EP0539905A1 - Electrical cable - Google Patents

Electrical cable Download PDF

Info

Publication number
EP0539905A1
EP0539905A1 EP92118276A EP92118276A EP0539905A1 EP 0539905 A1 EP0539905 A1 EP 0539905A1 EP 92118276 A EP92118276 A EP 92118276A EP 92118276 A EP92118276 A EP 92118276A EP 0539905 A1 EP0539905 A1 EP 0539905A1
Authority
EP
European Patent Office
Prior art keywords
cable according
phase
insulating material
thermoplastic
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92118276A
Other languages
German (de)
French (fr)
Other versions
EP0539905B1 (en
Inventor
Madeleine Prigent
Alain Pons
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexans France SAS
Original Assignee
Alcatel Cable SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Cable SA filed Critical Alcatel Cable SA
Publication of EP0539905A1 publication Critical patent/EP0539905A1/en
Application granted granted Critical
Publication of EP0539905B1 publication Critical patent/EP0539905B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/027Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of semi-conducting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins

Definitions

  • the present invention relates to an electric cable intended to be used more particularly under high voltages (typically greater than 60 kV) in direct current.
  • the object of the present invention is therefore to produce an electric cable in which the material constituting the insulating envelope makes it possible to reduce the phenomenon of accumulation of space charges in the presence of a high continuous voltage.
  • the insulating material can consist, for example, of a thermoplastic rubber comprising an elastomeric phase and a thermoplastic phase.
  • the thermoplastic rubber can be of olefinic type.
  • the thermoplastic phase can be chosen from polyethylene and polypropylene, and the elastomeric phase consisting of an ethylene-propylene rubber.
  • the thermoplastic rubber can be of styrenic type.
  • the elastomeric phase optionally hydrogenated, can be chosen from polybutadiene and polyisoprene, and the thermoplastic phase consisting of polystyrene.
  • a first semiconductor screen can be interposed between the conductive core and the envelope of an insulating material, and a second semiconductor screen can be interposed between the envelope of an insulating material and the metal screen.
  • the insulating jacket can be extruded.
  • the cable according to the invention can be used under high continuous voltages.
  • the single figure shows in exploded perspective a cable for DC voltage, and in particular for DC high voltage, according to the invention.
  • Thermoplastic rubbers consist of two mutually incompatible phases: a so-called thermoplastic phase (phase T), and a so-called elastomeric phase (phase E).
  • phase T thermoplastic phase
  • phase E elastomeric phase
  • olefinic CTs and styrenic CTs olefinic CTs and styrenic CTs.
  • the T phase can be prepared from polypropylene or high or low density polyethylene, and the E phase is generally constituted by an ethylene-propylene rubber.
  • the proportion of polyethylene in the CT is in this case, preferably but not limited to, between 10 and 25%.
  • a dynamic crosslinking of phase E is carried out in the presence of phase T, that is to say that phase E is crosslinked by strongly kneading the assembly, which allows the fractionation of phase E and its dispersion in the form of aggregates in phase T.
  • phase T consists for example of a non-crystalline polystyrene, and phase E of non-crosslinked polybutadiene or polyisoprene .
  • the polystyrene is grafted onto the polybutadiene for example, at the end of the latter chain and by grouping into "domains" of small dimensions (diameter of the order of 30 nm), while the matrix rubber (or phase E) remains continuous.
  • the material is thus made up of a succession of rigid segments in a continuous rubber phase.
  • CTs therefore generally have an organic phase dispersed in a continuous organic phase.
  • This dispersion of aggregates creates numerous interfaces within the insulating envelope.
  • any space charges no longer accumulate only at the interfaces between semiconductor screens and insulating envelope, but are also distributed at the numerous internal interfaces of the insulating envelope. Consequently, there are no longer any significant accumulations of space charges at the interfaces between semiconductor screens and insulating envelope, and the accumulations dispersed in the insulating envelope do not generate, under the effect of a continuous operating voltage, only weak reinforcements of the local electric field.
  • CTs give better results than PRCs with regard to the accumulation of space charges. In addition, they are much simpler to implement. Indeed, with the PRC, chemical crosslinking takes place during the manufacture of the cable and immediately after the extrusion of the insulating envelope. It is carried out under pressure and at a very high temperature (of the order of 200 ° C); cooling is also carried out under pressure. The manufacturing process is therefore very cumbersome.
  • the CTs are synthesized before manufacture, and their implementation is carried out by heating and extrusion around the cable as for any other thermoplastic material. They do not lose their thermoplastic character when heated for extrusion.
  • High amplitude impulse withstand tests were also carried out.
  • the resistance of the materials tested to pulses of high amplitude is determined either by direct application of a pulse of increasing voltage until the breakdown of the insulator, or by application of this pulse of increasing voltage after a prepolarization of one hour under a DC voltage equal to one third of the expected breakdown voltage.
  • Vo the breakdown voltage without prepolarization
  • Vp the breakdown voltage with prepolarization.
  • the relationship between these two values gives an idea of the resistance to high amplitude pulses superimposed on a continuous operating voltage of the materials tested: for PRCs, the ratio Vp Vo is 0.7; for TCs, the report Vp Vo is equal to 1.
  • CTs are currently available on the market and are used as insulators in cables for low AC voltage.
  • CTs have the particularity, because of their molecular constitution, of behaving both as plastic materials at the temperatures at which they are used for the manufacture of cables, and as rubbery materials at current temperatures of use . They are therefore used in the field of alternative low voltages for their ease of implementation and for their advantageous mechanical and thermal properties.
  • thermoplastic rubbers although having a resistance to impulses of high amplitude less good than that of PRCs, show themselves much better than the latter when they are subjected to pulses. high amplitude superimposed on a continuous operating voltage, and can therefore be used as insulators for cables for high continuous voltage.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)

Abstract

The present invention relates to a power cable comprising, arranged coaxially from the inside outwards: - a conductor core (2), - a jacket (4) made of an insulating material, - a metal screen (6), - an external protective sheath (7), characterised in that the insulating material consists of a continuous organic phase in which organic aggregates are dispersed. <IMAGE>

Description

La présente invention concerne un câble électrique destiné à être utilisé plus particulièrement sous de hautes tensions (typiquement supérieures à 60 kV) en courant continu.The present invention relates to an electric cable intended to be used more particularly under high voltages (typically greater than 60 kV) in direct current.

Les câbles de transport d'énergie sous haute tension en courant continu sont de plus en plus utilisés actuellement car ils ont un rendement bien meilleur que celui des câbles haute tension alternative. Ces câbles sont généralement constitués d'une âme conductrice entourée :

  • éventuellement d'un premier écran semi-conducteur,
  • d'une enveloppe isolante,
  • éventuellement d'un second écran semi-conducteur,
  • d'un écran métallique,
  • d'une gaine extérieure de protection en un matériau synthétique.
High voltage direct current power cables are used more and more today because they have a much better efficiency than that of high voltage AC cables. These cables generally consist of a conductive core surrounded:
  • possibly a first semiconductor screen,
  • an insulating jacket,
  • possibly a second semiconductor screen,
  • a metal screen,
  • an outer protective sheath made of synthetic material.

En ce qui concerne l'enveloppe isolante, plusieurs matériaux sont envisageables pour sa réalisation.With regard to the insulating envelope, several materials can be envisaged for its production.

En premier lieu, on pourrait penser à utiliser un matériau employé pour les câbles à haute tension alternative, c'est-à-dire par exemple le polyéthylène réticulé chimiquement (noté PRC dans la suite), qui présente de très bonnes propriétés thermiques, mécaniques et électriques. La réticulation chimique du polyéthylène est obtenue par addition à ce dernier de peroxydes organiques qui se dissocient à température élevée pour former des radicaux libres venant réticuler entre elles les chaînes linéaires de polyéthylène. La décomposition ou dissociation de ces peroxydes organiques conduit également à la formation de sous-produits. Ces sous-produits se sont avérés d'un effet néfaste en courant continu. En effet, sous l'action d'une tension de service continue, ces sous-produits sont à l'origine de la formation de charges importantes qui migrent à proximité des interfaces entre les écrans semi-conducteurs et l'enveloppe isolante (ou bien entre l'enveloppe isolante et l'âme conductrice d'une part et entre l'enveloppe isolante et l'écran métallique d'autre part, lorsque le câble ne comporte pas d'écrans semi-conducteurs) où elles sont la cause de renforcements locaux du champ électrique. L'intensité du champ électrique peut ainsi atteindre au voisinage des interfaces deux à trois fois l'intensité du champ électrique nominal, de sorte que la tension de claquage de l'enveloppe isolante peut être rapidement atteinte, notamment lorsqu'une impulsion de forte amplitude (due à la foudre par exemple) se superpose à la tension de service continue. On observe alors à terme une perforation de cette enveloppe isolante et par conséquent une détérioration du câble. L'utilisation du PRC comme isolant de câbles pour haute tension continue n'est donc pas souhaitable.First, one could think of using a material used for high-voltage alternating cables, that is to say for example chemically cross-linked polyethylene (noted PRC below), which has very good thermal and mechanical properties. and electric. The chemical crosslinking of polyethylene is obtained by adding organic peroxides to the latter which dissociate at high temperature to form free radicals which crosslink the linear chains of polyethylene. The decomposition or dissociation of these organic peroxides also leads to the formation of by-products. These by-products have been shown to have a harmful effect on direct current. Indeed, under the action of a continuous operating voltage, these by-products are at the origin of the formation of large charges which migrate near the interfaces between the semiconductor screens and the insulating envelope (or else between the insulating jacket and the conductive core on the one hand and between the insulating envelope and the metallic screen on the other hand, when the cable does not include semiconductor screens) where they are the cause of local reinforcements of the electric field. The intensity of the electric field can thus reach in the vicinity of the interfaces two to three times the intensity of the nominal electric field, so that the breakdown voltage of the insulating envelope can be quickly reached, in particular when a pulse of high amplitude (due to lightning, for example) is superimposed on the continuous operating voltage. In the long term, a perforation of this insulating envelope is observed, and consequently a deterioration of the cable. The use of PRC as cable insulation for high direct voltage is therefore not desirable.

On pourrait alors penser à utiliser du polyéthylène réticulé par irradiation. L'épaisseur de l'enveloppe isolante nécessaire pour les applications en haute tension et en courant continu (de l'ordre de 2 cm) rend la réticulation par irradiation difficile et en pratique de mauvaise qualité.One could then think of using crosslinked polyethylene by irradiation. The thickness of the insulating jacket necessary for high voltage and direct current applications (of the order of 2 cm) makes crosslinking by irradiation difficult and in practice of poor quality.

Un autre type de matériaux a récemment été proposé pour l'isolation des câbles pour haute tension continue. Ce sont des matériaux à base de PRC contenant des particules minérales, et dont les performances sont décrites par exemple dans un article intitulé "Research and development of DC XLPE cables" paru dans JI CABLE 87. Ces matériaux permettraient d'éviter le phénomène néfaste de l'accumulation des charges d'espace aux interfaces. Toutefois, pour parvenir à ce résultat, il est nécessaire, comme cela est précisé dans l'article mentionné ci-dessus, que la pureté des particules minérales introduites dans le PRC soit minutieusement contrôlée afin d'éviter l'introduction simultanée d'impuretés diverses dans le PRC. En effet, la présence d'une très petite quantité d'impuretés suffit à provoquer l'accumulation de charges d'espace, car les impuretés peuvent se dissocier sous l'action du champ électrique pour former des charges d'espace. Or il est en pratique difficile et fastidieux d'introduire des particules minérales très purifiées dans le PRC. L'utilisation de PRC contenant des particules minérales est donc peu envisageable.Another type of material has recently been proposed for the insulation of cables for high direct voltage. These are PRC-based materials containing mineral particles, the performance of which is described, for example, in an article entitled "Research and development of DC XLPE cables" published in JI CABLE 87. These materials would make it possible to avoid the harmful phenomenon of the accumulation of space charges at the interfaces. However, to achieve this result, it is necessary, as specified in the article mentioned above, that the purity of the mineral particles introduced into the PRC is carefully controlled in order to avoid the simultaneous introduction of various impurities in the PRC. Indeed, the presence of a very small amount of impurities is sufficient to cause the accumulation of space charges, because impurities can dissociate under the action of the electric field to form space charges. However, it is in practice difficult and tedious to introduce highly purified mineral particles into the PRC. The use of PRCs containing mineral particles is therefore hardly conceivable.

Le but de la présente invention est donc de réaliser un câble électrique dans lequel le matériau constituant l'enveloppe isolante permet de réduire le phénomène d'accumulation de charges d'espace en présence d'une haute tension continue.The object of the present invention is therefore to produce an electric cable in which the material constituting the insulating envelope makes it possible to reduce the phenomenon of accumulation of space charges in the presence of a high continuous voltage.

La présente invention propose à cet effet un câble électrique comprenant, disposés coaxialement de l'intérieur vers l'extérieur :

  • une âme conductrice,
  • une enveloppe en un matériau isolant,
  • un écran métallique,
  • une gaine extérieure de protection,
caractérisé en ce que ledit matériau isolant est constitué d'une phase organique continue dans laquelle sont dispersés des agrégats organiques.The present invention proposes for this purpose an electric cable comprising, arranged coaxially from the inside to the outside:
  • a conductive soul,
  • an envelope of insulating material,
  • a metal screen,
  • an outer protective sheath,
characterized in that said insulating material consists of a continuous organic phase in which organic aggregates are dispersed.

Grâce à l'utilisation d'un tel isolant, l'accumulation des charges d'espace aux interfaces entre l'enveloppe isolante et l'âme conductrice d'une part, et entre l'enveloppe isolante et l'écran métallique d'autre part, en présence d'une haute tension continue, est réduite par rapport aux câbles de l'art antérieur.Thanks to the use of such an insulator, the accumulation of space charges at the interfaces between the insulating envelope and the conductive core on the one hand, and between the insulating envelope and the metallic screen on the other part, in the presence of a high DC voltage, is reduced compared to the cables of the prior art.

Le matériau isolant peut être constitué par exemple d'un caoutchouc thermoplastique comprenant une phase élastomérique et une phase thermoplastique.The insulating material can consist, for example, of a thermoplastic rubber comprising an elastomeric phase and a thermoplastic phase.

Selon une première possibilité, le caoutchouc thermoplastique peut être de type oléfinique. Dans ce cas, la phase thermoplastique peut être choisie parmi le polyéthylène et le polypropylène, et la phase élastomérique constituée d'un caoutchouc d'éthylène-propylène.According to a first possibility, the thermoplastic rubber can be of olefinic type. In this case, the thermoplastic phase can be chosen from polyethylene and polypropylene, and the elastomeric phase consisting of an ethylene-propylene rubber.

Selon une deuxième possibilité, le caoutchouc thermoplastique peut être de type styrénique. Dans ce cas, la phase élastomérique, éventuellement hydrogénée, peut être choisie parmi le polybutadiène et le polyisoprène, et la phase thermoplastique constituée de polystyrène.According to a second possibility, the thermoplastic rubber can be of styrenic type. In this case, the elastomeric phase, optionally hydrogenated, can be chosen from polybutadiene and polyisoprene, and the thermoplastic phase consisting of polystyrene.

Enfin, un premier écran semi-conducteur peut être interposé entre l'âme conductrice et l'enveloppe en un matériau isolant, et un deuxième écran semi-conducteur peut être interposé entre l'enveloppe en un matériau isolant et l'écran métallique.Finally, a first semiconductor screen can be interposed between the conductive core and the envelope of an insulating material, and a second semiconductor screen can be interposed between the envelope of an insulating material and the metal screen.

L'enveloppe isolante peut être extrudée.The insulating jacket can be extruded.

Le câble selon l'invention peut être utilisé sous de hautes tensions continues.The cable according to the invention can be used under high continuous voltages.

D'autres caractéristiques et avantages de la présente invention apparaîtront dans la description suivante d'un câble selon l'invention, donnée à titre illustratif et nullement limitatif.Other characteristics and advantages of the present invention will appear in the following description of a cable according to the invention, given by way of illustration and in no way limitative.

La figure unique représente en perspective éclatée un câble pour tension continue, et en particulier pour haute tension continue, selon l'invention.The single figure shows in exploded perspective a cable for DC voltage, and in particular for DC high voltage, according to the invention.

Dans cette figure, un câble 1 pour haute tension continue comprend :

  • une âme conductrice 2 en cuivre ou en aluminium,
  • un premier écran semi-conducteur 3,
  • une enveloppe isolante 4 constituée, selon l'invention, d'un caoutchouc thermoplastique,
  • un second écran semi-conducteur 5,
  • un écran métallique de protection 6,
  • une gaine extérieure de protection 7 en un matériau synthétique.
In this figure, a cable 1 for direct high voltage comprises:
  • a conductive core 2 of copper or aluminum,
  • a first semiconductor screen 3,
  • an insulating envelope 4 made up, according to the invention, of a thermoplastic rubber,
  • a second semiconductor screen 5,
  • a protective metal screen 6,
  • an outer protective sheath 7 made of a synthetic material.

Les caoutchoucs thermoplastiques (CT) sont constitués de deux phases incompatibles entre elles : une phase dite thermoplastique (phase T), et une phase dite élastomérique (phase E). On donne ci-après l'exemple, non limitatif, de deux familles de CT possibles pour l'application de l'invention : les CT oléfiniques et les CT styréniques.Thermoplastic rubbers (CT) consist of two mutually incompatible phases: a so-called thermoplastic phase (phase T), and a so-called elastomeric phase (phase E). The following is a non-limiting example of two families of possible CTs for the application of the invention: olefinic CTs and styrenic CTs.

Dans les CT oléfiniques, la phase T peut être préparée à partir de polypropylène ou de polyéthylène haute ou basse densité, et la phase E est généralement constituée par un caoutchouc d'éthylène-propylène. La proportion de polyéthylène dans le CT est comprise dans ce cas, de préférence mais de manière non limitative, entre 10 et 25%. Afin d'obtenir le CT ayant la structure souhaitée, on procède à une réticulation dynamique de la phase E en présence de la phase T, c'est-à-dire que l'on réticule la phase E en malaxant fortement l'ensemble, ce qui permet le fractionnement de la phase E et sa dispersion sous forme d'agrégats dans la phase T.In olefinic CTs, the T phase can be prepared from polypropylene or high or low density polyethylene, and the E phase is generally constituted by an ethylene-propylene rubber. The proportion of polyethylene in the CT is in this case, preferably but not limited to, between 10 and 25%. In order to obtain the CT having the desired structure, a dynamic crosslinking of phase E is carried out in the presence of phase T, that is to say that phase E is crosslinked by strongly kneading the assembly, which allows the fractionation of phase E and its dispersion in the form of aggregates in phase T.

Dans les CT styréniques, c'est-à-dire dans les copolymères séquencés à base de styrène, ou copolymères blocs, la phase T est constituée par exemple d'un polystyrène non cristallin, et la phase E de polybutadiène ou de polyisoprène non réticulé. Lors de la synthèse du CT, le polystyrène se greffe sur le polybutadiène par exemple, en bout de chaîne de ce dernier et en se regroupant en "domaines" de faibles dimensions (diamètre de l'ordre de 30 nm), tandis que la matrice caoutchoutique (ou phase E) reste continue. Le matériau est ainsi constitué d'une succession de segments rigides dans une phase caoutchoutique continue.In styrenic CTs, that is to say in block copolymers based on styrene, or block copolymers, phase T consists for example of a non-crystalline polystyrene, and phase E of non-crosslinked polybutadiene or polyisoprene . During the synthesis of the CT, the polystyrene is grafted onto the polybutadiene for example, at the end of the latter chain and by grouping into "domains" of small dimensions (diameter of the order of 30 nm), while the matrix rubber (or phase E) remains continuous. The material is thus made up of a succession of rigid segments in a continuous rubber phase.

Les CT présentent donc de manière générale une phase organique dispersée dans une phase organique continue. Cette dispersion d'agrégats crée de nombreux interfaces au sein même de l'enveloppe isolante. De ce fait, les charges d'espace éventuelles ne s'accumulent plus seulement aux interfaces entre écrans semi-conducteurs et enveloppe isolante, mais se répartissent également au niveau des nombreux interfaces internes de l'enveloppe isolante. Dès lors, on ne trouve plus d'accumulations importantes de charges d'espace aux interfaces entre écrans semi-conducteurs et enveloppe isolante, et les accumulations dispersées dans l'enveloppe isolante ne génèrent, sous l'effet d'une tension de service continue, que de faibles renforcements du champ électrique local.CTs therefore generally have an organic phase dispersed in a continuous organic phase. This dispersion of aggregates creates numerous interfaces within the insulating envelope. As a result, any space charges no longer accumulate only at the interfaces between semiconductor screens and insulating envelope, but are also distributed at the numerous internal interfaces of the insulating envelope. Consequently, there are no longer any significant accumulations of space charges at the interfaces between semiconductor screens and insulating envelope, and the accumulations dispersed in the insulating envelope do not generate, under the effect of a continuous operating voltage, only weak reinforcements of the local electric field.

L'isolation des câbles pour haute tension continue au moyen de CT permet de résoudre tous les problèmes posés par les divers matériaux de l'art antérieur envisageables.The insulation of cables for high continuous voltage by means of CT makes it possible to solve all the problems posed by the various possible prior art materials.

Comme cela vient d'être décrit, les CT donnent de meilleurs résultats que les PRC en ce qui concerne l'accumulation de charges d'espace. De plus, ils sont d'une mise en oeuvre beaucoup plus simple. En effet, avec le PRC, la réticulation chimique a lieu pendant la fabrication du câble et immédiatement après l'extrusion de l'enveloppe isolante. Elle est effectuée sous pression et à une température très élevée (de l'ordre de 200°C) ; le refroidissement est également effectué sous pression. Le processus de fabrication est donc très lourd. En revanche, les CT sont synthétisés avant la fabrication, et leur mise en oeuvre se fait par chauffage et extrusion autour du câble comme pour tout autre matériau thermoplastique. Ils ne perdent pas leur caractère thermoplastique lors du chauffage en vue de l'extrusion.As has just been described, CTs give better results than PRCs with regard to the accumulation of space charges. In addition, they are much simpler to implement. Indeed, with the PRC, chemical crosslinking takes place during the manufacture of the cable and immediately after the extrusion of the insulating envelope. It is carried out under pressure and at a very high temperature (of the order of 200 ° C); cooling is also carried out under pressure. The manufacturing process is therefore very cumbersome. On the other hand, the CTs are synthesized before manufacture, and their implementation is carried out by heating and extrusion around the cable as for any other thermoplastic material. They do not lose their thermoplastic character when heated for extrusion.

Par ailleurs, la formation d'agrégats organiques étant une caractéristique intrinsèque des CT, les risques de présence d'impuretés extérieures sont faibles par rapport au cas de l'introduction de particules minérales dans du PRC. De plus, la mise en oeuvre des CT est plus simple que celle d'un PRC à particules minérales.In addition, the formation of organic aggregates being an intrinsic characteristic of CTs, the risks of presence of external impurities are low compared to the case of the introduction of mineral particles in PRC. In addition, the implementation of CT is simpler than that of a PRC with mineral particles.

Des tests effectués en laboratoire montrent que, dans les mêmes conditions d'expérimentation, les PRC et les CT ont un comportement totalement différent. Ainsi, les renforcements locaux de champ électrique dus à l'accumulation de charges d'espace sont beaucoup plus faibles pour les CT : après une heure de polarisation continue à 20°C, le renforcement de champ au voisinage des interfaces est de l'ordre de 110% par rapport à la valeur du champ appliqué pour les PRC, alors qu'il est inférieur à 20% pour les CT.Tests carried out in the laboratory show that, under the same experimental conditions, the PRC and the CT have a completely different behavior. Thus, the local electric field reinforcements due to the accumulation of space charges are much weaker for the CTs: after one hour of continuous polarization at 20 ° C, the field reinforcement in the vicinity of the interfaces is of the order 110% compared to the value of the field applied for PRC, while it is less than 20% for CT.

Des tests de tenue aux impulsions de forte amplitude ont également été effectués. La tenue des matériaux testés à des impulsions de forte amplitude est déterminée soit par application directe d'une impulsion de tension croissante jusqu'au claquage de l'isolant, soit par application de cette impulsion de tension croissante après une prépolarisation d'une heure sous une tension continue égale au tiers de la tension de claquage espérée. On appelle Vo la tension de claquage sans prépolarisation, et Vp la tension de claquage avec prépolarisation. Le rapport entre ces deux valeurs donne une idée de la tenue aux impulsions de forte amplitude superposées à une tension de service continue des matériaux testés : pour les PRC, le rapport Vp Vo

Figure imgb0001
est égal à 0,7 ; pour les CT, le rapport Vp Vo
Figure imgb0002
est égal à 1.High amplitude impulse withstand tests were also carried out. The resistance of the materials tested to pulses of high amplitude is determined either by direct application of a pulse of increasing voltage until the breakdown of the insulator, or by application of this pulse of increasing voltage after a prepolarization of one hour under a DC voltage equal to one third of the expected breakdown voltage. We call Vo the breakdown voltage without prepolarization, and Vp the breakdown voltage with prepolarization. The relationship between these two values gives an idea of the resistance to high amplitude pulses superimposed on a continuous operating voltage of the materials tested: for PRCs, the ratio Vp Vo
Figure imgb0001
is 0.7; for TCs, the report Vp Vo
Figure imgb0002
is equal to 1.

Les CT sont disponibles actuellement sur le marché et sont utilisés comme isolants dans les câbles pour basse tension alternative. Les CT présentent en effet la particularité, du fait de leur constitution moléculaire, de se comporter à la fois comme des matériaux plastiques aux températures auxquelles ils sont mis en oeuvre pour la fabrication des câbles, et comme des matériaux caoutchoutiques aux températures courantes d'utilisation. Ils sont donc utilisés dans le domaine des basses tensions alternatives pour leur facilité de mise en oeuvre et pour leurs propriétés mécaniques et thermiques intéressantes.CTs are currently available on the market and are used as insulators in cables for low AC voltage. CTs have the particularity, because of their molecular constitution, of behaving both as plastic materials at the temperatures at which they are used for the manufacture of cables, and as rubbery materials at current temperatures of use . They are therefore used in the field of alternative low voltages for their ease of implementation and for their advantageous mechanical and thermal properties.

Il est bien connu par ailleurs que la tenue aux impulsions de forte amplitude d'un matériau augmente avec son taux de cristallinité. L'article intitulé "The effect of morphology on the impulse breakdown in XLPE cable insulation" paru dans IEEE Vol. EI17 n°5 d'Octobre 1982, en page 386, montre à cet égard une courbe donnant la tenue aux impulsions de forte amplitude en fonction du taux de cristallinité. Or les CT sont très peu cristallins, et ont donc une tenue aux impulsions de forte amplitude médiocre. C'est pourquoi ils n'ont pas été envisagés jusqu'à présent comme matériaux d'isolation de câbles pour haute tension continue.It is also well known that the resistance to high amplitude pulses of a material increases with its rate of crystallinity. The article entitled "The effect of morphology on the impulse breakdown in XLPE cable insulation" published in IEEE Vol. EI17 n ° 5 of October 1982, on page 386, shows in this respect a curve giving the resistance to pulses of high amplitude as a function of the crystallinity rate. However, the CTs are not very crystalline, and therefore have a resistance to impulses of high mediocre amplitude. This is why they have not been considered so far. as cable insulation materials for high continuous voltage.

Contrairement à ce qui était communément admis, on a donc découvert que les caoutchoucs thermoplastiques, bien qu'ayant une tenue aux impulsions de forte amplitude moins bonne que celle des PRC, se montrent bien meilleurs que ces derniers lorsqu'ils sont soumis à des impulsions de forte amplitude superposées à une tension de service continue, et peuvent en conséquence être utilisés comme isolants pour des câbles pour haute tension continue.Contrary to what was commonly accepted, it has therefore been discovered that thermoplastic rubbers, although having a resistance to impulses of high amplitude less good than that of PRCs, show themselves much better than the latter when they are subjected to pulses. high amplitude superimposed on a continuous operating voltage, and can therefore be used as insulators for cables for high continuous voltage.

Bien évidemment, l'invention n'est pas limitée au mode de réalisation qui vient d'être décrit : les valeurs numériques fournies ne le sont qu'à titre indicatif, et l'on pourra remplacer tout moyen par un moyen équivalent sans sortir du cadre de l'invention.Obviously, the invention is not limited to the embodiment which has just been described: the numerical values provided are only for information purposes, and any means may be replaced by equivalent means without departing from the part of the invention.

Claims (12)

Câble électrique comprenant, disposés coaxialement de l'intérieur vers l'extérieur : - une âme conductrice (2), - une enveloppe en un matériau isolant (4), - un écran métallique (6), - une gaine extérieure de protection (7), caractérisé en ce que ledit matériau isolant est constitué d'une phase organique continue dans laquelle sont dispersés des agrégats organiques.Electric cable comprising, arranged coaxially from the inside to the outside: - a conductive core (2), - an envelope made of an insulating material (4), - a metal screen (6), - an outer protective sheath (7), characterized in that said insulating material consists of a continuous organic phase in which organic aggregates are dispersed. Câble selon la revendication 1 caractérisé en ce que ledit matériau isolant est constitué par un caoutchouc thermoplastique comprenant une phase élastomérique et une phase thermoplastique.Cable according to claim 1 characterized in that said insulating material consists of a thermoplastic rubber comprising an elastomeric phase and a thermoplastic phase. Câble selon la revendication 2 caractérisé en ce que ledit caoutchouc thermoplastique est de type oléfinique.Cable according to claim 2 characterized in that said thermoplastic rubber is of olefinic type. Câble selon la revendication 3 caractérisé en ce que ladite phase thermoplastique est choisie parmi le polyéthylène et le polypropylène.Cable according to claim 3 characterized in that said thermoplastic phase is chosen from polyethylene and polypropylene. Câble selon l'une des revendications 3 et 4 caractérisé en ce que ladite phase élastomérique est constituée d'un caoutchouc d'éthylène-propylène.Cable according to one of claims 3 and 4 characterized in that said elastomeric phase consists of an ethylene-propylene rubber. Câble selon la revendication 2 caractérisé en ce que ledit caoutchouc thermoplastique est de type styrénique.Cable according to claim 2 characterized in that said thermoplastic rubber is of styrenic type. Câble selon la revendication 6 caractérisé en ce que ladite phase élastomérique est hydrogénée.Cable according to claim 6 characterized in that said elastomeric phase is hydrogenated. Câble selon l'une des revendications 6 ou 7 caractérisé en ce que ladite phase élastomérique est choisie parmi le polybutadiène et le polyisoprène.Cable according to either of Claims 6 or 7, characterized in that the said elastomeric phase is chosen from polybutadiene and polyisoprene. Câble selon l'une des revendications 6 à 8 caractérisé en ce que ladite phase thermoplastique est constituée de styrène.Cable according to one of Claims 6 to 8, characterized in that the said thermoplastic phase consists of styrene. Câble selon l'une des revendications 1 à 9 caractérisé en ce qu'un premier écran semi-conducteur (3) est interposé entre ladite âme conductrice (2) et ladite enveloppe en un matériau isolant (4), et en ce qu'un deuxième écran semi-conducteur (5) est interposé entre ladite enveloppe en un matériau isolant (4) et ledit écran métallique (6).Cable according to one of claims 1 to 9 characterized in that a first semiconductor screen (3) is interposed between said conductive core (2) and said envelope made of an insulating material (4), and in that a second semiconductor screen (5) is interposed between said envelope made of an insulating material (4) and said metallic screen (6). Câble selon l'une des revendications 1 à 10 caractérisé en ce que ladite enveloppe est extrudée.Cable according to one of Claims 1 to 10, characterized in that the said envelope is extruded. Câble selon l'une des revendications 1 à 11 caractérisé en ce qu'il est utilisé en haute tension continue.Cable according to one of Claims 1 to 11, characterized in that it is used in direct high voltage.
EP19920118276 1991-10-31 1992-10-26 Electrical cable Expired - Lifetime EP0539905B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9113511A FR2683378B1 (en) 1991-10-31 1991-10-31 ELECTRIC CABLE.
FR9113511 1991-10-31

Publications (2)

Publication Number Publication Date
EP0539905A1 true EP0539905A1 (en) 1993-05-05
EP0539905B1 EP0539905B1 (en) 1997-08-27

Family

ID=9418542

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920118276 Expired - Lifetime EP0539905B1 (en) 1991-10-31 1992-10-26 Electrical cable

Country Status (3)

Country Link
EP (1) EP0539905B1 (en)
DE (1) DE69221814T2 (en)
FR (1) FR2683378B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660483A1 (en) * 1993-12-23 1995-06-28 Euromold Device for joining power cables
US20140190723A1 (en) * 2011-08-30 2014-07-10 Borealis Ag Power cable comprising polypropylene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3569610A (en) * 1969-10-15 1971-03-09 Gen Cable Corp Ethylene-propylene rubber insulated cable with cross-linked polyethylene strand shielding
FR2138920A1 (en) * 1971-05-24 1973-01-05 Westinghouse Electric Corp Electrical insulating materials - for eg oil filled transformers based on cross-linked 1,2-polybutadiene resins or crystalline isotactic
FR2475280A1 (en) * 1980-01-31 1981-08-07 Sumitomo Electric Industries HIGH PERFECTION IGNITION CABLE
EP0167239A1 (en) * 1984-05-08 1986-01-08 Fujikura Ltd. DC electric power cable
EP0440118A2 (en) * 1990-01-31 1991-08-07 Fujikura Ltd. Electric insulated wire and cable using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3569610A (en) * 1969-10-15 1971-03-09 Gen Cable Corp Ethylene-propylene rubber insulated cable with cross-linked polyethylene strand shielding
FR2138920A1 (en) * 1971-05-24 1973-01-05 Westinghouse Electric Corp Electrical insulating materials - for eg oil filled transformers based on cross-linked 1,2-polybutadiene resins or crystalline isotactic
FR2475280A1 (en) * 1980-01-31 1981-08-07 Sumitomo Electric Industries HIGH PERFECTION IGNITION CABLE
EP0167239A1 (en) * 1984-05-08 1986-01-08 Fujikura Ltd. DC electric power cable
EP0440118A2 (en) * 1990-01-31 1991-08-07 Fujikura Ltd. Electric insulated wire and cable using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660483A1 (en) * 1993-12-23 1995-06-28 Euromold Device for joining power cables
FR2714543A1 (en) * 1993-12-23 1995-06-30 Euromold Device for joining power cables.
US5502279A (en) * 1993-12-23 1996-03-26 Euromold Joint for electrical cables
US20140190723A1 (en) * 2011-08-30 2014-07-10 Borealis Ag Power cable comprising polypropylene
CN106167533A (en) * 2011-08-30 2016-11-30 博里利斯股份公司 Including polyacrylic power cable

Also Published As

Publication number Publication date
FR2683378B1 (en) 1993-12-31
DE69221814T2 (en) 1998-01-02
DE69221814D1 (en) 1997-10-02
EP0539905B1 (en) 1997-08-27
FR2683378A1 (en) 1993-05-07

Similar Documents

Publication Publication Date Title
EP1128395B1 (en) High and extra-high voltage d.c. power cable
EP0660483B1 (en) Device for joining power cables
FR2475280A1 (en) HIGH PERFECTION IGNITION CABLE
EP1705772A2 (en) Synthetic cable end for D. C. cable
EP2765581A1 (en) Electric cable resistant to partial discharges
EP0037339B1 (en) Electric-stress reduction electrodes for connecting sheathed power cables
EP0539905B1 (en) Electrical cable
EP2136376B1 (en) High-voltage power cable
FR2921194A1 (en) SELF-CONTAINING CABLE WITH CTP BEHAVIOR AND MODULAR ELECTRIC POWER, ITS CONNECTOR, A DEVICE COMPRISING SAME, AND USE THEREOF
FR2485245A1 (en) VARISTOR WITH IMPROVED ZINC OXIDE AND SURGE PROTECTOR USING SUCH VARISTORS
EP0644641A2 (en) Equipment for power cable junction and power cable equipped therewith
EP0644558B2 (en) Câble insulative structure
FR2475279A1 (en) IMPROVED IGNITION CABLE
EP1205947B1 (en) Partition feed-through for high voltage electrical cable
EP0782753A1 (en) Lightning arrester device
EP2194092B1 (en) Electrical cable
FR2753844A1 (en) EQUIPMENT FOR EXTREME CABLE AND MATERIAL FOR CONSTITUTION OF THE EQUIPMENT
FR2725555A1 (en) POWER CABLE
FR3065834B1 (en) ELECTRIC CABLE FOR WIRING OF PARAFOUDRE
EP3965124A1 (en) Electric cable limiting partial discharges
CA2142496A1 (en) General transition supraconducting coil
FR3123138A1 (en) Electric cable limiting partial discharges
FR3079067A1 (en) ELECTRICAL CABLE COMPRISING AN EASILY PELABLE POLYMERIC LAYER
FR2710184A1 (en) Power cable with improved dielectric strength
EP0571517A1 (en) Magnesia based insulating material for high voltage cable used in severe conditions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19930628

17Q First examination report despatched

Effective date: 19950816

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GEC ALSTHOM SALES NETWORK SA

REF Corresponds to:

Ref document number: 69221814

Country of ref document: DE

Date of ref document: 19971002

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000915

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000921

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20001002

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001005

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001012

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

EUG Se: european patent has lapsed

Ref document number: 92118276.2

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051026