EP0669606A2 - Method for noise reduction in disturbed voice channels - Google Patents

Method for noise reduction in disturbed voice channels Download PDF

Info

Publication number
EP0669606A2
EP0669606A2 EP95101977A EP95101977A EP0669606A2 EP 0669606 A2 EP0669606 A2 EP 0669606A2 EP 95101977 A EP95101977 A EP 95101977A EP 95101977 A EP95101977 A EP 95101977A EP 0669606 A2 EP0669606 A2 EP 0669606A2
Authority
EP
European Patent Office
Prior art keywords
speech
median
median filtering
signal
filtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95101977A
Other languages
German (de)
French (fr)
Other versions
EP0669606A3 (en
EP0669606B1 (en
Inventor
Klaus Dr.-Ing. Linhard
Heinz Klemm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harman Becker Automotive Systems GmbH
Original Assignee
Daimler Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG filed Critical Daimler Benz AG
Publication of EP0669606A2 publication Critical patent/EP0669606A2/en
Publication of EP0669606A3 publication Critical patent/EP0669606A3/en
Application granted granted Critical
Publication of EP0669606B1 publication Critical patent/EP0669606B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain

Definitions

  • the invention relates to a method for noise reduction of a disturbed speech signal with the aid of spectral subtraction.
  • the noise reduction using the spectral subtraction method is used in automatic speech recognition or in hands-free systems to improve speech quality, e.g. when calling from the motor vehicle.
  • the noise reduction by spectral subtraction is characterized in that relatively stationary interference can typically be reduced by approximately 10 dB without additional information about the interference being required. Only the disturbed voice channel is required.
  • the speech signal is divided into short overlapping time segments and processed segment by segment.
  • an estimate of the interference is determined in the speech pauses, and this estimate is subtracted in terms of amount in the spectral range.
  • the spectral subtraction can be implemented in different ways, but is usually implemented as a multiplicative filter in the frequency domain. This spectral subtraction shows the undesirable side effect of a residual musical noise, the "musical tones" and a speech distortion.
  • “Musical tones” are usually suppressed by excessive damping.
  • the excessive damping can be done by overestimating the interference with an overestimating factor or by choosing a special transmission characteristic.
  • the values of the current transfer function are determined for each frequency from the transfer characteristic. It is common to implement a magnitude characteristic in the spectral subtraction filter that has a higher attenuation than e.g. a characteristic curve based on the quadratic error criterion. Specially designed characteristic curves are also possible. Depending on the characteristic used, an overestimation of the disturbance by a factor of 1 to 3 is common.
  • the excessive damping due to the characteristic curve and the overestimation factor gives the desired effect of suppressing "musical tones", but it also has the side effect of a partly. considerable language distortion.
  • Median filtering has proven to be an advantageous method for further substantially improving the spectral subtraction method for reducing the noise of a disturbed speech signal.
  • the median filtering can be applied both to the magnitude spectrum of the disturbed input signal or the noise-reduced output signal after spectral subtraction and to the transfer function determined from the application of a transfer characteristic and can be carried out in the time direction or in the frequency direction.
  • the magnitude spectrum of the speech signal is composed of a sequence of segment spectra in accordance with the segmentation of the speech time signal.
  • the transfer function is represented by the time and frequency discrete values K i , 1 (eg equation (3)). A combination of different of these procedures can also be advantageous.
  • a preferred method provides, in speech pauses by using median filtering, preferably in the temporal direction, to preserve the natural impression of a weak background noise on the transmission function, and during speech activity by applying median filtering to the spectrum of magnitude of the speech signal to strongly suppress the "musical tones" to reach.
  • the separate detection of speech pauses and speech activity is provided and known in any case for determining an average noise signal during speech pauses, so that no special effort is required for this.
  • the methods according to the invention are easy to implement.
  • Median filtering is also already known for processing speech signals.
  • a median filter for successive short-term mean values which represent a measure of the average power of speech signal sections, is used as a smoothing filter. Speech pauses are recognized by comparing the smoothed sequence of values with a threshold value. A This does not result in interference-free speech signals.
  • FIG. 1 shows an example of an input signal E and an output signal A filtered with a median filter of length 3.
  • the median filter first sorts the values within the data window F and then outputs the mean value med.
  • the median filter hides short signal peaks, but receives the remaining signal edges.
  • the following noise example was used: vehicle interior noise at 140 km / h, 12 kHz sampling frequency, segment length 512 values, the last 256 values of each segment are set to zero, the first 256 values of each segment are multiplied by the Hanning window, segments are half overlapped, i.e. a new segment every 10.67ms.
  • FIG. 2 shows first the frequency (linear 0 to 6 kHz) the spectrum for 4 successive segments (time interval 10.67 ms, index I) and then the time (0 to 2.5 seconds) the signal curve for 4 successive discrete frequencies (index i ), representative of all 256 frequencies. It is shown as a typical property of the "musical tones" that the course over the frequency has relatively extensive disturbances (broad impulses), whereas the course over time has a strong impulsive character (narrow impulses). It is precisely the pulse-like character in the temporal direction that makes median filtering particularly effective. A pulse-like fault is deleted. A longer window length of the median filter is required for pulse-like disturbances with wider pulses.
  • the median filter can also be carried out on the input signal before the spectral subtraction. Ideally, this does not result in the creation of "musical tones" that would otherwise be solved by post-filtering with the median filter.
  • the median filtering on the input signal can then be advantageous if "musical tones” influence the various processing steps implemented in the spectral subtraction filter (apart from the characteristic function). It shouldn't go on possible advantages or disadvantages of median filtering on the input or output signal are discussed. In principle, both options are available and, apart from special cases of implementation, are equivalent.
  • the median filter can also be carried out on the transfer function K instead of on the magnitude spectrum of a speech signal.
  • FIG. 4 shows the transfer function K over time and over frequency. The same section is shown as in FIG. 2.
  • the transfer function shows a similar behavior as the output signal in FIG. 2nd
  • FIG. 5 shows the transfer function filtered in time with the 3-fold median. The same section is shown as in FIG. 3.
  • the median filtering in the temporal direction is extremely effective for the same reasons as for the output signal.
  • the pulse-suppressing property of median filtering has a particularly significant effect on the increased impulse disturbance and thus on the "musical tones".
  • Median filtering has a repairing effect on the pulse-like disturbance.
  • the median filtering on the magnitude spectrum of the input or output signal results in the higher gain in the suppression of impulse-like disturbances, but can also lead to changes which are particularly noticeable during speech pauses, while the median filtering of the transmission values in speech pauses essentially increases a pure attenuation of the signal, which makes it sound quieter but natural. Ideally, there are no "musical tones".
  • a preferred embodiment of the invention takes advantage of this by performing the median filtering in the case of speech activity on the magnitude spectrum and in speech pauses on the transmission values. The required speech-pause decision is available anyway with the spectral subtraction, since the formation of the noise estimate is only carried out during the speech pauses.
  • a median filtering in the frequency direction can also be carried out in accordance with equation (6).
  • the detailed explanations given apply analogously to filtering in the frequency direction. It can be seen that as the number of samples within a time segment decreases, the median filtering in the frequency direction gains advantages over the filtering in the time direction and vice versa.
  • the window length is equal to the minimum median window length 3.
  • larger window lengths lead to a further suppression of the "musical tones", but under certain circumstances also to a leveling of the speech signal which is perceived as unnatural.
  • the preferred window length is therefore 3 as indicated by way of example.
  • a larger window length can be appropriate for median filtering.
  • the time interval covered by the median temporal filtering window should not exceed 50 ms ten.
  • the window length of the median filter is based on the data segment length.
  • the data segment length should be less than 64, the median filter not greater than 5.

Abstract

Filtering is applied to the band spectrum of the noisy signal before and optionally also after spectral subtraction of the noise is applied. The required transfer function for the spectral subtraction process is obtained during speech pauses and may itself be subjected to median filtering. The filter may operate in the time domain over a window of 3 successive time segments, in total less than 50 ms. Alternatively, the filter operates in the frequency domain with a window size of less than 5 frequency units.

Description

Die Erfindung betrifft ein Verfahren zur Geräuschreduktion eines gestörten Sprachsignals mit Hilfe der spektralen Subtraktion.The invention relates to a method for noise reduction of a disturbed speech signal with the aid of spectral subtraction.

Die Geräuschreduktion mit der Methode der spektralen Subtraktion findet Anwendung bei der automatischen Spracherkennung oder bei Freisprechanlagen zur Verbesserung der Sprachqualität, z.B. beim Telefonieren aus dem Kraftfahrzeug.The noise reduction using the spectral subtraction method is used in automatic speech recognition or in hands-free systems to improve speech quality, e.g. when calling from the motor vehicle.

Die Geräuschreduktion durch spektrale Subtraktion zeichnet sich dadurch aus, daß relativ stationäre Störungen typischerweise um ca. 10dB reduziert werden können, ohne daß zusätzliche Information über die Störung benötigt wird. Es wird nur der gestörte Sprachkanal benötigt. Das Sprachsignal wird in kurze überlappende Zeitsegmente unterteilt und segmentweise bearbeitet. Bei der spektralen Subtraktion wird in den Sprachpausen ein Schätzwert der Störung ermittelt, und dieser Schätzwert wird im Spektralbereich betragsmäßig subtrahiert. Die spektrale Subtraktion ist auf verschiedene Arten realisierbar, wird aber in der Regel als multiplikatives Filter im Frequenzbereich implementiert. Diese spektrale Subtraktion zeigt den unerwünschten Nebeneffekt eines musikalischen Restgeräuschs, der "musical tones" und einer Sprachverzerrung.The noise reduction by spectral subtraction is characterized in that relatively stationary interference can typically be reduced by approximately 10 dB without additional information about the interference being required. Only the disturbed voice channel is required. The speech signal is divided into short overlapping time segments and processed segment by segment. In the case of spectral subtraction, an estimate of the interference is determined in the speech pauses, and this estimate is subtracted in terms of amount in the spectral range. The spectral subtraction can be implemented in different ways, but is usually implemented as a multiplicative filter in the frequency domain. This spectral subtraction shows the undesirable side effect of a residual musical noise, the "musical tones" and a speech distortion.

Üblicherweise werden "musical tones" durch eine überhöhte Dämpfung unterdrückt. Die überhöhte Dämpfung kann durch ein Überschätzen der Störung mit einem Überschätzfaktor erfolgen oder durch die Wahl einer speziellen Übertragungskennlinie. Aus der Übertragungskennlinie werden für jede Frequenz die Werte der aktuellen Übertragungsfunktion bestimmt. Es ist üblich im spektralen Subtraktionsfilter eine Betragskennlinie zu implementieren, die eine höhere Dämpfung aufweist als z.B. ein Kennlinie nach dem quadratischen Fehlerkriterium. Speziell entworfene Kennlinien sind ebenfalls möglich. Abhängig von der verwendeten Kennlinie ist eine Überschätzung der Störung um den Faktor 1 bis 3 üblich. Die überhöhte Dämpfung durch die Kennlinie und den Überschätzfaktor ergibt zwar den gewünschten Effekt der Unterdrückung von "musical tones", hat aber auch den Nebeneffekt einer z.T. erheblichen Verzerrung der Sprache."Musical tones" are usually suppressed by excessive damping. The excessive damping can be done by overestimating the interference with an overestimating factor or by choosing a special transmission characteristic. The values of the current transfer function are determined for each frequency from the transfer characteristic. It is common to implement a magnitude characteristic in the spectral subtraction filter that has a higher attenuation than e.g. a characteristic curve based on the quadratic error criterion. Specially designed characteristic curves are also possible. Depending on the characteristic used, an overestimation of the disturbance by a factor of 1 to 3 is common. The excessive damping due to the characteristic curve and the overestimation factor gives the desired effect of suppressing "musical tones", but it also has the side effect of a partly. considerable language distortion.

Eine weitere übliche Methode "musical tones" zu unterdrücken, ist die Maskierung durch Zulassen eines bestimmten Anteils (z.B. 20%) des ursprünglichen Geräuschs als Hintergrundgeräusch ("spectral floor"). "musical tones" werden dadurch weniger hörbar, das Geräusch wird aber auch nicht mehr vollständig unterdrückt.Another common method of suppressing "musical tones" is masking by allowing a certain proportion (e.g. 20%) of the original noise as background noise ("spectral floor"). This makes "musical tones" less audible, but the sound is no longer completely suppressed.

Es gilt bei der spektralen Subtraktion

Figure imgb0001
mit
Figure imgb0002
und für das Beispiel einer sogenannten Betragskennlinie als Übertragungskennlinie
Figure imgb0003
sowie beispielsweise die Auswahl eines minimalen Übertragungswertes für den spectral floor
Figure imgb0004
Mit den Größen:

  • S: geschätztes Ausgangssignal
  • K: Übertragungsfunktion
  • Y: gestörtes Sprachsignal
  • S: Sprachsignal
  • N: Störgeräusch
  • b: Hintergrundrestgeräusch (spectral floor)
  • a: Überschätzfaktor (overestimate)
  • N 2: in Sprachpausen geschätzte Störung
  • i: Frequenzindex
  • I: Zeitindex des Segments

Methoden zur Unterdrückung der "musical tones", durch Kennlinie, "overestimation" und "spectral floor", sind in vielfältiger Variation durch zahlreiche Veröffentlichungen bekannt, z.B.:
  • Boll, S.: Suppression of Noise in Speech Using the SABER Method, Proc. IEEE Int. Conf. on ASSP, 1978, pp. 600-609.
  • Boll, S.: Suppression of Acoustic Noise in Speech Using Spectral Substraction, IEEE Trans. on ASSP, Vol. ASSP-27, No. 2, April 79, pp. 113-120.
  • Berouti, M.; Schwartz, R.; Makhoul, J.: Enhancement of Speech Corrupted by Acoustic Noise, Proc. Int. Conf. on ASSP, 1979, pp. 208-211.
  • Vary, P.: Noise Suppression by Spectral Magnitude Estimation - Mechanism and Theoretical Limits-, Signal Processing, Vol. 8, No. 4, 1986, pp. 387-400.
  • Xie, F.; Compernolle.: Speech Enhancement by Nonlinear Spectral Estimation - A Unifying Approach, Int. Conf. Eurospeech, 1993, pp. 617-620.
It applies to spectral subtraction
Figure imgb0001
With
Figure imgb0002
and for the example of a so-called amount characteristic as a transfer characteristic
Figure imgb0003
as well as, for example, the selection of a minimum transmission value for the spectral floor
Figure imgb0004
With the sizes:
  • S: estimated output signal
  • K: transfer function
  • Y: disturbed speech signal
  • S: voice signal
  • N: noise
  • b: background noise (spectral floor)
  • a: overestimate factor
  • N 2 : Estimated disturbance during pauses in speech
  • i: frequency index
  • I: Time index of the segment

Methods for suppressing the "musical tones" by means of characteristic, "overestimation" and "spectral floor" are known in numerous variations through numerous publications, for example:
  • Boll, S .: Suppression of Noise in Speech Using the SABER Method, Proc. IEEE Int. Conf. on ASSP, 1978, pp. 600-609.
  • Boll, S .: Suppression of Acoustic Noise in Speech Using Spectral Substraction, IEEE Trans. On ASSP, Vol. ASSP-27, No. April 2, 79, pp. 113-120.
  • Berouti, M .; Schwartz, R .; Makhoul, J .: Enhancement of Speech Corrupted by Acoustic Noise, Proc. Int. Conf. on ASSP, 1979, pp. 208-211.
  • Vary, P .: Noise Suppression by Spectral Magnitude Estimation - Mechanism and Theoretical Limits-, Signal Processing, Vol. 8, No. 4, 1986, pp. 387-400.
  • Xie, F .; Compernolle .: Speech Enhancement by Nonlinear Spectral Estimation - A Unifying Approach, Int. Conf. Eurospeech, 1993, pp. 617-620.

Über die oben angesprochenen Methoden hinaus, sind weitere spezielle Methoden bekannt, die ebenfalls zur Reduzierung der "musical tones" verwendet werden: Die Amplitudenwerte zeitlich aufeinanderfolgender gestörter Sprachspektren werden gemittelt (z.B. bei Boll "magnitude averaging"). Dadurch werden zwar Rauschanteile gedämpft aber da Sprache stark instationär ist, tritt schon bei kurzen Mittelungslängen eine zeitliche Verschmierung des Sprachsignals auf (echoartiger Effekt). Bei Boll wird weiterhin ein "magnitude plus bandwith measurement test " beschrieben, nachdem spektrale Bereiche mit einer Bandbreite unter 300Hz und einer Amplitude, kleiner als eine vorgegebene Schwelle, als "residual noise" erkannt werden. Diese Bereiche werden dann zusätzlich gedämpft. Es wird von Boll vorgeschlagen, den "residual noise" dadurch zu reduzieren, daß aus drei zeitlich aufeinanderfolgenden Spektren des gefilterten Signals jeweils der minimale Wert als Ausgangssignal verwendet wird. Die Ausgabe der minimalen Spektrallinie von drei zeitlich benachbarten Linien führt zwar zu einer deutlichen Reduzierung des Restgeräuschs und damit der "musical tones", gelegentlich treten jedoch in unregelmäßigen Abständen plötzliche kurze "Geräuschbündel" auf.In addition to the methods mentioned above, other special methods are known which are also used to reduce the "musical tones": the amplitude values of temporally successive disturbed speech spectra are averaged (e.g. Boll "magnitude averaging"). This dampens noise components, but since speech is highly unsteady, the speech signal is smeared over time even with short averaging lengths (echo-like effect). Boll continues to describe a "magnitude plus bandwith measurement test" after spectral ranges with a bandwidth below 300 Hz and an amplitude smaller than a predetermined threshold are recognized as "residual noise". These areas are then additionally damped. It is proposed by Boll to reduce the "residual noise" by using the minimum value as the output signal from three temporally successive spectra of the filtered signal. The output of the minimum spectral line from three adjacent lines leads to a significant reduction in the residual noise and thus the "musical tones", but occasionally sudden, short "noise bundles" occur at irregular intervals.

Ein weiteres Verfahren verwendet eine sogenannte nichtlineare spektrale Subtraktion. Der Überschätzfaktor wird hier abhängig vom Pausengeräusch und dem aktuell anliegenden Signal errechnet. Die optimale Einstellung dieser Regelung ist jedoch schwierig. (Lockwood, P.; Boudy, J.: Experiments with a Nonlinear Spectral Subtraction (NSS), Hidden Markov Models and the projection, for robust speech recognition in cars, Speech Communication, No. 11, 1992, p. 215-228).Another method uses so-called nonlinear spectral subtraction. The overestimation factor is calculated here depending on the pause noise and the current signal. However, the optimal setting of this regulation is difficult. (Lockwood, P .; Boudy, J .: Experiments with a Nonlinear Spectral Subtraction (NSS), Hidden Markov Models and the projection, for robust speech recognition in cars, Speech Communication, No. 11, 1992, p. 215-228) .

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Geräuschreduktion eines gestörten Sprachsignals anzugeben, welches bei hoher Sprachqualität des Ausgangssignals eine starke Reduktion der Geräusche, insbesondere auch der "musical tones" ermöglicht.It is an object of the present invention to provide a method for reducing the noise of a disturbed speech signal which, with a high speech quality of the output signal, enables a strong reduction in the noise, in particular also the "musical tones".

Erfindungsgemäße Lösungen dieser Aufgabe sowie vorteilhafte Ausführungen und Weiterbildungen sind in den Patentansprüchen beschrieben.Solutions to this task according to the invention as well as advantageous designs and further developments are described in the patent claims.

Die Medianfilterung erweist sich als vorteilhaftes Verfahren zur weiteren wesentlichen Verbesserung des Verfahrens der spektralen Subtraktion für die Geräuschreduktion eines gestörten Sprachsignals. Die Medianfilterung kann dabei sowohl auf das Betragsspektrum des gestörten Eingangssignals oder des nach der spektralen Subtraktion geräuschreduzierten Ausgangssignals als auch auf die aus der Anwendung einer Übertragungskennlinie bestimmten Übertragungsfunktion angewandt und in Zeitrichtung oder in Frequenzrichtung durchgeführt werden. Das Betragsspektrum des Sprachsignals setzt sich entsprechend der Segmentierung des Sprachzeitsignals aus einer Folge von Segmentspektren zusammen. Die Übertragungsfunktion ist repräsentiert durch die zeit- und frequenzdiskreten Werte Ki,1 (z.B. Gleichung (3)). Auch eine Kombination verschiedener dieser Vorgehensweisen kann vorteilhaft sein. So sieht ein bevorzugtes Verfahren vor, in Sprachpausen durch Anwendung der Medianfilterung bevorzugt in zeitlicher Richtung, auf die Übertragungsfunktion den natürlichen Eindruck eines schwachen Hintergrundgeräusches zu bewahren und während Sprachaktivität durch Anwendung der Medianfilterung auf das Betragsspektrum des Sprachsignals eine starke Unterdrückung der "musical tones" zu erreichen. Die getrennte Erkennung von Sprachpausen und Sprachaktivität ist zur Ermittlung eines mittleren Geräuschsignals während Sprachpausen ohnehin vorgesehen und bekannt, so daß hierfür kein gesonderter Aufwand erforderlich ist. Die erfindungsgemäßen Verfahren sind einfach implementierbar.Median filtering has proven to be an advantageous method for further substantially improving the spectral subtraction method for reducing the noise of a disturbed speech signal. The median filtering can be applied both to the magnitude spectrum of the disturbed input signal or the noise-reduced output signal after spectral subtraction and to the transfer function determined from the application of a transfer characteristic and can be carried out in the time direction or in the frequency direction. The magnitude spectrum of the speech signal is composed of a sequence of segment spectra in accordance with the segmentation of the speech time signal. The transfer function is represented by the time and frequency discrete values K i , 1 (eg equation (3)). A combination of different of these procedures can also be advantageous. Thus, a preferred method provides, in speech pauses by using median filtering, preferably in the temporal direction, to preserve the natural impression of a weak background noise on the transmission function, and during speech activity by applying median filtering to the spectrum of magnitude of the speech signal to strongly suppress the "musical tones" to reach. The separate detection of speech pauses and speech activity is provided and known in any case for determining an average noise signal during speech pauses, so that no special effort is required for this. The methods according to the invention are easy to implement.

Das Prinzip der Medianfilterung an sich ist allgemein bekannt (z.B. Mitra, S.K.: Handbook for Digital Signal Processing, John Wiley & Sons, 1993).The principle of median filtering is generally known (e.g. Mitra, S.K .: Handbook for Digital Signal Processing, John Wiley & Sons, 1993).

Die Medianfilterung ist auch zur Verarbeitung von Sprachsignalen bereits bekannt. So wird beispielsweise in DE 32 43 231 A1 und DE 32 43 232 A1 ein Medianfilter auf aufeinanderfolgende Kurzzeitmittelwerte, die ein Maß für die mittlere Leistung von Sprachsignalabschnitten darstellen, als Glättungsfilter angewandt. Durch Vergleich der geglätteten Wertefolge mit einem Schwellwert werden Sprachpausen erkannt. Eine Störbefreiung des Sprachsignals findet dadurch nicht statt.Median filtering is also already known for processing speech signals. In DE 32 43 231 A1 and DE 32 43 232 A1, for example, a median filter for successive short-term mean values, which represent a measure of the average power of speech signal sections, is used as a smoothing filter. Speech pauses are recognized by comparing the smoothed sequence of values with a threshold value. A This does not result in interference-free speech signals.

In IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-23, No. 6, Dec. 1975, S. 552-557 ist die Anwendung eines Medianfilters im Kombination mit einem linearen Glättungsfilter auf Abtastwerte der Intensität eines Sprachsignals beschrieben. Eine Signalverarbeitung im Spektralbereich ist nicht vorgesehen und es kann nur eine geringe Störüberlagerung bewältigt werden.In IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-23, No. 6, Dec. 1975, pp. 552-557 describes the application of a median filter in combination with a linear smoothing filter to samples of the intensity of a speech signal. Signal processing in the spectral range is not provided and only a slight interference superposition can be managed.

FIG. 1 zeigt ein Beispiel für ein Eingangssignal E und ein mit einem Medianfilter der Länge 3 gefiltertes Ausgangssignal A. Das Medianfilter sortiert zuerst die Werte innerhalb des Datenfensters F und gibt dann den mittleren Wert med aus. Das Medianfilter blendet kurze Signalspitzen aus, erhält aber die übrigen Signalflanken.FIG. 1 shows an example of an input signal E and an output signal A filtered with a median filter of length 3. The median filter first sorts the values within the data window F and then outputs the mean value med. The median filter hides short signal peaks, but receives the remaining signal edges.

Für das Beispiel der Anwendung eines Medianfilters der Länge 3 auf ein geräuschreduziertes Betragsspektrum eines Sprachsignals gilt bei zeitlicher Filterung

Figure imgb0005
oder bei Filterung in Frequenzrichtung
Figure imgb0006
Der Filterung am Betrag ist die Filterung am Betragsquadrat im Prinzip gleichwertig.For the example of the application of a median filter of length 3 to a noise-reduced magnitude spectrum of a speech signal, time filtering applies
Figure imgb0005
or with filtering in the frequency direction
Figure imgb0006
Filtering on the amount is basically equivalent to filtering on the amount square.

Die Wirkung der Medianfilterung auf die Verringerung der "musical tones" ist veranschaulicht anhand von Darstellungen eines typischen zeitlichen und spektralen Verlaufs solcher "musical tones". Dargestellt ist das Betragsspektrum eines in einer Sprachpause gewonnenen und mit Hilfe der spektralen Subtraktion geschätzten Ausgangssignals. Da in der Sprachpause keine Sprachanteile vorliegen treten vor allem die "musical tones" deutlich in Erscheinung.The effect of median filtering on the reduction of the "musical tones" is illustrated by means of representations of a typical temporal and spectral course of such "musical tones". The spectrum of magnitudes of an output signal obtained in a speech pause and estimated with the aid of the spectral subtraction is shown. Since there are no parts of the language during the language break, especially the "musical tones" appear clearly.

Als Beispiel der spektralen Subtraktion wurde verwendet: Standardverfahren mit Betragskennlinie, 20% Hintergrundgeräusch (b = 0,2), ohne Überschätzfaktor (a = 1,0).The following was used as an example of spectral subtraction: standard method with magnitude characteristic, 20% background noise (b = 0.2), without overestimation factor (a = 1.0).

Als Geräusch-Beispiel wurde verwendet: Fahrzeuginnengeräusch bei 140km/h, 12kHz Abtastfrequenz, Segmentlänge 512 Werte, die letzten 256 Werte jedes Segments werden zu Null gesetzt, die ersten 256 Werte jedes Segments werden mit Hanning-Fenster multipliziert, Segmente sind halb überlappt, d.h. alle 10,67ms ein neues Segment.The following noise example was used: vehicle interior noise at 140 km / h, 12 kHz sampling frequency, segment length 512 values, the last 256 values of each segment are set to zero, the first 256 values of each segment are multiplied by the Hanning window, segments are half overlapped, i.e. a new segment every 10.67ms.

FIG. 2 zeigt zunächst über der Frequenz (linear 0 bis 6kHz) das Spektrum für 4 zeitlich aufeinanderfolgende Segmente (Zeitabstand 10,67ms, Index I) und dann über der Zeit (0 bis 2,5sec) den Signalverlauf für 4 aufeinanderfolgende diskrete Frequenzen (Index i), stellvertretend für alle 256 Frequenzen. Es zeigt sich als typische Eigenschaft der "musical tones", daß der Verlauf über der Frequenz relativ ausgedehnte Störungen (breite Impulse) aufweist, wogegen der Verlauf über der Zeit einen starken impulsartigen Charakter (schmale Impulse) hat. Genau der impulsartige Charakter in zeitlicher Richtung macht die Medianfilterung hier besonders effektiv. Eine impulsartige Störung wird gelöscht. Für impulsartige Störungen mit breiteren Impulsen ist eine größere Fensterlänge des Medianfilters erforderlich. Im Gegensatz zu linearen Filterungsverfahren (Glättungsfilter, "linear smoother") findet keine Verschmierung des Signalverlaufs statt. Die Darstellung der in zeitlicher Richtung mit dem 3-er Median gefilterten Signale in FIG. 3 verdeutlicht diese Eigenschaft. Das gefilterte Signal zeigt im Zeitverlauf deutlich einen glatteren Verlauf. Im Frequenzverlauf sind einige der (breiteren) Impulse durch die Filterung in Zeitrichtung ebenfalls gelöscht.FIG. 2 shows first the frequency (linear 0 to 6 kHz) the spectrum for 4 successive segments (time interval 10.67 ms, index I) and then the time (0 to 2.5 seconds) the signal curve for 4 successive discrete frequencies (index i ), representative of all 256 frequencies. It is shown as a typical property of the "musical tones" that the course over the frequency has relatively extensive disturbances (broad impulses), whereas the course over time has a strong impulsive character (narrow impulses). It is precisely the pulse-like character in the temporal direction that makes median filtering particularly effective. A pulse-like fault is deleted. A longer window length of the median filter is required for pulse-like disturbances with wider pulses. In contrast to linear filtering methods (smoothing filters, "linear smoother") there is no smearing of the signal curve. The representation of the signals filtered in time with the 3-fold median in FIG. 3 illustrates this property. The filtered signal clearly shows a smoother course over time. In the frequency response, some of the (broader) pulses are also deleted by filtering in the time direction.

Bei Sprachaktivität führt die Anwendung des Medianfilters in zeitlicher Richtung der einzelnen Spektrallinien zu einer Verbesserung der Sprachqualität, da impulsartige Störungen des Sprachspektrums "repariert" werden. Das Sprachsignal selbst wird nur sehr gering verändert. Eine Erhöhung der Fensterlänge von 3 auf 5 (in Zeitrichtung) ergibt zwar eine noch bessere Auslöschung der "musical tones", es wird aber bereits ein schwacher echoartiger Charakter der Sprache hörbar.In the case of speech activity, the use of the median filter in the temporal direction of the individual spectral lines leads to an improvement in the speech quality, since impulsive disturbances in the speech spectrum are "repaired". The voice signal itself is changed very little. Increasing the window length from 3 to 5 (in the time direction) results in an even better extinction of the "musical tones", but a weak echo-like character of the language is already audible.

Das Medianfilter kann anstatt am Ausgangssignal auch am Eingangssignal, vor der spektralen Subtraktion, durchgeführt werden. Im Idealfall können dadurch keine "musical tones" entstehen, die sonst alternativ durch die Nachfilterung mit dem Medianfilter gelöst werden. Die Medianfilterung am Eingangssignal kann dann vorteilhaft sein, wenn "musical tones" die verschiedenen implementierten Verarbeitungsschritte im spektralen Substraktionsfilter (außer der Kennlinienfunktion) beeinflussen. Es soll im weiteren nicht auf mögliche Vor- oder Nachteile einer Medianfilterung am Ein- oder Ausgangssignal eingegangen werden. Im Prinzip sind beide Möglichkeiten gegeben und von speziellen Fällen der Implementierung abgesehen gleichwertig.Instead of the output signal, the median filter can also be carried out on the input signal before the spectral subtraction. Ideally, this does not result in the creation of "musical tones" that would otherwise be solved by post-filtering with the median filter. The median filtering on the input signal can then be advantageous if "musical tones" influence the various processing steps implemented in the spectral subtraction filter (apart from the characteristic function). It shouldn't go on possible advantages or disadvantages of median filtering on the input or output signal are discussed. In principle, both options are available and, apart from special cases of implementation, are equivalent.

Das Medianfilter kann anstatt am Betragsspektrum eines Sprachsignals auch an der Übertragungsfunktion K ausgeführt werden.The median filter can also be carried out on the transfer function K instead of on the magnitude spectrum of a speech signal.

Es gilt für den 3-er Median:

Figure imgb0007
oder
Figure imgb0008
FIG. 4 zeigt die Übertragungsfunktion K über der Zeit und über der Frequenz. Dargestellt ist der gleiche Ausschnitt wie in FIG. 2. Die Übertragungsfunktion zeigt ein ähnliches Verhalten wie das Ausgangssignal in FIG. 2.The following applies to the median of 3:
Figure imgb0007
or
Figure imgb0008
FIG. 4 shows the transfer function K over time and over frequency. The same section is shown as in FIG. 2. The transfer function shows a similar behavior as the output signal in FIG. 2nd

FIG. 5 zeigt die in zeitlicher Richtung mit dem 3-er Median gefilterte Übertragungsfunktion. Dargestellt ist der gleiche Ausschnitt wie in FIG. 3. Auch hier ist die Medianfilterung in zeitlicher Richtung aus den gleichen Gründen wie beim Ausgangssignal äußerst effektiv.FIG. 5 shows the transfer function filtered in time with the 3-fold median. The same section is shown as in FIG. 3. Here too, the median filtering in the temporal direction is extremely effective for the same reasons as for the output signal.

Die effektive Unterdrückung der "musical tones" durch die Medianfilterung kann wie folgt erklärt werden:

  • Ein Eingangssignal mit einer impulsartigen Störung verursacht die entsprechende impulsartige Änderung der Übertragungsfunktion. Im ursprünglichen Geräusch gehört dieser lokale Impuls zum natürlichen Geräusch und wird deshalb nicht als besonders störend empfunden. Das Spektrum des Eingangssignals wird mit der Übertragungsfunktion multipliziert. Die impulsartige Störung wird dadurch zusätzlich verstärkt ist jetzt als "musical tone" hörbar.
The effective suppression of the "musical tones" by median filtering can be explained as follows:
  • An input signal with a pulse-like disturbance causes the corresponding pulse-like change in the transfer function. In the original sound, this local impulse is part of the natural sound and is therefore not perceived as particularly disturbing. The spectrum of the input signal is multiplied by the transfer function. The pulse-like disturbance is additionally amplified and can now be heard as a "musical tone".

Die impulsunterdrückende Eigenschaft der Medianfilterung wirkt sich besonders deutlich auf die verstärkte Impulsstörung und somit auf die "musical tones" aus. Die Medianfilterung wirkt reparierend auf die impulsartige Störung.The pulse-suppressing property of median filtering has a particularly significant effect on the increased impulse disturbance and thus on the "musical tones". Median filtering has a repairing effect on the pulse-like disturbance.

Die Medianfilterung am Betragsspektrum des Eingangs- oder Ausgangssignals ergibt gegenüber der Medianfilterung an den Übertragungswerten den höheren Gewinn an der Unterdrückung von impulsartigen Störungen, kann aber auch zu besonders in Sprachpausen auffallenden als unnatürlich empfundenen Veränderungen führen, während die Medianfilterung der Übertragungswerte in Sprachpausen im wesentlichen zu einer reinen Dämpfung des Signals führt, das dadurch leiser aber natürlich klingt. Im Idealfall entstehen keine "musical tones". Eine bevorzugte Ausführungsform der Erfindung macht sich dies zunutze, indem die Medianfilterung bei Sprachaktivität am Betragsspektrum und in Sprachpausen an den Übertragungswerten durchgeführt wird. Die erforderliche Sprach-Pausen-Entscheidung steht bei der spektralen Subtraktion ohnehin zur Verfügung, da die Bildung des Geräuschschätzwertes nur in den Sprachpausen durchgeführt wird.Compared to the median filtering on the transmission values, the median filtering on the magnitude spectrum of the input or output signal results in the higher gain in the suppression of impulse-like disturbances, but can also lead to changes which are particularly noticeable during speech pauses, while the median filtering of the transmission values in speech pauses essentially increases a pure attenuation of the signal, which makes it sound quieter but natural. Ideally, there are no "musical tones". A preferred embodiment of the invention takes advantage of this by performing the median filtering in the case of speech activity on the magnitude spectrum and in speech pauses on the transmission values. The required speech-pause decision is available anyway with the spectral subtraction, since the formation of the noise estimate is only carried out during the speech pauses.

Anstelle der Medianfilterung in Zeitrichtung wie beschrieben kann auch eine Medianfilterung in Frequenzrichtung gemäß Gleichung (6) durchgeführt werden. Die gegebenen ausführlichen Darlegungen gelten für die Filterung in Frequenzrichtung analog. Es zeigt sich, daS mit abnehmender Zahl der Abtastwerte innerhalb eines Zeitsegments die Medianfilterung in Frequenzrichtung an Vorteilen gewinnt gegenüber der Filterung in Zeitrichtung und umgekehrt.Instead of the median filtering in the time direction as described, a median filtering in the frequency direction can also be carried out in accordance with equation (6). The detailed explanations given apply analogously to filtering in the frequency direction. It can be seen that as the number of samples within a time segment decreases, the median filtering in the frequency direction gains advantages over the filtering in the time direction and vice versa.

Bei den gebräuchlichen Werten für die Segmentlänge nach Zeit- und Abtastwerten ist die Anwendung der Medianfilterung in Zeitrichtung besonders vorteilhaft.In the case of the customary values for the segment length according to time and sample values, the use of median filtering in the time direction is particularly advantageous.

Bei der beschriebenen Anwendung einer Medianfilterung in zeitlicher Richtung mit den beispielhaft angegebenen Werten für Abtastrate und Fensterlänge ist die Fensterlänge wie im Beispiel angegeben gleich der minimalen Medianfensterlänge 3. Größere Fensterlängen führen in diesem Falle zwar zu einer weiteren Unterdrückung der "musical tones", u.U. aber auch zu einer als unnatürlich empfundenen Einebnung des Sprachsignals. Die bevorzugte Fensterlänge ist daher 3 wie beispielhaft angegeben. Für zeitlich kürzere Segmente kann eine größere Fensterlänge bei der Medianfilterung angemessen sein. Der von dem Fenster der zeitlichen Medianfilterung abgedeckte Zeitintervall sollte aber 50ms nicht überschreiten.In the described application of median filtering in the temporal direction with the values for sample rate and window length given by way of example, the window length, as indicated in the example, is equal to the minimum median window length 3. In this case, larger window lengths lead to a further suppression of the "musical tones", but under certain circumstances also to a leveling of the speech signal which is perceived as unnatural. The preferred window length is therefore 3 as indicated by way of example. For segments that are shorter in time, a larger window length can be appropriate for median filtering. However, the time interval covered by the median temporal filtering window should not exceed 50 ms ten.

Für die Filterung in Frequenzrichtung orientiert sich die Fensterlänge des Medianfilters an der Datensegmentlänge. Die Datensegmentlänge sollte im zahlenmäßig beschriebenen Beispiel kleiner als 64 sein, das Medianfilter nicht größer als 5.For filtering in the frequency direction, the window length of the median filter is based on the data segment length. In the numerically described example, the data segment length should be less than 64, the median filter not greater than 5.

Claims (11)

1. Verfahren zur Geräuschreduktion eines gestörten Sprachsignals mit Hilfe der spektralen Subtraktion, dadurch gekennzeichnet, daß das Betragsspektrum des Sprachsignals einer Medianfilterung unterzogen wird.1. A method for noise reduction of a disturbed speech signal with the aid of spectral subtraction, characterized in that the magnitude spectrum of the speech signal is subjected to median filtering. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Medianfilterung auf das Betragsspektrum des gestörten Eingangssignals angewandt wird.2. The method according to claim 1, characterized in that the median filtering is applied to the magnitude spectrum of the disturbed input signal. 3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Medianfilterung auf das Betragsspektrum des Ausgangssignals der spektralen Subtraktion angewandt wird.3. The method according to any one of claims 1 and 2, characterized in that the median filtering is applied to the magnitude spectrum of the output signal of the spectral subtraction. 4. Verfahren zur Geräuschreduktion eines gestörten Sprachsignals mit Hilfe der spektralen Subtraktion, wobei aus einer vorgebbaren Übertragungskennlinie eine Übertragungsfunktion für die spektrale Subtraktion bestimmt wird, dadurch gekennzeichnet, daß die Übertragungsfunktion einer Medianfilterung unterzogen werden.4. A method for noise reduction of a disturbed speech signal with the aid of spectral subtraction, a transfer function for the spectral subtraction being determined from a predefinable transfer characteristic, characterized in that the transfer function is subjected to median filtering. 5. Verfahren zur Geräuschreduktion eines gestörten Sprachsignals mit einer Kombination vorhergehender Ansprüche.5. A method for noise reduction of a disturbed speech signal with a combination of the preceding claims. 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Medianfilterung in Sprachpausen auf die Übertragungswerte und bei Sprachaktivität auf das Betragsspektrum des Sprachsignals angewandt wird.6. The method according to claim 5, characterized in that the median filtering in speech pauses is applied to the transmission values and in speech activity to the magnitude spectrum of the speech signal. 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Medianfilterung in zeitlicher Richtung angewandt wird.7. The method according to any one of claims 1 to 6, characterized in that the median filtering is applied in the temporal direction. 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Fensterlänge des Medianfilters drei aufeinanderfolgende Zeitsegmente umfaßt.8. The method according to claim 7, characterized in that the window length of the median filter comprises three successive time segments. 9. Verfahren nach Anspruch 7 oder Anspruch 8, dadurch gekennzeichnet, daß die Fensterlänge des Medianfilters kleiner als 50ms ist.9. The method according to claim 7 or claim 8, characterized in that the window length of the median filter is less than 50ms. 10. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Medianfilterung in Frequenzrichtung angewandt wird.10. The method according to any one of claims 1 to 6, characterized in that the median filtering is applied in the frequency direction. 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die Fensterlänge des Medianfilters nicht mehr als 5 Frequenzwerte umfaßt.11. The method according to claim 10, characterized in that the window length of the median filter comprises no more than 5 frequency values.
EP95101977A 1994-02-23 1995-02-14 Method for noise reduction in disturbed voice channels Expired - Lifetime EP0669606B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4405723A DE4405723A1 (en) 1994-02-23 1994-02-23 Method for noise reduction of a disturbed speech signal
DE4405723 1994-02-23

Publications (3)

Publication Number Publication Date
EP0669606A2 true EP0669606A2 (en) 1995-08-30
EP0669606A3 EP0669606A3 (en) 1995-10-25
EP0669606B1 EP0669606B1 (en) 1999-09-22

Family

ID=6510930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95101977A Expired - Lifetime EP0669606B1 (en) 1994-02-23 1995-02-14 Method for noise reduction in disturbed voice channels

Country Status (4)

Country Link
EP (1) EP0669606B1 (en)
AT (1) ATE185014T1 (en)
DE (2) DE4405723A1 (en)
ES (1) ES2138669T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003965A1 (en) * 1996-07-19 1998-01-29 Daimler-Benz Ag Method of reducing voice signal interference
EP1065656A2 (en) * 1994-05-13 2001-01-03 Sony Corporation Method for reducing noise in an input speech signal

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10136491B4 (en) * 2001-03-07 2004-11-25 T-Mobile Deutschland Gmbh Method and device for improving voice quality on transparent telecommunication transmission paths
PL206300B1 (en) 2001-03-07 2010-07-30 T Mobile Deutschland Gmbht Mobile Deutschland Gmbh Method and device for improving voice quality on transparent telecommunication-transmission paths
DE10311587A1 (en) * 2003-03-14 2004-09-23 Volkswagen Ag Hand free speech system for use in a road vehicle has signal processing and filtering to remove background noise
DE102011002976A1 (en) 2011-01-21 2012-07-26 Behr Gmbh & Co. Kg Refrigerant condenser assembly
EP2673777B1 (en) * 2011-02-10 2018-12-26 Dolby Laboratories Licensing Corporation Combined suppression of noise and out-of-location signals
US9173025B2 (en) 2012-02-08 2015-10-27 Dolby Laboratories Licensing Corporation Combined suppression of noise, echo, and out-of-location signals
US8712076B2 (en) 2012-02-08 2014-04-29 Dolby Laboratories Licensing Corporation Post-processing including median filtering of noise suppression gains

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0110467A1 (en) * 1982-11-23 1984-06-13 Philips Kommunikations Industrie AG Arrangement for the detection of speech intervals
US4837828A (en) * 1982-05-12 1989-06-06 Nec Corporation Pattern feature extracting system
DE4229577A1 (en) * 1992-09-04 1994-03-10 Daimler Benz Ag Method for speech recognition with which an adaptation of microphone and speech characteristics is achieved

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3243232A1 (en) * 1982-11-23 1984-05-24 Philips Kommunikations Industrie AG, 8500 Nürnberg METHOD FOR DETECTING VOICE BREAKS
US4682230A (en) * 1986-03-21 1987-07-21 Rca Corporation Adaptive median filter system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837828A (en) * 1982-05-12 1989-06-06 Nec Corporation Pattern feature extracting system
EP0110467A1 (en) * 1982-11-23 1984-06-13 Philips Kommunikations Industrie AG Arrangement for the detection of speech intervals
DE4229577A1 (en) * 1992-09-04 1994-03-10 Daimler Benz Ag Method for speech recognition with which an adaptation of microphone and speech characteristics is achieved

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ICASSP 81, Bd.1, 30. M{rz 1981, ATLANTA Seiten 1086 - 1088 T.L.PETERSEN ET AL. 'Acoustic suppression in the context of a perceptual model' *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1065656A2 (en) * 1994-05-13 2001-01-03 Sony Corporation Method for reducing noise in an input speech signal
EP1065656A3 (en) * 1994-05-13 2001-01-10 Sony Corporation Method for reducing noise in an input speech signal
WO1998003965A1 (en) * 1996-07-19 1998-01-29 Daimler-Benz Ag Method of reducing voice signal interference
US6687669B1 (en) 1996-07-19 2004-02-03 Schroegmeier Peter Method of reducing voice signal interference

Also Published As

Publication number Publication date
DE59506864D1 (en) 1999-10-28
ATE185014T1 (en) 1999-10-15
EP0669606A3 (en) 1995-10-25
DE4405723A1 (en) 1995-08-24
EP0669606B1 (en) 1999-09-22
ES2138669T3 (en) 2000-01-16

Similar Documents

Publication Publication Date Title
DE19747885B4 (en) Method for reducing interference of acoustic signals by means of the adaptive filter method of spectral subtraction
EP0912974B1 (en) Method of reducing voice signal interference
DE60131639T2 (en) Apparatus and methods for determining noise cancellation performance values for a voice communication system
DE69627580T2 (en) Method of reducing noise in a speech signal
DE602005000539T2 (en) Gain-controlled noise cancellation
DE69531710T2 (en) Method and device for reducing noise in speech signals
DE112011104737B4 (en) Noise suppression device
EP1088300B1 (en) Method for executing automatic evaluation of transmission quality of audio signals
DE112017007005B4 (en) ACOUSTIC SIGNAL PROCESSING DEVICE, ACOUSTIC SIGNAL PROCESSING METHOD AND HANDS-FREE COMMUNICATION DEVICE
EP1386307B1 (en) Method and device for determining a quality measure for an audio signal
DE4243831A1 (en) Procedure for estimating the runtime on disturbed voice channels
DE69635141T2 (en) Method for generating speech feature signals and apparatus for carrying it out
DE112011106045B4 (en) Audio signal recovery device and audio signal recovery method
EP0668007A1 (en) Mobile radiotelephone set with handsfree device
DE112007003625T5 (en) Echo cancellation device, echo cancellation system, echo cancellation method and computer program
EP0669606B1 (en) Method for noise reduction in disturbed voice channels
EP3089481A1 (en) Method for frequency-dependent noise suppression in an input signal
DE102013011761A1 (en) Motor vehicle has estimating unit and background noise spectrum unit that are designed to open dynamic filter with low background noise and close with strong background noise
EP0623995A1 (en) Device for the noise dependent volume control of a car radio
DE3733983A1 (en) Method for damping interfering (wind) noise in sound signals transmitted by hearing aids
DE10157535B4 (en) Method and apparatus for reducing random, continuous, transient disturbances in audio signals
EP2080197B1 (en) Apparatus for noise suppression in an audio signal
DE10137348A1 (en) Noise filtering method in voice communication apparatus, involves controlling overestimation factor and background noise variable in transfer function of wiener filter based on ratio of speech and noise signal
DE3230391C2 (en)
DE10025655B4 (en) A method of removing an unwanted component of a signal and system for distinguishing between unwanted and desired signal components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19951117

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981112

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 185014

Country of ref document: AT

Date of ref document: 19991015

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59506864

Country of ref document: DE

Date of ref document: 19991028

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2138669

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH

Free format text: DAIMLERCHRYSLER AG#EPPLESTRASSE 225#70567 STUTTGART (DE) -TRANSFER TO- HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH#BECKER-GOERING-STRASSE 16#76307 KARLSBAD (DE)

NLS Nl: assignments of ep-patents

Owner name: HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH

Effective date: 20050630

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110228

Year of fee payment: 17

Ref country code: CH

Payment date: 20110223

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59506864

Country of ref document: DE

Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59506864

Country of ref document: DE

Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE

Effective date: 20120411

Ref country code: DE

Ref legal event code: R081

Ref document number: 59506864

Country of ref document: DE

Owner name: NUANCE COMMUNICATIONS, INC. (N.D.GES.D. STAATE, US

Free format text: FORMER OWNER: HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH, 76307 KARLSBAD, DE

Effective date: 20120411

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: NUANCE COMMUNICATIONS, INC., US

Effective date: 20120924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140113

Year of fee payment: 20

Ref country code: IT

Payment date: 20140213

Year of fee payment: 20

Ref country code: FR

Payment date: 20140211

Year of fee payment: 20

Ref country code: AT

Payment date: 20140128

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140212

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140417

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59506864

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150213

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 185014

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150213

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150215