EP0509670A2 - Bipolar electrosurgical scalpel with paired loop electrodes - Google Patents

Bipolar electrosurgical scalpel with paired loop electrodes Download PDF

Info

Publication number
EP0509670A2
EP0509670A2 EP92302796A EP92302796A EP0509670A2 EP 0509670 A2 EP0509670 A2 EP 0509670A2 EP 92302796 A EP92302796 A EP 92302796A EP 92302796 A EP92302796 A EP 92302796A EP 0509670 A2 EP0509670 A2 EP 0509670A2
Authority
EP
European Patent Office
Prior art keywords
electrodes
pair
control rod
bipolar electrodes
electrosurgical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92302796A
Other languages
German (de)
French (fr)
Other versions
EP0509670A3 (en
Inventor
Mark A. Rydell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Everest Medical Corp
Original Assignee
Everest Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Everest Medical Corp filed Critical Everest Medical Corp
Publication of EP0509670A2 publication Critical patent/EP0509670A2/en
Publication of EP0509670A3 publication Critical patent/EP0509670A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00607Coagulation and cutting with the same instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00964Features of probes
    • A61B2018/0097Cleaning probe surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/126Generators therefor characterised by the output polarity bipolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1407Loop
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M3/00Medical syringes, e.g. enemata; Irrigators
    • A61M3/02Enemata; Irrigators
    • A61M3/0279Cannula; Nozzles; Tips; their connection means

Definitions

  • This invention relates generally to the design of an electrosurgical scalpel, and more particularly to a bipolar scalpel having specially designed electrodes for facilitating cutting of tissue without the need for an expensive blade of the type heretofore used in prior art bipolar scalpels.
  • Blade configurations such as shown in the Doss '950 patent and in U.S. Patent 4,232,676 to Herzog, suffer from other defects, including breakage and the inability of the electrode foils to withstand the high temperatures resulting when arcing occurs between the active electrode surface and its return electrode.
  • Another object is to provide a bipolar electrosurgical scalpel instrument having a low-cost "blade” element which is sufficiently strong to withstand mechanical forces encountered during manufacture, shipping and handling and during use in surgery.
  • a further object of the invention is to provide a variety of electrosurgical scalpel blade configurations which can withstand elevated temperatures resulting when an arc breakdown occurs between electrodes over prolonged periods of use.
  • Yet another object of the invention is to provide an electrosurgical instrument having both cutting electrodes and coagulating electrodes where the cutting electrodes are retractable and, when retracted, allow the coagulation electrodes to be used.
  • Another object is to provide an electrosurgical instrument that can be controlled to operate in either a "cut” mode or a "coag” mode, either by a foot switch or by placement of a thumb-operated switch.
  • an electrosurgical scalpel with a tubular handle having a proximal end and a distal end and with a lumen extending between these two ends.
  • two electrodes forming a bipolar pair are mounted on the handle so as to extend longitudinally outward from the distal end of the handle with a dielectric such as an air gap or stabilizing ceramic therebetween.
  • the electrodes themselves each have a generally circular loop shape to them.
  • a pair of wire conductors, insulated from one another, extend through the lumen of the tubular handle and are connected at one end individually to the pair of bipolar electrodes while the other end of the conductors are terminated in a connector for facilitating the coupling of the instrument to an electrosurgical generator.
  • the loop electrodes are preferably formed from a suitable metal, e g., tungsten wire, and are rigidly supported in side-by-side relationship in a insulating plug-like insert which fits into the distal end of the tubular handle.
  • the insulating insert or plug may have longitudinally extending bores passing therethrough for receiving integrally-formed, closely-spaced, parallel legs which are made to project generally perpendicularly to the circumference of the circular or ellipsoidal loop-shaped electrodes in the same plane as the loop. Electrical connection is then made within the lumen of the tubular handle between the electrical conductors and the leg portions of the pair of bipolar electrodes.
  • a piezoelectric ultrasonic transducer may be mounted in the handle laterally adjacent to the insulating plug for imparting ultrasonic vibrations thereto when the transducer is driven by an appropriate high frequency alternating current signal.
  • the proximal end of the tubular handle is fitted with a luer lock connector.
  • a fluid delivery or aspiration means may be connected to this luer lock.
  • a port is drilled through the stabilizing insulating tip in the vicinity of the electrodes.
  • irrigating fluid may be introduced through the luer and travel along the lumen of the tubular handle to exit the port in the insulating tip.
  • a suction means may be connected to the luer and the treatment region may be evacuated by withdrawing particles of debris, tissue and fluid through the port, into the handle and out into a collection receptacle joined to the luer.
  • the loop-shaped electrodes can readily be fabricated from a ductile wire, for example, tungsten alloy. This can be done by appropriate wrapping of the wire about a forming mandrel and because the tungsten alloy wire can be of an appropriate gage to insure rigidity, the blade is very inexpensive to manufacture and holds up well over prolonged periods of use in electrosurgical procedures.
  • a ductile wire for example, tungsten alloy. This can be done by appropriate wrapping of the wire about a forming mandrel and because the tungsten alloy wire can be of an appropriate gage to insure rigidity, the blade is very inexpensive to manufacture and holds up well over prolonged periods of use in electrosurgical procedures.
  • the loop electrodes can be retracted from their normal cutting orientation back into an insulating end cap to thereby allow metal traces disposed on the insulating tip to be exposed to tissue for coagulation.
  • Yet another embodiment of the present invention features retractable loop electrodes for cutting and an insulating end cap with metal traces for coagulating and which features a handle design with a longitudinally displaceable thumb switch which controls the displacement of the loop electrodes and which provides a lockout, preventing energization of the cut electrodes when the instrument is being used for electrocoagulation.
  • the wiring harness for power and control of the electrosurgical generator employed is routed as a 7-conductor cord exiting alongside an aspirate supply tube.
  • Still further embodiments feature a pair of closely spaced parallel hook-shaped electrodes.
  • a wire conductor preferably of tungsten wire, is pressed into various shapes including a pair of elongated loops, a pair of triangular-shaped loops, a pair of J-shaped loops or a pair of L-shaped loops, positioned at various angles relative to the handle and all of which are crimped into curved retainers.
  • a pair of these retainers is rigidly affixed in parallel relationship within an insulating insert or plug positioned at the distal end of the electrosurgical scalpel.
  • electrical connection between the electrical conductors and the retainers is made within the lumen of the tubular handle.
  • an electrosurgical scalpel constructed in accordance with a first embodiment of the present invention. It is seen to comprise an elongated tubular handle 12, preferably molded from a suitable medical grade plastic, and having a proximal end 14 and a distal end 16 with a lumen 18 (Figure 2) extending between the two ends. Fitted into the distal end 16 of the tubular handle 12 is an electrode support means in the form of an insulating plug 20.
  • the plug 20 may be formed from a ceramic or high melting point plastic and includes four generally parallel longitudinal bores as at 22 and 24 in Figure 2 and 22 and 26 in Figure 3. Fitted into these bores are first and second electrodes 28 and 30 which form a bipolar pair. These electrodes may be formed from a suitable wire (preferably tungsten alloy) and of a diameter of about 0.010 inch to 0.030 inch, but limitation to that material and dimension is not to be inferred.
  • the wire is bent to form a generally circular or ellipsoidal loop 32 (and 33) with a pair of integrally formed legs 34 and 36 projecting perpendicular to the circumference of the loop and lying in substantially the same plane as the loop.
  • the legs 34 and 36 are dimensioned to fit within the longitudinal bores, as at 22, 24 and 26, and when so inserted, an air gap, d, of approximately 0.010 inch to 0.030 inch ( Figures 3, 4) separates the two. It is also effective to use an alternative dielectric, such as ceramic, to separate the two loops. Excellent results have been attained when the diameter of the loop portion 32 is approximately 0.125 inch.
  • the legs 34 and 36 of the first loop electrode 30 are shown as extending beyond the proximal end of the insulating plug 20 and are mechanically and electrically joined together at a junction 38 ( Figures 2, 3) to a first electrical conductor 40 which extends through the lumen 18 of the handle 12 and forms a part of an electrical cable or cord 42 ( Figure 1) leading to an electrosurgical generator with which the instrument of the present invention is used.
  • the legs of the loop-shaped electrode 28 are joined together at a junction point 44 ( Figure 3) and a conductor 46 leads back to the electrosurgical generator through the cord 42 as well.
  • An electrosurgical generator compatible with the scalpel of the present invention is described in the Stasz et al. Patent 4,903,696.
  • an epoxy potting compound may be injected through the barrel of the handle 12 and is allowed to solidify around the more proximal portions of the loop electrode legs.
  • This epoxy potting is identified by numeral 48 in Figures 2 and 3.
  • the potting 48 may consist of glass frit or other similar material.
  • a bead of epoxy 50 can be placed on the distal end of the plug 20 so as to surround the short leg lengths exiting the distal end of the plug before being bent to form the loops 32, 33 ( Figure 1).
  • enhanced stability can be attained by insertion of a stabilizing plug of ceramic or high melting point plastic between these legs.
  • Conductors are joined to the drive electrodes of the ultrasonic transducer 54 and also extend proximally through the handle 12 and through the cord 42 to the electrosurgical generator.
  • a suitable alternating current drive signal is applied to the transducer, it is made to vibrate in its transverse mode and, in doing so, also vibrates the plug 20 and the electrodes 28 and 30 supported in this insulating plug.
  • a standard luer lock connector 13 is mounted at the proximal end of tubular handle 12.
  • Tubing (not shown) may be connected to this luer lock and attached to a suction receptacle or a fluid supply.
  • the hollow lumen 18 of the tubular handle 12 may serve as a conduit for the material being flushed or aspirated.
  • An entry/exit port 15 is drilled or otherwise introduced through the plug 20 and epoxy 50 to provide a conduit that will deliver flush fluid in the proximity of the electrodes 28 and 30.
  • a section of tubing (not shown) or similar passage means disposed between luer 13 and irrigation/aspiration port 15 within handle 12 will also serve.
  • a fluid reservoir (not shown) is connected to the luer fitting 13 and fluid is propelled from the reservoir, through the luer fitting 13 and the lumen 18 of the tubular handle 12, through the port 15 and out to the region surrounding the electrodes 28 and 30.
  • a source of suction (not shown) is attached to the luer lock 13 and particles of tissue, debris and fluid from the region are withdrawn through port 15 to lumen 18 and luer 13, then out to an aspirate receptacle (not shown).
  • the present invention offers the advantage of providing very effective bipolar cutting from an electrode structure that is rugged and relatively easy and inexpensive to fabricate, especially when contrasted to more conventional blades wherein metal traces formed in a mask and etch process or a mask and fire process are adhered to opposed side surfaces of a thin ceramic or metal substrate.
  • Figures 5 through 8 depict an alternative embodiment of the present invention which features loop electrodes that are retractable into an insulating end cap and the addition of coagulation electrodes to the surface of the end cap.
  • surface electrodes consisting of two spiral strips of metal having an effective surface area much greater than the area of the loop electrodes are concentrically inlaid or otherwise supported on an exterior tip surface of an outer insulating cap member 70 as shown in Figures 5 and 6, and described hereinafter.
  • rounded loop electrodes 28 and 30 are mounted on an insulating tip 20, preferably of ceramic, and stabilized with a resin coating 50 over this insulating tip.
  • These loop electrodes are also comprised of wire, such as tungsten, and dimensioned in the range of about 0.010 inch to 0.030 inch.
  • two electrodes labeled 71 and 73 have been deposited on or embedded into the surface of the end cap 70 as two concentric metal helical coils, shown in Figure 5, each of which terminates alongside the entry/exit bore 29 formed in the end cap 70 which permits passage of the electrodes 28 and 30.
  • the coagulating electrodes are formed from a suitable metal and may be plated or silk-screened onto the end cap to provide the desired spaced-apart geometry. It should be obvious to one skilled in the art that the concentrically inlaid surface electrodes could be of significantly greater width, without impairing the spirit of the present invention. Accordingly, the width of these inlays may be varied, depending upon the desired degree of coagulation, so that they may be narrow or they may approach the shape of half-domes.
  • the tubular handle member 68 incorporates a reciprocally movable control rod 60 surrounded by a tubular control rod housing 66 ( Figure 6).
  • the control rod housing supports the insulating end cap 70 in its distal end and may be held in place by a plastic bushing 62. Gaps 64, 65 of approximately 0.005 inch are provided between the end cap 70 and the plastic bushing 62 to accommodate the routing of fine electrical conductors 65 and 67 ( Figure 8) leading from a proximal connector, through the assembly to coagulator electrodes 71 and 73 whereby an appropriate RF voltage can be established therebetween to effect coagulation.
  • the control rod housing 66 preferably consists of a Teflon® coated, stainless steel tubular sleeve and fitted into the distal end thereof is the above-mentioned plastic bushing 62 and the dome-shaped insulating end cap 70.
  • the lumen of housing sleeve 66 may be approximately 0.08 inch diameter and thus allows the control rod 60 to be shifted longitudinally therein.
  • a thumb slide member 74 fitted into a longitudinal slot 96 ( Figure 7) formed in the tubular handle member 68 supports the proximal end portion of the control rod 60.
  • the thumb slide member 74 is affixed to the proximal end of the control rod by means of a guide block 84 in such manner that a length of approximately 0.3 inch of the control rod is embedded into the guide block.
  • the top of the thumb slide member 74 is angled at its forward end such that it is flush with the distal end of the tubular handle member 68 when the loop electrodes 28 and 30 are exposed for use and its beveled proximal end is flush with the proximal end of the handle member 68 when retracted a distance of approximately 0.5 inch.
  • the unit has also been fitted with a flushing mechanism. More particularly, fitted into a well 82 formed in the tubular handle member 68 and surrounding the control rod 60 is a concentric latex seal 76 which prevents back leakage of flushing solution which may be injected into the well 82.
  • the well 82 may be fed by a flushing tube 80 joined to the tubular body by coupler 78. Saline injected through the flushing tube into the well is permitted to flow down the lumen 85 of the control rod housing 66 exiting the annular gap 86 between the exterior of the control rod and the bore in the end cap 70 through which the control rod is designed to slide. Thus, this fluid is prevented from entering the space 98 containing the thumb slide and guide block 84. Following this pathway, saline will serve to flush out any accumulated particles of tissue and blood from the region of the insulating plug, end cap and electrodes.
  • FIG. 7 is a cross-sectional view taken along the line 7-7 in Figure 6.
  • the central control rod 60 is embedded in and completely surrounded by a stabilizing guide block 84 which is itself almost completely surrounded by the tubular member 68.
  • the thumb slide member 74 is formed so as to have an extension portion 94 so that it may be mounted atop this tubular member by means of a stabilizing longitudinal guide slot 96. This slot is cut approximately 0.16 inch deep, 0.3 inch long and 0.06 inch wide into the top of the tubular member 68 and guide block 84. It serves to prevent the thumb slide member from shifting sideways as it is pushed proximally or distally.
  • a hollow cavity 98 accommodates wires 61 and 63 leading to the surface coagulating electrodes 71 and 73 embedded in the end cap 70 and for the loop electrodes 28 and 30 mounted on the insulating tip 20.
  • the proximal end of the unit which is denoted generally as 90 in Figure 6, is fitted with a power cord 42 which terminates in a plug 88.
  • the cord is attached to the two circuits 61 and 63 that supply the coagulation and cutting features, as shown in the wiring diagram of Figure 8.
  • Each separate coagulation/cutting circuit consists of a coagulation surface electrode 71 or 73 wired in parallel with the cutting loop electrodes 28 or 30.
  • the two circuits are wired to the power supply cord 42 in series, utilizing the lumen 85 of the control rod housing 66 and the cavity 98 of the tubular handle member 68.
  • the fine electrical wires 65 and 67 to each of the concentric surface electrodes 71 and 73 is channeled between the insulating end cap 70 and the plastic bushing 62 at 64, 65 of Figure 6, while the electrical cutting supply wiring 75, 77 protrudes through the insulating tip 20 to the tungsten loop electrodes 28 and 30, as described in the first embodiment.
  • Figure 9 shows an alternative handle to be used in conjunction with the retracting loop electrodes and insulating tip combination previously described.
  • This handle differs from the embodiment of Figure 6 in that Figure 6 shows an electrosurgical scalpel that is electrically controlled by a foot switch, while Figure 9 controls the choice of cutting or coagulation functions by placement of a handle-mounted sliding switch.
  • the handle is connected to an electrical cable 200 secured in a plastic block 202 which also serves to secure the placement of the flush/aspirate tube 80.
  • Sets of wires 204, 206 coupled to electrosurgical generator 207 supply individual RF cutting or coagulation voltages to the appropriate electrodes when control signals produced by depression of normally-open switches mounted on a printed circuit board 208 are actuated. More specifically, mounted on the upper surface of PC board 208 are a cutting function dome switch 210 and a coagulation function dome switch 212. The contacts of these dome switches are proportioned to mate with the end portion 214 of a push button 216.
  • the control rod 60 extends from the tip portion of the instrument to the push button 216 and the proximal end portion 218 of the control rod 60 extends through a hole 220 bored in the stem 216 of the push button.
  • the control rod is fixed in place with respect to the slide 224 by a set screw 222 and the presence of the control rod distal end in the hole 220 precludes the thumb switch from coming free of the handle.
  • the push button 216 has a thumb tab 226 that sits flush with the upper surface of the slide 224.
  • the handle is operated in the following manner: When slide 224 is in its most distal position, push button 216 is positioned directly over dome switch 210 and at the same time the loop electrodes 28 are extended. Downward pressure exerted upon thumb tab 226 engages the lower portion 214 of the push button with switch 210, so that electrical power is supplied to the extended loop electrodes 28, 30. When pressure on thumb tab 226 is released, the entire slide 224 may be moved proximally so that eventually the push button is positioned directly over coagulation dome switch 212. The slide 224 is rigidly affixed to the control rod 60 so that proximal movement of the thumb slide 224 retracts the loop electrodes 28, 30 into the insulating tip 70.
  • thumb slide 224 When the thumb slide 224 is fully proximal, a similar depression of thumb tab 226 and push button 216 closes the dome switch 212 to send a control signal to the electrosurgical generator for applying an appropriate RF signal to the embedded tip electrodes 71, 73 via wires in the cable 200.
  • a rubber seal 228 encompasses the control rod so that none of the flush fluid supplied by tube 80 may leak into the handle and come in contact with PC board 208.
  • electrosurgical generator 207 can be controlled by a standard foot switch 209 as an alternative to the hand switch control described herein.
  • elongated loops 302 and 304 are formed from conductive material and mounted within curved conductive retainers 306 and 308.
  • the elongated loops 302, 304 are preferably made of tungsten wire or some other appropriate ductile metal, twisted at 180° to double back as shown and spaced approximately 0.01 inch to 0.03 inch apart (d).
  • a suggested size that will optimize cutting capacity yet minimize arcing is about 0.010 inch to 0.030 inch diameter wire.
  • the retainers 306 and 308 are preferably formed of compressible conductive metal tubing. Thus, they may be crimped flat to rigidly secure loops 302 and 304 at junctures 310 and 312. The flattening of these retainer surfaces is desirable because it increases the surface area which enhances bipolar coagulation.
  • the distal end portions 314 and 315 of these retainers 306 and 308 are rigidly embedded in an insulator, such as ceramic or plastic tip 316.
  • a dielectric gap, d may be maintained by placing a bead of potting material 318 between the retainers 306 and 308.
  • Additional potting material 48 provides rigidity and electrical isolation at junction points 38 and 44, where the retainers 306, 308 join to the conductive wires 40, 46 within tubular handle 12.
  • the curvature of the hook-shaped loop electrode configuration 300 is more clearly depicted in Figure 11.
  • the desired degree of curvature is induced in the conductive tubing retainers 306 and 308 before the proximal ends of the loop conductors 302 and 304 are inserted at 310 and 312.
  • the retainer tubing 306 and 308 is then crimped flat to rigidly retain the proximal ends of loops 302 and 304.
  • FIG. 12 An embodiment featuring cutting electrodes shaped as triangular loops is depicted in Figures 12 and 13.
  • the electrocoagulating, flush/aspiration and ultrasonic cleaning capacities of prior embodiments is also retained in this version.
  • the cutting head portion of the instrument is depicted generally at 330, having cutting electrodes 332 and 340 fabricated from conductive metal wire, such as 0.010 inch to 0.030 inch diameter tungsten. As best seen in Figure 12, they are generally triangular-shaped.
  • Cutting electrode 332 has a leg 334 that is inserted into a section of conductive tubing 336 and held in place by crimping the two together.
  • cutting electrode 340 has leg 342 which is inserted and crimped within tubing 344, forming a mirror image of the cutting electrode 332.
  • the conductive electrode tubes 336 and 344 are also preformed so as to be somewhat hook-shaped, as in the embodiment of Figures 10 and 11.
  • the tubing 336, 344 is further secured in an end cap 338 with a suitable plastic.
  • the flattened surfaces of the tubes 336 and 344 with dielectric (air) therebetween provides increased surface area, allowing lower current density such that bipolar coagulation can be effected.
  • additional insulating plastic 346 assists in holding the cutting electrodes 332, 340 in a spaced apart relationship of about 0.01 to 0.030 inch ( Figure 13, d).
  • tubes 336 and 344 also extend to junction points 38 and 44, as in previous embodiments, whereupon they are electrically joined to wire conductors 40 and 46 and anchored in insulative potting material 48.
  • the flattening of tubes 336 and 344 facilitates bipolar coagulation, while the use of wire for cutting electrodes 332, 340 enhances the cutting of tissue.
  • Figures 14 and 15 depict an embodiment featuring cutting electrodes shaped as dual-legged, arcuate hooks.
  • these electrodes are formed from conductive metal wires 354 and 356 which are twisted into a J-shape with a generally hooked end. Material such as 0.010 inch to 0.030 inch diameter tungsten is preferred.
  • Conductive wires 354 and 356 are embedded at their proximal ends into insulation 20 (such as ceramic) and potting material 352.
  • conductive tubings 358 and 360 are contoured and dimensioned at their distal ends to be crimped around the distal ends of the wires 354 and 356.
  • conductive tubings 358 and 360 are also embedded within potting material 352 and insulation 20 at a distance, d, of approximately 0.01 to 0.030 inch and terminate at junction points 38 and 44, as in previous embodiments.
  • conductive tubings 358 and 360 are electrically and mechanically joined to conductive wires 40 and 46 and anchored in insulative potting 48.
  • the flattening of the conductive tubings 358 and 360 facilitates bipolar coagulation while the wires 354 and 356 enhance the quality of cutting of tissue.
  • electrocoagulating, flush/aspiration and ultrasonic cleaning capabilities of prior embodiments are retained.
  • FIGS 16 and 17 depict yet another embodiment for the cutting electrodes.
  • the electrocoagulating, flush/aspiration and ultrasonic cleaning capabilities of prior embodiments are once again retained, but this embodiment, generally depicted as 370, features electrodes 372 and 374 in an L-shaped configuration.
  • these electrodes are formed from material such as conductive wire of approximately 0.010 inch to 0.030 inch diameter wire and are inserted and crimped within conductive retainer tubing 376 and 378. These tubings 376 and 378 are secured at distance, d, of approximately 0.010 inch to 0.030 inch within the tip 370 in potting material 380 and insulation 20.
  • Electrodes 372 and 374 are also joined to conductive wires 40 and 46 at junction points 38 and 44 and anchored in insulative potting 48.
  • the non-crimped ends of electrode wires 372 and 374 are embedded within potting 380 and insulation 20 to provide greater stability.
  • FIG. 1 depicted at an angle of 90° relative to the longitudinal axis of the handle 10 ( Figure 1), one skilled in the art will recognize that these electrodes 372 and 374 may be dimensioned within a range of angles which will all effectuate substantially the same degree of bipolar coagulation in conjunction with the dielectric (air) therebetween. With no limitation intended, examples of such angles are those in the range from 45° through 135°.
  • the electrodes depicted in Figures 14 through 17 are dimensioned to permit the scalpels 350 and 370 to be used as a retractor. When used for this purpose, the free ends of the electrodes are slipped under the organ or tissue to be retracted, then they are withdrawn until these ends hook the tissue and displace it to a desired position which will expose other tissue to be treated. Alternatively, the free ends of these J- and L-shaped electrodes may be used to retract tissue, while simultaneously applying RF voltage to electrocoagulate or cut.
  • the scalpels depicted in Figures 1 through 17 may be dimensioned so that the tubular members 12 and 66 may be passed through a tube or sheath. During procedures such as laparoscopy, this permits electrocoagulation and cutting to be performed with the advantages of the present invention as mentioned heretofore.
  • the J- and L-shaped electrodes may be used for retraction and bleeding can be arrested by electrocoagulation, using either the spiral traces 71, 73 on the tip ( Figure 5) or the flattened surfaces of the conductive tubings 336 ( Figure 13), 358 ( Figure 15) and 376 ( Figure 17). When these traces are made to contact small regions of bleeding in vessel walls or seepage from organs, and RF voltage is applied, bleeding will be arrested.

Abstract

A bipolar electrosurgical scalpel (10) comprising a handle (12) having a pair of loop electrodes (28,30) extending outwardly from the distal end thereof in parallel, spaced relation, such that the spacing defines a dielectric such as an air gap therebetween. When a RF voltage of a predetermined amplitude is applied across the two electrodes and they are drawn across tissue, cutting occurs by virtue of the arc established between the two electrodes. The electrodes may be formed from tungsten wire to withstand high operating temperatures and are sufficiently rigid to withstand the pressure forces encountered during electrosurgery without shorting together across the gap. The electrodes may be formed in various shapes, depending upon the nature of the cutting desired. Possible configurations include open rounded loops, open elongated loops, open triangular-shaped loops, L- or J-shaped hooks. The supporting conductors to which these electrodes are affixed may be straight tubular legs or curved hooks formed from flattened lengths of metal tubing. The loop electrodes may also be ultrasonically vibrated and/or fluid flushed to enhance removal of char and tissue debris during use. To enhance coagulation properties, metal surface electrodes (71,73) of relatively large area may be embedded in an insulating end cap (70) of the scalpel and the loop cutting electrodes are designed to be retracted therein such that only the surface electrodes are exposed. The instrument is controlled by either a hand switch or a standard surgical foot switch.

Description

    BACKGROUND OF THE INVENTION
  • I. Field of the Invention: This invention relates generally to the design of an electrosurgical scalpel, and more particularly to a bipolar scalpel having specially designed electrodes for facilitating cutting of tissue without the need for an expensive blade of the type heretofore used in prior art bipolar scalpels.
  • II. Discussion of the Prior Art: In U.S. Patent 4,161,950 to Doss, et al., there is described a knife blade for an electrosurgical scalpel which comprises a thin blade substrate whose periphery is honed to a sharp cutting edge and which carries first and second conductive electrodes adjacent to that cutting edge. The substrate is preferably ceramic and the electrode traces are deposited on the ceramic using known metalizing techniques, wherein a metal powder containing slurry is applied to the substrate through a mask and then later fired to bond the metal to the ceramic substrate. Blades of this type suffer from a number of drawbacks, not the least of which is the cost of producing same. The processing steps involved, including forming the blade substrate, honing its edges, depositing metal conductor traces thereon and subsequently selectively coating the blade surfaces with an insulating material, makes the resulting product relatively expensive, especially, and as will be explained more fully hereinbelow, when contrasted with the present invention.
  • Blade configurations, such as shown in the Doss '950 patent and in U.S. Patent 4,232,676 to Herzog, suffer from other defects, including breakage and the inability of the electrode foils to withstand the high temperatures resulting when arcing occurs between the active electrode surface and its return electrode.
  • It is accordingly a principal object of the present invention to provide an improved bipolar electrosurgical scalpel instrument.
  • Another object is to provide a bipolar electrosurgical scalpel instrument having a low-cost "blade" element which is sufficiently strong to withstand mechanical forces encountered during manufacture, shipping and handling and during use in surgery.
  • A further object of the invention is to provide a variety of electrosurgical scalpel blade configurations which can withstand elevated temperatures resulting when an arc breakdown occurs between electrodes over prolonged periods of use.
  • Yet another object of the invention is to provide an electrosurgical instrument having both cutting electrodes and coagulating electrodes where the cutting electrodes are retractable and, when retracted, allow the coagulation electrodes to be used.
  • Another object is to provide an electrosurgical instrument that can be controlled to operate in either a "cut" mode or a "coag" mode, either by a foot switch or by placement of a thumb-operated switch.
  • SUMMARY OF THE INVENTION
  • The foregoing objects and advantages of the invention are achieved by providing an electrosurgical scalpel with a tubular handle having a proximal end and a distal end and with a lumen extending between these two ends. In a first embodiment, two electrodes forming a bipolar pair are mounted on the handle so as to extend longitudinally outward from the distal end of the handle with a dielectric such as an air gap or stabilizing ceramic therebetween. The electrodes themselves each have a generally circular loop shape to them. A pair of wire conductors, insulated from one another, extend through the lumen of the tubular handle and are connected at one end individually to the pair of bipolar electrodes while the other end of the conductors are terminated in a connector for facilitating the coupling of the instrument to an electrosurgical generator.
  • The loop electrodes are preferably formed from a suitable metal, e g., tungsten wire, and are rigidly supported in side-by-side relationship in a insulating plug-like insert which fits into the distal end of the tubular handle. Specifically, the insulating insert or plug may have longitudinally extending bores passing therethrough for receiving integrally-formed, closely-spaced, parallel legs which are made to project generally perpendicularly to the circumference of the circular or ellipsoidal loop-shaped electrodes in the same plane as the loop. Electrical connection is then made within the lumen of the tubular handle between the electrical conductors and the leg portions of the pair of bipolar electrodes.
  • To facilitate self-cleaning of the electrodes during use, and in accordance with the Stasz U. S. Patent 4,674,498, a piezoelectric ultrasonic transducer may be mounted in the handle laterally adjacent to the insulating plug for imparting ultrasonic vibrations thereto when the transducer is driven by an appropriate high frequency alternating current signal.
  • It is frequently desirable to evacuate or flush the treatment region. To assist in this function, the proximal end of the tubular handle is fitted with a luer lock connector. A fluid delivery or aspiration means may be connected to this luer lock. A port is drilled through the stabilizing insulating tip in the vicinity of the electrodes. Thus, irrigating fluid may be introduced through the luer and travel along the lumen of the tubular handle to exit the port in the insulating tip. Likewise, a suction means may be connected to the luer and the treatment region may be evacuated by withdrawing particles of debris, tissue and fluid through the port, into the handle and out into a collection receptacle joined to the luer.
  • The loop-shaped electrodes can readily be fabricated from a ductile wire, for example, tungsten alloy. This can be done by appropriate wrapping of the wire about a forming mandrel and because the tungsten alloy wire can be of an appropriate gage to insure rigidity, the blade is very inexpensive to manufacture and holds up well over prolonged periods of use in electrosurgical procedures.
  • In accordance with a further embodiment, the loop electrodes can be retracted from their normal cutting orientation back into an insulating end cap to thereby allow metal traces disposed on the insulating tip to be exposed to tissue for coagulation.
  • Yet another embodiment of the present invention features retractable loop electrodes for cutting and an insulating end cap with metal traces for coagulating and which features a handle design with a longitudinally displaceable thumb switch which controls the displacement of the loop electrodes and which provides a lockout, preventing energization of the cut electrodes when the instrument is being used for electrocoagulation. The wiring harness for power and control of the electrosurgical generator employed is routed as a 7-conductor cord exiting alongside an aspirate supply tube.
  • Still further embodiments feature a pair of closely spaced parallel hook-shaped electrodes. A wire conductor, preferably of tungsten wire, is pressed into various shapes including a pair of elongated loops, a pair of triangular-shaped loops, a pair of J-shaped loops or a pair of L-shaped loops, positioned at various angles relative to the handle and all of which are crimped into curved retainers. A pair of these retainers is rigidly affixed in parallel relationship within an insulating insert or plug positioned at the distal end of the electrosurgical scalpel. As in the nonretractable loop embodiment mentioned above, electrical connection between the electrical conductors and the retainers is made within the lumen of the tubular handle.
  • DESCRIPTION OF THE DRAWINGS
  • The foregoing features and advantages of the invention will become apparent to those skilled in the art from the following detailed description of the several embodiments, especially when considered in conjunction with the accompanying drawings in which like numerals in the several views refer to corresponding parts.
    • Figure 1 is a perspective view of the electrosurgical instrument in accordance with one embodiment of the present invention;
    • Figure 2 is a partial, cross-sectioned side elevational view of the distal end portion of the instrument of Figure 1;
    • Figure 3 is a partial, cross-sectioned top view of the electrosurgical instrument of Figure 1;
    • Figure 4 is a distal end view of the electrosurgical instrument of Figure 1;
    • Figure 5 is a distal end view of an additional embodiment of the invention;
    • Figure 6 is a sectioned side elevation view of the electrosurgical instrument of the alternative embodiment;
    • Figure 7 is a cross-sectional view taken along the line 7-7 in Figure 6;
    • Figure 8 is a wiring diagram of the control rod-cutting loop assembly;
    • Figure 9 is a sectioned side elevation view of the electrosurgical instrument of yet another alternative embodiment;
    • Figure 10 is a partial, cross-sectioned top elevational view of the distal end portion of yet another embodiment of the present invention featuring elongated looped, hook-shaped electrodes;
    • Figure 11 is a partial, cross-sectioned side view of the distal end portion of the instrument of Figure 10;
    • Figure 12 is a partial, cross-sectioned side elevational view of the distal end portion of an embodiment featuring triangular looped electrodes;
    • Figure 13 is a partial, cross-sectioned top view of the distal end portion of the instrument of Figure 12;
    • Figure 14 is a partial, cross sectioned side elevational view of the distal end portion of an embodiment featuring dual-legged, arcuate, looped, hook-shaped electrodes;
    • Figure 15 is a partial, cross-sectioned top view of the distal end portion of the instrument of Figure 14;
    • Figure 16 is a partial, cross sectioned side elevational view of the distal end portion of an embodiment featuring looped, L-shaped electrodes; and
    • Figure 17 is a partial, cross-sectioned top view of the distal end portion of the instrument of Figure 16.
    DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to Figure 1, there is indicated generally by numeral 10 an electrosurgical scalpel constructed in accordance with a first embodiment of the present invention. It is seen to comprise an elongated tubular handle 12, preferably molded from a suitable medical grade plastic, and having a proximal end 14 and a distal end 16 with a lumen 18 (Figure 2) extending between the two ends. Fitted into the distal end 16 of the tubular handle 12 is an electrode support means in the form of an insulating plug 20. The plug 20 may be formed from a ceramic or high melting point plastic and includes four generally parallel longitudinal bores as at 22 and 24 in Figure 2 and 22 and 26 in Figure 3. Fitted into these bores are first and second electrodes 28 and 30 which form a bipolar pair. These electrodes may be formed from a suitable wire (preferably tungsten alloy) and of a diameter of about 0.010 inch to 0.030 inch, but limitation to that material and dimension is not to be inferred.
  • As can best be seen in Figure 2, the wire is bent to form a generally circular or ellipsoidal loop 32 (and 33) with a pair of integrally formed legs 34 and 36 projecting perpendicular to the circumference of the loop and lying in substantially the same plane as the loop. The legs 34 and 36 are dimensioned to fit within the longitudinal bores, as at 22, 24 and 26, and when so inserted, an air gap, d, of approximately 0.010 inch to 0.030 inch (Figures 3, 4) separates the two. It is also effective to use an alternative dielectric, such as ceramic, to separate the two loops. Excellent results have been attained when the diameter of the loop portion 32 is approximately 0.125 inch.
  • The legs 34 and 36 of the first loop electrode 30 are shown as extending beyond the proximal end of the insulating plug 20 and are mechanically and electrically joined together at a junction 38 (Figures 2, 3) to a first electrical conductor 40 which extends through the lumen 18 of the handle 12 and forms a part of an electrical cable or cord 42 (Figure 1) leading to an electrosurgical generator with which the instrument of the present invention is used. Likewise, the legs of the loop-shaped electrode 28 are joined together at a junction point 44 (Figure 3) and a conductor 46 leads back to the electrosurgical generator through the cord 42 as well. An electrosurgical generator compatible with the scalpel of the present invention is described in the Stasz et al. Patent 4,903,696.
  • To provide added rigidity and electrical isolation between the bipolar electrodes 28 and 30, once the insulating plug 20 with the loop electrodes disposed therein is inserted into the distal end 16 of the handle 12, an epoxy potting compound may be injected through the barrel of the handle 12 and is allowed to solidify around the more proximal portions of the loop electrode legs. This epoxy potting is identified by numeral 48 in Figures 2 and 3. Alternatively, one skilled in the art will note that the potting 48 may consist of glass frit or other similar material. In a somewhat similar fashion, to maintain the desired dielectric spacing, d, between the aligned loop portions of the electrodes, a bead of epoxy 50 can be placed on the distal end of the plug 20 so as to surround the short leg lengths exiting the distal end of the plug before being bent to form the loops 32, 33 (Figure 1). In the same manner, enhanced stability can be attained by insertion of a stabilizing plug of ceramic or high melting point plastic between these legs.
  • As is explained in the Stasz Patent 4,674,498, when the cutting blade of an electrical scalpel is ultrasonically vibrated as cutting and/or coagulation is taking place, the tendency for burned blood and tissue debris to build up on the blade and to create a short circuit between the bipolar electrodes is significantly reduced. That same concept may be utilized in the electrosurgical scalpel of the present invention by providing a channel 52 (Figure 2) in the insulating plug 20 and then inserting an ultrasonic transducer 54 into that channel so that it is effectively positioned between the I.D. of the tubular handle 12 and the insulating plug 20. Conductors, as at 56 and 58 (Figure 2), are joined to the drive electrodes of the ultrasonic transducer 54 and also extend proximally through the handle 12 and through the cord 42 to the electrosurgical generator. When a suitable alternating current drive signal is applied to the transducer, it is made to vibrate in its transverse mode and, in doing so, also vibrates the plug 20 and the electrodes 28 and 30 supported in this insulating plug.
  • It is often desirable to irrigate and/or aspirate the region surrounding the electrodes. To facilitate these functions, a standard luer lock connector 13 is mounted at the proximal end of tubular handle 12. Tubing (not shown) may be connected to this luer lock and attached to a suction receptacle or a fluid supply. The hollow lumen 18 of the tubular handle 12 may serve as a conduit for the material being flushed or aspirated. An entry/exit port 15 is drilled or otherwise introduced through the plug 20 and epoxy 50 to provide a conduit that will deliver flush fluid in the proximity of the electrodes 28 and 30. One skilled in the art will recognize that a section of tubing (not shown) or similar passage means disposed between luer 13 and irrigation/aspiration port 15 within handle 12 will also serve. In use, a fluid reservoir (not shown) is connected to the luer fitting 13 and fluid is propelled from the reservoir, through the luer fitting 13 and the lumen 18 of the tubular handle 12, through the port 15 and out to the region surrounding the electrodes 28 and 30. When used to aspirate, a source of suction (not shown) is attached to the luer lock 13 and particles of tissue, debris and fluid from the region are withdrawn through port 15 to lumen 18 and luer 13, then out to an aspirate receptacle (not shown).
  • In use, the surgeon grasps the handle 12 and by appropriate operation of either a handle push button switch 59 (Figure 1) or a foot switch associated with the generator (not shown), RF power will be applied to the closely spaced loop electrodes 28 and 30. When those electrodes are brought into contact with tissue and drawn in a longitudinal direction, arcing occurs between the two loops which is sufficient to cut through the tissue present in the gap. Because both loops 32 and 33 are identical in size, neither one assumes the role of a conventional return electrode on a permanent basis. Arcing is found to occur from each loop to the other.
  • The present invention offers the advantage of providing very effective bipolar cutting from an electrode structure that is rugged and relatively easy and inexpensive to fabricate, especially when contrasted to more conventional blades wherein metal traces formed in a mask and etch process or a mask and fire process are adhered to opposed side surfaces of a thin ceramic or metal substrate.
  • DESCRIPTION OF ALTERNATIVE EMBODIMENTS
  • Figures 5 through 8 depict an alternative embodiment of the present invention which features loop electrodes that are retractable into an insulating end cap and the addition of coagulation electrodes to the surface of the end cap. To enhance the ability to coagulate following cutting, surface electrodes consisting of two spiral strips of metal having an effective surface area much greater than the area of the loop electrodes are concentrically inlaid or otherwise supported on an exterior tip surface of an outer insulating cap member 70 as shown in Figures 5 and 6, and described hereinafter.
  • As with the embodiment of Figures 1-4, rounded loop electrodes 28 and 30 are mounted on an insulating tip 20, preferably of ceramic, and stabilized with a resin coating 50 over this insulating tip. These loop electrodes are also comprised of wire, such as tungsten, and dimensioned in the range of about 0.010 inch to 0.030 inch. In contrast to Figure 1, however, two electrodes labeled 71 and 73 have been deposited on or embedded into the surface of the end cap 70 as two concentric metal helical coils, shown in Figure 5, each of which terminates alongside the entry/exit bore 29 formed in the end cap 70 which permits passage of the electrodes 28 and 30. The coagulating electrodes are formed from a suitable metal and may be plated or silk-screened onto the end cap to provide the desired spaced-apart geometry. It should be obvious to one skilled in the art that the concentrically inlaid surface electrodes could be of significantly greater width, without impairing the spirit of the present invention. Accordingly, the width of these inlays may be varied, depending upon the desired degree of coagulation, so that they may be narrow or they may approach the shape of half-domes.
  • In contrast to the embodiment of Figure 1 where the loop electrodes are immovable, in the alternative arrangement, the tubular handle member 68 incorporates a reciprocally movable control rod 60 surrounded by a tubular control rod housing 66 (Figure 6). The control rod housing supports the insulating end cap 70 in its distal end and may be held in place by a plastic bushing 62. Gaps 64, 65 of approximately 0.005 inch are provided between the end cap 70 and the plastic bushing 62 to accommodate the routing of fine electrical conductors 65 and 67 (Figure 8) leading from a proximal connector, through the assembly to coagulator electrodes 71 and 73 whereby an appropriate RF voltage can be established therebetween to effect coagulation.
  • The control rod housing 66 preferably consists of a Teflon® coated, stainless steel tubular sleeve and fitted into the distal end thereof is the above-mentioned plastic bushing 62 and the dome-shaped insulating end cap 70. The lumen of housing sleeve 66 may be approximately 0.08 inch diameter and thus allows the control rod 60 to be shifted longitudinally therein. A thumb slide member 74 fitted into a longitudinal slot 96 (Figure 7) formed in the tubular handle member 68 supports the proximal end portion of the control rod 60. The thumb slide member 74 is affixed to the proximal end of the control rod by means of a guide block 84 in such manner that a length of approximately 0.3 inch of the control rod is embedded into the guide block.
  • The top of the thumb slide member 74 is angled at its forward end such that it is flush with the distal end of the tubular handle member 68 when the loop electrodes 28 and 30 are exposed for use and its beveled proximal end is flush with the proximal end of the handle member 68 when retracted a distance of approximately 0.5 inch.
  • To prevent accumulation of coagulated particles, the unit has also been fitted with a flushing mechanism. More particularly, fitted into a well 82 formed in the tubular handle member 68 and surrounding the control rod 60 is a concentric latex seal 76 which prevents back leakage of flushing solution which may be injected into the well 82. The well 82 may be fed by a flushing tube 80 joined to the tubular body by coupler 78. Saline injected through the flushing tube into the well is permitted to flow down the lumen 85 of the control rod housing 66 exiting the annular gap 86 between the exterior of the control rod and the bore in the end cap 70 through which the control rod is designed to slide. Thus, this fluid is prevented from entering the space 98 containing the thumb slide and guide block 84. Following this pathway, saline will serve to flush out any accumulated particles of tissue and blood from the region of the insulating plug, end cap and electrodes.
  • Figure 7 is a cross-sectional view taken along the line 7-7 in Figure 6. The central control rod 60 is embedded in and completely surrounded by a stabilizing guide block 84 which is itself almost completely surrounded by the tubular member 68. The thumb slide member 74 is formed so as to have an extension portion 94 so that it may be mounted atop this tubular member by means of a stabilizing longitudinal guide slot 96. This slot is cut approximately 0.16 inch deep, 0.3 inch long and 0.06 inch wide into the top of the tubular member 68 and guide block 84. It serves to prevent the thumb slide member from shifting sideways as it is pushed proximally or distally. A hollow cavity 98 accommodates wires 61 and 63 leading to the surface coagulating electrodes 71 and 73 embedded in the end cap 70 and for the loop electrodes 28 and 30 mounted on the insulating tip 20.
  • The proximal end of the unit, which is denoted generally as 90 in Figure 6, is fitted with a power cord 42 which terminates in a plug 88. The cord is attached to the two circuits 61 and 63 that supply the coagulation and cutting features, as shown in the wiring diagram of Figure 8. Each separate coagulation/cutting circuit consists of a coagulation surface electrode 71 or 73 wired in parallel with the cutting loop electrodes 28 or 30. The two circuits are wired to the power supply cord 42 in series, utilizing the lumen 85 of the control rod housing 66 and the cavity 98 of the tubular handle member 68. As earlier mentioned, the fine electrical wires 65 and 67 to each of the concentric surface electrodes 71 and 73 is channeled between the insulating end cap 70 and the plastic bushing 62 at 64, 65 of Figure 6, while the electrical cutting supply wiring 75, 77 protrudes through the insulating tip 20 to the tungsten loop electrodes 28 and 30, as described in the first embodiment.
  • Figure 9 shows an alternative handle to be used in conjunction with the retracting loop electrodes and insulating tip combination previously described. This handle differs from the embodiment of Figure 6 in that Figure 6 shows an electrosurgical scalpel that is electrically controlled by a foot switch, while Figure 9 controls the choice of cutting or coagulation functions by placement of a handle-mounted sliding switch.
  • Referring to Figure 9, there are shown retractable loop electrodes 28, 30, elongated barrel 66, insulating tip 70, and surface electrodes 71, 73, as in the embodiment of Figure 6. Furthermore, a flushing and/or aspiration of fluids uses a tube 80 and outlet 86 as in Figure 6.
  • The handle is connected to an electrical cable 200 secured in a plastic block 202 which also serves to secure the placement of the flush/aspirate tube 80. Sets of wires 204, 206 coupled to electrosurgical generator 207 supply individual RF cutting or coagulation voltages to the appropriate electrodes when control signals produced by depression of normally-open switches mounted on a printed circuit board 208 are actuated. More specifically, mounted on the upper surface of PC board 208 are a cutting function dome switch 210 and a coagulation function dome switch 212. The contacts of these dome switches are proportioned to mate with the end portion 214 of a push button 216. The control rod 60 extends from the tip portion of the instrument to the push button 216 and the proximal end portion 218 of the control rod 60 extends through a hole 220 bored in the stem 216 of the push button. The control rod is fixed in place with respect to the slide 224 by a set screw 222 and the presence of the control rod distal end in the hole 220 precludes the thumb switch from coming free of the handle. The push button 216 has a thumb tab 226 that sits flush with the upper surface of the slide 224.
  • The handle is operated in the following manner: When slide 224 is in its most distal position, push button 216 is positioned directly over dome switch 210 and at the same time the loop electrodes 28 are extended. Downward pressure exerted upon thumb tab 226 engages the lower portion 214 of the push button with switch 210, so that electrical power is supplied to the extended loop electrodes 28, 30. When pressure on thumb tab 226 is released, the entire slide 224 may be moved proximally so that eventually the push button is positioned directly over coagulation dome switch 212. The slide 224 is rigidly affixed to the control rod 60 so that proximal movement of the thumb slide 224 retracts the loop electrodes 28, 30 into the insulating tip 70. When the thumb slide 224 is fully proximal, a similar depression of thumb tab 226 and push button 216 closes the dome switch 212 to send a control signal to the electrosurgical generator for applying an appropriate RF signal to the embedded tip electrodes 71, 73 via wires in the cable 200.
  • A rubber seal 228 encompasses the control rod so that none of the flush fluid supplied by tube 80 may leak into the handle and come in contact with PC board 208.
  • It is to be understood that electrosurgical generator 207 can be controlled by a standard foot switch 209 as an alternative to the hand switch control described herein.
  • Referring now to Figure 10, a still further alternative embodiment 300, which retains the electrocoagulating, flush/aspiration and ultrasonic cleaning capacities of the previously described embodiments, but features hook-shaped electrodes, is shown. Rather than having cutting electrodes formed as rounded loops 28 and 30 mounted on an insulator 20 as in Figure 3, elongated loops 302 and 304 are formed from conductive material and mounted within curved conductive retainers 306 and 308. The elongated loops 302, 304 are preferably made of tungsten wire or some other appropriate ductile metal, twisted at 180° to double back as shown and spaced approximately 0.01 inch to 0.03 inch apart (d). A suggested size that will optimize cutting capacity yet minimize arcing is about 0.010 inch to 0.030 inch diameter wire. The retainers 306 and 308 are preferably formed of compressible conductive metal tubing. Thus, they may be crimped flat to rigidly secure loops 302 and 304 at junctures 310 and 312. The flattening of these retainer surfaces is desirable because it increases the surface area which enhances bipolar coagulation.
  • The distal end portions 314 and 315 of these retainers 306 and 308 are rigidly embedded in an insulator, such as ceramic or plastic tip 316. A dielectric gap, d, may be maintained by placing a bead of potting material 318 between the retainers 306 and 308. Additional potting material 48 provides rigidity and electrical isolation at junction points 38 and 44, where the retainers 306, 308 join to the conductive wires 40, 46 within tubular handle 12.
  • The curvature of the hook-shaped loop electrode configuration 300 is more clearly depicted in Figure 11. Preferably, the desired degree of curvature is induced in the conductive tubing retainers 306 and 308 before the proximal ends of the loop conductors 302 and 304 are inserted at 310 and 312. The retainer tubing 306 and 308 is then crimped flat to rigidly retain the proximal ends of loops 302 and 304.
  • An embodiment featuring cutting electrodes shaped as triangular loops is depicted in Figures 12 and 13. The electrocoagulating, flush/aspiration and ultrasonic cleaning capacities of prior embodiments is also retained in this version. The cutting head portion of the instrument is depicted generally at 330, having cutting electrodes 332 and 340 fabricated from conductive metal wire, such as 0.010 inch to 0.030 inch diameter tungsten. As best seen in Figure 12, they are generally triangular-shaped. Cutting electrode 332 has a leg 334 that is inserted into a section of conductive tubing 336 and held in place by crimping the two together. Similarly, cutting electrode 340 has leg 342 which is inserted and crimped within tubing 344, forming a mirror image of the cutting electrode 332. The conductive electrode tubes 336 and 344 are also preformed so as to be somewhat hook-shaped, as in the embodiment of Figures 10 and 11. The tubing 336, 344 is further secured in an end cap 338 with a suitable plastic. The flattened surfaces of the tubes 336 and 344 with dielectric (air) therebetween provides increased surface area, allowing lower current density such that bipolar coagulation can be effected. It is suggested that additional insulating plastic 346 assists in holding the cutting electrodes 332, 340 in a spaced apart relationship of about 0.01 to 0.030 inch (Figure 13, d). The flattened surfaces of tubes 336 and 344 also extend to junction points 38 and 44, as in previous embodiments, whereupon they are electrically joined to wire conductors 40 and 46 and anchored in insulative potting material 48. As in the embodiment of Figures 10 and 11, the flattening of tubes 336 and 344 facilitates bipolar coagulation, while the use of wire for cutting electrodes 332, 340 enhances the cutting of tissue.
  • Figures 14 and 15 depict an embodiment featuring cutting electrodes shaped as dual-legged, arcuate hooks. Generally depicted as 350, these electrodes are formed from conductive metal wires 354 and 356 which are twisted into a J-shape with a generally hooked end. Material such as 0.010 inch to 0.030 inch diameter tungsten is preferred. Conductive wires 354 and 356 are embedded at their proximal ends into insulation 20 (such as ceramic) and potting material 352. As an in the previous embodiments, conductive tubings 358 and 360 are contoured and dimensioned at their distal ends to be crimped around the distal ends of the wires 354 and 356. The distal ends of the conductive tubings 358 and 360 are also embedded within potting material 352 and insulation 20 at a distance, d, of approximately 0.01 to 0.030 inch and terminate at junction points 38 and 44, as in previous embodiments. At junction points 38 and 44, conductive tubings 358 and 360 are electrically and mechanically joined to conductive wires 40 and 46 and anchored in insulative potting 48. Thus, the particular, configuration of these electrodes with the flattened tube surfaces and dielectric (air) therebetween, provide yet another surface upon which to perform by bipolar coagulation. The flattening of the conductive tubings 358 and 360 facilitates bipolar coagulation while the wires 354 and 356 enhance the quality of cutting of tissue. Furthermore, the electrocoagulating, flush/aspiration and ultrasonic cleaning capabilities of prior embodiments are retained.
  • Figures 16 and 17 depict yet another embodiment for the cutting electrodes. The electrocoagulating, flush/aspiration and ultrasonic cleaning capabilities of prior embodiments are once again retained, but this embodiment, generally depicted as 370, features electrodes 372 and 374 in an L-shaped configuration. As in the embodiment of Figures 14 and 15, these electrodes are formed from material such as conductive wire of approximately 0.010 inch to 0.030 inch diameter wire and are inserted and crimped within conductive retainer tubing 376 and 378. These tubings 376 and 378 are secured at distance, d, of approximately 0.010 inch to 0.030 inch within the tip 370 in potting material 380 and insulation 20. They are also joined to conductive wires 40 and 46 at junction points 38 and 44 and anchored in insulative potting 48. The non-crimped ends of electrode wires 372 and 374 are embedded within potting 380 and insulation 20 to provide greater stability. Although depicted at an angle of 90° relative to the longitudinal axis of the handle 10 (Figure 1), one skilled in the art will recognize that these electrodes 372 and 374 may be dimensioned within a range of angles which will all effectuate substantially the same degree of bipolar coagulation in conjunction with the dielectric (air) therebetween. With no limitation intended, examples of such angles are those in the range from 45° through 135°.
  • The electrodes depicted in Figures 14 through 17 are dimensioned to permit the scalpels 350 and 370 to be used as a retractor. When used for this purpose, the free ends of the electrodes are slipped under the organ or tissue to be retracted, then they are withdrawn until these ends hook the tissue and displace it to a desired position which will expose other tissue to be treated. Alternatively, the free ends of these J- and L-shaped electrodes may be used to retract tissue, while simultaneously applying RF voltage to electrocoagulate or cut.
  • One skilled in the art will recognize that the scalpels depicted in Figures 1 through 17 may be dimensioned so that the tubular members 12 and 66 may be passed through a tube or sheath. During procedures such as laparoscopy, this permits electrocoagulation and cutting to be performed with the advantages of the present invention as mentioned heretofore. Also as before, the J- and L-shaped electrodes may be used for retraction and bleeding can be arrested by electrocoagulation, using either the spiral traces 71, 73 on the tip (Figure 5) or the flattened surfaces of the conductive tubings 336 (Figure 13), 358 (Figure 15) and 376 (Figure 17). When these traces are made to contact small regions of bleeding in vessel walls or seepage from organs, and RF voltage is applied, bleeding will be arrested.
  • This invention has been described herein in considerable detail in order to comply with the Patent Statutes and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use such specialized components as are required. However, it is to be understood that the invention can be carried out by specifically different equipment and devices, and that various modifications, both as to the equipment details and operating procedures, can be accomplished without departing from the scope of the invention itself.

Claims (13)

  1. An electrosurgical scalpel of the type including a tubular handle 12 having a proximal end 14, a distal end 16 and a lumen 18 extending therebetween; a pair of bipolar electrodes 28 and 30 extending longitudinally outward from said distal end of said handle with a dielectric therebetween; a pair of wire conductors 40 and 46 insulated from one another extending through said lumen and connected at one end individually to said pair of bipolar electrodes, the other end including connector means 88 for facilitating connection to an electrosurgical generator characterized in that said bipolar electrodes are each formed into a loop shape.
  2. An electrosurgical scalpel of the type having a tubular handle 68 having a proximal end, a distal end and a lumen extending therebetween; a control rod 60 having a proximal end and a distal end and slidingly supported within said tubular handle, extending distally outward; an insulating tip portion 20 affixed to said distal end of said control rod 60; a pair of bipolar electrodes 28 and 30 extending longitudinally outward from said tip portion with a dielectric therebetween; a first pair of wire conductors 61 and 63 insulated from one another and extending through said lumen of said tubular handle and through said control rod and connected at one end individually to said pair of bipolar electrodes 28, 30, the other end of said pair of wires including connector means for facilitating connection to an electrosurgical generator; and a control rod housing 66 extending outward from said distal end of said tubular handle 68, said housing extending longitudinally so as to encircle substantially the entire length of said control rod characterized in that an end cap 70 is affixed to the distal end of said control rod housing which includes a bore 86 therethrough for containing said bipolar electrodes when the control rod is displaced in the proximal direction, the end cap supporting a pair of coagulating electrodes 71 and 73 and that a second pair of wire conductors 65 and 67 insulated from one another are connected at one end individually to said pair of coagulating electrodes, the other ends of said second pair of wires including connector means for facilitating connection to an electrosurgical generator.
  3. The electrosurgical scalpel as in Claim 2 and further characterized by a slide member 74 mounted on said tubular handle 68 and coupled to said control rod (at 84) whereby manual reciprocal movement of said slide means retracts and extends said pair of bipolar electrodes 28 and 30 relative to said bore in said end cap.
  4. An electrosurgical scalpel as in Claim 2, and further characterized by having a longitudinally extending slot formed within said handle member with a slide member 224 fitted into said slot in said handle, said slide member being free to be moved longitudinally within said slot and supporting a transversely movable push button 226 and including a pair of normally open switches 210 and 212 disposed within said longitudinally extending slot at longitudinally spaced-apart locations, the spacing being such that when said push button 216 is aligned with one of said pair of switches 210, said pair of spaced-apart electrodes extend outwardly of said longitudinal bore in said end cap 70 fitted into said control rod housing 66 and when said push button is aligned with a second of said pair of switches 212, said pair of electrodes are retracted into said bore in said end cap 70 fitted into said control rod housing.
  5. The electrosurgical scalpel as in Claim 4 and further characterized in that depression of said push button 226 when aligned with said first switch will apply a RF voltage across said bipolar electrodes; and depression of said push button when aligned with said second switch 212 will apply a RF voltage across said coagulating electrodes 71 and 73.
  6. The electrosurgical scalpel as in Claim 2 and further characterized by a flushing tube 80 having a distal end, a proximal end and a lumen extending therebetween coupled to an entry port of a well formed in said tubular handle, the well having a seal 228 for preventing backflow of fluid into the proximal end of the tubular handle of said electrosurgical scalpel, said control rod housing 66 being connected to an exit port of said well and extending longitudinally so as to encircle the length of said control rod 60 in such manner that a flushing fluid can be made to flow from said well, through said control rod housing and out of said bore in said end cap.
  7. The electrosurgical scalpel as in Claim 1 further characterized by a piezoelectric transducer 52 for ultrasonically vibrating said pair of bipolar electrodes.
  8. The electrosurgical scalpel as in Claim 2 further characterized by a piezoelectric transducer 52 for ultrasonically vibrating said pair of bipolar electrodes.
  9. The electrosurgical scalpel as in Claim 5, characterized in that said pair of bipolar electrodes 28 and 30 are generally circular loop-shaped.
  10. The electrosurgical scalpel as in Claim 5, characterized in that said pair of bipolar electrodes 302 and 304 are generally elongated-loop shaped.
  11. The electrosurgical scalpel as in Claim 5, characterized in that said pair of bipolar electrodes 340 and 342 are generally triangular-shaped.
  12. The electrosurgical scalpel as in Claim 5, characterized in that said pair of bipolar electrodes 354 and 356 are generally arcuate, hook-shaped.
  13. The electrosurgical scalpel as in any one of Claims 9, 20, 11, and 12, characterized in that said pair of bipolar electrodes include first and second zones, the first zone 314, 315 having a greater surface area than said second zone 310, 312.
EP19920302796 1991-04-15 1992-03-30 Bipolar electrosurgical scalpel with paired loop electrodes Withdrawn EP0509670A3 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US68504591A 1991-04-15 1991-04-15
US685045 1991-04-15
US07/728,337 US5282799A (en) 1990-08-24 1991-07-11 Bipolar electrosurgical scalpel with paired loop electrodes
US728337 2000-12-01

Publications (2)

Publication Number Publication Date
EP0509670A2 true EP0509670A2 (en) 1992-10-21
EP0509670A3 EP0509670A3 (en) 1992-12-23

Family

ID=27103479

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920302796 Withdrawn EP0509670A3 (en) 1991-04-15 1992-03-30 Bipolar electrosurgical scalpel with paired loop electrodes

Country Status (6)

Country Link
US (1) US5282799A (en)
EP (1) EP0509670A3 (en)
JP (1) JPH05111492A (en)
CA (1) CA2064547A1 (en)
DE (1) DE509670T1 (en)
ES (1) ES2036999T1 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023169A1 (en) * 1995-12-22 1997-07-03 Advanced Closure Systems, Inc. Resectoscope electrode assembly with simultaneous cutting and coagulation
WO1997024994A1 (en) * 1996-01-09 1997-07-17 Gyrus Medical Limited An underwater electrosurgical instrument
GB2327352A (en) * 1997-07-18 1999-01-27 Gyrus Medical Ltd Electrosurgical instrument
GB2334216A (en) * 1998-02-17 1999-08-18 Sterex Electrolysis Internatio Electrolysis needle assembly
US5993445A (en) * 1995-05-22 1999-11-30 Advanced Closure Systems, Inc. Resectoscope electrode assembly with simultaneous cutting and coagulation
US6027501A (en) 1995-06-23 2000-02-22 Gyrus Medical Limited Electrosurgical instrument
US6056746A (en) 1995-06-23 2000-05-02 Gyrus Medical Limited Electrosurgical instrument
WO2002005717A1 (en) * 2000-07-18 2002-01-24 Senorx, Inc. Apparatus and method for tissue capture
US6364877B1 (en) 1995-06-23 2002-04-02 Gyrus Medical Limited Electrosurgical generator and system
US6517498B1 (en) 1998-03-03 2003-02-11 Senorx, Inc. Apparatus and method for tissue capture
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
WO2004100813A2 (en) * 2003-05-13 2004-11-25 Medtronic, Inc. Multi-purpose catheter apparatus and method of use
EP2100567A1 (en) * 2008-03-11 2009-09-16 Tyco Healthcare Group, LP Bipolar cutting end effector
US7981051B2 (en) 2005-08-05 2011-07-19 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
EP2398416A1 (en) * 2009-02-23 2011-12-28 Salient Surgical Technologies, Inc. Fluid-assisted electrosurgical device and methods of use thereof
US8282573B2 (en) 2003-02-24 2012-10-09 Senorx, Inc. Biopsy device with selectable tissue receiving aperture orientation and site illumination
US8317725B2 (en) 2005-08-05 2012-11-27 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US8343071B2 (en) 2004-12-16 2013-01-01 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US8430876B2 (en) 2009-08-27 2013-04-30 Tyco Healthcare Group Lp Vessel sealer and divider with knife lockout
US8460204B2 (en) 2003-02-24 2013-06-11 Senorx, Inc. Biopsy device with inner cutting member
US8636734B2 (en) 1999-01-27 2014-01-28 Senorx, Inc. Tissue specimen isolating and damaging device and method
US8641640B2 (en) 2005-05-23 2014-02-04 Senorx, Inc. Tissue cutting member for a biopsy device
US8747401B2 (en) 2011-01-20 2014-06-10 Arthrocare Corporation Systems and methods for turbinate reduction
US8858553B2 (en) 2010-01-29 2014-10-14 Covidien Lp Dielectric jaw insert for electrosurgical end effector
CN104287825A (en) * 2014-10-11 2015-01-21 黄东晓 Intensive laparoscopic operation tool
US9011428B2 (en) 2011-03-02 2015-04-21 Arthrocare Corporation Electrosurgical device with internal digestor electrode
US9168082B2 (en) 2011-02-09 2015-10-27 Arthrocare Corporation Fine dissection electrosurgical device
US9216012B2 (en) 1998-09-01 2015-12-22 Senorx, Inc Methods and apparatus for securing medical instruments to desired locations in a patient's body
US9254166B2 (en) 2013-01-17 2016-02-09 Arthrocare Corporation Systems and methods for turbinate reduction
US9271784B2 (en) 2011-02-09 2016-03-01 Arthrocare Corporation Fine dissection electrosurgical device
US9408592B2 (en) 2003-12-23 2016-08-09 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US9655674B2 (en) 2009-01-13 2017-05-23 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9788882B2 (en) 2011-09-08 2017-10-17 Arthrocare Corporation Plasma bipolar forceps
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US9931131B2 (en) 2009-09-18 2018-04-03 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US10085794B2 (en) 2009-05-07 2018-10-02 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US10154848B2 (en) 2011-07-11 2018-12-18 Covidien Lp Stand alone energy-based tissue clips
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
US10251696B2 (en) 2001-04-06 2019-04-09 Covidien Ag Vessel sealer and divider with stop members
US10303641B2 (en) 2014-05-07 2019-05-28 Covidien Lp Authentication and information system for reusable surgical instruments
EP2531129B1 (en) * 2010-02-01 2019-06-19 Gyrus Medical Limited Electrosurgical system
US10383649B2 (en) 2011-01-14 2019-08-20 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US10441350B2 (en) 2003-11-17 2019-10-15 Covidien Ag Bipolar forceps having monopolar extension
US10537384B2 (en) 2002-10-04 2020-01-21 Covidien Lp Vessel sealing instrument with electrical cutting mechanism

Families Citing this family (355)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697882A (en) 1992-01-07 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US7297145B2 (en) 1997-10-23 2007-11-20 Arthrocare Corporation Bipolar electrosurgical clamp for removing and modifying tissue
US6770071B2 (en) 1995-06-07 2004-08-03 Arthrocare Corporation Bladed electrosurgical probe
US6277112B1 (en) 1996-07-16 2001-08-21 Arthrocare Corporation Methods for electrosurgical spine surgery
US6974453B2 (en) * 1993-05-10 2005-12-13 Arthrocare Corporation Dual mode electrosurgical clamping probe and related methods
US5810810A (en) 1992-04-23 1998-09-22 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
JPH07506991A (en) 1992-04-23 1995-08-03 シメッド ライフ システムズ インコーポレイテッド Apparatus and method for sealing vascular punctures
US6063085A (en) 1992-04-23 2000-05-16 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US5293863A (en) * 1992-05-08 1994-03-15 Loma Linda University Medical Center Bladed endoscopic retractor
US6896674B1 (en) 1993-05-10 2005-05-24 Arthrocare Corporation Electrosurgical apparatus having digestion electrode and methods related thereto
US6832996B2 (en) 1995-06-07 2004-12-21 Arthrocare Corporation Electrosurgical systems and methods for treating tissue
US6749604B1 (en) 1993-05-10 2004-06-15 Arthrocare Corporation Electrosurgical instrument with axially-spaced electrodes
US5814044A (en) * 1995-02-10 1998-09-29 Enable Medical Corporation Apparatus and method for morselating and removing tissue from a patient
US5897553A (en) * 1995-11-02 1999-04-27 Medtronic, Inc. Ball point fluid-assisted electrocautery device
US6179837B1 (en) 1995-03-07 2001-01-30 Enable Medical Corporation Bipolar electrosurgical scissors
US6391029B1 (en) 1995-03-07 2002-05-21 Enable Medical Corporation Bipolar electrosurgical scissors
US6464701B1 (en) 1995-03-07 2002-10-15 Enable Medical Corporation Bipolar electrosurgical scissors
US5766166A (en) * 1995-03-07 1998-06-16 Enable Medical Corporation Bipolar Electrosurgical scissors
US6503248B1 (en) 2000-10-30 2003-01-07 Seedling Enterprises, Llc Cooled, non-sticking electrosurgical devices
US6544264B2 (en) 1995-03-10 2003-04-08 Seedling Enterprises, Llc Electrosurgery with cooled electrodes
US5647871A (en) 1995-03-10 1997-07-15 Microsurge, Inc. Electrosurgery with cooled electrodes
US6837888B2 (en) * 1995-06-07 2005-01-04 Arthrocare Corporation Electrosurgical probe with movable return electrode and methods related thereto
US6428538B1 (en) 1995-10-20 2002-08-06 United States Surgical Corporation Apparatus and method for thermal treatment of body tissue
US6805130B2 (en) * 1995-11-22 2004-10-19 Arthrocare Corporation Methods for electrosurgical tendon vascularization
US7186234B2 (en) * 1995-11-22 2007-03-06 Arthrocare Corporation Electrosurgical apparatus and methods for treatment and removal of tissue
US6090106A (en) 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
US6013076A (en) 1996-01-09 2000-01-11 Gyrus Medical Limited Electrosurgical instrument
US5941876A (en) * 1996-03-11 1999-08-24 Medical Scientific, Inc. Electrosurgical rotating cutting device
US6016452A (en) * 1996-03-19 2000-01-18 Kasevich; Raymond S. Dynamic heating method and radio frequency thermal treatment
US5733283A (en) * 1996-06-05 1998-03-31 Malis; Jerry L. Flat loop bipolar electrode tips for electrosurgical instrument
US6565561B1 (en) 1996-06-20 2003-05-20 Cyrus Medical Limited Electrosurgical instrument
GB2314274A (en) 1996-06-20 1997-12-24 Gyrus Medical Ltd Electrode construction for an electrosurgical instrument
GB9612993D0 (en) 1996-06-20 1996-08-21 Gyrus Medical Ltd Electrosurgical instrument
US6113594A (en) * 1996-07-02 2000-09-05 Ethicon, Inc. Systems, methods and apparatus for performing resection/ablation in a conductive medium
US6106521A (en) * 1996-08-16 2000-08-22 United States Surgical Corporation Apparatus for thermal treatment of tissue
US6480746B1 (en) 1997-08-13 2002-11-12 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6292700B1 (en) 1999-09-10 2001-09-18 Surx, Inc. Endopelvic fascia treatment for incontinence
US6216704B1 (en) 1997-08-13 2001-04-17 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6035238A (en) * 1997-08-13 2000-03-07 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6081749A (en) * 1997-08-13 2000-06-27 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6091995A (en) * 1996-11-08 2000-07-18 Surx, Inc. Devices, methods, and systems for shrinking tissues
US7317949B2 (en) * 1996-11-08 2008-01-08 Ams Research Corporation Energy induced bulking and buttressing of tissues for incontinence
US5919190A (en) * 1996-12-20 1999-07-06 Vandusseldorp; Gregg A. Cutting loop for an electrocautery probe
GB9626512D0 (en) 1996-12-20 1997-02-05 Gyrus Medical Ltd An improved electrosurgical generator and system
US6699244B2 (en) 1997-02-12 2004-03-02 Oratec Interventions, Inc. Electrosurgical instrument having a chamber to volatize a liquid
US6312426B1 (en) * 1997-05-30 2001-11-06 Sherwood Services Ag Method and system for performing plate type radiofrequency ablation
US9023031B2 (en) 1997-08-13 2015-05-05 Verathon Inc. Noninvasive devices, methods, and systems for modifying tissues
US20030178032A1 (en) * 1997-08-13 2003-09-25 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6267761B1 (en) * 1997-09-09 2001-07-31 Sherwood Services Ag Apparatus and method for sealing and cutting tissue
US5995875A (en) * 1997-10-01 1999-11-30 United States Surgical Apparatus for thermal treatment of tissue
US7094215B2 (en) * 1997-10-02 2006-08-22 Arthrocare Corporation Systems and methods for electrosurgical tissue contraction
AU1187899A (en) * 1997-10-09 1999-05-03 Camran Nezhat Methods and systems for organ resection
US6726686B2 (en) 1997-11-12 2004-04-27 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US6050996A (en) 1997-11-12 2000-04-18 Sherwood Services Ag Bipolar electrosurgical instrument with replaceable electrodes
US6352536B1 (en) * 2000-02-11 2002-03-05 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
WO2002080786A1 (en) * 2001-04-06 2002-10-17 Sherwood Services Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
US7435249B2 (en) * 1997-11-12 2008-10-14 Covidien Ag Electrosurgical instruments which reduces collateral damage to adjacent tissue
US20030014052A1 (en) * 1997-11-14 2003-01-16 Buysse Steven P. Laparoscopic bipolar electrosurgical instrument
US6228083B1 (en) * 1997-11-14 2001-05-08 Sherwood Services Ag Laparoscopic bipolar electrosurgical instrument
WO1999030655A1 (en) * 1997-12-15 1999-06-24 Arthrocare Corporation Systems and methods for electrosurgical treatment of the head and neck
US5899912A (en) * 1997-12-17 1999-05-04 Eaves, Iii; Felmont F. Apparatus and method for endoscopic harvesting of elongate tissue structure
US20100114087A1 (en) * 1998-02-19 2010-05-06 Edwards Stuart D Methods and devices for treating urinary incontinence
GB9807303D0 (en) 1998-04-03 1998-06-03 Gyrus Medical Ltd An electrode assembly for an electrosurgical instrument
US6514252B2 (en) 1998-05-01 2003-02-04 Perfect Surgical Techniques, Inc. Bipolar surgical instruments having focused electrical fields
US6030384A (en) * 1998-05-01 2000-02-29 Nezhat; Camran Bipolar surgical instruments having focused electrical fields
US6763836B2 (en) * 1998-06-02 2004-07-20 Arthrocare Corporation Methods for electrosurgical tendon vascularization
US7276063B2 (en) * 1998-08-11 2007-10-02 Arthrocare Corporation Instrument for electrosurgical tissue treatment
US7435247B2 (en) * 1998-08-11 2008-10-14 Arthrocare Corporation Systems and methods for electrosurgical tissue treatment
US6532386B2 (en) 1998-08-31 2003-03-11 Johnson & Johnson Consumer Companies, Inc. Electrotransort device comprising blades
US7582087B2 (en) * 1998-10-23 2009-09-01 Covidien Ag Vessel sealing instrument
US7118570B2 (en) 2001-04-06 2006-10-10 Sherwood Services Ag Vessel sealing forceps with disposable electrodes
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US20040249374A1 (en) * 1998-10-23 2004-12-09 Tetzlaff Philip M. Vessel sealing instrument
US7267677B2 (en) 1998-10-23 2007-09-11 Sherwood Services Ag Vessel sealing instrument
ES2241369T3 (en) * 1998-10-23 2005-10-16 Sherwood Services Ag ENDOSCOPIC ELECTROCHIRURGICAL BIPOLAR FORCEPS.
US6511480B1 (en) 1998-10-23 2003-01-28 Sherwood Services Ag Open vessel sealing forceps with disposable electrodes
US6193715B1 (en) 1999-03-19 2001-02-27 Medical Scientific, Inc. Device for converting a mechanical cutting device to an electrosurgical cutting device
US6358273B1 (en) 1999-04-09 2002-03-19 Oratec Inventions, Inc. Soft tissue heating apparatus with independent, cooperative heating sources
EP1171195B1 (en) 1999-04-16 2005-03-16 Johnson & Johnson Consumer Companies, Inc. Electrotransport delivery system comprising internal sensors
USD433752S (en) * 1999-06-29 2000-11-14 Stryker Corporation Handpiece for an electrosurgical tool
WO2001010314A2 (en) * 1999-08-05 2001-02-15 Broncus Technologies, Inc. Methods and devices for creating collateral channels in the lungs
US20030130657A1 (en) * 1999-08-05 2003-07-10 Tom Curtis P. Devices for applying energy to tissue
ES2261392T3 (en) 1999-09-01 2006-11-16 Sherwood Services Ag ELECTROCHIRURGICAL INSTRUMENT THAT REDUCES THERMAL DISPERSION.
US6287304B1 (en) 1999-10-15 2001-09-11 Neothermia Corporation Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes
US6514248B1 (en) 1999-10-15 2003-02-04 Neothermia Corporation Accurate cutting about and into tissue volumes with electrosurgically deployed electrodes
US7887535B2 (en) * 1999-10-18 2011-02-15 Covidien Ag Vessel sealing wave jaw
US20030109875A1 (en) 1999-10-22 2003-06-12 Tetzlaff Philip M. Open vessel sealing forceps with disposable electrodes
US7811282B2 (en) 2000-03-06 2010-10-12 Salient Surgical Technologies, Inc. Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US6953461B2 (en) 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
ES2643763T3 (en) 2000-03-06 2017-11-24 Salient Surgical Technologies, Inc. Fluid supply system and controller for electrosurgical devices
US6558385B1 (en) 2000-09-22 2003-05-06 Tissuelink Medical, Inc. Fluid-assisted medical device
US6689131B2 (en) * 2001-03-08 2004-02-10 Tissuelink Medical, Inc. Electrosurgical device having a tissue reduction sensor
US8048070B2 (en) * 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US6428539B1 (en) 2000-03-09 2002-08-06 Origin Medsystems, Inc. Apparatus and method for minimally invasive surgery using rotational cutting tool
US7235073B2 (en) 2000-07-06 2007-06-26 Ethicon Endo-Surgery, Inc. Cooled electrosurgical forceps
US7306591B2 (en) 2000-10-02 2007-12-11 Novasys Medical, Inc. Apparatus and methods for treating female urinary incontinence
US6416513B1 (en) * 2000-10-12 2002-07-09 Scott Dresden Configurable electrode instrument for use in loop electrical excision procedures
JP2002153485A (en) * 2000-11-20 2002-05-28 Asahi Optical Co Ltd High-frequency incision instrument for endoscope
US7090673B2 (en) * 2001-04-06 2006-08-15 Sherwood Services Ag Vessel sealer and divider
US7101372B2 (en) 2001-04-06 2006-09-05 Sherwood Sevices Ag Vessel sealer and divider
US7083618B2 (en) * 2001-04-06 2006-08-01 Sherwood Services Ag Vessel sealer and divider
US7118587B2 (en) * 2001-04-06 2006-10-10 Sherwood Services Ag Vessel sealer and divider
US10849681B2 (en) 2001-04-06 2020-12-01 Covidien Ag Vessel sealer and divider
US7101373B2 (en) * 2001-04-06 2006-09-05 Sherwood Services Ag Vessel sealer and divider
ES2240723T3 (en) 2001-04-06 2005-10-16 Sherwood Services Ag MOLDED INSULATING HINGE FOR BIPOLAR INSTRUMENTS.
DE60115295T2 (en) 2001-04-06 2006-08-10 Sherwood Services Ag VASILY DEVICE
US7101371B2 (en) 2001-04-06 2006-09-05 Dycus Sean T Vessel sealer and divider
AU2002254712A1 (en) 2001-04-20 2002-11-05 Power Medical Interventions, Inc. Bipolar or ultrasonic surgical device
US6921398B2 (en) * 2001-06-04 2005-07-26 Electrosurgery Associates, Llc Vibrating electrosurgical ablator
US6808525B2 (en) 2001-08-27 2004-10-26 Gyrus Medical, Inc. Bipolar electrosurgical hook probe for cutting and coagulating tissue
AU2002336575A1 (en) * 2001-09-14 2003-04-01 Arthrocare Corporation Electrosurgical apparatus and methods for tissue treatment and removal
US7166103B2 (en) * 2001-10-01 2007-01-23 Electrosurgery Associates, Llc High efficiency electrosurgical ablator with electrode subjected to oscillatory or other repetitive motion
WO2003028542A2 (en) * 2001-10-02 2003-04-10 Arthrocare Corporation Apparatus and methods for electrosurgical removal and digestion of tissue
AU2002357166A1 (en) * 2001-12-12 2003-06-23 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US6840954B2 (en) 2001-12-20 2005-01-11 Solarant Medical, Inc. Systems and methods using vasoconstriction for improved thermal treatment of tissues
WO2003068055A2 (en) * 2002-02-11 2003-08-21 Arthrocare Corporation Electrosurgical apparatus and methods for laparoscopy
AU2003215263A1 (en) * 2002-02-13 2003-09-04 Arthrocare Corporation Electrosurgical apparatus and methods for treating joint tissue
US20110306997A9 (en) * 2002-02-21 2011-12-15 Roschak Edmund J Devices for creating passages and sensing for blood vessels
US6882885B2 (en) 2002-03-19 2005-04-19 Solarant Medical, Inc. Heating method for tissue contraction
US20040115296A1 (en) * 2002-04-05 2004-06-17 Duffin Terry M. Retractable overmolded insert retention apparatus
US7270664B2 (en) 2002-10-04 2007-09-18 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7931649B2 (en) * 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
EP1572020A4 (en) 2002-10-29 2006-05-03 Tissuelink Medical Inc Fluid-assisted electrosurgical scissors and methods
US7799026B2 (en) * 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7033354B2 (en) * 2002-12-10 2006-04-25 Sherwood Services Ag Electrosurgical electrode having a non-conductive porous ceramic coating
US7115127B2 (en) * 2003-02-04 2006-10-03 Cardiodex, Ltd. Methods and apparatus for hemostasis following arterial catheterization
US7223266B2 (en) * 2003-02-04 2007-05-29 Cardiodex Ltd. Methods and apparatus for hemostasis following arterial catheterization
EP1596705B1 (en) * 2003-02-05 2018-09-12 Arthrocare Corporation Temperature indicating electrosurgical apparatus
US20060064086A1 (en) * 2003-03-13 2006-03-23 Darren Odom Bipolar forceps with multiple electrode array end effector assembly
US20060052779A1 (en) * 2003-03-13 2006-03-09 Hammill Curt D Electrode assembly for tissue fusion
WO2004082495A1 (en) * 2003-03-13 2004-09-30 Sherwood Services Ag Bipolar concentric electrode assembly for soft tissue fusion
US7160299B2 (en) * 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
EP1617778A2 (en) * 2003-05-01 2006-01-25 Sherwood Services AG Electrosurgical instrument which reduces thermal damage to adjacent tissue
US8128624B2 (en) * 2003-05-01 2012-03-06 Covidien Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
USD499181S1 (en) 2003-05-15 2004-11-30 Sherwood Services Ag Handle for a vessel sealer and divider
WO2004103156A2 (en) * 2003-05-15 2004-12-02 Sherwood Services Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue
US7857812B2 (en) * 2003-06-13 2010-12-28 Covidien Ag Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
USD956973S1 (en) 2003-06-13 2022-07-05 Covidien Ag Movable handle for endoscopic vessel sealer and divider
US7150097B2 (en) 2003-06-13 2006-12-19 Sherwood Services Ag Method of manufacturing jaw assembly for vessel sealer and divider
US7150749B2 (en) * 2003-06-13 2006-12-19 Sherwood Services Ag Vessel sealer and divider having elongated knife stroke and safety cutting mechanism
US7597693B2 (en) 2003-06-13 2009-10-06 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
US7156846B2 (en) 2003-06-13 2007-01-02 Sherwood Services Ag Vessel sealer and divider for use with small trocars and cannulas
US7074218B2 (en) * 2003-06-30 2006-07-11 Ethicon, Inc. Multi-modality ablation device
US8012153B2 (en) * 2003-07-16 2011-09-06 Arthrocare Corporation Rotary electrosurgical apparatus and methods thereof
US8308682B2 (en) 2003-07-18 2012-11-13 Broncus Medical Inc. Devices for maintaining patency of surgically created channels in tissue
US7232440B2 (en) * 2003-11-17 2007-06-19 Sherwood Services Ag Bipolar forceps having monopolar extension
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7131970B2 (en) * 2003-11-19 2006-11-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism
US7500975B2 (en) * 2003-11-19 2009-03-10 Covidien Ag Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US7252667B2 (en) * 2003-11-19 2007-08-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism and distal lockout
US7442193B2 (en) 2003-11-20 2008-10-28 Covidien Ag Electrically conductive/insulative over-shoe for tissue fusion
US7251531B2 (en) * 2004-01-30 2007-07-31 Ams Research Corporation Heating method for tissue contraction
US7727232B1 (en) 2004-02-04 2010-06-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices and methods
US7074494B2 (en) * 2004-02-19 2006-07-11 E. I. Du Pont De Nemours And Company Flame retardant surface coverings
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US20050283149A1 (en) * 2004-06-08 2005-12-22 Thorne Jonathan O Electrosurgical cutting instrument
US8409167B2 (en) 2004-07-19 2013-04-02 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
US7195631B2 (en) * 2004-09-09 2007-03-27 Sherwood Services Ag Forceps with spring loaded end effector assembly
US7540872B2 (en) * 2004-09-21 2009-06-02 Covidien Ag Articulating bipolar electrosurgical instrument
US20060095031A1 (en) * 2004-09-22 2006-05-04 Arthrocare Corporation Selectively controlled active electrodes for electrosurgical probe
US7384421B2 (en) 2004-10-06 2008-06-10 Sherwood Services Ag Slide-activated cutting assembly
US7628792B2 (en) * 2004-10-08 2009-12-08 Covidien Ag Bilateral foot jaws
US7955332B2 (en) 2004-10-08 2011-06-07 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US20060084973A1 (en) * 2004-10-14 2006-04-20 Dylan Hushka Momentary rocker switch for use with vessel sealing instruments
US7686827B2 (en) * 2004-10-21 2010-03-30 Covidien Ag Magnetic closure mechanism for hemostat
JP5068662B2 (en) * 2004-11-22 2012-11-07 カーディオデックス リミテッド Heat treatment technology for varicose veins
US7909823B2 (en) 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7536225B2 (en) * 2005-01-21 2009-05-19 Ams Research Corporation Endo-pelvic fascia penetrating heating systems and methods for incontinence treatment
US7918848B2 (en) 2005-03-25 2011-04-05 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
US8197472B2 (en) 2005-03-25 2012-06-12 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
US7491202B2 (en) * 2005-03-31 2009-02-17 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US20090204114A1 (en) * 2005-03-31 2009-08-13 Covidien Ag Electrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue
US9339323B2 (en) * 2005-05-12 2016-05-17 Aesculap Ag Electrocautery method and apparatus
US8728072B2 (en) 2005-05-12 2014-05-20 Aesculap Ag Electrocautery method and apparatus
US7803156B2 (en) * 2006-03-08 2010-09-28 Aragon Surgical, Inc. Method and apparatus for surgical electrocautery
US8696662B2 (en) * 2005-05-12 2014-04-15 Aesculap Ag Electrocautery method and apparatus
US7862565B2 (en) * 2005-05-12 2011-01-04 Aragon Surgical, Inc. Method for tissue cauterization
US20060271037A1 (en) * 2005-05-25 2006-11-30 Forcept, Inc. Assisted systems and methods for performing transvaginal hysterectomies
US20070005061A1 (en) * 2005-06-30 2007-01-04 Forcept, Inc. Transvaginal uterine artery occlusion
US7837685B2 (en) * 2005-07-13 2010-11-23 Covidien Ag Switch mechanisms for safe activation of energy on an electrosurgical instrument
US7641651B2 (en) * 2005-07-28 2010-01-05 Aragon Surgical, Inc. Devices and methods for mobilization of the uterus
US7628791B2 (en) 2005-08-19 2009-12-08 Covidien Ag Single action tissue sealer
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
US7879035B2 (en) * 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
EP1769765B1 (en) * 2005-09-30 2012-03-21 Covidien AG Insulating boot for electrosurgical forceps
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
US7789878B2 (en) * 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US7594916B2 (en) 2005-11-22 2009-09-29 Covidien Ag Electrosurgical forceps with energy based tissue division
US20070189004A1 (en) * 2005-12-28 2007-08-16 Guy Dickes Illum-A-Field Modification of Medical and Surgical Instruments
US8876746B2 (en) * 2006-01-06 2014-11-04 Arthrocare Corporation Electrosurgical system and method for treating chronic wound tissue
US7691101B2 (en) * 2006-01-06 2010-04-06 Arthrocare Corporation Electrosurgical method and system for treating foot ulcer
US8734443B2 (en) 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
US7766910B2 (en) * 2006-01-24 2010-08-03 Tyco Healthcare Group Lp Vessel sealer and divider for large tissue structures
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US8574229B2 (en) * 2006-05-02 2013-11-05 Aesculap Ag Surgical tool
US7641653B2 (en) * 2006-05-04 2010-01-05 Covidien Ag Open vessel sealing forceps disposable handswitch
US7846158B2 (en) * 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US20070260238A1 (en) * 2006-05-05 2007-11-08 Sherwood Services Ag Combined energy level button
US20070265613A1 (en) * 2006-05-10 2007-11-15 Edelstein Peter Seth Method and apparatus for sealing tissue
US8114071B2 (en) * 2006-05-30 2012-02-14 Arthrocare Corporation Hard tissue ablation system
US7776037B2 (en) * 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US20080015575A1 (en) * 2006-07-14 2008-01-17 Sherwood Services Ag Vessel sealing instrument with pre-heated electrodes
US7744615B2 (en) * 2006-07-18 2010-06-29 Covidien Ag Apparatus and method for transecting tissue on a bipolar vessel sealing instrument
JP4600683B2 (en) * 2006-07-31 2010-12-15 富士フイルム株式会社 High frequency treatment tool
US8597297B2 (en) * 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US8070746B2 (en) 2006-10-03 2011-12-06 Tyco Healthcare Group Lp Radiofrequency fusion of cardiac tissue
US8187272B2 (en) * 2006-10-06 2012-05-29 Biomedcraft Designs, Inc. Surgical instrument for coagulation and suction
US7951149B2 (en) * 2006-10-17 2011-05-31 Tyco Healthcare Group Lp Ablative material for use with tissue treatment device
JP2010510029A (en) * 2006-11-22 2010-04-02 ブロンカス テクノロジーズ, インコーポレイテッド Device for passage creation and blood vessel sensing
GB2452103B (en) 2007-01-05 2011-08-31 Arthrocare Corp Electrosurgical system with suction control apparatus and system
USD649249S1 (en) 2007-02-15 2011-11-22 Tyco Healthcare Group Lp End effectors of an elongated dissecting and dividing instrument
US7862560B2 (en) * 2007-03-23 2011-01-04 Arthrocare Corporation Ablation apparatus having reduced nerve stimulation and related methods
US8267935B2 (en) 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
DE102007030915A1 (en) * 2007-07-03 2009-01-22 Cinogy Gmbh Device for the treatment of surfaces with a plasma generated by means of an electrode via a solid dielectric by a dielectrically impeded gas discharge
US8366706B2 (en) 2007-08-15 2013-02-05 Cardiodex, Ltd. Systems and methods for puncture closure
US7877853B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing end effector assembly for sealing tissue
US7877852B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing an end effector assembly for sealing tissue
US8235993B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with exohinged structure
US8267936B2 (en) 2007-09-28 2012-09-18 Tyco Healthcare Group Lp Insulating mechanically-interfaced adhesive for electrosurgical forceps
US8221416B2 (en) * 2007-09-28 2012-07-17 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with thermoplastic clevis
US20090088750A1 (en) * 2007-09-28 2009-04-02 Tyco Healthcare Group Lp Insulating Boot with Silicone Overmold for Electrosurgical Forceps
US8251996B2 (en) * 2007-09-28 2012-08-28 Tyco Healthcare Group Lp Insulating sheath for electrosurgical forceps
US20090088745A1 (en) * 2007-09-28 2009-04-02 Tyco Healthcare Group Lp Tapered Insulating Boot for Electrosurgical Forceps
US9023043B2 (en) * 2007-09-28 2015-05-05 Covidien Lp Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
US8235992B2 (en) * 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot with mechanical reinforcement for electrosurgical forceps
AU2008221509B2 (en) * 2007-09-28 2013-10-10 Covidien Lp Dual durometer insulating boot for electrosurgical forceps
US20090088748A1 (en) * 2007-09-28 2009-04-02 Tyco Healthcare Group Lp Insulating Mesh-like Boot for Electrosurgical Forceps
US8236025B2 (en) * 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Silicone insulated electrosurgical forceps
US8353907B2 (en) * 2007-12-21 2013-01-15 Atricure, Inc. Ablation device with internally cooled electrodes
US8998892B2 (en) 2007-12-21 2015-04-07 Atricure, Inc. Ablation device with cooled electrodes and methods of use
DE102007062939B4 (en) * 2007-12-28 2014-03-20 Sutter Medizintechnik Gmbh Cutting and u. coagulation
US8764748B2 (en) * 2008-02-06 2014-07-01 Covidien Lp End effector assembly for electrosurgical device and method for making the same
US8870867B2 (en) * 2008-02-06 2014-10-28 Aesculap Ag Articulable electrosurgical instrument with a stabilizable articulation actuator
US20090198272A1 (en) * 2008-02-06 2009-08-06 Lawrence Kerver Method and apparatus for articulating the wrist of a laparoscopic grasping instrument
US9358063B2 (en) * 2008-02-14 2016-06-07 Arthrocare Corporation Ablation performance indicator for electrosurgical devices
US8623276B2 (en) * 2008-02-15 2014-01-07 Covidien Lp Method and system for sterilizing an electrosurgical instrument
ES2428719T3 (en) 2008-03-31 2013-11-11 Applied Medical Resources Corporation Electrosurgical system with means to measure tissue permittivity and conductivity
US9968396B2 (en) 2008-05-27 2018-05-15 Maquet Cardiovascular Llc Surgical instrument and method
US9402679B2 (en) 2008-05-27 2016-08-02 Maquet Cardiovascular Llc Surgical instrument and method
US9402680B2 (en) 2008-05-27 2016-08-02 Maquet Cardiovasular, Llc Surgical instrument and method
US8469956B2 (en) 2008-07-21 2013-06-25 Covidien Lp Variable resistor jaw
US8747400B2 (en) 2008-08-13 2014-06-10 Arthrocare Corporation Systems and methods for screen electrode securement
US20100204690A1 (en) * 2008-08-13 2010-08-12 Arthrocare Corporation Single aperture electrode assembly
US8162973B2 (en) * 2008-08-15 2012-04-24 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8257387B2 (en) * 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US9603652B2 (en) * 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US20100057081A1 (en) * 2008-08-28 2010-03-04 Tyco Healthcare Group Lp Tissue Fusion Jaw Angle Improvement
US8784417B2 (en) * 2008-08-28 2014-07-22 Covidien Lp Tissue fusion jaw angle improvement
US8317787B2 (en) * 2008-08-28 2012-11-27 Covidien Lp Tissue fusion jaw angle improvement
US8795274B2 (en) * 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
US20100063500A1 (en) * 2008-09-05 2010-03-11 Tyco Healthcare Group Lp Apparatus, System and Method for Performing an Electrosurgical Procedure
US8303582B2 (en) 2008-09-15 2012-11-06 Tyco Healthcare Group Lp Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US20100069953A1 (en) * 2008-09-16 2010-03-18 Tyco Healthcare Group Lp Method of Transferring Force Using Flexible Fluid-Filled Tubing in an Articulating Surgical Instrument
US20100076430A1 (en) * 2008-09-24 2010-03-25 Tyco Healthcare Group Lp Electrosurgical Instrument Having a Thumb Lever and Related System and Method of Use
US8535312B2 (en) * 2008-09-25 2013-09-17 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9375254B2 (en) * 2008-09-25 2016-06-28 Covidien Lp Seal and separate algorithm
US8968314B2 (en) * 2008-09-25 2015-03-03 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8142473B2 (en) * 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8469957B2 (en) * 2008-10-07 2013-06-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8636761B2 (en) 2008-10-09 2014-01-28 Covidien Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US8016827B2 (en) * 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8486107B2 (en) * 2008-10-20 2013-07-16 Covidien Lp Method of sealing tissue using radiofrequency energy
US8821486B2 (en) 2009-11-13 2014-09-02 Hermes Innovations, LLC Tissue ablation systems and methods
US9662163B2 (en) 2008-10-21 2017-05-30 Hermes Innovations Llc Endometrial ablation devices and systems
US8540708B2 (en) 2008-10-21 2013-09-24 Hermes Innovations Llc Endometrial ablation method
US8197479B2 (en) * 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
US8355799B2 (en) * 2008-12-12 2013-01-15 Arthrocare Corporation Systems and methods for limiting joint temperature
US20100152726A1 (en) * 2008-12-16 2010-06-17 Arthrocare Corporation Electrosurgical system with selective control of active and return electrodes
US8574187B2 (en) 2009-03-09 2013-11-05 Arthrocare Corporation System and method of an electrosurgical controller with output RF energy control
US20100268224A1 (en) * 2009-04-17 2010-10-21 Trevor Landon Bipolar electrosurgical tool with active and return electrodes shaped to foster diffuse current flow in the tissue adjacent the return electrode
US8257350B2 (en) * 2009-06-17 2012-09-04 Arthrocare Corporation Method and system of an electrosurgical controller with wave-shaping
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
JP5046056B2 (en) * 2009-07-13 2012-10-10 日本光電工業株式会社 Internal paddle
US9955858B2 (en) * 2009-08-21 2018-05-01 Maquet Cardiovascular Llc Surgical instrument and method for use
US8323279B2 (en) * 2009-09-25 2012-12-04 Arthocare Corporation System, method and apparatus for electrosurgical instrument with movable fluid delivery sheath
US8317786B2 (en) * 2009-09-25 2012-11-27 AthroCare Corporation System, method and apparatus for electrosurgical instrument with movable suction sheath
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US8266783B2 (en) 2009-09-28 2012-09-18 Tyco Healthcare Group Lp Method and system for manufacturing electrosurgical seal plates
US8388647B2 (en) * 2009-10-28 2013-03-05 Covidien Lp Apparatus for tissue sealing
US11896282B2 (en) 2009-11-13 2024-02-13 Hermes Innovations Llc Tissue ablation systems and method
US8372067B2 (en) 2009-12-09 2013-02-12 Arthrocare Corporation Electrosurgery irrigation primer systems and methods
US9113927B2 (en) 2010-01-29 2015-08-25 Covidien Lp Apparatus and methods of use for treating blood vessels
RU2012103483A (en) 2010-02-04 2014-03-10 Эскулап Аг LAPAROSCOPIC RADIO FREQUENCY SURGICAL DEVICE
US8419727B2 (en) 2010-03-26 2013-04-16 Aesculap Ag Impedance mediated power delivery for electrosurgery
US8827992B2 (en) * 2010-03-26 2014-09-09 Aesculap Ag Impedance mediated control of power delivery for electrosurgery
US8747399B2 (en) 2010-04-06 2014-06-10 Arthrocare Corporation Method and system of reduction of low frequency muscle stimulation during electrosurgical procedures
US8696659B2 (en) 2010-04-30 2014-04-15 Arthrocare Corporation Electrosurgical system and method having enhanced temperature measurement
US9144455B2 (en) 2010-06-07 2015-09-29 Just Right Surgical, Llc Low power tissue sealing device and method
US9173698B2 (en) 2010-09-17 2015-11-03 Aesculap Ag Electrosurgical tissue sealing augmented with a seal-enhancing composition
JP6143362B2 (en) 2010-10-01 2017-06-07 アプライド メディカル リソーシーズ コーポレイション Electrosurgical instrument with jaws and / or electrodes and electrosurgical amplifier
US8568405B2 (en) 2010-10-15 2013-10-29 Arthrocare Corporation Electrosurgical wand and related method and system
US8685018B2 (en) 2010-10-15 2014-04-01 Arthrocare Corporation Electrosurgical wand and related method and system
USD658760S1 (en) 2010-10-15 2012-05-01 Arthrocare Corporation Wound care electrosurgical wand
US9039694B2 (en) 2010-10-22 2015-05-26 Just Right Surgical, Llc RF generator system for surgical vessel sealing
US9510897B2 (en) 2010-11-05 2016-12-06 Hermes Innovations Llc RF-electrode surface and method of fabrication
US9131597B2 (en) 2011-02-02 2015-09-08 Arthrocare Corporation Electrosurgical system and method for treating hard body tissue
US8709034B2 (en) 2011-05-13 2014-04-29 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
JP2014521381A (en) 2011-05-13 2014-08-28 ブロンカス テクノロジーズ, インコーポレイテッド Methods and devices for tissue ablation
US10542978B2 (en) * 2011-05-27 2020-01-28 Covidien Lp Method of internally potting or sealing a handheld medical device
US9339327B2 (en) 2011-06-28 2016-05-17 Aesculap Ag Electrosurgical tissue dissecting device
WO2013078235A1 (en) 2011-11-23 2013-05-30 Broncus Medical Inc Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US8834459B2 (en) * 2012-03-26 2014-09-16 Mark Chak Needle for treating diseases
US9901395B2 (en) 2012-05-21 2018-02-27 II Erich W. Wolf Probe for directional surgical coagulation with integrated nerve detection and method of use
US9226792B2 (en) 2012-06-12 2016-01-05 Medtronic Advanced Energy Llc Debridement device and method
US9888954B2 (en) 2012-08-10 2018-02-13 Cook Medical Technologies Llc Plasma resection electrode
CN107252347B (en) 2012-09-26 2019-10-29 蛇牌股份公司 Equipment for organizing to cut and seal
US9693818B2 (en) 2013-03-07 2017-07-04 Arthrocare Corporation Methods and systems related to electrosurgical wands
US9713489B2 (en) 2013-03-07 2017-07-25 Arthrocare Corporation Electrosurgical methods and systems
US9801678B2 (en) 2013-03-13 2017-10-31 Arthrocare Corporation Method and system of controlling conductive fluid flow during an electrosurgical procedure
US9901394B2 (en) * 2013-04-04 2018-02-27 Hermes Innovations Llc Medical ablation system and method of making
USD765842S1 (en) * 2013-06-05 2016-09-06 Erbe Elektromedizin Gmbh Hand grip
WO2015017992A1 (en) 2013-08-07 2015-02-12 Covidien Lp Surgical forceps
US9439716B2 (en) * 2013-10-01 2016-09-13 Gyrus Acmi, Inc. Bipolar coagulation probe and snare
US9649125B2 (en) 2013-10-15 2017-05-16 Hermes Innovations Llc Laparoscopic device
KR101605080B1 (en) * 2013-12-27 2016-03-21 아이메디컴(주) High frequency electrical treatment equipment manufacturing method
US9526556B2 (en) 2014-02-28 2016-12-27 Arthrocare Corporation Systems and methods systems related to electrosurgical wands with screen electrodes
KR102537276B1 (en) 2014-05-16 2023-05-26 어플라이드 메디컬 리소시스 코포레이션 Electrosurgical system
EP3148466B1 (en) * 2014-05-30 2022-07-27 Bipad, Inc. Bipolar electrosurgery actuator
KR102420273B1 (en) 2014-05-30 2022-07-13 어플라이드 메디컬 리소시스 코포레이션 Electrosurgical instrument for fusing and cutting tissue and an electrosurgical generator
US20160051313A1 (en) * 2014-08-22 2016-02-25 Jerome Canady Attachment for Electrosurgical System
US10231777B2 (en) 2014-08-26 2019-03-19 Covidien Lp Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument
US10813685B2 (en) 2014-09-25 2020-10-27 Covidien Lp Single-handed operable surgical instrument including loop electrode with integrated pad electrode
JP6481029B2 (en) 2014-10-31 2019-03-13 メドトロニック・アドヴァンスド・エナジー・エルエルシー Power monitoring circuit and method for reducing leakage current in an RF generator
US10420603B2 (en) 2014-12-23 2019-09-24 Applied Medical Resources Corporation Bipolar electrosurgical sealer and divider
USD748259S1 (en) 2014-12-29 2016-01-26 Applied Medical Resources Corporation Electrosurgical instrument
US10492856B2 (en) 2015-01-26 2019-12-03 Hermes Innovations Llc Surgical fluid management system and method of use
CA2975389A1 (en) 2015-02-18 2016-08-25 Medtronic Xomed, Inc. Rf energy enabled tissue debridement device
US10188456B2 (en) 2015-02-18 2019-01-29 Medtronic Xomed, Inc. Electrode assembly for RF energy enabled tissue debridement device
US10376302B2 (en) 2015-02-18 2019-08-13 Medtronic Xomed, Inc. Rotating electrical connector for RF energy enabled tissue debridement device
EP3288477A4 (en) 2015-04-29 2018-12-19 Cirrus Technologies Ltd. Medical ablation device and method of use
US9987078B2 (en) 2015-07-22 2018-06-05 Covidien Lp Surgical forceps
US10631918B2 (en) 2015-08-14 2020-04-28 Covidien Lp Energizable surgical attachment for a mechanical clamp
WO2017031712A1 (en) 2015-08-26 2017-03-02 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
US10052149B2 (en) 2016-01-20 2018-08-21 RELIGN Corporation Arthroscopic devices and methods
JP2019514481A (en) 2016-04-22 2019-06-06 リライン コーポレーション Arthroscopic device and method
WO2018005382A1 (en) 2016-07-01 2018-01-04 Aaron Germain Arthroscopic devices and methods
EP3275388A1 (en) * 2016-07-28 2018-01-31 Auxin Surgery Electro-chemical surgical instrument
US10856933B2 (en) 2016-08-02 2020-12-08 Covidien Lp Surgical instrument housing incorporating a channel and methods of manufacturing the same
US10646268B2 (en) 2016-08-26 2020-05-12 Bipad, Inc. Ergonomic actuator for electrosurgical tool
US10918407B2 (en) 2016-11-08 2021-02-16 Covidien Lp Surgical instrument for grasping, treating, and/or dividing tissue
US11166759B2 (en) 2017-05-16 2021-11-09 Covidien Lp Surgical forceps
US11896285B2 (en) * 2018-03-14 2024-02-13 Gyrus Acmi, Inc. Device with movable buttons or switches and visual indicator
AU2019335013A1 (en) 2018-09-05 2021-03-25 Applied Medical Resources Corporation Electrosurgical generator control system
USD904611S1 (en) 2018-10-10 2020-12-08 Bolder Surgical, Llc Jaw design for a surgical instrument
EP3880099A1 (en) 2018-11-16 2021-09-22 Applied Medical Resources Corporation Electrosurgical system
US11554214B2 (en) 2019-06-26 2023-01-17 Meditrina, Inc. Fluid management system
US11090050B2 (en) 2019-09-03 2021-08-17 Covidien Lp Trigger mechanisms for surgical instruments and surgical instruments including the same
US11844562B2 (en) 2020-03-23 2023-12-19 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
CN113476137B (en) * 2021-07-02 2022-08-16 南京亿高微波系统工程有限公司 Ear-nose-throat plasma electrode
CN114288015A (en) * 2021-12-30 2022-04-08 江西奇仁生物科技有限责任公司 Multifunctional laparoscope electrode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1943543A (en) * 1932-06-21 1934-01-16 William J Mcfadden Surgical instrument
US2056377A (en) * 1933-08-16 1936-10-06 Wappler Frederick Charles Electrodic instrument
FR2313949A1 (en) * 1975-06-11 1977-01-07 Wolf Gmbh Richard ONE OR TWO BRANCH SECTIONING LOOP FOR RESECTOSCOPE
DE3245570A1 (en) * 1982-12-09 1984-06-14 Holzhauer + Sutter medizinisch-technische Geräte und Instrumente, GmbH, 7800 Freiburg Bipolar coagulation instrument
US4688569A (en) * 1986-06-09 1987-08-25 Medi-Tech, Inc. Finger actuated surgical electrode holder
EP0280798A1 (en) * 1987-03-02 1988-09-07 Everest Medical Corporation Electrosurgery surgical instrument
US4920978A (en) * 1988-08-31 1990-05-01 Triangle Research And Development Corporation Method and apparatus for the endoscopic treatment of deep tumors using RF hyperthermia

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US164184A (en) * 1875-06-08 Improvement in vesicular electrodes
US3807404A (en) * 1973-03-12 1974-04-30 Whaledent Inc Probe unit for electro-surgical device
US4043342A (en) * 1974-08-28 1977-08-23 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
US4161950A (en) * 1975-08-01 1979-07-24 The United States Of America As Represented By The United States Department Of Energy Electrosurgical knife
US4074718A (en) * 1976-03-17 1978-02-21 Valleylab, Inc. Electrosurgical instrument
US4248231A (en) * 1978-11-16 1981-02-03 Corning Glass Works Surgical cutting instrument
SU782819A1 (en) * 1979-02-16 1980-11-30 За витель С.Ф.Яшин Cord model aeroplane
GB2053691B (en) * 1979-07-24 1983-04-27 Wolf Gmbh Richard Endoscopes
US4493320A (en) * 1982-04-02 1985-01-15 Treat Michael R Bipolar electrocautery surgical snare
EP0148250A1 (en) * 1983-07-06 1985-07-17 STASZ, Peter Electro cautery surgical blade
US4903696A (en) * 1988-10-06 1990-02-27 Everest Medical Corporation Electrosurgical generator
US4936281A (en) * 1989-04-13 1990-06-26 Everest Medical Corporation Ultrasonically enhanced RF ablation catheter
US5071419A (en) * 1990-04-30 1991-12-10 Everest Medical Corporation Percutaneous laparoscopic cholecystectomy instrument

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1943543A (en) * 1932-06-21 1934-01-16 William J Mcfadden Surgical instrument
US2056377A (en) * 1933-08-16 1936-10-06 Wappler Frederick Charles Electrodic instrument
FR2313949A1 (en) * 1975-06-11 1977-01-07 Wolf Gmbh Richard ONE OR TWO BRANCH SECTIONING LOOP FOR RESECTOSCOPE
DE3245570A1 (en) * 1982-12-09 1984-06-14 Holzhauer + Sutter medizinisch-technische Geräte und Instrumente, GmbH, 7800 Freiburg Bipolar coagulation instrument
US4688569A (en) * 1986-06-09 1987-08-25 Medi-Tech, Inc. Finger actuated surgical electrode holder
EP0280798A1 (en) * 1987-03-02 1988-09-07 Everest Medical Corporation Electrosurgery surgical instrument
US4920978A (en) * 1988-08-31 1990-05-01 Triangle Research And Development Corporation Method and apparatus for the endoscopic treatment of deep tumors using RF hyperthermia

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993445A (en) * 1995-05-22 1999-11-30 Advanced Closure Systems, Inc. Resectoscope electrode assembly with simultaneous cutting and coagulation
US6364877B1 (en) 1995-06-23 2002-04-02 Gyrus Medical Limited Electrosurgical generator and system
US6027501A (en) 1995-06-23 2000-02-22 Gyrus Medical Limited Electrosurgical instrument
US6056746A (en) 1995-06-23 2000-05-02 Gyrus Medical Limited Electrosurgical instrument
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
WO1997023169A1 (en) * 1995-12-22 1997-07-03 Advanced Closure Systems, Inc. Resectoscope electrode assembly with simultaneous cutting and coagulation
WO1997024994A1 (en) * 1996-01-09 1997-07-17 Gyrus Medical Limited An underwater electrosurgical instrument
US6015406A (en) 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
GB2327352A (en) * 1997-07-18 1999-01-27 Gyrus Medical Ltd Electrosurgical instrument
GB2334216B (en) * 1998-02-17 2002-04-10 Sterex Electrolysis Internat L Electrolysis needle assembly
GB2334216A (en) * 1998-02-17 1999-08-18 Sterex Electrolysis Internatio Electrolysis needle assembly
US6517498B1 (en) 1998-03-03 2003-02-11 Senorx, Inc. Apparatus and method for tissue capture
US9216012B2 (en) 1998-09-01 2015-12-22 Senorx, Inc Methods and apparatus for securing medical instruments to desired locations in a patient's body
US8636734B2 (en) 1999-01-27 2014-01-28 Senorx, Inc. Tissue specimen isolating and damaging device and method
US9510809B2 (en) 1999-01-27 2016-12-06 Senorx, Inc. Tissue specimen isolating and damaging device and method
WO2002005717A1 (en) * 2000-07-18 2002-01-24 Senorx, Inc. Apparatus and method for tissue capture
US10687887B2 (en) 2001-04-06 2020-06-23 Covidien Ag Vessel sealer and divider
US10265121B2 (en) 2001-04-06 2019-04-23 Covidien Ag Vessel sealer and divider
US10251696B2 (en) 2001-04-06 2019-04-09 Covidien Ag Vessel sealer and divider with stop members
US10987160B2 (en) 2002-10-04 2021-04-27 Covidien Ag Vessel sealing instrument with cutting mechanism
US10537384B2 (en) 2002-10-04 2020-01-21 Covidien Lp Vessel sealing instrument with electrical cutting mechanism
US9204866B2 (en) 2003-02-24 2015-12-08 Senorx, Inc. Biopsy device with selectable tissue receiving aperture orientation and site illumination
US10231715B2 (en) 2003-02-24 2019-03-19 Senorx, Inc. Biopsy device with inner cutting member
US8460204B2 (en) 2003-02-24 2013-06-11 Senorx, Inc. Biopsy device with inner cutting member
US8282573B2 (en) 2003-02-24 2012-10-09 Senorx, Inc. Biopsy device with selectable tissue receiving aperture orientation and site illumination
US10172595B2 (en) 2003-02-24 2019-01-08 Senorx, Inc. Biopsy device with selectable tissue receiving aperture orientation and site illumination
US11589849B2 (en) 2003-02-24 2023-02-28 Senorx, Inc. Biopsy device with selectable tissue receiving aperature orientation and site illumination
US11534147B2 (en) 2003-02-24 2022-12-27 Senorx, Inc. Biopsy device with a removable sample recieving cartridge
US10335127B2 (en) 2003-02-24 2019-07-02 Senorx, Inc. Biopsy device with selectable tissue receiving aperature orientation and site illumination
US9044215B2 (en) 2003-02-24 2015-06-02 Senorx, Inc. Biopsy device with selectable tissue receiving aperature orientation and site illumination
WO2004100813A2 (en) * 2003-05-13 2004-11-25 Medtronic, Inc. Multi-purpose catheter apparatus and method of use
WO2004100813A3 (en) * 2003-05-13 2005-01-06 Medtronic Inc Multi-purpose catheter apparatus and method of use
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US10441350B2 (en) 2003-11-17 2019-10-15 Covidien Ag Bipolar forceps having monopolar extension
US9408592B2 (en) 2003-12-23 2016-08-09 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US8343071B2 (en) 2004-12-16 2013-01-01 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US10105125B2 (en) 2004-12-16 2018-10-23 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US11246574B2 (en) 2004-12-16 2022-02-15 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US10478161B2 (en) 2005-05-23 2019-11-19 Senorx, Inc. Tissue cutting member for a biopsy device
US11426149B2 (en) 2005-05-23 2022-08-30 SenoRx., Inc. Tissue cutting member for a biopsy device
US9750487B2 (en) 2005-05-23 2017-09-05 Senorx, Inc. Tissue cutting member for a biopsy device
US8641640B2 (en) 2005-05-23 2014-02-04 Senorx, Inc. Tissue cutting member for a biopsy device
US9095325B2 (en) 2005-05-23 2015-08-04 Senorx, Inc. Tissue cutting member for a biopsy device
US10064609B2 (en) 2005-08-05 2018-09-04 Senorx, Inc. Method of collecting one or more tissue specimens
US7981051B2 (en) 2005-08-05 2011-07-19 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US8915864B2 (en) 2005-08-05 2014-12-23 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US10874381B2 (en) 2005-08-05 2020-12-29 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US8317725B2 (en) 2005-08-05 2012-11-27 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
EP2100567A1 (en) * 2008-03-11 2009-09-16 Tyco Healthcare Group, LP Bipolar cutting end effector
US9192427B2 (en) 2008-03-11 2015-11-24 Covidien Lp Bipolar cutting end effector
US9655674B2 (en) 2009-01-13 2017-05-23 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
EP2398416A4 (en) * 2009-02-23 2012-10-17 Salient Surgical Tech Inc Fluid-assisted electrosurgical device and methods of use thereof
EP2398416A1 (en) * 2009-02-23 2011-12-28 Salient Surgical Technologies, Inc. Fluid-assisted electrosurgical device and methods of use thereof
US10085794B2 (en) 2009-05-07 2018-10-02 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8430876B2 (en) 2009-08-27 2013-04-30 Tyco Healthcare Group Lp Vessel sealer and divider with knife lockout
US9931131B2 (en) 2009-09-18 2018-04-03 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8858553B2 (en) 2010-01-29 2014-10-14 Covidien Lp Dielectric jaw insert for electrosurgical end effector
EP2531129B1 (en) * 2010-02-01 2019-06-19 Gyrus Medical Limited Electrosurgical system
US10383649B2 (en) 2011-01-14 2019-08-20 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US11660108B2 (en) 2011-01-14 2023-05-30 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US8747401B2 (en) 2011-01-20 2014-06-10 Arthrocare Corporation Systems and methods for turbinate reduction
US9168082B2 (en) 2011-02-09 2015-10-27 Arthrocare Corporation Fine dissection electrosurgical device
US9271784B2 (en) 2011-02-09 2016-03-01 Arthrocare Corporation Fine dissection electrosurgical device
US9011428B2 (en) 2011-03-02 2015-04-21 Arthrocare Corporation Electrosurgical device with internal digestor electrode
US10154848B2 (en) 2011-07-11 2018-12-18 Covidien Lp Stand alone energy-based tissue clips
US9788882B2 (en) 2011-09-08 2017-10-17 Arthrocare Corporation Plasma bipolar forceps
US9254166B2 (en) 2013-01-17 2016-02-09 Arthrocare Corporation Systems and methods for turbinate reduction
US9649144B2 (en) 2013-01-17 2017-05-16 Arthrocare Corporation Systems and methods for turbinate reduction
US11144495B2 (en) 2014-05-07 2021-10-12 Covidien Lp Authentication and information system for reusable surgical instruments
US10303641B2 (en) 2014-05-07 2019-05-28 Covidien Lp Authentication and information system for reusable surgical instruments
US10585839B2 (en) 2014-05-07 2020-03-10 Covidien Lp Authentication and information system for reusable surgical instruments
US11886373B2 (en) 2014-05-07 2024-01-30 Covidien Lp Authentication and information system for reusable surgical instruments
CN104287825A (en) * 2014-10-11 2015-01-21 黄东晓 Intensive laparoscopic operation tool
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments

Also Published As

Publication number Publication date
EP0509670A3 (en) 1992-12-23
CA2064547A1 (en) 1992-10-16
JPH05111492A (en) 1993-05-07
ES2036999T1 (en) 1993-06-16
US5282799A (en) 1994-02-01
DE509670T1 (en) 1993-05-19

Similar Documents

Publication Publication Date Title
US5282799A (en) Bipolar electrosurgical scalpel with paired loop electrodes
US5290286A (en) Bipolar instrument utilizing one stationary electrode and one movable electrode
AU742541B2 (en) Electrode for coagulation and resection
US5192280A (en) Pivoting multiple loop bipolar cutting device
US6348051B1 (en) Preparation instruments
EP0435929B1 (en) Electro-surgical apparatus for removing tumours from hollow organs of the body
US7150747B1 (en) Electrosurgical cutter
US5009656A (en) Bipolar electrosurgical instrument
US6210410B1 (en) Coagulation device for coagulating biological tissues
US3902494A (en) Suction surgical instrument
US6190386B1 (en) Electrosurgical forceps with needle electrodes
JP4455002B2 (en) High frequency knife
EP0633749B1 (en) Electrosurgical bipolar cutting handpiece
US7517347B2 (en) Electrosurgical instrument for an endoscope or a catheter
US20060293653A1 (en) Electrosurgical device
JP2000185053A (en) Multifunctional operation instrument
US5626577A (en) Manually extendable electrocautery surgical apparatus
US20030135222A1 (en) Surgical snare
EP0545540A1 (en) Electrosurgical instrument with extendable sheath for irrigation and aspiration
US20050043728A1 (en) Converting cutting and coagulating electrosurgical device and method
EP0562195A1 (en) Monopolar polypectomy snare with coagulation electrode
WO1998007377A9 (en) Electrode for coagulation and resection
WO1993021845A1 (en) Bipolar surgical snare and methods of use
JP2007527766A (en) Multifunctional telescopic universal unipolar / bipolar surgical device and method therefor
JP2002529190A (en) Multifunctional telescoping instrument and method therefor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE ES FR GB IT LI NL SE

ITCL It: translation for ep claims filed

Representative=s name: JACOBACCI CASETTA & PERANI S.P.A.

TCNL Nl: translation of patent claims filed
EL Fr: translation of claims filed
17P Request for examination filed

Effective date: 19930212

DET De: translation of patent claims
REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2036999

Country of ref document: ES

Kind code of ref document: T1

17Q First examination report despatched

Effective date: 19950126

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950607