EP0801369A1 - Optical indicator for traffic signal device - Google Patents

Optical indicator for traffic signal device Download PDF

Info

Publication number
EP0801369A1
EP0801369A1 EP97101305A EP97101305A EP0801369A1 EP 0801369 A1 EP0801369 A1 EP 0801369A1 EP 97101305 A EP97101305 A EP 97101305A EP 97101305 A EP97101305 A EP 97101305A EP 0801369 A1 EP0801369 A1 EP 0801369A1
Authority
EP
European Patent Office
Prior art keywords
reflector
light
signal transmitter
optical axis
facets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97101305A
Other languages
German (de)
French (fr)
Other versions
EP0801369B1 (en
Inventor
Christian Liéter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Signalbau Huber GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19627940A external-priority patent/DE19627940A1/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0801369A1 publication Critical patent/EP0801369A1/en
Application granted granted Critical
Publication of EP0801369B1 publication Critical patent/EP0801369B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2111/00Use or application of lighting devices or systems for signalling, marking or indicating, not provided for in codes F21W2102/00 – F21W2107/00
    • F21W2111/02Use or application of lighting devices or systems for signalling, marking or indicating, not provided for in codes F21W2102/00 – F21W2107/00 for roads, paths or the like

Definitions

  • the invention relates to an optical signal transmitter for traffic signal systems, according to the preamble of claim 1.
  • Such an optical signal generator is known from GB-PS 1 140 417.
  • This optical signal transmitter has a reflector, several light sources and a translucent cover plate.
  • Such optical signal transmitters must generate a prescribed illuminance distribution or light distribution so that the light beam emitted by them is visible from predetermined directions.
  • traffic signal systems such as traffic lights
  • the light beam emitted by the optical signal transmitter must be visible above all at an angle from below and from lateral directions.
  • the reflector is usually designed in the form of a paraboloid of revolution, so that light emitted by the light source is reflected by the reflector as a parallel light beam.
  • the cover plate must have optical elements by which the light beam reflected by the reflector is deflected in such a way that the prescribed distribution of illuminance is generated.
  • the respective operating conditions require different illuminance distributions, which in corresponding standards are defined.
  • the different illuminance distributions are generated by different cover plates.
  • the cover plate often has to represent different symbols, such as directional arrows, which results in a large number of different design variants for the cover plate.
  • the optical signal transmitter according to the invention with the features according to claim 1 has the advantage that the light beam reflected by the reflector generates essentially the respectively prescribed illuminance distribution and thus the cover plate can be simple and the manufacture of the signal transmitter is simplified. In addition, it is possible to reduce the large number of different design variants of cover disks, since the respective illuminance distribution is already generated essentially by the light reflected by the reflector.
  • FIG. 1 shows an optical signal transmitter in a vertical longitudinal section
  • FIG. 2 shows a reflector of the signal transmitter according to a first Exemplary embodiment in a front view
  • FIG. 3 a measuring screen arranged in front of the signal transmitter, which is illuminated by the light beam reflected by the reflector
  • FIG. 4 the measuring screen when illuminated by the light beam emerging from the signal transmitter
  • FIG. 1 shows an optical signal transmitter in a vertical longitudinal section
  • FIG. 2 shows a reflector of the signal transmitter according to a first Exemplary embodiment in a front view
  • FIG. 3 a measuring screen arranged in front of the signal transmitter, which is illuminated by the light beam reflected by the reflector
  • FIG. 4 the measuring screen when illuminated by the light beam emerging from the signal transmitter
  • FIG. 1 shows an optical signal transmitter in a vertical longitudinal section
  • FIG. 2 shows a reflector of the signal transmitter according to a first Exemplary embodiment in a front view
  • FIG. 3 a measuring screen arranged in front of the signal transmitter, which is illuminated by
  • Figure 5 the reflector according to a second exemplary embodiment in a front view
  • Figure 6 shows the reflector in a vertical longitudinal section along line VI-VI in Figure 5
  • Figure 7 shows the reflector according to a third embodiment in a front view
  • Figure 8 shows the reflector according to the third embodiment in a modified embodiment in a front view.
  • An optical signal transmitter shown in FIGS. 1, 2 and 5 to 8 is provided for use in traffic signal systems, such as traffic lights.
  • the signal transmitter has a reflector 10, in which at least one light source 12 is inserted, which can be an incandescent lamp, for example.
  • the reflector 10 can be made of metal or plastic.
  • the optical axis of the reflector 10 is designated 11.
  • the signal transmitter also has a translucent cover disk 14 which is arranged in the beam path of the light beam reflected by the reflector 10 and which closes the light exit opening of the signal transmitter and which can be colored in the required signal color of the signal transmitter.
  • a plurality of signal transmitters can be arranged on the traffic signal system, for example three signal transmitters one above the other in the case of a traffic light, one signal transmitter with a red-colored cover disk 14, one with a yellow-colored cover disk 14 and one with a green-colored cover disk 14 being provided.
  • the cover plate 14 can be made of glass or plastic.
  • FIG. 2 shows a measuring screen 20 which is arranged at a distance from the signal transmitter approximately coaxially to its optical axis 11 and is illuminated by the light bundle reflected by the reflector 10.
  • the horizontal center plane of the measuring screen 20 containing the optical axis 11 is designated by HH and its vertical center plane containing the optical axis 11 is designated by VV.
  • the measuring screen 20 is illuminated by the light beam reflected by the reflector 10 in a region designated by 22.
  • Isocandela Isolux lines
  • the center of gravity of the area 22 is arranged below the horizontal central plane HH of the measuring screen 20 and the area is arranged at least approximately symmetrically on both sides of the vertical central plane VV.
  • the area 22 is delimited at the top by a line 26 approximately in the form of an inverted U, which has its highest point at least approximately in the area of the vertical center plane VV and runs downwards with increasing distance from the vertical center plane VV.
  • the area 22 is delimited at the bottom by a line 28 which is at least approximately straight or also approximately in the form of an inverted U.
  • the area 22 widens downwards to its lower boundary line 28.
  • the maximum illuminance in the area 22 is present near the intersection HV of the horizontal center plane HH and the vertical center plane VV or somewhat below the point HV.
  • the isocandelal lines 24 run at least approximately like the lines 26, 28.
  • the reflection surface of the reflector 10 can be calculated step by step from the predetermined illuminance distribution, as shown in FIG. 3, to be generated by the light bundle reflected by the reflector 10.
  • the shape is determined on the basis of the optical reflection laws for small subareas of the reflector 10 and successive subareas are determined step by step, so that there is an overall continuous reflection surface.
  • the distance of the vertex 13 of the reflector 10 arranged on the optical axis 11 from the luminous element of the light source 12 can be predetermined.
  • the reflector shape is calculated step by step, for each area of the reflector 10 from the direction of the light to be reflected from it via geometric reflection, the angle of incidence ⁇ of the light rays emitted by the light source 12 with respect to the normal N to the relevant reflector area equal to the drop angle ⁇ , the orientation of the normal N is determined for the relevant reflector area. From the orientation of the normal N, the tangential plane T to the reflector region in question, which is arranged perpendicular to this, and thus its orientation is determined. The stringing together of the reflector areas determined one after the other results in a continuous reflection surface.
  • the reflector 10 can have sectional curves in its longitudinal sections containing its optical axis 11, which are approximately parabolas. In cuts perpendicular to its optical axis 11, the reflector 10 can have cutting curves which are approximately ellipses, the large semi-axes of which are arranged approximately horizontally.
  • a reflector 10 can be obtained in the manner described above, which generates the predetermined illuminance distribution with the light reflected by this, but the luminance on the luminous field of the signal transmitter, that is to say on its illuminated cover plate 14, may not be sufficiently uniform.
  • the cover plate 14 is provided with optical elements which cause the light bundle reflected by the reflector 10 to scatter as it passes through.
  • the optical elements of the cover plate 14 can also be used to deflect the light beam reflected by the reflector 10 when passing in certain directions if this is necessary to generate a uniform luminance on the luminous field of the signal transmitter.
  • FIG. 4 shows the measuring screen 20 when illuminated by the light bundle emerging from the signal transmitter after passing through the cover plate 14.
  • the measuring screen 20 is illuminated in an area 32, the center of gravity of which lies below the horizontal central plane HH and which is arranged approximately symmetrically on both sides of the vertical central plane VV.
  • the area 32 is approximately trapezoidal and widens towards the bottom.
  • a number of isocandelal lines 34 are entered in area 32.
  • elements causing the scattered light can be scattered on the reflecting surface of the reflector 10.
  • elements causing scattering are designed in the form of a plurality of grooves 40 which correspond to the reflection surface of the Reflector 10 are superimposed.
  • the grooves 40 can be formed, for example, as concave depressions in the reflection surface of the reflector 10.
  • the grooves 40 can also be designed as convex elevations in the reflection surface.
  • the grooves 40 can be arranged in an annular manner, at least approximately coaxially to the optical axis 11.
  • Scoring 40 causes the light reflected on the reflection surface to be scattered, as a result of which a uniform luminance can be achieved on the luminous field of the signal transmitter.
  • the width of the grooves 40 can be constant over the entire reflection surface or can be variable.
  • the grooves 40 are preferably designed such that the scattering of the reflected light caused by them decreases from the apex region 13 of the reflector 10 with increasing distance from the latter to the front edge of the reflector 10 pointing in the light exit direction. In this way it can be achieved that there is both a sufficient illuminance near the optical axis 11 and a uniform luminance on the luminous field of the signal generator around the optical axis 11.
  • FIG. 7 shows the reflector 10 of the signal transmitter in a front view in accordance with a third exemplary embodiment, the reflector 10 in principle being configured as in the first exemplary embodiment, the reflection surface of which, however, has a plurality of facets 50 superimposed.
  • the individual facets 50 can be essentially flat or can be convex or concave.
  • the facets 50 cause a scattering of the light reflected on the reflection surface, whereby the luminance of the luminous field of the signal transmitter can be made more uniform.
  • the facets 50 can, for example, be arranged in a matrix-like manner as shown in FIG. 7 and approximately rectangular be trained.
  • the facets 50 arranged one above the other in rows can each be arranged offset to the facets 50 arranged in rows below.
  • the effect of the facets 50 can be such that the scattering of the reflected light caused by them decreases from the apex region 13 of the reflector 10 with increasing distance from the latter to the front edge of the reflector 10 pointing in the light exit direction.
  • FIG. 8 shows an embodiment of the reflector 10 which is modified compared to FIG. 7, the arrangement of the facets 52 being changed.
  • Several facets 52 are arranged offset to one another in the radial direction with respect to the optical axis 11.
  • the facets 52 arranged in adjacent radial rows are each offset from one another.
  • the facets 52 are each designed in the shape of a segment of a circle.
  • the facets 52 can, as indicated above in relation to FIG. 7, be designed with regard to their design and effect.

Abstract

The signal source has a light source positioned at the focus of a rear reflector fitted with a front cover disc. The reflector is shaped so that the output light beam illuminates a measuring screen (20), positioned infront of it in the absence of the front cover disc, over an area (22) with a centre point below the horizontal centre plane (HH) of the screen. The illuminated area is symmetrical relative to the vertical centre plane (VV) of the screen and dips downwards at either side.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem optischen Signalgeber für Verkehrssignalanlagen, nach der Gattung des Anspruchs 1.The invention relates to an optical signal transmitter for traffic signal systems, according to the preamble of claim 1.

Ein solcher optischer Signalgeber ist durch die GB-PS 1 140 417 bekannt. Dieser optische Signalgeber weist einen Reflektor, mehrere Lichtquellen und eine lichtdurchlässige Abdeckscheibe auf. Derartige optische Signalgeber müssen eine vorgeschriebene Beleuchtungsstärkeverteilung bzw. Lichtverteilung erzeugen, damit das von diesen ausgesandte Lichtbündel aus vorgegebenen Richtungen sichtbar ist. Bei Verkehrssignalanlagen, wie beispielsweise Verkehrsampeln, muß das von dem optischen Signalgeber ausgesandte Lichtbündel vor allem von schräg unten und aus seitlichen Richtungen sichtbar sein. Üblicherweise ist der Reflektor in Form eines Rotationsparaboloids ausgebildet, so daß durch diesen von der Lichtquelle ausgesandtes Licht als ein paralleles Lichtbündel reflektiert wird. Die Abdeckscheibe muß dabei optische Elemente aufweisen, durch die das vom Reflektor reflektierte Lichtbündel derart abgelenkt wird, daß die vorgeschriebene Beleuchtungsstärkeverteilung erzeugt wird. Dabei verlangen die jeweiligen Einsatzbedingungen unterschiedliche Beleuchtungsstärkeverteilungen, die in entsprechenden Normen festgelegt sind. Die unterschiedlichen Beleuchtungsstärkeverteilungen werden durch unterschiedliche Abdeckscheiben erzeugt. Zusätzlich muß die Abdeckscheibe oftmals verschiedene Sinnbilder wie beispielsweise Richtungspfeile darstellen, wodurch sich eine große Anzahl verschiedener Ausführungsvarianten für die Abdeckscheibe ergibt.Such an optical signal generator is known from GB-PS 1 140 417. This optical signal transmitter has a reflector, several light sources and a translucent cover plate. Such optical signal transmitters must generate a prescribed illuminance distribution or light distribution so that the light beam emitted by them is visible from predetermined directions. In traffic signal systems, such as traffic lights, the light beam emitted by the optical signal transmitter must be visible above all at an angle from below and from lateral directions. The reflector is usually designed in the form of a paraboloid of revolution, so that light emitted by the light source is reflected by the reflector as a parallel light beam. The cover plate must have optical elements by which the light beam reflected by the reflector is deflected in such a way that the prescribed distribution of illuminance is generated. The respective operating conditions require different illuminance distributions, which in corresponding standards are defined. The different illuminance distributions are generated by different cover plates. In addition, the cover plate often has to represent different symbols, such as directional arrows, which results in a large number of different design variants for the cover plate.

Vorteile der ErfindungAdvantages of the invention

Der erfindungsgemäße optische Signalgeber mit den Merkmalen gemäß Anspruch 1 hat demgegenüber den Vorteil, daß bereits das vom Reflektor reflektierte Lichtbündel im wesentlichen die jeweils vorgeschriebene Beleuchtungsstärkeverteilung erzeugt und somit die Abdeckscheibe einfach ausgebildet sein kann und die Herstellung des Signalgebers vereinfacht ist. Außerdem ist es möglich, die große Anzahl der verschiedenen Ausführungsvarianten von Abdeckscheiben zu verringern, da ja bereits im wesentlichen durch das vom Reflektor reflektierte Licht die jeweilige Beleuchtungsstärkeverteilung erzeugt wird.The optical signal transmitter according to the invention with the features according to claim 1 has the advantage that the light beam reflected by the reflector generates essentially the respectively prescribed illuminance distribution and thus the cover plate can be simple and the manufacture of the signal transmitter is simplified. In addition, it is possible to reduce the large number of different design variants of cover disks, since the respective illuminance distribution is already generated essentially by the light reflected by the reflector.

In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Signalgebers angegeben. Durch die Weiterbildung gemäß Anspruch 4 ist eine gleichmäßige Leuchtdichte auf dem Leuchtfeld des Signalgebers ermöglicht.Advantageous refinements and developments of the signal transmitter according to the invention are specified in the dependent claims. The development according to claim 4 enables a uniform luminance on the luminous field of the signal transmitter.

Zeichnungdrawing

Drei Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 einen optischen Signalgeber in einem vertikalen Längsschnitt, Figur 2 einen Reflektor des Signalgebers gemäß einem ersten Ausführungsbeispiel in einer Vorderansicht, Figur 3 einen vor dem Signalgeber angeordneten Meßschirm, der durch das vom Reflektor reflektierte Lichtbündel beleuchtet wird, Figur 4 den Meßschirm bei der Beleuchtung durch das aus dem Signalgeber austretende Lichtbündel, Figur 5 den Reflektor gemäß einem zweiten Ausführungsbeispiel in einer Vorderansicht, Figur 6 den Reflektor in einem vertikalen Längsschnitt entlang Linie VI-VI in Figur 5, Figur 7 den Reflektor gemäß einem dritten Ausführungsbeispiel in einer Vorderansicht und Figur 8 den Reflektor gemäß dem dritten Ausführungsbeispiel in einer modifizierten Ausführung in einer Vorderansicht.Three embodiments of the invention are shown in the drawing and explained in more detail in the following description. FIG. 1 shows an optical signal transmitter in a vertical longitudinal section, FIG. 2 shows a reflector of the signal transmitter according to a first Exemplary embodiment in a front view, FIG. 3 a measuring screen arranged in front of the signal transmitter, which is illuminated by the light beam reflected by the reflector, FIG. 4 the measuring screen when illuminated by the light beam emerging from the signal transmitter, FIG. 5 the reflector according to a second exemplary embodiment in a front view , Figure 6 shows the reflector in a vertical longitudinal section along line VI-VI in Figure 5, Figure 7 shows the reflector according to a third embodiment in a front view and Figure 8 shows the reflector according to the third embodiment in a modified embodiment in a front view.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Ein in den Figuren 1,2 und 5 bis 8 dargestellter optischer Signalgeber ist zur Verwendung bei Verkehrssignalanlagen, wie beispielsweise Verkehrsampeln, vorgesehen. Der Signalgeber weist einen Reflektor 10 auf, in den wenigstens eine Lichtquelle 12 eingesetzt ist, die beispielsweise eine Glühlampe sein kann. Der Reflektor 10 kann aus Metall oder Kunststoff bestehen. Die optische Achse des Reflektors 10 ist mit 11 bezeichnet. Der Signalgeber weist außerdem eine im Strahlengang des vom Reflektor 10 reflektierten Lichtbündels angeordnete lichtdurchlässige Abdeckscheibe 14 auf, die die Lichtaustrittsöffnung des Signalgebers verschließt und die in der erforderlichen Signalfarbe des Signalgebers eingefärbt sein kann. Es können mehrere Signalgeber an der Verkehrssignalanlage angeordnet sein, beispielsweise bei einer Verkehrsampel drei Signalgeber übereinander, wobei jeweils ein Signalgeber mit einer rot gefärbten Abdeckscheibe 14, einer mit einer gelb gefärbten Abdeckscheibe 14 und einer mit einer grün gefärbten Abdeckscheibe 14 vorgesehen ist. Die Abdeckscheibe 14 kann aus Glas oder Kunsststoff bestehen.An optical signal transmitter shown in FIGS. 1, 2 and 5 to 8 is provided for use in traffic signal systems, such as traffic lights. The signal transmitter has a reflector 10, in which at least one light source 12 is inserted, which can be an incandescent lamp, for example. The reflector 10 can be made of metal or plastic. The optical axis of the reflector 10 is designated 11. The signal transmitter also has a translucent cover disk 14 which is arranged in the beam path of the light beam reflected by the reflector 10 and which closes the light exit opening of the signal transmitter and which can be colored in the required signal color of the signal transmitter. A plurality of signal transmitters can be arranged on the traffic signal system, for example three signal transmitters one above the other in the case of a traffic light, one signal transmitter with a red-colored cover disk 14, one with a yellow-colored cover disk 14 and one with a green-colored cover disk 14 being provided. The cover plate 14 can be made of glass or plastic.

In Figur 2 ist der Reflektor 10 des Signalgebers gemäß einem ersten Ausführungsbeispiel dargestellt. Der Reflektor 10 weist eine konkav gekrümmte Reflexionsfläche auf, in der in Figur 2 mehrere Linien 16 gleicher Höhe eingezeichnet sind. Die Höhenlinien 16 verlaufen dabei in Ebenen senkrecht zur optischen Achse 11 des Reflektors 10. In Figur 3 ist ein mit Abstand vor dem Signalgeber etwa koaxial zu dessen optischer Achse 11 angeordneter Meßschirm 20 dargestellt, der durch das vom Reflektor 10 reflektierte Lichtbündel beleuchtet wird. Die die optische Achse 11 enthaltende horizontale Mittelebene des Meßschirms 20 ist mit HH bezeichnet und dessen die optische Achse 11 enthaltende vertikale Mittelebene ist mit VV bezeichnet. Der Meßschirm 20 wird durch das vom Reflektor 10 reflektierte Lichtbündel in einem mit 22 bezeichneten Bereich beleuchtet. Im Bereich 22 sind mehrere Linien 24 gleicher Beleuchtungsstärke, sogenannte Isocandela- bzw. Isoluxlinien eingetragen. Der Schwerpunkt des Bereichs 22 ist unterhalb der horizontalen Mittelebene HH des Meßschirms 20 angeordnet und der Bereich ist zumindest annähernd symmetrisch beiderseits der vertikalen Mittelebene VV angeordnet. Der Bereich 22 ist nach oben durch eine Linie 26 etwa in Form eines umgekehrten U begrenzt, die zumindest annähernd im Bereich der vertikalen Mittelebene VV ihren höchsten Punkt aufweist und mit zunehmendem Abstand von der vertikalen Mittelebene VV nach unten verläuft. Der Bereich 22 ist nach unten durch eine Linie 28 begrenzt, die zumindest annähernd gerade oder ebenfalls etwa in Form eines umgekehrten U verläuft. Der Bereich 22 verbreitert sich nach unten hin bis zu seiner unteren Begrenzungslinie 28. Die maximale Beleuchtungsstärke im Bereich 22 ist nahe dem Schnittpunkt HV der horizontalen Mittelebene HH und der vertikalen Mittelebene VV oder etwas unterhalb des Punkts HV vorhanden. Innerhalb des Bereichs 22 verlaufen die Isocandelalinien 24 zumindest annähernd wie die Linien 26,28.In Figure 2, the reflector 10 of the signal generator is shown according to a first embodiment. The reflector 10 has a concavely curved reflection surface, in which several lines 16 of the same height are shown in FIG. The contour lines 16 run in planes perpendicular to the optical axis 11 of the reflector 10. FIG. 3 shows a measuring screen 20 which is arranged at a distance from the signal transmitter approximately coaxially to its optical axis 11 and is illuminated by the light bundle reflected by the reflector 10. The horizontal center plane of the measuring screen 20 containing the optical axis 11 is designated by HH and its vertical center plane containing the optical axis 11 is designated by VV. The measuring screen 20 is illuminated by the light beam reflected by the reflector 10 in a region designated by 22. In area 22, several lines 24 of the same illuminance, so-called Isocandela or Isolux lines, are entered. The center of gravity of the area 22 is arranged below the horizontal central plane HH of the measuring screen 20 and the area is arranged at least approximately symmetrically on both sides of the vertical central plane VV. The area 22 is delimited at the top by a line 26 approximately in the form of an inverted U, which has its highest point at least approximately in the area of the vertical center plane VV and runs downwards with increasing distance from the vertical center plane VV. The area 22 is delimited at the bottom by a line 28 which is at least approximately straight or also approximately in the form of an inverted U. The area 22 widens downwards to its lower boundary line 28. The maximum illuminance in the area 22 is present near the intersection HV of the horizontal center plane HH and the vertical center plane VV or somewhat below the point HV. Within area 22 the isocandelal lines 24 run at least approximately like the lines 26, 28.

Die Reflexionsfläche des Reflektors 10 kann aus der wie in Figur 3 dargestellten, von dem vom Reflektor 10 reflektierten Lichtbündel zu erzeugenden vorgegebenen Beleuchtungsstärkeverteilung schrittweise berechnet werden. Hierbei wird unter Zugrundelegung der optischen Reflexionsgesetze für kleine Teilbereiche des Reflektors 10 die Form bestimmt und schrittweise werden aufeinanderfolgende Teilbereiche bestimmt, so daß sich insgesamt eine kontinuierliche Reflexionsfläche ergibt. Zum Beginn der Berechnung der Reflektorform kann der Abstand des auf der optischen Achse 11 angeordneten Scheitelpunkts 13 des Reflektors 10 vom Leuchtkörper der Lichtquelle 12 vorgegeben werden. Ausgehend vom Scheitelpunkt 13 wird die Reflektorform schrittweise berechnet, indem für jeden Bereich des Reflektors 10 aus der Richtung des von diesem zu reflektierenden Lichts über geometrische Reflexionsgesetzte, Auftreffwinkel α der von der Lichtquelle 12 ausgesandten Lichtstrahlen bezüglich der Normalen N auf den betreffenden Reflektorbereich gleich Ausfallwinkel β, die Ausrichtung der Normalen N für den betreffenden Reflektorbereich bestimmt wird. Aus der Ausrichtung der Normalen N wird die senkrecht zu dieser angeordnete Tangentialebene T an den betreffenden Reflektorbereich und damit dessen Ausrichtung bestimmt. Die Aneinanderreihung der so nacheinander bestimmten Reflektorbereiche ergibt eine kontinuierliche Reflexionsfläche. Der Reflektor 10 kann in dessen optische Achse 11 enthaltenden Längsschnitten Schnittkurven aufweisen, die näherungsweise Parabeln sind. In Schnitten senkrecht zu dessen optischer Achse 11 kann der Reflektor 10 Schnittkurven aufweisen, die näherungsweise Ellipsen sind, wobei deren große Halbachsen etwa horizontal angeordnet sind.The reflection surface of the reflector 10 can be calculated step by step from the predetermined illuminance distribution, as shown in FIG. 3, to be generated by the light bundle reflected by the reflector 10. Here, the shape is determined on the basis of the optical reflection laws for small subareas of the reflector 10 and successive subareas are determined step by step, so that there is an overall continuous reflection surface. At the beginning of the calculation of the shape of the reflector, the distance of the vertex 13 of the reflector 10 arranged on the optical axis 11 from the luminous element of the light source 12 can be predetermined. Starting from the apex 13, the reflector shape is calculated step by step, for each area of the reflector 10 from the direction of the light to be reflected from it via geometric reflection, the angle of incidence α of the light rays emitted by the light source 12 with respect to the normal N to the relevant reflector area equal to the drop angle β , the orientation of the normal N is determined for the relevant reflector area. From the orientation of the normal N, the tangential plane T to the reflector region in question, which is arranged perpendicular to this, and thus its orientation is determined. The stringing together of the reflector areas determined one after the other results in a continuous reflection surface. The reflector 10 can have sectional curves in its longitudinal sections containing its optical axis 11, which are approximately parabolas. In cuts perpendicular to its optical axis 11, the reflector 10 can have cutting curves which are approximately ellipses, the large semi-axes of which are arranged approximately horizontally.

Man kann auf die vorstehend beschriebene Weise einen Reflektor 10 erhalten, der mit dem durch diesen reflektierten Licht die vorgegebene Beleuchtungsstärkeverteilung erzeugt, jedoch ist die Leuchtdichte auf dem Leuchtfeld des Signalgebers, das heißt auf dessen beleuchteter Abdeckscheibe 14, unter Umständen nicht ausreichend gleichmäßig. Um eine gleichmäßige Leuchtdichte zu erreichen wird die Abdeckscheibe 14 mit optischen Elementen versehen, die eine Streuung des vom Reflektor 10 reflektierten Lichtbündels beim Durchtritt bewirken. Durch die optischen Elemente der Abdeckscheibe 14 kann außerdem das vom Reflektor 10 reflektierte Lichtbündel beim Durchtritt in bestimmte Richtungen abgelenkt werden, wenn dies zur Erzeugung einer gleichmäßigen Leuchtdichte auf dem Leuchtfeld des Signalgebers erforderlich ist. In Figur 4 ist der Meßschirm 20 bei der Beleuchtung durch das aus dem Signalgeber nach Durchtritt durch die Abdeckscheibe 14 austretende Lichtbündel dargestellt. Der Meßschirm 20 wird in einem Bereich 32 beleuchtet, dessen Schwerpunkt unterhalb der horizontalen Mittelebene HH liegt und der etwa symmetrisch beiderseits der vertikalen Mittelebene VV angeordnet ist. Der Bereich 32 ist etwa trapezförmig ausgebildet und verbreitert sich nach unten hin. Im Bereich 32 sind mehrere Isocandelalinien 34 eingetragen.A reflector 10 can be obtained in the manner described above, which generates the predetermined illuminance distribution with the light reflected by this, but the luminance on the luminous field of the signal transmitter, that is to say on its illuminated cover plate 14, may not be sufficiently uniform. In order to achieve a uniform luminance, the cover plate 14 is provided with optical elements which cause the light bundle reflected by the reflector 10 to scatter as it passes through. The optical elements of the cover plate 14 can also be used to deflect the light beam reflected by the reflector 10 when passing in certain directions if this is necessary to generate a uniform luminance on the luminous field of the signal transmitter. FIG. 4 shows the measuring screen 20 when illuminated by the light bundle emerging from the signal transmitter after passing through the cover plate 14. The measuring screen 20 is illuminated in an area 32, the center of gravity of which lies below the horizontal central plane HH and which is arranged approximately symmetrically on both sides of the vertical central plane VV. The area 32 is approximately trapezoidal and widens towards the bottom. A number of isocandelal lines 34 are entered in area 32.

Bei einem in den Figuren 5 und 6 dargestellten zweiten Ausführungbeispiel des Signalgebers ist dessen Reflektor 10 wie vorstehend ausgebildet. Um eine noch gleichmäßigere Leuchtdichte auf dem Leuchtfeld des Signalgebers zu erreichen, können auf der Reflexionsfläche des Reflektors 10 eine Streuung des reflektierten Lichts bewirkende Elemente vorgesehen werden. Beim zweiten Ausführungsbeispiel sind eine Streuung bewirkenden Elemente in Form einer Vielzahl von Riefen 40 ausgebildet, die der Reflexionsfläche des Reflektors 10 überlagert sind. Die Riefen 40 können beispielsweise als konkave Vertiefungen in der Reflexionsfläche des Reflektors 10 ausgebildet sein. Alternativ können die Riefen 40 auch als konvexe Erhebungen in der Reflexionsfläche ausgebildet sein. Die Riefen 40 können ringförmig zumindest annähernd koaxial zur optischen Achse 11 verlaufend angeordnet sein. Durch die Riefen 40 wird eine Streuung des an der Reflexionsfläche reflektierten Lichts bewirkt, wodurch eine gleichmäßige Leuchtdichte auf dem Leuchtfeld des Signalgebers erreicht werden kann. Die Breite der Riefen 40 kann dabei über die gesamte Reflexionsfläche konstant sein oder veränderlich sein. Vorzugsweise sind die Riefen 40 derart ausgebildet, daß die durch diese bewirkte Streuung des reflektierten Lichts ausgehend vom Scheitelbereich 13 des Reflektors 10 mit zunehmendem Abstand von diesem zum in Lichtaustrittsrichtung weisenden Vorderrand des Reflektors 10 hin abnimmt. Hierdurch kann erreicht werden, daß sowohl eine ausreichende Beleuchtungsstärke nahe der optischen Achse 11 vorhanden ist als auch eine gleichmäßige Leuchtdichte auf dem Leuchtfeld des Signalgebers um die optische Achse 11 herum.In a second exemplary embodiment of the signal transmitter shown in FIGS. 5 and 6, its reflector 10 is configured as above. In order to achieve an even more uniform luminance on the luminous field of the signal transmitter, elements causing the scattered light can be scattered on the reflecting surface of the reflector 10. In the second exemplary embodiment, elements causing scattering are designed in the form of a plurality of grooves 40 which correspond to the reflection surface of the Reflector 10 are superimposed. The grooves 40 can be formed, for example, as concave depressions in the reflection surface of the reflector 10. Alternatively, the grooves 40 can also be designed as convex elevations in the reflection surface. The grooves 40 can be arranged in an annular manner, at least approximately coaxially to the optical axis 11. Scoring 40 causes the light reflected on the reflection surface to be scattered, as a result of which a uniform luminance can be achieved on the luminous field of the signal transmitter. The width of the grooves 40 can be constant over the entire reflection surface or can be variable. The grooves 40 are preferably designed such that the scattering of the reflected light caused by them decreases from the apex region 13 of the reflector 10 with increasing distance from the latter to the front edge of the reflector 10 pointing in the light exit direction. In this way it can be achieved that there is both a sufficient illuminance near the optical axis 11 and a uniform luminance on the luminous field of the signal generator around the optical axis 11.

In Figur 7 ist der Reflektor 10 des Signalgebers in einer Vorderansicht gemäß einem dritten Ausführungsbeispiel dargestellt, wobei der Reflektor 10 prinzipiell wie beim ersten Ausführungsbeispiel ausgebildet ist, dessen Reflexionsfläche jedoch eine Vielzahl von Facetten 50 überlagert sind. Die einzelnen Facetten 50 können dabei im wesentlichen eben ausgebildet sein oder konvex oder konkav gekrümmt ausgebildet sein. Durch die Facetten 50 wird eine Streuung des an der Reflexionsfläche reflektierten Lichts bewirkt, wodurch eine Verglichmäßigung der Leuchtdichte des Leuchtfelds des Signalgebers erreicht werden kann. Die Facetten 50 können beispielsweise wie in Figur 7 dargestellt matrixartig angeordnet sein und etwa rechteckförmig ausgebildet sein. Die in Reihen übereinander angeordneten Facetten 50 können dabei jeweils zu den in darunterliegenden Reihen angeordneten Facetten 50 versetzt angeordnet sein. Die Wirkung der Facetten 50 kann derart sein, daß die durch diese bewirkte Streuung des reflektierten Lichts ausgehend vom Scheitelbereich 13 des Reflektors 10 mit zunehmendem Abstand von diesem zum in Lichtaustrittsrichtung weisenden Vorderrand des Reflektors 10 hin abnimmt.FIG. 7 shows the reflector 10 of the signal transmitter in a front view in accordance with a third exemplary embodiment, the reflector 10 in principle being configured as in the first exemplary embodiment, the reflection surface of which, however, has a plurality of facets 50 superimposed. The individual facets 50 can be essentially flat or can be convex or concave. The facets 50 cause a scattering of the light reflected on the reflection surface, whereby the luminance of the luminous field of the signal transmitter can be made more uniform. The facets 50 can, for example, be arranged in a matrix-like manner as shown in FIG. 7 and approximately rectangular be trained. The facets 50 arranged one above the other in rows can each be arranged offset to the facets 50 arranged in rows below. The effect of the facets 50 can be such that the scattering of the reflected light caused by them decreases from the apex region 13 of the reflector 10 with increasing distance from the latter to the front edge of the reflector 10 pointing in the light exit direction.

In Figur 8 ist eine gegenüber Figur 7 modifizierte Ausführung des Reflektors 10 dargestellt, wobei die Anordnung der Facetten 52 verändert ist. Es sind dabei jeweils mehrere Facetten 52 zueinander versetzt in radialer Richtung bezüglich der optischen Achse 11 angeordnet. Die in aneinandergrenzenden radialen Reihen angeordneten Facetten 52 sind dabei jeweils zueinander versetzt angeordnet. Die Facetten 52 sind dabei jeweils kreissegmentförmig ausgebildet. Die Facetten 52 können wie vorstehend zur Figur 7 angegeben hinsichtlich ihrer Ausbildung und Wirkung ausgeführt sein.FIG. 8 shows an embodiment of the reflector 10 which is modified compared to FIG. 7, the arrangement of the facets 52 being changed. Several facets 52 are arranged offset to one another in the radial direction with respect to the optical axis 11. The facets 52 arranged in adjacent radial rows are each offset from one another. The facets 52 are each designed in the shape of a segment of a circle. The facets 52 can, as indicated above in relation to FIG. 7, be designed with regard to their design and effect.

Claims (10)

Optischer Signalgeber für Verkehrssignalanlagen, mit einem Reflektor (10), wenigstens einer Lichtquelle (12) und einer im Strahlengang des vom Reflektor (10) reflektierten Lichtbündels angeordneten lichtdurchlässigen Abdeckscheibe (14), dadurch gekennzeichnet, daß der Reflektor (10) derart ausgebildet ist, daß durch diesen von der wenigstens einen Lichtquelle (12) ausgesandtes Licht als ein Lichtbündel reflektiert wird, das ohne die Abdeckscheibe (14) einen vor dem Signalgeber etwa koaxial zu dessen optischer Achse (11) angeordneten Meßschirm (20) in einem Bereich (22) beleuchtet, dessen Schwerpunkt unterhalb einer die optische Achse (11) enthaltenden Horizontalebene (HH) liegt, der sich nach unten hin verbreitert und der sich zumindest annähernd symmetrisch beiderseits einer die optische Achse (11) enthaltenden Vertikalebene (VV) erstreckt.Optical signal transmitter for traffic signal systems, with a reflector (10), at least one light source (12) and a translucent cover plate (14) arranged in the beam path of the light beam reflected by the reflector (10), characterized in that the reflector (10) is designed in such a way that that light emitted by the at least one light source (12) is reflected as a bundle of light, which without the cover plate (14) has a measuring screen (20) arranged in front of the signal transmitter approximately coaxially to its optical axis (11) in an area (22) illuminated, the center of gravity of which lies below a horizontal plane (HH) containing the optical axis (11), which widens towards the bottom and which extends at least approximately symmetrically on both sides of a vertical plane (VV) containing the optical axis (11). Signalgeber nach Anspruch 1, dadurch gekennzeichnet, daß sich der Bereich (22) bis zu einer unteren Begrenzungslinie (28) verbreitert.Signal generator according to claim 1, characterized in that the area (22) widens up to a lower boundary line (28). Signalgeber nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der durch das vom Reflektor (10) reflektierte Lichtbündel auf dem Meßschirm (20) beleuchtete Bereich (22) nach oben durch eine Linie (26) zumindest annähernd in Form eines umgekehrten U begrenzt ist.Signal transmitter according to Claim 1 or 2, characterized in that the area (22) illuminated by the light beam reflected by the reflector (10) on the measuring screen (20) is at least approximately delimited by a line (26) in the form of an inverted U. Signalgeber nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Reflexionsfläche des Reflektors (10) eine Vielzahl von eine Streuung des reflektierten Lichts bewirkenden Elementen (40;50;52) überlagert ist.Signal generator according to one of the preceding claims, characterized in that the reflection surface of the A plurality of elements (40; 50; 52) causing scattering of the reflected light is superimposed on the reflector (10). Signalgeber nach Anspruch 4, dadurch gekennzeichnet, daß die lichtstreuenden Elemente als zueinander versetzte Riefen (40) ausgebildet sind.Signal generator according to claim 4, characterized in that the light-scattering elements are designed as offset grooves (40). Signalgeber nach Anspruch 5, dadurch gekennzeichnet, daß die Riefen (40) zumindest annähernd koaxial ringförmig um die optische Achse (11) des Reflektors (10) verlaufen.Signal generator according to Claim 5, characterized in that the grooves (40) run at least approximately coaxially in a ring around the optical axis (11) of the reflector (10). Signalgeber nach Anspruch 4, dadurch gekennzeichnet, daß die lichtstreuenden Elemente als Facetten (50,52) ausgebildet sind.Signal transmitter according to Claim 4, characterized in that the light-scattering elements are designed as facets (50, 52). Signalgeber nach Anspruch 7, dadurch gekennzeichnet, daß die Facetten (50) matrixartig am Reflektor (10) angeordnet sind.Signal transmitter according to claim 7, characterized in that the facets (50) are arranged in a matrix on the reflector (10). Signalgeber nach Anspruch 7, dadurch gekennzeichnet, daß jeweils mehrere Facetten (52) in radialer Richtung bezüglich der optischen Achse (11) des Reflektors (10) zueinander versetzt angeordnet sind.Signal transmitter according to Claim 7, characterized in that in each case a plurality of facets (52) are arranged offset to one another in the radial direction with respect to the optical axis (11) of the reflector (10). Signalgeber nach Anspruch 7, dadurch gekennzeichnet, daß die Facetten (52) kreissegmentförmig ausgebildet sind.Signal generator according to Claim 7, characterized in that the facets (52) are designed in the form of a segment of a circle.
EP19970101305 1996-04-12 1997-01-29 Optical indicator for traffic signal device Expired - Lifetime EP0801369B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19614402 1996-04-12
DE19614402 1996-04-12
DE19627940A DE19627940A1 (en) 1996-04-12 1996-07-11 Optical signal generator for traffic signal systems
DE19627940 1996-07-11

Publications (2)

Publication Number Publication Date
EP0801369A1 true EP0801369A1 (en) 1997-10-15
EP0801369B1 EP0801369B1 (en) 2001-07-25

Family

ID=26024664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970101305 Expired - Lifetime EP0801369B1 (en) 1996-04-12 1997-01-29 Optical indicator for traffic signal device

Country Status (2)

Country Link
EP (1) EP0801369B1 (en)
CN (1) CN1168517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1146572A2 (en) * 2000-03-14 2001-10-17 Toyoda Gosei Co., Ltd. Light source device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITFI20120022A1 (en) * 2012-02-10 2013-08-11 Iguzzini Illuminazione REFLECTOR FOR HOMOGENEOUS LIGHTING LUMINAIRES.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1738426A (en) * 1928-03-10 1929-12-03 Sunshine Inc Light reflector
GB1140417A (en) 1966-03-23 1969-01-22 Corning Glass Works Variable lamp
US4021659A (en) * 1975-10-30 1977-05-03 General Electric Company Projector lamp reflector
GB1481938A (en) * 1975-04-18 1977-08-03 Philips Electronic Associated Corrugated reflector
GB2013323A (en) * 1978-01-28 1979-08-08 Plessey Co Ltd Traffic signal lamp
US4962450A (en) * 1987-01-19 1990-10-09 Reshetin Evgeny F Light signalling device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1738426A (en) * 1928-03-10 1929-12-03 Sunshine Inc Light reflector
GB1140417A (en) 1966-03-23 1969-01-22 Corning Glass Works Variable lamp
GB1481938A (en) * 1975-04-18 1977-08-03 Philips Electronic Associated Corrugated reflector
US4021659A (en) * 1975-10-30 1977-05-03 General Electric Company Projector lamp reflector
GB2013323A (en) * 1978-01-28 1979-08-08 Plessey Co Ltd Traffic signal lamp
US4962450A (en) * 1987-01-19 1990-10-09 Reshetin Evgeny F Light signalling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1146572A2 (en) * 2000-03-14 2001-10-17 Toyoda Gosei Co., Ltd. Light source device
EP1146572A3 (en) * 2000-03-14 2005-03-23 Toyoda Gosei Co., Ltd. Light source device
US6953265B2 (en) 2000-03-14 2005-10-11 Toyoda Gosei Co., Ltd. Light source device

Also Published As

Publication number Publication date
EP0801369B1 (en) 2001-07-25
CN1168517A (en) 1997-12-24

Similar Documents

Publication Publication Date Title
DE4215584C2 (en) Lighting device with a reflector and with optically effective elements
DE19704467B4 (en) Vehicle headlights
DE19919704C2 (en) Luminaire with a light source and with a composite reflector with a multi-part reflection surface and a lens system arranged for it
DE19814480A1 (en) Headlamp for cars according to projection principle
DE2238589A1 (en) PRISMATIC LIGHT DISTRIBUTION BODY FOR CEILING LIGHTS
DE102011089481A1 (en) Automotive lighting device with a long and flat luminous surface
DE2437580C2 (en) Signal display device for the emission of light signals
WO2000018609A1 (en) Illuminated-display graduated scale device
DE10143415A1 (en) light assembly
EP0040853B1 (en) Signal lamp
DE10105303A1 (en) Vehicle illumination device has further reflector(s) behind first reflector, protruding beyond first reflector transverse to outlet direction forming outlet opening for light from further source(s)
DE19627940A1 (en) Optical signal generator for traffic signal systems
EP0801369B1 (en) Optical indicator for traffic signal device
EP0404990B1 (en) Motor vehicle light
WO2019224185A1 (en) Near field light module for a headlamp
DE3137685A1 (en) Light-emitting diode for signal lights (lamps)
DE19632189A1 (en) Vehicle headlamp
DE3427398A1 (en) Indicator light, in particular for motor vehicles
DE102007038205B4 (en) Luminaire with light guide plate
DE602004002016T2 (en) Car headlights that can illuminate elevated traffic signs
DE4129955C2 (en) Motor vehicle lighting device with light guide elements
DE3005883A1 (en) Vehicle trafficator signal lamp - has deflection mirror between internal optical system and cover disc angled to travel direction
DE19814478A1 (en) Headlights for vehicles
EP2715218B1 (en) Reflector for a streetlamp
EP1463651B1 (en) Vehicle light having a cruciform light distribution

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19980415

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIGNALBAU HUBER AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20001219

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010726

REF Corresponds to:

Ref document number: 59704100

Country of ref document: DE

Date of ref document: 20010830

ITF It: translation for a ep patent filed

Owner name: RACHELI & C. S.R.L.

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIGNALBAU HUBER GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060119

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060227

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060123

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070129