EP0560991B9 - Device for purifying exhaust of internal combustion engine - Google Patents

Device for purifying exhaust of internal combustion engine Download PDF

Info

Publication number
EP0560991B9
EP0560991B9 EP92920904A EP92920904A EP0560991B9 EP 0560991 B9 EP0560991 B9 EP 0560991B9 EP 92920904 A EP92920904 A EP 92920904A EP 92920904 A EP92920904 A EP 92920904A EP 0560991 B9 EP0560991 B9 EP 0560991B9
Authority
EP
European Patent Office
Prior art keywords
absorbent
air
fuel ratio
internal combustion
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92920904A
Other languages
German (de)
French (fr)
Other versions
EP0560991B2 (en
EP0560991B1 (en
EP0560991A1 (en
EP0560991A4 (en
Inventor
Shinichi Takeshima
Kiyoshi Nakanishi
Satoshi Iguchi
Toshiaki Tanaka
Yasushi Araki
Shinya Hirota
Kiyoshi Kobashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26554387&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0560991(B9) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of EP0560991A1 publication Critical patent/EP0560991A1/en
Publication of EP0560991A4 publication Critical patent/EP0560991A4/xx
Application granted granted Critical
Publication of EP0560991B1 publication Critical patent/EP0560991B1/en
Publication of EP0560991B2 publication Critical patent/EP0560991B2/en
Publication of EP0560991B9 publication Critical patent/EP0560991B9/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2390/00Arrangements for controlling or regulating exhaust apparatus
    • F01N2390/02Arrangements for controlling or regulating exhaust apparatus using electric components only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust purification device of an internal combustion engine.
  • NO x in the exhaust gas introduced into one exhaust branch passage is oxidized and absorbed by the catalyst disposed in that exhaust branch passage.
  • a NOx removing device which comprises an NOx absorbent being disposed in an exhaust passage of an engine for storing NOx.
  • the exhaust gas continously flows into the NOx absorbent during an operation of the engine.
  • a high temperature gas generation unit is provided which generates a high temperature gas of low O 2 concentration. By this gas, the NOx is released from the absorbent and passed through a reduction catalyst in which the Nox is decomposed into N 2 and O 2 .
  • a separate high temperature generation unit and a reduction unit is necessaryry in order to reduce the NOx, additional to the absorbent unit.
  • An object of the present invention is to provide an exhaust purification device which can efficiently absorb NO x without a complex construction of the exhaust system and can release the absorbed NO x according to need. This object is achieved by the features according to claim 1 in each of the versions for the different designated states.
  • Figure 1 is an overall view of an internal combustion engine
  • Fig. 2 is a diagram showing a map of a basic fuel injection time
  • Fig. 3 is a diagram showing a change of a correction coefficient K
  • Fig. 4 is a graph schematically showing the concentration of unburnt HC and CO in the exhaust gas and oxygen discharged from the engine
  • Fig. 5 is a diagram for explaining an absorption and releasing operation of the NO x
  • Fig. 6 is a diagram showing an absorption rate of NO x
  • Fig. 7 is a diagram showing a control of the air-fuel ratio
  • Fig. 8 is a flow chart showing an interruption routine
  • Fig. 9 is a flow chart for calculating a fuel injection time TAU
  • FIG. 10 is an overall view showing another embodiment of the internal combustion engine;
  • Fig. 11 is a graph showing an output of the air-fuel ratio sensor;
  • Fig. 12 is a flow chart for calculating a feedback correction coefficient F;
  • Fig. 13 is a flow chart for calculating the fuel injection time TAU;
  • Fig. 14 is an overall view showing still another embodiment of the internal combustion engine;
  • Fig. 15 is an overall view showing still another embodiment of the internal combustion engine;
  • Fig. 16 is an overall view showing further still another embodiment of the internal combustion engine;
  • Fig. 17 is a flow chart showing an interruption routine;
  • Fig. 18 is a flow chart showing a main routine;
  • Fig. 19 is an overall view showing furthermore still another embodiment of the internal combustion engine; and
  • Fig. 20 is a flow chart for performing the NO x releasing processing.
  • Figure 1 shows a case where the present invention is applied to a gasoline engine.
  • FIG. 1 denotes an engine body; 2 a piston; 3 a combustion chamber; 4 a spark plug; 5 an intake valve; 6 an intake port; 7 an exhaust valve; and 8 an exhaust port, respectively.
  • the intake port 6 is connected to a surge tank 10 via a corresponding branch pipe 9, and a fuel injector 11 injecting the fuel toward the interior of the intake port 6 is attached to each branch pipe 9.
  • the surge tank 10 is connected to an air cleaner 14 via an intake duct 12 and an air flow meter 13, and a throttle valve 15 is disposed in the intake duct 12.
  • the exhaust port 8 is connected via an exhaust manifold 16 and an exhaust pipe 17 to a casing 19 including the NO x absorbent 18 therein.
  • An electronic control unit 30 comprises a digital computer and is provided with a ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, an input port 35, and an output port 36, which are interconnected by a bidirectional bus 31.
  • the air flow meter 13 generates an output voltage proportional to the amount of intake air, and this output voltage is input via an AD converter 37 to the input port 35.
  • a temperature sensor 20 generating an output voltage proportional to the exhaust temperature is attached in the exhaust pipe 17 upstream of the casing 19, and the output voltage of this temperature sensor 20 is input via the AD converter 38 to the input port 35.
  • an engine speed sensor 21 generating an output pulse expressing the engine speed is connected to the input port 35.
  • the output port 36 is connected via the corresponding driving circuits 39 and 40 to the spark plug 4 and fuel injector 11, respectively.
  • the fuel injection time TAU is calculated based on for example the following equation.
  • TAU TP ⁇ K
  • TP is a basic fuel injection time
  • K is a correction coefficient.
  • the basic fuel injection time TP shows the fuel injection time necessary for bringing the air-fuel ratio of an air-fuel mixture fed into the engine cylinder to the stoichiometric air-fuel ratio.
  • This basic fuel injection time TP is found in advance by experiments and is stored in advance in the ROM 32 in the form of a map as shown in Fig. 2 as the function of an engine load Q/N (intake air amount Q/engine speed N) and the engine speed N.
  • This correction coefficient K is controlled in accordance with the operating state of the engine.
  • Figure 3 shows one embodiment of the control of this correction coefficient K.
  • the correction coefficient K is gradually lowered as the engine cooling water temperature becomes higher.
  • the correction coefficient K is maintained at a constant value smaller than 1.0, that is, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is maintained as lean.
  • the correction coefficient K is brought to, for example, 1.0, that is, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is brought to the stoichiometric air-fuel ratio.
  • the correction coefficient K is made larger than 1.0. Namely, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is made rich. As seen from Fig. 3, in the embodiment shown in Fig. 3, except for the time of the warm-up operation, the time of the acceleration operation, and the time of the full load operation, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is maintained at a constant lean air-fuel ratio, and accordingly the lean air-fuel mixture is burned in a majority of the engine operation region.
  • Figure 4 schematically shows the concentration of representative components in the exhaust gas discharged from the combustion chamber 3.
  • the concentration of the unburnt HC and CO in the exhaust gas discharged from the combustion chamber 3 is increased as the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 becomes richer, and the concentration of the oxygen O 2 in the exhaust gas discharged from the combustion chamber 3 is increased as the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 becomes leaner.
  • the NO x absorbent 18 contained in the casing 19 uses, for example, alumina as a carrier.
  • alumina as a carrier.
  • alkali metals for example, potassium K, sodium Na, lithium Li, and cesium Cs
  • alkali earth metals for example, barium Ba and calcium Ca
  • rare earth metals for example, lanthanum La and yttrium Y
  • precious metals such as platinum Pt
  • this NO x absorbent 18 When referring to the ratio between the air and fuel (hydrocarbons) fed into the intake passage of the engine and the exhaust passage upstream of the NO x absorbent 18 as the air-fuel ratio of the inflow of exhaust gas to the NO x absorbent 18, this NO x absorbent 18 performs the absorption and releasing operation of NO x by absorbing the NO x when the air-fuel ratio of the inflow of exhaust gas is lean, while releasing the absorbed NO x when the concentration of oxygen in the inflow of exhaust gas falls.
  • the air-fuel ratio of the inflow of exhaust gas coincides with the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3, and accordingly in this case, the NO x absorbent 18 absorbs the NO x when the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 is lean and releases the absorbed NO x when the concentration of oxygen in the air-fuel mixture fed into the combustion chamber 3 is lowered.
  • this NO x absorbent 18 When the above-mentioned NO x absorbent 18 is disposed in the exhaust passage of the engine, this NO x absorbent 18 actually performs the absorption and releasing operation of NO x , but there are areas of the exact mechanism of this absorption and releasing operation which are not clear. However, it can be considered that this absorption and releasing operation is conducted by the mechanism as shown in Fig. 5. This mechanism will be explained by using as an example a case where platinum Pt and barium Ba are carried on the carrier, but a similar mechanism is obtained even if another precious metal, alkali metal, alkali earth metal, or rare earth metal is used.
  • the NO 2 when the NO 2 no longer exists on the surface of the platinum Pt, the NO 2 is successively released from the absorbent. Accordingly, when the air-fuel ratio of the inflow of exhaust gas is made rich, the NO x is released from the NO x absorbent 18 in a short time.
  • the NO x absorbent 18 has the function of a reduction catalyst, even if the air-fuel ratio of the inflow of exhaust gas is made the stoichiometric air-fuel ratio, the NO x released from the NO x absorbent 18 can be reduced. However, where the air-fuel ratio of the inflow of exhaust gas is made the stoichiometric air-fuel ratio, the NO x is released merely gradually from the NO x absorbent 18, and therefore a slightly long time is required for releasing all NO x absorbed in the NO x absorbent 18.
  • the NO x it is also possible to reduce the NO x downstream of the NO x absorbent 18 in this way, but it is rather preferable that the NO x be reduced in the NO x absorbent 18. Accordingly, in the embodiment according to the present invention, when the NO x should be released from the NO x absorbent 18, the air-fuel ratio of the inflow of exhaust gas is made the stoichiometric air-fuel ratio or rich, whereby the NO x released from the NO x absorbent 18 is reduced in the NO x absorbent 18.
  • Figure 6 shows the absorption rate R of the NO x absorbed into the NO x absorbent 18 when the air-fuel ratio of the inflow of exhaust gas is lean.
  • the abscissa T shows the temperature of the NO x absorbent 18.
  • the temperature T of the NO x absorbent 18 becomes almost equal to the temperature of the exhaust gas flowing into the NO x absorbent 18.
  • the oxidation function of NO x (2NO + O 2 ⁇ 2NO 2 ) is weakened, and therefore the NO x absorption rate R is lowered.
  • the releasing operation of NO x (NO 3 - ⁇ NO 2 ) is weakened, and therefore even if the air-fuel ratio of the inflow of exhaust gas is made the stoichiometric air-fuel ratio or rich, it becomes impossible to release the NO x from the NO x absorbent 18 well.
  • the temperature T of the NO x absorbent 18 becomes higher than about 500°C indicated by T 2 , the NO x absorbed in the NO x absorbent 18 is decomposed and naturally released from the NO x absorbent 18, and therefore the NO x absorption rate is lowered. Accordingly, the NO x is absorbed well into the NO x absorbent 18 when the temperature T of the NO x absorbent 18 is within the predetermined temperature range (T 1 ⁇ T ⁇ T 2 ).
  • the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 is made rich at the time of the warm-up operation and at the time of the full load operation, and the air-fuel ratio is made the stoichiometric air-fuel ratio at the time of the acceleration operation, but the lean air-fuel mixture is burned in the combustion chamber 3 in the majority of the operation region other than these.
  • the air-fuel ratio of the air-fuel mixture burned in the combustion chamber 3 is about more than 18.0.
  • a lean air-fuel mixture having an air-fuel ratio of from about 20 to 24 is burned.
  • the three-way catalyst When the air-fuel ratio becomes more than 18.0, even if the three-way catalyst has a reduction property under a lean air-fuel ratio, it cannot sufficiently reduce the NO x , and accordingly the three-way catalyst cannot be used so as to reduce the NO x under such a lean air-fuel ratio. Also, as a catalyst which can reduce the NO x even if the air-fuel ratio is more than 18.0, there is a Cu-zeolite catalyst, but this Cu-zeolite catalyst lacks heat resistance, and therefore the use of this Cu-zeolite catalyst is not preferable in practice. Accordingly, in the end, there is no method of purifying the NO x when the air-fuel ratio is more than 18.0 other than the method of using the NO x absorbent 18 which is used in the present invention.
  • the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 is made rich at the time of the full load operation, and that of the air-fuel mixture is made the stoichiometric air-fuel ratio at the time of the acceleration operation, and therefore NO x is released from the NO x absorbent 18 at the time of the full load operation and at the time of the acceleration operation.
  • a time t 2 over which the air-fuel ratio of the inflow of exhaust gas is made rich is much shorter than the time t 1 over which the combustion of the lean air-fuel mixture is carried out.
  • the time t 1 over which the combustion of the lean air-fuel mixture is carried out becomes a time of from 10 odd minutes to one hour or more. Namely, in other words, t 2 becomes 50 times or more longer than t 1 . This is true also in the cases shown in Figs. 7(B) and 7(C).
  • the releasing operation of the NO x from the NO x absorbent 18 is carried out when a constant amount of NO x is absorbed into the NO x absorbent 18, for example when NO x of 50% of the absorption ability of the NO x absorbent 18 is absorbed.
  • the amount of NO x absorbed into the NO x absorbent 18 is proportional to the amount of the exhaust gas discharged from the engine and the NO x concentration in the exhaust gas.
  • the amount of the exhaust gas is proportional to the intake air amount
  • the NO x concentration in the exhaust gas is proportional to the engine load, and therefore the amount of NO x absorbed into the NO x absorbent 18 is correctly proportional to the amount of intake air and the engine load.
  • the amount of the NO x absorbed in the NO x absorbent 18 can be estimated from the cumulative value of the product of the amount of the intake air with the engine load, but in the embodiment according to the present invention, it is simplified and the amount of NO x absorbed in the NO x absorbent 18 is estimated from the cumulative value of the engine speed.
  • Figure 8 shows an interruption routine executed at predetermined time intervals.
  • step 100 it is judged at step 100 whether or not the correction coefficient K with respect to the basic fuel injection time TP is smaller than 1.0, that is, whether or not the lean air-fuel mixture has been burned.
  • K ⁇ 1.0 that is, when the lean air-fuel mixture has been burned
  • the processing routine goes to step 101, at which the result of addition of ⁇ NE to the current engine speed NE is defined as ⁇ NE. Accordingly, this ⁇ NE indicates the cumulative value of the engine speed NE.
  • step 102 it is judged whether or not the cumulative engine speed ⁇ NE is larger than the constant value SNE.
  • This constant value SNE shows a cumulative engine speed from which it is estimated that NO x in an amount of for example 50% of the absorption ability of NO x is absorbed by the NO x absorbent 18.
  • step 104 the NO x releasing flag is set.
  • the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is made rich.
  • step 105 the count value C is incremented exactly by "1".
  • step 106 it is judged whether or not the count value C becomes larger than a constant value C 0 , that is, whether or not for example five seconds have elapsed.
  • C ⁇ C 0 the processing routine is completed, and when C becomes larger than C 0 , the processing routine goes to step 107, at which the NO x releasing flag is reset.
  • the NO x releasing flag is reset, as will be mentioned later, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is switched from rich to lean, and thus the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is made rich for 5 seconds.
  • step 108 the cumulative engine speed ⁇ NE and the count value C are brought to zero.
  • step 100 when it is decided that K ⁇ 1.0, that is, when the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is the stoichiometric air-fuel ratio or rich, the processing routine goes to step 109, at which it is judged whether or not the state of K ⁇ 1.0 is continued for a constant time, for example, 10 seconds.
  • step 109 When the state of K ⁇ 1.0 is not continued for the predetermined time, the processing cycle is completed, and when the state of K ⁇ 1.0 is continued for the predetermined time, the processing routine goes to step 110, at which the cumulative engine speed ⁇ NE is brought to zero.
  • Figure 9 shows a calculation routine of the fuel injection time TAU. This routine is repeatedly executed.
  • a basic fuel injection time TP is calculated from a map indicated in Fig. 2.
  • the processing routine goes to step 202, at which the correction coefficient K is calculated.
  • this correction coefficient K is a function of the engine cooling water temperature and becomes smaller as the engine cooling water temperature becomes higher within a range indicated by K ⁇ 1.0.
  • step 201 when it is judged that the operation state is a state where combustion of the lean air-fuel mixture should be carried out, the processing routine goes to step 205, at which it is judged whether or not the NO x releasing flag has been set.
  • step 206 When the NO x releasing flag has not been set, the processing routine goes to step 206, at which the correction coefficient K is made for example 0.6, and subsequently, at step 207, the correction coefficient K is changed to Kt, and then the processing routine goes to step 204. Accordingly, at this time, a lean air-fuel mixture is fed into the engine cylinder.
  • step 208 the processing routine goes to step 208, at which the preliminarily determined value KK is changed to Kt, and subsequently the processing routine goes to step 204.
  • This value KK is a value of from about 1.1 to 1.2 with which the air-fuel ratio of the air-fuel mixture fed into the engine cylinder becomes about 12.0 to 13.5. Accordingly, at this time, the rich air-fuel mixture is fed into the engine cylinder, whereby the NO x absorbed in the NO x absorbent 18 is released. Note that, at the releasing of NO x , where the air-fuel mixture is to be made the stoichiometric air-fuel ratio, the value of KK is brought to 1.0.
  • Figure 10 indicates another embodiment.
  • the same constituent elements as those shown in Fig. 1 are indicated by the same reference numerals.
  • an air-fuel ratio sensor 22 which can detect the air-fuel ratio over a wide range is disposed in the exhaust manifold 16.
  • This air-fuel ratio sensor 22 generates an output voltage V in accordance with the air-fuel ratio (A/F) as shown in Fig. 11. Accordingly, the air-fuel ratio can be learned from this output voltage V.
  • the output voltage V is input via the AD converter 41 to the input port 35 as shown in Fig. 10.
  • the value of the correction coefficient K is open loop controlled, and accordingly there is a risk that the lean air-fuel ratio at the combustion of the lean air-fuel mixture and the rich air-fuel ratio at the releasing of NO x will deviate from the regular air-fuel ratios due to aging.
  • the air-fuel ratio is subjected to feedback control using the air-fuel ratio sensor 22, whereby these lean air-fuel ratio and rich air-fuel ratio are always brought into coincidence with the regular air-fuel ratios.
  • the basic fuel injection time TP and the correction coefficient K are the same as those used in the embodimenta shown in Fig. 1 to Fig. 9, and a feedback correction coefficient F and a learning coefficient G are newly added to this.
  • This feedback correction coefficient F fluctuates so that the air-fuel ratio coincides with the target air-fuel ratio based on the output voltage V of the air-fuel ratio sensor 22, and the learning coefficient G is changed so that a fluctuation around 1.0 occurs.
  • the routine shown in Fig. 8 is used for controlling the NO x releasing flag.
  • Figure 12 shows a routine for calculating the feedback correction coefficient F, which routine is executed by interruption at predetermined time intervals.
  • step 300 it is judged whether or not the NO x releasing flag is set.
  • the processing routine goes to step 301, at which a target air-fuel ratio (A/F) 0 corresponding to the correction coefficient K is calculated.
  • the current air-fuel ratio (A/F) is calculated from the output voltage V of the air-fuel ratio sensor 22.
  • step 303 the target air-fuel ratio (A/F) 0 is compared with the present air-fuel ratio (A/F).
  • step 304 the processing routine goes to step 304, at which the constant value ⁇ is subtracted from the feedback correction coefficient F.
  • the processing routine goes to step 305, at which the constant value ⁇ is added to the feedback correction coefficient F.
  • the processing routine goes to step 305, at which the constant value ⁇ is added to the feedback correction coefficient F.
  • the fuel injection time TAU is prolonged, and therefore the air-fuel ratio becomes smaller. In this way, the air-fuel ratio (A/F) is maintained at the target air-fuel ratio (A/F) 0 .
  • step 306 the average value in the predetermined period of the feedback correction coefficient F is defined as the learning coefficient G.
  • step 300 when it is decided that the NO x releasing flag is set, the processing routine goes to step 307, at which the feedback correction coefficient F is fixed to 1.0.
  • Figure 13 indicates a calculation routine of the fuel injection time TAU, which routine is repeatedly executed. This routine is the same as the routine shown in Fig. 9 except for step 404.
  • step 401 when it is judged at step 401 that the operation state is a state where combustion of the lean air-fuel mixture should be carried out, the processing routine goes to step 405, at which it is judged whether or not the NO x releasing flag is set.
  • step 406 when the NO x releasing flag is not set, the processing routine goes to step 406, at which the correction coefficient K is changed to, for example, 0.6, and subsequently, after the correction coefficient K is brought to Kt at step 407, the processing routine goes to step 404. Accordingly, at this time, the lean air-fuel mixture is fed into the engine cylinder.
  • step 405 when it is decided at step 405 that the NO x releasing flag was set, the processing routine goes to step 408, at which the preliminarily determined value KK is set to Kt, and subsequently, the processing routine goes to step 404.
  • This value KK is a value of from about 1.1 to 1.2. Accordingly, at this time, a rich air-fuel mixture is fed into the engine cylinder, whereby the NO x absorbed in the NO x absorbent 18 is released.
  • the learning coefficient G expresses an average value of the feedback correction coefficient F in the predetermined period.
  • This feedback correction coefficient F originally fluctuates around 1.0. For example, when assuming that a deposit builds up in the nozzle port of the fuel injector 11, the feedback correction coefficient F becomes larger than 1.0 so as to maintain the air-fuel ratio (A/F) at the target air-fuel ratio (A/F) 0 . In this way, when the feedback correction coefficient F becomes larger than 1.0, the learning coefficient G becomes larger along with this, and thus the feedback correction coefficient F always fluctuates around 1.0.
  • the feedback correction coefficient F when the feedback correction coefficient F is fixed to 1.0, the air-fuel ratio (A/F) coincides with the target air-fuel ratio (A/F) 0 corresponding to the correction coefficient K.
  • the feedback correction coefficient F when the NO x releasing flag is set, the feedback correction coefficient F is fixed to 1.0. Accordingly, at this time, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is brought into a correct coincidence with the air-fuel ratio corresponding to KK.
  • FIG 14 shows still another embodiment.
  • an output side of the casing 19 is connected via the exhaust pipe 23 with a catalytic converter 25 including a three-way catalyst 24 therein.
  • This three-way catalyst 24 exhibits a high purification efficiency with respect to the CO, HC, and NO x when the air-fuel ratio is maintained at approximately the stoichiometric air-fuel ratio as is well known, but this three-way catalyst 24 has a high purification efficiency with respect to the NO x even when the air-fuel ratio has become rich to a certain extent.
  • a three-way catalyst 24 is provided downstream of the NO x absorbent 18 so as to purify the NO x by utilizing this characteristic.
  • the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is made rich so as to release the NO x from the NO x absorbent 18, the NO x absorbed in the NO x absorbent 18 is abruptly released from the NO x absorbent 18. At this time, although the NO x is reduced at the releasing, there is a possibility that all the NO x is not reduced. However, when the three-way catalyst 24 is disposed downstream of the NO x absorbent 18, the NO x which was not reduced at the releasing is reduced by the three-way catalyst 24. Accordingly, by disposing the three-way catalyst 24 downstream of the NO x absorbent 18, the NO x purification performance can be further improved.
  • Figure 15 shows more still another embodiment.
  • still another catalystic converter 27 including a three-way catalyst 26 is disposed between the exhaust manifold 16 and the exhaust pipe 17.
  • the three-way catalyst 26 is in contact with exhaust gas having a higher temperature in comparison with the NO x absorbent 18 and the three-way catalyst 24, and therefore the three-way catalyst 26 abruptly rises in its temperature after a start of the engine in comparison with the NO x absorbent 18 and the three-way catalyst 24. Accordingly, when providing such a three-way catalyst 26, it becomes possible to purify the unburnt HC and CO generated in a large amount during the engine warm-up operation by the three-way catalyst 26 from an early time after the start of the engine.
  • the NO x absorbent use is made of an NO x absorbent 18 in which at least one substance selected from alkali metals, alkali earth metals, rare earth metals, and precious metals is carried on the alumina.
  • a composite oxide of an alkali earth metal with copper that, is a Ba-Cu-O system NO x absorbent, instead of the use of such an NO x absorbent 18.
  • use can be made of, for example, MnO 2 ⁇ BaCuO 2 . In this case, platinum Pt or cerium Ce can be added.
  • the copper Cu performs the same catalytic function as that of the platinum Pt of the NO x absorbent 18 mentioned heretofore.
  • the NO x is oxidized by the copper Cu (2NO + O 2 ⁇ 2NO 2 ) and diffused in the absorbent in the form of the nitric acid ions NO 3 - .
  • the air-fuel ratio is made rich
  • the NO x is released from the absorbent, and this NO x is reduced by the catalytic function of the copper Cu.
  • the NO x reduction force of the copper Cu is weaker in comparison with the NO x reduction force of the platinum Pt, and accordingly where the Ba-Cu-O system absorbent is used, an amount of NO x which is not reduced at the releasing of NO x is slightly increased in comparison with the NO x absorbent 18 mentioned heretofore.
  • the Ba-Cu-O system absorbent is used, as shown in Fig. 14 and Fig. 15, preferably the three-way catalyst 24 is disposed downstream of the absorbent.
  • Figure 16 and Figure 19 show a case where the present invention is applied to a diesel engine. Note that, in Fig. 16 and Fig. 19, the same constituent elements as those in Fig. 1 are shown by the same reference numerals.
  • the average air-fuel ratio of the air-fuel mixture in the combustion chamber 3 is made lean, and the hydrocarbon is fed into the exhaust passage of engine upstream of the NO x absorbent 18, whereby the air-fuel ratio of the inflow of exhaust gas to the NO x absorbent 18 is made rich.
  • a load sensor 51 generating an output voltage proportional to the amount of depression of the accelerator pedal 50 is provided, and the output voltage of this load sensor 51 is input via the AD converter 52 to the input port 35.
  • a throttle valve 53 is disposed in the intake duct 12, which throttle valve 53 is connected to a diaphragm 55 of a vacuum diaphragm device 54.
  • a diaphragm vacuum chamber 56 of the vacuum diaphragm device 54 is selectively connected with the atmosphere or a vacuum tank 58 via an electromagnetic switching valve 57, while the output port 36 of the electronic control unit 30 is connected to the electromagnetic switching valve 57 via a driving circuit 59.
  • a ratio between a time for which the diaphragm vacuum chamber 56 is communicated with the atmosphere and a time for which it is communicated with the vacuum tank 58, that is, the duty ratio DUTY, is controlled. As this duty ratio DUTY becomes larger, the opening degree of the throttle valve 53 becomes smaller.
  • the amount of injection from the fuel injector 11 is increased only by a constant amount ⁇ Q with respect to the requested injection amount with which the best combustion is obtained, and simultaneously the throttle valve 53 is opened to the predetermined opening degree so that the average air-fuel ratio of the air-fuel mixture in the combustion chamber 3 becomes rich.
  • the amount of injection from the fuel injector 11 is increased by only the constant amount ⁇ Q with respect to the requested injection amount with which the best combustion is obtained, this increased amount worth ⁇ Q is not burned well and is discharged to the interior of the exhaust port 8 in the form of unburnt HC and CO.
  • the amount of air fed into the combustion chamber 3 is decreased by the opening operation of the throttle valve 53, and therefore the air-fuel ratio of the exhaust gas discharged to the interior of the exhaust port 8 become rich. Accordingly, the air-fuel ratio of the inflow of exhaust gas flowing into the NO x absorbent 18 becomes rich, and thus the NO x is released from the NO x absorbent 18.
  • the amount ⁇ Q of increase of fuel and amount of opening of the throttle valve 53 when the NO x should be released from the NO x absorbent 18 are preliminarily found by experiment.
  • Figure 17 shows an interruption routine executed at predetermined time intervals for executing the above-mentioned control.
  • a result obtained by adding ⁇ NE to the present engine speed NE is defined as ⁇ NE. Accordingly, this ⁇ NE indicates the cumulative value of the engine speed NE. Subsequently, at step 501, it is judged whether or not the cumulative engine speed ⁇ NE is larger than the predetermined value SNE.
  • This predetermined value SNE indicates the cumulative engine speed from which it is estimated that the NO x in an amount of for example 50% of the NO x absorption ability of the NO x absorbent 18 is absorbed therein.
  • step 502. it is judged whether or not the exhaust temperature T is lower than the predetermined value T 1 , for example, 200°C.
  • T ⁇ T 1 the processing cycle is completed, and when T ⁇ T 1 , the processing routine goes to step 503, at which the NO x releasing flag is set.
  • the NO x releasing flag is set, as will be mentioned later, the fuel injection amount is increased, and the throttle valve 53 is opened to the constant opening degree.
  • step 504 the count value C is incremented exactly by "1". Subsequently, at step 505, it is judged whether or not the count value C becomes larger than the predetermined value C 0 , that is, whether or not for example 5 seconds elapsed.
  • the processing routine is completed, and when C becomes larger than C 0 , the processing routine goes to step 506, at which the NO x releasing flag is reset.
  • the NO x releasing flag is reset, as will be mentioned later, the increasing operation of the fuel injection amount is stopped, and the throttle valve 53 is fully opened. Accordingly, the air-fuel ratio of the exhaust gas flowing into the NO x absorbent 18 is made rich for 5 seconds. Subsequently, at step 507, the cumulative engine speed ⁇ NE and the count value C are brought to zero.
  • Figure 18 shows a main routine
  • step 600 the fuel injection amount Q is calculated based on the output signals from the engine speed sensor 21 and the load sensor 51. Subsequently, it is judged at step 601 whether or not the NO x releasing flag has been set. When the NO x releasing flag has not been set, the processing routine goes to step 607, at which the duty ratio DUTY is brought to zero, and subsequently the processing routine goes to step 605, at which the control of the throttle valve 53 is carried out. At this time, the duty ratio DUTY is zero, and therefore the throttle valve 53 is retained at the fully open state. Subsequently, at step 606, the fuel injection processing is carried out, and the injection amount at this time becomes the injection amount Q calculated at step 600.
  • step 601 when it is decided at step 601 that the NO x releasing flag has been set, the processing routine goes to step 602, at which the injection amount increase value ⁇ Q is calculated. Subsequently, at step 603, the increase value ⁇ Q is added to the injection amount Q, to obtain a new injection amount Q. Subsequently, at step 604, the duty ratio DUTY is calculated. Subsequently, at step 605, the throttle valve 53 is opened to the opening degree determined by the duty ratio DUTY, and subsequently, at step 606, the fuel is injected from the fuel injector 11 according to the injection amount Q calculated at step 603.
  • a reducing agent supply valve 60 is disposed in the exhaust pipe 17, which this reducing agent supply valve 60 is connected with a reducing agent tank 62 via a supply pump 61.
  • the output port 36 of the electronic control unit 30 is connected to the reducing agent supply valve 60 and the supply pump 61 via the driving circuits 63 and 64, respectively.
  • a hydrocarbon such as gasoline, isoctane, hexane, heptane, light oil, kerosine, or the like or a hydrocarbon such as butane, propane, or the like which can be stored in the state of a liquid is filled.
  • the air-fuel mixture in the combustion chamber 3 is burned under an excess air state, that is, in a state where the average air-fuel ratio is lean.
  • the NO x discharged from the engine is absorbed into the NO x absorbent 18.
  • the supply pump 61 is driven and, at the same time, the reducing agent supply valve 60 is opened, whereby the hydrocarbon filled in the reducing agent tank 62 is supplied from the reducing agent supply valve 60 to the exhaust pipe 17 for a predetermined time, for example, about 5 seconds to 20 seconds.
  • the amount of supply of the hydrocarbon at this time is determined so that the air-fuel ratio of the inflow of exhaust gas flowing into the NO x absorbent 18 becomes rich. Accordingly, at this time, the NO x is released from the NO x absorbent 18.
  • Figure 20 shows a routine for executing the NO x releasing processing, which routine is executed by interruption at every predetermined time interval.
  • a result obtained by adding ⁇ NE to the present engine speed NE is defined as ⁇ NE. Accordingly, this ⁇ NE indicates the cumulative value of the engine speed NE. Subsequently, at step 701, it is judged whether or not the cumulative engine speed ⁇ NE is larger than the predetermined value SNE.
  • This predetermined value SNE indicates a cumulative engine speed from which it is estimated that the NO x in an amount of, for example, 50% of the NO x absorption ability of the NO x absorbent 18 is absorbed therein.
  • the processing routine goes to step 702.
  • T the exhaust temperature
  • T ⁇ T 1 the processing cycle is completed, and when T ⁇ T 1 , the processing routine goes to step 703, at which the supply pump 61 is driven for a predetermined time, for example, about 5 seconds to 20 seconds.
  • the reducing agent supply valve 60 is opened for a predetermined time, for example, about 5 seconds to 20 seconds, and subsequently, at step 705, the cumulative engine speed ⁇ NE is brought to zero.
  • the NO x absorbent 18 becomes not able to absorb the NO x .
  • the exhaust gas is always flows into the NO x absorbent 18 during the operation of the engine, and therefore the NO x absorbent 18 is retained at a relatively high temperature. Accordingly, it becomes possible to cause the NO x generated during the engine operation to be absorbed in the NO x absorbent 18 well.

Abstract

NOx absorbent (18) is disposed in the exhaust gas path in the internal combustion engine and exhaust gas is adapted to flow constantly through said absorbent (18) during the operation of said engine. NOx absorbent (18) absorbs NOx when an air-fuel ratio of exhaust gas flowing into said absorbent (18) is lean and, when an air-fuel ratio of exhaust gas becomes equal to the theoretical air-fuel ratio or rich, it discharges NOx having been absorbed therein. Over almost the entire range of operation of the engine, lean mixed gas is burnt in the combustion chamber (3) and NOx generated at this time is absorbed by said absorbent (18). An air-fuel ratio of exhaust gas flowing into the NOx absorbent (18) is periodically made equal to the theoretical one or rich and NOx having been absorbed by the absorbent (18) is discharged and reduced at the same time.

Description

    TECHNICAL FIELD
  • The present invention relates to an exhaust purification device of an internal combustion engine.
  • A diesel engine in which an engine exhaust passage is branched to a pair of exhaust branch passages for purifying NOx, a switching valve is disposed at the branched portion of these exhaust branch passages to alternately guide the exhaust gas to one of the exhaust branch passages by a switching function of the switching valve, and a catalyst which can oxidize and absorb the NOx is disposed in each of the exhaust branch passages is well known (refer to Japanese Unexamined Patent Publication No. 62-106826). In this diesel engine, NOx in the exhaust gas introduced into one exhaust branch passage is oxidized and absorbed by the catalyst disposed in that exhaust branch passage. During this time, the inflow of the exhaust gas to the other exhaust branch passage is stopped and, at the same time, a gaseous reducing agent is fed into this exhaust branch passage. The NOx accumulated in the catalyst disposed in this exhaust branch passage is reduced by this reducing agent. Subsequently, after a short time, the introduction of the exhaust gas to the exhaust branch passage to which the exhaust gas had been introduced heretofore is stopped by the switching function of the switching valve, and the introduction of the exhaust gas to the exhaust branch passage to which the introduction of the exhaust gas had been stopped heretofore is started again.
  • However, when the introduction of the exhaust gas to a oair of exhaust branch passages is alternately stopped, the temperature of the catalyst in the exhaust branch passage on the side where the introduction of the exhaust gas was stopped is gradually lowered in the period where the introduction of the exhaust gas is stopped and is lowered to a considerably low temperature near the time when the introduction of the exhaust gas is started again. When the temperature of the catalyst becomes low in this way, there arises a problem in that the catalytic function of the catalyst is lowered, and therefore the oxidation and absorption function of NOx is not sufficiently carried out. In the period from when the introduction of the exhaust gas is started to when the catalyst temperature rises, the NOx is not absorbed by the catalyst and thus is discharged to the atmosphere.
  • Also, in this diesel engine, a pair of exhaust branch passages must be provided, and a switching valve becomes necessary. Therefore, the construction becomes complex. Further, the switching valve is always exposed to the high temperature exhaust gas, and therefore there arises a problem of durability of the switching valve. Also, from the viewpoint of the absorption of NOx, one catalyst is always idle, and therefore there is another problem such that the entire catalyst which is provided is not effectively utilized for the absorption of NOx.
  • From the JP3135417 a NOx removing device is known which comprises an NOx absorbent being disposed in an exhaust passage of an engine for storing NOx. The exhaust gas continously flows into the NOx absorbent during an operation of the engine. A high temperature gas generation unit is provided which generates a high temperature gas of low O2 concentration. By this gas, the NOx is released from the absorbent and passed through a reduction catalyst in which the Nox is decomposed into N2 and O2. In the device according to the JP3135417 a separate high temperature generation unit and a reduction unit is necesarry in order to reduce the NOx, additional to the absorbent unit.
  • DISCLOSURE OF THE INVENTION
  • An object of the present invention is to provide an exhaust purification device which can efficiently absorb NOx without a complex construction of the exhaust system and can release the absorbed NOx according to need. This object is achieved by the features according to claim 1 in each of the versions for the different designated states.
  • Further improvements are the subject-matter of the appended dependent claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Figure 1 is an overall view of an internal combustion engine; Fig. 2 is a diagram showing a map of a basic fuel injection time; Fig. 3 is a diagram showing a change of a correction coefficient K; Fig. 4 is a graph schematically showing the concentration of unburnt HC and CO in the exhaust gas and oxygen discharged from the engine; Fig. 5 is a diagram for explaining an absorption and releasing operation of the NOx; Fig. 6 is a diagram showing an absorption rate of NOx; Fig. 7 is a diagram showing a control of the air-fuel ratio; Fig. 8 is a flow chart showing an interruption routine; Fig. 9 is a flow chart for calculating a fuel injection time TAU; Fig. 10 is an overall view showing another embodiment of the internal combustion engine; Fig. 11 is a graph showing an output of the air-fuel ratio sensor; Fig. 12 is a flow chart for calculating a feedback correction coefficient F; Fig. 13 is a flow chart for calculating the fuel injection time TAU; Fig. 14 is an overall view showing still another embodiment of the internal combustion engine; Fig. 15 is an overall view showing still another embodiment of the internal combustion engine; Fig. 16 is an overall view showing further still another embodiment of the internal combustion engine; Fig. 17 is a flow chart showing an interruption routine; Fig. 18 is a flow chart showing a main routine; Fig. 19 is an overall view showing furthermore still another embodiment of the internal combustion engine; and Fig. 20 is a flow chart for performing the NOx releasing processing.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Figure 1 shows a case where the present invention is applied to a gasoline engine.
  • Referring to Fig. 1, 1 denotes an engine body; 2 a piston; 3 a combustion chamber; 4 a spark plug; 5 an intake valve; 6 an intake port; 7 an exhaust valve; and 8 an exhaust port, respectively. The intake port 6 is connected to a surge tank 10 via a corresponding branch pipe 9, and a fuel injector 11 injecting the fuel toward the interior of the intake port 6 is attached to each branch pipe 9. The surge tank 10 is connected to an air cleaner 14 via an intake duct 12 and an air flow meter 13, and a throttle valve 15 is disposed in the intake duct 12. On the other hand, the exhaust port 8 is connected via an exhaust manifold 16 and an exhaust pipe 17 to a casing 19 including the NOx absorbent 18 therein.
  • An electronic control unit 30 comprises a digital computer and is provided with a ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, an input port 35, and an output port 36, which are interconnected by a bidirectional bus 31. The air flow meter 13 generates an output voltage proportional to the amount of intake air, and this output voltage is input via an AD converter 37 to the input port 35. A temperature sensor 20 generating an output voltage proportional to the exhaust temperature is attached in the exhaust pipe 17 upstream of the casing 19, and the output voltage of this temperature sensor 20 is input via the AD converter 38 to the input port 35. Also, an engine speed sensor 21 generating an output pulse expressing the engine speed is connected to the input port 35. On the other hand, the output port 36 is connected via the corresponding driving circuits 39 and 40 to the spark plug 4 and fuel injector 11, respectively.
  • In the internal combustion engine shown in Fig. 1, the fuel injection time TAU is calculated based on for example the following equation. TAU = TP·K    where, TP is a basic fuel injection time, and K is a correction coefficient. The basic fuel injection time TP shows the fuel injection time necessary for bringing the air-fuel ratio of an air-fuel mixture fed into the engine cylinder to the stoichiometric air-fuel ratio. This basic fuel injection time TP is found in advance by experiments and is stored in advance in the ROM 32 in the form of a map as shown in Fig. 2 as the function of an engine load Q/N (intake air amount Q/engine speed N) and the engine speed N. The correction coefficient K is a coefficient for controlling the air-fuel ratio of the air-fuel mixture fed into the engine cylinder, and if K = 1.0, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder becomes the stoichiometric air-fuel ratio. Contrary to this, when K becomes smaller than 1.0, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder becomes larger than the stoichiometric air-fuel ratio, that is, becomes lean, and when K becomes larger than 1.0, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder becomes smaller than the stoichiometric air-fuel ratio, that is, becomes rich.
  • This correction coefficient K is controlled in accordance with the operating state of the engine. Figure 3 shows one embodiment of the control of this correction coefficient K. In the embodiment shown in Fig. 3, during a warm-up operation, the correction coefficient K is gradually lowered as the engine cooling water temperature becomes higher. When the warm-up is completed, the correction coefficient K is maintained at a constant value smaller than 1.0, that is, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is maintained as lean. Subsequently, when an acceleration operation is carried out, the correction coefficient K is brought to, for example, 1.0, that is, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is brought to the stoichiometric air-fuel ratio. When a full load operation is carried out, the correction coefficient K is made larger than 1.0. Namely, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is made rich. As seen from Fig. 3, in the embodiment shown in Fig. 3, except for the time of the warm-up operation, the time of the acceleration operation, and the time of the full load operation, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is maintained at a constant lean air-fuel ratio, and accordingly the lean air-fuel mixture is burned in a majority of the engine operation region.
  • Figure 4 schematically shows the concentration of representative components in the exhaust gas discharged from the combustion chamber 3. As seen from Fig. 4, the concentration of the unburnt HC and CO in the exhaust gas discharged from the combustion chamber 3 is increased as the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 becomes richer, and the concentration of the oxygen O2 in the exhaust gas discharged from the combustion chamber 3 is increased as the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 becomes leaner.
  • The NOx absorbent 18 contained in the casing 19 uses, for example, alumina as a carrier. On this carrier, at least one substance selected from alkali metals, for example, potassium K, sodium Na, lithium Li, and cesium Cs; alkali earth metals, for example, barium Ba and calcium Ca; rare earth metals, for example, lanthanum La and yttrium Y; and precious metals such as platinum Pt, is carried. When referring to the ratio between the air and fuel (hydrocarbons) fed into the intake passage of the engine and the exhaust passage upstream of the NOx absorbent 18 as the air-fuel ratio of the inflow of exhaust gas to the NOx absorbent 18, this NOx absorbent 18 performs the absorption and releasing operation of NOx by absorbing the NOx when the air-fuel ratio of the inflow of exhaust gas is lean, while releasing the absorbed NOx when the concentration of oxygen in the inflow of exhaust gas falls. Note that, where the fuel (hydrocarbons) or air is not fed into the exhaust passage upstream of the NOx absorbent 18, the air-fuel ratio of the inflow of exhaust gas coincides with the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3, and accordingly in this case, the NOx absorbent 18 absorbs the NOx when the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 is lean and releases the absorbed NOx when the concentration of oxygen in the air-fuel mixture fed into the combustion chamber 3 is lowered.
  • When the above-mentioned NOx absorbent 18 is disposed in the exhaust passage of the engine, this NOx absorbent 18 actually performs the absorption and releasing operation of NOx, but there are areas of the exact mechanism of this absorption and releasing operation which are not clear. However, it can be considered that this absorption and releasing operation is conducted by the mechanism as shown in Fig. 5. This mechanism will be explained by using as an example a case where platinum Pt and barium Ba are carried on the carrier, but a similar mechanism is obtained even if another precious metal, alkali metal, alkali earth metal, or rare earth metal is used.
  • Namely, when the inflow of exhaust gas becomes considerably lean, the concentration of oxygen in the inflow of exhaust gas is greatly increased. As shown in Fig. 5(A), the oxygen O2 is deposited on the surface of the platinum Pt in the form of O2 -. On the other hand, the NO in the inflow of exhaust gas reacts with the O2 - on the surface of the platinum Pt and becomes NO2 (2NO + O2 → 2NO2). Subsequently, a part of the produced NO2 is oxidized on the platinum Pt and absorbed into the absorbent. While bonding with the barium oxide BaO, it is diffused in the absorbent in the form of nitric acid ions NO3 - as shown in Fig. 5(A). In this way, NOx is absorbed into the NOx absorbent 18.
  • So long as the oxygen concentration in the inflow of exhaust gas is high, the NOx is produced on the surface of the platinum Pt, and so long as the NOx absorption ability of the absorbent is not saturated, the NOx is absorbed into the absorbent and nitric acid ions NO3 - are produced. Contrary to this, when the oxygen concentration in the inflow of exhaust gas is lowered and the production of NO2 is lowered, the reaction proceeds in an inverse direction (NO3 - → NO2), and thus nitric acid ions NO3 - in the absorbent are released in the form of NO2 from the absorbent. Namely, when the oxygen concentration in the inflow of exhaust gas is lowered, the NOx is released from the NOx absorbent 18. As shown in Fig. 4, when the degree of leanness of the inflow of exhaust gas becomes low, the oxygen concentration in the inflow of exhaust gas is lowered, and accordingly when the degree of leanness of the inflow of exhaust gas is lowered, the NOx is released from the NOx absorbent 18 even if the air-fuel ratio of the inflow of exhaust gas is lean.
  • On the other hand, at this time, when the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 is made rich and the air-fuel ratio of the inflow of exhaust gas becomes rich, as shown in Fig. 4, a large amount of unburnt HC and CO is discharged from the engine, and these unburnt HC and CO react with the oxygen O2 - on the platinum Pt and are oxidized. Also, when the air-fuel ratio of the inflow of exhaust gas becomes rich, the oxygen concentration in the inflow of exhaust gas is extremely lowered, and therefore the NO2 is released from the absorbent. This NO2 reacts with the unburnt HC and CO as shown in Fig. 5(B) and is reduced. In this way, when the NO2 no longer exists on the surface of the platinum Pt, the NO2 is successively released from the absorbent. Accordingly, when the air-fuel ratio of the inflow of exhaust gas is made rich, the NOx is released from the NOx absorbent 18 in a short time.
  • Namely, when the air-fuel ratio of the inflow of exhaust gas is made rich, first of all, the unburnt HC and CO immediately react with the O2 - on the platinum Pt and are oxidized, and subsequently if the unburnt HC and CO still remain even though the O2 - on the platinum Pt is consumed, the NOx released from the absorbent and the NOx discharged from the engine are reduced by these unburnt HC and CO. Accordingly, when the air-fuel ratio of the inflow of exhaust gas is made rich, the NOx absorbed in the NOx absorbent 18 is released in a short time and in addition this released NOx is reduced, and therefore the discharge of NOx into the atmosphere can be blocked. Also, since the NOx absorbent 18 has the function of a reduction catalyst, even if the air-fuel ratio of the inflow of exhaust gas is made the stoichiometric air-fuel ratio, the NOx released from the NOx absorbent 18 can be reduced. However, where the air-fuel ratio of the inflow of exhaust gas is made the stoichiometric air-fuel ratio, the NOx is released merely gradually from the NOx absorbent 18, and therefore a slightly long time is required for releasing all NOx absorbed in the NOx absorbent 18.
  • When the degree of leanness of the inflow of exhaust gas is lowered as mentioned before, even if the air-fuel ratio of the inflow of exhaust gas is lean, the NOx is released from the NOx absorbent 18. Accordingly, to release the NOx from the NOx absorbent 18, it is satisfactory if the concentration of oxygen in the inflow of exhaust gas is lowered. Note, even if the NOx is released from the NOx absorbent 18, when the air-fuel ratio of the inflow of exhaust gas is lean, the NOx is not reduced in the NOx absorbent 18, and accordingly, in this case, it is necessary to provide a catalyst which can reduce the NOx downstream of the NOx absorbent 18 or supply a reducing agent downstream of the NOx absorbent 18. Of course, it is also possible to reduce the NOx downstream of the NOx absorbent 18 in this way, but it is rather preferable that the NOx be reduced in the NOx absorbent 18. Accordingly, in the embodiment according to the present invention, when the NOx should be released from the NOx absorbent 18, the air-fuel ratio of the inflow of exhaust gas is made the stoichiometric air-fuel ratio or rich, whereby the NOx released from the NOx absorbent 18 is reduced in the NOx absorbent 18.
  • Figure 6 shows the absorption rate R of the NOx absorbed into the NOx absorbent 18 when the air-fuel ratio of the inflow of exhaust gas is lean. Note that, the abscissa T shows the temperature of the NOx absorbent 18. In actuality, the temperature T of the NOx absorbent 18 becomes almost equal to the temperature of the exhaust gas flowing into the NOx absorbent 18. As seen from Fig. 6, when the temperature of the NOx absorbent 18 becomes lower than about 200°C indicated by T1, the oxidation function of NOx (2NO + O2 → 2NO2) is weakened, and therefore the NOx absorption rate R is lowered. Moreover, at this time, also the releasing operation of NOx (NO3 - → NO2) is weakened, and therefore even if the air-fuel ratio of the inflow of exhaust gas is made the stoichiometric air-fuel ratio or rich, it becomes impossible to release the NOx from the NOx absorbent 18 well. On the other hand, when the temperature T of the NOx absorbent 18 becomes higher than about 500°C indicated by T2, the NOx absorbed in the NOx absorbent 18 is decomposed and naturally released from the NOx absorbent 18, and therefore the NOx absorption rate is lowered. Accordingly, the NOx is absorbed well into the NOx absorbent 18 when the temperature T of the NOx absorbent 18 is within the predetermined temperature range (T1 < T < T2).
  • As shown in Fig. 3, in the embodiment according to the present invention, the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 is made rich at the time of the warm-up operation and at the time of the full load operation, and the air-fuel ratio is made the stoichiometric air-fuel ratio at the time of the acceleration operation, but the lean air-fuel mixture is burned in the combustion chamber 3 in the majority of the operation region other than these. In this case, the air-fuel ratio of the air-fuel mixture burned in the combustion chamber 3 is about more than 18.0. In the embodiment shown in Fig. 1, a lean air-fuel mixture having an air-fuel ratio of from about 20 to 24 is burned. When the air-fuel ratio becomes more than 18.0, even if the three-way catalyst has a reduction property under a lean air-fuel ratio, it cannot sufficiently reduce the NOx, and accordingly the three-way catalyst cannot be used so as to reduce the NOx under such a lean air-fuel ratio. Also, as a catalyst which can reduce the NOx even if the air-fuel ratio is more than 18.0, there is a Cu-zeolite catalyst, but this Cu-zeolite catalyst lacks heat resistance, and therefore the use of this Cu-zeolite catalyst is not preferable in practice. Accordingly, in the end, there is no method of purifying the NOx when the air-fuel ratio is more than 18.0 other than the method of using the NOx absorbent 18 which is used in the present invention.
  • In the embodiment according to the present invention, as mentioned above, the air-fuel ratio of the air-fuel mixture fed into the combustion chamber 3 is made rich at the time of the full load operation, and that of the air-fuel mixture is made the stoichiometric air-fuel ratio at the time of the acceleration operation, and therefore NOx is released from the NOx absorbent 18 at the time of the full load operation and at the time of the acceleration operation. However, when the frequency of such a full load operation or acceleration operation is low, even if the NOx is released from the NOx absorbent 18 only at the time of the full load operation and acceleration operation, the absorption ability of the NOx by the NOx absorbent 18 is saturated during the period where the lean air-fuel mixture is burned, and thus the NOx is no longer absorbed by the NOx absorbent 18. Accordingly, in the embodiment according to the present invention, when the lean air-fuel mixture is continuously burned, as shown in Fig. 7(A), the air-fuel ratio of the inflow of exhaust gas is periodically made rich, or the air-fuel ratio of the inflow of exhaust gas is periodically made the stoichiometric air-fuel ratio as shown in Fig. 7 (B). Note that, in this case, as shown in Fig. 7(C), it is also possible to periodically lower the degree of leanness, but in this case, the NOx is not reduced in the NOx absorbent 18, and therefore, as mentioned before, the NOx must be reduced downstream of the NOx absorbent 18.
  • As shown in Fig. 7(A), looking at the case where the air-fuel ratio of the inflow of exhaust gas is periodically made rich, a time t2 over which the air-fuel ratio of the inflow of exhaust gas is made rich is much shorter than the time t1 over which the combustion of the lean air-fuel mixture is carried out. Concretely speaking, while the time t2 over which the air-fuel ratio of the inflow of exhaust gas is made rich is less than about 10 seconds, the time t1 over which the combustion of the lean air-fuel mixture is carried out becomes a time of from 10 odd minutes to one hour or more. Namely, in other words, t2 becomes 50 times or more longer than t1. This is true also in the cases shown in Figs. 7(B) and 7(C).
  • The releasing operation of the NOx from the NOx absorbent 18 is carried out when a constant amount of NOx is absorbed into the NOx absorbent 18, for example when NOx of 50% of the absorption ability of the NOx absorbent 18 is absorbed. The amount of NOx absorbed into the NOx absorbent 18 is proportional to the amount of the exhaust gas discharged from the engine and the NOx concentration in the exhaust gas. In this case, the amount of the exhaust gas is proportional to the intake air amount, and the NOx concentration in the exhaust gas is proportional to the engine load, and therefore the amount of NOx absorbed into the NOx absorbent 18 is correctly proportional to the amount of intake air and the engine load. Accordingly, the amount of the NOx absorbed in the NOx absorbent 18 can be estimated from the cumulative value of the product of the amount of the intake air with the engine load, but in the embodiment according to the present invention, it is simplified and the amount of NOx absorbed in the NOx absorbent 18 is estimated from the cumulative value of the engine speed.
  • An explanation will be made next of one embodiment of absorption and releasing control of the NOx absorbent 18 according to the present invention with reference to Fig. 8 and Fig. 9.
  • Figure 8 shows an interruption routine executed at predetermined time intervals.
  • Referring to Fig. 8, first, it is judged at step 100 whether or not the correction coefficient K with respect to the basic fuel injection time TP is smaller than 1.0, that is, whether or not the lean air-fuel mixture has been burned. When K < 1.0, that is, when the lean air-fuel mixture has been burned, the processing routine goes to step 101, at which the result of addition of ΣNE to the current engine speed NE is defined as ΣNE. Accordingly, this ΣNE indicates the cumulative value of the engine speed NE. Subsequently, at step 102, it is judged whether or not the cumulative engine speed ΣNE is larger than the constant value SNE. This constant value SNE shows a cumulative engine speed from which it is estimated that NOx in an amount of for example 50% of the absorption ability of NOx is absorbed by the NOx absorbent 18. When ΣNE ≤ SNE, the processing cycle is completed, and when ΣNE > SNE, that is, when it is estimated that NOx in an amount of 50% of the NOx absorption ability of the NOx absorbent 18 is absorbed therein, the processing routine goes to step 103. At step 103, it is judged whether or not the exhaust temperature T is lower than a constant value T1, for example, 200°C. When T < T1, the processing cycle is completed, and when T ≥ T1, the processing routine goes to step 104, at which the NOx releasing flag is set. When the NOx releasing flag is set, as will be mentioned later, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is made rich.
  • Subsequently, at step 105, the count value C is incremented exactly by "1". Subsequently, at step 106, it is judged whether or not the count value C becomes larger than a constant value C0, that is, whether or not for example five seconds have elapsed. When C ≤ C0, the processing routine is completed, and when C becomes larger than C0, the processing routine goes to step 107, at which the NOx releasing flag is reset. When the NOx releasing flag is reset, as will be mentioned later, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is switched from rich to lean, and thus the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is made rich for 5 seconds. Subsequently, at step 108, the cumulative engine speed ΣNE and the count value C are brought to zero.
  • On the other hand, at step 100, when it is decided that K ≥ 1.0, that is, when the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is the stoichiometric air-fuel ratio or rich, the processing routine goes to step 109, at which it is judged whether or not the state of K ≥ 1.0 is continued for a constant time, for example, 10 seconds. When the state of K ≥ 1.0 is not continued for the predetermined time, the processing cycle is completed, and when the state of K ≥ 1.0 is continued for the predetermined time, the processing routine goes to step 110, at which the cumulative engine speed ΣNE is brought to zero.
  • Namely, when the time over which the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is made the stoichiometric air-fuel ratio or rich is continued for about 10 seconds, it can be considered that most of the NOx absorbed in the NOx absorbent 18 was released, and accordingly in this case, the cumulative engine speed ΣNE is brought to zero at step 110. Also, at step 103, when T < T1, even if the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is made rich, the temperature of the NOx absorbent 18 is low, and therefore the NOx is not released from the NOx absorbent 18. Accordingly, when T < T1, the processing is delayed until T becomes equal to or larger than T1, and when T becomes equal to or larger than T1, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is made rich.
  • Figure 9 shows a calculation routine of the fuel injection time TAU. This routine is repeatedly executed.
  • Referring to Fig. 9, first, at step 200, a basic fuel injection time TP is calculated from a map indicated in Fig. 2. Subsequently, at step 201, it is judged whether or not the operation state is a state where combustion of the lean air-fuel mixture should be carried out. When it is not an operation state where combustion of the lean air-fuel mixture should be carried out, that is, at the time of the warm-up operation, acceleration operation, or full load operation, the processing routine goes to step 202, at which the correction coefficient K is calculated. At the time of an engine warm-up operation, this correction coefficient K is a function of the engine cooling water temperature and becomes smaller as the engine cooling water temperature becomes higher within a range indicated by K ≥ 1.0. Also, at the time of the acceleration operation, the correction coefficient K is brought to 1.0, and at the time of the full load operation, the correction coefficient K is made a value larger than 1.0. Subsequently, at step 203, the correction coefficient K is made Kt, and subsequently, at step 204, the fuel injection time TAU (= TP·Kt) is calculated. At this time, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is made the stoichiometric air-fuel ratio or rich.
  • On the other hand, at step 201, when it is judged that the operation state is a state where combustion of the lean air-fuel mixture should be carried out, the processing routine goes to step 205, at which it is judged whether or not the NOx releasing flag has been set. When the NOx releasing flag has not been set, the processing routine goes to step 206, at which the correction coefficient K is made for example 0.6, and subsequently, at step 207, the correction coefficient K is changed to Kt, and then the processing routine goes to step 204. Accordingly, at this time, a lean air-fuel mixture is fed into the engine cylinder. On the other hand, when it is decided at step 205 that the NOx releasing flag was set, the processing routine goes to step 208, at which the preliminarily determined value KK is changed to Kt, and subsequently the processing routine goes to step 204. This value KK is a value of from about 1.1 to 1.2 with which the air-fuel ratio of the air-fuel mixture fed into the engine cylinder becomes about 12.0 to 13.5. Accordingly, at this time, the rich air-fuel mixture is fed into the engine cylinder, whereby the NOx absorbed in the NOx absorbent 18 is released. Note that, at the releasing of NOx, where the air-fuel mixture is to be made the stoichiometric air-fuel ratio, the value of KK is brought to 1.0.
  • Figure 10 indicates another embodiment. In this embodiment, the same constituent elements as those shown in Fig. 1 are indicated by the same reference numerals.
  • As shown in Fig. 10, in this embodiment, an air-fuel ratio sensor 22 which can detect the air-fuel ratio over a wide range is disposed in the exhaust manifold 16. This air-fuel ratio sensor 22 generates an output voltage V in accordance with the air-fuel ratio (A/F) as shown in Fig. 11. Accordingly, the air-fuel ratio can be learned from this output voltage V. The output voltage V is input via the AD converter 41 to the input port 35 as shown in Fig. 10.
  • In the embodiment indicated in Fig. 1, the value of the correction coefficient K is open loop controlled, and accordingly there is a risk that the lean air-fuel ratio at the combustion of the lean air-fuel mixture and the rich air-fuel ratio at the releasing of NOx will deviate from the regular air-fuel ratios due to aging. In the embodiment shown in Fig. 10, the air-fuel ratio is subjected to feedback control using the air-fuel ratio sensor 22, whereby these lean air-fuel ratio and rich air-fuel ratio are always brought into coincidence with the regular air-fuel ratios.
  • Namely, as shown in Fig. 10, where the air-fuel ratio sensor 22 is used, the fuel injection time TAU is calculated based on the following equation: TAU = TP·K·F·G
  • Here, the basic fuel injection time TP and the correction coefficient K are the same as those used in the embodimenta shown in Fig. 1 to Fig. 9, and a feedback correction coefficient F and a learning coefficient G are newly added to this. This feedback correction coefficient F fluctuates so that the air-fuel ratio coincides with the target air-fuel ratio based on the output voltage V of the air-fuel ratio sensor 22, and the learning coefficient G is changed so that a fluctuation around 1.0 occurs. Note that, also in this embodiment, the routine shown in Fig. 8 is used for controlling the NOx releasing flag.
  • Figure 12 shows a routine for calculating the feedback correction coefficient F, which routine is executed by interruption at predetermined time intervals.
  • Referring to Fig. 12, first of all, at step 300, it is judged whether or not the NOx releasing flag is set. When the NOx releasing flag is not set, the processing routine goes to step 301, at which a target air-fuel ratio (A/F)0 corresponding to the correction coefficient K is calculated. Subsequently, at step 302, the current air-fuel ratio (A/F) is calculated from the output voltage V of the air-fuel ratio sensor 22. Subsequently, at step 303, the target air-fuel ratio (A/F)0 is compared with the present air-fuel ratio (A/F). When (A/F)0 > (A/F), the processing routine goes to step 304, at which the constant value α is subtracted from the feedback correction coefficient F. As a result, the fuel injection time TAU is decreased, and therefore the air-fuel ratio becomes larger. Contrary to this, when (A/F)0 ≤ (A/F), the processing routine goes to step 305, at which the constant value α is added to the feedback correction coefficient F. As a result, the fuel injection time TAU is prolonged, and therefore the air-fuel ratio becomes smaller. In this way, the air-fuel ratio (A/F) is maintained at the target air-fuel ratio (A/F)0.
  • Subsequently, at step 306, the average value in the predetermined period of the feedback correction coefficient F is defined as the learning coefficient G. On the other hand, at step 300, when it is decided that the NOx releasing flag is set, the processing routine goes to step 307, at which the feedback correction coefficient F is fixed to 1.0.
  • Figure 13 indicates a calculation routine of the fuel injection time TAU, which routine is repeatedly executed. This routine is the same as the routine shown in Fig. 9 except for step 404.
  • Namely, referring to Fig. 13, first of all, at step 400, the basic fuel injection time TP is calculated from the map shown in Fig. 2. Subsequently, at step 401, it is judged whether or not the operation state is a state where combustion of the lean air-fuel mixture should be carried out. When the operation state is not a state where combustion of the lean air-fuel mixture should be carried out, that is, at the time of the warm-up operation, acceleration operation, or full load operation, the processing routine goes to step 402, at which the correction coefficient K is calculated. Subsequently, at step 403, the correction coefficient K is brought to Kt, and subsequently, at step 404, the fuel injection time TAU (= TP·Kt·F·G) is calculated. At this time, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is made to have the stoichiometric air-fuel ratio or rich air-fuel ratio.
  • On the other hand, when it is judged at step 401 that the operation state is a state where combustion of the lean air-fuel mixture should be carried out, the processing routine goes to step 405, at which it is judged whether or not the NOx releasing flag is set. When the NOx releasing flag is not set, the processing routine goes to step 406, at which the correction coefficient K is changed to, for example, 0.6, and subsequently, after the correction coefficient K is brought to Kt at step 407, the processing routine goes to step 404. Accordingly, at this time, the lean air-fuel mixture is fed into the engine cylinder. On the other hand, when it is decided at step 405 that the NOx releasing flag was set, the processing routine goes to step 408, at which the preliminarily determined value KK is set to Kt, and subsequently, the processing routine goes to step 404. This value KK is a value of from about 1.1 to 1.2. Accordingly, at this time, a rich air-fuel mixture is fed into the engine cylinder, whereby the NOx absorbed in the NOx absorbent 18 is released.
  • As mentioned before, the learning coefficient G expresses an average value of the feedback correction coefficient F in the predetermined period. This feedback correction coefficient F originally fluctuates around 1.0. For example, when assuming that a deposit builds up in the nozzle port of the fuel injector 11, the feedback correction coefficient F becomes larger than 1.0 so as to maintain the air-fuel ratio (A/F) at the target air-fuel ratio (A/F)0. In this way, when the feedback correction coefficient F becomes larger than 1.0, the learning coefficient G becomes larger along with this, and thus the feedback correction coefficient F always fluctuates around 1.0. Accordingly, in this case, when the feedback correction coefficient F is fixed to 1.0, the air-fuel ratio (A/F) coincides with the target air-fuel ratio (A/F)0 corresponding to the correction coefficient K. In the embodiment shown in Fig. 10, as shown in Fig. 12, when the NOx releasing flag is set, the feedback correction coefficient F is fixed to 1.0. Accordingly, at this time, the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is brought into a correct coincidence with the air-fuel ratio corresponding to KK.
  • Figure 14 shows still another embodiment. In this embodiment, an output side of the casing 19 is connected via the exhaust pipe 23 with a catalytic converter 25 including a three-way catalyst 24 therein. This three-way catalyst 24 exhibits a high purification efficiency with respect to the CO, HC, and NOx when the air-fuel ratio is maintained at approximately the stoichiometric air-fuel ratio as is well known, but this three-way catalyst 24 has a high purification efficiency with respect to the NOx even when the air-fuel ratio has become rich to a certain extent. In the embodiment shown in Fig. 14, a three-way catalyst 24 is provided downstream of the NOx absorbent 18 so as to purify the NOx by utilizing this characteristic.
  • Namely, as mentioned before, when the air-fuel ratio of the air-fuel mixture fed into the engine cylinder is made rich so as to release the NOx from the NOx absorbent 18, the NOx absorbed in the NOx absorbent 18 is abruptly released from the NOx absorbent 18. At this time, although the NOx is reduced at the releasing, there is a possibility that all the NOx is not reduced. However, when the three-way catalyst 24 is disposed downstream of the NOx absorbent 18, the NOx which was not reduced at the releasing is reduced by the three-way catalyst 24. Accordingly, by disposing the three-way catalyst 24 downstream of the NOx absorbent 18, the NOx purification performance can be further improved.
  • Figure 15 shows more still another embodiment. In this embodiment, still another catalystic converter 27 including a three-way catalyst 26 is disposed between the exhaust manifold 16 and the exhaust pipe 17. In this way, when the three-way catalyst 26 is disposed near the exhaust port 8, the three-way catalyst 26 is in contact with exhaust gas having a higher temperature in comparison with the NOx absorbent 18 and the three-way catalyst 24, and therefore the three-way catalyst 26 abruptly rises in its temperature after a start of the engine in comparison with the NOx absorbent 18 and the three-way catalyst 24. Accordingly, when providing such a three-way catalyst 26, it becomes possible to purify the unburnt HC and CO generated in a large amount during the engine warm-up operation by the three-way catalyst 26 from an early time after the start of the engine.
  • In the embodiments mentioned heretofore, as the NOx absorbent, use is made of an NOx absorbent 18 in which at least one substance selected from alkali metals, alkali earth metals, rare earth metals, and precious metals is carried on the alumina. However, it is possible to use a composite oxide of an alkali earth metal with copper, that, is a Ba-Cu-O system NOx absorbent, instead of the use of such an NOx absorbent 18. As such a composite oxide of the alkali earth metal with copper, use can be made of, for example, MnO2·BaCuO2. In this case, platinum Pt or cerium Ce can be added.
  • In this MnO2·BaCuO2 system NOx absorbent, the copper Cu performs the same catalytic function as that of the platinum Pt of the NOx absorbent 18 mentioned heretofore. When the air-fuel ratio is lean, the NOx is oxidized by the copper Cu (2NO + O2 → 2NO2) and diffused in the absorbent in the form of the nitric acid ions NO3 -.
  • On the other hand, when the air-fuel ratio is made rich, similarly the NOx is released from the absorbent, and this NOx is reduced by the catalytic function of the copper Cu. However, the NOx reduction force of the copper Cu is weaker in comparison with the NOx reduction force of the platinum Pt, and accordingly where the Ba-Cu-O system absorbent is used, an amount of NOx which is not reduced at the releasing of NOx is slightly increased in comparison with the NOx absorbent 18 mentioned heretofore. Accordingly, where the Ba-Cu-O system absorbent is used, as shown in Fig. 14 and Fig. 15, preferably the three-way catalyst 24 is disposed downstream of the absorbent.
  • Figure 16 and Figure 19 show a case where the present invention is applied to a diesel engine. Note that, in Fig. 16 and Fig. 19, the same constituent elements as those in Fig. 1 are shown by the same reference numerals.
  • In the diesel engine, usually, in all operation states, combustion is carried out in a state where the excessive air ratio is more than 1.0, that is, the average air-fuel ratio of the air-fuel mixture in the combustion chamber 3 is lean. Accordingly, the NOx discharged at this time is absorbed into the NOx absorbent 18. On the other hand, when the NOx should be released from the NOx absorbent 18, the air-fuel ratio of the inflow of exhaust gas to the NOx absorbent 18 is made rich. In this case, in the embodiment shown in Fig. 16, the average air-fuel ratio of the air-fuel mixture in the combustion chamber 3 is made rich, whereby the air-fuel ratio of the inflow of exhaust gas to the NOx absorbent 18 is made rich. In the embodiment shown in Fig. 19, the average air-fuel ratio of the air-fuel mixture in the combustion chamber 3 is made lean, and the hydrocarbon is fed into the exhaust passage of engine upstream of the NOx absorbent 18, whereby the air-fuel ratio of the inflow of exhaust gas to the NOx absorbent 18 is made rich.
  • Referring to Fig. 16, in this embodiment, a load sensor 51 generating an output voltage proportional to the amount of depression of the accelerator pedal 50 is provided, and the output voltage of this load sensor 51 is input via the AD converter 52 to the input port 35. Also, in this embodiment, a throttle valve 53 is disposed in the intake duct 12, which throttle valve 53 is connected to a diaphragm 55 of a vacuum diaphragm device 54. A diaphragm vacuum chamber 56 of the vacuum diaphragm device 54 is selectively connected with the atmosphere or a vacuum tank 58 via an electromagnetic switching valve 57, while the output port 36 of the electronic control unit 30 is connected to the electromagnetic switching valve 57 via a driving circuit 59. For the electromagnetic switching valve 57, a ratio between a time for which the diaphragm vacuum chamber 56 is communicated with the atmosphere and a time for which it is communicated with the vacuum tank 58, that is, the duty ratio DUTY, is controlled. As this duty ratio DUTY becomes larger, the opening degree of the throttle valve 53 becomes smaller.
  • In this embodiment, when the NOx should be released from the NOx absorbent 18, the amount of injection from the fuel injector 11 is increased only by a constant amount ΔQ with respect to the requested injection amount with which the best combustion is obtained, and simultaneously the throttle valve 53 is opened to the predetermined opening degree so that the average air-fuel ratio of the air-fuel mixture in the combustion chamber 3 becomes rich. Namely, when the amount of injection from the fuel injector 11 is increased by only the constant amount ΔQ with respect to the requested injection amount with which the best combustion is obtained, this increased amount worth ΔQ is not burned well and is discharged to the interior of the exhaust port 8 in the form of unburnt HC and CO. Also, at this time, the amount of air fed into the combustion chamber 3 is decreased by the opening operation of the throttle valve 53, and therefore the air-fuel ratio of the exhaust gas discharged to the interior of the exhaust port 8 become rich. Accordingly, the air-fuel ratio of the inflow of exhaust gas flowing into the NOx absorbent 18 becomes rich, and thus the NOx is released from the NOx absorbent 18. The amount ΔQ of increase of fuel and amount of opening of the throttle valve 53 when the NOx should be released from the NOx absorbent 18 are preliminarily found by experiment.
  • Figure 17 shows an interruption routine executed at predetermined time intervals for executing the above-mentioned control.
  • Referring to Fig. 17, first of all, at step 500, a result obtained by adding ΣNE to the present engine speed NE is defined as ΣNE. Accordingly, this ΣNE indicates the cumulative value of the engine speed NE. Subsequently, at step 501, it is judged whether or not the cumulative engine speed ΣNE is larger than the predetermined value SNE. This predetermined value SNE indicates the cumulative engine speed from which it is estimated that the NOx in an amount of for example 50% of the NOx absorption ability of the NOx absorbent 18 is absorbed therein. When ΣNE ≤ SNE, the processing cycle is completed, and when ΣNE > SNE, that is, when it is estimated that the NOx in an amount of 50% of the NOx absorption ability of the NOx absorbent 18 is absorbed therein, the processing routine goes to step 502. At step 502, it is judged whether or not the exhaust temperature T is lower than the predetermined value T1, for example, 200°C. When T < T1, the processing cycle is completed, and when T ≥ T1, the processing routine goes to step 503, at which the NOx releasing flag is set. When the NOx releasing flag is set, as will be mentioned later, the fuel injection amount is increased, and the throttle valve 53 is opened to the constant opening degree.
  • Subsequently, at step 504, the count value C is incremented exactly by "1". Subsequently, at step 505, it is judged whether or not the count value C becomes larger than the predetermined value C0, that is, whether or not for example 5 seconds elapsed. When C ≤ C0, the processing routine is completed, and when C becomes larger than C0, the processing routine goes to step 506, at which the NOx releasing flag is reset. When the NOx releasing flag is reset, as will be mentioned later, the increasing operation of the fuel injection amount is stopped, and the throttle valve 53 is fully opened. Accordingly, the air-fuel ratio of the exhaust gas flowing into the NOx absorbent 18 is made rich for 5 seconds. Subsequently, at step 507, the cumulative engine speed ΣNE and the count value C are brought to zero.
  • Figure 18 shows a main routine.
  • Referring to Fig. 18, first of all, at step 600, the fuel injection amount Q is calculated based on the output signals from the engine speed sensor 21 and the load sensor 51. Subsequently, it is judged at step 601 whether or not the NOx releasing flag has been set. When the NOx releasing flag has not been set, the processing routine goes to step 607, at which the duty ratio DUTY is brought to zero, and subsequently the processing routine goes to step 605, at which the control of the throttle valve 53 is carried out. At this time, the duty ratio DUTY is zero, and therefore the throttle valve 53 is retained at the fully open state. Subsequently, at step 606, the fuel injection processing is carried out, and the injection amount at this time becomes the injection amount Q calculated at step 600.
  • On the other hand, when it is decided at step 601 that the NOx releasing flag has been set, the processing routine goes to step 602, at which the injection amount increase value ΔQ is calculated. Subsequently, at step 603, the increase value ΔQ is added to the injection amount Q, to obtain a new injection amount Q. Subsequently, at step 604, the duty ratio DUTY is calculated. Subsequently, at step 605, the throttle valve 53 is opened to the opening degree determined by the duty ratio DUTY, and subsequently, at step 606, the fuel is injected from the fuel injector 11 according to the injection amount Q calculated at step 603.
  • In the embodiment shown in Fig. 19, a reducing agent supply valve 60 is disposed in the exhaust pipe 17, which this reducing agent supply valve 60 is connected with a reducing agent tank 62 via a supply pump 61. The output port 36 of the electronic control unit 30 is connected to the reducing agent supply valve 60 and the supply pump 61 via the driving circuits 63 and 64, respectively. In the reducing agent tank 62, a hydrocarbon such as gasoline, isoctane, hexane, heptane, light oil, kerosine, or the like or a hydrocarbon such as butane, propane, or the like which can be stored in the state of a liquid is filled.
  • In this embodiment, usually the air-fuel mixture in the combustion chamber 3 is burned under an excess air state, that is, in a state where the average air-fuel ratio is lean. At this time, the NOx discharged from the engine is absorbed into the NOx absorbent 18. When the NOx should be released from the NOx absorbent 18, the supply pump 61 is driven and, at the same time, the reducing agent supply valve 60 is opened, whereby the hydrocarbon filled in the reducing agent tank 62 is supplied from the reducing agent supply valve 60 to the exhaust pipe 17 for a predetermined time, for example, about 5 seconds to 20 seconds. The amount of supply of the hydrocarbon at this time is determined so that the air-fuel ratio of the inflow of exhaust gas flowing into the NOx absorbent 18 becomes rich. Accordingly, at this time, the NOx is released from the NOx absorbent 18.
  • Figure 20 shows a routine for executing the NOx releasing processing, which routine is executed by interruption at every predetermined time interval.
  • Referring to Fig. 20, first of all, at step 700, a result obtained by adding ΣNE to the present engine speed NE is defined as ΣNE. Accordingly, this ΣNE indicates the cumulative value of the engine speed NE. Subsequently, at step 701, it is judged whether or not the cumulative engine speed ΣNE is larger than the predetermined value SNE. This predetermined value SNE indicates a cumulative engine speed from which it is estimated that the NOx in an amount of, for example, 50% of the NOx absorption ability of the NOx absorbent 18 is absorbed therein. When ΣNE ≤ SNE, the processing cycle is completed, and when ΣNE > SNE, that is, when it is estimated that the NOx in an amount of 50% of the NOx absorption ability of the NOx absorbent 18 is absorbed therein, the processing routine goes to step 702. At step 702, it is judged whether or not the exhaust temperature T is lower than the predetermined value T1, for example, 200°C. When T < T1, the processing cycle is completed, and when T ≥ T1, the processing routine goes to step 703, at which the supply pump 61 is driven for a predetermined time, for example, about 5 seconds to 20 seconds. Subsequently, at step 704, the reducing agent supply valve 60 is opened for a predetermined time, for example, about 5 seconds to 20 seconds, and subsequently, at step 705, the cumulative engine speed ΣNE is brought to zero.
  • As mentioned before, when the temperature is lowered, the NOx absorbent 18 becomes not able to absorb the NOx. However, in all of the embodiments mentioned heretofore, the exhaust gas is always flows into the NOx absorbent 18 during the operation of the engine, and therefore the NOx absorbent 18 is retained at a relatively high temperature. Accordingly, it becomes possible to cause the NOx generated during the engine operation to be absorbed in the NOx absorbent 18 well.
  • LIST OF REFERENCE NUMERALS
  • 3
    combustion chamber;
    5
    intake valve;
    7
    exhaust valve;
    17, 23
    exhaust pipes;
    18
    NOx absorbent;
    20
    temperature sensor; and
    24, 26
    three-way catalysts.

Claims (31)

  1. An exhaust purification device of a lean burn internal combustion engine (1) comprising an NOx absorbent (18) disposed in an exhaust passage (17) of said engine (1), wherein the exhaust gas continuously flows into the NOx absorbent (18) during an operation of said engine (1), wherein said absorbent (18) comprises a catalyst, and absorbs NOx when the exhaust gas is lean and releases said absorbed NOx when the oxygen concentration of the exhaust gas is lowered, so that, when the exhaust gas is rich or the stoichiometric air-fuel ratio, unburned HC and CO in the exhaust gas react with the released NOx to thereby reduce the NOx.
  2. An exhaust purification device of an internal combustion engine according to claim 1, wherein a period for which the air-fuel ratio of the exhaust gas flowing into the Nox absorbent is made lean and the Nox is absorbed in the Nox absorbent is 50 times or more longer than the period for which the oxygen concentration in the exhaust gas flowing into the Nox absorbent is lowered so as to release the Nox from the Nox absorbent.
  3. An exhaust purification device of an internal combustion engine according to claim 1, wherein the air-fuel ratio of the exhaust gas flowing into the NOx is absorbed into the Nox absorbent.
  4. An exhaust purification device of an internal combustion engine according to claim 1, wherein the Nox absorbent contains at least one substance selected from alkali metals comprising potassium, sodium, lithium, or cesium, alkali earth metals comprising barium or calcium, rare earth metals comprising lanthanum or yttrium and contains platinum.
  5. An exhaust purification device of an internal combustion engine according to claim 1, wherein the Nox absorbent comprises a composite oxide of barium and copper.
  6. An exhaust purification device of an internal combustion engine according to claim 1, wherein air-fuel ratio control means is provided for controlling the air-fuel ratio of the air-fuel mixture formed in an engine combustion chamber, and the absorption of Nox absorbent and the releasing of Nox from the Nox absorbent are controlled by controlling the air-fuel ratio of the air-fuel mixture formed in the engine combustion chamber by said air-fuel ratio control means.
  7. An exhaust purification device of an internal combustion engine according to claim 6, wherein said air-fuel ratio control means is adapted to make the air-fuel ratio of the air-fuel ratio of the air-fuel mixture formed in the combustion chamber lean when the Nox should be absorbed into the Nox absorbent and to make the air-fuel ratio of the air-fuel mixture formed in the combustion chamber the stoichiometric air-fuel ratio or rich when the Nox should be released form the Nox absorbent.
  8. An exhaust purification device of an internal combustion engine according to claim 7, wherein the internal combustion engine comprises a gasoline engine and said air-fuel ratio control means control the absorption of Nox into the Nox absorbent and the releasing of Nox absorbent by controlling the fuel amount supplied to the engine.
  9. An exhaust purification device of an internal combustion engine according to claim 8, wherein said air-fuel ratio control means maintains the air-fuel ratio of the air-fuel mixture formed in the combustion chamber at almost a constant lean air-fuel ration of more than 18.0 when the NOx should be absorbed into the NOx absorbent.
  10. An exhaust purification device of an internal combustion engine according to claim 8, further comprising memory means for storing in advance the amount of fuel determined in accordance with the operation state of the engine, said air-fuel ratio control means is adapted to determine the amount of fuel supplied to the engine based on the fuel amount stored in said memory means.
  11. An exhaust purification device of an internal combustion engine according to claim 8, further comprising memory means for storing in advance the basic fuel amount determined in accordance with the operation state of the engine and an air-fuel ratio sensor which is provided in the exhaust passage of the engine for detecting the air-fuel ratio of the exhaust gas flowing in the exhaust passage, said air-fuel ratio control means is adapted to correct the basic fuel amount so that the air-fuel ratio of the exhaust gas becomes the target air-fuel ratio by a feedback correction coefficient varied in accordance with the output signal of said air-fuel ratio sensor.
  12. An exhaust purification device of an internal engine according to claim 11, wherein said air-fuel ratio control means is adapted to correct the basic fuel amount so that the air-fuel ratio of the exhaust gas becomes the target air-fuel ratio by the feedback correction coefficient when the Nox should be absorbed into the Nox absorbent and, at the same time, to correct said feedback correction coefficient by a learning coefficient so that said feedback correction coefficient fluctuates around a reference value, and said air-fuel control means is adapted to fix the feedback correction value to said reference value when the Nox should be released from the Nox absorbent and, at the same time, to determine the amount of fuel to be supplied to the engine based on the learning coefficient and the basic fuel amount.
  13. An exhaust purification device of an internal combustion engine according to claim 7, wherein the internal combustion engine comprises a diesel engine equipped with a fuel injector for injecting the fuel into the combustion chamber and a throttle valve disposed in the intake passage of the engine; and said air-fuel ratio control means is adapted to control the absorption of Nox into the Nox absorbent and the releasing of Nox from the Nox absorbent by controlling the amount of injection from the fuel injector and the opening degree of throttle valve.
  14. An exhaust purification device of an internal combustion engine according to claim 13, wherein said air-fuel ratio control means is adapted to increase the injection amount and to decrease the throttle valve opening degree when the Nox should be released from the Nox absorbent.
  15. An exhaust purification device of an internal combustion engine according to claim 1, further comprising air-fuel ratio control means for controlling the air-fuel ratio of the exhaust gas discharged from the engine combustion chamber and flowing into the Nox absorbent in the exhaust passage of the engine, and the absorption of Nox into the Nox absorbent and the releasing of Nox from the Nox absorbent are controllable by controlling the air-fuel ratio of the exhaust gas flowing into the Nox absorbent by said ratio control means.
  16. An exhaust purification device of an internal combustion engine according to claim 15, wherein said air-fuel ratio control means is adapted to make the air-fuel ratio of the exhaust gas flowing into the Nox absorbent lean when the Nox should be absorbed into the Nox absorbent, while to make the air-fuel ratio of the exhaust gas flowing into the Nox absorbent the stoichiometric air-fuel ratio or rich when the Nox should be released from the Nox absorbent.
  17. An exhaust purification device of an internal combustion engine according to claim 16, wherein said air-fuel ratio control means is adapted to supply a reducing agent to the interior of the exhaust passage of the engine when the Nox should be released from the Nox absorbent.
  18. An exhaust purification device of an internal combustion engine according to claim 17, wherein said reducing agent is made of a hydrocarbon.
  19. An exhaust purification device of an internal combustion engine according to claim 18, wherein said hydrocarbon comprises at least one member selected from gasoline, isoctane, hexane, heptane, butane, propane, light oil, and kerosine.
  20. An exhaust purification device of an internal combustion engine according to claim 1, further comprising Nox releasing control means which is suitable to lower the oxygen concentration in the exhaust gas flowing into the Nox absorbent only for a second set-up period preliminarily determined so as to release the Nox from the Nox absorbent when the period for which the air-fuel ratio of the exhaust gas flowing into the Nox absorbent is made lean and the Nox is absorbed into the Nox absorbent exceeds a preliminarily determined first set-up period.
  21. An exhaust purification device of an internal combustion engine according to claim 20, wherein said Nox releasing control means is adapted to make the air-fuel ratio of the exhaust gas flowing into the Nox absorbent the stoichiometric air-fuel ratio or rich when the Nox should be released from the Nox absorbent.
  22. An exhaust purification device of an internal combustion engine according to claim 20, wherein the said Nox releasing control means is provided with Nox amount estimation means for estimating the amount of Nox absorbed into the Nox absorbent, and said Nox releasing control means is adapted to decide that said first set-up period has lapsed when the amount of Nox estimated by the Nox amount estimation means exceeds a preliminarily determined set-up amount.
  23. An exhaust purification device of an internal combustion engine according to claim 22, wherein said Nox amount estimation means is adapted to decide that the amount of Nox absorbed in the Nox absorbent exceeds said set-up amount when a cumulative value of an engine speed exceeds a preliminarily determined set-up value.
  24. An exhaust purification device of an internal combustion engine according to claim 22, wherein said Nox amount estimation means is adapted to decide that substantially all of the Nox absorbed in the Nox absorbent was released when the air-fuel ratio of the air-fuel mixture formed in the engine combustion chamber is maintained at the stoichiometric air-fuel ratio or is rich for a predetermined time or more.
  25. An exhaust purification device of an internal combustion engine according to claim 20, wherein said second set-up period is substantially less than 20 seconds.
  26. An exhaust purifhcation device of an internal combustion engine according to claim 20, wherein aid Nox releasing control means is provided with a temperature sensor for detecting a temperature of the exhaust gas flowing into the Nox absorbent, and said Nox releasing control means is provided with prohibition means which prohibits the lowering of the oxygen concentration in the exhaust gas flowing into the Nox absorbent even if the period for which the Nox is absorbed into the Nox absorbent exceeds said first set-up period when the temperature of the exhaust gas flowing into the Nox absorbent becomes lower than a limit temperature at which the Nox can be absorbed by the Nox absorbent.
  27. An exhaust purification device of an internal combustion engine according to claim 26, wherein aid Nox releasing control means is adapted to immediately lower the oxygen concentration in the exhaust gas flowing into the Nox absorbent when the temperature of the exhaust gas flowing into the Nox absorbent becomes higher than said limit temperature after the oxygen concentration in the exhaust gas flowing into the Nox absorbent is lowered by said prohibition means.
  28. An exhaust purification device of an internal combustion engine according to claim 1, wherein a further catalyst which can reduce at least the Nox is disposed in the exhaust passage of the engine downstream of the Nox absorbent.
  29. An exhaust purification device of an internal combustion engine according to claim 28, wherein said catalyst comprises a three-way catalyst.
  30. An exhaust purification device of an internal combustion engine according to claim 1, wherein a further catalyst which can purify the unburnt HC and CO is disposed in the exhaust passage of the engine upstream of the Nox absorbent.
  31. An exhaust purification device of an internal combustion engine according to claim 30, wherein said catalyst comprises a three-way catalyst.
EP92920904A 1991-10-03 1992-10-02 Device for purifying exhaust of internal combustion engine Expired - Lifetime EP0560991B9 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP281907/91 1991-10-03
JP28190791 1991-10-03
JP28190791 1991-10-03
JP284095/91 1991-10-04
JP28409591 1991-10-04
JP28409591 1991-10-04
PCT/JP1992/001279 WO1993007363A1 (en) 1991-10-03 1992-10-02 Device for purifying exhaust of internal combustion engine

Publications (5)

Publication Number Publication Date
EP0560991A1 EP0560991A1 (en) 1993-09-22
EP0560991A4 EP0560991A4 (en) 1994-03-30
EP0560991B1 EP0560991B1 (en) 1997-07-30
EP0560991B2 EP0560991B2 (en) 2004-09-01
EP0560991B9 true EP0560991B9 (en) 2005-01-26

Family

ID=26554387

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92920904A Expired - Lifetime EP0560991B9 (en) 1991-10-03 1992-10-02 Device for purifying exhaust of internal combustion engine

Country Status (8)

Country Link
US (1) US5473887A (en)
EP (1) EP0560991B9 (en)
KR (1) KR960002348B1 (en)
AU (1) AU650794B2 (en)
CA (1) CA2097609C (en)
DE (1) DE69221287T3 (en)
ES (1) ES2104943T5 (en)
WO (1) WO1993007363A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8105559B2 (en) 2006-10-20 2012-01-31 Johnson Matthey Public Limited Company Thermally regenerable nitric oxide adsorbent

Families Citing this family (307)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025806A1 (en) 1992-06-12 1993-12-23 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engine
JP2605586B2 (en) * 1992-07-24 1997-04-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US5433074A (en) * 1992-07-30 1995-07-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
JP2605553B2 (en) * 1992-08-04 1997-04-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2692530B2 (en) * 1992-09-02 1997-12-17 トヨタ自動車株式会社 Internal combustion engine
DE69420488T2 (en) * 1993-01-19 2000-04-13 Toyota Motor Co Ltd EXHAUST GAS PURIFICATION DEVICE FOR AN INTERNAL COMBUSTION ENGINE
JP2006026635A (en) * 1993-04-28 2006-02-02 Nippon Shokubai Co Ltd Method of removing nitrogen oxides contained in exhaust gas
EP0666099B1 (en) * 1993-04-28 2001-07-18 Nippon Shokubai Co., Ltd. Method of removing nitrogen oxides contained in exhaust gas
JP2605579B2 (en) * 1993-05-31 1997-04-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP3246086B2 (en) * 1993-06-11 2002-01-15 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP3344040B2 (en) * 1993-11-25 2002-11-11 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP3624429B2 (en) * 1994-02-28 2005-03-02 株式会社日立製作所 Control device for internal combustion engine
US5775099A (en) * 1994-04-12 1998-07-07 Toyota Jidosha Kabushiki Kaisha Method of purifying the exhaust of an internal combustion engine
WO1996022457A1 (en) * 1995-01-20 1996-07-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning method for internal combustion engine
DE19517168B4 (en) * 1994-05-10 2004-06-24 Mitsubishi Jidosha Kogyo K.K. Device and method for controlling an internal combustion engine
CA2151859C (en) 1994-06-17 2002-02-26 Satoshi Inui Catalyst for purifying exhaust gas from lean burn engine and method for purification
JP3228006B2 (en) * 1994-06-30 2001-11-12 トヨタ自動車株式会社 Exhaust purification element deterioration detection device for internal combustion engine
JP3440654B2 (en) 1994-11-25 2003-08-25 トヨタ自動車株式会社 Exhaust gas purification device
JP3356902B2 (en) * 1994-12-14 2002-12-16 本田技研工業株式会社 Internal combustion engine control device for vehicles
JP3357492B2 (en) * 1994-12-14 2002-12-16 本田技研工業株式会社 Internal combustion engine control device for vehicles
JP3079933B2 (en) * 1995-02-14 2000-08-21 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2836522B2 (en) * 1995-03-24 1998-12-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2836523B2 (en) * 1995-03-24 1998-12-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2827954B2 (en) * 1995-03-28 1998-11-25 トヨタ自動車株式会社 NOx absorbent deterioration detection device
JP3724040B2 (en) * 1995-04-27 2005-12-07 トヨタ自動車株式会社 In-cylinder injection compression ignition internal combustion engine
GB9511412D0 (en) * 1995-06-06 1995-08-02 Johnson Matthey Plc Improvements in emission control
JP3375790B2 (en) * 1995-06-23 2003-02-10 日本碍子株式会社 Exhaust gas purification system and exhaust gas purification method
DE19626405B4 (en) * 1995-06-30 2008-09-18 Denso Corp., Kariya Air / fuel ratio control device for an internal combustion engine
JP3899534B2 (en) * 1995-08-14 2007-03-28 トヨタ自動車株式会社 Exhaust gas purification method for diesel engine
JPH0988691A (en) * 1995-09-20 1997-03-31 Toyota Motor Corp Compression ignition internal combustion engine
KR100287049B1 (en) 1995-10-30 2001-05-02 와다 아끼히로 Exhaust Gas Purification System for Internal Combustion Engine
US6345496B1 (en) 1995-11-09 2002-02-12 Toyota Jidosha Kabushiki Kaisha Method and device for purifying exhaust gas of an engine
JPH09133032A (en) * 1995-11-10 1997-05-20 Toyota Motor Corp Exhaust emission control system for internal combustion engine
WO1997019261A1 (en) * 1995-11-17 1997-05-29 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device for internal combustion engines
DE69609857T2 (en) * 1995-11-17 2001-03-22 Toyota Motor Co Ltd METHOD AND DEVICE FOR PURIFYING EXHAUST GASES FROM AN INTERNAL COMBUSTION ENGINE
DE19543219C1 (en) * 1995-11-20 1996-12-05 Daimler Benz Ag Diesel engine operating method
US5727385A (en) 1995-12-08 1998-03-17 Ford Global Technologies, Inc. Lean-burn nox catalyst/nox trap system
JP3702544B2 (en) * 1996-03-22 2005-10-05 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP3713831B2 (en) * 1996-04-19 2005-11-09 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
KR100290272B1 (en) * 1996-06-10 2001-05-15 가나이 쓰토무 Exhaust gas purifying apparatus for internal combustion engine and exhaust gas purifying catalyst for internal combustion engine
AU742434B2 (en) * 1996-06-10 2002-01-03 Hitachi Limited Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
JP3454334B2 (en) * 1996-06-18 2003-10-06 トヨタ自動車株式会社 Exhaust gas purification method and device
DE59711876D1 (en) 1996-09-05 2004-09-30 Volkswagen Ag EXHAUST GAS CLEANING METHOD FOR AN INTERNAL COMBUSTION ENGINE
US6650121B2 (en) 1996-09-05 2003-11-18 Robert Bosch Gmbh Sensor for the monitoring of an NOx catalyst
DE19635977A1 (en) * 1996-09-05 1998-03-12 Bosch Gmbh Robert Sensor for monitoring a NOx catalytic converter
JP2871615B2 (en) 1996-09-09 1999-03-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE19636790A1 (en) 1996-09-11 1998-03-12 Volkswagen Ag NOx emission control process
DE19640161A1 (en) * 1996-09-28 1998-04-02 Volkswagen Ag NOx emission control process
US5743084A (en) * 1996-10-16 1998-04-28 Ford Global Technologies, Inc. Method for monitoring the performance of a nox trap
DE19653756C2 (en) * 1996-12-20 1999-01-14 Porsche Ag New control strategy for a NOx storage
US5894725A (en) * 1997-03-27 1999-04-20 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a NOx trap
US5832722A (en) * 1997-03-31 1998-11-10 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a NOx trap
JP4034375B2 (en) * 1997-04-03 2008-01-16 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JPH10288065A (en) * 1997-04-17 1998-10-27 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
US6367246B1 (en) * 1997-04-24 2002-04-09 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine
US6477834B1 (en) 1997-05-12 2002-11-12 Toyota Jidosha Kabushiki Kaisha Exhaust emission controlling apparatus of internal combustion engine
JP3456408B2 (en) * 1997-05-12 2003-10-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
GB9713428D0 (en) 1997-06-26 1997-08-27 Johnson Matthey Plc Improvements in emissions control
GB2326953A (en) * 1997-06-30 1999-01-06 Ford Motor Co Motor vehicle exhaust Catalyst regeneration
JP3123474B2 (en) * 1997-07-28 2001-01-09 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
EP0898067B1 (en) * 1997-08-21 2004-03-17 Nissan Motor Co., Ltd. Exhaust gas purifying system of internal combustion engine
JP3264226B2 (en) * 1997-08-25 2002-03-11 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE19744409C2 (en) * 1997-10-08 2001-11-08 Ford Global Tech Inc Process for the regeneration of a nitrogen oxide trap in the exhaust system of an internal combustion engine and device for carrying out the process
US6148612A (en) * 1997-10-13 2000-11-21 Denso Corporation Engine exhaust gas control system having NOx catalyst
US7127883B1 (en) * 1997-11-10 2006-10-31 Mitsubishi Jidosha Kogoyo Kabushiki Kaisha Exhaust gas purifying apparatus of internal combustion engine
DE19750226C1 (en) * 1997-11-13 1998-10-29 Daimler Benz Ag Diesel engine management system controlling breathing and injection timing in rich and weak running
US6021638A (en) * 1997-11-24 2000-02-08 Engelhard Corporation Engine management strategy to improve the ability of a catalyst to withstand severe operating enviroments
JP3368217B2 (en) 1997-11-26 2003-01-20 マツダ株式会社 Engine control device
JP3945040B2 (en) 1997-11-26 2007-07-18 マツダ株式会社 Engine control device
JP3518366B2 (en) 1997-11-26 2004-04-12 マツダ株式会社 Engine control device
JPH11218048A (en) 1997-11-26 1999-08-10 Mazda Motor Corp Control device for engine
DE19753718C1 (en) * 1997-12-04 1999-07-08 Daimler Chrysler Ag Method for operating a diesel engine
FR2772428B1 (en) * 1997-12-12 2000-02-18 Renault METHOD FOR CONTROLLING THE PURGE OF A CATALYTIC EXHAUST TREATMENT POT OF AN INTERNAL COMBUSTION ENGINE
DE19755600C2 (en) * 1997-12-15 2002-01-17 Bosch Gmbh Robert Operation of an internal combustion engine in connection with a NOx storage catalytic converter
US5950421A (en) * 1997-12-18 1999-09-14 Ford Global Technologies, Inc. Tungsten-modified platinum NOx traps for automotive emission reduction
DE19758018A1 (en) * 1997-12-29 1999-07-01 Volkswagen Ag Regeneration of a NOx storage catalytic converter of an internal combustion engine
DE19800665C1 (en) 1998-01-10 1999-07-01 Degussa Method for operating a nitrogen oxide storage catalytic converter
DE19801626B4 (en) 1998-01-17 2010-08-12 Robert Bosch Gmbh Diagnosis of a NOx storage catalytic converter in the operation of internal combustion engines
DE19801625A1 (en) * 1998-01-17 1999-07-22 Bosch Gmbh Robert Monitoring method for NOx storage catalytic convertors
GB9801023D0 (en) 1998-01-19 1998-03-18 Johnson Matthey Plc Combatting air pollution
US5953911A (en) * 1998-02-04 1999-09-21 Goal Line Environmental Technologies Llc Regeneration of catalyst/absorber
GB9802504D0 (en) 1998-02-06 1998-04-01 Johnson Matthey Plc Improvements in emission control
US8833062B1 (en) 2013-03-15 2014-09-16 Daimier Ag Catalytic reduction of NOx
JP3456401B2 (en) 1998-02-12 2003-10-14 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
JP3334597B2 (en) 1998-03-17 2002-10-15 トヨタ自動車株式会社 Compression ignition type internal combustion engine
SE519908C2 (en) * 1998-03-20 2003-04-22 Volvo Car Corp Method and apparatus for controlling combustion engine
JP3805098B2 (en) 1998-03-26 2006-08-02 株式会社日立製作所 Engine exhaust gas purification control device
DE19813654A1 (en) * 1998-03-27 1999-09-30 Degussa Method for operating an exhaust gas purification system containing a sulfur trap and a nitrogen oxide storage catalytic converter
DE19813655C2 (en) 1998-03-27 2000-04-27 Degussa Storage material for sulfur oxides, process for its production and use
DE19815502A1 (en) * 1998-04-07 1999-10-14 Opel Adam Ag I.C. engine exhaust gas treatment unit
DE19816276C2 (en) 1998-04-11 2000-05-18 Audi Ag Method and device for operating an internal combustion engine
DE19816175A1 (en) * 1998-04-14 1999-10-21 Degussa Procedure for checking the functionality of a nitrogen oxide storage catalytic converter
EP0952321B1 (en) 1998-04-15 2004-08-25 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
FR2778205B1 (en) * 1998-04-29 2000-06-23 Inst Francais Du Petrole CONTROLLED HYDROCARBON INJECTION PROCESS INTO AN EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE
DE19824915C1 (en) * 1998-06-04 1999-02-18 Daimler Benz Ag Method of controlling fuel injection for motor vehicle internal combustion engine
US6152118A (en) * 1998-06-22 2000-11-28 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
DE19828609A1 (en) 1998-06-26 1999-12-30 Siemens Ag Regenerating a nitrogen oxides storage catalyst arranged in the exhaust gas stream of an IC engine
US6336320B1 (en) 1998-07-10 2002-01-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine
US6244046B1 (en) 1998-07-17 2001-06-12 Denso Corporation Engine exhaust purification system and method having NOx occluding and reducing catalyst
US6289672B1 (en) 1998-07-21 2001-09-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine
US6129898A (en) * 1998-08-17 2000-10-10 Ford Global Technologies, Inc. NOx trap catalyst for lean burn engines
FR2783280B1 (en) * 1998-09-11 2000-11-10 Renault METHOD FOR CONTROLLING THE PURGE OF NITROGEN OXIDES IN AN EXHAUST LINE OF A DIESEL ENGINE
GB2355944B (en) * 1998-09-18 2001-11-14 Toyota Motor Co Ltd An exhaust gas purification device for an internal combustion engine
JP3370957B2 (en) * 1998-09-18 2003-01-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE19843879C2 (en) 1998-09-25 2003-05-08 Bosch Gmbh Robert Operation of an internal combustion engine in connection with a NOx storage catalytic converter and a NOx sensor
US6085718A (en) * 1998-09-29 2000-07-11 Mazda Motor Corporation Control system for a direct injection-spark ignition engine
US6055956A (en) * 1998-09-29 2000-05-02 Mazda Motor Corporation Control system for an engine equipped with exhaust gas recirculation system
US6513320B1 (en) 1998-09-29 2003-02-04 Mazda Motor Corporation Control system for a direct injection-spark ignition engine
US6257197B1 (en) 1998-09-29 2001-07-10 Mazda Motor Corporation Control system for a direct injection-spark ignition engine
US6116208A (en) * 1998-09-29 2000-09-12 Mazda Motor Corporation Control system for a direct injection-spark ignition engine
US6244047B1 (en) * 1998-10-02 2001-06-12 Ford Global Technologies, Inc. Method of purging lean NOx trap
DE69923403T2 (en) 1998-10-14 2005-07-07 Nissan Motor Co., Ltd., Yokohama exhaust gas cleaning device
FR2785331B1 (en) 1998-10-28 2000-12-22 Renault METHOD FOR CONTROLLING THE PURGE OF NITROGEN OXIDES FROM A CATALYTIC EXHAUST TREATMENT POT OF AN INTERNAL COMBUSTION ENGINE
FR2786814B1 (en) 1998-12-02 2001-02-09 Renault METHOD FOR CONTROLLING THE PURGE OF NITROGEN OXIDES FROM A CATALYTIC EXHAUST TREATMENT POT OF AN INTERNAL COMBUSTION ENGINE
JP3952617B2 (en) 1998-12-11 2007-08-01 株式会社日立製作所 Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3680611B2 (en) 1999-02-03 2005-08-10 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
US6182443B1 (en) * 1999-02-09 2001-02-06 Ford Global Technologies, Inc. Method for converting exhaust gases from a diesel engine using nitrogen oxide absorbent
US6497092B1 (en) 1999-03-18 2002-12-24 Delphi Technologies, Inc. NOx absorber diagnostics and automotive exhaust control system utilizing the same
US6375910B1 (en) 1999-04-02 2002-04-23 Engelhard Corporation Multi-zoned catalytic trap and methods of making and using the same
US6497848B1 (en) 1999-04-02 2002-12-24 Engelhard Corporation Catalytic trap with potassium component and method of using the same
US6182444B1 (en) * 1999-06-07 2001-02-06 Ford Global Technologies, Inc. Emission control system
DE60024713T2 (en) * 1999-06-08 2006-09-28 Honda Giken Kogyo K.K. Exhaust gas purification device and controller for an internal combustion engine
FR2796984B1 (en) * 1999-07-28 2002-09-06 Renault SYSTEM FOR REGENERATING A NITROGEN OXIDE TRAP
GB9919200D0 (en) * 1999-08-14 1999-10-20 Johnson Matthey Plc Pollution control
US6878354B1 (en) 1999-09-03 2005-04-12 Mitsubishi Denki Kabushiki Kaisha Catalyst and process for exhaust purification
FR2798700B1 (en) 1999-09-21 2001-11-23 Renault METHOD AND SYSTEM FOR MONITORING THE OPERATION OF THE CATALYTIC POTS OF AN INTERNAL COMBUSTION ENGINE
DE19948298A1 (en) 1999-10-06 2001-04-12 Volkswagen Ag Direct-injection internal combustion engine with NOx-reduced emissions
JP3642273B2 (en) 1999-10-21 2005-04-27 日産自動車株式会社 Exhaust gas purification system
US6911184B1 (en) 1999-10-21 2005-06-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Exhaust emission control system and method for internal combustion engines
WO2001034950A1 (en) 1999-11-10 2001-05-17 Engelhard Corporation METHOD AND APPARATUS TO PROVIDE REDUCTANT FOR NO¿x?
JP3724708B2 (en) 1999-11-26 2005-12-07 日産自動車株式会社 Exhaust gas purification catalyst
FR2802243B1 (en) 1999-12-10 2002-06-07 Renault METHOD FOR CONTROLLING A MOTOR VEHICLE DRIVE UNIT TO INCREASE THE RICHNESS OF EXHAUST GASES IN THE REGENERATION PHASE OF A NITROGEN OXIDE TRAP
EP1108865A3 (en) 1999-12-13 2003-07-09 Ford Global Technologies, Inc. Catalyst construction for treating lean burn engine exhaust
JP2001050087A (en) * 2000-01-01 2001-02-23 Toyota Motor Corp Air-fuel ratio control unit for internal combustion engine
JP2001241341A (en) 2000-02-28 2001-09-07 Hitachi Ltd Exhaust emission control device and exmission control method for internal combustion engine
US6308697B1 (en) 2000-03-17 2001-10-30 Ford Global Technologies, Inc. Method for improved air-fuel ratio control in engines
US6539704B1 (en) 2000-03-17 2003-04-01 Ford Global Technologies, Inc. Method for improved vehicle performance
US6708483B1 (en) 2000-03-17 2004-03-23 Ford Global Technologies, Llc Method and apparatus for controlling lean-burn engine based upon predicted performance impact
US6438944B1 (en) 2000-03-17 2002-08-27 Ford Global Technologies, Inc. Method and apparatus for optimizing purge fuel for purging emissions control device
US6477832B1 (en) 2000-03-17 2002-11-12 Ford Global Technologies, Inc. Method for improved performance of a vehicle having an internal combustion engine
US6860100B1 (en) 2000-03-17 2005-03-01 Ford Global Technologies, Llc Degradation detection method for an engine having a NOx sensor
US6487849B1 (en) 2000-03-17 2002-12-03 Ford Global Technologies, Inc. Method and apparatus for controlling lean-burn engine based upon predicted performance impact and trap efficiency
US6629453B1 (en) 2000-03-17 2003-10-07 Ford Global Technologies, Llc Method and apparatus for measuring the performance of an emissions control device
US6487850B1 (en) 2000-03-17 2002-12-03 Ford Global Technologies, Inc. Method for improved engine control
US6434930B1 (en) 2000-03-17 2002-08-20 Ford Global Technologies, Inc. Method and apparatus for controlling lean operation of an internal combustion engine
US6308515B1 (en) 2000-03-17 2001-10-30 Ford Global Technologies, Inc. Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent
US6360530B1 (en) 2000-03-17 2002-03-26 Ford Global Technologies, Inc. Method and apparatus for measuring lean-burn engine emissions
US6843051B1 (en) 2000-03-17 2005-01-18 Ford Global Technologies, Llc Method and apparatus for controlling lean-burn engine to purge trap of stored NOx
US6810659B1 (en) * 2000-03-17 2004-11-02 Ford Global Technologies, Llc Method for determining emission control system operability
US6374597B1 (en) 2000-03-17 2002-04-23 Ford Global Technologies, Inc. Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent
US6499293B1 (en) 2000-03-17 2002-12-31 Ford Global Technologies, Inc. Method and system for reducing NOx tailpipe emissions of a lean-burn internal combustion engine
US6427437B1 (en) 2000-03-17 2002-08-06 Ford Global Technologies, Inc. Method for improved performance of an engine emission control system
US6360529B1 (en) 2000-03-17 2002-03-26 Ford Global Technologies, Inc. Method and apparatus for enabling lean engine operation upon engine start-up
US6594989B1 (en) 2000-03-17 2003-07-22 Ford Global Technologies, Llc Method and apparatus for enhancing fuel economy of a lean burn internal combustion engine
US6481199B1 (en) 2000-03-17 2002-11-19 Ford Global Technologies, Inc. Control for improved vehicle performance
US6327847B1 (en) 2000-03-17 2001-12-11 Ford Global Technologies, Inc. Method for improved performance of a vehicle
US6370868B1 (en) 2000-04-04 2002-04-16 Ford Global Technologies, Inc. Method and system for purge cycle management of a lean NOx trap
FI118326B (en) 2000-04-10 2007-10-15 Ecocat Oy adsorbent
DE10017940C2 (en) 2000-04-11 2003-01-23 Omg Ag & Co Kg Procedure for checking the functionality of a nitrogen oxide storage catalytic converter
DE10023439A1 (en) * 2000-05-12 2001-11-22 Dmc2 Degussa Metals Catalysts Process for removing nitrogen oxides and soot particles from the lean exhaust gas of an internal combustion engine and exhaust gas purification system therefor
GB0013609D0 (en) 2000-06-06 2000-07-26 Johnson Matthey Plc Emission control
FI114731B (en) 2000-07-05 2004-12-15 Kemira Metalkat Oy Exhaust gas purification system and method
DE10035525A1 (en) 2000-07-21 2002-02-07 Bosch Gmbh Robert Process for operating a catalyst
DE10036406A1 (en) * 2000-07-26 2002-02-14 Bosch Gmbh Robert Method for operating a nitrogen oxide (NOx) storage catalytic converter
US6389803B1 (en) 2000-08-02 2002-05-21 Ford Global Technologies, Inc. Emission control for improved vehicle performance
GB0022786D0 (en) 2000-09-16 2000-11-01 Johnson Matthey Plc NOx-Trap composition
JP3546829B2 (en) * 2000-10-04 2004-07-28 トヨタ自動車株式会社 Compression ignition type internal combustion engine
US6691507B1 (en) 2000-10-16 2004-02-17 Ford Global Technologies, Llc Closed-loop temperature control for an emission control device
US6422003B1 (en) * 2000-11-15 2002-07-23 General Motors Corporation NOX catalyst exhaust feedstream control system
GB0028198D0 (en) * 2000-11-20 2001-01-03 Johnson Matthey Plc High temperature nox-trap component
US6622476B2 (en) 2001-02-14 2003-09-23 Ford Global Technologies, Llc Lean NOx storage estimation based on oxygen concentration corrected for water gas shift reaction
US6588200B1 (en) 2001-02-14 2003-07-08 Ford Global Technologies, Llc Method for correcting an exhaust gas oxygen sensor
JP3981915B2 (en) 2001-04-03 2007-09-26 日産自動車株式会社 Exhaust gas purification system
DE10122636A1 (en) * 2001-05-10 2002-11-21 Bosch Gmbh Robert Method for operating an internal combustion engine, in particular a motor vehicle
JP3726705B2 (en) 2001-05-11 2005-12-14 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
US6467259B1 (en) 2001-06-19 2002-10-22 Ford Global Technologies, Inc. Method and system for operating dual-exhaust engine
US6650991B2 (en) 2001-06-19 2003-11-18 Ford Global Technologies, Llc Closed-loop method and system for purging a vehicle emission control
US6694244B2 (en) 2001-06-19 2004-02-17 Ford Global Technologies, Llc Method for quantifying oxygen stored in a vehicle emission control device
US6490860B1 (en) 2001-06-19 2002-12-10 Ford Global Technologies, Inc. Open-loop method and system for controlling the storage and release cycles of an emission control device
US6604504B2 (en) 2001-06-19 2003-08-12 Ford Global Technologies, Llc Method and system for transitioning between lean and stoichiometric operation of a lean-burn engine
US6463733B1 (en) 2001-06-19 2002-10-15 Ford Global Technologies, Inc. Method and system for optimizing open-loop fill and purge times for an emission control device
US6539706B2 (en) 2001-06-19 2003-04-01 Ford Global Technologies, Inc. Method and system for preconditioning an emission control device for operation about stoichiometry
US6546718B2 (en) 2001-06-19 2003-04-15 Ford Global Technologies, Inc. Method and system for reducing vehicle emissions using a sensor downstream of an emission control device
US6615577B2 (en) 2001-06-19 2003-09-09 Ford Global Technologies, Llc Method and system for controlling a regeneration cycle of an emission control device
US6502387B1 (en) 2001-06-19 2003-01-07 Ford Global Technologies, Inc. Method and system for controlling storage and release of exhaust gas constituents in an emission control device
US6453666B1 (en) 2001-06-19 2002-09-24 Ford Global Technologies, Inc. Method and system for reducing vehicle tailpipe emissions when operating lean
US6553754B2 (en) 2001-06-19 2003-04-29 Ford Global Technologies, Inc. Method and system for controlling an emission control device based on depletion of device storage capacity
US6487853B1 (en) 2001-06-19 2002-12-03 Ford Global Technologies. Inc. Method and system for reducing lean-burn vehicle emissions using a downstream reductant sensor
US6691020B2 (en) 2001-06-19 2004-02-10 Ford Global Technologies, Llc Method and system for optimizing purge of exhaust gas constituent stored in an emission control device
DE10164833A1 (en) 2001-07-03 2004-06-09 Daimlerchrysler Ag Internal combustion engine with exhaust aftertreatment device and operating method therefor
US6756338B2 (en) * 2001-09-19 2004-06-29 Johnson Matthey Public Limited Company Lean NOx trap/conversion catalyst
JP3810663B2 (en) 2001-09-19 2006-08-16 三菱電機株式会社 Exhaust gas purification method and exhaust gas purification device for internal combustion engine
AUPR812301A0 (en) * 2001-10-08 2001-11-01 Orbital Engine Company (Australia) Proprietary Limited Nox control for an internal combustion engine
US7832203B2 (en) 2001-10-27 2010-11-16 Johnson Matthey Public Limited Company Exhaust system for a lean burn internal combustion engine
US6813882B2 (en) 2001-12-18 2004-11-09 Ford Global Technologies, Llc System and method for removing NOx from an emission control device
JP3788350B2 (en) 2002-01-07 2006-06-21 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
US6732506B2 (en) 2002-04-03 2004-05-11 General Motors Corporation Cylinder deactivation system and NOx trap regeneration
DE10221536B4 (en) * 2002-05-15 2011-05-26 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for controlling a working mode of an internal combustion engine
JP4175022B2 (en) 2002-05-20 2008-11-05 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
US7032572B2 (en) 2002-06-04 2006-04-25 Ford Global Technologies, Llc Method for controlling an engine to obtain rapid catalyst heating
US6868827B2 (en) 2002-06-04 2005-03-22 Ford Global Technologies, Llc Method for controlling transitions between operating modes of an engine for rapid heating of an emission control device
US6736120B2 (en) 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method and system of adaptive learning for engine exhaust gas sensors
US6758185B2 (en) 2002-06-04 2004-07-06 Ford Global Technologies, Llc Method to improve fuel economy in lean burn engines with variable-displacement-like characteristics
US6725830B2 (en) 2002-06-04 2004-04-27 Ford Global Technologies, Llc Method for split ignition timing for idle speed control of an engine
US6736121B2 (en) 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method for air-fuel ratio sensor diagnosis
US6735938B2 (en) 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method to control transitions between modes of operation of an engine
US6568177B1 (en) 2002-06-04 2003-05-27 Ford Global Technologies, Llc Method for rapid catalyst heating
US6745747B2 (en) 2002-06-04 2004-06-08 Ford Global Technologies, Llc Method for air-fuel ratio control of a lean burn engine
US6925982B2 (en) 2002-06-04 2005-08-09 Ford Global Technologies, Llc Overall scheduling of a lean burn engine system
US6715462B2 (en) 2002-06-04 2004-04-06 Ford Global Technologies, Llc Method to control fuel vapor purging
US7168239B2 (en) 2002-06-04 2007-01-30 Ford Global Technologies, Llc Method and system for rapid heating of an emission control device
US6769398B2 (en) 2002-06-04 2004-08-03 Ford Global Technologies, Llc Idle speed control for lean burn engine with variable-displacement-like characteristic
US7111450B2 (en) 2002-06-04 2006-09-26 Ford Global Technologies, Llc Method for controlling the temperature of an emission control device
JP4135428B2 (en) * 2002-08-01 2008-08-20 日産自動車株式会社 Apparatus and method for exhaust gas purification of internal combustion engine
DE10238771B4 (en) 2002-08-23 2009-01-22 Umicore Ag & Co. Kg Process for desulfating a nitrogen oxide storage catalyst
CA2498568C (en) * 2002-09-10 2008-11-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
JP2005538300A (en) 2002-09-13 2005-12-15 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Compression ignition engine and exhaust mechanism therefor
DE10244391A1 (en) * 2002-09-24 2004-04-01 Volkswagen Ag Method for operating a direct injection internal combustion engine
JP2004116332A (en) * 2002-09-25 2004-04-15 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine
US7332135B2 (en) * 2002-10-22 2008-02-19 Ford Global Technologies, Llc Catalyst system for the reduction of NOx and NH3 emissions
JP2004162626A (en) * 2002-11-14 2004-06-10 Hitachi Ltd Exhaust emission control device
DE10300298A1 (en) 2003-01-02 2004-07-15 Daimlerchrysler Ag Exhaust gas aftertreatment device and method
JP3912294B2 (en) * 2003-02-19 2007-05-09 トヨタ自動車株式会社 Exhaust gas purification method and exhaust gas purification apparatus for internal combustion engine
GB0304939D0 (en) 2003-03-05 2003-04-09 Johnson Matthey Plc Light-duty diesel engine and a particulate filter therefor
GB0305415D0 (en) 2003-03-08 2003-04-16 Johnson Matthey Plc Exhaust system for lean burn IC engine including particulate filter and NOx absorbent
DE10315593B4 (en) 2003-04-05 2005-12-22 Daimlerchrysler Ag Exhaust gas aftertreatment device and method
JP4052178B2 (en) * 2003-05-15 2008-02-27 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2004113691A2 (en) 2003-06-18 2004-12-29 Johnson Matthey Public Limited Company System and method of controlling reductant addition
FR2856432B1 (en) 2003-06-23 2005-09-30 Renault Sa METHOD FOR CONTROLLING A DIESEL ENGINE MOTORIZATION SYSTEM AND NITROGEN OXIDE TRAP
JP2005042661A (en) * 2003-07-25 2005-02-17 Nissan Motor Co Ltd Combustion control device for internal combustion engine
EP1642016B1 (en) * 2003-07-08 2008-07-30 Nissan Motor Company, Limited Combustion control for engine
JP2005048678A (en) * 2003-07-30 2005-02-24 Nissan Motor Co Ltd Combustion control device for internal combustion engine
JP4158645B2 (en) 2003-07-31 2008-10-01 日産自動車株式会社 Combustion control device for internal combustion engine
JP2005048747A (en) * 2003-07-31 2005-02-24 Nissan Motor Co Ltd Combustion control device for internal combustion engine
SE0303201D0 (en) * 2003-09-09 2003-11-25 Volvo Lastvagnar Ab Piston-type internal combustion engine and method of controlling the same
AT412846B (en) * 2003-11-13 2005-08-25 Treibacher Ind Ag EXHAUST CATALYST COMPOSITION
JP5014797B2 (en) 2003-12-01 2012-08-29 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method of operating a compression ignition internal combustion engine combined with a catalytic reformer
US20050164879A1 (en) * 2004-01-28 2005-07-28 Engelhard Corporation Layered SOx tolerant NOx trap catalysts and methods of making and using the same
CN101598051B (en) * 2004-06-08 2013-03-06 卡明斯公司 Method for modifying trigger level for adsorber regeneration
US7111451B2 (en) * 2004-09-16 2006-09-26 Delphi Technologies, Inc. NOx adsorber diagnostics and automotive exhaust control system utilizing the same
EP1859158B1 (en) * 2005-03-01 2012-03-14 Shell Internationale Research Maatschappij B.V. Reforming of gtl-fuel for marine applications
JP4192905B2 (en) * 2005-03-04 2008-12-10 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN101163537B (en) 2005-04-11 2011-12-14 本田技研工业株式会社 Catalyst for catalytically reducing nitrogen oxide and catalyst structure
GB0603942D0 (en) 2006-02-28 2006-04-05 Johnson Matthey Plc Exhaust system for a spark-ignited internal combustion engine
JP4294041B2 (en) * 2006-07-31 2009-07-08 本田技研工業株式会社 NOx purification catalyst
JP4463248B2 (en) 2006-07-31 2010-05-19 本田技研工業株式会社 Control method for NOx reduction system
GB0617070D0 (en) 2006-08-30 2006-10-11 Johnson Matthey Plc Low Temperature Hydrocarbon SCR
US7654076B2 (en) * 2006-11-07 2010-02-02 Cummins, Inc. System for controlling absorber regeneration
US7654079B2 (en) * 2006-11-07 2010-02-02 Cummins, Inc. Diesel oxidation catalyst filter heating system
US7594392B2 (en) * 2006-11-07 2009-09-29 Cummins, Inc. System for controlling adsorber regeneration
US7707826B2 (en) * 2006-11-07 2010-05-04 Cummins, Inc. System for controlling triggering of adsorber regeneration
US7533523B2 (en) * 2006-11-07 2009-05-19 Cummins, Inc. Optimized desulfation trigger control for an adsorber
JP2010513788A (en) 2006-12-21 2010-04-30 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Device with lean burn IC internal combustion engine and exhaust system therefor
JP5122195B2 (en) 2007-07-17 2013-01-16 本田技研工業株式会社 NOx purification catalyst
JP5122196B2 (en) 2007-07-17 2013-01-16 本田技研工業株式会社 NOx purification catalyst
GB0716833D0 (en) 2007-08-31 2007-10-10 Nunn Andrew D On board diagnostic system
US8061121B2 (en) * 2007-11-06 2011-11-22 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Flex fuel internal combustion engine system
JP5081635B2 (en) * 2008-01-08 2012-11-28 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
WO2009087818A1 (en) * 2008-01-08 2009-07-16 Honda Motor Co., Ltd. Exhaust emission control device for internal combustion engine
JP2009162157A (en) * 2008-01-08 2009-07-23 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2009165904A (en) * 2008-01-10 2009-07-30 Honda Motor Co Ltd Exhaust gas purifier
JP5149647B2 (en) * 2008-02-20 2013-02-20 本田技研工業株式会社 Fuel reformer
JP4895333B2 (en) * 2008-02-20 2012-03-14 株式会社デンソー Exhaust gas purification device for internal combustion engine
US8475752B2 (en) * 2008-06-27 2013-07-02 Basf Corporation NOx adsorber catalyst with superior low temperature performance
GB0812544D0 (en) 2008-07-09 2008-08-13 Johnson Matthey Plc Exhaust system for a lean burn IC engine
JP5035363B2 (en) * 2009-02-24 2012-09-26 株式会社デンソー Engine control system
GB0903262D0 (en) 2009-02-26 2009-04-08 Johnson Matthey Plc Filter
US8512657B2 (en) 2009-02-26 2013-08-20 Johnson Matthey Public Limited Company Method and system using a filter for treating exhaust gas having particulate matter
WO2010106695A1 (en) * 2009-03-19 2010-09-23 トヨタ自動車株式会社 Exhaust purifying device for internal combustion engine
DK2995367T3 (en) * 2009-04-17 2018-04-09 Johnson Matthey Plc COPPER CATALYST SUPPORTED BY MOLECOOL SIGNS WITH SMALL RESISTANCE TO SKIN / FAT AGE TO REDUCE NITROGEN OXIDES
GB0922195D0 (en) 2009-12-21 2010-02-03 Johnson Matthey Plc Improvements in NOx traps
BR112012015467B1 (en) 2009-12-24 2020-09-29 Johnson Matthey Plc EXHAUST SYSTEM FOR A VEHICLE POSITIVE IGNITION INTERNAL COMBUSTION ENGINE AND METHOD TO HOLD AND COMBURE PARTICULATED EXHAUST GAS MATTER
GB201003781D0 (en) 2010-03-08 2010-04-21 Johnson Matthey Plc Improvements in the control of vehicle emissions
FR2959277A3 (en) * 2010-04-27 2011-10-28 Renault Sa Method for controlling e.g. oil engine of vehicle, involves allowing internal combustion heat engine to take two operating modes, where emission rate of nitrogen oxides is greater than and lower than predetermined thresholds, respectively
GB201100595D0 (en) 2010-06-02 2011-03-02 Johnson Matthey Plc Filtration improvements
GB2484911B (en) * 2010-10-22 2013-04-03 Johnson Matthey Plc NOx absorber catalyst comprising caesium silicate and at least one platinum group metal
GB201021887D0 (en) 2010-12-21 2011-02-02 Johnson Matthey Plc Oxidation catalyst for a lean burn internal combustion engine
GB201021649D0 (en) 2010-12-21 2011-02-02 Johnson Matthey Plc NOx Absorber catalyst
GB2492175B (en) 2011-06-21 2018-06-27 Johnson Matthey Plc Exhaust system for internal combustion engine comprising catalysed filter substrate
JP5938819B2 (en) 2011-10-06 2016-06-22 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Oxidation catalyst for exhaust gas treatment
GB201200781D0 (en) 2011-12-12 2012-02-29 Johnson Matthey Plc Exhaust system for a lean-burn ic engine comprising a pgm component and a scr catalyst
GB201200783D0 (en) 2011-12-12 2012-02-29 Johnson Matthey Plc Substrate monolith comprising SCR catalyst
GB201200784D0 (en) 2011-12-12 2012-02-29 Johnson Matthey Plc Exhaust system for a lean-burn internal combustion engine including SCR catalyst
GB2497597A (en) 2011-12-12 2013-06-19 Johnson Matthey Plc A Catalysed Substrate Monolith with Two Wash-Coats
GB201207313D0 (en) 2012-04-24 2012-06-13 Johnson Matthey Plc Filter substrate comprising three-way catalyst
GB201210891D0 (en) 2012-06-19 2012-08-01 Johnson Matthey Plc Catalyst composition
GB201220912D0 (en) 2012-11-21 2013-01-02 Johnson Matthey Plc Oxidation catalyst for treating the exhaust gas of a compression ignition engine
GB201221025D0 (en) 2012-11-22 2013-01-09 Johnson Matthey Plc Zoned catalysed substrate monolith
WO2014083309A1 (en) 2012-11-30 2014-06-05 Johnson Matthey Public Limited Company Bimetallic catalyst
GB201303396D0 (en) 2013-02-26 2013-04-10 Johnson Matthey Plc Oxidation catalyst for a combustion engine
US8850802B1 (en) 2013-03-15 2014-10-07 Daimler Ag Catalytic reduction of NOx
GB2512648B (en) 2013-04-05 2018-06-20 Johnson Matthey Plc Filter substrate comprising three-way catalyst
GB2513364B (en) 2013-04-24 2019-06-19 Johnson Matthey Plc Positive ignition engine and exhaust system comprising catalysed zone-coated filter substrate
EP3753625A1 (en) 2013-04-24 2020-12-23 Johnson Matthey Public Limited Company Filter substrate comprising zone-coated catalyst washcoat
GB2514177A (en) 2013-05-17 2014-11-19 Johnson Matthey Plc Oxidation catalyst for a compression ignition engine
GB2520776A (en) 2013-12-02 2015-06-03 Johnson Matthey Plc Wall-flow filter comprising catalytic washcoat
GB2546164A (en) 2015-09-30 2017-07-12 Johnson Matthey Plc Gasoline particulate filter
GB2545747A (en) 2015-12-24 2017-06-28 Johnson Matthey Plc Gasoline particulate filter
GB2546745A (en) 2016-01-26 2017-08-02 Johnson Matthey Plc Exhaust system
JP6230002B1 (en) * 2016-07-05 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP6230003B1 (en) * 2016-07-05 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP6230004B1 (en) * 2016-07-05 2017-11-15 マツダ株式会社 Engine exhaust purification system
KR101905566B1 (en) * 2016-11-16 2018-10-08 현대자동차 주식회사 Device for purifying exhaust gas
GB2583581B (en) 2019-03-29 2022-06-15 Johnson Matthey Plc A catalyst article and the use thereof for filtering fine particles
GB201904694D0 (en) 2019-04-03 2019-05-15 Johnson Matthey Plc Ceria-containingmixed oxides for oxygen storage
EP3733266A1 (en) 2019-05-03 2020-11-04 Johnson Matthey Public Limited Company Catalyst article, method and use
EP4221869A1 (en) 2020-09-29 2023-08-09 Johnson Matthey Public Limited Company A catalyst article and the use thereof for filtering fine particles

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3086353A (en) * 1960-03-03 1963-04-23 Thompson Ramo Wooldridge Inc Afterburner systems
US3303003A (en) * 1963-03-11 1967-02-07 Grace W R & Co Apparatus for purifying exhaust gases of internal combustion engines
JPS5032890B1 (en) * 1970-12-30 1975-10-25
US3795730A (en) * 1971-03-29 1974-03-05 J Kalvinskas Carbon adsorption-reduction process for nitric oxides
US3747346A (en) * 1972-04-17 1973-07-24 Nissan Motor Temperature control system for catalytic converter
JPS5219557B2 (en) * 1972-10-24 1977-05-28
US4033123A (en) * 1973-08-17 1977-07-05 Nissan Motor Co., Ltd. Internal combustion engine exhaust gas after-burning system
US4104361A (en) * 1975-03-28 1978-08-01 Exxon Research & Engineering Co. Catalyst for reduction of nitrogen oxides and process for preparing the same
JPS53115687A (en) * 1977-03-18 1978-10-09 Matsushita Electric Ind Co Ltd Gas purifying catalytic member
JPS59188053A (en) * 1983-04-08 1984-10-25 Toyota Motor Corp Air-fuel ratio compensation control for internal- combustion engine
JPH0621544B2 (en) * 1983-11-09 1994-03-23 株式会社日立製作所 Diesel engine exhaust purification system
JPS60164642A (en) * 1984-02-07 1985-08-27 Nissan Motor Co Ltd Fuel injection amount control device in diesel-engine
JPS61112715A (en) * 1984-11-08 1986-05-30 Toyota Motor Corp Exhaust purifying apparatus for diesel engine
JPS61181538A (en) * 1985-02-06 1986-08-14 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas
JPS6297630A (en) * 1985-10-24 1987-05-07 Nippon Shokubai Kagaku Kogyo Co Ltd Method for removing nitrogen oxide from nitrogen oxide-containing gas
JPS62106826A (en) * 1985-11-06 1987-05-18 Nippon Shokubai Kagaku Kogyo Co Ltd Method for removing nitrogen oxide in diesel exhaust gas
JPS62117620A (en) * 1985-11-19 1987-05-29 Nippon Shokubai Kagaku Kogyo Co Ltd Method for removing nitrogen oxide contained in exhaust gas of gasoline engine
JPH0788783B2 (en) * 1986-08-04 1995-09-27 新キャタピラ−三菱株式会社 Control device capable of manual and automatic control
JPS6338619U (en) * 1986-08-29 1988-03-12
US4904633A (en) * 1986-12-18 1990-02-27 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying exhaust gas and method for production thereof
US4839146A (en) * 1987-04-15 1989-06-13 General Motors Corporation Catalyst for simultaneous NO decomposition and CO oxidation under cycled operating conditions
US4760044A (en) * 1987-06-15 1988-07-26 Allied-Signal Inc. Catalyst for minimizing the H2 S emissions from automotive exhaust and method of its manufacture
US4780447A (en) * 1987-07-10 1988-10-25 W. R. Grace & Co.-Conn. Catalysts for controlling auto exhaust emissions including hydrocarbon, carbon monoxide, nitrogen oxides and hydrogen sulfide and method of making the catalysts
US4868148A (en) * 1987-08-24 1989-09-19 Allied-Signal Inc. Layered automotive catalytic composite
JPS6456816A (en) * 1987-08-27 1989-03-03 Sumitomo Metal Ind Heating method for molten steel in ladle
JP2592270B2 (en) * 1987-11-20 1997-03-19 株式会社ユニシアジェックス Exhaust purification system for internal combustion engine
GB8816667D0 (en) * 1988-07-13 1988-08-17 Johnson Matthey Plc Improvements in pollution control
JPH02149346A (en) * 1988-11-28 1990-06-07 Toyota Motor Corp Exhaust gas purifying catalyst
JPH0623538B2 (en) * 1989-03-30 1994-03-30 いすゞ自動車株式会社 Reburner for particulate trap
FR2647365B1 (en) * 1989-05-24 1991-08-30 Inst Francais Du Petrole MULTIFUNCTIONAL CATALYST FOR THE TREATMENT OF EXHAUST GASES FROM INTERNAL COMBUSTION ENGINES, CONTAINING URANIUM, AT LEAST ONE URANIUM PROMOTER AND AT LEAST ONE PRECIOUS METAL AND ITS PREPARATION
CA2024154C (en) * 1989-08-31 1995-02-14 Senshi Kasahara Catalyst for reducing nitrogen oxides from exhaust gas
JPH03124909A (en) * 1989-10-11 1991-05-28 Mitsubishi Motors Corp Exhaust gas cleaning device for lean burn engine
JPH088975B2 (en) * 1989-10-20 1996-01-31 松下電器産業株式会社 NO ▲ Down × ▼ Removal device
JP2830464B2 (en) * 1989-12-06 1998-12-02 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US5243819A (en) * 1989-12-12 1993-09-14 J. Eberspacher Exhaust gas cleaning device for diesel engines
US5041407A (en) * 1989-12-14 1991-08-20 Allied-Signal Inc. High-temperature three-way catalyst for treating automotive exhaust gases
US5189876A (en) * 1990-02-09 1993-03-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
JPH044044A (en) * 1990-04-20 1992-01-08 Matsushita Electric Ind Co Ltd Catalyst for reducing nitrogen oxide
JP2712758B2 (en) * 1990-05-28 1998-02-16 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JPH0441914A (en) * 1990-06-01 1992-02-12 Nissan Motor Co Ltd Exhaust gas processor for internal combustion engine
JP3046051B2 (en) * 1990-09-28 2000-05-29 マツダ株式会社 Engine exhaust gas purifier
US5343702A (en) * 1990-11-30 1994-09-06 Mitsubishi Jidosha Kokyo Kabushiki Kaisha Zeolite converter for diesel engine
US5116800A (en) * 1990-12-11 1992-05-26 Allied-Signal Inc. High durability and exhuast catalyst with low hydrogen sulfide emissions
US5174111A (en) * 1991-01-31 1992-12-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
JP2887933B2 (en) * 1991-03-13 1999-05-10 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2783074B2 (en) * 1991-10-29 1998-08-06 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8105559B2 (en) 2006-10-20 2012-01-31 Johnson Matthey Public Limited Company Thermally regenerable nitric oxide adsorbent

Also Published As

Publication number Publication date
KR960002348B1 (en) 1996-02-16
ES2104943T4 (en) 1999-01-16
EP0560991B2 (en) 2004-09-01
US5473887A (en) 1995-12-12
CA2097609A1 (en) 1993-04-03
AU2685092A (en) 1993-05-03
ES2104943T3 (en) 1997-10-16
DE69221287T3 (en) 2005-02-24
EP0560991B1 (en) 1997-07-30
AU650794B2 (en) 1994-06-30
EP0560991A1 (en) 1993-09-22
ES2104943T5 (en) 2005-04-16
CA2097609C (en) 1999-03-16
EP0560991A4 (en) 1994-03-30
KR930703529A (en) 1993-11-30
DE69221287D1 (en) 1997-09-04
WO1993007363A1 (en) 1993-04-15
DE69221287T2 (en) 1998-02-19

Similar Documents

Publication Publication Date Title
EP0560991B9 (en) Device for purifying exhaust of internal combustion engine
US5471836A (en) Exhaust purification device of internal combustion engine
US5412945A (en) Exhaust purification device of an internal combustion engine
EP0636770B1 (en) Exhaust gas cleaning device for an internal combustion engine
EP0625633B1 (en) Exhaust gas cleaning apparatus for internal combustion engines
EP0598917B1 (en) Exhaust emission control system for internal combustion engine
EP0598916B1 (en) Exhaust emission control system for internal combustion engine
EP0585900B1 (en) An exhaust gas purification device of an engine
JP2600492B2 (en) Exhaust gas purification device for internal combustion engine
US5433074A (en) Exhaust gas purification device for an engine
US6233925B1 (en) Exhaust discharge control device for internal combustion engine
EP0690213B1 (en) Exhaust purification device of internal combustion engine
EP0740056A2 (en) Direct injection type compression ignition engine
US5388403A (en) Exhaust gas purification device for an engine
EP1176298A2 (en) Emission control system and method for internal combustion engine
JP3353650B2 (en) Catalyst poisoning regeneration equipment for internal combustion engines
JP2586739B2 (en) Exhaust gas purification device for internal combustion engine
JP2001003782A (en) Exhaust emission control device for internal combustion engine
JP3487269B2 (en) Exhaust gas purification device for internal combustion engine
JPH10176522A (en) Exhaust emission control device for internal combustion engine
JP3637642B2 (en) Air-fuel ratio control device for internal combustion engine
JP3512062B2 (en) Exhaust gas purification device for internal combustion engine
JP2000179327A (en) Exhaust emission control system for internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930526

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

A4 Supplementary search report drawn up and despatched

Effective date: 19940209

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 19950313

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 69221287

Country of ref document: DE

Date of ref document: 19970904

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2104943

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET1 Fr: translation filed ** revision of the translation of the patent or the claims
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: FORD GLOBAL TECHNOLOGIES, INC.

Effective date: 19980430

Opponent name: VOLKSWAGEN AG

Effective date: 19980430

Opponent name: ROBERT BOSCH GMBH

Effective date: 19980424

K2C3 Correction of patent specification (complete document) published

Effective date: 19970730

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ROBERT BOSCH GMBH * 19980430 FORD GLOBAL TECHNOLOG

Effective date: 19980424

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20040901

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20041201

Kind code of ref document: T5

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100929

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101016

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110928

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20111011

Year of fee payment: 20

Ref country code: ES

Payment date: 20111021

Year of fee payment: 20

Ref country code: FR

Payment date: 20111103

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69221287

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69221287

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121001

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121003