EP0679714A2 - Detergent compositions containing cellulase enzyme and selected perfumes for improved odor and stability - Google Patents

Detergent compositions containing cellulase enzyme and selected perfumes for improved odor and stability Download PDF

Info

Publication number
EP0679714A2
EP0679714A2 EP95870041A EP95870041A EP0679714A2 EP 0679714 A2 EP0679714 A2 EP 0679714A2 EP 95870041 A EP95870041 A EP 95870041A EP 95870041 A EP95870041 A EP 95870041A EP 0679714 A2 EP0679714 A2 EP 0679714A2
Authority
EP
European Patent Office
Prior art keywords
molecular weight
amu
detergent composition
aliphatic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP95870041A
Other languages
German (de)
French (fr)
Other versions
EP0679714A3 (en
Inventor
Jill Bonham Costa
Michael Stanford Showell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP0679714A2 publication Critical patent/EP0679714A2/en
Publication of EP0679714A3 publication Critical patent/EP0679714A3/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38645Preparations containing enzymes, e.g. protease or amylase containing cellulase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

A detergent composition containing cellulase and perfume is provided. Specifically, the detergent composition comprises: (a) a cellulase enzyme; and (b) a perfume containing at least 25% by weight of at least one fragrance material selected from the group consisting of aliphatic ketones with a molecular weight of between 200 and 350 AMU, aromatic ketones with a molecular weight of between 150 and 350 AMU, aliphatic aldehydes with a molecular weight of between 160 and 350 AMU, aromatic aldehydes with a molecular weight of between 150 and 350 AMU, condensation products of aldehydes and amines with a molecular weight between 190 and 350 AMU, aromatic and aliphatic lactones with a molecular weight between 140 and 350 AMU, aromatic and aliphatic ethers with a molecular weight between 150 and 350 AMU, aliphatic alcohols with a molecular weight between 200 and 350 AMU, aromatic and aliphatic esters with a molecular weight between 190 and 350 AMU and mixtures thereof. The perfume is substantially free of halogenated fragrance materials and nitromusks.

Description

    FIELD OF THE INVENTION
  • The present invention generally relates to detergent compositions containing celluase enzyme and selected perfumes. More particularly, the invention relates to detergent compositions incorporating perfumes which counteract the residual malodors associated with cellulase enzyme, the feedstock in which cellulases are contained, and cellulase treated laundry. Also, the perfumes selected herein exhibit improved compatibility with the cellulase enzyme contained in the detergent composition. The detergent composition of the invention may be formulated as a liquid, granular, or laundry bar composition.
  • BACKGROUND OF THE INVENTION
  • In the art of detergency, formulators have used enzymes in detergent compositions for a variety of fabric laundering purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, and for the prevention of refugee dye transfer, and for fabric restoration. Typically, enzymes such as protease, amylases, lipases, cellulases and peroxidases have been used for such purposes. One major drawback to the use of enzymes in detergents is the unpleasant odor contribution such enzymes and the feedstocks in which the enzymes are usually contained and delivered. These enzymes and their feedstocks are complex mixtures obtained from fermentation processes and they typically contain many offensive odor contaminants which ultimately find their way into the detergent products in which the enzymes are included. The resulting malodors in such detergent compositions does not appeal to consumers. Additionally, the detergency enzymes have a tendency to leave residual odors on the fabric itself which leads to consumer dissatisfaction, as well.
  • In the past, these drawbacks have often been countered by limiting the level of enzyme used in the composition. However, this approach restricts product efficacy and does not entirely eliminate the malodor problem. Another approach entails "purifying" the enzyme so as to reduce the amount of malodor constituents in the enzyme itself prior to incorporation into the detergent. More particularly, detergent compositions containing protease enzyme have been purified such that they do not have a detectable odor in distilled water at specified concentration levels. While this approach provides a viable option, it requires an additional step in the manufacture of the detergent (i.e. the purifying step), thereby resulting in a more expensive product.
  • Other attempts in the art have also only focused on especially problematic enzymes. By way of example, there have been attempts directed to counteracting malodors associated with fabrics laundered with detergent compositions containing lipases. Enzymes such as lipases and protease have been known to exhibit offensive odors as contained in the detergent as well as to cause residual malodors on fabrics laundered with such protease or lipase-containing detergents. In that regard, certain perfumes have been used to mask the residual odors on fabrics caused by the lipase-containing detergents.
  • As is known, cellulase enzymes have been used in the art of detergency for purposes of providing fabric care as well as cleaning performance. It has also been known that perfumes may be included in cellulase-containing detergents. However, there is still a need for a detergent composition containing specific perfumes especially suitable for counteracting malodors associated with cellulase enzyme and its feedstock as well as the residual malodors which may be found on fabrics laundered with such cellulase-containing detergents. Moreover, it would be desirable to have a means by which the compatibility of the cellulase enzyme and perfume can be improved so as to provide a more stable detergent.
  • Accordingly, there remains a need for a cellulase-containing detergent composition which does not itself exhibit malodors or cause fabrics laundered such a composition to have residual malodors. There is also a need in the art for such a cellulase-containing detergent composition which exhibits improved stability.
  • BACKGROUND ART
  • The following references disclose proteases and lipases in detergents: Moeddel, U.S. Patent No. 4,515,705 (Procter & Gamble); Behan et al, EP 430, 315 (Unilever); and, Watanabe et al, JP-A-63-334931 (Lion Co.). The following references disclose cellulase enzymes and their use in detergent compositions : Barbesgaard et al, U.S. Patent No. 4,435,307 (NOVO Industries A/S); GB-A-2,075,028; GB-A-2,095,275; and GB-A-1,368,599.
  • SUMMARY OF THE INVENTION
  • The present invention meets the needs identified above by providing a cellulase-containing detergent composition which does not emit malodors that are offensive to consumers and which exhibits improved product stability. The cellulase-containing detergent composition achieves this by incorporating selected perfume formulations into the detergent which surprisingly reduce the odor problem associated with cellulase enzymes and their feedstock. Further, the selected perfume formulations used in the instant detergent composition are less interactive with cellulase enzymes and thus cause the overall stability of the detergent composition to be surprisingly improved. The cellulase enzymes contained in the detergent composition of the invention can be both bacterial and fungal cellulase, although fungal cellulases are preferred. Numerous perfume formulations suitable for use in the detergent of the invention can be prepared from known perfume or fragrance ingredients.
  • As used herein, the designation "AMU" refers to atomic weight and may also be expressed as g/mole. All percentages, ratios and proportions used herein are by weight, unless otherwise specified. All documents including patents and publications cited herein are incorporated herein by reference.
  • In accordance with one aspect of the invention, a detergent composition containing cellulase and perfume is provided. Specifically, the detergent composition comprises: (a) a cellulase enzyme; and (b) a perfume containing at least 25% by weight of at least one fragrance material selected from the group consisting of aliphatic ketones with a molecular weight of between 200 and 350 AMU, aromatic ketones with a molecular weight of between 150 and 350 AMU, aliphatic aldehydes with a molecular weight of between 160 and 350 AMU, aromatic aldehydes with a molecular weight of between 150 and 350 AMU, condensation products of aldehydes and amines with a molecular weight between 190 and 350 AMU, aromatic and aliphatic lactones with a molecular weight between 140 and 350 AMU, aromatic and aliphatic ethers with a molecular weight between 150 and 350 AMU, aliphatic alcohols with a molecular weight between 200 and 350 AMU, aromatic and aliphatic esters with a molecular weight between 190 and 350 AMU and mixtures thereof. The perfume preferably is substantially free of halogenated fragrance materials and nitromusks. The detergent composition surprisingly exhibits decreased malodors as compared with other cellulase-containing detergents which do not include perfume formulations as defined herein.
  • In another embodiment of the invention, a method of laundering soiled fabrics is provided. The method comprises the step of contacting the soiled fabrics with an aqueous medium containing an effective amount of a detergent composition as described herein. Yet another embodiment of the invention is directed to a laundry bar composition suitable for handwashing soiled fabrics. Other aspects of the invention include granular as well as liquid forms of the detergent composition described herein.
  • Accordingly, it is an object of the invention to provide a detergent composition containing cellulase enzyme which does not have the malodor problem normally associated with cellulase-containing detergents. It is also an object of the invention to provide such a cellulase-containing detergent which has improved stability as a result of improved compatibility of celluase enzyme and the perfume in the detergent. These and other objects, features and attendant advantages of the present invention will become apparent to those skilled in the art from a reading of the following detailed description of the preferred embodiment and the appended claims.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In its broadest aspect, the present invention is directed to a detergent composition containing a cellulase enzyme and a perfume as defined herein, together which provide a detergent having improved odor and stability. The perfumes suitable for use in the detergent composition can be formulated from known fragrance ingredients and preferably contain at least 25%, preferably from about 25% to about 40%, and most preferably from about 40% to about 60%, by weight of at least one fragrance material selected from several categories of perfume ingredients. For purposes of enhancing environmental compatibility, the perfume is substantially free of halogenated fragrance materials and nitromusks.
  • Cellulase Enzyme
  • The cellulase enzymes used in the instant detergent composition are preferably incorporated at levels sufficient to provide up to about 5 mg by weight, more preferably about 0.01 mg to about 3 mg, of active enzyme per gram of the composition. Stated otherwise, the compositions herein preferably comprise from about 0.001% to about 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation.
  • The cellulase suitable for the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, issued March 6, 1984, which discloses fungal cellulase produced from Humicola insolens and Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk (Dojabella Auricula Solander), suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832. In addition, cellulase especially suitable for use herein are disclosed in WO 92-13057 (Procter & Gamble). Most preferably, the cellulases used in the instant detergent compositions are purchased commercially from NOVO Industries A/S under the product names CAREZYME® and CELLUZYME®.
  • Perfume
  • The detergent composition preferably comprises from about 0.001% to about 5%, more preferably from about 0.01% to about 2%, and most preferably from about 0.2% to 0.7% by weight of a perfume as described herein. The formulator has the luxury of choosing from a wide variety of perfume ingredients in order to arrive at a perfume formulation within the definition stated previously. Several perfume formulations are set forth in Example I hereafter. The perfume formulations can be prepared from perfume ingredients including but not limited to: 7-acetyl-1,2,3,4,5,6,7,8-octahydro-1,1,6,7-tetramethyl naphthalene; ionone methyl; ionone gamma methyl; methyl cedrylone; methyl dihydrojasmonate; methyl 1,6,10-trimethyl-2,5,9-cyclododecatrien-1-yl ketone; 7-acetyl-1,1,3,4,4,6-hexamethyl tetralin; 4-acetyl-6-tert-butyl-1,1-dimethyl indane; para-hydroxy-phenyl-butanone; benzophenone; methyl beta-naphthyl ketone; 6-acetyl-1,1,2,3,3,5-hexamethyl indane; 5-acetyl-3-isopropyl-1,1,2,6-tetramethyl indane; 1-dodecanal, 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-carboxaldehyde; 7-hydroxy-3,7-dimethyl ocatanal; 10-undecen-1-al; iso-hexenyl cyclohexyl carboxaldehyde; formyl tricyclodecane; condensation products of hydroxycitronellal and methyl anthranilate, condensation products of hydroxycitronellal and indol, condensation products of phenyl acetaldehyde and indol; 2-methyl-3-(para-tert-butylphenyl)-propionaldehyde; ethyl vanillin; heliotropin; hexyl cinnamic aldehyde; amyl cinnamic aldehyde; 2-methyl-2-(para-iso-propylphenyl)-propionaldehyde; coumarin; decalactone gamma; cyclopentadecanolide; 16-hydroxy-9-hexadecenoic acid lactone; 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-benzopyrane; betanaphthol methyl ether; ambroxane; dodecahydro-3a,6,6,9a-tetramethylnaphtho[2,1b]furan; cedrol, 5-(2,2,3-trimethylcyclopent-3-enyl)-3-methylpentan-2-ol; 2-ethyl-4-(2,2,3-trimethyl-3-cyclopenten-1-yl)-2-buten-1-ol; caryophyllene alcohol; tricyclodecenyl propionate; tricyclodecenyl acetate; benzyl salicylate; cedryl acetate; and para-(tert-butyl) cyclohexyl acetate.
  • Particularly preferred perfume materials are those that provide the largest odor improvements in finished product compositions containing cellulases. These perfumes include but are not limited to: hexyl cinnamic aldehyde; 2-methyl-3-(para-tert-butylphenyl)-propionaldehyde; 7-acetyl-1,2,3,4,5,6,7,8-octahydro-1,1,6,7-tetramethyl naphthalene; benzyl salicylate; 7-acetyl-1,1,3,4,4,6-hexamethyl tetralin; para-tert-butyl cyclohexyl acetate; methyl dihydro jasmonate; beta-napthol methyl ether; methyl beta-naphthyl ketone; 2-methyl-2-(para-iso-propylphenyl)-propionaldehyde; 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-gamma-2-benzopyrane; dodecahydro-3a,6,6,9a-tetramethylnaphtho[2,1b]furan; anisaldehyde; coumarin; cedrol; vanillin; cyclopentadecanolide; tricyclodecenyl acetate; and tricyclodecenyl propionate.
  • Other perfume materials include essential oils, resinoids, and resins from a variety of sources including but not limited to orange oil, lemon oil, patchouli, Peru balsam, Olibanum resinoid, styrax, labdanum resin, nutmeg, cassia oil, benzoin resin, coriander, lavandin and lavender. Still other perfume chemicals include phenyl ethyl alcohol, terpineol, linalool, linalyl acetate, geraniol, nerol, 2-(1,1-dimethylethyl)-cyclohexanol acetate, benzyl acetate, orange terpenes, eugenol, diethylphthalate.
  • Detersive Surfactants
  • Preferably, the detergent composition comprises from about 1% to about 55%, more preferably from about 15 to 40%, by weight, of a detersive surfactant. Nonlimiting examples of surfactants useful herein include the conventional C₁₁-C₁₈ alkyl benzene sulfonates ("LAS") and primary, branched-chain and random C₁₀-C₂₀ alkyl sulfates ("AS"), the C₁₀-C₁₈ secondary (2,3) alkyl sulfates of the formula CH₃(CH₂)X(CHOSO₃⁻M⁺) CH₃ and CH₃ (CH₂)y(CHOSO₃⁻M⁺) CH₂CH₃ where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the C₁₀-C₁₈ alkyl alkoxy sulfates ("AEx5"; especially EO 1-7 ethoxy sulfates), C₁₀-C₁₈ alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the C₁₀-₁₈ glycerol ethers, the C₁₀-C₁₈ alkyl polyglycosides and their corresponding sulfated polyglycosides, and C₁₂-C₁₈ alpha-sulfonated fatty acid esters. If desired, the conventional nonionic and amphoteric surfactants such as the C₁₂-C₁₈ alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C₆-C₁₂ alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C₁₂-C₁₈ betaines and sulfobetaines ("sultaines"), C₁₀-C₁₈ amine oxides, and the like, can also be included in the overall compositions. The C₁₀-C₁₈ N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C₁₂-C₁₈ N-methylglucamides. See WO 9,206,154. Other sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C₁₀-C₁₈ N-(3-methoxypropyl) glucamide. The N-propyl through N-hexyl C₁₂-C₁₈ glucamides can be used for low sudsing. C₁₀-C₂₀ conventional soaps may also be used. If high sudsing is desired, the branched-chain C₁₀-C₁₆ soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful. Other conventional useful surfactants are listed in standard texts.
  • The C₁₀-C₁₈ alkyl alkoxy sulfates ("AExS"; especially EO 1-7 ethoxy sulfates) and C₁₂-C₁₈ alkyl ethoxylates ("AE") are the most preferred for the cellulase-containing detergents described herein.
  • Detergency Builders
  • Detergent builders can optionally be included in the compositions herein to assist in controlling mineral hardness. Inorganic as well as organic builders can be used. Builders are typically used in fabric laundering compositions to assist in the removal of particulate soils.
  • The level of builder can vary widely depending upon the end use of the composition and its desired physical form. When present, the compositions will typically comprise at least about 1% builder. Liquid formulations typically comprise from about 5% to about 50%, more typically about 5% to about 30%, by weight, of detergent builder. Granular formulations typically comprise from about 10% to about 80%, more typically from about 15% to about 50% by weight, of the detergent builder. Lower or higher levels of builder, however, are not meant to be excluded.
  • Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates. However, non-phosphate builders are required in some locales. Importantly, the compositions herein function surprisingly well even in the presence of the so-called "weak" builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt" situation that may occur with zeolite or layered silicate builders.
  • Examples of silicate builders are the alkali metal silicates, particularly those having a SiO₂:Na₂O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck. NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6") Unlike zeolite builders, the Na SKS-6 silicate builder does not contain aluminum. NaSKS-6 has the delta-Na₂SiO₅ morphology form of layered silicate. It can be prepared by methods such as those described in German DE-A-3,417,649 and DE-A-3,742,043. SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSixO2x+1·yH₂O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein. Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms. As noted above, the delta-Na₂SiO₅ (NaSKS-6 form) is most preferred for use herein. Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
  • Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
  • Aluminosilicate builders are useful in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula:

            Mz(zAlO₂)y]·xH₂O


    wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
  • Useful aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula:

            Na₁₂[(AlO₂)₁₂(SiO₂)₁₂]·xH₂O


    wherein x is from about 20 to about 30, especially about 27. This material is known as Zeolite A. Dehydrated zeolites (x = 0 - 10) may also be used herein. Preferably, the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
  • Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds. As used herein, "polycarboxylate" refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates. Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • Included among the polycarboxylate builders are a variety of categories of useful materials. One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987. Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
  • Other useful detergency builders include the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
  • Citrate builders, e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with aeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
  • Also suitable in the detergent compositions of the present invention are the 3,3-dicarboxy-4-oxa-1,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986. Useful succinic acid builders include the C₅-C₂₀ alkyl and alkenyl succinic acids and salts thereof. A particularly preferred compound of this type is dodecenylsuccinic acid. Specific examples of succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
  • Other suitable polycarboxylates are disclosed in U.S. Patent 4,144,226, Crutchfield et al, issued March 13, 1979 and in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. See also Diehl U.S. Patent 3,723,322.
  • Fatty acids, e.g., C₁₂-C₁₈ monocarboxylic acids, can also be incorporated into the compositions alone, or in combination with the aforesaid builders, especially citrate and/or the succinate builders, to provide additional builder activity. Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.
  • In situations where phosphorus-based builders can be used, and especially in the formulation of bars used for hand-laundering operations, the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used. Phosphonate builders such as ethane-1-hydroxy-1,1-diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137) can also be used.
  • Adjunct Ingredients
  • The compositions herein can optionally include one or more other detergent adjunct materials or other materials for assisting or enhancing cleaning performance, treatment of the substrate to be cleaned, or to modify the aesthetics of the detergent composition (e.g., colorants, dyes, etc.). The following are illustrative examples of such adjunct materials.
  • Other Enzymes - Additional enzymes can be included in the formulations herein for a wide variety of fabric laundering purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and for the prevention of refugee dye transfer, and for fabric restoration. The additional enzymes to be incorporated include proteases, amylases, lipases, and peroxidases, as well as mixtures thereof. Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. However, their choice is governed by several factors such as pH-activity and/or stability optima, thermostability, stability versus active detergents, builders as well as their potential to cause malodors during use. In this respect bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases.
  • Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.01 mg to about 3 mg, of active enzyme per gram of the composition. Stated otherwise, the compositions herein will typically comprise from about 0.001% to about 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation. Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
  • Suitable examples of proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniforms. Another suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A/S under the registered trade name ESPERASE. The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 1,243,784 of Novo. Proteolytic enzymes suitable for removing protein-based stains that are commercially available include those sold under the trade names ALCALASE and SAVINASE by Novo Industries A/S (Denmark) and MAXATASE by International Bio-Synthetics, Inc. (The Netherlands). Other proteases include Protease A (see European Patent Application 130,756, published January 9, 1985); Protease B (see European Patent Application Serial No. 87303761.8, filed April 28, 1987, and European Patent Application 130,756, Bott et al, published January 9, 1985); and proteases made by Genencor International, Inc., according to one or more of the following patents: Caldwell et al, U.S. Patent Nos. 5,185,258, 5,204,015 and 5,244,791.
  • Amylases include, for example, α-amylases described in British Patent Specification No. 1,296,839 (Novo), RAPIDASE, International Bio-Synthetics, Inc. and TERMAMYL, Novo Industries.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. See also lipases in Japanese Patent Application 53,20487, laid open to public inspection on February 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano-P." Other commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli. The LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo (see also EPO 341,947) is a preferred lipase for use herein.
  • Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution. Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloroand bromo-peroxidase. Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October 19, 1989, by O. Kirk, assigned to Novo Industries A/S.
  • A wide range of enzyme materials and means for their incorporation into synthetic detergent compositions are also disclosed in U.S. Patent 3,553,139, issued January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. Patent 4,101,457, Place et al, issued July 18, 1978, and in U.S. Patent 4,507,219, Hughes, issued March 26, 1985, both. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. Patent 4,261,868, Hora et al, issued April 14, 1981. Enzymes for use in detergents can be stabilized by various techniques. Typical granular or powdered detergents can be stabilized effectively by using enzyme granuletes. Enzyme stabilization techniques are disclosed and exemplified in U.S. Patent 3,600,319, issued August 17, 1971 to Gedge, et al, and European Patent Application Publication No. 0 199 405, Application No. 86200586.5, published October 29, 1986, Venegas. Enzyme stabilization systems are also described, for example, in U.S. Patent 3,519,570.
  • Enzyme Stabilizers - The enzymes employed herein are stabilized by the presence of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes. (Calcium ions are generally somewhat more effective than magnesium ions and are preferred herein if only one type of cation is being used.) Additional stability can be provided by the presence of various other art-disclosed stabilizers, especially borate species: see Severson, U.S. 4,537,706. Typical detergents, especially liquids, will comprise from about 1 to about 30, preferably from about 2 to about 20, more preferably from about 5 to about 15, and most preferably from about 8 to about 12, millimoles of calcium ion per liter of finished composition. This can vary somewhat, depending on the amount of enzyme present and its response to the calcium or magnesium ions. The level of calcium or magnesium ions should be selected so that there is always some minimum level available for the enzyme, after allowing for complexation with builders, fatty acids, etc., in the composition. Any water-soluble calcium or magnesium salt can be used as the source of calcium or magnesium ions, including, but not limited to, calcium chloride, calcium sulfate, calcium malate, calcium maleate, calcium hydroxide, calcium formate, and calcium acetate, and the corresponding magnesium salts. A small amount of calcium ion, generally from about 0.05 to about 0.4 millimoles per liter, is often also present in the composition due to calcium in the enzyme slurry and formula water. In solid detergent compositions the formulation may include a sufficient quantity of a water-soluble calcium ion source to provide such amounts in the laundry liquor. In the alternative, natural water hardness may suffice.
  • It is to be understood that the foregoing levels of calcium and/or magnesium ions are sufficient to provide enzyme stability. More calcium and/or magnesium ions can be added to the compositions to provide an additional measure of grease removal performance. Accordingly, as a general proposition the compositions herein will typically comprise from about 0.05% to about 2% by weight of a water-soluble source of calcium or magnesium ions, or both. The amount can vary, of course, with the amount and type of enzyme employed in the composition.
  • The compositions herein may also optionally, but preferably, contain various additional stabilizers, especially borate-type stabilizers. Typically, such stabilizers will be used at levels in the compositions from about 0.25% to about 10%, preferably from about 0.5% to about 5%, more preferably from about 0.75% to about 3%, by weight of boric acid or other borate compound capable of forming boric acid in the composition (calculated on the basis of boric acid). Boric acid is preferred, although other compounds such as boric oxide, borax and other alkali metal borates (e.g., sodium ortho-, meta- and pyroborate, and sodium pentaborate) are suitable. Substituted boric acids (e.g., phenylboronic acid, butane boronic acid, and p-bromo phenylboronic acid) can also be used in place of boric acid.
  • Bleaching Compounds - Bleaching Agents and Bleach Activators - The detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators. When present, bleaching agents will typically be at levels of from about 1% to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering. If present, the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator.
  • The bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents. Perborate bleaches, e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein.
  • Another category of bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20, 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1, 1983. Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551, issued January 6, 1987 to Burns et al.
  • Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate" bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used.
  • A preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1,250 micrometers. Optionally, the percarbonate can be coated with silicate, borate or water-soluble surfactants. Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka.
  • Mixtures of bleaching agents can also be used.
  • Peroxygen bleaching agents, the perborates, the percarbonates, etc., are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator. Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934. The nonanoyloxybenzene sulfonate (NOBS) and tetraacetyl ethylene diamine (TAED) activators are typical, and mixtures thereof can also be used. See also U.S. 4,634,551 for other typical bleaches and activators useful herein.
  • Highly preferred amido-derived bleach activators are those of the formulae:

            R¹N(R⁵)C(O)R²C(O)L


    or

            R¹C(O)N(R⁵)R²C(O)L


    wherein R¹ is an alkyl group containing from about 6 to about 12 carbon atoms, R² is an alkylene containing from 1 to about 6 carbon atoms, R⁵ is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is any suitable leaving group. A leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion. A preferred leaving group is phenyl sulfonate.
  • Preferred examples of bleach activators of the above formulae include (6-octanamido-caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate, (6-decanamido-caproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551, incorporated herein by reference.
  • Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference. A highly preferred activator of the benzoxazin-type is:
    Figure imgb0001
  • Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:
    Figure imgb0002
    Figure imgb0003

    wherein R⁶ is H or an alkyl, aryl, alkoxyaryl, or alkaryl group containing from 1 to about 12 carbon atoms. Highly preferred lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perborate.
  • Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein. One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from about 0.025% to about 1.25%, by weight, of such bleaches, especially sulfonate zinc phthalocyanine.
  • If desired, the bleaching compounds can be catalyzed by means of a manganese compound. Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621, U.S. Pat. 5,244,594; U.S. Pat. 5,194,416; U.S. Pat. 5,114,606; and European Pat. App. Pub. Nos. 549,271A1, 549,272A1, 544,440A2, and 544,490A1; Preferred examples of these catalysts include MnIV₂ (u-O)₃(1,4,7-trimethyl-1,4,7-triazacyclononane)₂(PF₆)₂, MnIII₂(u-O)₁(u-OAc)₂(1,4,7-trimethyl-1,4,7-triazacyclononane)₂-(ClO₄)₂, MnIV₄(u-O)₆(1,4,7-triazacyclononane)₄(ClO₄)₄, MnIIIMnIV₄(u-O)₁(u-OAc)₂-(1,4,7-trimethyl-1,4,7-triazacyclononane)₂(ClO₄)₃, MnIV- (1,4,7-trimethyl-1,4,7-triazacyclononane)- (OCH₃)₃(PF₆), and mixtures thereof. Other metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,114,611. The use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161; 5,227,084.
  • As a practical matter, and not by way of limitation, the compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 0.1 ppm to about 700 ppm, more preferably from about 1 ppm to about 500 ppm, of the catalyst species in the laundry liquor.
  • Polymeric Soil Release Agent - Any polymeric soil release agent known to those skilled in the art can optionally be employed in the compositions and processes of this invention. Polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
  • The polymeric soil release agents useful herein especially include those soil release agents having: (a) one or more nonionic hydrophile components consisting essentially of (i) polyoxyethylene segments with a degree of polymerization of at least 2, or (ii) oxypropylene or polyoxypropylene segments with a degree of polymerization of from 2 to 10, wherein said hydrophile segment does not encompass any oxypropylene unit unless it is bonded to adjacent moieties at each end by ether linkages, or (iii) a mixture of oxyalkylene units comprising oxyethylene and from 1 to about 30 oxypropylene units wherein said mixture contains a sufficient amount of oxyethylene units such that the hydrophile component has hydrophilicity great enough to increase the hydrophilicity of conventional polyester synthetic fiber surfaces upon deposit of the soil release agent on such surface, said hydrophile segments preferably comprising at least about 25% oxyethylene units and more preferably, especially for such components having about 20 to 30 oxypropylene units, at least about 50% oxyethylene units; or (b) one or more hydrophobe components comprising (i) C₃ oxyalkylene terephthalate segments, wherein, if said hydrophobe components also comprise oxyethylene terephthalate, the ratio of oxyethylene terephthalate:C₃ oxyalkylene terephthalate units is about 2:1 or lower, (ii) C₄-C₆ alkylene or oxy C₄-C₆ alkylene segments, or mixtures therein, (iii) poly (vinyl ester) segments, preferably polyvinyl acetate), having a degree of polymerization of at least 2, or (iv) C₁-C₄ alkyl ether or C₄ hydroxyalkyl ether substituents, or mixtures therein, wherein said substituents are present in the form of C₁-C₄ alkyl ether or C₄ hydroxyalkyl ether cellulose derivatives, or mixtures therein, and such cellulose derivatives are amphiphilic, whereby they have a sufficient level of C₁-C₄ alkyl ether and/or C₄ hydroxyalkyl ether units to deposit upon conventional polyester synthetic fiber surfaces and retain a sufficient level of hydroxyls, once adhered to such conventional synthetic fiber surface, to increase fiber surface hydrophilicity, or a combination of (a) and (b).
  • Typically, the polyoxyethylene segments of (a) (i) will have a degree of polymerization of from about 200, although higher levels can be used, preferably from 3 to about 150, more preferably from 6 to about 100. Suitable oxy C₄-C₆ alkylene hydrophobe segments include, but are not limited to, end-caps of polymeric soil release agents such as MO₃S(CH₂)nOCH₂CH₂O-, where M is sodium and n is an integer from 4-6, as disclosed in U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink.
  • Polymeric soil release agents useful in the present invention also include cellulosic derivatives such as hydroxyether cellulosic polymers, copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C₁-C₄ alkyl and C₄ hydroxyalkyl cellulose; see U.S. Patent 4,000,093, issued December 28, 1976 to Nicol, et al.
  • Soil release agents characterized by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., C₁-C₆ vinyl esters, preferably poly(vinyl acetate) grafted onto polyalkylene oxide backbones, such as polyethylene oxide backbones. See European Patent Application 0 219 048, published April 22, 1987 by Kud, et al. Commercially available soil release agents of this kind include the SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (West Germany).
  • One type of preferred soil release agent is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate. The molecular weight of this polymeric soil release agent is in the range of from about 25,000 to about 55,000. See U.S. Patent 3,959,230 to Hays, issued May 25, 1976 and U.S. Patent 3,893,929 to Basadur issued July 8, 1975.
  • Another preferred polymeric soil release agent is a polyester with repeat units of ethylene terephthalate units contains 10-15% by weight of ethylene terephthalate units together with 90-80% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight 300-5,000. Examples of this polymer include the commercially available material ZELCON 5126 (from DuPont) and MILEASE T (from ICI). See also U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
  • Another preferred polymeric soil release agent is a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone. These soil release agents are described fully in U.S. Patent 4,968,451, issued November 6, 1990 to J. J. Scheibel and E. P. Gosselink. Other suitable polymeric soil release agents include the terephthalate polyesters of U.S. Patent 4,711,730, issued December 8, 1987 to Gosselink et al, the anionic end-capped oligomeric esters of U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink, and the block polyester oligomeric compounds of U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
  • Preferred polymeric soil release agents also include the soil release agents of U.S. Patent 4,877,896, issued October 31, 1989 to Maldonado et al, which discloses anionic, especially sulfoaroyl, end-capped terephthalate esters. Still another preferred soil release agent is an oligomer with repeat units of terephthaloyl units, sulfoisoterephthaloyl units, oxyethyleneoxy and oxy-1,2-propylene units. The repeat units form the backbone of the oligomer and are preferably terminated with modified isethionate end-caps. A particularly preferred soil release agent of this type comprises about one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-1,2-propyleneoxy units in a ratio of from about 1.7 to about 1.8, and two end-cap units of sodium 2-(2-hydroxyethoxy)-ethanesulfonate. Said soil release agent also comprises from about 0.5% to about 20%, by weight of the oligomer, of a crystalline-reducing stabilizer, preferably selected from the group consisting of xylene sulfonate, cumene sulfonate, toluene sulfonate, and mixtures thereof.
  • If utilized, soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent compositions herein, typically from about 0.1% to about 5%, preferably from about 0.2% to about 3.0%.
  • Chelating Agents - The detergent compositions herein may also optionally contain one or more iron and/or manganese chelating agents. Such chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
  • Amino carboxylates useful as optional chelating agents include ethylenediaminetetracetates, N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates, ethylenediamine tetraproprionates, triethylenetetraaminehexacetates, diethylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
  • Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at lease low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates) as DEQUEST. Preferred, these amino phosphonates to not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
  • Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21, 1974, to Connor et al. Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy-3,5-disulfobenzene.
  • A preferred biodegradable chelator for use herein is ethylenediamine disuccinate ("EDDS"), especially the [S,S] isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins.
  • If utilized, these chelating agents will generally comprise from about 0.1% to about 10% by weight of the detergent compositions herein. More preferably, if utilized, the chelating agents will comprise from about 0.1% to about 3.0% by weight of such compositions.
  • Clay Soil Removal/Anti-redeposition Agents - The compositions of the present invention can also optionally contain water-soluble ethoxylated amines having clay soil removal and antiredeposition properties. Granular detergent compositions which contain these compounds typically contain from about 0.01% to about 10.0% by weight of the water-soluble ethoxylates amines; liquid detergent compositions typically contain about 0.01% to about 5%.
  • The most preferred soil release and anti-redeposition agent is ethoxylated tetraethylenepentamine. Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1, 1986. Another group of preferred clay soil removal-antiredeposition agents are the cationic compounds disclosed in European Patent Application 111,965, Oh and Gosselink, published June 27, 1984. Other clay soil removal/antiredeposition agents which can be used include the ethoxylated amine polymers disclosed in European Patent Application 111,984, Gosselink, published June 27, 1984; the zwitterionic polymers disclosed in European Patent Application 112,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S. Patent 4,548,744, Connor, issued October 22, 1985. Other clay soil removal and/or anti redeposition agents known in the art can also be utilized in the compositions herein. Another type of preferred antiredeposition agent includes the carboxy methyl cellulose (CMC) materials. These materials are well known in the art.
  • Polymeric Dispersing Agents - Polymeric dispersing agents can advantageously be utilized at levels from about 0.1% to about 7%, by weight, in the compositions herein, especially in the presence of zeolite and/or layered silicate builders. Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used. It is believed, though it is not intended to be limited by theory, that polymeric dispersing agents enhance overall detergent builder performance, when used in combination with other builders (including lower molecular weight polycarboxylates) by crystal growth inhibition, particulate soil release peptization, and anti-redeposition.
  • Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form. Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid. The presence in the polymeric polycarboxylates herein or monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight.
  • Particularly suitable polymeric polycarboxylates can be derived from acrylic acid. Such acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid. The average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 5,000. Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Patent 3,308,067, issued march 7, 1967.
  • Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent. Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid. The average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7,000 to 65,000. The ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1:1, more preferably from about 10:1 to 2:1. Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published December 15, 1982, as well as in EP 193,360, published September 3, 1986, which also describes such polymers comprising hydroxypropylacrylate. Still other useful dispersing agents include the maleic/acrylic/vinyl alcohol terpolymers. Such materials are also disclosed in EP 193,360, including, for example, the 45/45/10 terpolymer of acrylic/maleic/vinyl alcohol.
  • Another polymeric material which can be included is polyethylene glycol (PEG). PEG can exhibit dispersing agent performance as well as act as a clay soil removal-antiredeposition agent. Typical molecular weight ranges for these purposes range from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000.
  • Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders. Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of about 10,000.
  • Brightener - Any optical brighteners or other brightening or whitening agents known in the art can be incorporated at levels typically from about 0.05% to about 1.2%, by weight, into the detergent compositions herein. Commercial optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiphene-5,5-dioxide, azoles, 5-and 6-membered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents", M. Zahradnik, Published by John Wiley & Sons, New York (1982).
  • Specific examples of optical brighteners which are useful in the present compositions are those identified in U.S. Patent 4,790,856, issued to Wixon on December 13, 1988. These brighteners include the PHORWHITE series of brighteners from Verona. Other brighteners disclosed in this reference include: Tinopal UNPA, Tinopal CBS and Tinopal 5BM; available from Ciba-Geigy; Artic White CC and Artic White CWD, available from Hilton-Davis, located in Italy; the 2-(4-stryl-phenyl)-2H-napthol[1,2-d]triazoles; 4,4'-bis- (1,2,3-triazol-2-yl)-stil- benes; 4,4'-bis(stryl)bisphenyls; and the aminocoumarins. Specific examples of these brighteners include 4-methyl-7-diethylamino coumarin; 1,2-bis(-venzimidazol-2-yl)ethylene; 1,3-diphenyl-phrazolines; 2,5-bis(benzoxazol-2-yl)thiophene; 2-stryl-napth-[1,2-d]oxazole; and 2-(stilbene-4-yl)-2H-naphtho- [1,2-d]triazole. See also U.S. Patent 3,646,015, issued February 29, 1972 to Hamilton. Anionic brighteners are preferred herein.
  • Dye Transfer Inhibiting Agents - The compositions of the present invention may also include one or more materials effective for inhibiting the transfer of dyes from one fabric to another during the cleaning process. Generally, such dye transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof. If used, these agents typically comprise from about 0.01% to about 10% by weight of the composition, preferably from about 0.01% to about 5%, and more preferably from about 0.05% to about 2%.
  • More specifically, the polyamine N-oxide polymers preferred for use herein contain units having the following structural formula: R-Ax-P; wherein P is a polymerizable unit to which an N-O group can be attached or the N-O group can form part of the polymerizable unit or the N-O group can be attached to both units; A is one of the following structures: -NC(O)-,-C(O)O-, -S-, -O-, -N=; x is 0 or 1; and R is aliphatic, ethoxylated aliphatics, aromatics, heterocyclic or alicyclic groups or any combination thereof to which the nitrogen of the N-O group can be attached or the N-O group is part of these groups. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
  • The N-O group can be represented by the following general structures:
    Figure imgb0004

    wherein R₁, R₂, R₃ are aliphatic, aromatic, heterocyclic or alicyclic groups or combinations thereof; x, y and z are 0 or 1; and the nitrogen of the N-O group can be attached or form part of any of the aforementioned groups. The amine oxide unit of the polyamine N-oxides has a pKa <10, preferably pKa <7, more preferred pKa <6.
  • Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties. Examples of suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide. The amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N-oxidation. The polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1,000,000; more preferred 1,000 to 500,000; most preferred 5,000 to 100,000. This preferred class of materials can be referred to as "PVNO".
  • The most preferred polyamine N-oxide useful in the detergent compositions herein is poly(4-vinylpyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of about 1:4.
  • Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers (referred to as a class as "PVPVI") are also preferred for use herein. Preferably the PVPVI has an average molecular weight range from 5,000 to 1,000,000, more preferably from 5,000 to 200,000, and most preferably from 10,000 to 20,000. (The average molecular weight range is determined by light scattering as described in Barth, et al., Chemical Analysis, Vol 113. "Modern Methods of Polymer Characterization", the disclosures of which are incorporated herein by reference.) The PVPVI copolymers typically have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1:1 to 0.2:1, more preferably from 0.8:1 to 0.3:1, most preferably from 0.6:1 to 0.4:1. These copolymers can be either linear or branched.
  • The present invention compositions also may employ a polyvinylpyrrolidone ("PVP") having an average molecular weight of from about 5,000 to about 400,000, preferably from about 5,000 to about 200,000, and more preferably from about 5,000 to about 50,000. PVP's are known to persons skilled in the detergent field; see, for example, EP-A-262,897 and EP-A-256,696, incorporated herein by reference. Compositions containing PVP can also contain polyethylene glycol ("PEG") having an average molecular weight from about 500 to about 100,000, preferably from about 1,000 to about 10,000. Preferably, the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2:1 to about 50:1, and more preferably from about 3:1 to about 10:1.
  • The detergent compositions herein may also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners which also provide a dye transfer inhibition action. If used, the compositions herein will preferably comprise from about 0.01% to 1% by weight of such optical brighteners.
  • The hydrophilic optical brighteners useful in the present invention are those having the structural formula:
    Figure imgb0005

    wherein R₁ is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R₂ is selected from N-2-bishydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
  • When in the above formula, R₁ is anilino, R₂ is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-bishydroxyethyl)-s-triazine-2-yl)amino]-2,2′-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the trade name Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
  • When in the above formula, R₁ is anilino, R₂ is N-2-hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4,4′-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2′-stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the trade name Tinopal 5BM-GX by Ciba-Geigy Corporation.
  • When in the above formula, R₁ is anilino, R₂ is morphilino and M is a cation such as sodium, the brightener is 4,4′-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino] 2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the trade name Tinopal AMS-GX by Ciba Geigy Corporation.
  • The specific optical brightener species selected for use in the present invention provide especially effective dye transfer inhibition performance benefits when used in combination with the selected polymeric dye transfer inhibiting agents hereinbefore described. The combination of such selected polymeric materials (e.g., PVNO and/or PVPVI) with such selected optical brighteners (e.g., Tinopal UNPA-GX, Tinopal 5BM-GX and/or Tinopal AMS-GX) provides significantly better dye transfer inhibition in aqueous wash solutions than does either of these two detergent composition components when used alone. Without being bound by theory, it is believed that such brighteners work this way because they have high affinity for fabrics in the wash solution and therefore deposit relatively quick on these fabrics. The extent to which brighteners deposit on fabrics in the wash solution can be defined by a parameter called the "exhaustion coefficient". The exhaustion coefficient is in general as the ratio of a) the brightener material deposited on fabric to b) the initial brightener concentration in the wash liquor. Brighteners with relatively high exhaustion coefficients are the most suitable for inhibiting dye transfer in the context of the present invention.
  • Of course, it will be appreciated that other, conventional optical brightener types of compounds can optionally be used in the present compositions to provide conventional fabric "brightness" benefits, rather than a true dye transfer inhibiting effect. Such usage is conventional and well-known to detergent formulations.
  • Suds Suppressors - Compounds for reducing or suppressing the formation of suds can be incorporated into the compositions of the present invention. Suds suppression can be of particular importance in the so-called "high concentration cleaning process" and in front-loading European-style washing machines.
  • A wide variety of materials may be used as suds suppressors, and suds suppressors are well known to those skilled in the art. See, for example, Kirk Othmer Encyclopedia of Chemical Technology, Third Edition, Volume 7, pages 430-447 (John Wiley & Sons, Inc., 1979). One category of suds suppressor of particular interest encompasses monocarboxylic fatty acid and soluble salts therein. See U.S. Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids and salts thereof used as suds suppressor typically have hydrocarbyl chains of 10 to about 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
  • The detergent compositions herein may also contain non-surfactant suds suppressors. These include, for example: high molecular weight hydrocarbons such as paraffin, fatty acid esters (e.g., fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C₁₈-C₄₀ ketones (e.g., stearone), etc. Other suds inhibitors include N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra-alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, and monostearyl phosphates such as monostearyl alcohol phosphate ester and monostearyl di-alkali metal (e.g., K, Na, and Li) phosphates and phosphate esters. The hydrocarbons such as paraffin and haloparaffin can be utilized in liquid form. The liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in the range of about -40°C and about 50°C, and a minimum boiling point not less than about 110°C (atmospheric pressure). It is also known to utilize waxy hydrocarbons, preferably having a melting point below about 100°C. The hydrocarbons constitute a preferred category of suds suppressor for detergent compositions. Hydrocarbon suds suppressors are described, for example, in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al. The hydrocarbons, thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from about 12 to about 70 carbon atoms. The term "paraffin," as used in this suds suppressor discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons.
  • Another preferred category of non-surfactant suds suppressors comprises silicone suds suppressors. This category includes the use of polyorganosiloxane oils, such as polydimethylsiloxane, dispersions or emulsions of polyorganosiloxane oils or resins, and combinations of polyorganosiloxane with silica particles wherein the polyorganosiloxane is chemisorbed or fused onto the silica. Silicone suds suppressors are well known in the art and are, for example, disclosed in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al and European Patent Application No. 89307851.9, published February 7, 1990, by Starch, M. S.
  • Other silicone suds suppressors are disclosed in U.S. Patent 3,455,839 which relates to compositions and processes for defoaming aqueous solutions by incorporating therein small amounts of polydimethylsiloxane fluids.
  • Mixtures of silicone and silanated silica are described, for instance, in German Patent Application DOS 2,124,526. Silicone defoamers and suds controlling agents in granular detergent compositions are disclosed in U.S. Patent 3,933,672, Bartolotta et al, and in U.S. Patent 4,652,392, Baginski et al, issued March 24, 1987.
  • An exemplary silicone based suds suppressor for use herein is a suds suppressing amount of a suds controlling agent consisting essentially of:
    • (i) polydimethylsiloxane fluid having a viscosity of from about 20 cs. to about 1,500 cs. at 25°C;
    • (ii) from about 5 to about 50 parts per 100 parts by weight of (i) of siloxane resin composed of (CH₃)₃SiO1/2 units of SiO₂ units in a ratio of from (CH₃)₃ SiO1/2 units and to SiO₂ units of from about 0.6:1 to about 1.2:1; and
    • (iii) from about 1 to about 20 parts per 100 parts by weight of (i) of a solid silica gel.
  • In the preferred silicone suds suppressor used herein, the solvent for a continuous phase is made up of certain polyethylene glycols or polyethylene-polypropylene glycol copolymers or mixtures thereof (preferred), or polypropylene glycol. The primary silicone suds suppressor is branched/crosslinked and preferably not linear.
  • To illustrate this point further, typical liquid laundry detergent compositions with controlled suds will optionally comprise from about 0.001 to about 1, preferably from about 0.01 to about 0.7, most preferably from about 0.05 to about 0.5, weight % of said silicone suds suppressor, which comprises (1) a nonaqueous emulsion of a primary antifoam agent which is a mixture of (a) a polyorganosiloxane, (b) a resinous siloxane or a silicone resin-producing silicone compound, (c) a finely divided filler material, and (d) a catalyst to promote the reaction of mixture components (a), (b) and (c), to form silanolates; (2) at least one nonionic silicone surfactant; and (3) polyethylene glycol or a copolymer of polyethylenepolypropylene glycol having a solubility in water at room temperature of more than about 2 weight %; and without polypropylene glycol. Similar amounts can be used in granular compositions, gels, etc. See also U.S. Patents 4,978,471, Starch, issued December 18, 1990, and 4,983,316, Starch, issued January 8, 1991, 5,288,431, Huber et al., issued February 22, 1994, and U.S. Patents 4,639,489 and 4,749,740, Aizawa et al at column 1, line 46 through column 4, line 35.
  • The silicone suds suppressor herein preferably comprises polyethylene glycol and a copolymer of polyethylene glycol/polypropylene glycol, all having an average molecular weight of less than about 1,000, preferably between about 100 and 800. The polyethylene glycol and polyethylene/polypropylene copolymers herein have a solubility in water at room temperature of more than about 2 weight %, preferably more than about 5 weight %.
  • The preferred solvent herein is polyethylene glycol having an average molecular weight of less than about 1,000, more preferably between about 100 and 800, most preferably between 200 and 400, and a copolymer of polyethylene glycol/polypropylene glycol, preferably PPG 200/PEG 300. Preferred is a weight ratio of between about 1:1 and 1:10, most preferably between 1:3 and 1:6, of polyethylene glycol:copolymer of polyethylene-polypropylene glycol.
  • The preferred silicone suds suppressors used herein do not contain polypropylene glycol, particularly of 4,000 molecular weight. They also preferably do not contain block copolymers of ethylene oxide and propylene oxide, like PLURONIC L101.
  • Other suds suppressors useful herein comprise the secondary alcohols (e.g., 2-alkyl alkanols) and mixtures of such alcohols with silicone oils, such as the silicones disclosed in U.S. 4,798,679, 4,075,118 and EP 150,872. The secondary alcohols include the C₆-C₁₆ alkyl alcohols having a C₁-C₁₆ chain. A preferred alcohol is 2-butyl octanol, which is available from Condea under the trademark ISOFOL 12. Mixtures of secondary alcohols are available under the trademark ISALCHEM 123 from Enichem. Mixed suds suppressors typically comprise mixtures of alcohol + silicone at a weight ratio of 1:5 to 5:1.
  • For any detergent compositions to be used in automatic laundry washing machines, suds should not form to the extent that they overflow the washing machine. Suds suppressors, when utilized, are preferably present in a "suds suppressing amount. By "suds suppressing amount" is meant that the formulator of the composition can select an amount of this suds controlling agent that will sufficiently control the suds to result in a low-sudsing laundry detergent for use in automatic laundry washing machines.
  • The compositions herein will generally comprise from 0% to about 5% of suds suppressor. When utilized as suds suppressors, monocarboxylic fatty acids, and salts therein, will be present typically in amounts up to about 5%, by weight, of the detergent composition. Preferably, from about 0.5% to about 3% of fatty monocarboxylate suds suppressor is utilized. Silicone suds suppressors are typically utilized in amounts up to about 2.0%, by weight, of the detergent composition, although higher amounts may be used. This upper limit is practical in nature, due primarily to concern with keeping costs minimized and effectiveness of lower amounts for effectively controlling sudsing. Preferably from about 0.01% to about 1% of silicone suds suppressor is used, more preferably from about 0.25% to about 0.5%. As used herein, these weight percentage values include any silica that may be utilized in combination with polyorganosiloxane, as well as any adjunct materials that may be utilized. Monostearyl phosphate suds suppressors are generally utilized in amounts ranging from about 0.1% to about 2%, by weight, of the composition. Hydrocarbon suds suppressors are typically utilized in amounts ranging from about 0.01% to about 5.0%, although higher levels can be used. The alcohol suds suppressors are typically used at 0.2%-3% by weight of the finished compositions.
  • Fabric Softeners - Various through-the-wash fabric softeners, especially the impalpable smectite clays of U.S. Patent 4,062,647, Storm and Nirschl, issued December 13, 1977, as well as other softener clays known in the art, can optionally be used typically at levels of from about 0.5% to about 10% by weight in the present compositions to provide fabric softener benefits concurrently with fabric cleaning. Clay softeners can be used in combination with amine and cationic softeners as disclosed, for example, in U.S. Patent 4,375,416, Crisp et al, March 1, 1983 and U.S. Patent 4,291,071, Harris et al, issued September 22, 1981.
  • Other Ingredients - A wide variety of other ingredients useful in detergent compositions can be included in the compositions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, solid fillers for bar compositions, etc. If high sudsing is desired, suds boosters such as the C₁₀-C₁₆ alkanolamides can be incorporated into the compositions, typically at 1%-10% levels. The C₁₀-C₁₄ monoethanol and diethanol amides illustrate a typical class of such suds boosters. Use of such suds boosters with high sudsing adjunct surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous. If desired, soluble magnesium salts such as MgCl₂, MgSO₄, and the like, can be added at levels of, typically, 0.1%-2%, to provide additional suds and to enhance grease removal performance.
  • Various detersive ingredients employed in the present compositions optionally can be further stabilized by absorbing said ingredients onto a porous hydrophobic substrate, then coating said substrate with a hydrophobic coating. Preferably, the detersive ingredient is admixed with a surfactant before being absorbed into the porous substrate. In use, the detersive ingredient is released from the substrate into the aqueous washing liquor, where it performs its intended detersive function.
  • To illustrate this technique in more detail, a porous hydrophobic silica (trademark SIPERNAT D10, DeGussa) is admixed with a proteolytic enzyme solution containing 3%-5% of C₁₃₋₁₅ ethoxylated alcohol (EO 7) nonionic surfactant. Typically, the enzyme/surfactant solution is 2.5 X the weight of silica. The resulting powder is dispersed with stirring in silicone oil (various silicone oil viscosities in the range of 500-12,500 can be used). The resulting silicone oil dispersion is emulsified or otherwise added to the final detergent matrix. By this means, ingredients such as the aforementioned enzymes, bleaches, bleach activators, bleach catalysts, photo activators, dyes, fluorescers, fabric conditioners and hydrolyzable surfactants can be "protected" for use in detergents, including liquid laundry detergent compositions.
  • Liquid detergent compositions can contain water and other solvents as carriers. Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable. Monohydric alcohols are preferred for solubilizing surfactant, but polyols such as those containing from 2 to about 6 carbon atoms and from 2 to about 6 hydroxy groups (e.g., 1,3-propanediol, ethylene glycol, glycerine, and 1,2-propanediol) can also be used. The compositions may contain from 5% to 90%, typically 10% to 50% of such carriers.
  • The detergent compositions herein will preferably be formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of between about 6.5 and about 11, preferably between about 7.5 and 10.5. Liquid dishwashing product formulations preferably have a pH between about 6.8 and about 9.0. Laundry products are typically at pH 9-11. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
  • In order to make the present invention more readily understood, reference is made to the following examples, which are intended to be illustrative only and not intended to be limiting in scope.
  • EXAMPLE I
  • This Example illustrates several perfume formulations (A-C) made in accordance with the invention for incorporation into cellulase-containing detergent compositions. The various ingredients and levels are set forth in Table I below.
    Figure imgb0006
    Figure imgb0007
  • EXAMPLE II
  • This Example illustrates heavy duty granular detergents containing cellulase and the perfume formulations described in Example I. The ingredients in the typical granular detergents exemplified herein are set forth in Table II below.
    Figure imgb0008
    Figure imgb0009
  • The base formula illustrated herein can be made via a variety of known processes including conventional spray drying techniques or agglomeration in apparatus such as powder mixers and fluid beds commercially available from Lödige and Aeromatic, respectively. Agglomeration is especially suitable for preparing modern compact granular detergents and entails initially forming a surfactant paste using standard mixers, after which the paste is agglomerated into agglomerates and dried. Such processing techniques are well known in the art. The enzymes such as cellulase are dry mixed into the base formula and the perfumes used herein are subsequently sprayed onto the base formula so as to form the final granular detergent compositions exemplified herein.
  • EXAMPLE III
  • This Example illustrates liquid laundry detergent compositions containing cellulase and the perfumes described in Example I. Table III illustrates the various ingredients of the liquid laundry detergent.
    Figure imgb0010
    Figure imgb0011
  • EXAMPLE IV
  • This Example illustrates laundry bars containing cellulase and a perfume in accordance with the invention. The laundry bars exemplified herein are prepared by standard extrusion processes so as to be suitable for handwashing soiled fabrics. Table IV sets forth the various ingredients in the laundry bars.
    Figure imgb0012
  • Having thus described the invention in detail, it will be clear to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not to be considered limited to what is described in the specification.

Claims (10)

  1. A detergent composition comprising:
    (a) a cellulase enzyme; and
    (b) a perfume containing at least 25% by weight of at least one fragrance material selected from the group consisting of aliphatic ketones with a molecular weight of between 200 and 350 AMU, aromatic ketones with a molecular weight of between 150 and 350 AMU, aliphatic aldehydes with a molecular weight of between 160 and 350 AMU, aromatic aldehydes with a molecular weight of between 150 and 350 AMU, condensation products of aldehydes and amines with a molecular weight between 190 and 350 AMU, aromatic and aliphatic lactones with a molecular weight between 140 and 350 AMU, aromatic and aliphatic ethers with a molecular weight between 150 and 350 AMU, aliphatic alcohols with a molecular weight between 200 and 350 AMU, aromatic and aliphatic esters with a molecular weight between 190 and 350 AMU and mixtures thereof; wherein said perfume is substantially free of halogenated fragrance materials and nitromusks.
  2. A detergent composition according to claim 1 wherein said enzyme is a fungal cellulase.
  3. A detergent composition according to claims 1 or 2 further comprising from 1% to 55% of a surfactant.
  4. A detergent composition according to claims 1-3 wherein said surfactant is selected from the group consisting of alkyl benzene sulfonates, alkyl ester sulfonates, alkyl ethoxylates, alkyl phenol alkoxylates, alkylpolyglucosides, alkyl sulfates, alkyl ethoxy sulfate, secondary alkyl sulfates and mixtures thereof.
  5. A detergent composition according to claims 1-4 further comprising at least 1% by weight of a detergency builder.
  6. A detergent composition according to claims 1-5 wherein said perfume is present in an amount from 0.001% to 5% by weight of said composition.
  7. A detergent composition according to claims 1-6 further comprising adjunct ingredients selected from the group consisting of bleaches, bleach activators, suds suppressors, enzyme stabilizers, polymeric dispersing agents, dye transfer inhibitors, soil release agents and mixtures thereof.
  8. A detergent composition according to claims 1-7 wherein said composition is in the form of agglomerates and the density of said detergent composition is at least 650 g/l.
  9. A detergent composition according to claims 1-8 further comprising a polyhydroxy fatty acid amide.
  10. A method of laundering fabrics characterized by the step of contacting said fabrics with an aqueous medium containing an effective amount of a detergent composition according to claims 1-9.
EP95870041A 1994-04-28 1995-04-25 Detergent compositions containing cellulase enzyme and selected perfumes for improved odor and stability. Ceased EP0679714A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US234077 1994-04-28
US08/234,077 USH1468H (en) 1994-04-28 1994-04-28 Detergent compositions containing cellulase enzyme and selected perfumes for improved odor and stability

Publications (2)

Publication Number Publication Date
EP0679714A2 true EP0679714A2 (en) 1995-11-02
EP0679714A3 EP0679714A3 (en) 1996-10-02

Family

ID=22879806

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95870041A Ceased EP0679714A3 (en) 1994-04-28 1995-04-25 Detergent compositions containing cellulase enzyme and selected perfumes for improved odor and stability.

Country Status (3)

Country Link
US (1) USH1468H (en)
EP (1) EP0679714A3 (en)
JP (1) JPH0853699A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787174A1 (en) * 1994-10-21 1997-08-06 The Procter & Gamble Company Detergent composition
WO1997031097A1 (en) * 1996-02-26 1997-08-28 The Procter & Gamble Company Fabric softening bar compositions containing fabric softener and enduring perfume
WO2000066696A1 (en) * 1999-04-29 2000-11-09 Genencor International, Inc. Cellulase detergent matrix
WO2006037438A1 (en) * 2004-10-04 2006-04-13 Unilever N.V. Liquid detergent composition
WO2020229535A1 (en) * 2019-05-16 2020-11-19 Unilever Plc Laundry composition
US11370998B2 (en) * 2018-06-14 2022-06-28 Ecolab Usa Inc. Synergistic cellulase-surfactant interactions for degradation of bacterial cellulose
US11591550B2 (en) 2018-06-14 2023-02-28 Ecolab Usa Inc. Compositions comprising cellulase with a nonionic surfactant and a quaternary ammonium compound
WO2023138837A1 (en) * 2022-01-20 2023-07-27 Unilever Ip Holdings B.V. Use

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536438A (en) * 1992-11-26 1996-07-16 The Procter & Gamble Company Multi-purpose liquid cleaning composition comprising nonionic surfactants of different HLB values
US5776878A (en) * 1994-01-13 1998-07-07 The Procter & Gamble Company Liquid detergent compositions containing brighteners and polymers for preventing fabric spotting
JPH10500166A (en) * 1994-05-16 1998-01-06 ザ、プロクター、エンド、ギャンブル、カンパニー Particulate detergent compositions containing mixed fatty alcohols for improved low temperature water solubility
US5759981A (en) * 1994-06-22 1998-06-02 The Procter & Gamble Company Process for treating textiles and compositions therefor
IL116638A0 (en) * 1995-01-12 1996-05-14 Procter & Gamble Method and compositions for laundering fabrics
GB9500737D0 (en) * 1995-01-14 1995-03-08 Procter & Gamble Detergent composition
GB9517008D0 (en) * 1995-08-18 1995-10-18 Procter & Gamble Perfumed cleaning compositions
AUPN502195A0 (en) * 1995-08-25 1995-09-14 Procter & Gamble Company, The Detergent composition with bleach system stabilized by enzymes
GB9520024D0 (en) * 1995-09-30 1995-12-06 Procter & Gamble Detergent composition
US5762647A (en) * 1995-11-21 1998-06-09 The Procter & Gamble Company Method of laundering with a low sudsing granular detergent composition containing optimally selected levels of a foam control agent bleach activator/peroxygen bleaching agent system and enzyme
US6017865A (en) * 1995-12-06 2000-01-25 The Procter & Gamble Company Perfume laundry detergent compositions which comprise a hydrophobic bleaching system
EP0927241A1 (en) * 1996-08-26 1999-07-07 The Procter & Gamble Company Cellulase activity control by a terminator
US6060441A (en) * 1997-04-10 2000-05-09 Henkel Corporation Cleaning compositions having enhanced enzyme activity
US20030100468A1 (en) * 1997-12-19 2003-05-29 The Procter & Gamble Company Nonaqueous, particulate-containing liquid detergent compositions with alkyl benzene sulfonate surfactant
EP0971024A1 (en) * 1998-07-10 2000-01-12 The Procter & Gamble Company Laundry and cleaning compositions
US6511948B1 (en) 1998-07-10 2003-01-28 The Procter & Gamble Company Amine reaction compounds comprising one or more active ingredient
EP0971021A1 (en) * 1998-07-10 2000-01-12 The Procter & Gamble Company Process for producing particles of amine reaction product
US6451751B1 (en) 1998-07-10 2002-09-17 The Procter & Gamble Company Process for producing particles of amine reaction product
US6413920B1 (en) 1998-07-10 2002-07-02 Procter & Gamble Company Amine reaction compounds comprising one or more active ingredient
EP0971025A1 (en) * 1998-07-10 2000-01-12 The Procter & Gamble Company Amine reaction compounds comprising one or more active ingredient
US6790815B1 (en) 1998-07-10 2004-09-14 Procter & Gamble Company Amine reaction compounds comprising one or more active ingredient
EP0971026A1 (en) * 1998-07-10 2000-01-12 The Procter & Gamble Company Laundry and cleaning compositions
EP1067117A1 (en) * 1999-07-09 2001-01-10 The Procter & Gamble Company Process for making imine compounds
EP1067116A1 (en) * 1999-07-09 2001-01-10 The Procter & Gamble Company Process for the production of imines
US6228821B1 (en) 1999-10-25 2001-05-08 Amway Corporation Cleaning composition having enhanced fragrance and method of enhancing fragrance
DE60028194T2 (en) * 2000-06-19 2007-03-08 The Procter & Gamble Company, Cincinnati Process for the treatment of tissues by heat generation
US20040052826A1 (en) * 2000-09-11 2004-03-18 Elena Fernandez-Kleinlein Cosmetic and pharmaceutical compositions and their use
JP4988997B2 (en) * 2001-08-03 2012-08-01 花王株式会社 Liquid detergent composition for clothing
US20030158079A1 (en) * 2001-10-19 2003-08-21 The Procter & Gamble Company Controlled benefit agent delivery system
US20030134772A1 (en) * 2001-10-19 2003-07-17 Dykstra Robert Richard Benefit agent delivery systems
US7261742B2 (en) 2005-10-13 2007-08-28 S.C. Johnson & Son, Inc. Method of deodorizing a textile
US7407922B2 (en) * 2005-10-13 2008-08-05 S.C. Johnson & Son, Inc. Deodorizing compositions
JP6220652B2 (en) * 2013-11-26 2017-10-25 日華化学株式会社 Cleaning composition for medical equipment
MX2016011830A (en) * 2014-03-12 2016-12-02 Noxell Corp Detergent composition.
WO2023025122A1 (en) * 2021-08-23 2023-03-02 Novozymes A/S Fragrance bead composition and use thereof

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3128287A (en) 1963-01-31 1964-04-07 Pfizer & Co C 2,2'-oxodisuccinic acid, derivatives thereof, and process for preparing
US3159581A (en) 1962-04-13 1964-12-01 Procter & Gamble Detergency composition
US3213030A (en) 1963-03-18 1965-10-19 Procter & Gamble Cleansing and laundering compositions
US3308067A (en) 1963-04-01 1967-03-07 Procter & Gamble Polyelectrolyte builders and detergent compositions
US3400148A (en) 1965-09-23 1968-09-03 Procter & Gamble Phosphonate compounds
US3422021A (en) 1963-03-18 1969-01-14 Procter & Gamble Detergent composition
US3422137A (en) 1965-12-28 1969-01-14 Procter & Gamble Methanehydroxydiphosphonic acids and salts useful in detergent compositions
GB1243784A (en) 1967-10-03 1971-08-25 Novo Terapeutisk Labor As Proteolytic enzymes, their production and use
US3635830A (en) 1968-05-24 1972-01-18 Lever Brothers Ltd Detergent compositions containing oxydisuccing acid salts as builders
US3723322A (en) 1969-02-25 1973-03-27 Procter & Gamble Detergent compositions containing carboxylated polysaccharide builders
DE2247832A1 (en) 1971-09-30 1973-04-05 Rikagaku Kenkyusho ALKALINE CELLULASE AND METHOD FOR PRODUCING IT
DE2321001A1 (en) 1972-04-28 1973-11-15 Procter & Gamble COMPOSITION WITH CRYSTALLIZATION INOCULATION
US3835163A (en) 1973-08-02 1974-09-10 Monsanto Co Tetrahydrofuran polycarboxylic acids
GB1368599A (en) 1970-09-29 1974-10-02 Unilever Ltd Softening compositions
US3985669A (en) 1974-06-17 1976-10-12 The Procter & Gamble Company Detergent compositions
US4102903A (en) 1977-01-05 1978-07-25 Monsanto Company Tetrahydropyran and 1,4-dioxane polycarboxylate compounds, methods for making such compounds and compositions and methods employing same
US4120874A (en) 1977-01-05 1978-10-17 Monsanto Company Diesters of 6-cyano-2,2-tetrahydropyrandicarboxylates
US4144226A (en) 1977-08-22 1979-03-13 Monsanto Company Polymeric acetal carboxylates
US4158635A (en) 1977-12-05 1979-06-19 Monsanto Company Detergent formulations containing tetrahydropyran or 1,4-dioxane polycarboxylates and method for using same
GB2075028A (en) 1980-04-30 1981-11-11 Novo Industri As Enzymatic additive
GB2095275A (en) 1981-03-05 1982-09-29 Kao Corp Enzyme detergent composition
EP0130756A1 (en) 1983-06-24 1985-01-09 Genencor International, Inc. Procaryotic carbonyl hydrolases, methods, DNA, vectors and transformed hosts for producing them, and detergent compositions containing them
US4515705A (en) 1983-11-14 1985-05-07 The Procter & Gamble Company Compositions containing odor purified proteolytic enzymes and perfumes
DE3417649A1 (en) 1984-05-12 1985-11-14 Hoechst Ag, 6230 Frankfurt METHOD FOR PRODUCING CRYSTALLINE SODIUM SILICATES
US4566984A (en) 1984-11-16 1986-01-28 The Procter & Gamble Company Ether polycarboxylates
EP0200263A2 (en) 1985-05-03 1986-11-05 The Procter & Gamble Company Homogeneous concentrated liquid detergent compositions containing ternary surfactant system
US4663071A (en) 1986-01-30 1987-05-05 The Procter & Gamble Company Ether carboxylate detergent builders and process for their preparation
US4664839A (en) 1984-04-11 1987-05-12 Hoechst Aktiengesellschaft Use of crystalline layered sodium silicates for softening water and a process for softening water
DE3742043A1 (en) 1987-12-11 1989-06-22 Hoechst Ag METHOD FOR PRODUCING CRYSTALLINE SODIUM LAYER SILICATES
EP0430315A2 (en) 1989-09-29 1991-06-05 Unilever N.V. Perfumed laundry detergents
WO1992013057A1 (en) 1991-01-16 1992-08-06 The Procter & Gamble Company Compact detergent compositions with high activity cellulase

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8421800D0 (en) * 1984-08-29 1984-10-03 Unilever Plc Detergent compositions
US5156761A (en) * 1988-07-20 1992-10-20 Dorrit Aaslyng Method of stabilizing an enzymatic liquid detergent composition
JP2558158B2 (en) * 1988-12-29 1996-11-27 ライオン株式会社 Detergent composition
US4973422A (en) * 1989-01-17 1990-11-27 The Procter & Gamble Company Perfume particles for use in cleaning and conditioning compositions
US5120463A (en) * 1989-10-19 1992-06-09 Genencor International, Inc. Degradation resistant detergent compositions based on cellulase enzymes
JP2859393B2 (en) * 1990-07-24 1999-02-17 ノボ ノルディスク アクティーゼルスカブ Cellulase and method for producing the same
US5290474A (en) * 1990-10-05 1994-03-01 Genencor International, Inc. Detergent composition for treating cotton-containing fabrics containing a surfactant and a cellulase composition containing endolucanase III from trichoderma ssp
US5232851A (en) * 1990-10-16 1993-08-03 Springs Industries, Inc. Methods for treating non-dyed and non-finished cotton woven fabric with cellulase to improve appearance and feel characteristics
JPH06510077A (en) * 1991-08-21 1994-11-10 ザ、プロクター、エンド、ギャンブル、カンパニー Detergent compositions containing lipase and terpenes
WO1993011215A1 (en) * 1991-12-04 1993-06-10 The Procter & Gamble Company Liquid laundry detergents with citric acid, cellulase, and boric-diol complex to inhibit proteolytic enzyme
US5248434A (en) * 1992-04-20 1993-09-28 The Proctor & Gamble Company Liquid or gel bleaching composition containing amidoperoxyacid bleach and perfume

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159581A (en) 1962-04-13 1964-12-01 Procter & Gamble Detergency composition
US3128287A (en) 1963-01-31 1964-04-07 Pfizer & Co C 2,2'-oxodisuccinic acid, derivatives thereof, and process for preparing
US3213030A (en) 1963-03-18 1965-10-19 Procter & Gamble Cleansing and laundering compositions
US3422021A (en) 1963-03-18 1969-01-14 Procter & Gamble Detergent composition
US3308067A (en) 1963-04-01 1967-03-07 Procter & Gamble Polyelectrolyte builders and detergent compositions
US3400148A (en) 1965-09-23 1968-09-03 Procter & Gamble Phosphonate compounds
US3422137A (en) 1965-12-28 1969-01-14 Procter & Gamble Methanehydroxydiphosphonic acids and salts useful in detergent compositions
GB1243784A (en) 1967-10-03 1971-08-25 Novo Terapeutisk Labor As Proteolytic enzymes, their production and use
US3635830A (en) 1968-05-24 1972-01-18 Lever Brothers Ltd Detergent compositions containing oxydisuccing acid salts as builders
US3723322A (en) 1969-02-25 1973-03-27 Procter & Gamble Detergent compositions containing carboxylated polysaccharide builders
GB1368599A (en) 1970-09-29 1974-10-02 Unilever Ltd Softening compositions
DE2247832A1 (en) 1971-09-30 1973-04-05 Rikagaku Kenkyusho ALKALINE CELLULASE AND METHOD FOR PRODUCING IT
DE2321001A1 (en) 1972-04-28 1973-11-15 Procter & Gamble COMPOSITION WITH CRYSTALLIZATION INOCULATION
US3835163A (en) 1973-08-02 1974-09-10 Monsanto Co Tetrahydrofuran polycarboxylic acids
US3923679A (en) 1973-08-02 1975-12-02 Monsanto Co Salts of tetrahydrofuran polycarboxylic acids as detergent builders and complexing agents
US3985669A (en) 1974-06-17 1976-10-12 The Procter & Gamble Company Detergent compositions
US4102903A (en) 1977-01-05 1978-07-25 Monsanto Company Tetrahydropyran and 1,4-dioxane polycarboxylate compounds, methods for making such compounds and compositions and methods employing same
US4120874A (en) 1977-01-05 1978-10-17 Monsanto Company Diesters of 6-cyano-2,2-tetrahydropyrandicarboxylates
US4144226A (en) 1977-08-22 1979-03-13 Monsanto Company Polymeric acetal carboxylates
US4158635A (en) 1977-12-05 1979-06-19 Monsanto Company Detergent formulations containing tetrahydropyran or 1,4-dioxane polycarboxylates and method for using same
GB2075028A (en) 1980-04-30 1981-11-11 Novo Industri As Enzymatic additive
US4435307A (en) 1980-04-30 1984-03-06 Novo Industri A/S Detergent cellulase
GB2095275A (en) 1981-03-05 1982-09-29 Kao Corp Enzyme detergent composition
EP0130756A1 (en) 1983-06-24 1985-01-09 Genencor International, Inc. Procaryotic carbonyl hydrolases, methods, DNA, vectors and transformed hosts for producing them, and detergent compositions containing them
US4515705A (en) 1983-11-14 1985-05-07 The Procter & Gamble Company Compositions containing odor purified proteolytic enzymes and perfumes
US4664839A (en) 1984-04-11 1987-05-12 Hoechst Aktiengesellschaft Use of crystalline layered sodium silicates for softening water and a process for softening water
DE3417649A1 (en) 1984-05-12 1985-11-14 Hoechst Ag, 6230 Frankfurt METHOD FOR PRODUCING CRYSTALLINE SODIUM SILICATES
US4566984A (en) 1984-11-16 1986-01-28 The Procter & Gamble Company Ether polycarboxylates
EP0200263A2 (en) 1985-05-03 1986-11-05 The Procter & Gamble Company Homogeneous concentrated liquid detergent compositions containing ternary surfactant system
US4663071A (en) 1986-01-30 1987-05-05 The Procter & Gamble Company Ether carboxylate detergent builders and process for their preparation
US4663071B1 (en) 1986-01-30 1992-04-07 Procter & Gamble
DE3742043A1 (en) 1987-12-11 1989-06-22 Hoechst Ag METHOD FOR PRODUCING CRYSTALLINE SODIUM LAYER SILICATES
EP0430315A2 (en) 1989-09-29 1991-06-05 Unilever N.V. Perfumed laundry detergents
WO1992013057A1 (en) 1991-01-16 1992-08-06 The Procter & Gamble Company Compact detergent compositions with high activity cellulase

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787174A1 (en) * 1994-10-21 1997-08-06 The Procter & Gamble Company Detergent composition
EP0787174A4 (en) * 1994-10-21 1998-03-04 Procter & Gamble Detergent composition
WO1997031097A1 (en) * 1996-02-26 1997-08-28 The Procter & Gamble Company Fabric softening bar compositions containing fabric softener and enduring perfume
WO2000066696A1 (en) * 1999-04-29 2000-11-09 Genencor International, Inc. Cellulase detergent matrix
US6565613B1 (en) 1999-04-29 2003-05-20 Genencor International, Inc. Cellulase detergent matrix
WO2006037438A1 (en) * 2004-10-04 2006-04-13 Unilever N.V. Liquid detergent composition
US11370998B2 (en) * 2018-06-14 2022-06-28 Ecolab Usa Inc. Synergistic cellulase-surfactant interactions for degradation of bacterial cellulose
US11591550B2 (en) 2018-06-14 2023-02-28 Ecolab Usa Inc. Compositions comprising cellulase with a nonionic surfactant and a quaternary ammonium compound
US11859157B2 (en) 2018-06-14 2024-01-02 Ecolab Usa Inc. Synergistic cellulase-surfactant interactions for degradation of bacterial cellulose
WO2020229535A1 (en) * 2019-05-16 2020-11-19 Unilever Plc Laundry composition
WO2023138837A1 (en) * 2022-01-20 2023-07-27 Unilever Ip Holdings B.V. Use

Also Published As

Publication number Publication date
USH1468H (en) 1995-08-01
JPH0853699A (en) 1996-02-27
EP0679714A3 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
USH1468H (en) Detergent compositions containing cellulase enzyme and selected perfumes for improved odor and stability
US5500154A (en) Detergent compositions containing enduring perfume
EP0883675B1 (en) Detergent compositions containing enduring perfume
US5932532A (en) Bleach compositions comprising protease enzyme
US6491728B2 (en) Detergent compositions containing enduring perfume
US5565145A (en) Compositions comprising ethoxylated/propoxylated polyalkyleneamine polymers as soil dispersing agents
US5929010A (en) Laundry detergents comprising heavy metal ion chelants
US5837670A (en) Detergent compositions having suds suppressing properties
US5560748A (en) Detergent compositions comprising large pore size redox catalysts
WO1995029160A1 (en) Cationic bleach activators
EP0763086B1 (en) Detergent compositions with oleoyl sarcosinate and polymeric dispersing agent
US6159927A (en) Compositions comprising hydrophilic silica particulates
WO1995033038A1 (en) Sarcosinate with clay softeners in laundry compositions
EP0815051A1 (en) Perfumed bleaching compositions
CA2189751C (en) Detergent compositions having suds suppressing properties
CA2206458A1 (en) Perfumed bleaching compositions
EP0756622B1 (en) Bleach compositions comprising protease enzyme
EP0763087B1 (en) Built detergent compositions comprising oleoyl sarcosinate
CA2191314C (en) Detergent composition containing oleoyl sarcosinate and anionic surfactants in optimum ratios
GB2296261A (en) Odor control fabric treatment compositions
WO1995033027A1 (en) Detergent compositions comprising oleoyl sarcosinate and enzymes
EP0843716A1 (en) Detergent compositions comprising hydroxyacid compounds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19960502

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 19970526

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19991028