EP0697710A1 - Manufacturing method for a micropoint-electron source - Google Patents

Manufacturing method for a micropoint-electron source Download PDF

Info

Publication number
EP0697710A1
EP0697710A1 EP95401863A EP95401863A EP0697710A1 EP 0697710 A1 EP0697710 A1 EP 0697710A1 EP 95401863 A EP95401863 A EP 95401863A EP 95401863 A EP95401863 A EP 95401863A EP 0697710 A1 EP0697710 A1 EP 0697710A1
Authority
EP
European Patent Office
Prior art keywords
layer
metallic material
electrically insulating
protective layer
microtips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95401863A
Other languages
German (de)
French (fr)
Other versions
EP0697710B1 (en
Inventor
Gilles Delapierre
Robert Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0697710A1 publication Critical patent/EP0697710A1/en
Application granted granted Critical
Publication of EP0697710B1 publication Critical patent/EP0697710B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes

Definitions

  • the present invention relates to a method for manufacturing a microtip electron source ("microtips").
  • Such a principle is used to produce cold sources of electrons, capable of replacing the electron-emitting heating filaments, since such cold sources have a faster response, lower electrical consumption and are capable of more great miniaturization than these heating filaments.
  • microtip sources One of the most important applications of these cold sources of electrons, also called “microtip sources”, is the manufacture of flat television tubes.
  • Figure 1 is a schematic and partial sectional view of such a flat screen and Figure 2 is a schematic and partial perspective view of this flat screen.
  • the flat screen of FIGS. 1 and 2 comprises a source of microtip electrons 2 and a glass substrate 4 which is separated from the source 2 by a thin space in which a vacuum has been created.
  • the substrate 4 carries, opposite the source 2, a transparent, electrically conductive layer 6, for example of indium tin oxide, this layer 6 itself carrying cathodoluminescent elements 8, also called "phosphors".
  • the microtip source 2 comprises, on an electrically insulating substrate 10, for example made of glass, a set of parallel cathode conductors 12 which constitute the columns of the screen.
  • cathode conductors are covered by a layer 14 of an electrically insulating material such as silica.
  • a set of other parallel electrical conductors 15 is placed above the insulating layer 14 and these other conductors 15, or grids, are perpendicular to the cathode conductors 12 to form the lines of the screen.
  • holes 18, 19 are formed through the insulating layer 14 and these grids 15 and microtips 20 made of an electron-emitting material are formed in these holes and rest on cathode conductors 12.
  • the phosphors 8 are formed on the transparent conductive layer 6, facing these intersections, as seen in FIG. 2.
  • the electrons are extracted by applying appropriate electrical voltages between the grids and the microtips, then these electrons are accelerated thanks to appropriate applied voltages. between the grids and the conductive layer 6 constituting the anode of the screen.
  • Each phosphor 8 excited by electrons 22 emits light 24.
  • Each pixel is in fact "excited" by several hundred microtips whose dimensions are of the order of 1 ⁇ m, generally 1.5 ⁇ m, and which are spaced from one another by a distance of the order of a few micrometers, typically 5 ⁇ m.
  • a flat screen thus typically uses around 10,000 microtips per square millimeter on areas of several square decimetres.
  • the flat screens currently manufactured have surfaces of the order of 5 dm and it is envisaged to manufacture flat screens whose surfaces would go up to approximately 1 m.
  • FIG. 3 which schematically illustrates this process, shows a structure comprising the insulating substrate 10 on which the cathode conductors 12 are formed, and the insulating layer 14 which is formed on these cathode conductors and which carries a grid layer 16 electrically conductive.
  • the grids themselves are obtained from this grid layer 16, after having formed the microtips as will be seen.
  • a nickel layer 16a is deposited on the grid layer 16 by evaporation under vacuum and under grazing incidence.
  • the microtips 20 are obtained by evaporation of an electron-emitting material 26.
  • a layer 28 of this material then forms on the surface of the grid layer 16a.
  • the holes 19 formed in these layers 16 and 16a decrease progressively as the thickness of the layer 28 increases.
  • the diameter of the material deposits 26 in the holes 18 of the insulating layer 14 varies like the diameter of the holes in the layer 16a and the grid layer 16, which leads to the point shape of the deposits in the holes 18, that is to say to the microtips 20.
  • the layer 28 is then eliminated by selective dissolution of the nickel layer 16a, which reveals these microtips.
  • the main advantage of this known method is that it does not require precise alignment of microlithography masks since it is the holes in the grid layer which themselves define the microtips.
  • This FIG. 4 shows a silicon substrate 30.
  • discs 32 are formed from the silica layer which results from this oxidation.
  • Reactive ion etching of the silicon substrate 30 then allows the formation of silicon pedestals 34, the disks 32 serving as masks.
  • a layer of silica 36 is then formed on the substrate 30 by evaporation of silica 38.
  • a layer 40 of silica is then formed on each disc 32.
  • the pedestals 34 are then thermally oxidized, which leads to the formation of microtips 42 from these pedestals.
  • a grid layer 44 is then formed by evaporation of an electrically conductive material on the silica layer 36.
  • a layer 46 of this material also forms on the layer 40 of silica associated with each disc 32.
  • the angle of incidence ⁇ of an evaporation beam F varies as a function of the position of the holes 19 of the grid layer 16, which leads to the phenomenon illustrated on FIG. 5, that is to say to microtips whose axes Y are less perpendicular to the surface of the substrate 10 the greater the angle of incidence ⁇ .
  • the object of the present invention is to remedy these drawbacks.
  • the grid layer is used as a cathode for the electrolytic attack on the metallic material.
  • a small redeposition or a controlled redeposition which spans the entire grid is tolerated; it results in a significant reduction in the diameter of the holes, which is rather favorable to the emission of electrons by the microtips.
  • the protective layer can be formed by depositing, under grazing incidence, a layer of an electrically insulating material on the grid layer.
  • this protective layer is preferably formed by anodic oxidation of the gate layer.
  • the grid layer can be made of a material selected from the group comprising niobium, tantalum and aluminum.
  • the metallic material can be chosen from the group comprising iron, nickel, chromium, Fe-Ni, gold, silver and copper.
  • the protective layer can be removed by chemical attack.
  • This protective layer can also be removed by reactive ion etching.
  • FIG. 6A a structure 49 of the kind of that represented in FIG. 3 and which comprises the electrically insulating substrate 10 on which the cathode conductors 12 are formed, the layer electrically insulating 14 formed on these cathode conductors and the gate layer 16 formed on this electrically insulating layer 14 (it being understood that, in other particular embodiments, the structure could comprise only one cathode conductor).
  • substantially circular holes 18 and 19 respectively formed through the insulating layer 14 and through the grid layer 16.
  • the substrate 10 is made of glass
  • the cathode conductors consist of a bilayer of chromium and copper
  • the layer 14 is made of silica
  • the grid layer 16 is made of niobium, tantalum or aluminum.
  • a protective layer is then formed on the grid layer 16 (FIG. 6B).
  • anodic oxidation of the gate layer 16 is carried out, which leads to the formation of a layer 50 of niobium oxide or tantalum oxide or aluminum oxide in the example. considered, which covers the remaining part of the grid layer 16, as seen in FIG. 6B.
  • This anodic oxidation leads to a more reliable covering of the grid layer than evaporation under grazing incidence mentioned above and is simpler to use.
  • the structure 49 comprising the protective layer 50, is placed in an appropriate electrolytic bath 54 (containing ions of the metallic material to be deposited) and also placed in this electrolytic bath a block 56 of this metallic material.
  • an appropriate electrolytic bath 54 containing ions of the metallic material to be deposited
  • the following conditions can be used for the electrolytic deposition: current density: 0.5 to 2 mA / cm voltage: 1 to 2V ambient temperature.
  • the cathode conductors 12 serve as the cathode and the block 56 serves as the anode.
  • the electrically conductive elements 60 which result from the deposition of the metallic material at the bottom of the holes 18, are in contact with the cathode conductors but are electrically insulated from the grid layer 16 thanks to the protective layer 50 which covers the latter.
  • This protective layer 50 is then removed by chemical attack or by reactive ion etching (FIG. 6D).
  • the structure is placed, where the protective layer 50 has been removed, in an appropriate electrolytic bath 64 (containing for example 10% HCl at 37% and 90% H2O for the dissolution of nickel iron) and, at by means of a suitable electrical voltage source 66, an electrical voltage is established (for example 1 to 2 V for the dissolution of iron-nickel) between the cathode conductors 12 which, in this case, serve as an anode, and the layer of grid 16 which serves as a cathode.
  • an appropriate electrolytic bath 64 containing for example 10% HCl at 37% and 90% H2O for the dissolution of nickel iron
  • an electrical voltage for example 1 to 2 V for the dissolution of iron-nickel
  • the electrolyte is renewed by stirring and / or by circulation, so as to avoid a concentration of ions around the material of the elements 60.
  • the material of the elements 60 is eliminated in a substantially symmetrical manner around the axis Z of the holes 18 and the metal ions produced by the chemical attack of the material of the elements 60 are partly eliminated thanks to the renewal of the electrolyte and partly redeposited on the grid layer.
  • the redeposited fraction of the ions is more or less large and can be controlled.
  • this step of forming the microtips is carried out with the glass substrate above and the electrolytic bath below, so as to allow the parts 68 to fall into the electrolytic bath.
  • microtip electron source is then terminated by producing, in a known manner, from the grid layer 16, parallel grids (not shown) making an angle with the cathode conductors (but if there is no had only a cathode conductor, we would keep the grid layer as it is).
  • the advantage of the process which is the subject of the present invention is that it allows the manufacture of self-aligned microtips on the holes of the grid layer 16, by means of a non-directive technique, in isotropic liquid medium (electrolytic bath 64).
  • This process which is the subject of the invention is therefore independent of the surface of the structure where it is desired to form the microtips.

Abstract

A micro-tip electron source prodn. process involves: (a) producing a structure comprising an insulating substrate (10) bearing one or more cathode conductors (12) covered with an insulating layer (14) and then a conductive grid layer (16), holes (18) being formed through these layers (14,16) to each cathode conductor (12); and (b) forming a micro-tip of electron-emissive metal on the cathode conductor (12) in each hole (18), and an insulating protective layer (50) on the grid layer (16), depositing (pref. electrolytically) electron-emissive metal to overfill the holes, removing the protective layer and electrolytically etching the metal deposit (60) to form the micro-tips.

Description

La présente invention concerne un procédé de fabrication d'une source d'électrons à micropointes ("microtips").The present invention relates to a method for manufacturing a microtip electron source ("microtips").

Elle s'applique notamment à la fabrication de dispositifs de visualisation plats.It applies in particular to the manufacture of flat display devices.

Lorsqu'une différence de potentiel est appliquée entre deux électrodes dont l'une est pointue, le champ électrique ainsi engendré peut facilement atteindre, à l'extrémité de cette électrode pointue, une valeur de l'ordre de 10⁷ V/cm, valeur suffisante pour que des électrons soient extraits de cette électrode.When a potential difference is applied between two electrodes, one of which is pointed, the electric field thus generated can easily reach, at the end of this pointed electrode, a value of the order of 10⁷ V / cm, sufficient value so that electrons are extracted from this electrode.

Un tel principe est utilisé pour réaliser des sources froides d'électrons, capables de remplacer les filaments chauffants émetteurs d'électrons, du fait que de telles sources froides ont une réponse plus rapide, une plus faible consommation électrique et sont susceptibles d'une plus grande miniaturisation que ces filaments chauffants.Such a principle is used to produce cold sources of electrons, capable of replacing the electron-emitting heating filaments, since such cold sources have a faster response, lower electrical consumption and are capable of more great miniaturization than these heating filaments.

L'une des applications les plus importantes de ces sources froides d'électrons, encore appelées "sources à micropointes", est la fabrication de tubes plats de télévision.One of the most important applications of these cold sources of electrons, also called "microtip sources", is the manufacture of flat television tubes.

On rappelle le principe de ces tubes plats, ou écrans plats, en faisant référence aux figures 1 et 2.The principle of these flat tubes, or flat screens, is recalled, with reference to FIGS. 1 and 2.

La figure 1 est une vue en coupe schématique et partielle d'un tel écran plat et la figure 2 est une vue en perspective schématique et partielle de cet écran plat.Figure 1 is a schematic and partial sectional view of such a flat screen and Figure 2 is a schematic and partial perspective view of this flat screen.

L'écran plat des figures 1 et 2 comprend une source d'électrons à micropointes 2 et un substrat en verre 4 qui est séparé de la source 2 par un espace de faible épaisseur dans lequel on a fait le vide.The flat screen of FIGS. 1 and 2 comprises a source of microtip electrons 2 and a glass substrate 4 which is separated from the source 2 by a thin space in which a vacuum has been created.

Le substrat 4 porte, en regard de la source 2, une couche transparente, électriquement conductrice 6, par exemple en oxyde d'indium et d'étain, cette couche 6 portant elle-même des éléments cathodoluminescents 8, encore appelés "luminophores".The substrate 4 carries, opposite the source 2, a transparent, electrically conductive layer 6, for example of indium tin oxide, this layer 6 itself carrying cathodoluminescent elements 8, also called "phosphors".

La source à micropointes 2 comprend, sur un substrat électriquement isolant 10, par exemple en verre, un ensemble de conducteurs cathodiques parallèles 12 qui constituent les colonnes de l'écran.The microtip source 2 comprises, on an electrically insulating substrate 10, for example made of glass, a set of parallel cathode conductors 12 which constitute the columns of the screen.

Ces conducteurs cathodiques sont recouverts par une couche 14 d'un matériau électriquement isolant tel que la silice.These cathode conductors are covered by a layer 14 of an electrically insulating material such as silica.

Un ensemble d'autres conducteurs électriques parallèles 15 est placé au-dessus de la couche isolante 14 et ces autres conducteurs 15, ou grilles, sont perpendiculaires aux conducteurs cathodiques 12 pour constituer les lignes de l'écran.A set of other parallel electrical conductors 15 is placed above the insulating layer 14 and these other conductors 15, or grids, are perpendicular to the cathode conductors 12 to form the lines of the screen.

Au niveau des intersections entre les conducteurs cathodiques et les grilles, des trous 18, 19 sont formés à travers la couche isolante 14 et ces grilles 15 et des micropointes 20 faites d'un matériau émetteur d'électrons sont formées dans ces trous et reposent sur les conducteurs cathodiques 12.At the intersections between the cathode conductors and the grids, holes 18, 19 are formed through the insulating layer 14 and these grids 15 and microtips 20 made of an electron-emitting material are formed in these holes and rest on cathode conductors 12.

Les luminophores 8 sont formés sur la couche conductrice transparente 6, en regard de ces intersections, comme on le voit sur la figure 2.The phosphors 8 are formed on the transparent conductive layer 6, facing these intersections, as seen in FIG. 2.

Les électrons sont extraits par application de tensions électriques appropriées entre les grilles et les micropointes puis ces électrons sont accélérés grâce à des tensions électriques appropriées appliquées entre les grilles et la couche conductrice 6 constituant l'anode de l'écran.The electrons are extracted by applying appropriate electrical voltages between the grids and the microtips, then these electrons are accelerated thanks to appropriate applied voltages. between the grids and the conductive layer 6 constituting the anode of the screen.

Chaque luminophore 8 excité par des électrons 22 émet de la lumière 24.Each phosphor 8 excited by electrons 22 emits light 24.

Un balayage de tension approprié sur les lignes et les colonnes de l'écran permet de former une image.An appropriate voltage sweep on the rows and columns of the screen makes it possible to form an image.

Seules les micropointes situées à l'intersection d'une ligne et d'une colonne alimentées en tension émettent des électrons pour former un élément d'image ou pixel.Only the microtips located at the intersection of a line and a column supplied with voltage emit electrons to form an image element or pixel.

Chaque pixel est en fait "excité" par plusieurs centaines de micropointes dont les dimensions sont de l'ordre de 1 µm, généralement de 1,5 µm, et qui sont espacées les unes des autres d'une distance de l'ordre de quelques micromètres, typiquement de 5 µm.Each pixel is in fact "excited" by several hundred microtips whose dimensions are of the order of 1 μm, generally 1.5 μm, and which are spaced from one another by a distance of the order of a few micrometers, typically 5 µm.

Ces petites dimensions sont indispensables, pour, d'une part, ne pas avoir à utiliser des tensions trop élevées entre les grilles et les micropointes (tensions de l'ordre de 50 V) et, d'autre part, pour avoir une émission de courant suffisamment élevée par unité de surface (environ 1 mA/mm).These small dimensions are essential for, on the one hand, not having to use excessively high voltages between the grids and the microtips (voltages of the order of 50 V) and, on the other hand, for having an emission of sufficiently high current per unit area (approximately 1 mA / mm).

Un écran plat utilise ainsi typiquement de l'ordre de 10000 micropointes par millimètre carré sur des surfaces de plusieurs décimètres carrés.A flat screen thus typically uses around 10,000 microtips per square millimeter on areas of several square decimetres.

Les écrans plats actuellement fabriqués ont des surfaces de l'ordre de 5 dm et on envisage de fabriquer des écrans plats dont les surfaces iraient jusqu'à environ 1 m.The flat screens currently manufactured have surfaces of the order of 5 dm and it is envisaged to manufacture flat screens whose surfaces would go up to approximately 1 m.

Cependant, il n'est pas facile d'obtenir des sources à micropointes ayant d'aussi grandes surfaces avec les procédés connus de fabrication des micropointes.However, it is not easy to obtain microtip sources having such large areas with the known methods of manufacturing microtips.

Le procédé le plus utilisé pour fabriquer ces micropointes est le procédé dit de Spindt (du nom de son inventeur).The process most used to make these microtips is the so-called Spindt process (from the name of its inventor).

On consultera à ce sujet par exemple le document suivant :We will consult on this subject for example the following document:

(1) C.A. Spindt, J. Appl. Phys., vol.39, p.3504, 1968.(1) C.A. Spindt, J. Appl. Phys., Vol.39, p.3504, 1968.

On voit sur la figure 3, qui illustre schématiquement ce procédé, une structure comprenant le substrat isolant 10 sur lequel sont formés les conducteurs cathodiques 12, et la couche isolante 14 qui est formée sur ces conducteurs cathodiques et qui porte une couche de grille 16 électriquement conductrice.FIG. 3, which schematically illustrates this process, shows a structure comprising the insulating substrate 10 on which the cathode conductors 12 are formed, and the insulating layer 14 which is formed on these cathode conductors and which carries a grid layer 16 electrically conductive.

Les grilles proprement dites sont obtenues à partir de cette couche de grille 16, après avoir formé les micropointes comme on va le voir.The grids themselves are obtained from this grid layer 16, after having formed the microtips as will be seen.

Après avoir gravé par attaque chimique les trous 18 et 19 respectivement dans la couche isolante 14 et dans la couche de grille 16, une couche en nickel 16a est déposée sur la couche de grille 16 par évaporation sous vide et sous incidence rasante.After having etched the holes 18 and 19 respectively in the insulating layer 14 and in the grid layer 16, a nickel layer 16a is deposited on the grid layer 16 by evaporation under vacuum and under grazing incidence.

On obtient les micropointes 20 par évaporation d'un matériau émetteur d'électrons 26.The microtips 20 are obtained by evaporation of an electron-emitting material 26.

Une couche 28 de ce matériau se forme alors à la surface de la couche de grille 16a.A layer 28 of this material then forms on the surface of the grid layer 16a.

De ce fait, les trous 19 formés dans ces couches 16 et 16a diminuent progressivement au fur et à mesure que l'épaisseur de la couche 28 augmente.As a result, the holes 19 formed in these layers 16 and 16a decrease progressively as the thickness of the layer 28 increases.

L'évaporation étant très directive, le diamètre des dépôts de matériau 26 dans les trous 18 de la couche isolante 14 varie comme le diamètre des trous de la couche 16a et de la couche de grille 16, ce qui conduit à la forme en pointe des dépôts dans les trous 18, c'est-à-dire aux micropointes 20.Since evaporation is very directive, the diameter of the material deposits 26 in the holes 18 of the insulating layer 14 varies like the diameter of the holes in the layer 16a and the grid layer 16, which leads to the point shape of the deposits in the holes 18, that is to say to the microtips 20.

On élimine ensuite la couche 28 par dissolution sélective de la couche en nickel 16a, ce qui fait apparaître ces micropointes.The layer 28 is then eliminated by selective dissolution of the nickel layer 16a, which reveals these microtips.

Le principal avantage de ce procédé connu est qu'il ne demande pas d'alignement précis de masques de microlithographie puisque ce sont les trous de la couche de grille qui définissent eux-mêmes les micropointes.The main advantage of this known method is that it does not require precise alignment of microlithography masks since it is the holes in the grid layer which themselves define the microtips.

Il serait en effet quasiment irréalisable de graver d'abord les micropointes puis les trous de la couche de grille par des méthodes classiques de microlithographie, avec une précision d'alignement supérieure au micromètre sur de grandes surfaces.It would indeed be almost impractical to first etch the microtips and then the holes in the grid layer by conventional microlithography methods, with alignment accuracy greater than a micrometer over large areas.

Un autre procédé connu de fabrication des micropointes est décrit dans le document suivant :Another known method for manufacturing microtips is described in the following document:

(2) Oxidation-Sharpened Gated Field Emitter Array Process, N.E. McGruer et al., IEEE Transactions on Electron Devices, (38) 1991 October, n°10.(2) Oxidation-Sharpened Gated Field Emitter Array Process, N.E. McGruer et al., IEEE Transactions on Electron Devices, (38) 1991 October, n ° 10.

Cet autre procédé est schématiquement illustré par la figure 4.This other method is schematically illustrated in FIG. 4.

On voit sur cette figure 4 un substrat en silicium 30.This FIG. 4 shows a silicon substrate 30.

On commence par oxyder superficiellement ce substrat puis des disques 32 sont formés à partir de la couche de silice qui résulte de cette oxydation.We begin by oxidizing this substrate superficially then discs 32 are formed from the silica layer which results from this oxidation.

Une gravure ionique réactive du substrat de silicium 30 permet alors la formation de piédestals 34 en silicium, les disques 32 servant de masques.Reactive ion etching of the silicon substrate 30 then allows the formation of silicon pedestals 34, the disks 32 serving as masks.

On forme ensuite une couche de silice 36 sur le substrat 30 par évaporation de silice 38.A layer of silica 36 is then formed on the substrate 30 by evaporation of silica 38.

Il se forme alors une couche 40 de silice sur chaque disque 32.A layer 40 of silica is then formed on each disc 32.

Les piédestals 34 sont ensuite oxydés thermiquement, ce qui conduit à la formation de micropointes 42 à partir de ces piédestals.The pedestals 34 are then thermally oxidized, which leads to the formation of microtips 42 from these pedestals.

On forme ensuite une couche de grille 44 par évaporation d'un matériau électriquement conducteur sur la couche de silice 36.A grid layer 44 is then formed by evaporation of an electrically conductive material on the silica layer 36.

Au cours de cette évaporation, une couche 46 de ce matériau se forme également sur la couche 40 de silice associée à chaque disque 32.During this evaporation, a layer 46 of this material also forms on the layer 40 of silica associated with each disc 32.

On élimine ensuite la silice qui recouvre les micropointes 42 ainsi que les disques 32 et les couches 40 et 46 correspondantes.Then removing the silica which covers the microtips 42 as well as the discs 32 and the corresponding layers 40 and 46.

L'inconvénient des procédés connus que l'on vient de décrire est qu'ils nécessitent des évaporations très directives.The disadvantage of the known methods which have just been described is that they require very directive evaporations.

En reprenant par exemple l'exemple de la figure 3, l'angle d'incidence θ d'un faisceau d'évaporation F varie en fonction de la position des trous 19 de la couche de grille 16, ce qui conduit au phénomène illustré sur la figure 5, c'est-à-dire à des micropointes dont les axes Y sont d'autant moins perpendiculaires à la surface du substrat 10 que l'angle d'incidence θ est grand.Using for example the example of FIG. 3, the angle of incidence θ of an evaporation beam F varies as a function of the position of the holes 19 of the grid layer 16, which leads to the phenomenon illustrated on FIG. 5, that is to say to microtips whose axes Y are less perpendicular to the surface of the substrate 10 the greater the angle of incidence θ.

Il en résulte une variation de la forme des micropointes, variation qui induit une dispersion des caractéristiques d'émission des électrons, et, à la limite, un court-circuit entre des micropointes et la couche de grille.This results in a variation in the shape of the microtips, a variation which induces a dispersion of the emission characteristics of the electrons, and, ultimately, a short circuit between microtips and the grid layer.

Pour résoudre ce problème, on peut songer à augmenter la distance L entre la source d'évaporation 48 (contenant le matériau 26) et la surface de la structure sur laquelle on évapore ce matériau 26, afin de maintenir l'angle θ dans des limites acceptables.To solve this problem, one can consider increasing the distance L between the evaporation source 48 (containing the material 26) and the surface of the structure on which this material 26 is evaporated, in order to keep the angle θ within limits. acceptable.

Cependant ceci conduit à une augmentation trop importante de la taille des équipements de fabrication des micropointes ainsi qu'à une trop grande diminution de la vitesse de dépôt.However, this leads to too large an increase in the size of the microtip manufacturing equipment as well as to a too large decrease in the deposition rate.

La présente invention a pour but de remédier à ces inconvénients.The object of the present invention is to remedy these drawbacks.

Elle a pour objet un procédé de fabrication d'une source d'électrons à micropointes, procédé selon lequel :

  • on fabrique une structure comprenant un substrat électriquement isolant, au moins un conducteur cathodique sur ce substrat, une couche électriquement isolante qui recouvre chaque conducteur cathodique, une couche de grille électriquement conductrice qui recouvre cette couche électriquement isolante, des trous étant formés à travers cette couche de grille et la couche électriquement isolante, au niveau de chaque conducteur cathodique, et
  • on forme, dans chaque trou, une micropointe qui est faite en un matériau métallique émetteur d'électrons et qui repose sur le conducteur cathodique correspondant à ce trou,

ce procédé étant caractérisé en ce que la formation des micropointes comprend les étapes suivantes :
  • on forme une couche de protection électriquement isolante sur la couche de grille,
  • on forme un dépôt chimique, de préférence électrolytique, du matériau métallique émetteur d'électrons au fond des trous jusqu'à ce que ce matériau métallique déborde de ceux-ci,
  • on élimine la couche de protection, et
  • on réalise une attaque électrolytique du matériau métallique déposé, de manière à obtenir les micropointes à partir de ce matériau métallique.
It relates to a process for manufacturing a microtip electron source, a process according to which:
  • a structure is made up comprising an electrically insulating substrate, at least one cathode conductor on this substrate, an electrically insulating layer which covers each cathode conductor, an electrically conductive grid layer which covers this electrically insulating layer, holes being formed through this layer grid and the electrically insulating layer, at the level of each cathode conductor, and
  • a microtip is formed in each hole which is made of an electron-emitting metallic material and which rests on the cathode conductor corresponding to this hole,

this process being characterized in that the formation of the microtips comprises the following stages:
  • an electrically insulating protective layer is formed on the grid layer,
  • a metallic deposit, preferably electrolytic, of the metallic material emitting electrons is formed at the bottom of the holes until this metallic material overflows from them,
  • the protective layer is removed, and
  • an electrolytic etching of the metallic material deposited is carried out, so as to obtain the microtips from this metallic material.

Selon un mode de mise en oeuvre particulier du procédé objet de l'invention, préféré pour sa simplicité de mise en oeuvre, on utilise la couche de grille comme cathode pour l'attaque électrolytique du matériau métallique.According to a particular embodiment of the process which is the subject of the invention, preferred for its simplicity of implementation, the grid layer is used as a cathode for the electrolytic attack on the metallic material.

Pendant cette phase de dissolution, il est avantageux de renouveler, par tout moyen connu, l'électrolyte se situant autour du matériau métallique de façon à éviter une surconcentration en ions métalliques qui pourrait freiner la dissolution et provoquer un redépôt important de ce matériau sur la grille autour des micropointes en formation.During this dissolution phase, it is advantageous to renew, by any known means, the electrolyte located around the metallic material so as to avoid an over-concentration in metallic ions which could slow down the dissolution and cause a significant redeposition of this material on the grid around microdots in formation.

Un faible redépôt ou un redépôt contrôlé qui s'étale sur l'ensemble de la grille est toléré ; il entraîne une réduction sensible du diamètre des trous, qui est plutôt favorable à l'émission d'électrons par les micropointes.A small redeposition or a controlled redeposition which spans the entire grid is tolerated; it results in a significant reduction in the diameter of the holes, which is rather favorable to the emission of electrons by the microtips.

La couche de protection peut être formée en déposant, sous incidence rasante, une couche d'un matériau électriquement isolant sur la couche de grille.The protective layer can be formed by depositing, under grazing incidence, a layer of an electrically insulating material on the grid layer.

Cependant, cette couche de protection est de préférence formée par oxydation anodique de la couche de grille.However, this protective layer is preferably formed by anodic oxidation of the gate layer.

La couche de grille peut être faite d'un matériau choisi dans le groupe comprenant le niobium, le tantale et l'aluminium.The grid layer can be made of a material selected from the group comprising niobium, tantalum and aluminum.

Le matériau métallique peut être choisi dans le groupe comprenant le fer, le nickel, le chrome, le Fe-Ni, l'or, l'argent et le cuivre.The metallic material can be chosen from the group comprising iron, nickel, chromium, Fe-Ni, gold, silver and copper.

La couche de protection peut être éliminée par attaque chimique.The protective layer can be removed by chemical attack.

Cette couche de protection peut également être éliminée par gravure ionique réactive.This protective layer can also be removed by reactive ion etching.

La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :

  • la figure 1, déjà décrite, est une vue en coupe schématique et partielle d'un écran plat,
  • la figure 2, déjà décrite, est une vue schématique et partielle en perspective de cet écran plat,
  • la figure 3, déjà décrite, illustre schématiquement un procédé connu de fabrication des micropointes d'une source d'électrons à micropointes,
  • la figure 4, déjà décrite, illustre schématiquement un autre procédé connu de fabrication des micropointes d'une source d'électrons à micropointes,
  • la figure 5, déjà décrite, illustre schématiquement des inconvénients de ces procédés connus, et
  • les figures 6A à 6E illustrent schématiquement des étapes d'un mode de mise en oeuvre particulier du procédé objet de l'invention.
The present invention will be better understood on reading the description of exemplary embodiments given below, by way of purely indicative and in no way limiting, with reference to the appended drawings in which:
  • FIG. 1, already described, is a schematic and partial sectional view of a flat screen,
  • FIG. 2, already described, is a schematic and partial perspective view of this flat screen,
  • FIG. 3, already described, schematically illustrates a known method of manufacturing the microtips of an electron source with microtips,
  • FIG. 4, already described, schematically illustrates another known method for manufacturing the microtips of an electron source with microtips,
  • FIG. 5, already described, schematically illustrates drawbacks of these known methods, and
  • FIGS. 6A to 6E schematically illustrate steps of a particular mode of implementation of the method which is the subject of the invention.

Selon ce mode de mise en oeuvre particulier, on commence par former (figure 6A) une structure 49 du genre de celle qui est représentée sur la figure 3 et qui comprend le substrat électriquement isolant 10 sur lequel sont formés les conducteurs cathodiques 12, la couche électriquement isolante 14 formée sur ces conducteurs cathodiques et la couche de grille 16 formée sur cette couche électriquement isolante 14 (étant entendu que, dans d'autres modes de mise en oeuvre particuliers, la structure pourrait ne comprendre qu'un seul conducteur cathodique).According to this particular mode of implementation, one begins by forming (FIG. 6A) a structure 49 of the kind of that represented in FIG. 3 and which comprises the electrically insulating substrate 10 on which the cathode conductors 12 are formed, the layer electrically insulating 14 formed on these cathode conductors and the gate layer 16 formed on this electrically insulating layer 14 (it being understood that, in other particular embodiments, the structure could comprise only one cathode conductor).

On voit également les trous sensiblement circulaires 18 et 19 respectivement formés à travers la couche isolante 14 et à travers la couche de grille 16.We also see the substantially circular holes 18 and 19 respectively formed through the insulating layer 14 and through the grid layer 16.

Les procédés permettant d'obtenir une telle structure sont connus dans l'état de la technique.The methods for obtaining such a structure are known in the state of the art.

A titre d'exemple, le substrat 10 est en verre, les conducteurs cathodiques sont constitués d'une bicouche de chrome et de cuivre, la couche 14 est en silice et la couche de grille 16 est en niobium, en tantale ou en aluminium.For example, the substrate 10 is made of glass, the cathode conductors consist of a bilayer of chromium and copper, the layer 14 is made of silica and the grid layer 16 is made of niobium, tantalum or aluminum.

On forme ensuite une couche de protection sur la couche de grille 16 (figure 6B).A protective layer is then formed on the grid layer 16 (FIG. 6B).

Pour ce faire, on peut réaliser une évaporation de silice, sous incidence rasante, sur la couche de grille 16, pour recouvrir celle-ci de silice.To do this, it is possible to evaporate silica, under grazing incidence, on the grid layer 16, to cover the latter with silica.

Cependant, de préférence, on réalise une oxydation anodique de la couche de grille 16, ce qui conduit à la formation d'une couche 50 d'oxyde de niobium ou d'oxyde de tantale ou d'oxyde d'aluminium dans l'exemple considéré, qui recouvre la partie restante de la couche de grille 16, comme on le voit sur la figure 6B.However, preferably, anodic oxidation of the gate layer 16 is carried out, which leads to the formation of a layer 50 of niobium oxide or tantalum oxide or aluminum oxide in the example. considered, which covers the remaining part of the grid layer 16, as seen in FIG. 6B.

Cette oxydation anodique conduit à une couverture plus fiable de la couche de grille que l'évaporation sous incidence rasante mentionnée plus haut et est plus simple de mise en oeuvre.This anodic oxidation leads to a more reliable covering of the grid layer than evaporation under grazing incidence mentioned above and is simpler to use.

On réalise ensuite un dépôt électrolytique d'un matériau métallique au fond des trous 18 jusqu'à ce que ce matériau métallique déborde de ces trous comme on le voit sur la figure 6C, une partie de ce matériau étant alors au-dessus de la couche 50.An electrolytic deposition of a metallic material is then carried out at the bottom of the holes 18 until this metallic material overflows from these holes as can be seen in FIG. 6C, part of this material then being above the layer. 50.

Pour ce faire, on place la structure 49, comprenant la couche protectrice 50, dans un bain électrolytique approprié 54 (contenant des ions du matériau métallique à déposer) et l'on place également dans ce bain électrolytique un bloc 56 de ce matériau métallique.To do this, the structure 49, comprising the protective layer 50, is placed in an appropriate electrolytic bath 54 (containing ions of the metallic material to be deposited) and also placed in this electrolytic bath a block 56 of this metallic material.

Quand ce matériau métallique est du fernickel, on peut utiliser le bain électrolytique dont la composition est la suivante :

NiCl₂, 6H₂O
50 g.l⁻¹
NiSO₄, 6H₂O
21 g.l⁻¹
FeSO₄
2 g.l⁻¹
H₃BO₃
25 g.l⁻¹
Saccharinate de Na
0,8 g.l⁻¹
When this metallic material is fernickel, the electrolytic bath can be used, the composition of which is as follows:
NiCl₂, 6H₂O
50 gl⁻¹
NiSO₄, 6H₂O
21 gl⁻¹
FeSO₄
2 gl⁻¹
H₃BO₃
25 gl⁻¹
Na saccharinate
0.8 gl⁻¹

On applique ensuite une tension électrique appropriée, grâce à une source de tension 58, entre les conducteurs cathodiques 12 et ce bloc 56.An appropriate electrical voltage is then applied, thanks to a voltage source 58, between the cathode conductors 12 and this block 56.

Dans le cas où le matériau métallique est le fer-nickel, on peut utiliser les conditions suivantes pour le dépôt électrolytique :
   densité de courant : 0,5 à 2 mA/cm
   tension : 1 à 2V
   température ambiante.
In the case where the metallic material is iron-nickel, the following conditions can be used for the electrolytic deposition:
current density: 0.5 to 2 mA / cm
voltage: 1 to 2V
ambient temperature.

Pour l'électrolyse, les conducteurs cathodiques 12 servent de cathode et le bloc 56 sert d'anode.For electrolysis, the cathode conductors 12 serve as the cathode and the block 56 serves as the anode.

Les éléments électriquement conducteurs 60, qui résultent du dépôt du matériau métallique au fond des trous 18, sont en contact avec les conducteurs cathodiques mais sont électriquement isolés de la couche grille 16 grâce à la couche protectrice 50 qui recouvre cette dernière.The electrically conductive elements 60, which result from the deposition of the metallic material at the bottom of the holes 18, are in contact with the cathode conductors but are electrically insulated from the grid layer 16 thanks to the protective layer 50 which covers the latter.

On élimine ensuite cette couche protectrice 50 par une attaque chimique ou par gravure ionique réactive (figure 6D).This protective layer 50 is then removed by chemical attack or by reactive ion etching (FIG. 6D).

On réalise ensuite une attaque électrolytique des éléments électriquement conducteurs 60 de manière à former les micropointes 62 à partir de ceux-ci (figure 6E).An electrolytic attack is then carried out on the electrically conductive elements 60 so as to form the microtips 62 therefrom (FIG. 6E).

Pour ce faire, on place la structure, où la couche protectrice 50 a été supprimée, dans un bain électrolytique approprié 64 (contenant par exemple 10% de HCl à 37% et 90% de H₂O pour la dissolution du fer nickel) et, au moyen d'une source de tension électrique appropriée 66, on établit une tension électrique (par exemple 1 à 2V pour la dissolution du fer-nickel) entre les conducteurs cathodiques 12 qui, dans ce cas, servent d'anode, et la couche de grille 16 qui sert de cathode.To do this, the structure is placed, where the protective layer 50 has been removed, in an appropriate electrolytic bath 64 (containing for example 10% HCl at 37% and 90% H₂O for the dissolution of nickel iron) and, at by means of a suitable electrical voltage source 66, an electrical voltage is established (for example 1 to 2 V for the dissolution of iron-nickel) between the cathode conductors 12 which, in this case, serve as an anode, and the layer of grid 16 which serves as a cathode.

De préférence on assure un renouvellement de l'électrolyte par agitation et/ou par circulation, de façon à éviter une concentration en ions autour du matériau des éléments 60.Preferably, the electrolyte is renewed by stirring and / or by circulation, so as to avoid a concentration of ions around the material of the elements 60.

Au cours de l'électrolyse, le matériau des éléments 60 est éliminé de façon sensiblement symétrique autour de l'axe Z des trous 18 et les ions métalliques produits par l'attaque chimique du matériau des éléments 60 sont pour partie éliminés grâce au renouvellement de l'électrolyte et pour partie redéposés sur la couche de grille.During the electrolysis, the material of the elements 60 is eliminated in a substantially symmetrical manner around the axis Z of the holes 18 and the metal ions produced by the chemical attack of the material of the elements 60 are partly eliminated thanks to the renewal of the electrolyte and partly redeposited on the grid layer.

En fonction du matériau des éléments 60 et du taux de renouvellement de l'électrolyte, la fraction redéposée des ions est plus ou moins importante et peut être contrôlée.Depending on the material of the elements 60 and the rate of renewal of the electrolyte, the redeposited fraction of the ions is more or less large and can be controlled.

L'usure des éléments conducteurs 60 par électrolyse conduit à l'obtention :

  • d'éléments pointus qui affleurent sensiblement à la surface de la couche de grille 16 et constituent les micropointes 62, et
  • de parties 68 qui se détachent de ces micropointes et restent dans le bain électrolytique comme on le voit sur la figure 6E.
The wear of the conductive elements 60 by electrolysis leads to obtaining:
  • pointed elements which are substantially flush with the surface of the grid layer 16 and constitute the microtips 62, and
  • parts 68 which detach from these microtips and remain in the electrolytic bath as seen in FIG. 6E.

De préférence, cette étape de formation des micropointes se fait avec le substrat de verre au-dessus et le bain électrolytique au-dessous, de façon à permettre aux parties 68 de tomber dans le bain électrolytique.Preferably, this step of forming the microtips is carried out with the glass substrate above and the electrolytic bath below, so as to allow the parts 68 to fall into the electrolytic bath.

On termine ensuite la formation de la source d'électrons à micropointes en réalisant de manière connue, à partir de la couche de grille 16, des grilles parallèles (non représentées) faisant un angle avec les conducteurs cathodiques (mais s'il n'y avait qu'un conducteur cathodique, on garderait la couche de grille telle quelle).The formation of the microtip electron source is then terminated by producing, in a known manner, from the grid layer 16, parallel grids (not shown) making an angle with the cathode conductors (but if there is no had only a cathode conductor, we would keep the grid layer as it is).

L'intérêt du procédé objet de la présente invention est de permettre la fabrication de micropointes auto-alignées sur les trous de la couche de grille 16, au moyen d'une technique non directive, en milieu liquide isotrope (bain électrolytique 64).The advantage of the process which is the subject of the present invention is that it allows the manufacture of self-aligned microtips on the holes of the grid layer 16, by means of a non-directive technique, in isotropic liquid medium (electrolytic bath 64).

Ce procédé objet de l'invention est donc indépendant de la surface de la structure où l'on veut former les micropointes.This process which is the subject of the invention is therefore independent of the surface of the structure where it is desired to form the microtips.

Claims (9)

Procédé de fabrication d'une source d'électrons à micropointes, procédé selon lequel : - on fabrique une structure (49) comprenant un substrat électriquement isolant (10), au moins un conducteur cathodique (12) sur ce substrat, une couche électriquement isolante (14) qui recouvre chaque conducteur cathodique, une couche de grille électriquement conductrice (16) qui recouvre cette couche électriquement isolante, des trous (18, 19) étant formés à travers cette couche de grille et la couche électriquement isolante, au niveau de chaque conducteur cathodique, et - on forme, dans chaque trou, une micropointe (62) qui est faite d'un matériau métallique émetteur d'électrons et qui repose sur le conducteur cathodique correspondant à ce trou, ce procédé étant caractérisé en ce que la formation des micropointes comprend les étapes suivantes : - on forme une couche de protection électriquement isolante (50) sur la couche de grille (16), - on forme un dépôt chimique du matériau métallique émetteur d'électrons au fond des trous jusqu'à ce que ce matériau métallique déborde de ceux-ci, - on élimine la couche de protection (50), et - on réalise une attaque électrolytique du matériau métallique déposé, de manière à obtenir les micropointes (62) à partir de ce matériau métallique. Method for manufacturing a microtip electron source, method according to which: - a structure (49) is produced comprising an electrically insulating substrate (10), at least one cathode conductor (12) on this substrate, an electrically insulating layer (14) which covers each cathode conductor, an electrically conductive grid layer (16 ) which covers this electrically insulating layer, holes (18, 19) being formed through this grid layer and the electrically insulating layer, at the level of each cathode conductor, and - a microtip (62) is formed in each hole which is made of an electron emitting metallic material and which rests on the cathode conductor corresponding to this hole, this process being characterized in that the formation of the microtips comprises the following stages: - an electrically insulating protective layer (50) is formed on the grid layer (16), a chemical deposit of the metallic material emitting electrons is formed at the bottom of the holes until this metallic material overflows from them, - the protective layer (50) is eliminated, and - An electrolytic attack is carried out on the metallic material deposited, so as to obtain the microtips (62) from this metallic material. Procédé selon la revendication 1, caractérisé en ce que le dépôt chimique du matériau métallique émetteur d'électrons est un dépôt électrolytique.Method according to claim 1, characterized in that the chemical deposition of the metallic material emitting electrons is an electrolytic deposition. Procédé selon l'une quelconque des revendications let 2, caractérisé en ce qu'on utilise la couche de grille (16) comme cathode pour l'attaque électrolytique du matériau métallique.Method according to any one of claims let 2, characterized in that one uses the grid layer (16) as a cathode for the electrolytic attack of the metallic material. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'on forme la couche de protection (50) en déposant, sous incidence rasante, une couche d'un matériau électriquement isolant sur la couche de grille (16).Method according to any one of Claims 1 to 3, characterized in that the protective layer (50) is formed by depositing, under grazing incidence, a layer of an electrically insulating material on the grid layer (16). Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'on forme la couche de protection par oxydation anodique de la couche de grille (16).Method according to any one of Claims 1 to 3, characterized in that the protective layer is formed by anodic oxidation of the gate layer (16). Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la couche de grille (16) est faite d'un matériau choisi dans le groupe comprenant le niobium, le tantale et l'aluminium.Method according to any one of Claims 1 to 5, characterized in that the grid layer (16) is made of a material chosen from the group comprising niobium, tantalum and aluminum. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le matériau métallique est choisi dans le groupe comprenant le fer, le nickel, le chrome, le Fe-Ni, l'or, l'argent et le cuivre.Process according to any one of Claims 1 to 6, characterized in that the metallic material is chosen from the group comprising iron, nickel, chromium, Fe-Ni, gold, silver and copper. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la couche de protection (50) est éliminée par attaque chimique.Method according to any one of Claims 1 to 7, characterized in that the protective layer (50) is removed by chemical attack. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la couche de protection (50) est éliminée par gravure ionique réactive.Method according to any one of Claims 1 to 7, characterized in that the protective layer (50) is removed by reactive ion etching.
EP95401863A 1994-08-16 1995-08-09 Manufacturing method for a micropoint-electron source Expired - Lifetime EP0697710B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9410041 1994-08-16
FR9410041A FR2723799B1 (en) 1994-08-16 1994-08-16 METHOD FOR MANUFACTURING A MICROPOINT ELECTRON SOURCE

Publications (2)

Publication Number Publication Date
EP0697710A1 true EP0697710A1 (en) 1996-02-21
EP0697710B1 EP0697710B1 (en) 1998-11-11

Family

ID=9466324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95401863A Expired - Lifetime EP0697710B1 (en) 1994-08-16 1995-08-09 Manufacturing method for a micropoint-electron source

Country Status (5)

Country Link
US (1) US5676818A (en)
EP (1) EP0697710B1 (en)
JP (1) JPH0869749A (en)
DE (1) DE69505914T2 (en)
FR (1) FR2723799B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033297A1 (en) * 1996-03-05 1997-09-12 Candescent Technologies Corporation Electrochemical removal of material, particularly excess emitter material in electron-emitting device
EP0851451A1 (en) * 1996-12-30 1998-07-01 Commissariat A L'energie Atomique Process for self-aligning, usable in microelectronics and the use for the production of a focussing grid for a microtip flat display panel
US5893967A (en) * 1996-03-05 1999-04-13 Candescent Technologies Corporation Impedance-assisted electrochemical removal of material, particularly excess emitter material in electron-emitting device
FR2770683A1 (en) * 1997-11-03 1999-05-07 Commissariat Energie Atomique METHOD FOR MANUFACTURING A MICROPOINT ELECTRON SOURCE
US6007695A (en) * 1997-09-30 1999-12-28 Candescent Technologies Corporation Selective removal of material using self-initiated galvanic activity in electrolytic bath
US6120674A (en) * 1997-06-30 2000-09-19 Candescent Technologies Corporation Electrochemical removal of material in electron-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778757B1 (en) * 1998-05-12 2001-10-05 Commissariat Energie Atomique SYSTEM FOR ENTERING INFORMATION ON AN X-RAY SENSITIVE MEDIA

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989009479A1 (en) * 1988-03-25 1989-10-05 Thomson-Csf Process for manufacturing sources of field-emission type electrons, and application for producing emitter networks
EP0461990A1 (en) * 1990-06-13 1991-12-18 Commissariat A L'energie Atomique Micropoint cathode electron source
US5151061A (en) * 1992-02-21 1992-09-29 Micron Technology, Inc. Method to form self-aligned tips for flat panel displays

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026437A (en) * 1990-01-22 1991-06-25 Tencor Instruments Cantilevered microtip manufacturing by ion implantation and etching
JP2961334B2 (en) * 1991-05-28 1999-10-12 セイコーインスツルメンツ株式会社 Atomic force microscope cantilever manufacturing method with sharp metal needle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989009479A1 (en) * 1988-03-25 1989-10-05 Thomson-Csf Process for manufacturing sources of field-emission type electrons, and application for producing emitter networks
EP0461990A1 (en) * 1990-06-13 1991-12-18 Commissariat A L'energie Atomique Micropoint cathode electron source
US5151061A (en) * 1992-02-21 1992-09-29 Micron Technology, Inc. Method to form self-aligned tips for flat panel displays

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C.A. SPINDT, J. APPL. PHYS., vol. 39, 1968, pages 3504

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033297A1 (en) * 1996-03-05 1997-09-12 Candescent Technologies Corporation Electrochemical removal of material, particularly excess emitter material in electron-emitting device
US5766446A (en) * 1996-03-05 1998-06-16 Candescent Technologies Corporation Electrochemical removal of material, particularly excess emitter material in electron-emitting device
US5893967A (en) * 1996-03-05 1999-04-13 Candescent Technologies Corporation Impedance-assisted electrochemical removal of material, particularly excess emitter material in electron-emitting device
EP0851451A1 (en) * 1996-12-30 1998-07-01 Commissariat A L'energie Atomique Process for self-aligning, usable in microelectronics and the use for the production of a focussing grid for a microtip flat display panel
FR2757999A1 (en) * 1996-12-30 1998-07-03 Commissariat Energie Atomique SELF-ALIGNMENT PROCESS THAT CAN BE USED IN MICRO-ELECTRONICS AND APPLICATION TO THE REALIZATION OF A FOCUSING GRID FOR FLAT SCREEN WITH MICROPOINTS
US5981304A (en) * 1996-12-30 1999-11-09 Commissariat A L'energie Atomique Self-alignment process usable in microelectronics, and application to creating a focusing grid for micropoint flat screens
US6120674A (en) * 1997-06-30 2000-09-19 Candescent Technologies Corporation Electrochemical removal of material in electron-emitting device
US6007695A (en) * 1997-09-30 1999-12-28 Candescent Technologies Corporation Selective removal of material using self-initiated galvanic activity in electrolytic bath
FR2770683A1 (en) * 1997-11-03 1999-05-07 Commissariat Energie Atomique METHOD FOR MANUFACTURING A MICROPOINT ELECTRON SOURCE
WO1999023680A1 (en) * 1997-11-03 1999-05-14 Commissariat A L'energie Atomique Method for making an electron source with microtips

Also Published As

Publication number Publication date
FR2723799B1 (en) 1996-09-20
EP0697710B1 (en) 1998-11-11
DE69505914D1 (en) 1998-12-17
JPH0869749A (en) 1996-03-12
US5676818A (en) 1997-10-14
FR2723799A1 (en) 1996-02-23
DE69505914T2 (en) 1999-06-10

Similar Documents

Publication Publication Date Title
EP0172089B1 (en) Display device using field emission excited cathode luminescence
RU2141698C1 (en) Process of manufacture of systems of display with planar screen and of their components
FR2796489A1 (en) Field effect display mechanism construction having carbon nanotube cathode base substrate mounted and base spaced/gap spaced grid electrode sections.
EP0558393A1 (en) Micropoint cathode electron source and display device with cathodo-luminescence excited by field emission using same source
EP1885649A2 (en) Method for making an emissive cathode
EP0234989A1 (en) Method of manufacturing an imaging device using field emission cathodoluminescence
EP0697710B1 (en) Manufacturing method for a micropoint-electron source
JPH1186719A (en) Manufacture of field emission element
EP0708473B1 (en) Manufacturing method for micropoint electron source
FR2705830A1 (en) Method of manufacturing microtip display devices using heavy ion lithography
US5683282A (en) Method for manufacturing flat cold cathode arrays
EP1000433B1 (en) Method for making an electron source with microtips, with self-aligned focusing grid
FR2736203A1 (en) Horizontal field effect type electron emitting element for planar image display unit such as field emission display unit used in wall mounted type TV and HDTV
EP0856868B1 (en) Field emission electron source and display device with such a source
EP0943153A1 (en) Display screen comprising a source of electrons with microtips, capable of being observed through the microtip support, and method for making this source
FR2700217A1 (en) Process for producing on silicon microtip emitting cathodes for flat screens of small dimensions, and products obtained.
EP1029338A1 (en) Method for making an electron source with microtips
WO2000002222A1 (en) Field emission device
EP1023741B1 (en) Electron source with microtips, with focusing grid and high microtip density, and flat screen using same
FR2764729A1 (en) METHOD OF MANUFACTURING SPACERS FOR FLAT VISUALIZATION SCREEN
FR2719155A1 (en) Micro-tip field emitter cathode for flat screen
FR2757999A1 (en) SELF-ALIGNMENT PROCESS THAT CAN BE USED IN MICRO-ELECTRONICS AND APPLICATION TO THE REALIZATION OF A FOCUSING GRID FOR FLAT SCREEN WITH MICROPOINTS
FR2779243A1 (en) METHOD FOR REALIZING SELF-ALIGNED OPENINGS ON A STRUCTURE BY PHOTOLITHOGRAPHY, PARTICULARLY FOR MICROPOINT FLAT SCREEN
FR2786026A1 (en) Procedure for formation of relief formations on the surface on a substrate for use in production of flat screen displays that use micropoint electron sources
JPH08273534A (en) Manufacture of field-emission cold cathode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19960727

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980129

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69505914

Country of ref document: DE

Date of ref document: 19981217

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030806

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030822

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050809