The metal layer of the film heating element can be structured.

Auch bei diesem Verformungselement werden die Verbindungsflächen zwischen Folienheizelement und Materialstreifen mechanisch stark beansprucht.With this deformation element, too, the connecting surfaces between the film heating element and the material strip are subjected to high mechanical stresses.

Aufgabe der Erfindung ist, die aufgezeigten Nachteile bei dem mikromechanischen Element der eingangs genannten Art zu beseitigen. Insbesondere soll ein mikromechanisches Element der eingangs genannten Art vorgeschlagen werden, bei dem die Verbindungsfläche zwischen dem elektrisch-leitenden und dem nichtleitenden Material weniger stark mechanisch beansprucht wird.The object of the invention is to eliminate the disadvantages shown in the micromechanical element of the type mentioned. In particular, a micromechanical element of the type mentioned at the outset is to be proposed, in which the connection surface between the electrically conductive and the non-conductive material is subjected to less mechanical stress.

Diese Aufgabe wird durch die in Anspruch 1 gekennzeichneten Merkmale gelöst. Die weiteren Ansprüche geben vorteilhafte Ausgestaltungen der Erfindung an.This object is achieved by the features characterized in claim 1. The further claims indicate advantageous embodiments of the invention.

Der Mikrostrukturkörper kann beispielsweise durch Kunststoffabformung (Spritzguß, Reaktionsguß oder Prägetechnik) und Mikrogalvanik hergestellt werden. Dazu können Abformwerkzeuge in bekannter Weise mit Hilfe der Röntgenlithographie und Mikrogalvanik hergestellt werden.The microstructure body can be produced, for example, by plastic molding (injection molding, reaction molding or stamping technology) and micro-electroplating. For this purpose, impression tools can be manufactured in a known manner using X-ray lithography and micro-electroplating.

Der wesentliche Vorteil des erfindungsgemäßen mikromechanischen Elements liegt -neben der Tatsache, daß die Auslenkung parallel zum Substrat erfolgt- darin, daß der Heizwiderstand 4 eine wesentlich festere Verbindung mit dem Kunststoffmaterial der Zunge eingeht. Diese Verbindung wird noch verstärkt, wenn der Heizwiderstand zumindest teilweise mäanderförmig gestaltet ist. Alternativ kann er bei Bedarf in einem Verfahrensschritt zusätzlich mit Verzahnungselementen versehen werden.The main advantage of the micromechanical element according to the invention, in addition to the fact that the deflection takes place parallel to the substrate, is that the heating resistor 4 forms a much stronger connection with the plastic material of the tongue. This connection is strengthened if the heating resistor is at least partially meandering. Alternatively, if necessary, it can also be provided with toothing elements in one process step.

Ein weiterer Vorteil besteht darin, daß mit dem erfindungsgemäßen mikromechanischen Element Steuerelemente z. B. für Gas- oder Flüssigkeitsströme, Zahnräder oder Zahnstangen und dgl. angetrieben werden können, die sich auf dem gleichen Substrat mit demselben Bestrahlungs-, Entwicklungs-, Ätz- und Galvanikschritt herstellen lassen.Another advantage is that with the micromechanical element according to the invention control elements such. B. for gas or liquid flows, gears or racks and the like can be driven, which are on the same substrate with the same irradiation, development, etching and electroplating step.

Dadurch entfallen zusätzliche Justierschritte.This eliminates the need for additional adjustment steps.

Die Erfindung wird im folgenden anhand von Figuren näher erläutert.The invention is explained in more detail below with reference to figures.

Figur 1 zeigt eine Aufsicht des mikromechanischen Elements.FIG. 1 shows a top view of the micromechanical element.

Figur 2 zeigt eine Weiterbildung, wobei der Mikrostrukturkörper teilweise von einem Metallmantel umgeben ist.FIG. 2 shows a further development, the microstructure body being partially surrounded by a metal jacket.

Figuren 3, 4 und 5 zeigen verschiedene Schritte eines Herstellungsverfahrens für die erfindungsgemäßen Elemente.Figures 3, 4 and 5 show different steps of a manufacturing process for the elements according to the invention.

In Figur 1 ist ein mikromechanisches Element dargestellt, bei dem sich auf einem elektrisch nicht leitenden Substrat 1, etwa einem Silizium-Wafer, einem Glas- oder Keramiksubstrat, ein Mikrostrukturkörper aus Kunststoff und Metall befindet. Der Mikrostrukturkörper besteht aus einem Grundkörper 2, der fest auf dem Substrat haftet und aus einer Zunge 3, die einen Abstand von wenigen Mikrometern zum Substrat besitzt. Auf einer Seite der Zunge 3 ist asymmetrisch ein Heizwiderstand 4 eingelassen, der eine U-Form aufweist, wobei ein Schenkel der U-Form mäanderförmig gestaltet ist. Die Maße des Heizwiderstands sind so gewählt, daß einerseits in diesem Bereich der Zunge 3 der Metallantell sehr hoch, beispielsweise über 50 % ist, andererseits sein elektrischer Widerstand in einem für den vorgesehenen Verwendungszweck geeigneten Bereich liegt. Vorteilhaft sind hohe Widerstände, da damit die Zunge rasch und mit kleinen Stromstärken erwärmt werden kann. Der Heizwiderstand ist mit größeren Metallstrukturen 5 (Bond Pads) verbunden, die Kontakte darstellen, an welche von außen eine Stromquelle angeschlossen wird.FIG. 1 shows a micromechanical element in which a microstructure body made of plastic and metal is located on an electrically non-conductive substrate 1, for example a silicon wafer, a glass or ceramic substrate. The microstructure body consists of a base body 2 which adheres firmly to the substrate and of a tongue 3 which is at a distance of a few micrometers from the substrate. A heating resistor 4, which has a U-shape, is embedded asymmetrically on one side of the tongue 3, one leg of the U-shape being meandering. The dimensions of the heating resistor are selected so that, on the one hand, in this area of the tongue 3 the metal surface is very high, for example over 50%, and on the other hand its electrical resistance is in a range suitable for the intended use. High resistances are advantageous because they allow the tongue to be heated quickly and with small currents. The heating resistor is connected to larger metal structures 5 (bond pads) which represent contacts to which a power source is connected from the outside.

Beim Anlegen einer elektrischen Spannung an die beiden Kontakte 5 fließt ein Strom durch den Heizwiderstand der Zunge und erwärmt sie. Da die Zunge aus Kunststoff und einem Kunststoff-Metall-Verbund besteht, deren Wärmeausdehnungskoeffizienten sich unterscheiden, kommt es zu inneren Spannungen. Infolge der asymmetrischen Anordnung des Heizwiderstandes bewegt sich die Zunge bei Temperaturveränderungen parallel zum Substrat.When an electrical voltage is applied to the two contacts 5, a current flows through the heating resistor of the tongue and heats it up. Since the tongue is made of plastic and a plastic-metal composite, the coefficients of thermal expansion of which differ, internal stresses occur. As a result of the asymmetrical arrangement of the heating resistor, the tongue moves parallel to the substrate when the temperature changes.

Die Höhe der Zunge senkrecht zum Substrat gemessen liegt typischerweise im Bereich von 300 »m, ihre Breite etwa zwischen 50 und 150 »m.The height of the tongue, measured perpendicular to the substrate, is typically in the range of 300 »m, its width between 50 and 150» m.

Figur 2 zeigt eine Weiterbildung dieses mikromechanischen Elements, bei dem die Zunge 3 vollständig mit einer Metallstruktur 12 umgeben ist. Damit die Verbindung zwischen Zunge 3 und dem Metallmantel 12 auch bei Spannungen erhalten bleibt, werden das Metall und der Kunststoff der Zunge ineinander verzahnt, z.B. durch Schwalbenschwanznuten 15.FIG. 2 shows a further development of this micromechanical element, in which the tongue 3 is completely surrounded by a metal structure 12. So that the connection between the tongue 3 and the metal jacket 12 is maintained even in the event of tension, the metal and the plastic of the tongue are interlocked, e.g. through dovetail grooves 15.

Das mikromechanische Element nach Figur 1 kann durch ein Verfahren hergestellt werden, das in den Figuren 3, 4 und 5 dargestellt ist. Figur 5 zeigt das fertige Element.The micromechanical element according to FIG. 1 can be produced by a method which is shown in FIGS. 3, 4 and 5. Figure 5 shows the finished element.

Figur 3 zeigt eine Aufsicht und Figur 4 einen Schnitt (B-B in Figur 1) durch das mikromechanische Element während der Herstellung.Figure 3 shows a plan view and Figure 4 shows a section (B-B in Figure 1) through the micromechanical element during manufacture.

Auf einem dünnen nichtleitenden Substrat 1 wird zunächst eine Metallschicht 6 mit einer Dicke von vorzugsweise weniger als 1 »m durch Aufdampfen oder Aufsputtern aufgebracht, die mit den bekannten Schritten der Mikroelektronik (Belacken, Belichten, Entwickeln, selektiv Ätzen) strukturiert wird. In einem weiteren Schritt wird mit denselben Methoden eine Abstandsschicht 7 mit einer Dicke von vorzugsweise weniger als 10 »m aufgebracht, die analog strukturiert wird (Figur 3). Dabei muß diese Abstandsschicht 7 selektiv abätzbar sein. Dies ist z.B. möglich, wenn man als Metallschicht 6 Silber, Chrom, Kupfer, Nickel oder Gold wählt und als Abstandsschicht 7 Titan. Der Teil 6a der Metallschicht 6 dient dem späteren Anschluß der Galvanikelektrode.On a thin non-conductive substrate 1, a metal layer 6 with a thickness of preferably less than 1 »m is first applied by vapor deposition or sputtering, which is structured with the known steps of microelectronics (coating, exposure, development, selective etching). In a further step, a spacer layer 7 with a thickness of preferably less than 10 »m is applied using the same methods and is structured analogously (FIG. 3). It must this spacer layer 7 can be selectively etched away. This is possible, for example, if one chooses silver, chrome, copper, nickel or gold as the metal layer 6 and titanium as the spacer layer 7. The part 6a of the metal layer 6 is used for the subsequent connection of the electroplating electrode.

Alternativ kann als Abstandsschicht auch eine Kunststoffschicht verwendet werden, die metallisiert wird.Alternatively, a plastic layer that is metallized can also be used as the spacer layer.

Auf dieses vorbereitete Substrat wird dann eine Resistschicht aufgebracht, die später sowohl den nichtleitenden Teil des Mikrostrukturkörpers 2, 3 als auch die Form für die galvanische Abscheidung des Heizwiderstands 4 und der Metallstrukturen 5 bildet.A resist layer is then applied to this prepared substrate, which later forms both the non-conductive part of the microstructure body 2, 3 and the shape for the electrodeposition of the heating resistor 4 and the metal structures 5.

Hierzu wird gem. Figur 4 der Resist z.B. mit Röntgenstrahlung 8 über eine Röntgenmaske 9 bestrahlt.For this, according to Figure 4 the resist e.g. irradiated with X-rays 8 via an X-ray mask 9.

Die bestrahlten Teilbereiche 10 und 11 des Resits werden mit einem geeigneten Entwickler entfernt, wobei die unbestrahlten Bereiche stehen bleiben.The irradiated partial areas 10 and 11 of the resist are removed with a suitable developer, the unexposed areas remaining.

In einem anschließenden Galvanikprozeß werden die frei entwickelten Bereiche 10, die am Untergrund eine metallische Schicht 6 oder 7 aufweisen, mit Metall für den Heizwiderstand 4 und die Metallstrukturen 5 aufgefüllt. Hierzu wird eine Stromquelle an den Teil 6a der Metallschicht angeschlossen. Zur Verhinderung einer unerwünschten galvanischen Metallabscheidung im Bereich 6a kann dieser mit einem isolierenden Lack abgedeckt werden.In a subsequent electroplating process, the freely developed areas 10, which have a metallic layer 6 or 7 on the substrate, are filled with metal for the heating resistor 4 and the metal structures 5. For this purpose, a current source is connected to part 6a of the metal layer. To prevent undesired galvanic metal deposition in area 6a, it can be covered with an insulating varnish.

Nach der galvanischen Abscheidung des Metalls wird die Abstandsschicht 7 durch selektives Ätzen entfernt. Dabei muß selbstverständlich das Metall 4 beständig gegen das Ätzmittel sein, mit dem die Abstandsschicht entfernt wird. Nimmt man als Abstandsschicht z.B. Titan, so können für die Metallstruktur viele andere Materialien, z.B. Chrom, Silber, Kupfer, Nickel oder Gold gewählt werden.After the electrodeposition of the metal, the spacer layer 7 is removed by selective etching. The metal 4 must of course be resistant to the etchant with which the spacer layer is removed. If you take titanium as the spacer layer, you can use it for the metal structure many other materials, such as chrome, silver, copper, nickel or gold can be selected.

In diesem Fall kann als Ätzmittel eine 5 %ige Flußsäurelösung verwendet werden.In this case, a 5% hydrofluoric acid solution can be used as the etchant.

Figur 5 zeigt das fertige mikromechanische Element nach Figur 1 im Schnitt B-B.FIG. 5 shows the finished micromechanical element according to FIG. 1 in section B-B.

Der Mikrostrukturkörper 2, 3 kann auch auf einem metallischen Substrat aufgebaut werden. In diesem Fall entfällt die Metallschicht 6. Dafür muß aber gesorgt werden, daß die galvanische Metallabscheidung nur an den Stellen erfolgt, die den Heizwiderstand 4 und die Kontakte 5 bilden. Dies kann entweder durch eine strukturierte Isolationsschicht, z.B. einen Photolack, erfolgen, die vor dem Auftragen des Resists auf das metallische Substrat aufgebracht wird.The microstructure body 2, 3 can also be constructed on a metallic substrate. In this case, the metal layer 6 is omitted. However, it must be ensured that the galvanic metal deposition takes place only at the points that form the heating resistor 4 and the contacts 5. This can be done either by a structured insulation layer, e.g. a photoresist, which is applied to the metallic substrate before the resist is applied.

Alternativ können nach dem Bestrahlen und Entwickeln die nicht zu galvanisierenden Bereiche mit einem Schutzlack abgedeckt werden.Alternatively, after irradiation and development, the areas not to be galvanized can be covered with a protective lacquer.

In diesem Fall müssen die Kontakte 5 in den frei tragenden, beweglichen Teil 3 des Mikrostrukturkörpers verlegt werden, um die notwendige Isolierung zu gewährleisten.In this case, the contacts 5 must be moved into the self-supporting, movable part 3 of the microstructure body in order to ensure the necessary insulation.

Das in Fig. 1 dargestellte Element kann mit einer einzigen Bestrahlung hergestellt werden, bei der sowohl die Resistbereiche 10, die als Form für das elektrisch leitende Material dienen, als auch die zu entfernenden Resistbereiche 11 bestrahlt werden.The element shown in FIG. 1 can be produced with a single irradiation, in which both the resist regions 10, which serve as a mold for the electrically conductive material, and the resist regions 11 to be removed are irradiated.

Das mikromechanische Element nach Figur 2 wird durch zwei justierte Bestrahlungen hergestellt.The micromechanical element according to FIG. 2 is produced by two adjusted irradiations.

Im ersten Schritt werden alle Bereiche bestrahlt und entwickelt, welche mit Metall aufgefüllt werden sollen. Nach der Galvanik werden die nicht benötigten Resistbereiche bestrahlt und durch den Entwickler entfernt.In the first step, all areas that are to be filled with metal are irradiated and developed. After the electroplating, the resist areas that are not required are irradiated and removed by the developer.

Da bei dem mikromechanischen Element nach Fig. 2 die Bereiche des Resist, die die Form für den Metallmantel 12 bilden, und die Bereiche 11, die ganz entfernt werden, nebeneinander liegen und so nicht mehr durch einen verbleibenden Resistbereich getrennt sind, muß dieses Element durch zwei Bestrahlungen hergestellt werden.Since in the micromechanical element according to FIG. 2 the areas of the resist which form the shape for the metal jacket 12 and the areas 11 which are completely removed lie next to one another and are therefore no longer separated by a remaining resist area, this element must be separated by two irradiations are produced.

Claims (5)

  1. Micromechanical element, comprising
    a) a substrate, and
    b) a microstructural body, which adheres to the substrate and is partially displaceable relative to said substrate as a result of a change in temperature, said microstructural body being, in turn, constructed from
    b1) an electrically non-conductive material, and from
    b2) an electrically conductive material,
    b3) at least a portion of the electrically conductive material forming a heating resistance,
    characterised in that the heating resistance is disposed in the displaceable portion of the microstructural body so as to be offset in an asymmetrical manner when viewed in a vertical direction above the substrate, and said resistance is completely sunk in the microstructural body, its thickness corresponding to the thickness of the microstructural body when viewed with respect to said direction.
  2. Micromechanical element according to claim 1, characterised in that the heating resistance has a U-shaped configuration.
  3. Micromechanical element according to claim 2, characterised in that at least one leg of the U-shaped heating resistance has a serpentine-like configuration.
  4. Micromechanical element according to one of claims 1 to 3, characterised in that the microstructural body is surrounded at least partially by a metal casing.
  5. Micromechanical element according to one of claims 1 to 4, characterised in that the electrically conductive material is indented with the electrically non-conductive material.
EP91114504A 1990-10-04 1991-08-29 Micromechanical element Expired - Lifetime EP0478956B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4031248 1990-10-04
DE4031248A DE4031248A1 (en) 1990-10-04 1990-10-04 MICROMECHANICAL ELEMENT

Publications (3)

Publication Number Publication Date
EP0478956A2 EP0478956A2 (en) 1992-04-08
EP0478956A3 EP0478956A3 (en) 1992-11-25
EP0478956B1 true EP0478956B1 (en) 1995-05-17

Family

ID=6415485

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91114504A Expired - Lifetime EP0478956B1 (en) 1990-10-04 1991-08-29 Micromechanical element

Country Status (3)

Country Link
EP (1) EP0478956B1 (en)
AT (1) ATE122816T1 (en)
DE (1) DE4031248A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7950777B2 (en) 1997-07-15 2011-05-31 Silverbrook Research Pty Ltd Ejection nozzle assembly
US7950779B2 (en) 1997-07-15 2011-05-31 Silverbrook Research Pty Ltd Inkjet printhead with heaters suspended by sloped sections of less resistance
US7980667B2 (en) 1997-07-15 2011-07-19 Silverbrook Research Pty Ltd Nozzle arrangement with pivotal wall coupled to thermal expansion actuator
US7997687B2 (en) 1998-06-09 2011-08-16 Silverbrook Research Pty Ltd Printhead nozzle arrangement having interleaved heater elements
US8020970B2 (en) 1997-07-15 2011-09-20 Silverbrook Research Pty Ltd Printhead nozzle arrangements with magnetic paddle actuators
US8025366B2 (en) 1997-07-15 2011-09-27 Silverbrook Research Pty Ltd Inkjet printhead with nozzle layer defining etchant holes
US8029102B2 (en) 1997-07-15 2011-10-04 Silverbrook Research Pty Ltd Printhead having relatively dimensioned ejection ports and arms
US8029101B2 (en) 1997-07-15 2011-10-04 Silverbrook Research Pty Ltd Ink ejection mechanism with thermal actuator coil
US8061812B2 (en) 1997-07-15 2011-11-22 Silverbrook Research Pty Ltd Ejection nozzle arrangement having dynamic and static structures
US8083326B2 (en) 1997-07-15 2011-12-27 Silverbrook Research Pty Ltd Nozzle arrangement with an actuator having iris vanes
US8113629B2 (en) 1997-07-15 2012-02-14 Silverbrook Research Pty Ltd. Inkjet printhead integrated circuit incorporating fulcrum assisted ink ejection actuator
US8123336B2 (en) 1997-07-15 2012-02-28 Silverbrook Research Pty Ltd Printhead micro-electromechanical nozzle arrangement with motion-transmitting structure
US8408679B2 (en) 1997-07-15 2013-04-02 Zamtec Ltd Printhead having CMOS drive circuitry

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962949A (en) * 1996-12-16 1999-10-05 Mcnc Microelectromechanical positioning apparatus
US5994816A (en) * 1996-12-16 1999-11-30 Mcnc Thermal arched beam microelectromechanical devices and associated fabrication methods
AUPO799197A0 (en) 1997-07-15 1997-08-07 Silverbrook Research Pty Ltd Image processing method and apparatus (ART01)
US6540331B2 (en) 1997-07-15 2003-04-01 Silverbrook Research Pty Ltd Actuating mechanism which includes a thermal bend actuator
US6488359B2 (en) 1997-07-15 2002-12-03 Silverbrook Research Pty Ltd Ink jet printhead that incorporates through-chip ink ejection nozzle arrangements
US6672706B2 (en) 1997-07-15 2004-01-06 Silverbrook Research Pty Ltd Wide format pagewidth inkjet printer
US6679584B2 (en) 1997-07-15 2004-01-20 Silverbrook Research Pty Ltd. High volume pagewidth printing
US6927786B2 (en) 1997-07-15 2005-08-09 Silverbrook Research Pty Ltd Ink jet nozzle with thermally operable linear expansion actuation mechanism
US6746105B2 (en) 1997-07-15 2004-06-08 Silverbrook Research Pty. Ltd. Thermally actuated ink jet printing mechanism having a series of thermal actuator units
US7784902B2 (en) 1997-07-15 2010-08-31 Silverbrook Research Pty Ltd Printhead integrated circuit with more than 10000 nozzles
US6857724B2 (en) 1997-07-15 2005-02-22 Silverbrook Research Pty Ltd Print assembly for a wide format pagewidth printer
US6557977B1 (en) 1997-07-15 2003-05-06 Silverbrook Research Pty Ltd Shape memory alloy ink jet printing mechanism
US7246884B2 (en) 1997-07-15 2007-07-24 Silverbrook Research Pty Ltd Inkjet printhead having enclosed inkjet actuators
US6986613B2 (en) 1997-07-15 2006-01-17 Silverbrook Research Pty Ltd Keyboard
ATE399644T1 (en) * 1997-07-15 2008-07-15 Silverbrook Res Pty Ltd INKJET NOZZLE ARRANGEMENT WITH ACTUATING MECHANISM IN CHAMBER BETWEEN NOZZLE AND INK SUPPLY
US7891767B2 (en) 1997-07-15 2011-02-22 Silverbrook Research Pty Ltd Modular self-capping wide format print assembly
US7524026B2 (en) 1997-07-15 2009-04-28 Silverbrook Research Pty Ltd Nozzle assembly with heat deflected actuator
US6540332B2 (en) 1997-07-15 2003-04-01 Silverbrook Research Pty Ltd Motion transmitting structure for a nozzle arrangement of a printhead chip for an inkjet printhead
AUPP653998A0 (en) 1998-10-16 1998-11-05 Silverbrook Research Pty Ltd Micromechanical device and method (ij46B)
US7753463B2 (en) 1997-07-15 2010-07-13 Silverbrook Research Pty Ltd Processing of images for high volume pagewidth printing
US6814429B2 (en) 1997-07-15 2004-11-09 Silverbrook Research Pty Ltd Ink jet printhead incorporating a backflow prevention mechanism
US7381340B2 (en) 1997-07-15 2008-06-03 Silverbrook Research Pty Ltd Ink jet printhead that incorporates an etch stop layer
US6471336B2 (en) 1997-07-15 2002-10-29 Silverbrook Research Pty Ltd. Nozzle arrangement that incorporates a reversible actuating mechanism
US7360872B2 (en) 1997-07-15 2008-04-22 Silverbrook Research Pty Ltd Inkjet printhead chip with nozzle assemblies incorporating fluidic seals
US7207654B2 (en) 1997-07-15 2007-04-24 Silverbrook Research Pty Ltd Ink jet with narrow chamber
US7022250B2 (en) 1997-07-15 2006-04-04 Silverbrook Research Pty Ltd Method of fabricating an ink jet printhead chip with differential expansion actuators
US6840600B2 (en) 1997-07-15 2005-01-11 Silverbrook Research Pty Ltd Fluid ejection device that incorporates covering formations for actuators of the fluid ejection device
US6527374B2 (en) 1997-07-15 2003-03-04 Silverbrook Research Pty Ltd Translation to rotation conversion in an inkjet printhead
US7008046B2 (en) 1997-07-15 2006-03-07 Silverbrook Research Pty Ltd Micro-electromechanical liquid ejection device
US6916082B2 (en) 1997-07-15 2005-07-12 Silverbrook Research Pty Ltd Printing mechanism for a wide format pagewidth inkjet printer
US6641315B2 (en) 1997-07-15 2003-11-04 Silverbrook Research Pty Ltd Keyboard
US7434915B2 (en) 1997-07-15 2008-10-14 Silverbrook Research Pty Ltd Inkjet printhead chip with a side-by-side nozzle arrangement layout
US7401901B2 (en) 1997-07-15 2008-07-22 Silverbrook Research Pty Ltd Inkjet printhead having nozzle plate supported by encapsulated photoresist
AU2005242163B2 (en) * 1997-07-15 2007-05-03 Zamtec Limited Nozzle chamber with paddle vane and externally located thermal actuator
US7287836B2 (en) 1997-07-15 2007-10-30 Sil;Verbrook Research Pty Ltd Ink jet printhead with circular cross section chamber
US6834939B2 (en) 2002-11-23 2004-12-28 Silverbrook Research Pty Ltd Micro-electromechanical device that incorporates covering formations for actuators of the device
ATE409119T1 (en) * 1997-07-15 2008-10-15 Silverbrook Res Pty Ltd Nozzle chamber with paddle vane and externally located thermal actuator
US6485123B2 (en) 1997-07-15 2002-11-26 Silverbrook Research Pty Ltd Shutter ink jet
US7303254B2 (en) 1997-07-15 2007-12-04 Silverbrook Research Pty Ltd Print assembly for a wide format pagewidth printer
US7004566B2 (en) 1997-07-15 2006-02-28 Silverbrook Research Pty Ltd Inkjet printhead chip that incorporates micro-mechanical lever mechanisms
US6247792B1 (en) 1997-07-15 2001-06-19 Silverbrook Research Pty Ltd PTFE surface shooting shuttered oscillating pressure ink jet printing mechanism
US7044584B2 (en) 1997-07-15 2006-05-16 Silverbrook Research Pty Ltd Wide format pagewidth inkjet printer
US7131715B2 (en) 1997-07-15 2006-11-07 Silverbrook Research Pty Ltd Printhead chip that incorporates micro-mechanical lever mechanisms
US6652052B2 (en) 1997-07-15 2003-11-25 Silverbrook Research Pty Ltd Processing of images for high volume pagewidth printing
US7246881B2 (en) 1997-07-15 2007-07-24 Silverbrook Research Pty Ltd Printhead assembly arrangement for a wide format pagewidth inkjet printer
US6880918B2 (en) 1997-07-15 2005-04-19 Silverbrook Research Pty Ltd Micro-electromechanical device that incorporates a motion-transmitting structure
US7111925B2 (en) 1997-07-15 2006-09-26 Silverbrook Research Pty Ltd Inkjet printhead integrated circuit
US7431446B2 (en) 1997-07-15 2008-10-07 Silverbrook Research Pty Ltd Web printing system having media cartridge carousel
US6582059B2 (en) 1997-07-15 2003-06-24 Silverbrook Research Pty Ltd Discrete air and nozzle chambers in a printhead chip for an inkjet printhead
US20040130599A1 (en) 1997-07-15 2004-07-08 Silverbrook Research Pty Ltd Ink jet printhead with amorphous ceramic chamber
US6652074B2 (en) 1998-03-25 2003-11-25 Silverbrook Research Pty Ltd Ink jet nozzle assembly including displaceable ink pusher
US6959981B2 (en) 1998-06-09 2005-11-01 Silverbrook Research Pty Ltd Inkjet printhead nozzle having wall actuator
AUPP702098A0 (en) 1998-11-09 1998-12-03 Silverbrook Research Pty Ltd Image creation method and apparatus (ART73)
US7111924B2 (en) 1998-10-16 2006-09-26 Silverbrook Research Pty Ltd Inkjet printhead having thermal bend actuator heating element electrically isolated from nozzle chamber ink
US6590313B2 (en) 1999-02-26 2003-07-08 Memscap S.A. MEMS microactuators located in interior regions of frames having openings therein and methods of operating same
US6236139B1 (en) 1999-02-26 2001-05-22 Jds Uniphase Inc. Temperature compensated microelectromechanical structures and related methods
US6137206A (en) * 1999-03-23 2000-10-24 Cronos Integrated Microsystems, Inc. Microelectromechanical rotary structures
US6218762B1 (en) 1999-05-03 2001-04-17 Mcnc Multi-dimensional scalable displacement enabled microelectromechanical actuator structures and arrays
US6291922B1 (en) 1999-08-25 2001-09-18 Jds Uniphase, Inc. Microelectromechanical device having single crystalline components and metallic components
US6255757B1 (en) 1999-09-01 2001-07-03 Jds Uniphase Inc. Microactuators including a metal layer on distal portions of an arched beam
US6211598B1 (en) * 1999-09-13 2001-04-03 Jds Uniphase Inc. In-plane MEMS thermal actuator and associated fabrication methods
US6333583B1 (en) * 2000-03-28 2001-12-25 Jds Uniphase Corporation Microelectromechanical systems including thermally actuated beams on heaters that move with the thermally actuated beams
FI109155B (en) 2000-04-13 2002-05-31 Nokia Corp Method and arrangement for controlling a micromechanical element
US6921153B2 (en) 2000-05-23 2005-07-26 Silverbrook Research Pty Ltd Liquid displacement assembly including a fluidic sealing structure
US6738600B1 (en) * 2000-08-04 2004-05-18 Harris Corporation Ceramic microelectromechanical structure
DE10260544B4 (en) * 2002-12-21 2005-03-31 Festo Ag & Co.Kg Multilayer microvalve
NL2000209C2 (en) * 2006-09-04 2008-03-05 Univ Delft Tech Thermal actuator for e.g. microfluidic components, comprises alternating layers of two different materials

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6913873A (en) * 1968-09-19 1970-03-23
DE3716996A1 (en) * 1987-05-21 1988-12-08 Vdo Schindling Deformation element
DE3809597A1 (en) * 1988-03-22 1989-10-05 Fraunhofer Ges Forschung MICROMECHANICAL ACTUATOR

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8061812B2 (en) 1997-07-15 2011-11-22 Silverbrook Research Pty Ltd Ejection nozzle arrangement having dynamic and static structures
US8029102B2 (en) 1997-07-15 2011-10-04 Silverbrook Research Pty Ltd Printhead having relatively dimensioned ejection ports and arms
US7980667B2 (en) 1997-07-15 2011-07-19 Silverbrook Research Pty Ltd Nozzle arrangement with pivotal wall coupled to thermal expansion actuator
US8419165B2 (en) 1997-07-15 2013-04-16 Zamtec Ltd Printhead module for wide format pagewidth inkjet printer
US7950777B2 (en) 1997-07-15 2011-05-31 Silverbrook Research Pty Ltd Ejection nozzle assembly
US8025366B2 (en) 1997-07-15 2011-09-27 Silverbrook Research Pty Ltd Inkjet printhead with nozzle layer defining etchant holes
US7950779B2 (en) 1997-07-15 2011-05-31 Silverbrook Research Pty Ltd Inkjet printhead with heaters suspended by sloped sections of less resistance
US8029101B2 (en) 1997-07-15 2011-10-04 Silverbrook Research Pty Ltd Ink ejection mechanism with thermal actuator coil
US8020970B2 (en) 1997-07-15 2011-09-20 Silverbrook Research Pty Ltd Printhead nozzle arrangements with magnetic paddle actuators
US8075104B2 (en) 1997-07-15 2011-12-13 Sliverbrook Research Pty Ltd Printhead nozzle having heater of higher resistance than contacts
US8083326B2 (en) 1997-07-15 2011-12-27 Silverbrook Research Pty Ltd Nozzle arrangement with an actuator having iris vanes
US8113629B2 (en) 1997-07-15 2012-02-14 Silverbrook Research Pty Ltd. Inkjet printhead integrated circuit incorporating fulcrum assisted ink ejection actuator
US8123336B2 (en) 1997-07-15 2012-02-28 Silverbrook Research Pty Ltd Printhead micro-electromechanical nozzle arrangement with motion-transmitting structure
US8287105B2 (en) 1997-07-15 2012-10-16 Zamtec Limited Nozzle arrangement for an inkjet printhead having an ink ejecting roof structure
US8408679B2 (en) 1997-07-15 2013-04-02 Zamtec Ltd Printhead having CMOS drive circuitry
US7997687B2 (en) 1998-06-09 2011-08-16 Silverbrook Research Pty Ltd Printhead nozzle arrangement having interleaved heater elements

Also Published As

Publication number Publication date
EP0478956A2 (en) 1992-04-08
DE4031248A1 (en) 1992-04-09
DE4031248C2 (en) 1992-07-23
ATE122816T1 (en) 1995-06-15
EP0478956A3 (en) 1992-11-25

Similar Documents

Publication Publication Date Title
EP0478956B1 (en) Micromechanical element
DE60220022T2 (en) METHOD FOR PRODUCING ELECTRICALLY CONDUCTIVE CONTACT STRUCTURES
DE10000090A1 (en) Electrical connecting element production method has embossed substrate provided with selectively etched conductive galvanic coating
DE10291877B4 (en) Microswitch and method of manufacturing a microswitch
DE4126107A1 (en) ACCELERATION SENSOR AND METHOD FOR THE PRODUCTION THEREOF
WO1992002858A1 (en) Process for producing microstructures with locally different structural heights
DE1590870A1 (en) Electrical component, especially resistance
DE2358816A1 (en) METHOD OF MANUFACTURING PANELS FOR GAS DISCHARGE DISPLAY PANELS
DE102018005010A1 (en) Transfer and melting of layers
DE102006017547B4 (en) Thermoelectric component and manufacturing method thereof
DE19729785C2 (en) Capacitor arrangement and its manufacturing process
DE3440109C2 (en)
EP0551118A1 (en) Method for manufacturing of non-linear micro optical elements
DE10043549C1 (en) Microswitch and method for its manufacture
DE10210344A1 (en) Method for producing micromechanical components and components produced using the method
DE4123249C2 (en) Method of making a variety of matched metallic thin film resistor structures
WO2001037045A1 (en) Flat coil and lithographic method for producing microcomponents
EP1834162B1 (en) Microsystem component with a device deformable under the influence of temperature changes
DE2534414A1 (en) Thin film semiconductive magnetoresistor - of indium antimonide or arsenide formed from deposited elemental layers
DE4233153C2 (en) Calorimetric flow meter and process for its manufacture
DE19944410C2 (en) Device for holding a microstructure to be heated and method for producing the device
DE3117957A1 (en) Method for producing a film resistor, and a film resistor produced according to this method
DE2724679A1 (en) METHOD FOR MANUFACTURING ELECTRICAL RESISTORS
WO2002084228A1 (en) Capacitive sensor element and method for producing a capacitive sensor element
DE2649250A1 (en) CARRIER FOR ELECTRICAL CIRCUITS AND METHOD FOR MANUFACTURING SUCH A CARRIER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH FR GB LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH FR GB LI NL

17P Request for examination filed

Effective date: 19921207

17Q First examination report despatched

Effective date: 19940804

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KERNFORSCHUNGSZENTRUM KARLSRUHE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB LI NL

REF Corresponds to:

Ref document number: 122816

Country of ref document: AT

Date of ref document: 19950615

Kind code of ref document: T

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950725

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950830

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950831

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950825

BERE Be: lapsed

Owner name: FORSCHUNGSZENTRUM KARLSRUHE G.M.B.H.

Effective date: 19950831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960829

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000727

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010824

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020829