EP0784992B1 - Vorrichtung zum Behandeln von malignen Gewebsveränderungen - Google Patents

Vorrichtung zum Behandeln von malignen Gewebsveränderungen Download PDF

Info

Publication number
EP0784992B1
EP0784992B1 EP97100159A EP97100159A EP0784992B1 EP 0784992 B1 EP0784992 B1 EP 0784992B1 EP 97100159 A EP97100159 A EP 97100159A EP 97100159 A EP97100159 A EP 97100159A EP 0784992 B1 EP0784992 B1 EP 0784992B1
Authority
EP
European Patent Office
Prior art keywords
sensor
actuator head
drug
sensor actuator
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97100159A
Other languages
English (en)
French (fr)
Other versions
EP0784992A3 (de
EP0784992A2 (de
Inventor
Ulrich Dr.-Phys. Sieben
Bernhard Prof.-Dr. Wolf
Michael Dr. Kraus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
Original Assignee
TDK Micronas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Micronas GmbH filed Critical TDK Micronas GmbH
Publication of EP0784992A2 publication Critical patent/EP0784992A2/de
Publication of EP0784992A3 publication Critical patent/EP0784992A3/de
Application granted granted Critical
Publication of EP0784992B1 publication Critical patent/EP0784992B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/002Magnetotherapy in combination with another treatment

Definitions

  • the invention relates to a device for treating living cell tissue, the device comprising a sensor-actuator head with a pH sensor and a drug delivery device with a has an active ingredient storage container, and wherein the pH sensor and the drug delivery device for drug dosage depending on the pH measurement to a control device are connected.
  • WO-A-9408655 which is used to form the preamble of claim 1, a transdermally acting drug delivery device in metered form with a sensor actuator head is known. This removes liquid from the skin, analyzes this liquid and uses the analysis result to control the supply of active substance.
  • the active ingredient When the active ingredient is administered transdermally, it is transported via the bloodstream to a treatment area. In addition to a delayed feedback of the effect, the active ingredient also reaches the body via the bloodstream, where it can cause undesirable side effects.
  • chemotherapeutic agents which are intended to damage the pathogenic parts of the organ, but preferably not the rest of the organism.
  • systemic and regional dosing of chemotherapeutic agents is problematic, since on the one hand a corresponding active ingredient concentration is aimed at being highly effective compared to, for example, a tumor, but on the other hand there is a risk of damage to healthy tissue through unspecific intake.
  • US Patent 4,003,379 describes a so-called "drug delivery system” with which medication can be administered within the body of a patient.
  • the device can be implanted in the body.
  • radioactive active substances can be monitored with this device and active substance can be dosed depending on the concentration of the radioactivity.
  • the concentration of radioactivity cannot be used to draw conclusions about the effect of the medication on the treated tissue area.
  • the object of the present invention is to provide a device create with which target-oriented chemotherapy is possible, in which the stress and damage to the unaffected areas of the body is at least largely reduced.
  • the sensor actuator head at least with the pH sensor and the drug delivery device is designed so that it is inside the body in tumorous tissue area can be used and this treatment area contacted directly in the application position with a support and contact surface that the pH sensor for Determination of the acidification of the immediate environment of this tumorous Tissue area is arranged, and that the active ingredient is one for lifting the pH value of the immediate vicinity of the tumorous tissue area and / or to reduce the acidification of the tumor cells themselves.
  • the pH sensor is used to monitor the treatment area the acidification in the treatment area can be determined.
  • Changes in the pH value allow conclusions to be drawn about the metabolic activities of the tumor cells, so that appropriate treatment adjustments can be made. This is based on the finding that tumor growth and spread must be viewed as a process of cellular self-organization which, apart from changes in the cellular signal processing apparatus, is essentially controlled by the microenvironment of the tumor.
  • the pH of the tumor's microenvironment plays a key role in this. If, for example, a pH setpoint of 7.4 is specified, the control device, based on the measurement of the existing pH value as the actual value, regulates the dosage of the medicinal active ingredient until the setpoint, in the example pH 7.4, is reached.
  • the medicinal active substance can be an active substance for neutralizing the pH gradient.
  • an active substance for blocking the proton pump on the cell membranes of the tumor cells or an active substance for blocking the molecular biological agents (for example antisense products)
  • an active substance for blocking the proton pump on the cell membranes of the tumor cells
  • an active substance for blocking the molecular biological agents for example antisense products
  • the medicinal active ingredient is applied directly to a tumor to be treated and, at the same time, continuous monitoring takes place there in the immediate vicinity of the treatment site with the aid of the pH sensor and, if appropriate, further sensors.
  • the metering will be adapted by the control device in accordance with the setpoint values.
  • An independently operating control loop is thus formed, by means of which the dosage of the active substance to be applied can be continuously updated.
  • electrodes for physical influencing of the tumorous tissue area by electrical and / or electromagnetic fields by means of iontophoresis for raising the measured pH value in the immediate vicinity of a tumorous tissue area can be provided on the sensor actuator head be provided.
  • a direct voltage or an alternating voltage can be applied to the electrodes.
  • the field is changed as a function of the respective pH measured value, so that a control loop and thus a targeted treatment with "feedback" is also available in this regard.
  • the pH sensor can be semiconductor-based on the basis of a conductivity and impedance measurement, in the case of a semiconductor-based pH sensor preferably at least one ion-selective field effect transistor (IS-FET) is provided for the latter.
  • IS-FET ion-selective field effect transistor
  • At least one further sensor in particular an ion or molecular sensor, is provided in addition to at least one pH sensor.
  • additional sensors in addition to changes in pH, additional, therapy-relevant changes in the microenvironment of a tumor can be recorded, and appropriate measures when applying the medicinal active substance can be derived from these additional measurement data.
  • the active substance delivery device expediently has at least one porous membrane and an active substance supply to this membrane, a metering device being located in the active substance supply and being connected to a metering control.
  • a metering device being located in the active substance supply and being connected to a metering control.
  • the sensor or sensors as well as the porous membrane form the support and contact surface for the tissue area to be treated. With this support and contact surface for the tissue area to be treated, at least two electrodes for iontophoretic purposes can also be provided, which are connected to a voltage source via electrical lines.
  • the sensor / actuator head forms a complete functional unit and that in particular it has at least one active substance storage container, one or more metering device (s) connected to the porous membrane or the like with metering control and at least one pH sensor ,
  • the functional unit has at least one pH sensor, at least two electrodes for iontophoretic purposes, a voltage source and a control device.
  • a device according to the invention is used as a complete, functional unit within the body and can remain there for a planned treatment period. Since all components necessary for the function are available, a connection to the outside is not necessary.
  • the active substance storage container preferably together with the dosing device and the dosing control, is arranged remote from the sensor actuator head and that one or more connecting lines between these functional groups for the dosed supply of the active substance to the sensor actuator head and for connection to the electrodes.
  • the sensor actuator head itself can be made particularly small in this embodiment, so that it can also be used in difficult to access places within the body.
  • the supply unit which is set apart from the sensor actuator head, is arranged so that it is easily accessible, so that refilling with a medicinal active substance, possibly an external power supply and the like, can be implemented easily.
  • a device 1 shown in FIG. 1 is used to apply medicinal active substance in the area of living cell tissue.
  • it can be a tumor 2 to be treated, which is indicated in FIG. 1.
  • the device 1 has a sensor actuator head 3, a supply unit 4 which is set apart from this sensor actuator head 3 in the exemplary embodiment according to FIG. 1, and a connecting line 5 between the sensor actuator head 3 and supply unit 4.
  • an active substance storage container 6 preferably with a metering device (not shown here) as well as a metering control 7 and a power supply 8.
  • the sensor actuator head 3 has on its support and contact surface 13 a porous membrane 9 (cf. also FIG. 2), an active ingredient supply to this membrane 9 and sensors 10 adjacent to the membrane.
  • the membrane 9 and the sensors 10 contact the treatment area in the application position.
  • the medical agent can be supplied from the reservoir 6 to the porous membrane 9 within the connecting line 5, which in the practical exemplary embodiment can be formed by a catheter tube, and in addition, electrical connections between the sensor (s) 10 and the metering control 7 are accommodated in the connecting line 5 , This can be clearly seen in the cross-sectional illustration according to FIG. 3.
  • the connecting tube for the active substance is 11 and the electrical lines 12.
  • active medical substance can be applied directly to the area to be treated, for example a tumor 2.
  • the sensor actuator head 3 is placed directly on the area to be treated and the medical agent can then be supplied in this area via the porous membrane 9.
  • the treatment area can be checked with the aid of the sensors 10 and, based on the measurement results, the dosage of the active substance can be exactly adjusted via the metering control 7 connected to the sensors 10.
  • At least one of the sensors 10 is a pH sensor, since for successful immunotherapy, for example, monitoring the pH of the microenvironment of the area to be treated and also influencing this environment by varying the pH, in particular by corresponding addition of active substance, is essential Meaning is.
  • chemotherapeutic concepts also rely on the steep, extracellular pH gradients to be broken down.
  • a plurality of pH sensors can also be provided within the application area, it being possible for two or more pH sensors to be arranged at a distance from one another for an extracellular gradient measurement.
  • Ion-selective field effect transistors are preferably used as the pH sensor.
  • further sensors 10 in particular ion or molecular sensors, can be provided in order to obtain even more meaningful measurement results of the microenvironment of the area to be treated. A very targeted, effective treatment is then possible.
  • Figures 4 and 5 show a modified embodiment of a device 1a, in which the sensor-actuator head 3a forms a complete functional unit.
  • This sensor actuator head 3 a also contains all assemblies which are accommodated in the supply unit 4 in the exemplary embodiment according to FIG. 1.
  • a compact unit results which can remain within the body as a self-sufficient unit for a corresponding treatment period.
  • FIG. 5 still shows in the area of the support and contact surface 13, within which the porous membrane 9 and the sensor or sensors 10 are located, in the corner areas or adhesive regions 14 arranged on the edge.
  • the sensor actuator head can 3a or the sensor actuator head 3 according to FIGS. 1 and 2 are pressed onto the area to be treated and is then held by adhesive adhesion.
  • the adhesive regions 14 can also be used for iontophoretic purposes and are then designed to be electrically conductive and connected to a voltage source via connecting lines.
  • a replaceable or rechargeable battery 8 (FIG. 1) can be provided as the power supply for the metering control and the like, or there is also the possibility that a thermoelectric power supply or a galvanic power supply formed with the aid of the body fluid is provided. Thermoelectric or galvanic power supplies are particularly advantageous in connection with the embodiment of the device according to the invention shown in FIGS. 4 and 5.
  • FIG. 6 shows yet another embodiment variant of a sensor / actuator head 3b, which is essentially tubular and has a strip-shaped, longitudinally oriented support and contact surface on its outer surface.
  • This embodiment is used in particular for treatment within hollow organs. It should be mentioned here that several support and contact surfaces can also be provided distributed around the circumference of the tubular sensor actuator head.
  • the other embodiments of application heads can also be equipped with a plurality of support and contact surfaces and within them porous membranes 9 and sensors 10.
  • a connection 15 for an external active substance container in particular for refilling the active substance, is also indicated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Description

Die Erfindung bezieht sich auf eine Vorrichtung zum Behandeln von lebendem Zellgewebe, wobei die Vorrichtung einen Sensor-Aktuatorkopf mit einem pH-Sensor und einer Wirkstoffabgabeeinrichtung mit einem einen Wirkstoff bevorratenden Behälter aufweist, und wobei der pH-Sensor und die Wirkstoffabgabeeinrichtung zur Wirkstoffdosierung in Abhängigkeit der pH-Wertmessung an eine Steuereinrichtung angeschlossenen sind.
Aus der WO-A-9408655, die zur Bildung des Oberbegriffs des Anspruchs 1 herangezogen werden ist, ist eine transdermal wirkende Verabreichungsvorrichtung für Medikamente in dosierter Form mit einem Sensor-Aktuatorkopf bekannt. Damit wird der Haut Flüssigkeit entzogen, diese Flüssigkeit analysiert und das Analyseergebnis zur Steuerung der Wirkstoffzufuhr herangezogen.
Bei der transdermalen Verabreichung des Wirkstoffes wird dieser über den Blutkreislauf zu einem Behandlungsbereich transportiert. Neben einer verzögerten Wirkungsrückmeldung gelangt dabei der Wirkstoff über den Blutkreislauf jedoch auch an Stellen des Körpers, wo er unerwünschte Nebenwirkungen hervorrufen kann.
Bei der Krebstherapie ist es bereits bekannt, Chemotherapeutika einzusetzen, die die pathogenen Organteile, möglichst aber nicht den übrigen Organismus schädigen sollen.
Die systemische und regionale Dosierung der Chemotherapeutika ist jedoch problematisch, da einerseits durch eine entsprechende Wirkstoffkonzentration eine hohe Wirksamkeit gegenüber zum Beispiel einem Tumor angestrebt wird, andererseits jedoch durch unspezifische Aufnahme aber dann die Gefahr der Schädigung des gesunden Gewebes besteht.
Das US-Patent 4 003 379 beschreibt ein sogenanntes "Drug Delivery System", mit dem Medikamente innerhalb des Körpers eines Patienten verabreicht werden können. Die Vorrichtung ist dazu in den Körper implantierbar.
Zur Krebsbehandlung können mit dieser Vorrichtung radioaktive Wirkstoffe überwacht und in Abhängigkeit der Konzentration der Radioaktivität Wirkstoff dosiert verabreicht werden.
Auch hierbei kann aus der Konzentration der Radioaktivität nicht auf die Wirkung des Medikamentes auf den behandelten Gewebebereich rückgeschlossen werden.
Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung zu schaffen, mit der eine targetorientierte Chemotherapie möglich ist, bei der die Belastung und Schädigung der nicht betroffenen Bereiche des Körpers zumindest weitgehend reduziert ist.
Zur Lösung dieser Aufgabe wird vorgeschlagen, daß der Sensor-Aktuatorkopf zumindest mit dem pH-Sensor und der Wirkstoffabgabeeinrichtung derart ausgebildet ist, daß er innerhalb des Körpers im tumorösen Gewebebereich einsetzbar ist und diesen Behandlungsbereich in Applikationsstellung mit einer Auflage- und Kontaktfläche direkt kontaktiert, daß der pH-Sensor zur Bestimmung der Ansäuerung der unmittelbaren Umgebung dieses tumorösen Gewebebereichs angeordnet ist, und daß der Wirkstoff ein solcher zur Anhebung des pH-Wertes der unmittelbaren Umgebung des tumorösen Gewebebereichs und/oder zur Reduzierung der Ansäuerung der Tumorzellen selbst ist.
Zur Überwachung des Behandlungsbereiches dient der pH-Sensor, durch den die Ansäuerung im Behandlungsbereich bestimmt werden kann.
Änderungen des pH-Wertes lassen Rückschlüsse auf die metabolischen Aktivitäten der Tumor-Zellen zu, so daß dadurch entsprechende Behandlungsanpassungen vorgenommen werden können. Dem liegt die Erkenntnis zugrunde, daß Wachstum und Ausbreitung von Tumoren als ein Prozeß zellulärer Selbst-Organisation betrachtet werden müssen, der, abgesehen von Veränderungen im zellulären Signal-Verarbeitungs-Apparat, wesentlich von der Mikro-Umgebung des Tumors gesteuert wird. Dabei spielt der pH-Wert der Mikroumgebung des Tumors eine zentrale Schlüsselrolle.
Wird beispielsweise ein pH-Sollwert von 7,4 vorgegeben, so erfolgt durch die Steuereinrichtung aufgrund der Messung des vorhandenen pH-Wertes als Istwert, eine geregelte Dosierung des medizinischen Wirkstoffes, bis der Sollwert, im Beispiel pH 7,4, erreicht ist. Der medizinische Wirkstoff kann ein Wirkstoff zur Neutralisation des pH-Gradienten sein. Weiterhin kommt ein Wirkstoff (Antagonist) zur Blockade der Protonenpumpe an den Zellmembranen der Tumorzellen oder ein Wirkstoff zur Blockade der molekularbiologischen Agentien (beispielsweise Antisens-Produkte) in Betracht.
Zur chemischen Beeinflussung wird der medizinische Wirkstoff unmittelbar bei einem zu behandelnden Tumor appliziert und gleichzeitig erfolgt dort auch in unmittelbarer Umgebung des Behandlungsortes mit Hilfe des pH-Sensors und gegebenenfalls weiterer Sensoren während der Behandlung eine laufende Überwachung. Aufgrund der Meßwerte wird die Dosierung entsprechend den Sollwertvorgaben von der Steuereinrichtung angepaßt werden. Es ist somit ein selbständig arbeitender Regelkreis gebildet, durch den eine laufende Dosierungsnachführung mit dem zu applizierten Wirkstoff vorgenommen werden kann.
In Kombination mit der chemischen Beeinflussung des tumorösen Gewebes, können nach einer Ausgestaltung der Erfindung am Sensor-Aktuatorkopf Elektroden zur physikalischen Beeinflussung des tumorösen Gewebebereiches durch elektrische und/oder elektromagnetische Felder mittels Iontophorese zur Anhebung des gemessenen pH-Wertes in der unmittelbaren Umgebung eines tumorösen Gewebebereichs vorgesehen sein.
An die Elektroden kann eine Gleichspannung oder eine Wechselspannung angelegt werden. Auch hierbei wird die Änderung des Feldes in Abhängigkeit von dem jeweiligen pH-Meßwert vorgenommen, so daß auch diesbezüglich ein Regelkreis und somit eine gezielte Behandlung mit "Feedback"vorhanden ist.
Der pH-Sensor kann auf Halbleiterbasis auf der Basis einer Leitfähigkeits- und Impedanzmessung ausgebildet sein, wobei bei einem pH-Sensor auf Halbleiterbasis für diesen vorzugsweise wenigstens ein ionenselektiver Feldeffekttransistor (IS-FET) vorgesehen ist.
Mit einem pH-Sensor auf Halbleiterbasis ist eine hohe Meßgenauigkeit erzielbar und ein Sensor auf der Basis einer Leitfähigkeits- und Impedanzmessung läßt sich in bestimmten Anwendungen (Leber, Magen) einfacher anwenden.
Gegebenenfalls ist zusätzlich zu wenigstens einem pH-Sensor wenigstens ein weiterer Sensor, insbesondere ein Ionen- oder Molekularsensor vorgesehen.
Mit diesen zusätzlichen Sensoren lassen sich außer pH-Wertänderungen auch noch zusätzliche, therapierelevante Änderungen in der Mikroumgebung eines Tumors erfassen und aus diesen zusätzlichen Meßdaten können entsprechende Maßnahmen beim Applizieren des medizinischen Wirkstoffes abgeleitet werden.
Zweckmäßigerweise weist die Wirkstoffabgabeeinrichtung vorzugsweise wenigstens eine poröse Membran und eine Wirkstoff-Zuführung zu dieser Membrane auf, wobei sich bei der Wirkstoff-Zuführung eine Dosiereinrichtung befindet, die an eine Dosiersteuerung angeschlossen ist.
Damit ist eine regional begrenzte und dosierte Zuführung von Wirkstoff möglich.
Dabei bilden der oder die Sensoren sowie die gegebenenfalls vorgesehene, poröse Membrane die Auflage- und Kontaktfläche für den zu behandelnden Gewebebereich.
Bei dieser Auflage- und Kontaktfläche für den zu behandelnden Gewebebereich können auch wenigstens zwei Elektroden zu iontophoretischen Zwecken vorgesehen sind, die über elektrische Leitungen mit einer Spannungsquelle verbunden sind.
Eine Ausführungsform der Erfindung sieht vor, daß der Sensor-Aktuatorkopf eine komplette Funktionseinheit bildet und daß diese insbesondere wenigstens einen Wirkstoff-Vorratsbehälter, eine oder mehrere, mit der porösen Membrane oder dergleichen verbundene Dosiereinrichtung(en) mit Dosiersteuerung sowie zumindest einen pH-Sensor aufweist.
Zusätzlich besteht für eine physikalische Beeinflussung auch die Möglichkeit, daß die Funktionseinheit wenigstens einen pH-Sensor, wenigstens zwei Elektroden zu iontophoretischen Zwecken, eine Spannungsquelle sowie eine Steuereinrichtung aufweist.
Eine erfindungsgemäße Vorrichtung wird als komplette, funktionstüchtige Einheit innerhalb des Körpers eingesetzt und kann dort über einen vorgesehenen Behandlungszeitraum verbleiben. Da alle zur Funktion notwendigen Komponenten vorhanden sind, ist eine Verbindung nach außen nicht erforderlich.
Es besteht aber nach einer anderen Ausführungsform der Erfindung auch die Möglichkeit, daß der Wirkstoff-Vorratsbehälter, vorzugsweise zusammen mit der Dosiereinrichtung und der Dosiersteuerung, von dem Sensor-Aktuatorkopf abgesetzt angeordnet ist und daß eine oder mehrere Verbindungsleitungen zwischen diesen Funktionsgruppen zum dosierten Zuführen des Wirkstoffes zu dem Sensor-Aktuatorkopf und zum Verbinden mit den Elektroden vorgesehen ist.
Der Sensor-Aktuatorkopf selbst kann bei dieser Ausführungsform besonders klein ausgebildet sein, so daß er auch an schwierig zugänglichen Stellen innerhalb des Körpers einsetzbar ist. Außerdem besteht hierbei die Möglichkeit, daß die zum Sensor-Aktuatorkopf abgesetzte Versorgungseinheit gut zugänglich angeordnet wird, so daß ein Nachfüllen mit medizinischem Wirkstoff, eine eventuell externe Stromzuführung und dergleichen, einfach realisierbar sind.
Vorzugsweise sind bei der Auflage- und Kontaktfläche des Sensor-Aktuatorkopfes, insbesondere randseitig, Haftregionen zum vorzugsweise adhäsiven Anhaften des Sensor-Aktuatorkopfes an dem zu behandelnden Gewebebereich vorgesehen.
Dadurch kann der Sensor-Aktuatorkopf durch einfaches Ansetzen und Andrücken an dem zu behandelnden Bereich befestigt werden und zusätzliche Befestigungsmaßnahmen sind dadurch entbehrlich.
Vorteilhaft ist es dabei, wenn die Haftregionen des Sensor-Aktuatorskopfes elektrisch leitend ausgebildet sind und gleichzeitig als Elektroden für die Iontophorese dienen.
Dies ist platzsparend und vereinfacht den Aufbau des Sensor-Aktuatorkopfes.
Zusätzliche Ausgestaltungen der Erfindung sind in den weiteren Unteransprüchen aufgeführt.
Nachstehend ist die Erfindung mit ihren wesentlichen Einzelheiten anhand der Zeichnungen noch näher erläutert.
Es zeigt:
Figur 1
eine etwas schematisierte Darstellung einer erfindungsgemäßen Vorrichtung mit einem Sensor-Aktuatorkopf sowie einer dazu abgesetzt angeordneten und über eine Verbindungsleitung verbundenen Versorgungseinheit,
Figur 2
eine Unterseitenansicht des in Figur 1 gezeigten Sensor-Aktuatorkopfes,
Figur 3
eine Schnittdarstellung der Verbindungsleitung zwischen Sensor-Aktuatorkopf und Versorgungseinheit gemäß Figur 1,
Figur 4
eine andere Ausführungsform der erfindungsgemäßen Vorrichtung in perspektivischer Darstellung,
Figur 5
eine Unterseitenansicht der in Figur 4 gezeigten Vorrichtung, und
Figur 6
eine röhrenförmige Ausbildung eines Sensor-Aktuatorkopfes mit Blick auf die Kontaktfläche für den Einsatz in Hohlorganen.
Eine in Figur 1 gezeigte Vorrichtung 1 dient zum Applizieren von medizinischem Wirkstoff im Bereich von lebendem Zellgewebe. Es kann sich dabei insbesondere um einen zu behandelnden Tumor 2 handeln, der in Figur 1 angedeutet ist.
Die Vorrichtung 1 weist einen Sensor-Aktuatorkopf 3, eine im Ausführungsbeispiel gemäß Figur 1 zu diesem Sensor-Aktuatorkopf 3 abgesetzte Versorgungseinheit 4 sowie eine Verbindungsleitung 5 zwischen Sensor-Aktuatorkopf 3 und Versorgungseinheit 4 auf. Innerhalb der Versorgungseinheit 4 befindet sich ein Wirkstoff-Vorratsbehälter 6 vorzugsweise mit einer hier nicht näher dargestellten Dosiereinrichtung sowie einer Dosiersteuerung 7 und eine Stromversorgung 8.
Der Sensor-Aktuatorkopf 3 weist an seiner Auflage- und Kontaktfläche 13 eine poröse Membrane 9 (vgl. auch Figur 2), eine Wirkstoff-Zuführung zu dieser Membrane 9 sowie benachbart zu der Membrane Sensoren 10 auf. Die Membrane 9 sowie die Sensoren 10 kontaktieren in Applikationsstellung den Behandlungsbereich. Innerhalb der Verbindungsleitung 5, die im praktischen Ausführungsbeispiel durch einen Katheterschlauch gebildet sein kann, kann der medizinische Wirkstoff vom Vorratsbehälter 6 der porösen Membrane 9 zugeführt werden und außerdem sind in der Verbindungsleitung 5 auch elektrische Verbindungen zwischen dem oder den Sensoren 10 und der Dosiersteuerung 7 untergebracht. Dies ist in der Querschnittdarstellung gemäß Figur 3 gut erkennbar. Der Verbindungsschlauch für den Wirkstoff ist hierbei mit 11 und die elektrischen Leitungen sind mit 12 bezeichnet.
Mit Hilfe der erfindungsgemäßen Vorrichtung kann medizinischer Wirkstoff direkt bei dem zu behandelnden Bereich, beispielsweise einem Tumor 2 appliziert werden. Dazu wird der Sensor-Aktuatorkopf 3 direkt auf den zu behandelnden Bereich aufgesetzt und über die poröse Membrane 9 kann dann in diesem Bereich der medizinische Wirkstoff zugeführt werden. Mit Hilfe der Sensoren 10 kann eine Kontrolle des Behandlungsbereiches erfolgen und aufgrund der Meßergebnisse kann über die mit den Sensoren 10 verbundene Dosiersteuerung 7 eine exakte Anpassung der Wirkstoffdosierung vorgenommen werden.
Zumindest einer der Sensoren 10 ist dabei ein pH-Sensor, da für eine erfolgreiche Immuntherapie beispielsweise die Überwachung des PH-Wertes der Mikroumgebung des zu behandelnden Bereiches und auch eine Beeinflussung dieser Umgebung durch Variation des pH-Wertes, insbesondere durch entsprechende Wirkstoffzugabe, von wesentlicher Bedeutung ist. Auch andere chemotherapeutische Konzepte sind darauf angewiesen, daß die steilen, extrazellulären pH-Gradienten abgebaut werden.
Es können auch innerhalb des Applikationsbereiches mehrere pH-Sensoren vorgesehen sein, wobei zwei oder mehrere pH-Sensoren für eine extrazelluläre Gradientenmessung zueinander beabstandet angeordnet sein können.
Als pH-Sensor werden vorzugsweise ionenselektive Feldeffekttransistoren (IS-FET) eingesetzt.
Außerdem können noch weitere Sensoren 10, insbesondere Ionen- oder Molekularsensoren vorgesehen sein, um noch aussagekräftigere Meßergebnisse der Mikroumgebung des zu behandelnden Bereiches zu erhalten. Damit ist dann eine sehr gezielte, wirksame Behandlung möglich.
Die Figuren 4 und 5 zeigen eine abgewandelte Ausführungsform einer Vorrichtung 1a, bei der der Sensor-Aktuatorkopf 3a eine komplette Funktionseinheit bildet. Dieser Sensor-Aktuatorkopf 3a beinhaltet auch alle Baugruppen, die bei dem Ausführungsbeispiel gemäß Figur 1 in der Versorgungseinheit 4 untergebracht sind.
Bei dieser Ausführungsform der Vorrichtung 1a ergibt sich eine kompakte Einheit, die innerhalb des Körpers über einen entsprechenden Behandlungszeitraum als autarke Einheit verbleiben kann.
Die Unterseitenansicht gemäß Figur 5 zeigt noch im Bereich der Auflage- und Kontaktfläche 13, innerhalb der sich auch die poröse Membrane 9 sowie der oder die Sensoren 10 befinden, in den Eckbereichen beziehungsweise randseitig angeordnete Haftregionen 14. Mittels dieser Haftregionen 14 kann der Sensor-Aktuatorkopf 3a beziehungsweise auch der Sensor-Aktuatorkopf 3 gemäß Figur 1 und 2 an den zu behandelnden Bereich angedrückt werden und wird dann durch adhäsives Anhaften gehalten.
Die Haftregionen 14 können auch für iontophoretische Zwecke verwendet werden und sind dann elektrisch leitend ausgebildet und über Anschlußleitungen mit einer Spannungsquelle verbunden. Als Stromversorgung für die Dosiersteuerung und dergleichen kann eine auswechselbare oder aufladbare Batterie 8 (Figur 1) vorgesehen sein oder aber es besteht auch die Möglichkeit, daß eine thermoelektrische oder eine unter Zuhilfenahme der Körperflüssigkeit gebildete, galvanische Stromversorgung vorgesehen ist. Thermoelektrische oder galvanische Stromversorgungen sind insbesondere in Verbindung mit der in Figur 4 und 5 gezeigten Ausführungsform der erfindungsgemäßen Vorrichtung vorteilhaft.
Figur 6 zeigt noch eine weitere Ausführungsvariante eines Sensor-Aktuatorkopfes 3b, der im wesentlichen röhrenförmig ausgebildet ist und an seiner äußeren Mantelfläche eine streifenförmig längsorientierte Auflage- und Kontaktfläche aufweist. Diese Ausführungsform kommt insbesondere zur Behandlung innerhalb von Hohlorganen zur Anwendung. Erwähnt sei hierbei, daß auch mehrere Auflage- und Kontaktflächen am Umfang des röhrenförmigen Sensor-Aktuatorkopfes verteilt vorgesehen sein können. Auch die anderen Ausführungsformen von Applikationsköpfen können mit mehreren Auflage- und Kontaktflächen und innerhalb von diesen befindlichen porösen Membranen 9 und Sensoren 10 ausgerüstet sein.
An einem Ende des röhrenförmigen Sensor-Aktuatorkopfes 3b ist noch ein Anschluß 15 für einen externen Wirkstoffbehälter, insbesondere zum Nachfüllen von Wirkstoff angedeutet.

Claims (14)

  1. Vorrichtung zum Behandeln von lebendem Zellgewebe, wobei die Vorrichtung einen Sensor-Aktuatorkopf (3,3a,3b) mit einem pH-Sensor und einer Wirkstoffabgabeeinrichtung mit einem einen Wirkstoff bevorratenden Behälter (6) aufweist, und wobei der pH-Sensor und die Wirkstoffabgabeeinrichtung zur Wirkstoffdosierung in Abhängigkeit der pH-Wertmessung an eine Steuereinrichtung angeschlossen sind, dadurch gekennzeichnet, daß der Sensor-Aktuatorkopf (3,3a,3b) zumindest mit dem pH-Sensor (10) und der Wirkstoffabgabeeinrichtung derart ausgebildet ist, daß er innerhalb des Körpers im tumorösen Gewebebereich einsetzbar ist und diesen Behandlungsbereich in Applikationsstellung mit einer Auflage- und Kontaktfläche (13) direkt kontaktiert, daß der pH-Sensor (10) zur Bestimmung der Ansäuerung der unmittelbaren Umgebung dieses tumorösen Gewebebereichs angeordnet ist, und daß der Wirkstoff ein solcher zur Variation des pH-Wertes der unmittelbaren Umgebung des tumorösen Gewebebereichs und/oder zur Reduzierung der Ansäuerung der Tumorzellen selbst ist.
  2. Vorrichtung insbesondere nach Anspruch 1, dadurch gekennzeichnet, daß am Sensor-Aktuatorkopf Elektroden zur physikalischen Beeinflussung des tumorösen Gewebebereiches durch elektrische und/oder elektromagnetische Felder mittels Iontophorese zur Anhebung des gemessenen pH-Wertes in der unmittelbaren Umgebung eines tumorösen Gewebebereiches vorgesehen sind.
  3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Wirkstoffabgabeeinrichtung vorzugsweise wenigstens eine die Auflage- und Kontaktfläche bildende poröse Membrane (9) und eine Wirkstoff-Zuführung zu dieser Membrane aufweist und daß sich bei der Wirkstoff-Zuführung eine Dosiereinrichtung befindet, die an eine Dosiersteuerung (7) angeschlossen ist.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der oder die Sensoren (10) benachbart zu der Membrane (9) angeordnet sind.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß bei der Auflage- und Kontaktfläche (13) für den zu behandelnden Gewebebereich wenigstens zwei Elektroden zu iontophoretischen Zwecken vorgesehen sind, die über elektrische Leitungen mit einer Spannungsquelle verbunden sind.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß bei der Auflage- und Kontaktfläche (13) des Sensor-Aktuatorkopfes (3,3a,3b), insbesondere randseitig, Haftregionen (14) zum vorzugsweise adhäsiven Anhaften des Sensor-Aktuartorkopfes an dem zu behandelnden Gewebebereich (2) vorgesehen sind und daß die Haftregionen (14) des Sensor-Aktuatorkopfes gegebenenfalls elektrisch leitend ausgebildet sind und gleichzeitig als Elektrode für die Iontophorese dienen.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der pH-Sensor auf Halbleiterbasis oder auf der Basis einer Leitfähigkeits- und Impedanzmessung ausgebildet ist und daß bei einem ph-Sensor auf Halbleiterbasis für diesen vorzugsweise wenigstens ein ionenselektiver Feldeffekttransistor vorgesehen ist.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zusätzlich zu wenigstens einem pH-Sensor wenigstens ein weiterer Sensor, insbesondere ein Ionen- oder Molekularsensor vorgesehen ist.
  9. Vorrichtung nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß der Sensor-Aktuatorkopf (1a) eine komplette Funktionseinheit bildet und daß diese insbesondere wenigstens einen Wirkstoff-Vorratsbehälter (6), eine oder mehrere, mit der porösen Membrane (9) oder dergleichen verbundene Dosiereinrichtung(en) mit Dosiersteuerung (7) sowie zumindest einen pH-Sensor (10) aufweist.
  10. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der als Funktionseinheit ausgebildete Sensor-Aktuatorkopf wenigstens einen pH-Sensor (10), wenigstens zwei Elektroden zu iontophoretischen Zwecken, eine Spannungsquelle sowie eine Steuereinrichtung aufweist.
  11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Sensor-Aktuatorkopf (3b) im wesentlichen röhrenförmig ausgebildet ist und insbesondere an seiner Mantelfläche zumindest eine vorzugsweise streifenförmig längsorientierte Auflage- und Kontaktfläche (13) für den zu behandelnden Gewebebereich aufweist.
  12. Vorrichtung nach einem der Ansprüche 1 bis 8 oder 11, dadurch gekennzeichnet, daß der Wirkstoff-Vorratsbehälter (6), vorzugsweise zusammen mit der Dosiereinrichtung und der Dosiersteuerung (7), von dem Sensor-Aktuatorkopf (3) abgesetzt angeordnet ist und daß eine oder mehrere Verbindungsleitungen (5) zwischen diesen Funktionsgruppen zum insbesondere dosierten Zuführen des Wirkstoffes zu dem Sensor-Aktuatorkopf (3) und/oder zum Verbinden mit den Elektroden vorgesehen ist.
  13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß an dem Sensor-Aktuatorkopf (3b) ein Anschluss (15) für einen externen Wirkstoffbehälter, insbesondere zum Nachfüllen von Wirkstoff vorgesehen ist.
  14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß als Stromversorgung für die Vorrichtung eine im Sensor-Aktuatorkopf oder in einer von diesem abgesetzten Funktionseinheit befindliche Batterie und/oder eine thermoelektrische und/oder eine unter Zuhilfenahme der Körperflüssigkeit gebildete, galvanische Stromversorgung vorgesehen ist.
EP97100159A 1996-01-17 1997-01-08 Vorrichtung zum Behandeln von malignen Gewebsveränderungen Expired - Lifetime EP0784992B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19601487A DE19601487C2 (de) 1996-01-17 1996-01-17 Vorrichtung zum Behandeln von malignen Gewebsveränderungen
DE19601487 1996-01-17

Publications (3)

Publication Number Publication Date
EP0784992A2 EP0784992A2 (de) 1997-07-23
EP0784992A3 EP0784992A3 (de) 1997-11-19
EP0784992B1 true EP0784992B1 (de) 2003-04-09

Family

ID=7782958

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97100159A Expired - Lifetime EP0784992B1 (de) 1996-01-17 1997-01-08 Vorrichtung zum Behandeln von malignen Gewebsveränderungen

Country Status (4)

Country Link
US (1) US5820548A (de)
EP (1) EP0784992B1 (de)
JP (1) JP3957800B2 (de)
DE (2) DE19601487C2 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19717023C2 (de) 1997-04-23 2003-02-06 Micronas Gmbh Vorrichtung zum Behandeln von malignen, tumorösen Gewebebereichen
JPH1154632A (ja) * 1997-08-01 1999-02-26 Mitsubishi Electric Corp メモリセルのレイアウトパターン
US6366808B1 (en) 2000-03-13 2002-04-02 Edward A. Schroeppel Implantable device and method for the electrical treatment of cancer
US6738663B2 (en) 1999-04-09 2004-05-18 Oncostim, A Minnesota Corporation Implantable device and method for the electrical treatment of cancer
US8024048B2 (en) * 2000-03-13 2011-09-20 Ionix Medical Inc. Method and device for treating cancer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US7742811B2 (en) * 2000-03-13 2010-06-22 Onco Stim Implantable device and method for the electrical treatment of cancer
DE20113761U1 (de) * 2001-08-20 2001-12-20 Lohmann & Rauscher Gmbh & Co Wundversorgungsprodukt
WO2004037341A2 (en) * 2002-05-07 2004-05-06 Schroeppel Edward A Method and device for treating concer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US7079890B2 (en) * 2003-03-19 2006-07-18 Solco Biomedical Co., Ltd. Electrochemical therapy apparatus
KR101330431B1 (ko) 2003-09-11 2013-11-20 테라노스, 인코포레이티드 피분석물의 모니터링 및 약물 전달을 위한 의료 기기
US7720549B2 (en) * 2004-04-06 2010-05-18 Oncostim, Inc. Partially implantable system for the electrical treatment of abnormal tissue growth
US20050222646A1 (en) * 2004-04-06 2005-10-06 Kai Kroll Method and device for treating cancer with modified output electrical therapy
US7155269B2 (en) * 2005-03-11 2006-12-26 Tanita Corporation Stress evaluation apparatus
US7888125B2 (en) * 2005-05-09 2011-02-15 Theranos, Inc. Calibration of fluidic devices
US11287421B2 (en) 2006-03-24 2022-03-29 Labrador Diagnostics Llc Systems and methods of sample processing and fluid control in a fluidic system
US8741230B2 (en) 2006-03-24 2014-06-03 Theranos, Inc. Systems and methods of sample processing and fluid control in a fluidic system
US8007999B2 (en) 2006-05-10 2011-08-30 Theranos, Inc. Real-time detection of influenza virus
US20080113391A1 (en) * 2006-11-14 2008-05-15 Ian Gibbons Detection and quantification of analytes in bodily fluids
US8158430B1 (en) 2007-08-06 2012-04-17 Theranos, Inc. Systems and methods of fluidic sample processing
DE102008021575A1 (de) 2008-04-30 2009-11-05 Neue Magnetodyn Gmbh Vorrichtung zum Stimulieren eines Heilungsprozesses
US10842555B2 (en) * 2008-08-20 2020-11-24 Prostacare Pty Ltd Catheter for treating tissue with non-thermal ablation
CN105825049A (zh) 2009-10-19 2016-08-03 提拉诺斯公司 集成的健康数据采集和分析系统
CN107080867B (zh) * 2017-05-27 2019-10-11 李福宝 一种肿瘤内科药物介入治疗装置
US11457975B2 (en) 2017-11-27 2022-10-04 Prostacare Pty Ltd Apparatus and a method for the treatment of a prostatic disease
US11224474B2 (en) 2018-02-28 2022-01-18 Prostacare Pty Ltd System for managing high impedance changes in a non-thermal ablation system for BPH

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003379A (en) * 1974-04-23 1977-01-18 Ellinwood Jr Everett H Apparatus and method for implanted self-powered medication dispensing
US4402694A (en) * 1981-07-16 1983-09-06 Biotek, Inc. Body cavity access device containing a hormone source
DE3321831A1 (de) * 1983-06-15 1983-11-24 Armin 1000 Berlin Pohlenz Zweikammer-elektrolyse-geraet zur beeinflussung von zellgeweben, insbesondere solcher von tumoren
US5135479A (en) * 1983-08-18 1992-08-04 Drug Delivery Systems, Inc. Programmable control and mounting system for transdermal drug applicator
US4800899A (en) * 1984-10-22 1989-01-31 Microthermia Technology, Inc. Apparatus for destroying cells in tumors and the like
DE3601730A1 (de) * 1985-01-23 1986-09-11 Horst 2000 Hamburg Mau Verfahren und vorrichtung zur erkennung und regulierung von koerperfluessigkeitswerten
SE455920B (sv) * 1986-01-29 1988-08-22 Hans Wiksell Anordning for hypertermibehandling av tumorer
US4784158A (en) * 1987-08-21 1988-11-15 Okimoto Paul M Vaginal testing applicator and method
US5413915A (en) * 1988-07-12 1995-05-09 Resource Technologies Group, Inc. Method and sensor for detecting toxic chemical exposure effects and metabolic activation of carcinogenic chemical agents
HRP921157A2 (en) * 1991-12-20 1994-10-31 Lohmann Therapie Syst Lts Transdermal system of applying acetilsalicilyc acid in antithrombosys therapy
CA2153993A1 (en) * 1992-01-16 1993-08-05 Rakesh K. Jain Method and apparatus for locating tumors
US5301688A (en) * 1992-08-07 1994-04-12 Physion S.R.L. Method for localization and therapy of occult bladder cancer
AU3321293A (en) * 1992-08-28 1994-03-29 Cortrak Medical, Inc. Polymer matrix drug delivery apparatus and method
US5421816A (en) * 1992-10-14 1995-06-06 Endodermic Medical Technologies Company Ultrasonic transdermal drug delivery system
DE4300018A1 (de) * 1993-01-02 1995-03-23 Knedla Richard Dr Verfahren, sowie die techn. Lösung, die zur Durchführung der medizinischen Elektrotherapie, die vorzugsweise bei der Behandlung von Krankheiten, wie verschiedene Krebsformen, Leukämie, Neurofibromathose, AIDS und verschiedener Formen von tropischen Viruserkrankungen etc. angewandt sein kann

Also Published As

Publication number Publication date
EP0784992A3 (de) 1997-11-19
EP0784992A2 (de) 1997-07-23
JPH10179763A (ja) 1998-07-07
JP3957800B2 (ja) 2007-08-15
DE59709729D1 (de) 2003-05-15
US5820548A (en) 1998-10-13
DE19601487A1 (de) 1997-07-24
DE19601487C2 (de) 2001-09-13

Similar Documents

Publication Publication Date Title
EP0784992B1 (de) Vorrichtung zum Behandeln von malignen Gewebsveränderungen
DE19717023C2 (de) Vorrichtung zum Behandeln von malignen, tumorösen Gewebebereichen
DE69631766T2 (de) Vorrichtung zur verabreichnung von medikamenten durch elektrotransport
AT408616B (de) Elektrotransport-abgabeeinrichtung
DE69928383T2 (de) Gerät zur steuerung der generierung elektrischer felder
EP1878462B1 (de) Einführvorrichtung
EP3204105B1 (de) Implantierbare elektrodenanordnung
DE69532282T2 (de) Vorrichtung zur probenentnahme mittels polaritätsumkehrung
CN1606461B (zh) 一种用制剂作皮肤治疗的装置、一种成套器具及皮肤贴片
EP0273958B1 (de) Vorrichtung zum feststellen von eigenschaften, verschiedenheiten und veränderungen des menschlichen oder tierischen körpers
EP3119270A1 (de) Vorrichtung für die ermittlung des zustandes der haut einer person
EP3145581B1 (de) Therapeutisch anwendbare mehrkanal- gleichstromabgabevorrichtung
DE2544884A1 (de) Vorrichtung und verfahren zur medizinischen behandlung
DE19681392B4 (de) Elektrotransport-Vorrichtung mit wiederverwendbarer Steuereinrichtung und vorbereitendes Verfahren
DE69723995T2 (de) Vorrichtung zur iontophoretischen verabreichung von medikamenten mit verfahren zur aktivierung derselben
DE69838485T2 (de) Verfahren und vorrichtung zur transdermalen verabreichung von lithium
EP1457233B1 (de) Transdermales Wirkstoffverabreichungssystem mit Elektrodenraster
WO1999052590A1 (de) Transdermales applikationssystem (tds) mit elektrodenraster
Jan Struijk Passive models of excitable cells
EP0298441B1 (de) Vorrichtung zum Feststellen von Eigenschaften, Verschiedenheiten und Veränderungen des menschlichen oder tierischen Körpers
EP0158310A2 (de) Übertragungsgerät für Elektroakupunkturwirkungen
Greenshaw Electrical and chemical stimulation of brain tissue in vivo
DE60133317T2 (de) System für die elektrokinetische freisetzung einer substanz
DE19713224A1 (de) Elektro-Magnet-Pen
WO1991015256A1 (de) Reizstromgerät für feinströme und elektroden mit sensorschaltung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MICRONAS INTERMETALL GMBH

17P Request for examination filed

Effective date: 19980516

17Q First examination report despatched

Effective date: 19990811

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MICRONAS GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030409

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070228

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070521

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110201

Year of fee payment: 15

Ref country code: FR

Payment date: 20110216

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110128

Year of fee payment: 15

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120108

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120801