EP0770352A1 - Ultrasonic diagnostic imaging with contrast agents - Google Patents

Ultrasonic diagnostic imaging with contrast agents Download PDF

Info

Publication number
EP0770352A1
EP0770352A1 EP96307359A EP96307359A EP0770352A1 EP 0770352 A1 EP0770352 A1 EP 0770352A1 EP 96307359 A EP96307359 A EP 96307359A EP 96307359 A EP96307359 A EP 96307359A EP 0770352 A1 EP0770352 A1 EP 0770352A1
Authority
EP
European Patent Office
Prior art keywords
ultrasonic
pulse
contrast agent
signals
microbubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96307359A
Other languages
German (de)
French (fr)
Other versions
EP0770352B1 (en
Inventor
Jeffry Earl Powers
Matthew Bruce
Michalakis Averkiou
Juin-Jet Hwang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Technology Laboratories Inc
Original Assignee
Advanced Technology Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Technology Laboratories Inc filed Critical Advanced Technology Laboratories Inc
Priority to EP03077615A priority Critical patent/EP1374777A1/en
Publication of EP0770352A1 publication Critical patent/EP0770352A1/en
Application granted granted Critical
Publication of EP0770352B1 publication Critical patent/EP0770352B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/543Control of the diagnostic device involving acquisition triggered by a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8959Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes
    • G01S15/8963Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes using pulse inversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • G01S7/52039Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target exploiting the non-linear response of a contrast enhancer, e.g. a contrast agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • G01S7/52041Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target detecting modification of a contrast enhancer, e.g. detecting the destruction of a contrast agent by an acoustic wave, e.g. loss of correlation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals

Definitions

  • This invention relates to ultrasonic diagnosis and imaging of the body with ultrasonic contrast agents and, in particular, to new methods and apparatus for ultrasonically detecting and imaging with contrast agents.
  • Ultrasonic diagnostic imaging systems are capable of imaging and measuring the physiology within the body in a completely noninvasive manner. Ultrasonic waves are transmitted into the body from the surface of the skin and are reflected from tissue and cells within the body. The reflected echoes are received by an ultrasonic transducer and processed to produce an image or measurement of blood flow. Diagnosis is thereby possible with no intervention into the body of the patient.
  • ultrasonic contrast agents Materials known as ultrasonic contrast agents can be introduced into the body to enhance ultrasonic diagnosis. Contrast agents are substances which strongly interact with ultrasonic waves, returning echoes which may be clearly distinguished from those returned by blood and tissue.
  • One class of substances which has been found to be especially useful as an ultrasonic contrast agent is gases, in the form of tiny bubbles called microbubbles. Microbubbles present a significant acoustic impedance mismatch in the body, and nonlinear behizate in certain acoustic fields which is readily detectable through special ultrasonic processing. Gases that have been stabilized in solutions in the form of tiny microbubbles are infused into the body and survive passage through the pulmonary system and circulate throughout the vascular system.
  • Microbubble contrast agents are useful for imaging the body's vascular system, for instance, as the contrast agent can be injected into the bloodstream and will pass through the veins and arteries of the body with the blood supply until filtered from the blood stream in the lungs, kidneys and liver.
  • microbubble contrast agent currently under investigation comprises coated microbubbles.
  • the microbubbles of the contrast agent are covered with a thin biodegradable coating or shell.
  • the microbubbles have diameters between 0.1 ⁇ m and 4.0 ⁇ m and a specific density about 1/10 of the density of water.
  • the coated microbubbles are suspended in an aqueous solution for infusion into the blood stream.
  • Coated microbubbles have the advantage of being stable in the body for a significant period of time, as the shells serve to protect the gases of the microbubbles from diffusion into the bloodstream.
  • the size of the microbubbles is chosen to enable the microbubbles to pass through capillary beds in the body.
  • the acoustic pressure waves can cause the shells of coated microbubbles to rupture, freeing the bubbles to behave as noncoated microbubbles until they diffuse into the bloodstream.
  • acoustic energy can induce nonlinear motion of the microbubbles, itself a detectable ultrasonic phenomenon.
  • This acoustically induced destruction and collapse of the microbubbles produces a high amplitude response and a characteristically bright pattern in the color Doppler mode.
  • color Doppler is an advantageous modality for detecting the collapse of contrast agent microbubbles.
  • U.S. Pat. 5,456,257 assigned to the same assignee as the present invention, describes a technique for detecting microbubbles through phase insensitive detection of microbubble destruction and differentiation of the detected signals on a spatial basis.
  • Phase insensitive contrast agent detection advantageously reduces artifacts from moving tissue and also performs well when imaging contrast agent perfused tissue, where the contrast agent is finely distributed and moving slowly through the fine capillary structure of tissue. It is desirable to be able to perform contrast agent imaging with equal effect in large, rapidly moving blood pools such as the chambers of the heart. It is also desirable to specifically tailor the operation of the ultrasound machine to harmonic characteristics when performing harmonic contrast imaging.
  • Ultrasonic apparatus for coherent imaging of ultrasonic contrast agents, which is advantageous in blood pool contrast imaging.
  • the apparatus is specially tailored to be programmed with response characteristics suitable for harmonic contrast agents.
  • the inventive apparatus also includes a display for simultaneously viewing a real time image which displays anatomical structures for localization of the contrast agent and a triggered contrast image displaying contrast enhanced images.
  • Methods of employing the inventive apparatus with contrast agents include the measurement of perfusion rate characteristics, multizone contrast imaging, a technique for discerning larger vessels in a bed of fine capillary structures, multifrequency contrast imaging, the display of contrast enhanced tissue, a technique for the elimination of artifacts occurring during high PRF contrast image acquisition, and alternate polarity acquisition of nonlinear contrast effects.
  • an ultrasonic diagnostic system described in U.S. Pat. 5,456,257 is illustrated in block diagram form.
  • This ultrasound system is capable of performing phase insensitive contrast agent detection as described in that patent.
  • coherent echo signals produced by a beamformer 16 are quadrature demodulated by an I,Q demodulator 18 to produce quadrature I and Q signal components.
  • the demodulated signal components are amplitude detected by an envelope detector 20.
  • the detected signals are filtered by a filter 22 to remove noise and other extraneous signal components.
  • Spatially aligned, temporally separated detected echo signals are differentiated by a pulse to pulse differentiation subsystem 24, and the differential signals are used to form contrast agent enhanced images.
  • Performing pulse to pulse differentiation of envelope detected echo signals provides advantages in certain procedures.
  • contrast agents When contrast agents are being used in a mode where microbubbles in the fine capillary structures of tissue are destroyed by ultrasonic waves, differentiation of the echo envelope is particularly useful.
  • a first ultrasonic pulse destroys the microbubbles in the tissue and these destruction events are received and envelope detected.
  • a second pulse is transmitted to the same locations, and the returning echoes, ideally, show an absence of microbubbles at the locations where the microbubbles were destroyed.
  • the second set of echoes is subtracted from the first set on a spatial basis, yielding difference signals of substantial magnitude at the locations where the microbubbles were destroyed, which are then displayed at corresponding pixel locations on a display.
  • the second set of echoes may not actually reveal voids where microbubbles were destroyed, due to motional effects, diffusion rates, and other bubble activity.
  • the difference in bubble activity from one pulse to the next will provide a highly detectable response when differentiated on a pulse to pulse, spatial basis.
  • microbubble destruction is referred to herein it encompasses the effects of phenomena such as these.
  • FIGURE 2 A first embodiment of an ultrasonic diagnostic system constructed in accordance with the principles of the present invention is shown in FIGURE 2.
  • This embodiment provides coherent detection of ultrasonic contrast agents.
  • An ultrasonic probe 10 includes an array 12 of ultrasonic transducers which transmit and receive ultrasonic energy.
  • an ultrasonic beamformer 16 controls the timing of actuation of the separate elements of the array 12 by activating the transducer pulsers of a transmitter/receiver 14 at appropriate times to pulse the transducer elements so that a steered and focused ultrasonic beam is produced.
  • ultrasonic echoes received by the transducer elements are received by transmitter/receiver 14 and coupled to separate channels of the beamformer 16, where the signals are appropriately delayed then combined to form a sequence of coherent echo signals over the depth of reception in the body of the patient.
  • the coherent echo signals are quadrature demodulated by an I,Q demodulator 18 which produces quadrature I and Q signal components.
  • the demodulated signal components are coupled to a B mode processor 37 which filters, detects, and maps greyscale echo signals in the usual manner.
  • the greyscale echo signals of the scanlines of an image are coupled to a scan converter 40 for display of a B mode image.
  • the I and Q signal components are alternatively (or in addition) coupled to a pulse to pulse differentiation circuit 24 which differentiates echoes received from the same sample volume (location) in the body on a temporal basis.
  • the results of this differentiation are coupled to an amplitude detector 20 and the differential response signals are coupled to an event discriminator 27.
  • the event discriminator discriminates events of microbubble destruction at the sample volume location from the differentiated echo information.
  • One convenient way to perform this discrimination is by comparison of the detected signals to a threshold from threshold generator 26, passing signals above a threshold and rejecting signals below the threshold. The discriminator will detect microbubble destruction events and reject low level noise.
  • Detected events are coupled to the scan converter 40 for production of a spatial image of the microbubble destruction events in the desired image format.
  • the destruction event image may be shown separately, or may be combined with the B mode image to show the contrast agent in relation to surrounding tissue structure.
  • the images are coupled to a video processor 42 which produces video signals for display on an image display 50.
  • This coherent contrast agent detection technique is highly sensitive to small variations in microbubble activity in the image area, and performs well when imaging the blood pool of a heart chamber, for instance.
  • the probability of differential microbubble activity from one pulse to another is extremely high, explaining the high sensitivity of this technique for heart chamber imaging.
  • coherent microbubble detection is more sensitive to tissue motion and more sensitive to individual microbubble events in high contrast agent concentrations. It is also possible to process received echoes both coherently and incoherently, to form an image which contains information from both processes.
  • Contrast agent detection in accordance with the present invention provides excellent tissue clutter rejection.
  • Microbubble echo signals are generally not received alone, but are usually accompanied by echo signals of much greater amplitude which are returned from neighboring tissue and structures. These tissue echoes can be several orders of magnitude greater than any of the microbubble echo signals, effectively masking them.
  • the pulse to pulse differentiation processing can reject the tissue signals by effectively canceling them, revealing the contrast agent echoes which can then be more readily discriminated. This cancellation is enhanced by high PRF pulses, which further diminishes motional artifacts from tissue.
  • microbubbles of a contrast agent exhibit greater sensitivity to ultrasonic pulses of certain characteristics and lesser sensitivity to pulses of other characteristics.
  • the time of occurrence of microbubble destruction can be modulated and controlled.
  • Microbubbles can be imaged in the bloodstream by scanning at a high frequency with low amplitude, (and to a lesser extent) short burst length pulses. When it is desired to stimulate microbubble destruction, higher power pulses of lower frequency and longer burst length are transmitted into the bloodstream.
  • the ultrasound system of the present invention is provided with control presets for these two pulse transmission characteristics, enabling the clinician to switch from nondestructive imaging pulses to microbubble destruction pulses when the clinician so desires.
  • the preferred display of anatomical structures and microbubble activity employs programmed switching between the destructive and nondestructive pulse modes for contrast agent and anatomical structure imaging.
  • FIGURE 4 A second embodiment of an ultrasonic diagnostic system constructed in accordance with the principles of the present invention for use with harmonic contrast agents is shown in FIGURE 4.
  • the array transducer 112 of the probe 110 transmits ultrasonic energy and receives echoes returned in response to this transmission.
  • the response characteristic of the transducer can exhibit two passbands, one around the central transmit frequency and another about the center of the received passband.
  • a broadband transducer having a passband encompassing both the transmit and receive passbands is preferred.
  • the transducer may be manufactured and tuned to exhibit a response characteristic as shown in FIGURE 5, in which the lower hump 60 of the response characteristic is centered about the center transmit frequency f t , and the upper hump 62 is centered about the center frequency f r of the response passband.
  • the transducer response characteristic of FIGURE 6 is preferred, however, as the single dominant characteristic 64 allows the probe to be suitable for both harmonic contrast imaging and imaging without harmonic contrast agents.
  • the characteristic 64 encompasses the central transmit frequency f t , and also the harmonic receive passband bounded between frequencies f L and f c , and centered about frequency f r .
  • a typical harmonic contrast agent can have a response such that transmission about a central transmit frequency of 1.7 MHz will result in harmonic returning echo signals about a frequency of 3.4 MHz.
  • a response characteristic 64 of approximately 2 MHz would be suitable for these harmonic frequencies.
  • a central controller 120 provides a control signal f tr to a transmit frequency control circuit 121 to control the center frequency and time of transmission of the transmitted ultrasonic energy.
  • the transmit frequency control circuit pulses the elements of the transducer array 112 by means of a transmit/receive switch 114.
  • a preferred method of pulsing the transducer array is in bursts which scan with sufficient pulses to form an image, followed by intervals of no pulse transmission. Such bursts and intervals are shown in FIGURE 7, which shows a burst interval nPRF and a frame interval t Fr , the frame interval including the burst interval and an interval of no pulse transmission.
  • the latter interval allows time for new contrast agent coursing through the body to infuse the vessels and tissue of the image plane between frame bursts.
  • the frame intervals can be on the order of one second, and can be gated to the heart rate or asynchronous with respect to the heart rate.
  • echoes from the same spatial locations can be gathered for Doppler processing.
  • a high PRF rate such as 6 KHz is used. Imaging procedures of this type are the subject of U.S. Pats. [appl. serial nos. 08/439,619 and 08/540,463].
  • Medical diagnostic ultrasonic scanning is limited by regulatory requirements in peak pressure amplitude of a transmitted pulse and the integral of the energy transmitted.
  • the preferred scanning of contrast agents in accordance with the embodiment of FIGURE 4 utilizes relatively high peak pulse power, with the time integral of transmitted energy lessened by the intervals during which no pulses are transmitted.
  • the ultrasound system is set to operate with a relatively high mechanical index and an SPTA moderated by the gated or interval bursts.
  • Echoes received by the transducer array 112 are coupled through the T/R switch 114 and digitized by analog to digital converters 115.
  • the sampling frequency f s of the A/D converters 115 is controlled by the central controller.
  • the desired sampling rate dictated by sampling theory is at least twice the highest frequency f c of the received passband and, for the preceding exemplary frequencies, might be on the order of at least 8 MHz. Sampling rates higher than the minimum requirement are also desirable.
  • the echo signal samples from the individual transducer elements are delayed and summed by a beamformer 116 to form coherent echo signals.
  • the digital coherent echo signals are then filtered by a digital filter 118.
  • the transmit frequency f t is not tied to the receiver, and hence the receiver is free to receive a band of frequencies which is separate from the transmitted band.
  • the digital filter 118 bandpass filters the signals in the passband bounded by frequencies f L and f c in FIGURE 6, and can also shift the frequency band to a lower or baseband frequency range.
  • the digital filter could be a filter with a 1 MHz passband and a center frequency of 3.4 MHz in the above example.
  • a preferred digital filter is a series of multipliers 70-73 and accumulators 80-83 as shown in FIGURE 8.
  • This arrangement is controlled by the central controller 120, which provides multiplier weights and decimation control which control the characteristics of the digital filter.
  • the arrangement is controlled to operate as a finite impulse response (FIR) filter, and performs both filtering and decimation.
  • FIR finite impulse response
  • the first stage output 1 could be controlled to operate as a four tap FIR filter with a 4:1 decimation rate.
  • Temporally discrete echo samples S are applied to the multiplier 70 of the first stage. As the samples S are applied, they are multiplied by weights provided by the central controller 120. Each of these products is stored in the accumulator 80 until four such products have been accumulated (added).
  • An output signal is then produced at the first stage output 1.
  • the output signal has been filtered by a four tap FIR filter since the accumulated total comprises four weighted samples. Since the time of four samples is required to accumulate the output signal, a 4:1 decimation rate is achieved. One output signal is produced for every four input samples. The accumulator is cleared and the process repeats. It is seen that the higher the decimation rate (the longer the interval between output signals), the greater can be the effective tap number of the filter.
  • temporally separate samples are delayed by delay elements ⁇ and applied to the four multipliers 70-73, multiplied, and accumulated in the accumulators 80-83. After each accumulator has accumulated two products, the four output signals are combined as a single output signal.
  • the filter is operating as an eight tap filter with a 2:1 decimation rate. With no decimation, the arrangement can be operated as a four tap FIR filter.
  • the filter can also be operated by applying echo signals to all multipliers simultaneously and selectively time sequencing the weighting coefficients. A whole range of filter characteristics are possible through programming of the weighting and decimation rates of the filter, under control of the central controller.
  • filtered echo signals from tissue are coupled to a B mode processor 37 for conventional B mode processing.
  • Filtered echo signals of the contrast agent passband are coupled to a contrast signal detector 128 which eliminates stationary tissue signals by pulse to pulse subtraction of temporally discrete echoes from a given spatial location, amplitude or envelope detects the resulting difference signals, and discriminates for motion signal components on an amplitude basis.
  • Simple two pulse subtraction of the form P 1 - P 2 may be employed where P 1 represents the echoes received following one pulse and P 2 represents the echoes received following another pulse.
  • may be employed to accumulate more signals from successive bubble destruction pulses.
  • the filtered echo signals from the digital filter 118 are also coupled to a Doppler processor 130 for conventional Doppler processing to produce velocity and power Doppler signals.
  • the outputs of these processors are coupled to a 3D image rendering processor 132 for the rendering of three dimensional images, which are stored in a 3D image memory 134.
  • Three dimensional rendering may be performed as described in U.S. Pat. [appl. serial no. 08/638,710], and in U.S. Pats. 5,474,073 and 5,485,842, the latter two patents illustrating three dimensional power Doppler ultrasonic imaging techniques.
  • the signals from the contrast signal detector 128, the processors 37 and 130, and the three dimensional image signals are coupled to a video processor 140 where they may be selected for display on an image display 50 as dictated by user selection.
  • the video processor preferably includes persistence processing, whereby momentary intensity peaks of detected contrast agents can be sustained in the image.
  • One technique for providing persistence is through frame averaging, whereby new image frames are combined with previous frame information on a spatial basis. The combination can be done by weighting the contributions of the old and new frame information and the frame information can be combined in a recursive manner; that is, old frame information is fed back for combining with new frame information.
  • a preferred persistence technique is the fast attack, slow decay technique described in U.S. Pat. 5,215,094, which can be applied to both Doppler and contrast agent images.
  • a preferred display format for contrast agent imaging is depicted by the screen display of FIGURE 3.
  • the signals produced by the B mode processor 37 are used to display a real time image display 160 of structure in the body such as a blood vessel 170.
  • This real time image is used by the clinician to ascertain and locate the area of the body to be imaged.
  • the B mode image is created from echoes returning from nondestructive ultrasonic imaging pulses. As discussed above, pulses of low amplitude, high frequency, and short burst duration will generally not destroy the microbubbles. However, echoes from pulses destructive of microbubbles are used by the contrast signal detector 128 to produce contrast agent images 160' on the same or an adjacent monitor.
  • the contrast agent images 160' are triggered to be acquired at a predetermined phase of the heart cycle, using a heart gate triggering from the phases of the heartbeat waveform.
  • a burst of relatively high amplitude, low frequency, long burst duration pulses are transmitted to destroy the microbubbles in the image plane and detect and display those events.
  • a B mode image acquired at or near the same heartbeat phase is displayed, with the vessel or organ 170' filled in with the imaged microbubble destruction events.
  • the display screen of FIGURE 3 will show a B mode image 160 in real time, and a contrast agent image 160'which is updated each heart cycle.
  • a variation of this presentation is especially useful in radiology where tissue structure is more stationary.
  • a real time B mode image 160 of anatomical structure is shown, with fluid flow 170' filled in with color Doppler.
  • This real time color flow Doppler image is then periodically filled in with detected contrast agent, sharply illuminating the bloodflow.
  • the colorflow Doppler display and the contrast agent display both of which are filling in the same areas of the anatomical display, may be shown in the same, similar, or contrasting colors and intensities.
  • the periodicity of the overlaid contrast agent display may be synchronized to the heart cycle with an EKG trigger as described above, or the periodicity may be chosen by the user and asynchronous to the heart cycle.
  • FIGURE 9a illustrates the travel of an intravenous injection of contrast agent to a capillary bed 200.
  • the agent travels in the bloodstream as it moves from the injection site 208 and traverses the right ventricle 202, the lungs 204, and the left ventricle 206 before reaching an artery 209.
  • the contrast agent then begins to infuse the tissue of the capillary bed 200 as blood flows from the artery 200 through the arterioles 210 and into the capillaries of the tissue.
  • the perfusion rate into the capillary bed can be used to evaluate the viability of bloodflow in that region of the body or to identify the location of a stenosis.
  • Ultrasonic pulses are transmitted to destroy microbubbles in a region 212 across the capillary bed 200, as shown in FIGURE 9b. If a stenosis 214 is impeding the flow of blood in the artery 209 and hence to the entire capillary bed 200, the rate of reperfusion of microbubbles will be slow across the entire region 212. But if the stenosis 216 is in an artery which feeds only part of the capillary bed 200, the rate of perfusion will be slow in only the portion 218 of the region which is fed through the stenotic artery.
  • FIGURES 10a and 10b This difference in the rate of reperfusion is illustrated graphically by the curves of FIGURES 10a and 10b.
  • Each of these curves shows the same blood volume and hence the same initial microbubble concentration 220 before the microbubbles are destroyed in the capillary bed.
  • ultrasonic pulses destroy the microbubbles as indicated by the vertical spike in each curve.
  • curve 222 in FIGURE 10a When blood is flowing freely into the capillary bed, a rapid rate of reperfusion of microbubbles occurs as indicated by curve 222 in FIGURE 10a.
  • the curve 222 rapidly rises back to the stable microbubble concentration level 220. But when the bloodflow is impeded, the rise of the curve 224 is much more gradual, as indicated in FIGURE 10b.
  • FIGURE 11a shows a repetitive sequence of reperfusion curves 222, each returning to the full perfusion level 220 in a period of time t p .
  • each curve 224 of the same duration t p is short of the full perfusion level 220 by an amount indicated by arrows B-B.
  • the reperfusion curve may be reproduced as indicated in FIGURE 13.
  • Ultrasonic pulses are transmitted at time t d to destroy the microbubbles in the capillary bed.
  • a short time later pulses are transmitted again, the echoes received and imaged to this time measure the degree of microbubble reinfusion, either by destroying reinfused microbubbles and recording the destruction events, or by counting or integrating pixels in the area which show reinfused microbubbles.
  • the measure of the number of microbubbles reinfused to the region is plotted as a point X of the curve 224.
  • Nondestructive pulses can be repetitively transmitted and echoes received to plot a sequences of X points on the curve as shown in FIGURE 13.
  • FIGURE 12 shows a heart cycle waveform 230, indicating the pulsatile action of bloodflow. At the peaks of the waveform 230, new blood is pumped into regions of the body during the systolic phase of the heart cycle. Advantage is taken of this reinfusing action by repetitively measuring the degree of contrast agent reinfusion at a constant point in the heart cycle, but following continually differing phases of microbubble destruction.
  • FIGURE 12 the X points of reinfusion measurement all occur at the same phase of the heart cycle.
  • the X points are preceded by changing times at which the microbubbles are destroyed, as indicated by arrows 232, 234, and 236, which successively precess to earlier times in the heart cycle.
  • the purpose of ultrasonic transmission at the times of arrows 232, 234, and 236 is to destroy the microbubbles, it is not necessary to receive and analyze the returning echoes at these times. Echo reception and analysis is done at the times of the Xs, and the Xs shown in FIGURE 12 can be plotted as the successive Xs in FIGURE 13 due to the precession of the destruction time phases indicated by the arrows.
  • Triggered or grated acquisition is especially significant in cardiac imaging to reduce tissue motion artifacts stemming from beating movement of the heart.
  • This technique of measuring perfusion by microbubble destruction can also be used to image the flow in major vessels of a capillary bed.
  • FIGURE 9d it is seen that the major vessels 240 reinfuse earlier than the fine capillaries in a microbubble depleted region 212.
  • the major vessels 240 can be revealed by detecting microbubbles in the region 212 shortly after pulses have destroyed all of the microbubbles in the region, at which time only the major vessels 240 have been significantly reinfused with contrast agent.
  • FIGURES 14a-14c A technique for overcoming these effects is shown in FIGURES 14a-14c.
  • the horizontal axis represents depth into the body, with the skin line SL indicated at the left side of each drawing.
  • a typical ultrasonic image may show the skin line at the top of the image and the deepest penetration into the body at the bottom of the image.
  • focused pulses are transmitted to focus the ultrasonic energy on the microbubbles which are to be destroyed.
  • the pulses will not be focused over the full image depth, but will come into focus around a particular focal point and then diverge at greater depths. This is indicated in FIGURE 14a, where a transmitted pulse is focused at a focal point F 1 which is in a focal zone Z 1 .
  • this first focal zone Z 1 is a line 270, which represents complete microbubble destruction over this near field part of the focal zone Z 1 and about the focal point F 1 . Beyond the focal point the degree of microbubble destruction decreases, as indicated by the declining line 272.
  • These lines are shown as straight lines for ease of explanation; it will be understood that the effect will usually be continually changing and that actual effects may follow a curved relationship.
  • FIGURE 14a represents the transmission of a first pulse along a given beam direction, a result of which is that near field microbubbles are destroyed as indicated by lines 270 and 272. Following this microbubble destruction, a second pulse is transmitted to gather echoes from along the microbubble depleted beam direction.
  • the echoes from the two pulses may be differentiated and displayed using the ultrasonic apparatus of FIGURES 1, 2, or 4.
  • the next pulse transmission for microbubble destruction is focused at a second focal point F 2 in a second focal zone Z 2 of the beam.
  • the transmitted pulse energy will readily reach the second focal zone, since the microbubbles in the nearer first zone were previously destroyed.
  • FIGURE 14b illustrates this transmission to the second focal zone.
  • Line 282 indicates that the remaining microbubbles at the end of the first zone and the beginning of the second will be destroyed by the second destruction pulse, as will microbubbles around the focal point as indicated by line 280. Beyond the second focal point F 2 the degree of microbubble destruction will decline as pulse energy declines, as indicated by line 284.
  • a second interrrogation pulse may be transmitted following the second destructive pulse to differentially detect the second sequence of microbubble destruction events.
  • a third destruction pulse is transmitted along the beam direction, focused at the deepest focal point F 3 in the deepest focal zone Z 3 .
  • the pulse energy readily reaches the third focal zone due to the earlier depletion of microbubbles at shallower depths.
  • the third destruction pulse destroys the remaining microbubbles between the second and third zones as indicated by line 292 in FIGURE 14c, destroys microbubbles around the focal point as indicated by line 290, and destroys a decreasing amount of microbubbles beyond the focal point F 3 as indicated by line 294.
  • a third interrogation pulse follows for differential detection of the microbubble destruction events in and around zone Z 3 .
  • the detected destruction events over the three zones are then combined in accordance with the expression
  • the echoes from each focal zone are spliced together to form a complete image line to the maximum depth of the image.
  • the technique conventionally used in multizone focus imaging echoes are detected over the full depth following each pulse.
  • each pulse echo pair contains a line of echoes over the full image depth, which are then combined to record the maximum number of microbubble destruction events for the full image line.
  • the echoes returned from later focal zone transmissions can be combined with earlier echoes to differentially detect destruction events. That is, the first term of the above expression could be
  • the use of pulse pairs for each focal zone is preferred, as the aperture changes accompanying focal zone changes can deleteriously affect the precision of the technique.
  • More uniform, artifact-free multizone microbubble destruction images can be obtained by pulsing nonadjacent beams with time successive pulses. This ensures that each line of microbubbles will be approximately uniformly undisturbed at the beginning of the multizone sequence, preventing successions of bright and dim lines in the ultrasonic image.
  • FIGURES 15a, 15b and 16 illustrate a preferred technique for displaying contrast agent enhanced images when tissue perfusion is being observed.
  • FIGURE 16 illustrates a cross sectional view of the heart, including the myocardium 260 and the blood pool 250 within a chamber of the heart.
  • a contrast agent When a contrast agent has been introduced into the bloodstream, a great quantity of the agent will be contained within large blood pools such as the heart chambers and major vessels, while only a relatively small quantity of contrast agent will enter tissue and organs by way of capillary structures.
  • a large quantity of contrast agent will be present in the blood pool 250 while a lesser amount will be infused by capillary flow into the myocardium 260.
  • a conventional ultrasonic display of the cross sectional image of FIGURE 16 will cause pixels of greater signal level to be illuminated with greater brightness or color.
  • a typical display mapping characteristic which provides this result is shown in FIGURE 15a by mapping characteristic 252. As detected pixel values increase, the display pixels are shown with increasing brightness or color until reaching a maximum plateau level. As a result, the blood pool area 250 in FIGURE 16 will be shown brightly or highly colored, whereas the myocardium 260 will be only dimly illuminated or colored.
  • a display mapping characteristic such as that shown in FIGURE 15b is employed.
  • the curve 254 in this drawing is seen to begin at a zero level to suppress noise in the image, then rises to a high level 256. Thereafter it declines to a level 258 for higher detected signal values.
  • lower detected pixel values will be mapped to brightly illuminated or colored display pixels, and higher detected pixel values will be mapped to more dimly illuminated or colored display pixel values.
  • the myocardium 260 in FIGURE 16 will be brightly illuminated or colored, while the central blood pool is only dimly colored or illuminated. This emphasis provides highlighting of contrast agent perfused tissue over blood pool areas.
  • Pulse transmission techniques can afford further improvement in contrast agent destruction and detection. While the exact physical mechanisms caused the by interaction of microbubbles with acoustic energy are quite complex, the sizes of microbubbles have an effect upon their destruction at certain frequencies. Since a microbubble contrast agent is often comprised of microbubbles of a wide range of diameters, microbubble destruction events can be increased by transmitting a chirp or multifrequency pulse. By transmitting a frequency modulated pulse, the probability of transmitting destructive energy for a greater range of microbubble sizes is increased. In addition, by modulating both the frequency and amplitude of the destructive pulse, both microbubble destruction and controlled oscillation can be induced. The initial high amplitude, low frequency period of the pulse, followed by a lower amplitude, higher frequency period can induce microbubble shell destruction followed by oscillation of the released microbubble.
  • FIGURE 17a illustrates the transmission of a first pulse P 1 for contrast agent imaging of the heart, followed by a second pulse P 2 .
  • the pulses are transmitted at a low PRF, and a significant period of time exists between the transmission times of the pulses.
  • echoes 300 are first received from contrast agent in the myocardium, and later echoes 302 are received from the more distant pericardium. Differentiation of the echoes following the two pulses will detect the presence of contrast agent in the myocardium, followed by detection of the pericardium itself.
  • FIGURE 17b For procedures where it is only desirable to perform contrast agent imaging of the myocardium, a higher PRF transmission can be employed as shown in FIGURE 17b.
  • the higher PRF pulses have the unfortunate result of artifact development. Echoes 300 return from the contrast agent in the myocardium following pulse P 1 . But echoes 302 returning from the pericardium in response to the first pulse P 1 appear in the interval following the second pulse P 2 and can manifest themselves as an artifact in the image when echoes following the two pulses are differentiated. To eliminate the artifact from the later returning echoes, incoherent detection is employed prior to differentiation by the apparatus of FIGURE 1.
  • incoherent detection and differentiation results in positive polarity echoes 300'from the myocardium microbubbles, and negative polarity echoes 302' from the pericardium.
  • the unwanted negative polarity echoes 302' from the pericardium can then be removed by thresholding or clipping at the baseline, leaving only the desired detection of the contrast agent in the myocardium.
  • FIGURE 18a illustrates an echo waveform 310 received from the pulsing of a microbubble.
  • the nonuniform amplitudes on either side of the zero reference level illustrate nonlinear reflexive action of microbubbles in the presence of acoustic waves, as the microbubbles nonlinearly compress and expand.
  • the echo waveform of 310 FIGURE 18a results from transmission of an ultrasonic pulse exhibiting a first polarity.
  • the echo waveform 312 of FIGURE 18b results.
  • This waveform is similarly nonlinear, but out of phase with the first waveform due to the change in pulse polarity.
  • a harmonic response is obtained, as shown in FIGURE 18c.
  • the highly nonlinear waveform of FIGURE 18c is readily detected, causing the system to become highly sensitive to the contrast agent which produced the nonlinear echo responses.

Abstract

Apparatus and methods are disclosed for the detection and imaging of ultrasonic contrast agents. Ultrasonic apparatus is provided for coherent imaging of ultrasonic contrast agents, and for detecting harmonic contrast agents. The inventive apparatus includes a dual display for simultaneously viewing a real time image which displays the location of the contrast agent and a triggered contrast image. Methods of contrast agent detection and imaging include the measurement of perfusion rate characteristics, multizone contrast imaging, multifrequency contrast imaging, tissue perfusion display, high PRF contrast image artifact elimination, and alternate polarity acquisition of nonlinear contrast effects.

Description

  • This invention relates to ultrasonic diagnosis and imaging of the body with ultrasonic contrast agents and, in particular, to new methods and apparatus for ultrasonically detecting and imaging with contrast agents.
  • Ultrasonic diagnostic imaging systems are capable of imaging and measuring the physiology within the body in a completely noninvasive manner. Ultrasonic waves are transmitted into the body from the surface of the skin and are reflected from tissue and cells within the body. The reflected echoes are received by an ultrasonic transducer and processed to produce an image or measurement of blood flow. Diagnosis is thereby possible with no intervention into the body of the patient.
  • Materials known as ultrasonic contrast agents can be introduced into the body to enhance ultrasonic diagnosis. Contrast agents are substances which strongly interact with ultrasonic waves, returning echoes which may be clearly distinguished from those returned by blood and tissue. One class of substances which has been found to be especially useful as an ultrasonic contrast agent is gases, in the form of tiny bubbles called microbubbles. Microbubbles present a significant acoustic impedance mismatch in the body, and nonlinear behavoir in certain acoustic fields which is readily detectable through special ultrasonic processing. Gases that have been stabilized in solutions in the form of tiny microbubbles are infused into the body and survive passage through the pulmonary system and circulate throughout the vascular system.
    Microbubble contrast agents are useful for imaging the body's vascular system, for instance, as the contrast agent can be injected into the bloodstream and will pass through the veins and arteries of the body with the blood supply until filtered from the blood stream in the lungs, kidneys and liver.
  • One type of microbubble contrast agent currently under investigation comprises coated microbubbles. The microbubbles of the contrast agent are covered with a thin biodegradable coating or shell. The microbubbles have diameters between 0.1 µm and 4.0 µm and a specific density about 1/10 of the density of water. The coated microbubbles are suspended in an aqueous solution for infusion into the blood stream.
  • Coated microbubbles have the advantage of being stable in the body for a significant period of time, as the shells serve to protect the gases of the microbubbles from diffusion into the bloodstream. The size of the microbubbles is chosen to enable the microbubbles to pass through capillary beds in the body.
  • At moderately high sound pressure amplitudes the acoustic pressure waves can cause the shells of coated microbubbles to rupture, freeing the bubbles to behave as noncoated microbubbles until they diffuse into the bloodstream. In their noncoated form acoustic energy can induce nonlinear motion of the microbubbles, itself a detectable ultrasonic phenomenon. This acoustically induced destruction and collapse of the microbubbles produces a high amplitude response and a characteristically bright pattern in the color Doppler mode. Hence color Doppler is an advantageous modality for detecting the collapse of contrast agent microbubbles.
  • U.S. Pat. 5,456,257, assigned to the same assignee as the present invention, describes a technique for detecting microbubbles through phase insensitive detection of microbubble destruction and differentiation of the detected signals on a spatial basis. Phase insensitive contrast agent detection advantageously reduces artifacts from moving tissue and also performs well when imaging contrast agent perfused tissue, where the contrast agent is finely distributed and moving slowly through the fine capillary structure of tissue. It is desirable to be able to perform contrast agent imaging with equal effect in large, rapidly moving blood pools such as the chambers of the heart. It is also desirable to specifically tailor the operation of the ultrasound machine to harmonic characteristics when performing harmonic contrast imaging.
  • In accordance with the principles of present invention, new and improved apparatus and methods for the detection and imaging of ultrasonic contrast agents are provided. Ultrasonic apparatus is provided for coherent imaging of ultrasonic contrast agents, which is advantageous in blood pool contrast imaging. In a second embodiment, the apparatus is specially tailored to be programmed with response characteristics suitable for harmonic contrast agents. The inventive apparatus also includes a display for simultaneously viewing a real time image which displays anatomical structures for localization of the contrast agent and a triggered contrast image displaying contrast enhanced images. Methods of employing the inventive apparatus with contrast agents include the measurement of perfusion rate characteristics, multizone contrast imaging, a technique for discerning larger vessels in a bed of fine capillary structures, multifrequency contrast imaging, the display of contrast enhanced tissue, a technique for the elimination of artifacts occurring during high PRF contrast image acquisition, and alternate polarity acquisition of nonlinear contrast effects.
  • In the drawings:
    • FIGURE 1 illustrates in block diagram form an ultrasonic diagnostic system of U.S. Pat. 5,456,257 which is capable of performing phase insensitive contrast agent detection;
    • FIGURE 2 illustrates in block diagram form an ultrasonic diagnostic system of the present invention which is capable of performing coherent contrast agent detection;
    • FIGURE 3 illustrates an ultrasonic image display for contrast agent imaging;
    • FIGURE 4 illustrates in block diagram form a second embodiment of the present invention which provides performance advantages for harmonic contrast agent detection;
    • FIGURES 5 and 6 illustrate passband characteristics used to explain the performance of the embodiment of FIGURE 4;
    • FIGURE 7 illustrates the principle of time separated pulsing when imaging contrast agents;
    • FIGURE 8 illustrates an FIR filter structure suitable for use in the embodiment of FIGURE 4;
    • FIGURES 9a-9d illustrate the effects of stenoses on contrast agent perfusion;
    • FIGURES 10a and 10b illustrate perfusion curves for good and poor perfusion rates;
    • FIGURES 11a and 11b illustrate repetitive perfusion curves for good and poor perfusion rates;
    • FIGURE 12 illustrates a triggering technique for estimating the perfusion curve of FIGURE 13;
    • FIGURES 14a-14c illustrate a multizone contrast agent scanning technique;
    • FIGURES 15a and 15b illustrate display mapping characteristics for contrast agent imaging;
    • FIGURE 16 illustrates the heart in cross section;
    • FIGURES 17a-17c illustrate the removal of artifacts occurring during high PRF contrast imaging; and
    • FIGURES 18a-18c illustrate nonlinear response waveforms produced by alternate polarity acquisition of contrast agent echoes.
  • Referring to FIGURE 1, an ultrasonic diagnostic system described in U.S. Pat. 5,456,257 is illustrated in block diagram form. This ultrasound system is capable of performing phase insensitive contrast agent detection as described in that patent. In the illustrated system, coherent echo signals produced by a beamformer 16 are quadrature demodulated by an I,Q demodulator 18 to produce quadrature I and Q signal components. The demodulated signal components are amplitude detected by an envelope detector 20. The detected signals are filtered by a filter 22 to remove noise and other extraneous signal components. Spatially aligned, temporally separated detected echo signals are differentiated by a pulse to pulse differentiation subsystem 24, and the differential signals are used to form contrast agent enhanced images.
  • Performing pulse to pulse differentiation of envelope detected echo signals provides advantages in certain procedures. When contrast agents are being used in a mode where microbubbles in the fine capillary structures of tissue are destroyed by ultrasonic waves, differentiation of the echo envelope is particularly useful. In this mode of operation a first ultrasonic pulse destroys the microbubbles in the tissue and these destruction events are received and envelope detected. A second pulse is transmitted to the same locations, and the returning echoes, ideally, show an absence of microbubbles at the locations where the microbubbles were destroyed. The second set of echoes is subtracted from the first set on a spatial basis, yielding difference signals of substantial magnitude at the locations where the microbubbles were destroyed, which are then displayed at corresponding pixel locations on a display. In a realistic setting the second set of echoes may not actually reveal voids where microbubbles were destroyed, due to motional effects, diffusion rates, and other bubble activity. However the difference in bubble activity from one pulse to the next will provide a highly detectable response when differentiated on a pulse to pulse, spatial basis.
  • This dramatic difference in scattering characteristics of microbubbles from one pulse to another may be due to a host of factors: the bursting of microbubble coatings; oscillation and nonlinear microbubble motion; diffusion of a microbubble during the interpulse interval; or bubble repositioning, for instance. When microbubble destruction is referred to herein it encompasses the effects of phenomena such as these.
  • A first embodiment of an ultrasonic diagnostic system constructed in accordance with the principles of the present invention is shown in FIGURE 2. This embodiment provides coherent detection of ultrasonic contrast agents. An ultrasonic probe 10 includes an array 12 of ultrasonic transducers which transmit and receive ultrasonic energy. During transmission, an ultrasonic beamformer 16 controls the timing of actuation of the separate elements of the array 12 by activating the transducer pulsers of a transmitter/receiver 14 at appropriate times to pulse the transducer elements so that a steered and focused ultrasonic beam is produced. During reception ultrasonic echoes received by the transducer elements are received by transmitter/receiver 14 and coupled to separate channels of the beamformer 16, where the signals are appropriately delayed then combined to form a sequence of coherent echo signals over the depth of reception in the body of the patient.
  • The coherent echo signals are quadrature demodulated by an I,Q demodulator 18 which produces quadrature I and Q signal components. The demodulated signal components are coupled to a B mode processor 37 which filters, detects, and maps greyscale echo signals in the usual manner. The greyscale echo signals of the scanlines of an image are coupled to a scan converter 40 for display of a B mode image.
  • In accordance with the principles of the present invention the I and Q signal components are alternatively (or in addition) coupled to a pulse to pulse differentiation circuit 24 which differentiates echoes received from the same sample volume (location) in the body on a temporal basis. The results of this differentiation are coupled to an amplitude detector 20 and the differential response signals are coupled to an event discriminator 27. The event discriminator discriminates events of microbubble destruction at the sample volume location from the differentiated echo information. One convenient way to perform this discrimination is by comparison of the detected signals to a threshold from threshold generator 26, passing signals above a threshold and rejecting signals below the threshold. The discriminator will detect microbubble destruction events and reject low level noise.
  • Detected events are coupled to the scan converter 40 for production of a spatial image of the microbubble destruction events in the desired image format. The destruction event image may be shown separately, or may be combined with the B mode image to show the contrast agent in relation to surrounding tissue structure. The images are coupled to a video processor 42 which produces video signals for display on an image display 50.
  • This coherent contrast agent detection technique is highly sensitive to small variations in microbubble activity in the image area, and performs well when imaging the blood pool of a heart chamber, for instance. In a large blood pool with a large population of moving microbubbles, the probability of differential microbubble activity from one pulse to another is extremely high, explaining the high sensitivity of this technique for heart chamber imaging. In comparison with the incoherent contrast agent detection technique, coherent microbubble detection is more sensitive to tissue motion and more sensitive to individual microbubble events in high contrast agent concentrations. It is also possible to process received echoes both coherently and incoherently, to form an image which contains information from both processes.
  • Contrast agent detection in accordance with the present invention provides excellent tissue clutter rejection.
  • Microbubble echo signals are generally not received alone, but are usually accompanied by echo signals of much greater amplitude which are returned from neighboring tissue and structures. These tissue echoes can be several orders of magnitude greater than any of the microbubble echo signals, effectively masking them. The pulse to pulse differentiation processing can reject the tissue signals by effectively canceling them, revealing the contrast agent echoes which can then be more readily discriminated. This cancellation is enhanced by high PRF pulses, which further diminishes motional artifacts from tissue.
  • It has been found that the microbubbles of a contrast agent exhibit greater sensitivity to ultrasonic pulses of certain characteristics and lesser sensitivity to pulses of other characteristics. In general, the higher the amplitude, the lower the frequency, and (to a lesser extent) the longer the burst length, the more sensitive the microbubbles are to destruction. Thus, the time of occurrence of microbubble destruction can be modulated and controlled. Microbubbles can be imaged in the bloodstream by scanning at a high frequency with low amplitude, (and to a lesser extent) short burst length pulses. When it is desired to stimulate microbubble destruction, higher power pulses of lower frequency and longer burst length are transmitted into the bloodstream. The ultrasound system of the present invention is provided with control presets for these two pulse transmission characteristics, enabling the clinician to switch from nondestructive imaging pulses to microbubble destruction pulses when the clinician so desires. The preferred display of anatomical structures and microbubble activity employs programmed switching between the destructive and nondestructive pulse modes for contrast agent and anatomical structure imaging.
  • A second embodiment of an ultrasonic diagnostic system constructed in accordance with the principles of the present invention for use with harmonic contrast agents is shown in FIGURE 4. In this second embodiment the array transducer 112 of the probe 110 transmits ultrasonic energy and receives echoes returned in response to this transmission. The response characteristic of the transducer can exhibit two passbands, one around the central transmit frequency and another about the center of the received passband. For imaging harmonic contrast agents, a broadband transducer having a passband encompassing both the transmit and receive passbands is preferred. The transducer may be manufactured and tuned to exhibit a response characteristic as shown in FIGURE 5, in which the lower hump 60 of the response characteristic is centered about the center transmit frequency ft, and the upper hump 62 is centered about the center frequency fr of the response passband. The transducer response characteristic of FIGURE 6 is preferred, however, as the single dominant characteristic 64 allows the probe to be suitable for both harmonic contrast imaging and imaging without harmonic contrast agents. The characteristic 64 encompasses the central transmit frequency ft, and also the harmonic receive passband bounded between frequencies fL and fc, and centered about frequency fr. A typical harmonic contrast agent can have a response such that transmission about a central transmit frequency of 1.7 MHz will result in harmonic returning echo signals about a frequency of 3.4 MHz. A response characteristic 64 of approximately 2 MHz would be suitable for these harmonic frequencies.
  • In FIGURE 4 a central controller 120 provides a control signal ftr to a transmit frequency control circuit 121 to control the center frequency and time of transmission of the transmitted ultrasonic energy. The transmit frequency control circuit pulses the elements of the transducer array 112 by means of a transmit/receive switch 114. A preferred method of pulsing the transducer array is in bursts which scan with sufficient pulses to form an image, followed by intervals of no pulse transmission. Such bursts and intervals are shown in FIGURE 7, which shows a burst interval nPRF and a frame interval tFr, the frame interval including the burst interval and an interval of no pulse transmission. The latter interval allows time for new contrast agent coursing through the body to infuse the vessels and tissue of the image plane between frame bursts. The frame intervals can be on the order of one second, and can be gated to the heart rate or asynchronous with respect to the heart rate. During each nPRF burst interval, echoes from the same spatial locations can be gathered for Doppler processing. Preferably a high PRF rate such as 6 KHz is used. Imaging procedures of this type are the subject of U.S. Pats. [appl. serial nos. 08/439,619 and 08/540,463].
  • Medical diagnostic ultrasonic scanning is limited by regulatory requirements in peak pressure amplitude of a transmitted pulse and the integral of the energy transmitted. The preferred scanning of contrast agents in accordance with the embodiment of FIGURE 4 utilizes relatively high peak pulse power, with the time integral of transmitted energy lessened by the intervals during which no pulses are transmitted. The ultrasound system is set to operate with a relatively high mechanical index and an SPTA moderated by the gated or interval bursts.
  • Echoes received by the transducer array 112 are coupled through the T/R switch 114 and digitized by analog to digital converters 115. The sampling frequency fs of the A/D converters 115 is controlled by the central controller. The desired sampling rate dictated by sampling theory is at least twice the highest frequency fc of the received passband and, for the preceding exemplary frequencies, might be on the order of at least 8 MHz. Sampling rates higher than the minimum requirement are also desirable.
  • The echo signal samples from the individual transducer elements are delayed and summed by a beamformer 116 to form coherent echo signals. The digital coherent echo signals are then filtered by a digital filter 118. In this embodiment, the transmit frequency ft is not tied to the receiver, and hence the receiver is free to receive a band of frequencies which is separate from the transmitted band. The digital filter 118 bandpass filters the signals in the passband bounded by frequencies fL and fc in FIGURE 6, and can also shift the frequency band to a lower or baseband frequency range. The digital filter could be a filter with a 1 MHz passband and a center frequency of 3.4 MHz in the above example. A preferred digital filter is a series of multipliers 70-73 and accumulators 80-83 as shown in FIGURE 8. This arrangement is controlled by the central controller 120, which provides multiplier weights and decimation control which control the characteristics of the digital filter. Preferably the arrangement is controlled to operate as a finite impulse response (FIR) filter, and performs both filtering and decimation. For example, only the first stage output 1 could be controlled to operate as a four tap FIR filter with a 4:1 decimation rate. Temporally discrete echo samples S are applied to the multiplier 70 of the first stage. As the samples S are applied, they are multiplied by weights provided by the central controller 120. Each of these products is stored in the accumulator 80 until four such products have been accumulated (added). An output signal is then produced at the first stage output 1. The output signal has been filtered by a four tap FIR filter since the accumulated total comprises four weighted samples. Since the time of four samples is required to accumulate the output signal, a 4:1 decimation rate is achieved. One output signal is produced for every four input samples. The accumulator is cleared and the process repeats. It is seen that the higher the decimation rate (the longer the interval between output signals), the greater can be the effective tap number of the filter.
  • Alternatively, temporally separate samples are delayed by delay elements τ and applied to the four multipliers 70-73, multiplied, and accumulated in the accumulators 80-83. After each accumulator has accumulated two products, the four output signals are combined as a single output signal. This means that the filter is operating as an eight tap filter with a 2:1 decimation rate. With no decimation, the arrangement can be operated as a four tap FIR filter. The filter can also be operated by applying echo signals to all multipliers simultaneously and selectively time sequencing the weighting coefficients. A whole range of filter characteristics are possible through programming of the weighting and decimation rates of the filter, under control of the central controller.
  • Returning to FIGURE 4, filtered echo signals from tissue, generally filtered by a passband centered about or demodulated from the transmit frequency, are coupled to a B mode processor 37 for conventional B mode processing. Filtered echo signals of the contrast agent passband are coupled to a contrast signal detector 128 which eliminates stationary tissue signals by pulse to pulse subtraction of temporally discrete echoes from a given spatial location, amplitude or envelope detects the resulting difference signals, and discriminates for motion signal components on an amplitude basis. Simple two pulse subtraction of the form P1 - P2 may be employed where P1 represents the echoes received following one pulse and P2 represents the echoes received following another pulse. Three pulse subtraction of the form |P1-P2| + |P2-P3| may be employed to accumulate more signals from successive bubble destruction pulses.
  • The filtered echo signals from the digital filter 118 are also coupled to a Doppler processor 130 for conventional Doppler processing to produce velocity and power Doppler signals. The outputs of these processors are coupled to a 3D image rendering processor 132 for the rendering of three dimensional images, which are stored in a 3D image memory 134. Three dimensional rendering may be performed as described in U.S. Pat. [appl. serial no. 08/638,710], and in U.S. Pats. 5,474,073 and 5,485,842, the latter two patents illustrating three dimensional power Doppler ultrasonic imaging techniques. The signals from the contrast signal detector 128, the processors 37 and 130, and the three dimensional image signals are coupled to a video processor 140 where they may be selected for display on an image display 50 as dictated by user selection. The video processor preferably includes persistence processing, whereby momentary intensity peaks of detected contrast agents can be sustained in the image. One technique for providing persistence is through frame averaging, whereby new image frames are combined with previous frame information on a spatial basis. The combination can be done by weighting the contributions of the old and new frame information and the frame information can be combined in a recursive manner; that is, old frame information is fed back for combining with new frame information. A preferred persistence technique is the fast attack, slow decay technique described in U.S. Pat. 5,215,094, which can be applied to both Doppler and contrast agent images.
  • Several imaging formats have been found to be preferred for contrast imaging. Power motion imaging as described in U.S. Pat. [appl. serial no. 08/655,391] in which the intensity of signals resulting from moving tissue is displayed, has been found to be highly diagnostic for structures such as the walls of the heart when perfused with contrast agents. Power Doppler imaging has been found to yield excellent results for bloodflow. Three dimensional power Doppler imaging of vessels infused with contrast agent provide excellent visualization of the continuity of bloodflow and stenoses. The combination of B mode or power motion structural information with power Doppler signals in accordance with the semi-transparent rendering techniques of the aforementioned patent [appl. serial no. 08/638,710] provides superb renderings of both flow and surrounding structure.
  • A preferred display format for contrast agent imaging is depicted by the screen display of FIGURE 3. In this display the signals produced by the B mode processor 37 are used to display a real time image display 160 of structure in the body such as a blood vessel 170. This real time image is used by the clinician to ascertain and locate the area of the body to be imaged. Preferably the B mode image is created from echoes returning from nondestructive ultrasonic imaging pulses. As discussed above, pulses of low amplitude, high frequency, and short burst duration will generally not destroy the microbubbles. However, echoes from pulses destructive of microbubbles are used by the contrast signal detector 128 to produce contrast agent images 160' on the same or an adjacent monitor. Preferably the contrast agent images 160'are triggered to be acquired at a predetermined phase of the heart cycle, using a heart gate triggering from the phases of the heartbeat waveform. When the heartbeat is at the desired phase of its cycle, a burst of relatively high amplitude, low frequency, long burst duration pulses are transmitted to destroy the microbubbles in the image plane and detect and display those events. A B mode image acquired at or near the same heartbeat phase is displayed, with the vessel or organ 170' filled in with the imaged microbubble destruction events. Thus, the display screen of FIGURE 3 will show a B mode image 160 in real time, and a contrast agent image 160'which is updated each heart cycle.
  • While the foregoing image presentation is especially useful in cardiology where the beating heart is constantly in motion, a variation of this presentation is especially useful in radiology where tissue structure is more stationary. In the variation, a real time B mode image 160 of anatomical structure is shown, with fluid flow 170' filled in with color Doppler. This real time color flow Doppler image is then periodically filled in with detected contrast agent, sharply illuminating the bloodflow. The colorflow Doppler display and the contrast agent display, both of which are filling in the same areas of the anatomical display, may be shown in the same, similar, or contrasting colors and intensities. The periodicity of the overlaid contrast agent display may be synchronized to the heart cycle with an EKG trigger as described above, or the periodicity may be chosen by the user and asynchronous to the heart cycle.
  • A contrast agent procedure which is advantageously performed in accordance with the present invention is the measurement of the rate of perfusion of an organ or area of the body. FIGURE 9a illustrates the travel of an intravenous injection of contrast agent to a capillary bed 200. The agent travels in the bloodstream as it moves from the injection site 208 and traverses the right ventricle 202, the lungs 204, and the left ventricle 206 before reaching an artery 209. The contrast agent then begins to infuse the tissue of the capillary bed 200 as blood flows from the artery 200 through the arterioles 210 and into the capillaries of the tissue.
  • The perfusion rate into the capillary bed can be used to evaluate the viability of bloodflow in that region of the body or to identify the location of a stenosis. Ultrasonic pulses are transmitted to destroy microbubbles in a region 212 across the capillary bed 200, as shown in FIGURE 9b. If a stenosis 214 is impeding the flow of blood in the artery 209 and hence to the entire capillary bed 200, the rate of reperfusion of microbubbles will be slow across the entire region 212. But if the stenosis 216 is in an artery which feeds only part of the capillary bed 200, the rate of perfusion will be slow in only the portion 218 of the region which is fed through the stenotic artery. This difference in the rate of reperfusion is illustrated graphically by the curves of FIGURES 10a and 10b. Each of these curves shows the same blood volume and hence the same initial microbubble concentration 220 before the microbubbles are destroyed in the capillary bed. At time td ultrasonic pulses destroy the microbubbles as indicated by the vertical spike in each curve. When blood is flowing freely into the capillary bed, a rapid rate of reperfusion of microbubbles occurs as indicated by curve 222 in FIGURE 10a. The curve 222 rapidly rises back to the stable microbubble concentration level 220. But when the bloodflow is impeded, the rise of the curve 224 is much more gradual, as indicated in FIGURE 10b. The reperfusion curve can be repeated continually as shown by FIGURES 11a and 11b. FIGURE 11a shows a repetitive sequence of reperfusion curves 222, each returning to the full perfusion level 220 in a period of time tp. In FIGURE 11b, each curve 224 of the same duration tp is short of the full perfusion level 220 by an amount indicated by arrows B-B.
  • The reperfusion curve may be reproduced as indicated in FIGURE 13. Ultrasonic pulses are transmitted at time td to destroy the microbubbles in the capillary bed. A short time later pulses are transmitted again, the echoes received and imaged to this time measure the degree of microbubble reinfusion, either by destroying reinfused microbubbles and recording the destruction events, or by counting or integrating pixels in the area which show reinfused microbubbles. The measure of the number of microbubbles reinfused to the region is plotted as a point X of the curve 224. Nondestructive pulses can be repetitively transmitted and echoes received to plot a sequences of X points on the curve as shown in FIGURE 13.
  • Another way to measure the X points on the reinfusion curve through readily detectable microbubble destruction events is to utilize a cyclic measure similar to the repetitive pattern of FIGURE 11b. The cyclic measure is useful where the flow in the region is strongly pulsatile due to the heartbeat cycle. FIGURE 12 shows a heart cycle waveform 230, indicating the pulsatile action of bloodflow. At the peaks of the waveform 230, new blood is pumped into regions of the body during the systolic phase of the heart cycle. Advantage is taken of this reinfusing action by repetitively measuring the degree of contrast agent reinfusion at a constant point in the heart cycle, but following continually differing phases of microbubble destruction. In FIGURE 12 the X points of reinfusion measurement all occur at the same phase of the heart cycle. The X points are preceded by changing times at which the microbubbles are destroyed, as indicated by arrows 232, 234, and 236, which successively precess to earlier times in the heart cycle. This means that each Xn point of FIGURE 12 will be a later Xn point on the curve 224 of FIGURE 13. Since the purpose of ultrasonic transmission at the times of arrows 232, 234, and 236 is to destroy the microbubbles, it is not necessary to receive and analyze the returning echoes at these times. Echo reception and analysis is done at the times of the Xs, and the Xs shown in FIGURE 12 can be plotted as the successive Xs in FIGURE 13 due to the precession of the destruction time phases indicated by the arrows.
  • For cardiac imaging it may be desirable to trigger the Xn times in synchronisation with the diastolic phase of the heart cycle when the coronary arteries are reinfused with blood. Triggered or grated acquisition is especially significant in cardiac imaging to reduce tissue motion artifacts stemming from beating movement of the heart.
  • This technique of measuring perfusion by microbubble destruction can also be used to image the flow in major vessels of a capillary bed. In FIGURE 9d, for instance, it is seen that the major vessels 240 reinfuse earlier than the fine capillaries in a microbubble depleted region 212. The major vessels 240 can be revealed by detecting microbubbles in the region 212 shortly after pulses have destroyed all of the microbubbles in the region, at which time only the major vessels 240 have been significantly reinfused with contrast agent.
  • It has been found that it is at times not possible to destroy all microbubbles in the image plane due to several factors. Since microbubbles are destroyed by high energy, focused ultrasound beams tend to destroy more microbubbles near the beam focal point than at other locations. Also, when a dense concentration of microbubbles is to be destroyed, a great deal of the ultrasonic pulse energy is attenuated by the near field microbubbles, leaving insufficient energy to destroy far field microbubbles. A technique for overcoming these effects is shown in FIGURES 14a-14c. In these drawings, the horizontal axis represents depth into the body, with the skin line SL indicated at the left side of each drawing. A typical ultrasonic image may show the skin line at the top of the image and the deepest penetration into the body at the bottom of the image. To bring a maximum level of energy to bear on the microbubbles in the image plane, focused pulses are transmitted to focus the ultrasonic energy on the microbubbles which are to be destroyed. When imaging is to be done to a significant depth in the body, the pulses will not be focused over the full image depth, but will come into focus around a particular focal point and then diverge at greater depths. This is indicated in FIGURE 14a, where a transmitted pulse is focused at a focal point F1 which is in a focal zone Z1.
  • Above this first focal zone Z1 is a line 270, which represents complete microbubble destruction over this near field part of the focal zone Z1 and about the focal point F1. Beyond the focal point the degree of microbubble destruction decreases, as indicated by the declining line 272. These lines are shown as straight lines for ease of explanation; it will be understood that the effect will usually be continually changing and that actual effects may follow a curved relationship.
  • FIGURE 14a represents the transmission of a first pulse along a given beam direction, a result of which is that near field microbubbles are destroyed as indicated by lines 270 and 272. Following this microbubble destruction, a second pulse is transmitted to gather echoes from along the microbubble depleted beam direction. The echoes from the two pulses may be differentiated and displayed using the ultrasonic apparatus of FIGURES 1, 2, or 4.
  • The next pulse transmission for microbubble destruction is focused at a second focal point F2 in a second focal zone Z2 of the beam. The transmitted pulse energy will readily reach the second focal zone, since the microbubbles in the nearer first zone were previously destroyed. FIGURE 14b illustrates this transmission to the second focal zone. Line 282 indicates that the remaining microbubbles at the end of the first zone and the beginning of the second will be destroyed by the second destruction pulse, as will microbubbles around the focal point as indicated by line 280. Beyond the second focal point F2 the degree of microbubble destruction will decline as pulse energy declines, as indicated by line 284. A second interrrogation pulse may be transmitted following the second destructive pulse to differentially detect the second sequence of microbubble destruction events.
  • Similarly, a third destruction pulse is transmitted along the beam direction, focused at the deepest focal point F3 in the deepest focal zone Z3. The pulse energy readily reaches the third focal zone due to the earlier depletion of microbubbles at shallower depths. The third destruction pulse destroys the remaining microbubbles between the second and third zones as indicated by line 292 in FIGURE 14c, destroys microbubbles around the focal point as indicated by line 290, and destroys a decreasing amount of microbubbles beyond the focal point F3 as indicated by line 294. A third interrogation pulse follows for differential detection of the microbubble destruction events in and around zone Z3.
  • In practice it has been found that peak microbubble destruction is not centered exactly about the focal point axially, but in a depth region just prior to the focal point. This factor should be taken into consideration when considering the placement and overlap of multizone microbubble destruction regions.
  • The detected destruction events over the three zones are then combined in accordance with the expression |P F1 -P F1 ' | + |P F2 -P F2 ' | + |P F3 -P F3 ' |
    Figure imgb0001
    where PFn represents echoes following a destructive pulse transmission to a given focal zone and PFn represents the echoes from a subsequent interrogation pulse. The echoes from each focal zone are spliced together to form a complete image line to the maximum depth of the image. In a preferred embodiment, instead of just detecting microbubble destruction events over the given focal zone, the technique conventionally used in multizone focus imaging, echoes are detected over the full depth following each pulse. This enables the recording of microbubble destruction events outside the given focal zone, providing the greatest detection of destruction events. Thus, each pulse echo pair contains a line of echoes over the full image depth, which are then combined to record the maximum number of microbubble destruction events for the full image line.
  • It is also seen that, instead of transmitting a pair of pulses to interrogate each focal zone, the echoes returned from later focal zone transmissions can be combined with earlier echoes to differentially detect destruction events. That is, the first term of the above expression could be |PF1-PF2|, for instance. However, the use of pulse pairs for each focal zone is preferred, as the aperture changes accompanying focal zone changes can deleteriously affect the precision of the technique.
  • More uniform, artifact-free multizone microbubble destruction images can be obtained by pulsing nonadjacent beams with time successive pulses. This ensures that each line of microbubbles will be approximately uniformly undisturbed at the beginning of the multizone sequence, preventing successions of bright and dim lines in the ultrasonic image.
  • FIGURES 15a, 15b and 16 illustrate a preferred technique for displaying contrast agent enhanced images when tissue perfusion is being observed. FIGURE 16 illustrates a cross sectional view of the heart, including the myocardium 260 and the blood pool 250 within a chamber of the heart. When a contrast agent has been introduced into the bloodstream, a great quantity of the agent will be contained within large blood pools such as the heart chambers and major vessels, while only a relatively small quantity of contrast agent will enter tissue and organs by way of capillary structures. In the heart image of FIGURE 16, a large quantity of contrast agent will be present in the blood pool 250 while a lesser amount will be infused by capillary flow into the myocardium 260.
  • A conventional ultrasonic display of the cross sectional image of FIGURE 16 will cause pixels of greater signal level to be illuminated with greater brightness or color. A typical display mapping characteristic which provides this result is shown in FIGURE 15a by mapping characteristic 252. As detected pixel values increase, the display pixels are shown with increasing brightness or color until reaching a maximum plateau level. As a result, the blood pool area 250 in FIGURE 16 will be shown brightly or highly colored, whereas the myocardium 260 will be only dimly illuminated or colored.
  • When the myocardium is the area of interest in FIGURE 16, a display mapping characteristic such as that shown in FIGURE 15b is employed. The curve 254 in this drawing is seen to begin at a zero level to suppress noise in the image, then rises to a high level 256. Thereafter it declines to a level 258 for higher detected signal values. As a result, lower detected pixel values will be mapped to brightly illuminated or colored display pixels, and higher detected pixel values will be mapped to more dimly illuminated or colored display pixel values. As a consequence of this mapping, the myocardium 260 in FIGURE 16 will be brightly illuminated or colored, while the central blood pool is only dimly colored or illuminated. This emphasis provides highlighting of contrast agent perfused tissue over blood pool areas.
  • Pulse transmission techniques can afford further improvement in contrast agent destruction and detection. While the exact physical mechanisms caused the by interaction of microbubbles with acoustic energy are quite complex, the sizes of microbubbles have an effect upon their destruction at certain frequencies. Since a microbubble contrast agent is often comprised of microbubbles of a wide range of diameters, microbubble destruction events can be increased by transmitting a chirp or multifrequency pulse. By transmitting a frequency modulated pulse, the probability of transmitting destructive energy for a greater range of microbubble sizes is increased. In addition, by modulating both the frequency and amplitude of the destructive pulse, both microbubble destruction and controlled oscillation can be induced. The initial high amplitude, low frequency period of the pulse, followed by a lower amplitude, higher frequency period can induce microbubble shell destruction followed by oscillation of the released microbubble.
  • Another transmission technique which affords high pulse rates (PRF) is illustrated in FIGURES 17a-l7c. FIGURE 17a illustrates the transmission of a first pulse P1 for contrast agent imaging of the heart, followed by a second pulse P2. In this example the pulses are transmitted at a low PRF, and a significant period of time exists between the transmission times of the pulses. During this time echoes 300 are first received from contrast agent in the myocardium, and later echoes 302 are received from the more distant pericardium. Differentiation of the echoes following the two pulses will detect the presence of contrast agent in the myocardium, followed by detection of the pericardium itself.
  • For procedures where it is only desirable to perform contrast agent imaging of the myocardium, a higher PRF transmission can be employed as shown in FIGURE 17b. The higher PRF pulses have the unfortunate result of artifact development. Echoes 300 return from the contrast agent in the myocardium following pulse P1. But echoes 302 returning from the pericardium in response to the first pulse P1 appear in the interval following the second pulse P2 and can manifest themselves as an artifact in the image when echoes following the two pulses are differentiated. To eliminate the artifact from the later returning echoes, incoherent detection is employed prior to differentiation by the apparatus of FIGURE 1. As shown in FIGURE 17c, incoherent detection and differentiation results in positive polarity echoes 300'from the myocardium microbubbles, and negative polarity echoes 302' from the pericardium. The unwanted negative polarity echoes 302' from the pericardium can then be removed by thresholding or clipping at the baseline, leaving only the desired detection of the contrast agent in the myocardium.
  • A third transmission technique which is useful for microbubble detection is to alternate the polarity of the transmitted pulses, which provides the benefits of suppressing the harmonic components of the transmitted signals while eliminating clutter. FIGURE 18a illustrates an echo waveform 310 received from the pulsing of a microbubble. The nonuniform amplitudes on either side of the zero reference level illustrate nonlinear reflexive action of microbubbles in the presence of acoustic waves, as the microbubbles nonlinearly compress and expand. The echo waveform of 310 FIGURE 18a results from transmission of an ultrasonic pulse exhibiting a first polarity.
  • Following transmission of an ultrasonic pulse exhibiting the opposite polarity, the echo waveform 312 of FIGURE 18b results. This waveform is similarly nonlinear, but out of phase with the first waveform due to the change in pulse polarity. When the two waveforms are combined, a harmonic response is obtained, as shown in FIGURE 18c. The highly nonlinear waveform of FIGURE 18c is readily detected, causing the system to become highly sensitive to the contrast agent which produced the nonlinear echo responses.

Claims (39)

  1. An ultrasonic diagnostic system for the coherent detection of ultrasonic contrast agents comprising:
    an ultrasonic transducer probe for transmitting ultrasonic pulses into a body infused with an ultrasonic contrast agent and receiving ultrasonic echo signals following a pulse transmission;
    a beamformer for forming coherent echo signals; means for differentiating coherent echo signals received from two pulse transmissions;
    means for detecting differentiated coherent echo signals; and
    a display for displaying detected differentiated signals emanating from said ultrasonic contrast agent.
  2. The ultrasonic diagnostic system of Claim 1, wherein said means for detecting comprises an amplitude detector.
  3. The ultrasonic diagnostic system of Claim 2, further comprising an event discriminator for discriminating detected signals which emanated from a contrast agent.
  4. The ultrasonic diagnostic system of Claim 3, wherein said event discriminator comprises means for comparing detected signals against a threshold level.
  5. The ultrasonic diagnostic system of Claim 1, further comprising a B mode processor for producing B mode image signals,
       wherein said display displays a B mode image combined with the display of detected differentiated signals emanating from said ultrasonic contrast agent.
  6. An ultrasonic diagnostic system for the detection of a harmonic ultrasonic contrast agent comprising:
    an ultrasonic transducer probe for transmitting ultrasonic pulses at a first frequency into a body infused with an ultrasonic contrast agent and receiving harmonic ultrasonic echo signals following a pulse transmission;
    a receiver for receiving harmonic signals emanating from said ultrasonic contrast agent;
    a programmable filter which filters said received harmonic signals with a passband excluding said first frequency and including a harmonic of said first frequency; and
    a contrast signal detector for detecting said received harmonic signals; and
    a display for displaying received harmonic signals.
  7. The ultrasonic diagnostic system of Claim 6, wherein said programmable filter comprises a programmable digital filter.
  8. The ultrasonic diagnostic system of Claim 7, wherein the programmable characteristics of said digital filter include the weighting of received signals and the decimation rate of the filtered signals produced by said filter.
  9. The ultrasonic diagnostic system of Claim 6, wherein said programmable filter comprises an FIR filter.
  10. The ultrasonic diagnostic system of Claim 6, further comprising a B mode processor for producing B mode image signals,
    wherein said programmable digital filter alternately provides signals for said B mode processor and said contrast signal detector.
  11. The ultrasonic diagnostic system of Claim 10, wherein said programmable digital filter provides filtered signals for said B mode processor which include signals of said B mode passband and excludes said harmonic of said first frequency, and provides filtered signals for said contrast signal detector which includes said harmonic of said first frequency and excludes signals of said first frequency.
  12. The ultrasonic diagnostic system of Claim 6, further comprising means for rendering three dimensional images of said received harmonic signals.
  13. A method for ultrasonically detecting the perfusion rate of tissue by ultrasonic contrast agents comprising the steps of:
    introducing an ultrasonic contrast agent of microbubbles into the bloodstream;
    transmitting an ultrasonic pulse which destroys microbubbles in said tissue; and
    following the destruction of said microbubbles by a time interval, ultrasonically measuring the degree of microbubble reperfusion of said tissue during said time interval.
  14. The method of Claim 13, further comprising the steps of repeating said transmitting and measuring steps with a different time interval.
  15. The method of Claim 13, further comprising the steps of repeating said transmitting and measuring steps with the same time interval.
  16. The method of Claim 13, wherein said step of ultrasonically measuring comprises the step of acquiring echo signals following transmission of a second ultrasonic pulse into said tissue.
  17. The method of Claim 16, wherein said step of ultrasonically measuring further comprises the step of creating an ultrasonic image with said acquired echo signals.
  18. The method of Claim 17, wherein said step of transmitting comprises transmitting a relatively low frequency, high amplitude ultrasonic pulse into said tissue, and wherein said step of ultrasonically measuring comprises the step of transmitting a second ultrasonic pulse of relatively high frequency and low amplitude into said tissue.
  19. A method for ultrasonically imaging a region of the body which has been infused with a microbubble ultrasonic contrast agent comprising the steps of:
    transmitting a first pulse into the body which is focused at a first depth within the body to cause a response from microbubbles located at said first depth;
    receiving echoes following the transmission of said first pulse;
    transmitting a second pulse into the body which is focused at a second depth within the body to cause a response from microbubbles located at said second depth;
    receiving echoes following the transmission of said second pulse; and
    producing an ultrasonic image from echoes received following said first and second pulses.
  20. The method of Claim 19, wherein said first and second pulses are transmitted along substantially the same beam direction.
  21. The method of Claim 20, wherein said microbubble response comprises the destruction of microbubbles.
  22. The method of Claim 20, wherein said steps of receiving echoes comprise receiving echoes from said first and second depths.
  23. A method of ultrasonically imaging tissue whose perfusion has been enhanced with an ultrasonic contrast agent in the presence of a blood pool containing contrast agent comprising the steps of:
    insonifying said perfused tissue and blood pool;
    receiving echoes returned from ultrasonic contrast agent in said perfused tissue and blood pool;
    processing said received echoes for display by displaying greater intensity echoes with a lesser brightness or color intensity than echoes of lesser intensity,
    whereby said perfused tissue is highlighted in the display relative to said blood pool.
  24. A method of ultrasonically detecting destruction events of microbubbles of a microbubble contrast agent present in the body comprising the steps of:
    transmitting an ultrasonic wave which is destructive of microbubbles, said wave exhibiting a range of frequencies including a frequency which is destructive of microbubbles of a given size; and receiving ultrasonic signals following said ultrasonic wave transmission,
    whereby said wave is destructive of microbubbles of a given range of sizes including said given size.
  25. A method of ultrasonically detecting a microbubble contrast agent present in the body by high PRF pulses comprising the steps of:
    transmitting a first ultrasonic pulse into the body which causes a first response from said microbubbles;
    receiving a desired microbubble response to said first ultrasonic pulse;
    transmitting a second ultrasonic pulse into the body which causes a second response from said microbubbles;
    receiving a desired microbubble response to said second ultrasonic pulse and an undesired echo response to said first ultrasonic pulse;
    processing said received microbubble responses by incoherent detection, whereby said desired and undesired responses exhibit opposite polarities; and
    eliminating said undesired response.
  26. The method of Claim 25, wherein said first microbubble response is microbubble destruction and said second microbubble response is an absence of microbubble destruction.
  27. The method of Claim 26, wherein said undesired echo response to said first ultrasonic pulse emanates from tissue located deeper in the body than microbubbles which cause said first response.
  28. The method of Claim 25, wherein said processing step includes the step of differentiating the received microbubble responses to said first and second pulses.
  29. A method of ultrasonically detecting the harmonic response of an ultrasonic harmonic contrast agent comprising the steps of:
    transmitting a first ultrasonic pulse to said harmonic contrast agent to cause a first harmonic response;
    transmitting a second ultrasonic pulse of a different polarity than said first ultrasonic pulse to said harmonic contrast agent to cause a second harmonic response;
    detecting said first and second harmonic responses; and
    combining said first and second harmonic responses.
  30. The method of Claim 29, wherein said step of combining comprises differentiating said first and second harmonic responses.
  31. The method of Claim 29, wherein said transmitted pulses exhibit a pulse energy which is within a range which causes microbubbles of said harmonic contrast agent to oscillate without substantial microbubble destruction.
  32. An ultrasonic diagnostic system for the detection and display of ultrasonic contrast agents within the body comprising:
    an ultrasonic transducer probe for transmitting ultrasonic pulses into a body infused with an ultrasonic contrast agent and receiving ultrasonic echo signals following a pulse transmission,
    including means for transmitting high and low energy ultrasonic pulses;
    a trigger circuit responsive to a physiological function for triggering high energy ultrasonic pulse transmission;
    a contrast signal processor for processing echoes received in response to high energy pulse transmission;
    a B mode signal processor for processing echoes received in response to low energy pulse transmission; and
    a display for displaying simultaneous real time B mode images and triggered contrast agent images.
  33. The ultrasonic diagnostic system of Claim 32, wherein said means for transmitting comprises means for selectively generating low frequency, high amplitude pulses or high frequency, low amplitude pulses.
  34. The ultrasonic diagnostic system of Claim 32, wherein said trigger circuit is responsive to a heartbeat waveform.
  35. An ultrasonic diagnostic system for the detection and display of ultrasonic contrast agents within the body comprising:
    an ultrasonic transducer probe for transmitting ultrasonic pulses into a body infused with an ultrasonic contrast agent and receiving ultrasonic echo signals following a pulse transmission, including means for transmitting high and low energy ultrasonic pulses;
    a trigger circuit for periodically triggering high energy ultrasonic pulse transmission;
    a contrast signal processor for processing echoes received in response to high energy pulse transmission;
    a Doppler processor for processing Doppler echoes received by said transducer probe;
    a B mode signal processor for processing echoes received in response to low energy pulse transmission; and
    a display for displaying real time B mode images containing color Doppler image information and periodically containing contrast agent image information.
  36. The ultrasonic diagnostic system of Claim 35, wherein said trigger circuit comprises means for triggering high energy ultrasonic pulse transmission in response to a heartbeat signal.
  37. The ultrasonic diagnostic system of Claim 35, wherein said real time images comprise colorflow Doppler images.
  38. The ultrasonic diagnostic system of Claim 35, wherein the periodicity of said trigger circuit is selected by the system user.
  39. The method of Claim 19, further comprising the steps of:
    transmitting a third pulse following said first pulse which is focused at said first depth;
    transmitting a fourth pulse following said second pulse which is focused at said second depth;
    receiving echoes following the transmission of said third and fourth pulses; and
    wherein said producing step comprises producing a ultrasonic image from the combination of echoes received following said first and third pulses, and from the combination of echoes received following said second and fourth pulses.
EP96307359A 1995-10-10 1996-10-09 Ultrasonic diagnostic imaging with contrast agents Expired - Lifetime EP0770352B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03077615A EP1374777A1 (en) 1995-10-10 1996-10-09 Ultrasonic diagnostic imaging with contrast agents

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US500995P 1995-10-10 1995-10-10
US5009 1995-10-10
US1395096P 1996-03-22 1996-03-22
US13950 1996-03-22
US1809596P 1996-05-22 1996-05-22
US18095 1996-05-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP03077615A Division-Into EP1374777A1 (en) 1995-10-10 1996-10-09 Ultrasonic diagnostic imaging with contrast agents
EP03077615A Division EP1374777A1 (en) 1995-10-10 1996-10-09 Ultrasonic diagnostic imaging with contrast agents

Publications (2)

Publication Number Publication Date
EP0770352A1 true EP0770352A1 (en) 1997-05-02
EP0770352B1 EP0770352B1 (en) 2004-12-29

Family

ID=27357769

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03077615A Ceased EP1374777A1 (en) 1995-10-10 1996-10-09 Ultrasonic diagnostic imaging with contrast agents
EP96307359A Expired - Lifetime EP0770352B1 (en) 1995-10-10 1996-10-09 Ultrasonic diagnostic imaging with contrast agents

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03077615A Ceased EP1374777A1 (en) 1995-10-10 1996-10-09 Ultrasonic diagnostic imaging with contrast agents

Country Status (5)

Country Link
EP (2) EP1374777A1 (en)
JP (2) JP4159122B2 (en)
AT (1) ATE285711T1 (en)
DE (1) DE69634112T2 (en)
ES (1) ES2235180T3 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046139A1 (en) * 1997-04-11 1998-10-22 Acuson Corporation Ultrasound imaging enhancement methods and systems
WO1998047533A1 (en) * 1997-04-24 1998-10-29 Nycomed Imaging A.S. Ultrasound imaging of tissue perfusion by pulse energy disruption of contrast agent
US5833614A (en) * 1997-07-15 1998-11-10 Acuson Corporation Ultrasonic imaging method and apparatus for generating pulse width modulated waveforms with reduced harmonic response
WO1998053855A1 (en) * 1997-05-30 1998-12-03 Alliance Pharmaceutical Corp. Methods and apparatus for monitoring and quantifying the movement of fluid
US5846202A (en) * 1996-07-30 1998-12-08 Acuson Corporation Ultrasound method and system for imaging
US5860931A (en) * 1997-10-10 1999-01-19 Acuson Corporation Ultrasound method and system for measuring perfusion
WO1999003401A1 (en) * 1997-07-15 1999-01-28 Acuson Corporation Ultrasound harmonic imaging transmission method and apparatus
US5873830A (en) * 1997-08-22 1999-02-23 Acuson Corporation Ultrasound imaging system and method for improving resolution and operation
US5882306A (en) * 1997-04-11 1999-03-16 Acuson Corporation Ultrasound imaging methods and systems
WO1999017808A1 (en) * 1997-10-03 1999-04-15 University Of Virginia Ultrasound bubble recognition imaging
US5897500A (en) * 1997-12-18 1999-04-27 Acuson Corporation Ultrasonic imaging system and method for displaying composite fundamental and harmonic images
US5902242A (en) * 1998-01-22 1999-05-11 Acuson Corporation System and method for forming a combined ultrasonic image
US5902243A (en) * 1998-04-15 1999-05-11 Acuson Corporation Ultrasonic imaging method with multiple pulse cancellation
US5924991A (en) * 1997-08-22 1999-07-20 Acuson Corporation Ultrasonic system and method for harmonic imaging in three dimensions
US5933389A (en) * 1995-03-02 1999-08-03 Acuson Corporation Ultrasonic imaging system and method
US5935069A (en) * 1997-10-10 1999-08-10 Acuson Corporation Ultrasound system and method for variable transmission of ultrasonic signals
US5944666A (en) * 1997-08-21 1999-08-31 Acuson Corporation Ultrasonic method for imaging blood flow including disruption or activation of contrast agent
US5957852A (en) * 1998-06-02 1999-09-28 Acuson Corporation Ultrasonic harmonic imaging system and method
US5957845A (en) * 1997-04-11 1999-09-28 Acuson Corporation Gated ultrasound imaging apparatus and method
EP0947853A2 (en) * 1998-03-31 1999-10-06 General Electric Company Method and apparatus for enhanced flow imaging in b-mode ultrasound
EP0948931A2 (en) * 1998-03-31 1999-10-13 General Electric Company Ultrasound imaging using coded excitation on transmit and selective filtering on receive
WO1999053309A1 (en) * 1998-04-15 1999-10-21 Acuson Corporation Ultrasonic imaging aberration correction system and method
US5971928A (en) * 1998-11-02 1999-10-26 Acuson Corporation Diagnostic medical ultrasonic system and method for image subtraction
US6005827A (en) * 1995-03-02 1999-12-21 Acuson Corporation Ultrasonic harmonic imaging system and method
US6009046A (en) * 1995-03-02 1999-12-28 Acuson Corporation Ultrasonic harmonic imaging system and method
US6027448A (en) * 1995-03-02 2000-02-22 Acuson Corporation Ultrasonic transducer and method for harmonic imaging
US6030344A (en) * 1996-12-04 2000-02-29 Acuson Corporation Methods and apparatus for ultrasound image quantification
US6039690A (en) * 1997-06-17 2000-03-21 Acuson Corporation Method and apparatus for frequency control of an ultrasound system
US6048316A (en) * 1998-10-16 2000-04-11 Acuson Corporation Medical diagnostic ultrasonic imaging system and method for displaying composite fundamental and harmonic images
WO2000036980A1 (en) * 1998-12-18 2000-06-29 Koninklijke Philips Electronics N.V. Ultrasonic diagnostic imaging systems with power modulation for contrast and harmonic imaging
WO2000042916A1 (en) * 1999-01-21 2000-07-27 Acuson Corporation Method and apparatus for ultrasound contrast imaging
US6104670A (en) * 1995-03-02 2000-08-15 Acuson Corporation Ultrasonic harmonic imaging system and method
US6106465A (en) * 1997-08-22 2000-08-22 Acuson Corporation Ultrasonic method and system for boundary detection of an object of interest in an ultrasound image
US6116244A (en) * 1998-06-02 2000-09-12 Acuson Corporation Ultrasonic system and method for three-dimensional imaging with opacity control
WO2000053242A1 (en) * 1999-03-12 2000-09-14 Medrad, Inc. Agitation devices and fluid dispensing systems incorporating such agitation devices for use in medical ultrasound imaging
US6132374A (en) * 1997-08-01 2000-10-17 Acuson Corporation Ultrasonic imaging method and system
US6174286B1 (en) 1998-11-25 2001-01-16 Acuson Corporation Medical diagnostic ultrasound method and system for element switching
US6186949B1 (en) 1998-03-31 2001-02-13 General Electric Company Method and apparatus for three-dimensional flow imaging using coded excitation
US6193659B1 (en) 1997-07-15 2001-02-27 Acuson Corporation Medical ultrasonic diagnostic imaging method and apparatus
US6193663B1 (en) 1997-12-18 2001-02-27 Acuson Corporation Diagnostic ultrasound imaging method and system with improved frame rate
US6206833B1 (en) 1996-11-08 2001-03-27 Research Corporation Technologiers, Inc. Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
US6224556B1 (en) 1998-11-25 2001-05-01 Acuson Corporation Diagnostic medical ultrasound system and method for using a sparse array
US6312379B1 (en) 1997-08-15 2001-11-06 Acuson Corporation Ultrasonic harmonic imaging system and method using waveform pre-distortion
WO2002056666A2 (en) * 2001-01-19 2002-07-25 Angelsen Bjoern A J A method of detecting ultrasound contrast agent in soft tissue, and quantitating blood perfusion through regions of tissue
EP1293802A2 (en) 2001-08-14 2003-03-19 Esaote S.p.A. Ultrasound system and method for receiving echo signals at a harmonic of the transmission frequency
WO2003071949A1 (en) * 2002-02-28 2003-09-04 Koninklijke Philips Electronics N.V. Ultrasonic imaging to detect coronary artery stenosis at rest
EP1358849A1 (en) * 2001-02-01 2003-11-05 Hitachi Medical Corporation Ultrasonic enhanced-contrast imager and its method
US6706020B1 (en) 1998-08-28 2004-03-16 Schering Aktiengesellschaft Syringes and injectors incorporating magnetic fluid agitation devices
EP1428475A1 (en) * 2001-08-22 2004-06-16 Kabushiki Kaisha Toshiba Ultrasonograph
US6755787B2 (en) 1998-06-02 2004-06-29 Acuson Corporation Medical diagnostic ultrasound system and method for versatile processing
US6966894B1 (en) 1998-08-28 2005-11-22 Schering Aktiengesellschaft Syringes and injectors incorporating mechanical fluid agitation devices
EP1774361A2 (en) * 2004-06-18 2007-04-18 ANGELSEN, Bjorn A. J. Ultrasonic contrast agent detection and imaging by low frequency manipulation of high frequency scattering properties
DE102006057211B3 (en) * 2006-12-01 2008-03-27 Kompetenzzentrum Medizintechnik Ruhr (Kmr) E.V. Object e.g. biological tissue, infusion measuring method, involves determining re-enrichment conditions in time period, in which no tomogram series is received, by mathematical approximation technique
WO2009025769A1 (en) * 2007-08-17 2009-02-26 Jan Medical, Inc. Non-invasive characterization of human vasculature
WO2010103469A1 (en) 2009-03-12 2010-09-16 Koninklijke Philips Electronics, N.V. Sonolysis of blood clots using low power, coded excitation pulses
EP2644099A1 (en) * 2012-03-28 2013-10-02 Samsung Medison Co., Ltd. Ultrasound system and method of obtaining ultrasound image
JP2016503707A (en) * 2013-01-17 2016-02-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. How to reduce the effects of exercise
US9483821B2 (en) 2014-01-28 2016-11-01 Samsung Medison Co., Ltd. Method and ultrasound apparatus for displaying ultrasound image corresponding to region of interest
WO2018109652A1 (en) * 2016-12-16 2018-06-21 Koninklijke Philips N.V. Adaptive pulsing for sonothrombolysis treatment
US10092195B2 (en) 2006-08-17 2018-10-09 Jan Medical, Inc. Noninvasive detection of human brain conditions and anomalies
US10307065B1 (en) 2014-12-09 2019-06-04 Jan Medical, Inc. Non-invasive detection of cerebral vasospasm

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210332B1 (en) * 1998-03-31 2001-04-03 General Electric Company Method and apparatus for flow imaging using coded excitation
US6102858A (en) * 1998-04-23 2000-08-15 General Electric Company Method and apparatus for three-dimensional ultrasound imaging using contrast agents and harmonic echoes
JP4260920B2 (en) * 1998-05-13 2009-04-30 株式会社東芝 Ultrasonic diagnostic equipment
US6352509B1 (en) * 1998-11-16 2002-03-05 Kabushiki Kaisha Toshiba Three-dimensional ultrasonic diagnosis apparatus
JP4408988B2 (en) * 1999-05-31 2010-02-03 株式会社東芝 Ultrasonic diagnostic equipment
US6139501A (en) * 1999-06-08 2000-10-31 Atl Ultrasound, Inc. Coincident tissue and motion ultrasonic diagnostic imaging
US6896658B2 (en) * 2001-10-20 2005-05-24 Zonare Medical Systems, Inc. Simultaneous multi-mode and multi-band ultrasonic imaging
JP2001061841A (en) * 1999-08-30 2001-03-13 Toshiba Corp Ultrasonograph, and method of producing ultrasonic image
US6761691B2 (en) 2000-07-21 2004-07-13 Fuji Photo Film Co., Ltd. Image forming method used in ultrasonic diagnosis, ultrasonic diagnostic apparatus, signal processing apparatus, and recording medium for recording signal processing program
JP4768914B2 (en) * 2000-12-26 2011-09-07 株式会社東芝 Ultrasonic diagnostic equipment
US6793626B2 (en) 2001-01-17 2004-09-21 Fuji Photo Film Co., Ltd. Ultrasonic scatterer, ultrasonic imaging method and ultrasonic imaging apparatus
JP2002224108A (en) * 2001-01-31 2002-08-13 Ge Medical Systems Global Technology Co Llc Ultrasonic photographing device
JP4157688B2 (en) * 2001-09-20 2008-10-01 株式会社日立メディコ Ultrasonic diagnostic equipment
JP2003093389A (en) * 2001-09-27 2003-04-02 Hitachi Medical Corp Ultrasonograph
JP2006517826A (en) * 2003-02-05 2006-08-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Quantitative analysis accuracy display
JP4373699B2 (en) 2003-04-28 2009-11-25 株式会社東芝 Ultrasonic diagnostic equipment
JP4607528B2 (en) 2004-09-24 2011-01-05 株式会社東芝 Ultrasonic diagnostic apparatus and image data generation method
JP5341352B2 (en) * 2004-12-30 2013-11-13 クリスタルビュー メディカル イメージング リミテッド This application is a U.S. provisional patent application filed on Dec. 30, 2004. Insist on the benefit of priority based on 60 / 640,368. This application is filed with US provisional patent application no. No. 60 / 534,390, the specification of which is hereby incorporated by reference.
US9451932B2 (en) 2004-12-30 2016-09-27 Crystalview Medical Imaging Limited Clutter suppression in ultrasonic imaging systems
JP4599208B2 (en) * 2005-03-31 2010-12-15 株式会社東芝 Ultrasonic diagnostic equipment
JP5091617B2 (en) * 2007-10-23 2012-12-05 株式会社東芝 Ultrasonic diagnostic apparatus and ultrasonic diagnostic apparatus control program
WO2010032500A1 (en) * 2008-09-18 2010-03-25 コニカミノルタエムジー株式会社 Ultrasonic diagnosing device
JP4945605B2 (en) * 2009-07-21 2012-06-06 株式会社東芝 Ultrasonic diagnostic equipment
JP5489154B2 (en) * 2009-09-25 2014-05-14 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Ultrasonic diagnostic apparatus and control program therefor
WO2011046903A2 (en) 2009-10-12 2011-04-21 Moore Thomas C Intravascular ultrasound system for co-registered imaging
WO2013098732A1 (en) * 2011-12-29 2013-07-04 Koninklijke Philips Electronics N.V. Apparatus and method for ultrasound monitoring of ablation by a combination of the breaking down of air bubbles and imaging sequences
EP2784748B1 (en) * 2013-03-28 2017-11-01 Expert Ymaging, SL A computer implemented method for assessing vascular networks from medical images and uses thereof
US10653393B2 (en) 2015-10-08 2020-05-19 Acist Medical Systems, Inc. Intravascular ultrasound imaging with frequency selective imaging methods and systems
US11369337B2 (en) 2015-12-11 2022-06-28 Acist Medical Systems, Inc. Detection of disturbed blood flow
JP7104632B2 (en) 2015-12-31 2022-07-21 アシスト・メディカル・システムズ,インコーポレイテッド Semi-automated image segmentation system and method
JP7152955B2 (en) 2016-05-16 2022-10-13 アシスト・メディカル・システムズ,インコーポレイテッド System and method for motion-based image segmentation
US11024034B2 (en) 2019-07-02 2021-06-01 Acist Medical Systems, Inc. Image segmentation confidence determination

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0072330A2 (en) * 1981-08-08 1983-02-16 Fujitsu Limited Pressure measuring system with ultrasonic wave
DE3839649A1 (en) * 1987-11-24 1989-07-13 Hitachi Ltd DEVICE FOR MEASURING AND MEDICAL TREATMENT WITH ULTRASOUND
WO1991015999A1 (en) * 1990-04-26 1991-10-31 The Victoria University Of Manchester Ultrasound imaging technique using non linear scattering from bubbles
US5135000A (en) * 1990-09-19 1992-08-04 Raizot University Authority For Applied Research & Industrial Development Ltd. Method of measuring regional tissue blood flow
WO1993012720A1 (en) * 1991-12-30 1993-07-08 Sound Science Limited Partnership Ultrasound contrast agent examination of tissue perfusion
US5456257A (en) * 1994-11-23 1995-10-10 Advanced Technology Laboratories, Inc. Ultrasonic detection of contrast agents
US5474073A (en) * 1994-11-22 1995-12-12 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic scanning for three dimensional display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689986A (en) * 1985-03-13 1987-09-01 The University Of Michigan Variable frequency gas-bubble-manipulating apparatus and method
DE3829999A1 (en) * 1988-09-01 1990-03-15 Schering Ag ULTRASONIC METHOD AND CIRCUITS THEREOF
US5928152A (en) * 1994-08-05 1999-07-27 Acuson Corporation Method and apparatus for a baseband processor of a receive beamformer system
US5560364A (en) 1995-05-12 1996-10-01 The Board Of Regents Of The University Of Nebraska Suspended ultra-sound induced microbubble cavitation imaging

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0072330A2 (en) * 1981-08-08 1983-02-16 Fujitsu Limited Pressure measuring system with ultrasonic wave
DE3839649A1 (en) * 1987-11-24 1989-07-13 Hitachi Ltd DEVICE FOR MEASURING AND MEDICAL TREATMENT WITH ULTRASOUND
WO1991015999A1 (en) * 1990-04-26 1991-10-31 The Victoria University Of Manchester Ultrasound imaging technique using non linear scattering from bubbles
US5135000A (en) * 1990-09-19 1992-08-04 Raizot University Authority For Applied Research & Industrial Development Ltd. Method of measuring regional tissue blood flow
WO1993012720A1 (en) * 1991-12-30 1993-07-08 Sound Science Limited Partnership Ultrasound contrast agent examination of tissue perfusion
US5474073A (en) * 1994-11-22 1995-12-12 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic scanning for three dimensional display
US5456257A (en) * 1994-11-23 1995-10-10 Advanced Technology Laboratories, Inc. Ultrasonic detection of contrast agents

Cited By (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081092B2 (en) 1994-09-28 2006-07-25 Imcor Pharmaceutical Company Methods and apparatus for monitoring and quantifying the movement of fluid
US5933389A (en) * 1995-03-02 1999-08-03 Acuson Corporation Ultrasonic imaging system and method
US6222795B1 (en) 1995-03-02 2001-04-24 Acuson Corporation Ultrasonic harmonic imaging system and method
US6122222A (en) * 1995-03-02 2000-09-19 Acuson Corporation Ultrasonic transmit and receive system
US6104670A (en) * 1995-03-02 2000-08-15 Acuson Corporation Ultrasonic harmonic imaging system and method
US6027448A (en) * 1995-03-02 2000-02-22 Acuson Corporation Ultrasonic transducer and method for harmonic imaging
US6009046A (en) * 1995-03-02 1999-12-28 Acuson Corporation Ultrasonic harmonic imaging system and method
US6005827A (en) * 1995-03-02 1999-12-21 Acuson Corporation Ultrasonic harmonic imaging system and method
US5846202A (en) * 1996-07-30 1998-12-08 Acuson Corporation Ultrasound method and system for imaging
US6206833B1 (en) 1996-11-08 2001-03-27 Research Corporation Technologiers, Inc. Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
US7104956B1 (en) 1996-11-08 2006-09-12 Research Corporation Technologies, Inc. Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
US7811233B2 (en) 1996-11-08 2010-10-12 Research Corporation Technologies, Inc. Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
US7513870B2 (en) 1996-11-08 2009-04-07 Research Corproation Technologies, Inc. Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
US7004905B2 (en) 1996-11-08 2006-02-28 Research Corporation Technologies, Inc. Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
US6030344A (en) * 1996-12-04 2000-02-29 Acuson Corporation Methods and apparatus for ultrasound image quantification
WO1998046139A1 (en) * 1997-04-11 1998-10-22 Acuson Corporation Ultrasound imaging enhancement methods and systems
US6110120A (en) * 1997-04-11 2000-08-29 Acuson Corporation Gated ultrasound imaging apparatus and method
US5882306A (en) * 1997-04-11 1999-03-16 Acuson Corporation Ultrasound imaging methods and systems
US6626831B2 (en) 1997-04-11 2003-09-30 Acuson Corporation Gated ultrasound imaging apparatus and method
US5957845A (en) * 1997-04-11 1999-09-28 Acuson Corporation Gated ultrasound imaging apparatus and method
US5961460A (en) * 1997-04-11 1999-10-05 Acuson Corporation Ultrasound imaging enhancement methods and systems
US6306095B1 (en) 1997-04-11 2001-10-23 Acuson Corporation Gated ultrasound imaging apparatus and method
US6315730B1 (en) 1997-04-24 2001-11-13 Nyomed Imaging As Ultrasound imaging of tissue perfusion by pulse energy disruption of contrast agent
WO1998047533A1 (en) * 1997-04-24 1998-10-29 Nycomed Imaging A.S. Ultrasound imaging of tissue perfusion by pulse energy disruption of contrast agent
US6802813B2 (en) 1997-05-30 2004-10-12 Ernest G. Schutt Methods and apparatus for monitoring and quantifying the movement of fluid
WO1998053855A1 (en) * 1997-05-30 1998-12-03 Alliance Pharmaceutical Corp. Methods and apparatus for monitoring and quantifying the movement of fluid
US6039690A (en) * 1997-06-17 2000-03-21 Acuson Corporation Method and apparatus for frequency control of an ultrasound system
US6354997B1 (en) 1997-06-17 2002-03-12 Acuson Corporation Method and apparatus for frequency control of an ultrasound system
US6050944A (en) * 1997-06-17 2000-04-18 Acuson Corporation Method and apparatus for frequency control of an ultrasound system
US6221018B1 (en) 1997-07-15 2001-04-24 Acuson Corporation Medical ultrasonic diagnostic imaging method and apparatus
US5913823A (en) * 1997-07-15 1999-06-22 Acuson Corporation Ultrasound imaging method and system for transmit signal generation for an ultrasonic imaging system capable of harmonic imaging
US6193659B1 (en) 1997-07-15 2001-02-27 Acuson Corporation Medical ultrasonic diagnostic imaging method and apparatus
US5833614A (en) * 1997-07-15 1998-11-10 Acuson Corporation Ultrasonic imaging method and apparatus for generating pulse width modulated waveforms with reduced harmonic response
WO1999003401A1 (en) * 1997-07-15 1999-01-28 Acuson Corporation Ultrasound harmonic imaging transmission method and apparatus
EP0999788A4 (en) * 1997-07-15 2000-07-26 Acuson Ultrasound imaging method and apparatus for generating pulse width modulated waveforms with reduced harmonic response
EP0999788A1 (en) * 1997-07-15 2000-05-17 Acuson Corporation Ultrasound imaging method and apparatus for generating pulse width modulated waveforms with reduced harmonic response
US6023977A (en) * 1997-08-01 2000-02-15 Acuson Corporation Ultrasonic imaging aberration correction system and method
US6131458A (en) * 1997-08-01 2000-10-17 Acuson Corporation Ultrasonic imaging aberration correction system and method
US6132374A (en) * 1997-08-01 2000-10-17 Acuson Corporation Ultrasonic imaging method and system
US6223599B1 (en) 1997-08-01 2001-05-01 Acuson Corporation Ultrasonic imaging aberration correction system and method
US6401539B1 (en) 1997-08-01 2002-06-11 Acuson Corporation Ultrasonic imaging aberration correction system and method
US6312379B1 (en) 1997-08-15 2001-11-06 Acuson Corporation Ultrasonic harmonic imaging system and method using waveform pre-distortion
US6905467B2 (en) 1997-08-15 2005-06-14 Acuson Corporation Ultrasonic harmonic imaging system and method using waveform pre-distortion
US5944666A (en) * 1997-08-21 1999-08-31 Acuson Corporation Ultrasonic method for imaging blood flow including disruption or activation of contrast agent
US5947904A (en) * 1997-08-21 1999-09-07 Acuson Corporation Ultrasonic method and system for imaging blood flow including disruption or activation of a contrast agent
US5924991A (en) * 1997-08-22 1999-07-20 Acuson Corporation Ultrasonic system and method for harmonic imaging in three dimensions
US6106465A (en) * 1997-08-22 2000-08-22 Acuson Corporation Ultrasonic method and system for boundary detection of an object of interest in an ultrasound image
US6083168A (en) * 1997-08-22 2000-07-04 Acuson Corporation Ultrasound imaging system and method for improving resolution and operation
US5928151A (en) * 1997-08-22 1999-07-27 Acuson Corporation Ultrasonic system and method for harmonic imaging in three dimensions
US5873830A (en) * 1997-08-22 1999-02-23 Acuson Corporation Ultrasound imaging system and method for improving resolution and operation
WO1999017808A1 (en) * 1997-10-03 1999-04-15 University Of Virginia Ultrasound bubble recognition imaging
US5860931A (en) * 1997-10-10 1999-01-19 Acuson Corporation Ultrasound method and system for measuring perfusion
US5935069A (en) * 1997-10-10 1999-08-10 Acuson Corporation Ultrasound system and method for variable transmission of ultrasonic signals
US7540842B2 (en) 1997-12-18 2009-06-02 Siemens Medical Solutions Usa, Inc. Diagnostic ultrasound imaging method and system with improved frame rate
US6193663B1 (en) 1997-12-18 2001-02-27 Acuson Corporation Diagnostic ultrasound imaging method and system with improved frame rate
US5897500A (en) * 1997-12-18 1999-04-27 Acuson Corporation Ultrasonic imaging system and method for displaying composite fundamental and harmonic images
US6679846B2 (en) 1997-12-18 2004-01-20 Acuson Corporation Diagnostic ultrasound imaging method and system with improved frame rate
US5902242A (en) * 1998-01-22 1999-05-11 Acuson Corporation System and method for forming a combined ultrasonic image
EP0947853A2 (en) * 1998-03-31 1999-10-06 General Electric Company Method and apparatus for enhanced flow imaging in b-mode ultrasound
US6186949B1 (en) 1998-03-31 2001-02-13 General Electric Company Method and apparatus for three-dimensional flow imaging using coded excitation
US6074348A (en) * 1998-03-31 2000-06-13 General Electric Company Method and apparatus for enhanced flow imaging in B-mode ultrasound
EP0948931A3 (en) * 1998-03-31 2003-11-05 General Electric Company Ultrasound imaging using coded excitation on transmit and selective filtering on receive
EP0948931A2 (en) * 1998-03-31 1999-10-13 General Electric Company Ultrasound imaging using coded excitation on transmit and selective filtering on receive
EP0947853A3 (en) * 1998-03-31 2003-01-08 General Electric Company Method and apparatus for enhanced flow imaging in b-mode ultrasound
WO1999053309A1 (en) * 1998-04-15 1999-10-21 Acuson Corporation Ultrasonic imaging aberration correction system and method
US5902243A (en) * 1998-04-15 1999-05-11 Acuson Corporation Ultrasonic imaging method with multiple pulse cancellation
US6755787B2 (en) 1998-06-02 2004-06-29 Acuson Corporation Medical diagnostic ultrasound system and method for versatile processing
US6116244A (en) * 1998-06-02 2000-09-12 Acuson Corporation Ultrasonic system and method for three-dimensional imaging with opacity control
US5957852A (en) * 1998-06-02 1999-09-28 Acuson Corporation Ultrasonic harmonic imaging system and method
US6706020B1 (en) 1998-08-28 2004-03-16 Schering Aktiengesellschaft Syringes and injectors incorporating magnetic fluid agitation devices
US6966894B1 (en) 1998-08-28 2005-11-22 Schering Aktiengesellschaft Syringes and injectors incorporating mechanical fluid agitation devices
US6048316A (en) * 1998-10-16 2000-04-11 Acuson Corporation Medical diagnostic ultrasonic imaging system and method for displaying composite fundamental and harmonic images
US5971928A (en) * 1998-11-02 1999-10-26 Acuson Corporation Diagnostic medical ultrasonic system and method for image subtraction
US6174286B1 (en) 1998-11-25 2001-01-16 Acuson Corporation Medical diagnostic ultrasound method and system for element switching
US6224556B1 (en) 1998-11-25 2001-05-01 Acuson Corporation Diagnostic medical ultrasound system and method for using a sparse array
WO2000036980A1 (en) * 1998-12-18 2000-06-29 Koninklijke Philips Electronics N.V. Ultrasonic diagnostic imaging systems with power modulation for contrast and harmonic imaging
US6234967B1 (en) 1998-12-18 2001-05-22 Atl Ultrasound Ultrasonic diagnostic imaging systems with power modulation for contrast and harmonic imaging
US6752762B1 (en) 1999-01-21 2004-06-22 Acuson Corporation Method and apparatus for ultrasound contrast imaging
WO2000042916A1 (en) * 1999-01-21 2000-07-27 Acuson Corporation Method and apparatus for ultrasound contrast imaging
US6575930B1 (en) 1999-03-12 2003-06-10 Medrad, Inc. Agitation devices and dispensing systems incorporating such agitation devices
WO2000053242A1 (en) * 1999-03-12 2000-09-14 Medrad, Inc. Agitation devices and fluid dispensing systems incorporating such agitation devices for use in medical ultrasound imaging
US7351221B2 (en) 1999-03-12 2008-04-01 Medrad, Inc. Container for agitating and injecting a multi-component medium
US7060049B2 (en) 1999-03-12 2006-06-13 Medrad, Inc. Injection system having an agitation mechanism for circulating a fluid medium
WO2002056666A3 (en) * 2001-01-19 2003-02-27 Bjoern A J Angelsen A method of detecting ultrasound contrast agent in soft tissue, and quantitating blood perfusion through regions of tissue
WO2002056666A2 (en) * 2001-01-19 2002-07-25 Angelsen Bjoern A J A method of detecting ultrasound contrast agent in soft tissue, and quantitating blood perfusion through regions of tissue
EP2305121A1 (en) * 2001-02-01 2011-04-06 Hitachi Medical Corporation Ultrasonic enhanced-contrast imager
US7198601B2 (en) 2001-02-01 2007-04-03 Hitachi Medical Corporation Ultrasonic contrast medium imaging apparatus and method
EP1358849A4 (en) * 2001-02-01 2006-04-05 Hitachi Medical Corp Ultrasonic enhanced-contrast imager and its method
EP1358849A1 (en) * 2001-02-01 2003-11-05 Hitachi Medical Corporation Ultrasonic enhanced-contrast imager and its method
US7850612B2 (en) 2001-02-01 2010-12-14 Hitachi Medical Corporation Ultrasonic enhanced-contrast imager and method
US7458935B2 (en) 2001-08-14 2008-12-02 Esaote, S.P.A. Method and apparatus for transmitting ultrasound pulses and receiving echo signals at a harmonic of the transmission frequency
EP1293802A2 (en) 2001-08-14 2003-03-19 Esaote S.p.A. Ultrasound system and method for receiving echo signals at a harmonic of the transmission frequency
EP1428475A1 (en) * 2001-08-22 2004-06-16 Kabushiki Kaisha Toshiba Ultrasonograph
EP1428475A4 (en) * 2001-08-22 2009-08-19 Toshiba Kk Ultrasonograph
US6730036B2 (en) 2002-02-28 2004-05-04 Koninklijke Philips Electronics, N.V. Ultrasonic imaging to detect coronary artery stenosis at rest
WO2003071949A1 (en) * 2002-02-28 2003-09-04 Koninklijke Philips Electronics N.V. Ultrasonic imaging to detect coronary artery stenosis at rest
EP1774361A2 (en) * 2004-06-18 2007-04-18 ANGELSEN, Bjorn A. J. Ultrasonic contrast agent detection and imaging by low frequency manipulation of high frequency scattering properties
US8905932B2 (en) 2006-08-17 2014-12-09 Jan Medical Inc. Non-invasive characterization of human vasculature
US10092195B2 (en) 2006-08-17 2018-10-09 Jan Medical, Inc. Noninvasive detection of human brain conditions and anomalies
DE102006057211B3 (en) * 2006-12-01 2008-03-27 Kompetenzzentrum Medizintechnik Ruhr (Kmr) E.V. Object e.g. biological tissue, infusion measuring method, involves determining re-enrichment conditions in time period, in which no tomogram series is received, by mathematical approximation technique
WO2009025769A1 (en) * 2007-08-17 2009-02-26 Jan Medical, Inc. Non-invasive characterization of human vasculature
WO2010103469A1 (en) 2009-03-12 2010-09-16 Koninklijke Philips Electronics, N.V. Sonolysis of blood clots using low power, coded excitation pulses
EP2644099A1 (en) * 2012-03-28 2013-10-02 Samsung Medison Co., Ltd. Ultrasound system and method of obtaining ultrasound image
US9192360B2 (en) 2012-03-28 2015-11-24 Samsung Medison Co., Ltd. Ultrasound system and method of obtaining ultrasound image
JP2016503707A (en) * 2013-01-17 2016-02-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. How to reduce the effects of exercise
US9483821B2 (en) 2014-01-28 2016-11-01 Samsung Medison Co., Ltd. Method and ultrasound apparatus for displaying ultrasound image corresponding to region of interest
US10307065B1 (en) 2014-12-09 2019-06-04 Jan Medical, Inc. Non-invasive detection of cerebral vasospasm
WO2018109652A1 (en) * 2016-12-16 2018-06-21 Koninklijke Philips N.V. Adaptive pulsing for sonothrombolysis treatment
US11259781B2 (en) 2016-12-16 2022-03-01 Koninklijke Philips N.V. Adaptive pulsing for sonothrombolysis treatment

Also Published As

Publication number Publication date
ATE285711T1 (en) 2005-01-15
DE69634112D1 (en) 2005-02-03
JP2007175542A (en) 2007-07-12
JP4159122B2 (en) 2008-10-01
DE69634112T2 (en) 2005-12-08
EP0770352B1 (en) 2004-12-29
JP4351265B2 (en) 2009-10-28
JPH09164138A (en) 1997-06-24
ES2235180T3 (en) 2005-07-01
EP1374777A1 (en) 2004-01-02

Similar Documents

Publication Publication Date Title
EP0770352B1 (en) Ultrasonic diagnostic imaging with contrast agents
US5833613A (en) Ultrasonic diagnostic imaging with contrast agents
US6171246B1 (en) Realtime ultrasonic imaging of perfusion using ultrasonic contrast agents
US6645147B1 (en) Diagnostic medical ultrasound image and system for contrast agent imaging
US6692438B2 (en) Ultrasonic imaging system and method for displaying tissue perfusion and other parameters varying with time
US5951478A (en) Two pulse technique for ultrasonic harmonic imaging
EP1501419B1 (en) Contrast-agent enhanced color-flow imaging
JP3625305B2 (en) Ultrasonic diagnostic equipment
US5846202A (en) Ultrasound method and system for imaging
EP1517636B1 (en) Contrast agent imaging with synchronized persistence
EP0626822A1 (en) Ultrasound contrast agent examination of tissue perfusion
EP0135170A2 (en) Apparatus for observing blood flow patterns
US6174287B1 (en) Medical diagnostic ultrasound system and method for continuous M-mode imaging and periodic imaging of contrast agents
US6783496B2 (en) Method and apparatus for improving contrast-to-tissue ratio in ultrasound contrast imaging with subharmonic imaging
EP2575623A1 (en) Ultrasonic visualization of percutaneous needles, intravascular catheters and other invasive devices
Kirkhorn et al. Three-stage approach to ultrasound contrast detection
Bruce et al. Pulse inversion Doppler for blood flow detection in the macro-and microcirculation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19971009

17Q First examination report despatched

Effective date: 20020503

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HWANG, JUIN-JET

Inventor name: AVERKIOU, MICHALAKIS

Inventor name: BRUCE, MATTHEW

Inventor name: POWERS, JEFFRY EARL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69634112

Country of ref document: DE

Date of ref document: 20050203

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2235180

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050930

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070925

Year of fee payment: 12

Ref country code: ES

Payment date: 20071008

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081009

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151030

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151030

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151230

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69634112

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20161008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20161008