EP0780822B1 - Method and device for contactless transmission of measured values - Google Patents

Method and device for contactless transmission of measured values Download PDF

Info

Publication number
EP0780822B1
EP0780822B1 EP96203531A EP96203531A EP0780822B1 EP 0780822 B1 EP0780822 B1 EP 0780822B1 EP 96203531 A EP96203531 A EP 96203531A EP 96203531 A EP96203531 A EP 96203531A EP 0780822 B1 EP0780822 B1 EP 0780822B1
Authority
EP
European Patent Office
Prior art keywords
measuring unit
base station
measured data
transceiver
evaluation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96203531A
Other languages
German (de)
French (fr)
Other versions
EP0780822A1 (en
Inventor
Siegfried Ritter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property and Standards GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP0780822A1 publication Critical patent/EP0780822A1/en
Application granted granted Critical
Publication of EP0780822B1 publication Critical patent/EP0780822B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/04Arrangements for transmitting signals characterised by the use of a wireless electrical link using magnetically coupled devices

Definitions

  • the invention relates to a method for the contactless transmission of measured values and a corresponding arrangement for the contactless transmission of measured values.
  • Measured values used by those measuring points that are not easily accessible and whose measured values are not required continuously. These include, for example many consumption data measurements as well as temperature measurements like the measurement a room temperature to control a heating system. Even in medical Range when physiological readings from an implanted site over such procedures or Arrangements can be used advantageously.
  • WO 95-27272 a method and a device are known with which measured values can be detected by a reader from a remote measuring point.
  • a sensor and an electronic interface circuit which is operated by a local energy source and which the measured values of the Sensor converts into preferably digital measurement data.
  • both measuring point as well as a reader with a transmitting / receiving arrangement.
  • the interface circuitry uses little energy from the energy source switched inactive for longer periods and only periodically switched ready to receive. If data is to be transferred, that sends Reader a data request signal, if necessary several times in succession until a Request signal falls within a period in which the interface circuit is active is switched. This interface circuit then causes a Measured value or a sequence of measured values. This sending of data is required relatively much energy from the energy source, even if only for a short time, so that the energy source is strong, especially in the case of frequent measurement data transmission is loaded and has a short lifespan.
  • EP 0 601 739 A2 describes a method and an arrangement for data transmission known from a measuring point with the aid of a query circuit, the Circuit of the measuring point and the query circuit via antennas with each other are coupled. These antennas are used to power the sensor and delivered for converting the measured values and for their transmission. there the measuring point therefore does not need its own energy source. It can be a measurement however only take place if the interface circuit is active. It can also on this way, practically only one measuring point is detected by an interface circuit become. On the other hand, this cannot be the case with this known method that a measurement or transmission of measurement data is no longer possible because an energy source is exhausted prematurely because the query circuit is easily accessible or is stationary and therefore has sufficient energy reserves can be.
  • the invention has for its object a method or an arrangement specify with which the measurement data is acquired from preferably several measuring points can be, these measuring points contain energy sources, their lifespan is as long as possible with small dimensions.
  • the energy source of the or each measuring point is only used for recording and converting the measured values, while for transferring, i.e. for sending the measurement data from the measuring point to a base station, which is carried out by energy sent to the base station is used.
  • the base station especially if this is for transmission of measured values from several measuring points can be used with such Transmission power are equipped that even at a certain distance from the Sufficient energy is still received in this measuring point for transmission the measured values can be used.
  • Measured values of the sensor are converted into measured data and in a memory of the evaluation circuit be cached.
  • the data collection between the Transmission processes must be powered by the energy source of the measuring point.
  • the stored measurement data are then transferred from memory for transmission transmitted to the base station via the transmitter / receiver of the measuring point.
  • the use of the energy received in the measuring point by the base station to send the measurement data can be done in that from this energy, the for example via a coil or a capacitor, one DC voltage is generated, which is used to feed the transmitter of the measuring point becomes.
  • This transmitter then preferably transmits on a different frequency than that Base station.
  • the base station and the Measuring point inductively coupled to each other via an antenna designed as a coil are that a controllable impedance is connected to the coil of the measuring point is controlled by the measurement data, and that the change in the base station Impedance is evaluated.
  • This principle is basically with data exchange arrangements known with a portable data carrier and a fixed station, for example from DE 43 23 530 A1, in which also the recharging of an energy store is described by means of the energy emitted by the fixed station.
  • the invention is based on an embodiment shown in the figure explained in more detail.
  • the base station 1 contains a control arrangement 14 which is generally formed by a processor, in particular a microprocessor with further elements.
  • This control arrangement 14 controls a transmitter / receiver 12, which contains, inter alia, an oscillator and a demodulator. These are connected to a series resonant circuit comprising a series connection of a capacitor 11 and a coil 10, this coil representing an antenna.
  • this coil 10 is inductively coupled to a coil 20 of the measuring point 2 , which is the antenna of this measuring point.
  • the coil 20 forms a parallel resonant circuit with a capacitor 21, which is connected, inter alia, to a rectifier 22 which generates a DC voltage from the voltage induced in the coil 20. If this DC voltage has a sufficiently large value, a charging voltage for an energy store 26, which is shown here as an accumulator, is generated in a charging circuit 24 and the accumulator 26 is charged with it.
  • the two voltage poles of the accumulator 26 are designated V S and V D and are connected to the correspondingly drawn supply voltage connections of two elements 32 and 34, which are explained below.
  • the parallel resonant circuit consisting of the coil 20 and the capacitor 21 is also connected to a transmitter 30 and a receiver 28 of the measuring point 2.
  • the receiver 28 demodulates a signal with which the transmitter / receiver 12 of the base station 1 has modulated the oscillation emitted from the coil 10 and the capacitor 11 via the series resonant circuit.
  • This modulation contains, in particular, a command for the measuring station 2 to subsequently transmit measurement data after this command.
  • This command is fed to an evaluation circuit 34, which is also easier Microprocessor can be designed and coupled to a sensor 36 which gives measured values.
  • a measured value can be, for example, an analog one electrical signal can be shown, and this is in the evaluation circuit 34 in digital measurement data implemented.
  • the transmitter 30 contains the series connection of a switch and an impedance Z.
  • this impedance can be a resistor which loads the resonant circuit from the coil 20 and the capacitor 21 when the switch is closed.
  • This additional load can be evaluated in the transmitter / receiver 12 of the base station 1 , for example in that a higher current flows from the coil 10 and the capacitor 11 of the base station 2 in the series resonant circuit when there is an additional load in the measuring point 1 .
  • the impedance Z can also be designed, for example, as a capacitor, so that when the switch is closed, the resonance frequency of the parallel resonant circuit comprising the coil 20 and the capacitor 21 and the then capacitive impedance Z are tuned to another value. This can also be evaluated in the transmitter / receiver 12.
  • the series resonant circuit consists of the coil 10 and the capacitor 11 and the parallel resonant circuit comprising the coil 20 and the capacitor 21 at least with the switch in transmitter 30 open, to substantially the same Resonance frequency are tuned.
  • the transmission of the measured values from the measuring point 2 to the base station 1 thus takes place in that only one switch is closed or opened.
  • the control signal required to control the switch requires very little power, especially if the switch is designed as a field effect transistor. If the evaluation circuit 34 and the non-volatile memory 32 are also implemented using MOS technology, very little electrical energy from the accumulator 26 is required for their operation. As a result, it is possible that, even during the time in which the measuring point 2 is not coupled to the base station 1 or the latter does not emit a signal, measured values from the sensor 36 are repeatedly converted into measured data and stored in the memory 32 one after the other.
  • the memory 32 can also be used to store a program according to which the arrangement 34 operates.
  • This program or parts of programs can also be written into the memory 32 by the base station 1 via the receiver 28 of the measuring point 2 .
  • the evaluation program for the measured values of sensor 36 can be changed, for example, during operation of the measuring point.
  • the elements 22, 24 and 28 to 34 can be conveniently integrated into a single Circuit can be summarized to be as small and as possible to realize inexpensive construction. Via the interface to sensor 36 or even cheaper to an interface led out of the integrated circuit external memory can then be added to or even instead of the memory 32 Sensors 36 are connected, making the integrated circuit as an enlarged Memory of a data exchange arrangement is used.

Description

Die Erfindung betrifft ein Verfahren zum kontaktlosen Übertragen von Meßwerten sowie eine entsprechende Anordnung zum kontaktlosen Übertragen von Meßwerten.The invention relates to a method for the contactless transmission of measured values and a corresponding arrangement for the contactless transmission of measured values.

Verfahren bzw. Anordnungen zum kontaktlosen Übertragen werden bevorzugt für Meßwerte von solchen Meßstellen verwendet, die nicht leicht zugänglich sind und deren Meßwerte nicht kontinuierlich benötigt werden. Hierzu gehören beispielsweise viele Verbrauchsdatenmessungen sowie Temperaturmessungen wie die Messung einer Raumtemperatur zur Steuerung einer Heizungsanlage. Auch im medizinischen Bereich, wenn physiologische Meßwerte von einer implantierten Meßstelle über einen längeren Zeitraum benötigt werden, sind derartige Verfahren bzw. Anordnungen vorteilhaft einsetzbar.Methods or arrangements for contactless transmission are preferred for Measured values used by those measuring points that are not easily accessible and whose measured values are not required continuously. These include, for example many consumption data measurements as well as temperature measurements like the measurement a room temperature to control a heating system. Even in medical Range when physiological readings from an implanted site over such procedures or Arrangements can be used advantageously.

Aus der WO 95-27272 ist ein Verfahren und ein Gerät bekannt, mit dem Meßwerte von einer entfernten Meßstelle von einem Lesegerät erfaßt werden können. An der Meßstelle ist ein Sensor und eine elektronische Schnittstellenschaltung vorhanden, die von einer örtlichen Energiequelle betrieben wird und die die Meßwerte des Sensors in vorzugsweise digitale Meßdaten umsetzt. Ferner sind sowohl Meßstelle als auch Lesegerät mit einer Sende/Empfangsanordnung versehen. Um möglichst wenig Energie aus der Energiequelle zu verbrauchen, wird die Schnittstellenschaltung während längerer Zeitabschnitte inaktiv geschaltet und nur periodisch empfangsbereit geschaltet. Wenn Daten übertragen werden sollen, sendet das Lesegerät ein Datenanforderungssignal aus, ggf. mehrmals hintereinander, bis ein Anforderungssignal in eine Zeitspanne fällt, in der die Schnittstellenschaltung aktiv geschaltet ist. Diese Schnittstellenschaltung veranlaßt daraufhin das Aussenden eines Meßwerts oder eine Folge von Meßwerten. Dieses Aussenden von Daten benötigt relativ viel Energie aus der Energiequelle, wenn auch nur kurze Zeit, so daß insbesondere bei einer häufigen Meßdatenübertragung die Energiequelle stark belastet wird und eine geringe Lebensdauer hat.From WO 95-27272 a method and a device are known with which measured values can be detected by a reader from a remote measuring point. At the Measuring point there is a sensor and an electronic interface circuit, which is operated by a local energy source and which the measured values of the Sensor converts into preferably digital measurement data. Furthermore, both measuring point as well as a reader with a transmitting / receiving arrangement. To be as possible The interface circuitry uses little energy from the energy source switched inactive for longer periods and only periodically switched ready to receive. If data is to be transferred, that sends Reader a data request signal, if necessary several times in succession until a Request signal falls within a period in which the interface circuit is active is switched. This interface circuit then causes a Measured value or a sequence of measured values. This sending of data is required relatively much energy from the energy source, even if only for a short time, so that the energy source is strong, especially in the case of frequent measurement data transmission is loaded and has a short lifespan.

Aus der EP 0 601 739 A2 ist ein Verfahren und eine Anordnung zur Datenübertragung von einer Meßstelle mit Hilfe einer Abfrageschaltung bekannt, wobei die Schaltung der Meßstelle und die Abfrageschaltung über Antennen miteinander gekoppelt sind. Über diese Antennen wird die Energie zum Betreiben des Sensors und zum Umsetzen der Meßwerte und für deren Übertragung geliefert. Dabei benötigt die Meßstelle also keine eigene Energiequelle. Dabei kann eine Messung jedoch nur erfolgen, wenn die Schnittstellenschaltung aktiv ist. Außerdem kann auf diese Weise von einer Schnittstellenschaltung praktisch nur eine Meßstelle erfaßt werden. Andererseits kann bei diesem bekannten Verfahren nicht der Fall eintreten, daß eine Messung bzw. Übertragung von Meßdaten nicht mehr möglich ist, weil eine Energiequelle vorzeitig erschöpft ist, da die Abfrageschaltung leicht zugänglich bzw. stationär ist und daher mit ausreichend großen Energiereserven versehen werden kann.EP 0 601 739 A2 describes a method and an arrangement for data transmission known from a measuring point with the aid of a query circuit, the Circuit of the measuring point and the query circuit via antennas with each other are coupled. These antennas are used to power the sensor and delivered for converting the measured values and for their transmission. there the measuring point therefore does not need its own energy source. It can be a measurement however only take place if the interface circuit is active. It can also on this way, practically only one measuring point is detected by an interface circuit become. On the other hand, this cannot be the case with this known method that a measurement or transmission of measurement data is no longer possible because an energy source is exhausted prematurely because the query circuit is easily accessible or is stationary and therefore has sufficient energy reserves can be.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren bzw. eine Anordnung anzugeben, mit der die Meßdaten von vorzugsweise mehreren Meßstellen erfaßt werden können, wobei diese Meßstellen Energiequellen enthalten, deren Lebensdauer bei kleinen Abmessungen möglichst lang ist.The invention has for its object a method or an arrangement specify with which the measurement data is acquired from preferably several measuring points can be, these measuring points contain energy sources, their lifespan is as long as possible with small dimensions.

Zur Lösung dieser Aufgabe wird die Energiequelle der bzw. jeder Meßstelle nur zum Aufnehmen und Umsetzen der Meßwerte verwendet, während zum Übertragen, d.h. zum Aussenden der Meßdaten von der Meßstelle zu einer Basisstation, die von der Basisstation ausgesendete Energie verwendet wird. Dadurch wird die Energiequelle der Meßstelle zum Aussenden der Daten nicht belastet und hat somit eine längere Lebensdauer. Die Basisstation, insbesondere wenn diese für die Übertragung von Meßwerten von mehreren Meßstellen verwendet wird, kann mit einer derartigen Sendeleistung ausgestattet werden, daß auch bei einer gewissen Entfernung von der Meßstelle in dieser noch genügend Energie empfangen wird, die zum Übertragen der Meßwerte verwendet werden kann.To solve this problem, the energy source of the or each measuring point is only used for recording and converting the measured values, while for transferring, i.e. for sending the measurement data from the measuring point to a base station, which is carried out by energy sent to the base station is used. This becomes the energy source the measuring point for sending the data is not charged and therefore has a longer lifetime. The base station, especially if this is for transmission of measured values from several measuring points can be used with such Transmission power are equipped that even at a certain distance from the Sufficient energy is still received in this measuring point for transmission the measured values can be used.

Eine noch längere Lebensdauer der Energiequelle wird möglich, wenn in der Meßstelle die von der Basisstation empfangene Energie dazu verwendet wird, um der Energiequelle Energie zum Aufladen bzw. zum Nachladen zuzuführen. Bei entsprechender Sendedauer der Basisstation ist es dann möglich, die gesamte Energie, die zwischen zwei Übertragungsvorgängen in der Meßstelle verbraucht wurde, wieder in die Energiequelle nachzuladen, so daß ein nahezu zeitlich unbegrenzter Betrieb der Meßstelle auch bei sehr kleinen Energiequellen möglich ist, sofern diese ausreichend Energie speichern, die für die zwischen zwei Übertragungsvorgängen in der Meßstelle stattfindenden Funktionen notwendig ist.An even longer life of the energy source is possible if in the Measuring point the energy received by the base station is used to to supply the energy source with energy for charging or recharging. at the corresponding transmission time of the base station, it is then possible to cover the entire Energy that is consumed between two transmission processes in the measuring point was to reload into the energy source, so that an almost unlimited time Operation of the measuring point is possible even with very small energy sources, provided that they store enough energy for between two transmission processes functions taking place in the measuring point is necessary.

Dies ist besonders dann wichtig, wenn die Zeitpunkte der Übertragungen von Meßdaten zeitlich relativ weit auseinander liegen und in den Zwischenzeiten häufig Meßwerte des Sensors in Meßdaten umgesetzt und in einem Speicher der Auswerteschaltung zwischengespeichert werden. Die Datenerfassung zwischen den Übertragungsvorgängen muß von der Energiequelle der Meßstelle gespeist werden. Die gespeicherten Meßdaten werden dann für eine Übertragung aus dem Speicher über den Sender/Empfänger der Meßstelle zur Basisstation übertragen.This is particularly important when the times of the transfers from Measurement data are relatively far apart in time and often in the meantime Measured values of the sensor are converted into measured data and in a memory of the evaluation circuit be cached. The data collection between the Transmission processes must be powered by the energy source of the measuring point. The stored measurement data are then transferred from memory for transmission transmitted to the base station via the transmitter / receiver of the measuring point.

Die Verwendung der in der Meßstelle von der Basisstation empfangenen Energie zum Aussenden der Meßdaten kann dadurch erfolgen, daß aus dieser Energie, die beispielsweise über eine Spule oder einen Kondensator aufgenommen wird, eine Gleichspannung erzeugt wird, die zum Speisen des Senders der Meßstelle verwendet wird. Dieser Sender sendet dann vorzugsweise auf einer anderen Frequenz als die Basisstation. Eine andere Möglichkeit besteht darin, wenn die Basisstation und die Meßstelle induktiv über je eine als Spule ausgeführte Antenne miteinander gekoppelt sind, daß an die Spule der Meßstelle eine steuerbare Impedanz angeschlossen ist, die von den Meßdaten gesteuert wird, und daß in der Basisstation die Änderung der Impedanz ausgewertet wird. Dieses Prinzip ist grundsätzlich bei Datenaustauschanordnungen mit einem tragbaren Datenträger und einer festen Station bekannt, beispielsweise aus der DE 43 23 530 A1, in der auch das Nachladen eines Energiespeichers mittels der von der festen Station ausgesendeten Energie beschrieben ist.The use of the energy received in the measuring point by the base station to send the measurement data can be done in that from this energy, the for example via a coil or a capacitor, one DC voltage is generated, which is used to feed the transmitter of the measuring point becomes. This transmitter then preferably transmits on a different frequency than that Base station. Another possibility is if the base station and the Measuring point inductively coupled to each other via an antenna designed as a coil are that a controllable impedance is connected to the coil of the measuring point is controlled by the measurement data, and that the change in the base station Impedance is evaluated. This principle is basically with data exchange arrangements known with a portable data carrier and a fixed station, for example from DE 43 23 530 A1, in which also the recharging of an energy store is described by means of the energy emitted by the fixed station.

Die Erfindung wird anhand eines in der Figur dargestellten Ausführungsbeispiels näher erläutert.The invention is based on an embodiment shown in the figure explained in more detail.

Darin sind die für die Erfindung wichtigsten Elemente einer Basisstation 1 und einer Meßstelle 2 dargestellt. Die Basisstation 1 enthält eine Steueranordnung 14, die allgemein durch einen Prozessor, insbesondere einen Mikroprozessor mit weiteren Elementen gebildet wird. Diese Steueranordnung 14 steuert einen Sender/Empfänger 12, der u.a. einen Oszillator und einen Demodulator enthält. Diese sind an einen Reihenschwingkreis aus einer Reihenschaltung eines Kondensators 11 und einer Spule 10 angeschlossen, wobei diese Spule eine Antenne darstellt.It shows the elements of a base station 1 and a measuring point 2 that are most important for the invention. The base station 1 contains a control arrangement 14 which is generally formed by a processor, in particular a microprocessor with further elements. This control arrangement 14 controls a transmitter / receiver 12, which contains, inter alia, an oscillator and a demodulator. These are connected to a series resonant circuit comprising a series connection of a capacitor 11 and a coil 10, this coil representing an antenna.

Diese Spule 10 ist während einer Übertragung von Meßwerten mit einer Spule 20 der Meßstelle 2 induktiv gekoppelt, die die Antenne dieser Meßstelle darstellt. Die Spule 20 bildet mit einem Kondensator 21 einen Parallelschwingkreis, der u.a. mit einem Gleichrichter 22 verbunden ist, der aus der in der Spule 20 induzierten Spannung eine Gleichspannung erzeugt. Wenn diese Gleichspannung einen genügend großen Wert hat, wird in einer Ladeschaltung 24 eine Ladespannung für einen Energiespeicher 26, der hier als Akkumulator dargestellt ist, erzeugt und der Akkumulator 26 damit aufgeladen. Die beiden Spannungspole des Akkumulators 26 sind mit VS und VD bezeichnet und mit den entsprechend gezeichneten Speisespannungsanschlüssen von zwei Elementen 32 und 34 verbunden, die nachfolgend erläutert werden. During the transmission of measured values, this coil 10 is inductively coupled to a coil 20 of the measuring point 2 , which is the antenna of this measuring point. The coil 20 forms a parallel resonant circuit with a capacitor 21, which is connected, inter alia, to a rectifier 22 which generates a DC voltage from the voltage induced in the coil 20. If this DC voltage has a sufficiently large value, a charging voltage for an energy store 26, which is shown here as an accumulator, is generated in a charging circuit 24 and the accumulator 26 is charged with it. The two voltage poles of the accumulator 26 are designated V S and V D and are connected to the correspondingly drawn supply voltage connections of two elements 32 and 34, which are explained below.

Der Parallelschwingkreis aus der Spule 20 und dem Kondensator 21 ist ferner mit einem Sender 30 und einem Empfänger 28 der Meßstelle 2 verbunden. Der Empfänger 28 demoduliert ein Signal, mit dem der Sender/Empfänger 12 der Basisstation 1 die über den Reihenschwingkreis aus der Spule 10 und dem Kondensator 11 ausgesendete Schwingung moduliert hat. Diese Modulation enthält insbesondere ein Kommando für die Meßstation 2, nachfolgend nach diesem Kommando Meßdaten zu übertragen.The parallel resonant circuit consisting of the coil 20 and the capacitor 21 is also connected to a transmitter 30 and a receiver 28 of the measuring point 2. The receiver 28 demodulates a signal with which the transmitter / receiver 12 of the base station 1 has modulated the oscillation emitted from the coil 10 and the capacitor 11 via the series resonant circuit. This modulation contains, in particular, a command for the measuring station 2 to subsequently transmit measurement data after this command.

Dieses Kommando wird einer Auswerteschaltung 34 zugeführt, die auch als einfacher Mikroprozessor ausgeführt sein kann und die mit einem Sensor 36 gekoppelt ist, der Meßwerte abgibt. Ein Meßwert kann beispielsweise durch ein analoges elektrisches Signal dargestellt sein, und dieses wird in der Auswerteschaltung 34 in digitale Meßdaten umgesetzt.This command is fed to an evaluation circuit 34, which is also easier Microprocessor can be designed and coupled to a sensor 36 which gives measured values. A measured value can be, for example, an analog one electrical signal can be shown, and this is in the evaluation circuit 34 in digital measurement data implemented.

Diese Meßdaten werden einem nichtflüchtigen Speicher 32 zugeführt und darin eingeschrieben. Wenn von der Basisstation 1 ein Kommando zum Übertragen von Meßdaten im Empfänger 28 erkannt wird, steuert die Auswerteschaltung 34 den Speicher 32 an und liest die gespeicherten Meßwerte aus und führt diese dem Sender 30 zu. Der Sender 30 enthält hier die Reihenschaltung eines Schalters und einer Impedanz Z. Diese Impedanz kann im einfachsten Fall ein Widerstand sein, der bei geschlossenem Schalter den Schwingkreis aus der Spule 20 und dem Kondensator 21 belastet. Diese zusätzliche Belastung kann in dem Sender/Empfänger 12 der Basisstation 1 ausgewertet werden, beispielsweise dadurch, daß bei einer zusätzlichen Belastung in der Meßstelle 1 in dem Reihenschwingkreis aus der Spule 10 und dem Kondensator 11 der Basisstation 2 ein höherer Strom fließt. Die Impedanz Z kann jedoch auch beispielsweise als Kondensator ausgeführt sein, so daß bei geschlossenem Schalter die Resonanzfrequenz des Parallelschwingkreises aus der Spule 20 und dem Kondensator 21 sowie der dann kapazitiven Impedanz Z auf einen anderen Wert abgestimmt wird. Auch dies kann in dem Sender/Empfänger 12 ausgewertet werden. These measurement data are fed to a non-volatile memory 32 and written therein. If a command to transmit measurement data is recognized by the base station 1 in the receiver 28, the evaluation circuit 34 controls the memory 32 and reads out the stored measurement values and feeds them to the transmitter 30. The transmitter 30 here contains the series connection of a switch and an impedance Z. In the simplest case, this impedance can be a resistor which loads the resonant circuit from the coil 20 and the capacitor 21 when the switch is closed. This additional load can be evaluated in the transmitter / receiver 12 of the base station 1 , for example in that a higher current flows from the coil 10 and the capacitor 11 of the base station 2 in the series resonant circuit when there is an additional load in the measuring point 1 . However, the impedance Z can also be designed, for example, as a capacitor, so that when the switch is closed, the resonance frequency of the parallel resonant circuit comprising the coil 20 and the capacitor 21 and the then capacitive impedance Z are tuned to another value. This can also be evaluated in the transmitter / receiver 12.

Es sei bemerkt, daß der Reihenschwingkreis aus der Spule 10 und dem Kondensator 11 sowie der Parallelschwingkreis aus der Spule 20 und dem Kondensator 21 zumindest bei offenem Schalter in dem Sender 30 auf die im wesentlichen gleiche Resonanzfrequenz abgestimmt sind.It should be noted that the series resonant circuit consists of the coil 10 and the capacitor 11 and the parallel resonant circuit comprising the coil 20 and the capacitor 21 at least with the switch in transmitter 30 open, to substantially the same Resonance frequency are tuned.

Das Übertragen der Meßwerte von der Meßstelle 2 zur Basisstation 1 erfolgt also dadurch, daß lediglich ein Schalter geschlossen bzw. geöffnet wird. Das für die Steuerung des Schalters benötigte Steuersignal erfordert nur eine äußerst geringe Leistung, insbesondere wenn der Schalter als Feldeffekttransistor ausgeführt ist. Wenn auch die Auswerteschaltung 34 und der nichtflüchtige Speicher 32 in MOS-Technik ausgeführt sind, wird für deren Betrieb nur sehr wenig elektrische Energie aus dem Akkumulator 26 benötigt. Dadurch ist es möglich, daß auch während der Zeit, in der die Meßstelle 2 nicht mit der Basisstation 1 gekoppelt ist bzw. letztere kein Signal aussendet, wiederholt Meßwerte des Sensors 36 in Meßdaten umgesetzt und im Speicher 32 nacheinander abgespeichert werden. Dies kann zu wiederholten Zeitpunkten geschehen, wofür die Auswerteschaltung 34 dann mit einer zeitgesteuerten Meßschaltung versehen ist, oder wenn das vom Sensor 36 gelieferte Meßsignal bestimmte Bedingungen erfüllt, beispielsweise bestimmte Grenzwerte oder Änderungsgeschwindigkeiten überschreitet. Für die Anzahl der im Speicher 32 abgespeicherten Meßdaten sowie die gesamte Betriebsdauer der Meßstelle 2 zwischen zwei Übertragungen von Meßdaten zur Basisstation steht nahezu die gesamte Kapazität des Akkumulators 26 zur Verfügung, da er bei jeder Übertragung wieder auf seine maximale Kapazität aufgeladen werden kann, indem die Basisstation genügend lange ein Signal aussendet.The transmission of the measured values from the measuring point 2 to the base station 1 thus takes place in that only one switch is closed or opened. The control signal required to control the switch requires very little power, especially if the switch is designed as a field effect transistor. If the evaluation circuit 34 and the non-volatile memory 32 are also implemented using MOS technology, very little electrical energy from the accumulator 26 is required for their operation. As a result, it is possible that, even during the time in which the measuring point 2 is not coupled to the base station 1 or the latter does not emit a signal, measured values from the sensor 36 are repeatedly converted into measured data and stored in the memory 32 one after the other. This can be done at repeated times, for which the evaluation circuit 34 is then provided with a time-controlled measuring circuit, or when the measuring signal supplied by the sensor 36 fulfills certain conditions, for example exceeds certain limit values or rates of change. For the number of measurement data stored in the memory 32 and the total operating time of the measuring point 2 between two transmissions of measurement data to the base station, almost the entire capacity of the accumulator 26 is available, since it can be recharged to its maximum capacity with each transmission by the Base station sends a signal long enough.

Der Speicher 32, genauer ein Teil davon, kann auch dazu verwendet werden, ein Programm zu speichern, nach dem die Anordnung 34 arbeitet. Dieses Programm oder Teile von Programmen können auch von der Basisstation 1 über den Empfänger 28 der Meßstelle 2 in den Speicher 32 eingeschrieben werden. Dadurch kann beispielsweise während des Betriebs der Meßstelle das Auswerteprogramm für die Meßwerte des Sensors 36 geändert werden.The memory 32, more precisely a part thereof, can also be used to store a program according to which the arrangement 34 operates. This program or parts of programs can also be written into the memory 32 by the base station 1 via the receiver 28 of the measuring point 2 . As a result, the evaluation program for the measured values of sensor 36 can be changed, for example, during operation of the measuring point.

Die Elemente 22, 24 sowie 28 bis 34 können zweckmäßig in einer einzigen integrierten Schaltung zusammengefaßt werden, um einen möglichst kleinen und kostengünstigen Aufbau zu verwirklichen. Über die Schnittstelle zum Sensor 36 oder noch günstiger an eine aus der integrierten Schaltung herausgeführten Schnittstelle zum Speicher 32 können dann externe Speicher zusätzlich oder sogar anstelle des Sensors 36 angeschlossen werden, wodurch die integrierte Schaltung als vergrößerter Speicher einer Datenaustauschanordnung dient.The elements 22, 24 and 28 to 34 can be conveniently integrated into a single Circuit can be summarized to be as small and as possible to realize inexpensive construction. Via the interface to sensor 36 or even cheaper to an interface led out of the integrated circuit external memory can then be added to or even instead of the memory 32 Sensors 36 are connected, making the integrated circuit as an enlarged Memory of a data exchange arrangement is used.

Claims (11)

  1. A method for contactless transmission of measured values of at least one measuring unit at which the measured values are produced by a sensor and converted into measured data in an evaluation circuit operated by a local power source which measured data are transmitted to a base station when this base station is brought in spatial proximity to the measuring unit and transmits a signal to the measuring unit, characterized in that the power source is used only for operating the evaluation circuit and in that the measured data are transmitted from the measuring unit to the base station with the power contained in the signal which is transmitted from the base station to the measuring unit.
  2. A method as claimed in Claim 1, characterized in that the power of the signal transmitted by the base station and received in the measuring unit is furthermore used for supplying additional power to the power source.
  3. A method as claimed in Claim I or 2, characterized in that the evaluation circuit is operated at specific instants to convert measured signals of the sensor into measured data and buffer these measured data in a memory of the evaluation circuit, the measured data being transmitted from the memory to the base station irrespective of their acquisition time.
  4. A method as claimed in any one of the Claims 1 to 3, in which the base station and the measuring unit are inductively coupled by a respective coil each, characterized in that the measured data are transmitted by changing an impedance coupled to the coil of the measuring unit and evaluating the change of impedance in the base station.
  5. A device for contactless transmission of measured values of at least one measuring unit, comprising for each measuring unit at least one sensor and one evaluation circuit for converting the measured values of the sensor into measured data, a power source and a transceiver for transmitting measured data and for receiving signals, at least one base station which comprises a control circuit and a transceiver for transmitting signals to the transceiver of the measuring unit and for receiving measured data from the measuring unit, the transceiver of the measuring unit and of the base station being coupled at times and the measuring unit transmitting measured data only when the signal is received from the base station, characterized in that the power source of the measuring unit is connected to a supply voltage terminal of only the evaluation circuit and in that the transmitter of the measuring unit transmits the measured data to the base station only with the power received from the base station.
  6. A device as claimed in Claim 6, characterized in that a charging circuit is connected to the transceiver of the measuring unit, which load circuit produces a voltage for charging the power source when power is received in the transceiver.
  7. A device as claimed in Claim 5 or 6, characterized in that the evaluation circuit comprises a measuring controller to change the evaluation circuit to a converting mode only during predefined first time periods and to a power-saving mode during the further time periods and in that the evaluation circuit comprises a memory for storing measured data converted in first time periods and in that an output of the memory is coupled to the transceiver of the measuring unit.
  8. A device as claimed in any one of the Claims 5 to 7 in which the transceiver of both measuring unit and base station have a respective antenna arranged as a coil, which antennas can be inductively coupled to each other, characterized in that an impedance controllable by the evaluation circuit is connected to the coil of the measuring unit.
  9. A measuring unit for a device as claimed in any one of the Claims 5 to 8, comprising a sensor for producing measured values, a power source, an evaluation circuit for converting the measured values into measured data and a transceiver for transmitting measured data and for receiving signals, characterized in that the power source is coupled only to a supply voltage terminal of the evaluation circuit and in that the transceiver is arranged for transmitting measured data only on reception of a signal while using the power received with this signal.
  10. A measuring unit as claimed in Claim 9, characterized in that a memory is provided for buffering measured data the output of which memory being coupled to the transceiver, while the evaluation circuit, the memory and the transceiver are incorporated in an integrated circuit.
  11. A measuring unit as claimed in Claim 10, characterized in that a data port of the memory is accessible from outside the integrated circuit, so that further memories can be connected.
EP96203531A 1995-12-20 1996-12-13 Method and device for contactless transmission of measured values Expired - Lifetime EP0780822B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19547684 1995-12-20
DE19547684A DE19547684A1 (en) 1995-12-20 1995-12-20 Method and arrangement for contactless transmission

Publications (2)

Publication Number Publication Date
EP0780822A1 EP0780822A1 (en) 1997-06-25
EP0780822B1 true EP0780822B1 (en) 2003-07-09

Family

ID=7780728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96203531A Expired - Lifetime EP0780822B1 (en) 1995-12-20 1996-12-13 Method and device for contactless transmission of measured values

Country Status (4)

Country Link
US (1) US5859873A (en)
EP (1) EP0780822B1 (en)
JP (1) JP3842854B2 (en)
DE (2) DE19547684A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115635B2 (en) 2005-02-08 2012-02-14 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970393A (en) * 1997-02-25 1999-10-19 Polytechnic University Integrated micro-strip antenna apparatus and a system utilizing the same for wireless communications for sensing and actuation purposes
JP2001291181A (en) * 2000-04-07 2001-10-19 Ricoh Elemex Corp Sensor and sensor system
EP1275207B1 (en) * 2000-04-18 2005-06-29 Schleifring und Apparatebau GmbH Device for transferring electrical energy or signals
JP3839224B2 (en) * 2000-06-29 2006-11-01 株式会社山武 Integrated sensor element and measurement system using the same
US6668618B2 (en) * 2001-04-23 2003-12-30 Agilent Technologies, Inc. Systems and methods of monitoring thin film deposition
US6992594B2 (en) * 2001-05-18 2006-01-31 Douglas Dudley Pipeline monitoring system
DE10255741A1 (en) * 2002-11-28 2004-06-09 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Modular transmitter with galvanically isolated sensor
US7142114B2 (en) * 2003-09-30 2006-11-28 General Electric Company Non-contact patient temperature measurement
ATE527521T1 (en) * 2005-01-25 2011-10-15 Nxp Bv SENSOR CIRCUIT ARRAY, CONTROL DEVICE FOR OPERATING A SENSOR CIRCUIT ARRAY AND SENSOR SYSTEM
US20060283252A1 (en) * 2005-06-17 2006-12-21 Honeywell International Inc. Passive acoustic wave sensor system
KR101362954B1 (en) * 2006-03-10 2014-02-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for operating the same
WO2007105606A1 (en) 2006-03-15 2007-09-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
DE102006051900A1 (en) * 2006-10-31 2008-05-08 Endress + Hauser Gmbh + Co. Kg Device for determining and / or monitoring at least one process variable
JP5412034B2 (en) 2006-12-26 2014-02-12 株式会社半導体エネルギー研究所 Semiconductor device
DE102008019472A1 (en) * 2008-04-17 2009-10-22 Oerlikon Leybold Vacuum Gmbh vacuum pump
US8564413B2 (en) 2008-04-30 2013-10-22 Stmicroelectronics (Rousset) Sas Recharge of an active transponder
DE102008057751B4 (en) 2008-11-17 2011-03-10 Langerfeldt, Michael, Dr. Dr. Device and method for load management
US7990103B2 (en) * 2008-11-24 2011-08-02 Sony Ericsson Mobile Communications Ab Portable electronic apparatus, and battery charging system comprising an antenna arrangement for a radio receiver
DE102010044180A1 (en) * 2010-11-19 2012-05-24 Endress + Hauser Gmbh + Co. Kg Device for determining and / or monitoring at least one process variable
DE102011079827A1 (en) * 2011-07-26 2013-01-31 Endress + Hauser Gmbh + Co. Kg Method for performing communication between primary and secondary sides of transformer, involves generating alternating current voltage during transmission of signal to primary side by modulating amplitude and current of primary side
DE102015210880A1 (en) * 2015-06-15 2016-12-15 Sentronic GmbH Gesellschaft für optische Meßsysteme Measuring device for determining physical properties, chemical properties, biological properties and / or substances of the environment of at least one pick-up or the at least one pick-up as part of the measuring device
CN112997377B (en) 2018-06-29 2023-03-17 布鲁萨电子公司 Inductive power transfer device with oscillating circuit and method for operating the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2138609A (en) * 1983-04-19 1984-10-24 Emi Ltd Electronic counter for mechanical drive
US4571599A (en) 1984-12-03 1986-02-18 Xerox Corporation Ink cartridge for an ink jet printer
USRE32572E (en) 1985-04-03 1988-01-05 Xerox Corporation Thermal ink jet printhead and process therefor
US4837556A (en) * 1985-04-15 1989-06-06 Kabushiki Kaisha Nihon Denzai Kogyo Kenkyusho Signal transmission device
US4859581A (en) 1986-03-10 1989-08-22 Board Of Regents, The University Of Texas System Endoglycosidase assay
GB8627241D0 (en) * 1986-11-14 1986-12-17 Chubb Lips Nederland Bv Identification token
NL8700861A (en) * 1987-04-13 1988-11-01 Nedap Nv READING, WRITING SYSTEM WITH MINIATURE INFORMATION CARRIER.
DE3722728C1 (en) * 1987-07-09 1988-12-08 Ulrich Schoberer Work meter for a crank drive
US4833491A (en) 1988-06-15 1989-05-23 Xerox Corporation Thermal ink jet printer adapted to operate in monochrome, highlight or process color modes
DE4016010A1 (en) * 1990-05-18 1991-11-21 Gas Elektrizitaets Und Wasserw METHOD FOR READING AND / OR READING IN DATA IN A MICROPROCESSOR-CONTROLLED DATA STORAGE, IN PARTICULAR A REGISTERING MEASURING OR COUNTING DEVICE, AND DEVICE FOR CARRYING OUT THE METHOD
US5138332A (en) 1990-10-29 1992-08-11 Xerox Corporation Ink jet printing apparatus
IT1245065B (en) 1991-04-15 1994-09-13 Olivetti & Co Spa INK DETECTOR DEVICE FOR A LIQUID INK PRINTING ELEMENT
IT1256844B (en) 1992-06-08 1995-12-21 Olivetti & Co Spa METHOD AND DEVICE FOR THE RECOGNITION OF THE END-INK IN AN INK-JET PRINT HEAD.
US5221397A (en) 1992-11-02 1993-06-22 Xerox Corporation Fabrication of reading or writing bar arrays assembled from subunits
WO1994011851A1 (en) * 1992-11-10 1994-05-26 Micro-Sensys Gmbh Miniaturised telemetry unit
ATE201787T1 (en) 1992-11-25 2001-06-15 Simmonds Precision Products DATA PROCESSING STRUCTURES AND METHODS
DE4323530A1 (en) * 1993-07-14 1995-01-19 Philips Patentverwaltung Data exchange arrangement
WO1995027272A1 (en) 1994-04-04 1995-10-12 Motorola Inc. Method and apparatus for activating and accessing remote meter interface devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115635B2 (en) 2005-02-08 2012-02-14 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8223021B2 (en) 2005-02-08 2012-07-17 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8358210B2 (en) 2005-02-08 2013-01-22 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8390455B2 (en) 2005-02-08 2013-03-05 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8542122B2 (en) 2005-02-08 2013-09-24 Abbott Diabetes Care Inc. Glucose measurement device and methods using RFID

Also Published As

Publication number Publication date
JPH09215228A (en) 1997-08-15
JP3842854B2 (en) 2006-11-08
DE19547684A1 (en) 1997-06-26
EP0780822A1 (en) 1997-06-25
US5859873A (en) 1999-01-12
DE59610590D1 (en) 2003-08-14

Similar Documents

Publication Publication Date Title
EP0780822B1 (en) Method and device for contactless transmission of measured values
EP1583415B1 (en) Sensor
EP0518913B1 (en) Device with a signal-receiving unit for locating golf balls
DE4003410C2 (en)
DE60028101T2 (en) Tire pressure monitoring system and method
EP1949345B1 (en) Electric hand tool device and battery pack therefor
EP0377695B1 (en) Interrogation and remote control device
WO2008098399A1 (en) System and portable device for transmitting identification signals
EP0801358A2 (en) Method and system for operating a system composed of a base station and a contactless coupled transponder
EP0634729A2 (en) Device for date exchange
DE4213065C2 (en)
EP2567254A1 (en) Network node for a wireless sensor network
WO2020016361A1 (en) Measuring device with near field interaction device
DE60130816T2 (en) RFID transponder
DE102011080192A1 (en) Method and device for transmitting sensor data of an implantable sensor to an external data-processing device
EP0446735B1 (en) Object monitoring device
DE102005017805B4 (en) Portable device for control system of vehicle devices
WO2005101303A1 (en) Transponder
DE3412588A1 (en) Method for data transmission and data transmission system
EP2290588A2 (en) Method for operating a transponder for radio frequency identification (RFID) and RFID transponder
WO2018184764A1 (en) Device having energy-dependent transmission power
EP1479031B1 (en) Method for controlling the power supply of a mobile data memory, use of said method in an identification system having at least one mobile data memory
CN109559523A (en) Passive parking stall monitors terminal, parking lot Added Management device and method
DE102006043996A1 (en) Active radio-identification system for identifying e.g. commodities, in industrial field, has multiple identification tags, where each tag is formed and/or controlled as independently networkable station of network for transmitting data

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19971229

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS PATENTVERWALTUNG GMBH

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59610590

Country of ref document: DE

Date of ref document: 20030814

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20030807

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

26N No opposition filed

Effective date: 20040414

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091221

Year of fee payment: 14

Ref country code: GB

Payment date: 20091209

Year of fee payment: 14

Ref country code: FR

Payment date: 20091221

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091222

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101213

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59610590

Country of ref document: DE

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101213

REG Reference to a national code

Ref country code: FR

Ref legal event code: AU

Effective date: 20120126