EP0714774A1 - Method for making micromechanical nozzles or liquid jets - Google Patents

Method for making micromechanical nozzles or liquid jets Download PDF

Info

Publication number
EP0714774A1
EP0714774A1 EP95402686A EP95402686A EP0714774A1 EP 0714774 A1 EP0714774 A1 EP 0714774A1 EP 95402686 A EP95402686 A EP 95402686A EP 95402686 A EP95402686 A EP 95402686A EP 0714774 A1 EP0714774 A1 EP 0714774A1
Authority
EP
European Patent Office
Prior art keywords
substrate
nozzles
substrates
channel
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95402686A
Other languages
German (de)
French (fr)
Other versions
EP0714774B1 (en
Inventor
Yves Fouillet
Gilles Delapierre
Marie-Thérèse Delaye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0714774A1 publication Critical patent/EP0714774A1/en
Application granted granted Critical
Publication of EP0714774B1 publication Critical patent/EP0714774B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1606Coating the nozzle area or the ink chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49401Fluid pattern dispersing device making, e.g., ink jet

Definitions

  • the present invention relates to a micromechanical method of manufacturing nozzles for liquid jets. It applies to all systems using high precision liquid jets in the medical field, the field of biology or even printing, for example.
  • the invention applies in particular to the manufacture of nozzles for drip or continuous jet ink jet printer heads.
  • the document (1) referenced at the end of this description describes a precise manufacturing process for circular nozzles by etching holes in a wafer of silicon with a crystal orientation ⁇ 100 ⁇ .
  • Document (2) referenced at the end of this description, relates to a similar process for the production on the same substrate of a plurality of nozzles. These nozzles allow the formation of jets of liquid perpendicular to the plane of the substrate in which they are formed.
  • One or more grooves 10 are etched on the surface 12 of a first substrate 14.
  • a second substrate 16 is sealed on the first substrate 14 so as to cover the grooves 10 and thus form channels.
  • the assembly of the first and second substrates is then cut perpendicular to the grooves 10 to open the channels and form nozzles 18 which open onto the cut face 20 represented by a broken line.
  • One or more reservoirs 22 are also provided, in connection with one or more nozzles 18 to supply them with a liquid, such as ink for example.
  • a print head also includes active elements such as electrodes or piezoelectric elements for controlling the print which, for reasons of simplification, do not appear in the figure.
  • the etching of the grooves in the substrate 14 and the sealing of the second substrate on the first substrate are operations that are well mastered at present and therefore do not pose any particular problem.
  • the cutting of the substrates is, in known manner, carried out by means of blades machining the substrates, in this case silicon, by tearing away material.
  • the cutting of the substrates poses two major problems illustrated in FIG. 2 which is a view, on a larger scale, of the face 20 after cutting.
  • the first problem is due to dust 22 which results from cutting and which pollute the interior of the nozzles 18 and which can, in certain cases, form a plug obstructing the nozzles 18. Delicate cleaning of the nozzles, after cutting, s thus proves necessary.
  • a second problem is due to the formation of scales 24 on the intersection edges 26 of the cutting plane of the face 20 and the nozzles 18. These scales have harmful effects on the quality of the jets.
  • the scales cause dispersions in the direction of the jets as well as instabilities which can modify the dynamic behavior of the jets.
  • the size of the scales depends on the cutting conditions.
  • the document (4) referenced at the end of the present description describes on this subject a method for minimizing the size of the scales.
  • Polishing operations on the cutting face may possibly be envisaged.
  • the outlet plane of the nozzles corresponds to a crystal plane ⁇ 111 ⁇ of the silicon machined by anisotropic chemical etching of a substrate oriented according to ⁇ 110 ⁇ .
  • a second precut substrate is then aligned with the outlet plane of the nozzles.
  • This solution has the advantage of not producing the outlet plane of the nozzles by sawing. Due to the etching laws of silicon, it is however impossible in this case to have jets perpendicular to the outlet plane of the nozzles if the latter are produced by an anisotropic attack.
  • the nozzles are produced by isotropic etching, the quality of which is known to be lower than that of anisotropic etching.
  • An object of the present invention is, therefore, to provide a micromechanical method of manufacturing high precision nozzles which does not have the drawbacks mentioned of the known methods.
  • Another object of the invention is to propose a method which allows the manufacture of nozzles whose edges with the liquid ejection face are free of scales.
  • the imperfections and flakes which occur during the cutting operation occur in the interior protective coating and are eliminated at the same time as this coating, leaving a clean nozzle.
  • the method of the invention therefore makes it possible to manufacture nozzles with perfect jet quality whatever the cutting mode.
  • the cutting mode and / or the thickness of the coating are chosen so that the size of the scales is smaller than the thickness of the coating;
  • the coating thus fulfills its role of protecting the nozzle.
  • the first substrate is a crystal orientation slice ⁇ 100 ⁇ and, during step a) of the process, grooves are formed by anisotropic etching with stop on uß111 ⁇ planes of the crystal lattice of the first substrate.
  • the first and second substrates can be chosen from identical or different materials. However, according to a preferred implementation of the method, the first and the second substrate are made of silicon.
  • the coating made of silicon oxide, can be removed in a hydrofluoric acid bath.
  • an orifice and / or a supply reservoir for each nozzle advantageously, in at least one of the first and second substrates.
  • a layer 130 of silicon nitride is formed on a first silicon substrate 114 of orientation ⁇ 100 ⁇ , in which longitudinal openings 132 oriented in the directioniser are made 110 ⁇ and defining a location for grooves.
  • This structure is subjected, for example, to a potassium hydroxide bath, symbolized by arrows, to produce an anisotropic etching of grooves 110.
  • the etching time is chosen sufficient to obtain grooves by stopping on two crystallographic planes ⁇ 111 ⁇ of the crystal lattice of silicon. This makes it possible to exploit the perfect geometric quality of the crystal orientations.
  • the method takes advantage of the difference in etching attack speed on the different crystallographic planes of the substrate. We can also refer to this subject in document 1.
  • a tank 122 is etched in a second substrate 116, visible in FIG. 4, for supplying the nozzle (s), for example with ink.
  • the reservoir can also be produced directly in the first substrate.
  • the layer 130 of silicon nitride is eliminated and the surfaces 112, 112 'to be sealed respectively of the substrates undergo a bath which makes them hydrophilic.
  • the two substrates After rinsing and drying, the two substrates are sealed directly. They are positioned then pressed against each other to obtain the structure shown in Figure 4 where the second substrate covers the grooves to form channels.
  • a first heat treatment is carried out to create chemical bonds at the interface 112, 112 'between the two substrates 114 and 116 and thus to ensure good mechanical behavior of the assembly.
  • this is a layer of silicon oxide 138 obtained by a heat treatment under a flow of oxygen, but it could be a coating of another nature such as a thin layer of nickel. , for example, obtained by chemical deposition.
  • Such an oxidation treatment allows precise control of the thickness of the layer 138.
  • an orifice for access to the channels must be provided. It is for example an orifice 140 of the reservoir 122.
  • the thickness of the layer 138 must be sufficient to avoid flaking in the silicon. A thickness of the order of 1 to 4 ⁇ m is suitable in the example described.
  • the process continues by cutting the assembled substrates, perpendicular to the channels, to form nozzles 118 which open onto a face 120.
  • This surface and the cutting line are shown in broken lines in FIG. 4.
  • the cutting is carried out for example by a diamond resin blade. This operation also makes it possible to define the length of the nozzles which, depending on the application envisaged, results from a compromise between the problems of hydraulic pressure drop of the liquid jets and the problems of stability and precision in the direction of the jets.
  • FIG. 5 shows the face 120 of the substrates after cutting.
  • a nozzle 118 and the oxide layer 138 which forms the interior protective coating.
  • the layer extends over the face 112 'of the substrate 116 delimiting the nozzle and on the faces corresponding to the crystallographic planes ⁇ 111 ⁇ of the substrate 114.
  • scales 124 are formed on the layer 138 and dust 122 of silicon oxide is deposited in the nozzle 118.
  • the cut structure is finally immersed in a hydrofluoric acid bath which not only removes the oxide layer 138 but also all the dust 122.
  • a hydrofluoric acid bath which not only removes the oxide layer 138 but also all the dust 122.
  • the initial depth of the grooves and the thickness of the coating layer are determined so as to obtain, after elimination of this layer, a nozzle whose hydraulic diameter corresponds to the envisaged application.
  • This hydraulic diameter is for example of the order of a few tens of micrometers.

Abstract

The method consists of forming at least one groove (110) in the surface (112) of a first substrate (114), assembling the first substrate with a second substrate (116) which covers the groove and forms a channel, and forming a protective coating on the inside of the channel by thermal oxidation of its walls. The first and second substrates are then cut perpendicular to the channel to form the nozzle (118) for the liquid jet, and the interior protective coating is removed. The two substrates can be machined to form an orifice (140) and/or a reservoir for feeding the nozzles. The first and second substrates are made from silicium, and the inner coating is of silicium oxide, which is removed in a hydrofluoric acid bath.

Description

Domaine techniqueTechnical area

La présente invention se rapporte à un procédé de fabrication micromécanique de buses pour jets de liquide. Elle s'applique à tous les systèmes utilisant des jets de liquide de grande précision dans le domaine médical, le domaine de la biologie ou encore de l'imprimerie, par exemple. L'invention s'applique en particulier à la fabrication de buses pour des têtes d'imprimantes à jet d'encre goutte à goutte ou à jet continu.The present invention relates to a micromechanical method of manufacturing nozzles for liquid jets. It applies to all systems using high precision liquid jets in the medical field, the field of biology or even printing, for example. The invention applies in particular to the manufacture of nozzles for drip or continuous jet ink jet printer heads.

Etat de la technique antérieureState of the art

Dans la fabrication de têtes d'imprimantes, la réalisation des buses de jet d'encre est une étape décisive dans la mesure où elle conditionne la qualité de l'impression. Aussi, pour réaliser les buses a-t-on recours à des techniques connues en microélectronique.In the manufacture of printer heads, the realization of inkjet nozzles is a decisive step since it conditions the quality of printing. Also, to make the nozzles, use is made of techniques known in microelectronics.

A titre d'exemple, le document (1) référencé à la fin de la présente description, décrit un procédé de fabrication précis de buses circulaires en gravant des trous dans une tranche de silicium d'orientation cristalline 〈100〉. Le document (2), référencé à la fin de la présente description, concerne un procédé similaire pour la fabrication sur un même substrat d'une pluralité de buses. Ces buses permettent la formation de jets de liquide perpendiculairement au plan du substrat dans lequel elles sont formées.By way of example, the document (1) referenced at the end of this description describes a precise manufacturing process for circular nozzles by etching holes in a wafer of silicon with a crystal orientation 〈100〉. Document (2), referenced at the end of this description, relates to a similar process for the production on the same substrate of a plurality of nozzles. These nozzles allow the formation of jets of liquid perpendicular to the plane of the substrate in which they are formed.

Les méthodes d'usinage de fines rainures à la surface d'une tranche de silicium d'orientation cristalline 〈100〉 et 〈110〉, présentées dans le document (1) peuvent aussi être mises à profit pour la fabrication de buses dont l'axe d'éjection de liquide est parallèle à la tranche de substrat.The methods of machining fine grooves on the surface of a wafer of crystalline orientation 〈100〉 and 〈110〉, presented in document (1) can also be used for the manufacture of nozzles whose liquid ejection axis is parallel to the substrate wafer.

Ceci apparaît, par exemple, dans le document (3) également référencé à la fin de la présente description.This appears, for example, in document (3) also referenced at the end of this description.

La figure 1, annexée, permet de comprendre le fonctionnement et la fabrication de telles buses.Figure 1, appended, allows to understand the operation and manufacture of such nozzles.

Une ou plusieurs rainures 10 sont gravées à la surface 12 d'un premier substrat 14. Un deuxième substrat 16 est scellé sur le premier substrat 14 de façon à recouvrir les rainures 10 et former ainsi des canaux. L'ensemble du premier et second substrats est ensuite découpé perpendiculairement aux rainures 10 pour ouvrir les canaux et former des buses 18 qui débouchent sur la face 20 découpée représentée par une ligne discontinue.One or more grooves 10 are etched on the surface 12 of a first substrate 14. A second substrate 16 is sealed on the first substrate 14 so as to cover the grooves 10 and thus form channels. The assembly of the first and second substrates is then cut perpendicular to the grooves 10 to open the channels and form nozzles 18 which open onto the cut face 20 represented by a broken line.

Un ou plusieurs réservoirs 22 sont également prévus, en connexion avec une ou plusieurs buses 18 pour les alimenter avec un liquide, tel que de l'encre par exemple. Une tête d'impression comporte également des éléments actifs tels que des électrodes ou des éléments piézoélectriques de commande de l'impression qui pour des raisons de simplification n'apparaissent pas sur la figure.One or more reservoirs 22 are also provided, in connection with one or more nozzles 18 to supply them with a liquid, such as ink for example. A print head also includes active elements such as electrodes or piezoelectric elements for controlling the print which, for reasons of simplification, do not appear in the figure.

La gravure des rainures dans le substrat 14 et le scellement du deuxième substrat sur le premier substrat sont des opérations bien maîtrisées actuellement et ne posent donc pas de problème particulier.The etching of the grooves in the substrate 14 and the sealing of the second substrate on the first substrate are operations that are well mastered at present and therefore do not pose any particular problem.

L'opération de découpe ou de sciage pour ouvrir les canaux restent cependant un point particulièrement délicat de la fabrication.The cutting or sawing operation to open the channels, however, remains a particularly delicate point in manufacturing.

La découpe des substrats est, de façon connue, réalisée au moyen de lames usinant les substrats, en l'occurrence le silicium, par arrachement de matière. La découpe des substrats pose deux problèmes majeurs illustrés à la figure 2 qui est une vue, à plus grande échelle, de la face 20 après découpe.The cutting of the substrates is, in known manner, carried out by means of blades machining the substrates, in this case silicon, by tearing away material. The cutting of the substrates poses two major problems illustrated in FIG. 2 which is a view, on a larger scale, of the face 20 after cutting.

Le premier problème est dû à des poussières 22 qui résultent de la découpe et qui viennent polluer l'intérieur des buses 18 et qui peuvent, dans certains cas, former un bouchon obstruant les buses 18. Un nettoyage délicat des buses, après découpe, s'avère ainsi nécessaire.The first problem is due to dust 22 which results from cutting and which pollute the interior of the nozzles 18 and which can, in certain cases, form a plug obstructing the nozzles 18. Delicate cleaning of the nozzles, after cutting, s thus proves necessary.

Un second problème est dû à la formation d'écailles 24 sur les arêtes d'intersection 26 du plan de découpe de la face 20 et les buses 18. Ces écailles ont des effets néfastes sur la qualité des jets.A second problem is due to the formation of scales 24 on the intersection edges 26 of the cutting plane of the face 20 and the nozzles 18. These scales have harmful effects on the quality of the jets.

En effet, les écailles entraînent des dispersions dans la direction des jets ainsi que des instabilités pouvant modifier le comportement dynamique des jets.In fact, the scales cause dispersions in the direction of the jets as well as instabilities which can modify the dynamic behavior of the jets.

La taille des écailles dépend des conditions de découpe. Le document (4) référencé à la fin de la présente description décrit à ce sujet un procédé pour minimiser la taille des écailles.The size of the scales depends on the cutting conditions. The document (4) referenced at the end of the present description describes on this subject a method for minimizing the size of the scales.

D'après le document (4) les écailles plus grandes que 2µm ne sont pas acceptables pour des imprimantes thermiques. Pour éviter de telles écailles, la face de sortie au niveau des buses est obtenue par une première découpe avec une lame à base de résine d'une épaisseur de 100 à 250µm (4 à 10 mils) et ayant une vitesse de rotation de 32000 à 45000 tr/min. La découpe complète des deux substrats est réalisée avec une lame standard, mais plus fine que la précédente. Dans ce document sont également décrits tous les paramètres de découpe. Il persiste cependant des écailles de la taille de l'ordre du micron sur les arêtes des buses. Pour certaines applications, l'amélioration proposée par le document n'est donc pas suffisante. Ceci est par exemple le cas des imprimantes à jets d'encre continus.According to document (4) scales larger than 2 µm are not acceptable for thermal printers. To avoid such flaking, the outlet face at the nozzles is obtained by a first cut with a resin-based blade with a thickness of 100 to 250 μm (4 to 10 mils) and having a rotation speed of 32,000 to 45,000 rpm. The complete cutting of the two substrates is carried out with a standard blade, but thinner than the previous one. This document also describes all the cutting parameters. However, scales of the order of a micron remain on the edges of the nozzles. For certain applications, the improvement proposed by the document is therefore not sufficient. This is for example the case of continuous ink jet printers.

Des opérations de polissage de la face de découpe peuvent éventuellement être envisagées.Polishing operations on the cutting face may possibly be envisaged.

D'autres procédés de fabrication de buses ont été envisagés pour éviter le problème des écailles. Dans le document (5), par exemple, référence à la fin de la présente description, le plan de sortie des buses correspond à un plan cristallin 〈111〉 du silicium usiné par gravure chimique anisotrope d'un substrat orienté selon 〈110〉. Un deuxième substrat prédécoupé est ensuite aligné sur le plan de sortie des buses. Cette solution présente l'avantage de ne pas réaliser le plan de sortie des buses par sciage. En raison des lois de gravure du silicium, il est cependant impossible dans ce cas d'avoir des jets perpendiculaires au plan de sortie des buses si celles-ci sont réalisées par une attaque anisotrope. Dans l'article précédemment cité, les buses sont réalisées par une gravure isotrope dont on sait que la qualité est inférieure à celle d'une gravure anisotrope.Other methods of manufacturing nozzles have been considered to avoid the problem of scales. In document (5), for example, reference at the end of this description, the outlet plane of the nozzles corresponds to a crystal plane 〈111〉 of the silicon machined by anisotropic chemical etching of a substrate oriented according to 〈110〉. A second precut substrate is then aligned with the outlet plane of the nozzles. This solution has the advantage of not producing the outlet plane of the nozzles by sawing. Due to the etching laws of silicon, it is however impossible in this case to have jets perpendicular to the outlet plane of the nozzles if the latter are produced by an anisotropic attack. In the aforementioned article, the nozzles are produced by isotropic etching, the quality of which is known to be lower than that of anisotropic etching.

Un but de la présente invention est, par conséquent, de proposer un procédé de fabrication micromécanique de buses de grande précision qui ne présente pas les inconvénients mentionnés des procédés connus.An object of the present invention is, therefore, to provide a micromechanical method of manufacturing high precision nozzles which does not have the drawbacks mentioned of the known methods.

Un autre but de l'invention est de proposer un procédé qui permette la fabrication de buses dont les arêtes avec la face d'éjection du liquide sont dépourvues d'écailles.Another object of the invention is to propose a method which allows the manufacture of nozzles whose edges with the liquid ejection face are free of scales.

Exposé de l'inventionStatement of the invention

Pour atteindre les buts évoqués, l'invention propose un procédé comportant les étapes suivantes :

  • a) formation d'au moins une rainure à la surface d'un premier substrat,
  • b) assemblage du premier substrat avec un second substrat recouvrant la rainure pour former au moins un canal,
  • c) formation d'un revêtement de protection intérieur du canal par oxydation thermique des parois du canal,
  • d) découpe du premier et du second substrats perpendiculairement au canal pour former au moins une buse pour jet de liquide,
  • e) élimination du revêtement de protection intérieur.
To achieve the aims mentioned, the invention proposes a method comprising the following steps:
  • a) formation of at least one groove on the surface of a first substrate,
  • b) assembling the first substrate with a second substrate covering the groove to form at least one channel,
  • c) formation of a protective inner lining of the canal by thermal oxidation of the walls of the canal,
  • d) cutting the first and second substrates perpendicular to the channel to form at least one nozzle for liquid jet,
  • e) elimination of the interior protective coating.

Grâce à l'invention, les imperfections et les écailles qui surviennent lors de l'opération de découpe se produisent dans le revêtement de protection intérieur et sont éliminés en même temps que ce revêtement en laissant une buse nette.Thanks to the invention, the imperfections and flakes which occur during the cutting operation occur in the interior protective coating and are eliminated at the same time as this coating, leaving a clean nozzle.

Le procédé de l'invention permet donc de fabriquer des buses avec une qualité de jet parfaite quel que soit le mode de découpe. Le mode de découpe et/ou l'épaisseur du revêtement sont choisis de sorte que la taille des écailles soit plus petite que l'épaisseur du revêtement; Le revêtement remplit ainsi son rôle de protection de la buse.The method of the invention therefore makes it possible to manufacture nozzles with perfect jet quality whatever the cutting mode. The cutting mode and / or the thickness of the coating are chosen so that the size of the scales is smaller than the thickness of the coating; The coating thus fulfills its role of protecting the nozzle.

Selon un aspect particulier de l'invention, le premier substrat est une tranche d'orientation cristalline 〈100〉 et, lors de l'étape a) du procédé, on forme des rainures par gravure anisotrope avec arrêt sur des plans 〈111〉 du réseau cristallin du premier substrat.According to a particular aspect of the invention, the first substrate is a crystal orientation slice 〈100〉 and, during step a) of the process, grooves are formed by anisotropic etching with stop on arrêt111〉 planes of the crystal lattice of the first substrate.

Le premier et le second substrats peuvent être choisis en des matériaux identiques ou différents. Toutefois, selon une mise en oeuvre préférentielle du procédé, le premier et le second substrat sont en silicium.The first and second substrates can be chosen from identical or different materials. However, according to a preferred implementation of the method, the first and the second substrate are made of silicon.

Dans le cas où les substrats sont en silicium, le revêtement, en oxyde de silicium, peut être éliminé dans un bain d'acide fluorhydrique.In the case where the substrates are made of silicon, the coating, made of silicon oxide, can be removed in a hydrofluoric acid bath.

Selon un autre aspect particulier on peut réaliser en outre un orifice et/ou un réservoir d'alimentation de chaque buse, avantageusement, dans au moins l'un des premier et second substrats.According to another particular aspect, it is also possible to produce an orifice and / or a supply reservoir for each nozzle, advantageously, in at least one of the first and second substrates.

Brève description des figures.Brief description of the figures.

D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, donnée à titre illustratif et non limitatif, en référence aux dessins annexés, sur lesquels :

  • la figure 1, déjà décrite, est une coupe longitudinale schématique d'un détail d'une tête d'imprimante, lors de la fabrication de buses pour jets de liquide,
  • la figure 2, déjà décrite, est une vue schématique partielle, à plus grande échelle, d'une face où débouche une buse fabriquée selon des techniques connues,
  • la figure 3 est une coupe longitudinale d'un premier substrat illustrant une étape de fabrication d'une buse conformément à l'invention,
  • la figure 4 est une coupe longitudinale d'un détail d'une tête d'imprimante, lors de la fabrication d'une buse conformément au procédé de l'invention et présentant un revêtement intérieur de protection de la buse,
  • la figure 5 est une vue schématique partielle, à plus grande échelle, d'une face où débouche une buse fabriquée conformément au procédé de l'invention et pourvue d'un revêtement intérieur de protection,
  • la figure 6 est une vue schématique partielle d'une face où débouche une buse fabriquée conformément au procédé de l'invention après élimination du revêtement intérieur de protection.
Other characteristics and advantages of the invention will emerge more clearly from the description which follows, given by way of illustration and not limitation, with reference to the appended drawings, in which:
  • FIG. 1, already described, is a schematic longitudinal section of a detail of a printer head, during the manufacture of nozzles for liquid jets,
  • FIG. 2, already described, is a partial diagrammatic view, on a larger scale, of a face where a nozzle opens out using known techniques,
  • FIG. 3 is a longitudinal section of a first substrate illustrating a step of manufacturing a nozzle in accordance with the invention,
  • FIG. 4 is a longitudinal section of a detail of a printer head, during the manufacture of a nozzle in accordance with the method of the invention and having an inner coating for protecting the nozzle,
  • FIG. 5 is a partial diagrammatic view, on a larger scale, of a face which opens out into a nozzle produced according to the method of the invention and provided with an inner protective coating,
  • Figure 6 is a partial schematic view of a face which opens a nozzle manufactured according to the method of the invention after removal of the inner protective coating.

Description détaillée de modes particuliers de mise en oeuvre du procédé de l'inventionDetailed description of particular modes of implementing the method of the invention

Lors de la description des figures 3 à 5, des références auxquelles on a ajouté 100 sont utilisées pour des éléments correspondants, identiques ou similaires, à des éléments des figures 1 ou 2. Par ailleurs, les différentes parties des figures ne sont, pour des raisons de clarté, pas représentées à une même échelle. Enfin, pour des raisons de simplification, les figures ne représentent qu'une seule rainure et/ou une seule buse. Le procédé permet toutefois la fabrication simultanée d'une pluralité de buses. Ainsi, la description se réfère-t-elle à une pluralité de buses dont une seule est chaque fois représentée.When describing Figures 3 to 5, references to which 100 have been added are used for corresponding, identical or similar elements to elements of Figures 1 or 2. Furthermore, the different parts of the figures are not, for reasons of clarity, not represented on the same scale. Finally, for reasons of simplification, the figures represent only a single groove and / or a single nozzle. However, the method allows the simultaneous manufacture of a plurality of nozzles. Thus, the description refers to a plurality of nozzles of which only one is shown each time.

Comme le montre la figure 3, après nettoyage de sa surface, on forme sur un premier substrat 114 de silicium, d'orientation 〈100〉, une couche 130 de nitrure de silicium dans laquelle on pratique des ouvertures longitudinales 132 orientées suivant la direction 〈110〉 et définissant un emplacement pour des rainures.As shown in FIG. 3, after cleaning its surface, a layer 130 of silicon nitride is formed on a first silicon substrate 114 of orientation 〈100〉, in which longitudinal openings 132 oriented in the direction pratique are made 110〉 and defining a location for grooves.

On soumet cette structure par exemple à un bain d'hydroxyde de potassium, symbolisé par des flèches, pour réaliser une gravure anisotrope de rainures 110.This structure is subjected, for example, to a potassium hydroxide bath, symbolized by arrows, to produce an anisotropic etching of grooves 110.

Le temps de gravure est choisi suffisant pour obtenir des rainures par arrêt sur deux plans cristallographiques 〈111〉 du réseau cristallin de silicium. Ceci permet d'exploiter la parfaite qualité géométrique des orientations cristallines.The etching time is chosen sufficient to obtain grooves by stopping on two crystallographic planes 〈111〉 of the crystal lattice of silicon. This makes it possible to exploit the perfect geometric quality of the crystal orientations.

Le procédé met à profit la différence de vitesse d'attaque de gravure sur les différents plans cristallographiques du substrat. On peut se référer à ce sujet également au document 1.The method takes advantage of the difference in etching attack speed on the different crystallographic planes of the substrate. We can also refer to this subject in document 1.

Selon un procédé analogue, on grave dans un deuxième substrat 116, visible à la figure 4, un réservoir 122 pour alimenter la (ou les) buse(s) par exemple en encre. Le réservoir peut selon une variante être également réalisé directement dans le premier substrat.According to a similar process, a tank 122 is etched in a second substrate 116, visible in FIG. 4, for supplying the nozzle (s), for example with ink. According to a variant, the reservoir can also be produced directly in the first substrate.

Après gravure des substrats, la couche 130 de nitrure de silicium est éliminée et les surfaces 112, 112' à sceller respectivement des substrats subissent un bain qui les rend hydrophiles.After etching of the substrates, the layer 130 of silicon nitride is eliminated and the surfaces 112, 112 'to be sealed respectively of the substrates undergo a bath which makes them hydrophilic.

Après rinçage et séchage, les deux substrats sont scellés directement. Ils sont positionnés puis pressés l'un contre l'autre pour obtenir la structure représentée à la figure 4 où le second substrat recouvre les rainures pour former des canaux.After rinsing and drying, the two substrates are sealed directly. They are positioned then pressed against each other to obtain the structure shown in Figure 4 where the second substrate covers the grooves to form channels.

Un premier traitement thermique est effectué pour créer des liaisons chimiques à l'interface 112, 112' entre les deux substrats 114 et 116 et pour assurer ainsi un bon comportement mécanique de l'ensemble.A first heat treatment is carried out to create chemical bonds at the interface 112, 112 'between the two substrates 114 and 116 and thus to ensure good mechanical behavior of the assembly.

Vient ensuite la formation d'un revêtement de protection dans le canal. Il s'agit dans l'exemple décrit d'une couche d'oxyde silicium 138 obtenue par un traitement thermique sous un flux d'oxygène mais il pourrait s'agir d'un revêtement d'une autre nature comme une couche mince de nickel, par exemple, obtenue par dépôt chimique. Un tel traitement d'oxydation permet un contrôle précis de l'épaisseur de la couche 138. Pour permettre cette oxydation, un orifice d'accès aux canaux doit être prévu. Il s'agit par exemple d'un orifice 140 du réservoir 122. L'épaisseur de la couche 138 doit être suffisante pour permettre d'éviter les écailles dans le silicium. Une épaisseur de l'ordre de 1 à 4 µm convient dans l'exemple décrit.Next comes the formation of a protective coating in the canal. In the example described, this is a layer of silicon oxide 138 obtained by a heat treatment under a flow of oxygen, but it could be a coating of another nature such as a thin layer of nickel. , for example, obtained by chemical deposition. Such an oxidation treatment allows precise control of the thickness of the layer 138. To allow this oxidation, an orifice for access to the channels must be provided. It is for example an orifice 140 of the reservoir 122. The thickness of the layer 138 must be sufficient to avoid flaking in the silicon. A thickness of the order of 1 to 4 μm is suitable in the example described.

Le procédé se poursuit par la découpe des substrats assemblés, perpendiculairement aux canaux, pour former des buses 118 qui débouchent sur une face 120.The process continues by cutting the assembled substrates, perpendicular to the channels, to form nozzles 118 which open onto a face 120.

Cette surface et la ligne de découpe sont représentées en trait discontinu sur la figure 4. La découpe est opérée par exemple par une lame en résine diamantée. Cette opération permet de définir également la longueur des buses qui, selon l'application envisagée, résulte d'un compromis entre les problèmes de pertes de charge hydraulique des jets de liquide et les problèmes de stabilité et de précision dans la direction des jets.This surface and the cutting line are shown in broken lines in FIG. 4. The cutting is carried out for example by a diamond resin blade. This operation also makes it possible to define the length of the nozzles which, depending on the application envisaged, results from a compromise between the problems of hydraulic pressure drop of the liquid jets and the problems of stability and precision in the direction of the jets.

La figure 5 montre la face 120 des substrats après découpe. On distingue sur cette figure une buse 118 et la couche d'oxyde 138 qui forme le revêtement de protection intérieur. La couche s'étend sur la face 112' du substrat 116 délimitant la buse et sur les faces correspondant aux plans cristallographiques 〈111〉 du substrat 114. Comme on le constate sur la figure 5, des écailles 124 se forment sur la couche 138 et des poussières 122 d'oxyde de silicium se déposent dans la buse 118.FIG. 5 shows the face 120 of the substrates after cutting. We distinguish in this figure a nozzle 118 and the oxide layer 138 which forms the interior protective coating. The layer extends over the face 112 'of the substrate 116 delimiting the nozzle and on the faces corresponding to the crystallographic planes 〈111〉 of the substrate 114. As can be seen in FIG. 5, scales 124 are formed on the layer 138 and dust 122 of silicon oxide is deposited in the nozzle 118.

La structure découpée est enfin plongée dans un bain d'acide fluorhydrique qui non seulement supprime la couche d'oxyde 138 mais aussi toutes les poussières 122. On obtient, comme le montre la figure 6, une buse 118 dont l'orifice sur la face 120 est parfaitement net.The cut structure is finally immersed in a hydrofluoric acid bath which not only removes the oxide layer 138 but also all the dust 122. We obtain, as shown in FIG. 6, a nozzle 118 whose orifice on the face 120 is perfectly clean.

On peut noter que, comparativement à la buse représentée à la figure 2, les angles de la buse sont plus arrondis.It can be noted that, compared to the nozzle shown in FIG. 2, the angles of the nozzle are more rounded.

Par ailleurs, la profondeur initiale des rainures et l'épaisseur de la couche de revêtement sont déterminés de façon à obtenir, après élimination de cette couche une buse dont le diamètre hydraulique correspond à l'application envisagée.Furthermore, the initial depth of the grooves and the thickness of the coating layer are determined so as to obtain, after elimination of this layer, a nozzle whose hydraulic diameter corresponds to the envisaged application.

Ce diamètre hydraulique est par exemple de l'ordre de quelques dizaines de micromètres.This hydraulic diameter is for example of the order of a few tens of micrometers.

Finalement, grâce au procédé de l'invention, il est possible de réaliser des buses compatibles avec les exigences de qualité géométrique des buses et donc de précision de jet pour les imprimantes et en particulier les imprimantes à jet d'encre continu.Finally, thanks to the method of the invention, it is possible to produce nozzles compatible with the requirements of geometrical quality of the nozzles and therefore of jet precision for printers and in particular continuous ink jet printers.

DOCUMENTS CITES DANS LA PRESENTE DESCRIPTIONDOCUMENTS CITED IN THIS DESCRIPTION

  • (1) "Fabrication of Novel Three-Dimensional Microstructures by the Anisotropic Etching of 〈100〉 and 〈110〉 Silicon" de Ernest Bassous IEEE TRANSACTIONS ON ELECTRON DEVICE, vol. 25, n° 10, pages 1178-1184(1) "Fabrication of Novel Three-Dimensional Microstructures by the Anisotropic Etching of 〈100〉 and 〈110〉 Silicon" by Ernest Bassous IEEE TRANSACTIONS ON ELECTRON DEVICE, vol. 25, n ° 10, pages 1178-1184
  • (2) US-A-4 106 976(2) US-A-4,106,976
  • (3) US-A-4 639 748(3) US-A-4,639,748
  • (4) US-A-4 878 992(4) US-A-4,878,992
  • (5) "Fabrication of an integrated, Planar Silicon, Ink-jet Structure" de Kurt E. Petersen, IEEE Transactions of Electron Devices, vol. Ed-26, n°12, pages 1918-1920(5) "Fabrication of an integrated, Planar Silicon, Ink-jet Structure" by Kurt E. Petersen, IEEE Transactions of Electron Devices, vol. Ed-26, n ° 12, pages 1918-1920

Claims (6)

Procédé de fabrication micromécanique de buses pour jets de liquide comportant les étapes suivantes : a) formation d'au moins une rainure (110) à la surface (112) d'un premier substrat (114), b) assemblage du premier substrat (114) avec un second substrat (116) recouvrant la rainure (110) pour former au moins un canal,
caractérisé en ce qu'il comporte en outre :
c) la formation d'un revêtement de protection (138) intérieur du canal par oxydation thermique des parois du canal, d) la découpe du premier (114) et du second (116) substrats perpendiculairement au canal pour former au moins une buse (118) pour jet de liquide, e) l'élimination du revêtement de protection (138) intérieur.
Process for the micromechanical manufacture of nozzles for liquid jets comprising the following steps: a) forming at least one groove (110) on the surface (112) of a first substrate (114), b) assembling the first substrate (114) with a second substrate (116) covering the groove (110) to form at least one channel,
characterized in that it further comprises:
c) the formation of a protective coating (138) inside the channel by thermal oxidation of the walls of the channel, d) cutting the first (114) and second (116) substrates perpendicular to the channel to form at least one nozzle (118) for liquid jet, e) the elimination of the interior protective coating (138).
Procédé selon la revendication 1, caractérisé en ce qu'on réalise en outre un orifice (140) et/ou un réservoir (122) d'alimentation de chaque buse (118) dans au moins un des premier et second substrats.Method according to claim 1, characterized in that an orifice (140) and / or a reservoir (122) for supplying each nozzle (118) is further produced in at least one of the first and second substrates. Procédé selon la revendication 1, caractérisé en ce que le premier substrat étant une tranche d'orientation 〈100〉 on forme des rainures (110) lors de l'étape a) par gravure anisotrope avec arrêt sur des plans 〈111〉 du réseau cristallin du premier substrat (114).Method according to claim 1, characterized in that the first substrate being a wafer of orientation 〈100〉 grooves (110) are formed during step a) by anisotropic etching with stop on 〈111〉 planes of the crystal lattice of the first substrate (114). Procédé selon la revendication 1, caractérisé en ce que le premier (114) et le second (116) substrats sont en silicium.Method according to claim 1, characterized in that the first (114) and the second (116) substrates are made of silicon. Procédé selon la revendication 1, caractérisé en ce que, le revêtement de protection intérieur (138) étant de l'oxyde de silicium, on élimine le revêtement (138) dans un bain d'acide fluorhydrique.Method according to claim 1, characterized in that, the internal protective coating (138) being silicon oxide, it is removes the coating (138) in a hydrofluoric acid bath. Procédé selon la revendication 1, caractérisé en ce que lors de l'étape a), on forme sur une surface (112) du premier substrat une couche (130) de nitrure de silicium, on pratique dans la couche des ouvertures longitudinales (132) orientées suivant la direction 〈110〉 définissant un emplacement pour les rainures (110), on soumet le premier substrat à un bain d'hydroxyde de potassium pour réaliser une gravure anisotrope puis, après gravure, on élimine la couche de nitrure de silicium.Method according to claim 1, characterized in that during step a), a layer (130) of silicon nitride is formed on a surface (112) of the first substrate, longitudinal openings (132) are formed in the layer oriented in the direction 〈110〉 defining a location for the grooves (110), the first substrate is subjected to a potassium hydroxide bath to produce an anisotropic etching then, after etching, the layer of silicon nitride is eliminated.
EP95402686A 1994-12-01 1995-11-29 Method for making micromechanical nozzles or liquid jets Expired - Lifetime EP0714774B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9414461 1994-12-01
FR9414461A FR2727648B1 (en) 1994-12-01 1994-12-01 PROCESS FOR THE MICROMECHANICAL MANUFACTURE OF LIQUID JET NOZZLES

Publications (2)

Publication Number Publication Date
EP0714774A1 true EP0714774A1 (en) 1996-06-05
EP0714774B1 EP0714774B1 (en) 1998-07-08

Family

ID=9469382

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95402686A Expired - Lifetime EP0714774B1 (en) 1994-12-01 1995-11-29 Method for making micromechanical nozzles or liquid jets

Country Status (5)

Country Link
US (1) US5781994A (en)
EP (1) EP0714774B1 (en)
JP (1) JPH08216415A (en)
DE (1) DE69503340T2 (en)
FR (1) FR2727648B1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2845813B2 (en) * 1996-06-17 1999-01-13 新潟日本電気株式会社 Manufacturing method of electrostatic ink jet recording head
FR2761199B1 (en) 1997-03-21 1999-04-16 Commissariat Energie Atomique PROCESS FOR PRODUCING TWO COMMUNICATING CAVITIES IN A SUBSTRATE OF SINGLE CRYSTAL MATERIAL BY ANISOTROPIC CHEMICAL ETCHING
CH694453A5 (en) * 1998-07-24 2005-01-31 Genspec Sa Microfabricated nozzle for generating reproducible droplets.
FR2790092B1 (en) 1999-02-24 2001-03-30 Commissariat Energie Atomique METHOD FOR DETERMINING AN ANALYTE PRESENT IN A SOLUTION
US6150277A (en) * 1999-08-30 2000-11-21 Micron Technology, Inc. Method of making an oxide structure having a finely calibrated thickness
SE0004594D0 (en) * 2000-12-12 2000-12-12 Gyros Ab Microscale nozzie
US7111401B2 (en) * 2003-02-04 2006-09-26 Eveready Battery Company, Inc. Razor head having skin controlling means
GB2410464A (en) 2004-01-29 2005-08-03 Hewlett Packard Development Co A method of making an inkjet printhead
JP4639718B2 (en) * 2004-09-22 2011-02-23 セイコーエプソン株式会社 Pressure generating chamber forming plate manufacturing apparatus for liquid ejecting head, pressure generating chamber forming plate manufacturing method for liquid ejecting head, and liquid ejecting head
JP4636378B2 (en) * 2005-09-16 2011-02-23 富士フイルム株式会社 Liquid discharge head and manufacturing method thereof
FR2930457B1 (en) * 2008-04-24 2010-06-25 Commissariat Energie Atomique PROCESS FOR MANUFACTURING RECONFIGURABLE MICROCHANNELS

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4106976A (en) 1976-03-08 1978-08-15 International Business Machines Corporation Ink jet nozzle method of manufacture
EP0042932A2 (en) * 1980-06-30 1982-01-06 International Business Machines Corporation A process for the manufacture of hollow tube-like members
JPS6018352A (en) * 1983-07-12 1985-01-30 Ricoh Co Ltd Method for manufacturing ink jet head
JPS6032673A (en) * 1983-08-03 1985-02-19 Seiko Epson Corp Preparation of ink jet head
US4639748A (en) 1985-09-30 1987-01-27 Xerox Corporation Ink jet printhead with integral ink filter
US4878992A (en) 1988-11-25 1989-11-07 Xerox Corporation Method of fabricating thermal ink jet printheads
JPH037349A (en) * 1989-06-05 1991-01-14 Canon Inc Forming method for discharge port of ink jet recording head
US5160403A (en) * 1991-08-09 1992-11-03 Xerox Corporation Precision diced aligning surfaces for devices such as ink jet printheads

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603267A (en) * 1983-06-20 1985-01-09 Fujitsu Ltd Polling system of facsimile
US4601777A (en) * 1985-04-03 1986-07-22 Xerox Corporation Thermal ink jet printhead and process therefor
US4612554A (en) * 1985-07-29 1986-09-16 Xerox Corporation High density thermal ink jet printhead
US4863560A (en) * 1988-08-22 1989-09-05 Xerox Corp Fabrication of silicon structures by single side, multiple step etching process
US4899181A (en) * 1989-01-30 1990-02-06 Xerox Corporation Large monolithic thermal ink jet printhead
US4961821A (en) * 1989-11-22 1990-10-09 Xerox Corporation Ode through holes and butt edges without edge dicing
US5160577A (en) * 1991-07-30 1992-11-03 Deshpande Narayan V Method of fabricating an aperture plate for a roof-shooter type printhead
JP2960608B2 (en) * 1992-06-04 1999-10-12 キヤノン株式会社 Method for manufacturing liquid jet recording head
US5387314A (en) * 1993-01-25 1995-02-07 Hewlett-Packard Company Fabrication of ink fill slots in thermal ink-jet printheads utilizing chemical micromachining
US5308442A (en) * 1993-01-25 1994-05-03 Hewlett-Packard Company Anisotropically etched ink fill slots in silicon
JP3132291B2 (en) * 1993-06-03 2001-02-05 ブラザー工業株式会社 Method of manufacturing inkjet head
US5620614A (en) * 1995-01-03 1997-04-15 Xerox Corporation Printhead array and method of producing a printhead die assembly that minimizes end channel damage

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4106976A (en) 1976-03-08 1978-08-15 International Business Machines Corporation Ink jet nozzle method of manufacture
EP0042932A2 (en) * 1980-06-30 1982-01-06 International Business Machines Corporation A process for the manufacture of hollow tube-like members
JPS6018352A (en) * 1983-07-12 1985-01-30 Ricoh Co Ltd Method for manufacturing ink jet head
JPS6032673A (en) * 1983-08-03 1985-02-19 Seiko Epson Corp Preparation of ink jet head
US4639748A (en) 1985-09-30 1987-01-27 Xerox Corporation Ink jet printhead with integral ink filter
US4878992A (en) 1988-11-25 1989-11-07 Xerox Corporation Method of fabricating thermal ink jet printheads
JPH037349A (en) * 1989-06-05 1991-01-14 Canon Inc Forming method for discharge port of ink jet recording head
US5160403A (en) * 1991-08-09 1992-11-03 Xerox Corporation Precision diced aligning surfaces for devices such as ink jet printheads

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
E. BASSOUS: "Fabrication of Novel Three-Dimensional Microstructures by the Anisotropic Etching of <100> and <110> Silicon", IEEE TRANSACTIONS ON ELECTRON DEVICE, vol. 25, no. 10, pages 1178 - 1184
K.E. PETERSEN: "Fabrication of an integrated, Planar Silicon, Ink-Jet Structure", IEEE TRSNASACTIONS ON ELECTRON DEVICES, vol. ED-26, no. 12, pages 1918 - 1920, XP000561980
KURT E. PETERSEN: "Fabrication of an Integrated, planar Silicon Ink-Jet Structure", IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. ed26, no. 12, pages 1918 - 1920, XP000561980 *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 139 (M - 387) 14 June 1985 (1985-06-14) *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 158 (M - 393) 3 July 1985 (1985-07-03) *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 113 (M - 1094) 18 March 1991 (1991-03-18) *

Also Published As

Publication number Publication date
FR2727648B1 (en) 1997-01-03
EP0714774B1 (en) 1998-07-08
DE69503340D1 (en) 1998-08-13
US5781994A (en) 1998-07-21
DE69503340T2 (en) 1999-02-11
JPH08216415A (en) 1996-08-27
FR2727648A1 (en) 1996-06-07

Similar Documents

Publication Publication Date Title
EP1831923B1 (en) Method for trimming a structure obtained by the assembly of two plates
EP0363256B1 (en) Method of making electrical connections through a substrate
EP0714774B1 (en) Method for making micromechanical nozzles or liquid jets
EP2973750B1 (en) Process for forming light-emitting diodes
EP2363879A2 (en) Method for manufacturing a multilayer structure with trimming by thermomechanical effects
FR2842650A1 (en) Fabrication of substrates for optics, electronics, or optoelectronics, by implanting atomic species beneath front face of ingot to create zone of weakness, bonding support, and directly detaching portion of top layer bonded to support
EP2333815A1 (en) Process for removing the edge of a bevelled substrate
FR2957189A1 (en) METHOD OF MAKING A MULTILAYER STRUCTURE WITH POST GRINDING.
EP2342744A1 (en) Process for forming a single-crystal film in the microelectronics field
FR2926671A1 (en) METHOD FOR TREATING DEFECTS WHEN BONDING PLATES
EP2612352B1 (en) Process for producing a film, for example a single-crystal film, on a polymer substrate
EP2146228A1 (en) Liquid crystal alignment layer deposited and rubbed before creating microstructures
EP3329511B1 (en) Method for direct bonding with self-alignment using ultrasound
EP4128324A1 (en) Removable structure used for the transfer or manipulation of layers, and method for transfer of a layer using said removable structure
FR2842651A1 (en) Smoothing outline of useful layer of material transferred onto support substrate during forming of composite substrate for, e.g. optics, by allowing receiving face of support substrate to undergo machining to form shoulder prior to bonding
EP3623437A1 (en) Method for temporary gluing with thermoplastic adhesive including a rigid crown
WO2020128244A1 (en) Method for transferring a surface layer to cavities
WO2020128245A1 (en) Method for manufacturing a device comprising a membrane extending over a cavity
EP2676288B1 (en) Method for producing a substrate holder
EP1101220B1 (en) Method for collective production of magnetic heads with rounded bearing surface
EP0902306A1 (en) Fabrication process of an optical integrated componant comprising a thick waveguide coupled with a thin waveguide
FR2747960A1 (en) Nozzle mounting for ink jet printer
FR3113182A1 (en) Plate assembly process by molecular bonding
FR2959596A1 (en) DETOURING SLURRY
FR2736303A1 (en) INK JET HEAD AND METHOD FOR MANUFACTURING THE SAME

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19961112

17Q First examination report despatched

Effective date: 19970512

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69503340

Country of ref document: DE

Date of ref document: 19980813

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980911

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031126

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051129