EP0829145A1 - Systeme de diffusion de donnees utilisant les proprietes de l'oreille humaine - Google Patents

Systeme de diffusion de donnees utilisant les proprietes de l'oreille humaine

Info

Publication number
EP0829145A1
EP0829145A1 EP96920890A EP96920890A EP0829145A1 EP 0829145 A1 EP0829145 A1 EP 0829145A1 EP 96920890 A EP96920890 A EP 96920890A EP 96920890 A EP96920890 A EP 96920890A EP 0829145 A1 EP0829145 A1 EP 0829145A1
Authority
EP
European Patent Office
Prior art keywords
frequency
data
signal
audio
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96920890A
Other languages
German (de)
English (en)
Other versions
EP0829145B1 (fr
Inventor
Patrice Bourcet
Denis Masse
Bruno Jahan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telediffusion de France ets Public de Diffusion
Original Assignee
Telediffusion de France ets Public de Diffusion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telediffusion de France ets Public de Diffusion filed Critical Telediffusion de France ets Public de Diffusion
Publication of EP0829145A1 publication Critical patent/EP0829145A1/fr
Application granted granted Critical
Publication of EP0829145B1 publication Critical patent/EP0829145B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/28Arrangements for simultaneous broadcast of plural pieces of information
    • H04H20/30Arrangements for simultaneous broadcast of plural pieces of information by a single channel
    • H04H20/31Arrangements for simultaneous broadcast of plural pieces of information by a single channel using in-band signals, e.g. subsonic or cue signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/66Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
    • H04B1/665Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission using psychoacoustic properties of the ear, e.g. masking effect

Definitions

  • the invention relates to the field of signal broadcasting comprising an audio frequency component. More particularly, it relates to a data dissemination system.
  • the field of broadcasting (broadcasting of television or radio programs, wireless telephony, etc.) is well known.
  • a current trend is to broadcast, in addition to programs (or voice in the field of telephony), useful data for broadcasting companies, for regulatory bodies, or for listeners or viewers. This data may concern for example:
  • the interactivity is not real because the sequence of correct answers or reactions of the toy obeys pre-established sequences, common to the memory of the interactive device and to the program broadcast or reproduced.
  • the audiovisual sequence having been pre-recorded in accordance with a chosen code, its progress is predictable and consequently, the only information to be transmitted to the interactive device is a starting signal as well as the exact timing of the questions / answers or the various possible reactions in the case of the toy.
  • a first technique consists in transmitting this data outside the bandwidth occupied by the program signal (sound and possibly image) transmitted.
  • One solution consists, for example, in sound diffusion by frequency modulation multiplex, to use the upper part of the multiplex, between 54 and 76 kiloHertz.
  • Another example consists in using the lines available during the frame return in television broadcasting.
  • Another technique consists in transmitting the data in the bandwidth of the transmitted program signal, which does not require the use of dedicated frequency bands. It is therefore not necessary to use transmitters and receivers that are frequency-appropriate for transmission in such dedicated frequency bands.
  • the original signal is filtered (corresponding to the program to transmit) in order to eliminate the frequency components in a given frequency band and the data is inserted into this band.
  • the original signal is therefore distorted, which can be annoying for a viewer or listener who is not interested in the data. Consequently, the time devoted to sending information is limited by broadcasters to the strict minimum, which reduces the data throughput accordingly.
  • the loading of the data is carried out globally, in a single time, at the start of a given application.
  • an object of the invention is to propose a system making it possible to transmit data in the bandwidth of a signal comprising an audio-frequency component, without modifying, compared to the original audio-frequency signal, the signal perceived by the listener.
  • the invention proposes to insert this data into so-called masked frequency bands of the original audio signal, if these bands exist, that is to say at a level below the instantaneous hearing threshold due to the phenomenon of auditory masking induced by the original audio signal itself.
  • the transmitted data is then inaudible, while not altering the original audio signal from a point of view subjective, and while not requiring the use of frequency components located outside the spectral band occupied by the original signal.
  • the invention therefore proposes a data transmission adapted to the use of existing receivers and transmitters, and subjectively non-disturbing for the listener.
  • the invention relates to a data broadcasting system, this information being transmitted in the bandwidth of a broadcast audio signal, characterized in that it comprises means for determining in at least one frequency band the amplitude of the audio-frequency signal and comparison of this amplitude with a level of hearing mask associated with this frequency band, means for eliminating the frequency components of the audio-frequency signal in said frequency band if the signal amplitude is less than the level of hearing mask of said band, and means for inserting said information into this frequency band at a level less than or equal to the level of hearing mask of said frequency band.
  • FIGS. 1 and 2 represent diagrams illustrating the phenomenon of auditory masking
  • FIG. 3 represents a device for extracting data
  • FIG. 4 shows a data insertion device.
  • Figures 1 and 2 are amplitude versus frequency diagrams illustrating the phenomenon of auditory masking, which is a phenomenon of physiological origin. If we consider the hearing by a human being of an audio-frequency signal of frequency and amplitude given, the phenomenon of auditory masking results in the non-perception, by this same human being, of audio-frequency signals emitted simultaneously and having amplitudes lower than given threshold levels. Thus, with reference to FIG.
  • the values frjm ' ⁇ 0M are variable for a given frequency fg.
  • the larger the amplitude Ag the wider the domain [for t i 'f ⁇ M J.
  • the domain is not symmetrical with respect to fg, and extends more widely in the domain of frequencies greater than fg.
  • the value of the amplitude A (f s , fg, A 0 ) is variable as a function of f s , fg, and Ag. In practice, the closer f s is to fg, the higher the inaudibility threshold A (f s , fg, Ag).
  • Each critical band B ⁇ (i integer index from 1 to 24) is defined by its central frequency fc and its width.
  • critical bands have variable widths, the less wide being the first critical band B ] _, which covers the lowest frequencies, and the widest being the twenty-fourth critical band B2 4 which covers the most frequent acute.
  • the ISO / IEC 11172-3 standard defines a critical band mask level Nm (i). It is an approximation of the level of the mask level curve over the entire critical band (the actual level of the mask level curve for a given signal can vary in the same critical band).
  • the mask level Nm (i) is defined as a function of the mask levels of the eight lower critical bands (Nm (i-8) to Nm (il)), if they exist, and of the three upper bands (Nm (i + 1 ) to Nm (i + 3)), if they exist.
  • Av (j) 6.025 + 0.275 * z (j) for the tonal lines
  • Av (j) 2.025 + 0.175 * z (j) for the non-tonal lines
  • Vf (i + 2) 17 * Xnm (i + 2) + 6,
  • Vf (i + 3) 34 * Xnm (i + 3) + 6.
  • the most masked critical bands are the high bands of the audio spectrum, which are masked by the low bands, which are statistically more energetic.
  • the data may relate to the audio frequency signals broadcast (for example the name of a radio station or the references of musical titles broadcast by this station) and may be intended to be perceived by the listener, for example by means of a display. liquid crystal. It could also be service data of interest to the signal broadcaster or regulatory bodies, and be imperceptible to the listener.
  • the data are binary data.
  • This data will relate, for example, to programs broadcast by a radio station.
  • a radio station generally transmits to these listeners audio signals modulated by conventional techniques of amplitude or frequency modulation.
  • the audio signals may be a song, a musical credits, the voice of an animator, etc.
  • the invention proposes to calculate from the signal audio frequency to be transmitted, for one or more of the critical bands B j _ of the audio spectrum, the mask level or levels of this or these critical bands. If for a critical band the mask level is higher than the audio signal level, the corresponding part of the audio signal can be eliminated, without any difference perceptible to the listener.
  • the invention proposes to insert the data (we will speak of audio frequency signals of data), in an inaudible manner for the listener, in this critical band, or part of this part of critical band, in place of the original audio signal ( provided, of course, that the level of the audio data signal is lower than the mask level of the critical band).
  • it suffices to filter the received signal according to the critical bands to separate the audio data signal and process the transmitted data.
  • bit rate of information transmitted cannot be in practice fixed, the original signal (and therefore the corresponding critical mask mask levels Nm (i)) being a priori variable over time, whether in frequency or in amplitude.
  • a data transmission system will mainly comprise a data insertion device (an example of which is illustrated in FIG. 4) and a data reception device (of which an example is illustrated in FIG. 3).
  • the data insertion device can be implemented either at the stage of a final sound or visual broadcast control, or at the stage of production of the audio-frequency signals.
  • the data reception device will for example comprise a device for displaying the data received (if the data is intended for the auditor) and / or a storage device (if the data is dedicated for example to a control deferred time audiometry).
  • the reception device may also include a device for retransmitting information, for example to a game box in the context of interactive television programs.
  • the audio data signal can be collected, at the level of the reception device, either acoustically by a simple microphone (placed near the loudspeaker of the radio receiver), or electrically using an appropriate connector (such as audio recording output).
  • a device 1 for inserting data will be described by way of example, this information being in this case binary data.
  • the signal is replaced by digital modulation.
  • This transmission is preferably done at a level lower than the mask levels of these frequency bands, so as to ensure the inaudible nature of the information transmitted.
  • this transmission is preferably done when these mask levels are high enough to ensure a satisfactory signal / noise ratio compared to the broadcast channel.
  • the data to be transmitted can be organized in frames consisting of a start word and a defined number of data words.
  • a frame comprising a start word, a variable number of data words, and an end word.
  • the data insertion device 1 illustrated in FIG. 4 includes an input 2 for receiving the original audio signal S to be transmitted (song, channel of a presenter, etc.), an input 3 for receiving the data
  • the audio signal S is filtered in a bank of twelve bandpass filters FPB'13 to FPB'24 / preferably complex, receiving the audio signal S at input.
  • the analytical processing of the signal S facilitates the calculation of amplitudes.
  • Each complex filter outputs the real part (R'13 to R * 2 4 ) and the imaginary part from 13 to ⁇ '24) of the audio frequency signal S, in the frequency band (denoted F 'l3 to F'24 ) let it pass.
  • the bank of complex bandpass filters FPB'2 . 3 to FPB'24 eliminates the components of the audio signal S in the frequency bands F '3 to F'24 / to insert the data there.
  • An amplitude calculating member OAC1 calculates the amplitudes A'j (j integer index from 13 to 24) from the signals R'j and I'j supplied by the filters FPB '13 to FPB'24.
  • the audio signal S is also filtered in a bank of twenty bandpass filters FPB5 to FPB2 4 , preferably complex, receiving the audio signal S at input.
  • Each complex filter outputs the real part (R5 to R24) and the imaginary part (I _3 to I24) of the audiofrequency signal S, in the frequency band which it lets through.
  • the bank of complex bandpass filters FPB5 to FPB24 makes it possible to calculate the mask levels of the critical bands B13 to B24.
  • This calculation is carried out from an amplitude calculating member OAC2 calculating the amplitudes A j _ (i integer index from 5 to 24) from the signals R j _ and I j _ supplied by the filters FPB5 to FPB24 • ⁇ - es amplitudes are provided to an oN calculation processor performing the calculation of Nm mask levels (13) Nm (24).
  • the amplitudes A '13 to A' 24 and the levels of mask Nm (13) to Nm (24) are supplied to a control unit OC which will compare them two by two in order to determine if there are two amplitudes A'ji and A'j2 lower than the mask levels Nm (jl) and Nm (j2) corresponding (jl and j2 being two different whole indices between 13 and 24). If this is the case, there are at least two frequency bands F'ji and '-j2 in the audio frequency spectrum for which the signal S is inaudible. We can then filter the signal S in order to eliminate these spectral components in these two frequency bands F 'j and F'j 2 -
  • the assembly formed by the bandpass filters F '3 to F'24, the multiplexing device MUXP and the summers SM1 and SM2 behaves like an adaptive band-cut filter with respect to the signal S.
  • MUXN multiplexing device
  • two coefficients N 'and N" are produced, from the coefficients N'm and N "m, using a gain control device CAG.
  • the signal S ′ Once the signal S ′ is produced, it will conventionally be modulated according to known techniques before transmitting it in the direction of the listeners' receivers.
  • the gain applied to the signals S j _ and S2 being only proportional to the mask levels of the jl-th and j2-th bands F '-j _ and F'-; 2 ⁇ I th amplitude level of the signals S ' _ and S '2 may be greater than the amplitude levels of the components of the signal S which have been removed.
  • the bands F '3 to F'2 4 have the same width to ensure a data rate of transmitted data which is fixed, whatever the bands F' 3 to F'24 used to transmit them. It is thus possible to use the same type of modulation, whatever the bands released in the signal S.
  • this information is transmitted in two bands each located in one of the twelve critical bands.
  • the band or bands F'j used inside these critical bands have a width less than or equal to the widths of the corresponding critical bands.
  • the first bank of bandpass filters preferably consists of bandpass filters F ' ] _3 to F'2 4 of widths equal to 280 Hz at -3 decibels.
  • This width corresponds to the width of the critical band usable for inserting the data which has the smallest width, that is to say the width of the thirteenth critical band (of course, it is assumed here that the carrier frequencies used to produce audio data signals are equal to the center frequencies of the critical bands). There is therefore little point in implementing data transmission in the lower critical bands, these having a narrower width, which would limit the maximum admissible bit rate.
  • the filter bank F ' ⁇ 3 to F'24 is preferably produced by multicadence filtering, which makes it possible to have a constant propagation time and a limited number of operations.
  • the second bank of filters F5 to F24 is preferably obtained from reconstructable band-pass filters (that is to say filters such that the sum of the signals filtered at the output is identical to the input signal before filtering) whose templates correspond to critical bands.
  • reconstructable band-pass filters that is to say filters such that the sum of the signals filtered at the output is identical to the input signal before filtering
  • the binary information is for example grouped by thirty-two bit words.
  • a transmitted frame will comprise for example a start word, coded on thirty-two bits and a data word of thirty-two bits.
  • the start word is for example composed of nine first bits constituting a snap ramp used in the receiving device, the next twenty-three bits forming a synchronization word.
  • the data word is for example composed of three bytes representing the data and a last redundancy byte for the implementation of an error correcting code if such a code is used.
  • This organization of information frames corresponds to a transmission of information over time blocks of the audio signal with a duration of 256 milliseconds, which corresponds to the duration necessary to transmit sixty-four bits, ie two • frames of data. This can achieve a maximum bit rate of 500 bits per second.
  • the data frames are transmitted on the condition that the mask levels of the critical bands used to insert the data are greater than the minimum energy level making it possible to withstand the disturbances brought by the channel.
  • the output signals from the multiplexing device MUXP will preferably be gradually canceled in order to reduce the probability of making the "plugging" audible.
  • the mask level of the original audio signal drops and the start word has been transmitted, it is preferable to continue transmitting in order to facilitate data processing at the level of the recording device. reception. If the data is coded on thirty-two bits, it is not very troublesome because of the temporal auditory masking.
  • the data extraction device 5 illustrated in FIG. 3 comprises an input 6 for receiving the audio frequency signal S '.
  • the audio signal S ' is filtered in a bank of twelve FPB bandpass filters "3 to FPB" 24, having masks identical to the twelve FPB filters' ] _3 to FPB'24- Twelve audio signal S' 13 to 13 are thus produced S ′ 24 ′ corresponding to the spectral components of the signal S ′ in the bands F ′ 1 3 to F ′ 24 in which data inserted by a device similar to that described with reference to FIG. 4 are likely to be found.
  • the device 5 includes a bank of twelve demodulators DEMOD13 to DEM0D24, each demodulator being associated with one of the bandpass filters. Once the signals have been demodulated, they are sampled in samplers EC ] _3 to EC24 associated with clock recovery devices RC 3 to RC24, in order to produce binary data.
  • the binary data produced is processed in recognition devices RTB13 to R B24 in order to determine whether this data is representative of transmitted data (in which case start word synchronization bits will be present) or if these data correspond to nothing (the probability being quite low that it is possible to produce by sampling, from any audio signal, bits corresponding to the synchronization bits of a start word).
  • the data transmitted is not digital data but analog data, such as a musical motif for example
  • modulation, demodulation and sampling devices These will be replaced by means of frequency transposition of the data to be inserted in order to adapt the frequencies of the data to the frequencies released in the insertion device.

Abstract

L'invention concerne un système de diffusion de données (D), ces informations étant transmises dans la bande passante d'un signal audiofréquentiel (S) diffusé, caractérisé en ce qu'il comprend des moyens de détermination dans au moins une bande de fréquence (F'13, ..., F'24) de l'amplitude (A'13, ..., A'24) du signal audiofréquentiel (S) et de comparaison de cette amplitude avec un niveau de masque auditif (Nm(13), ..., Nm(24)) associé à cette bande de fréquence, des moyens d'élimination des composantes fréquentielles du signal audiofréquentiel dans ladite bande de fréquence si l'amplitude du signal est inférieure au niveau de masque auditif de ladite bande, et des moyens d'insertion desdites données dans cette bande de fréquence à un niveau inférieur ou égal au niveau de masque auditif de ladite bande de fréquence.

Description

SYSTEME DE DIFFUSION DE DONNEES UTILISANT LES PROPRIETES DE L'OREILLE HUMAINE
L'invention concerne le domaine de la diffusion de signaux comprenant une composante audiofréquentielle. Plus particulièrement, elle concerne un système de diffusion de données. Le domaine de la diffusion (diffusion de programmes de télévisions ou de radio, téléphonie sans fil etc.) est bien connu.
Une tendance actuelle est d'émettre, en plus des programmes (ou de la voix dans le domaine de la téléphonie) , des données utiles pour les sociétés de diffusion, pour des organismes de contrôle, ou pour des auditeurs ou téléspectateurs. Ces données pourront concerner par exemple :
- l'aide à la sélection d'un programme en diffusion sonore ou télévisuelle (exemple : aide à l'accord automatique, recherche par nom d'une station de radio, recherche par genre de programme, recherche par menu, etc. )
- des informations sur le programme en cours de 0 diffusion ou de reproduction après enregistrement (par exemple le nom de la société ayant créé un programme, le titre d'un film diffusé par une chaîne de télévision, la référence discographique d'une chanson diffusée par une station de radio, etc.) , 5 - des données de service dans le cas du radiotéléphone analogique.
On assiste également au développement de systèmes de diffusion dits interactifs qui permettent aux téléspectateurs ou aux auditeurs de dialoguer de manière 0 plus ou moins performante avec la source de programme. Ces moyens sont utilisés soit pour agir sur le contenu du programme diffusé, soit pour jouer, pour parier, pour communiquer au sujet de ce même programme. Ainsi, récemment est apparue une forme d'interactivité via de petits dispositifs simulant un pseudodialogue avec un programme conçu à cet effet. Un boîtier format télécommande donne l'illusion d'une interactivité dans la mesure où il permet, par exemple, de répondre à un jeu télévisé de questions/réponses au fur et à mesure où les questions sont posées. Ou bien encore, un dispositif électronique dissimulé dans un jouet en peluche permet à celui-ci de réagir face à un programme diffusé ou reproduit à l'aide d'un magnétoscope. En fait, l'interactivité n'est pas réelle car la suite des bonnes réponses ou des réactions du jouet obéit à des séquences préétablies, communes à la mémoire du dispositif interactif et au programme diffusé ou reproduit. La séquence audiovisuelle ayant été préenregistrée conformément à un code choisi, son déroulement est prévisible et en conséquence, les seules informations à transmettre au dispositif interactif sont un signal de départ ainsi que le minutage exacte des questions/réponses ou des diverses réactions possibles dans le cas du jouet.
Il existe aussi une demande concernant l'identification automatique d'une séquence sonore, accompagnée d'une image ou non. Pour les diffuseurs il s'agit de vérifier qu'un programme donné est bien diffusé sur la fréquence qui lui a été allouée, ce qui peut devenir assez complexe lorsqu'un programme national est affecté de décrochages régionaux ou locaux. Cela permet également, pour des organes de vérification, de comptabiliser la diffusion d'oeuvres protégées par des droits d'auteur ou de vérifier la conformité de la diffusion de spots publicitaires. Enfin, pour des organismes de sondage ou d'évaluation d'audience, il s'agit d'identifier rapidement ce qui est réellement écouté par un auditeur ou un téléspectateur. Actuellement pour évaluer l'audience des récepteurs radio, la seule solution disponible est le sondage par interview des consommateurs .
Toutes ces applications sont faciles à introduire lors de la conception de nouveaux systèmes de diffusion, notamment numérique, de radio ou de télévision. Par contre, les systèmes et les parcs d'équipements existants se prêtent généralement assez mal à cette évolution et l'expérience prouve, que d'un point de vue technico- commercial, la compatibilité et le coût relatifs aux procédés et dispositifs à mettre en oeuvre sont des facteurs déterminants dans l'introduction d'un nouveau service.
Pour l'émission de données concernant un programme diffusé, deux techniques sont actuellement employées.
Une première technique consiste à transmettre ces données en dehors de la bande passante occupée par le signal du programme (son et éventuellement image) transmis. Une solution consiste par exemple, en diffusion sonore par modulation de fréquence multiplex, à utiliser la partie supérieure du multiplex, entre 54 et 76 kiloHertz. Un autre exemple consiste à utiliser les lignes disponibles pendant le retour de trame en diffusion télévisuelle. Ces techniques présentent des inconvénients. La saturation des ressources fréquentielles disponibles en diffusion limite le nombre d'utilisateurs de ces ressources. D'autre part, il est nécessaire de disposer de récepteurs adaptés aux bandes passantes utilisées pour transmettre les informations émises .
Une autre technique consiste à transmettre les données dans la bande passante du signal du programme transmis, ce qui ne nécessite pas l'utilisation de bandes de fréquence dédiées. Il n'est donc pas nécessaire d'utiliser des émetteurs et des récepteurs fréquentiellement adaptés à une transmission dans de telles bandes fréquentielles dédiées. Typiquement, on filtre le signal d'origine (correspondant au programme à transmettre) afin d'éliminer les composantes fréquentielles dans une bande de fréquence donnée et on insère dans cette bande les données. On déforme donc le signal d'origine, ce qui peut s'avérer gênant pour un téléspectateur ou un auditeur que les données n'intéressent pas. En conséquence, le temps consacré à l'envoi des informations est limité par les diffuseurs au strict minimum, ce qui réduit d'autant le débit des données. Ainsi, dans le cadre de dispositifs interactifs dans le domaine télévisuel, le chargement des données s'effectue de manière globale, en une seul fois, au début d'une application donnée. Il n'est alors pas possible d'adapter les données suite à une modification du programme, qui doit se dérouler suivant le minutage prévu et sans interruption inopinée. On peut bien entendu utiliser au niveau des récepteurs des moyens de filtrage pour ne pas répercuter systématiquement d'un point de vue sonore ou visuel les données reçues, celles ci étant alors transparentes pour l'auditeur ou le téléspectateur. II n'en reste pas moins qu'on ne peut assurer que le signal vu ou entendu par le téléspectateur ou l'auditeur sera identique au signal original qu'il aurait perçu, avant insertion des données.
Au vu de ce qui précède, un but de l'invention est de proposer un système permettant de transmettre des données dans la bande passante d'un signal comprenant une composante audiofréquentielle, sans modifier, par rapport au signal audiofréquentiel original, le signal perçu par l'auditeur. L'invention propose d'insérer ces données dans des bandes de fréquence dites masquées du signal audiofréquentiel original, si ces bandes existent, c'est à dire à un niveau inférieur au seuil d'audition instantané dû au phénomène de masquage auditif induit par le signal audiofréquentiel original lui-même. Les données transmises sont alors inaudibles, tout en n'altérant pas le signal audiofréquentiel d'origine d'un point de vue subjectif, et tout en ne nécessitant pas l'utilisation de composantes fréquentielles situées en dehors de la bande spectrale occupée par le signal d'origine. L'invention propose donc une transmission des données adaptée à l'utilisation de récepteurs et d'émetteurs existants, et subjectivement non perturbantes pour l'auditeur.
Ainsi, l'invention concerne un système de diffusion de données, ces informations étant transmises dans la bande passante d'un signal audiofréquentiel diffusé, caractérisé en ce qu'il comprend des moyens de détermination dans au moins une bande de fréquence de l'amplitude du signal audiofréquentiel et de comparaison de cette amplitude avec un niveau de masque auditif associé à cette bande de fréquence, des moyens d'élimination des composantes fréquentielles du signal audiofréquentiel dans la dite bande de fréquence si l'amplitude du signal est inférieur au niveau de masque auditif de la dite bande, et des moyens d'insertion des dites informations dans cette bande de fréquence à un niveau inférieur ou égal au niveau de masque auditif de la dite bande de fréquence.
D'autres particularités et avantages apparaîtront à la lecture de la description qui suit, à lire conjointement aux dessins annexés dans lesquels : - les figures 1 et 2 représentent des diagrammes illustrant le phénomène de masquage auditif,
- la figure 3 représente un dispositif d'extraction de données,
- la figure 4 représente un dispositif d'insertion de données.
Les figures 1 et 2 sont des diagrammes d'amplitude en fonction de la fréquence illustrant le phénomène de masquage auditif, qui est un phénomène d'origine physiologique . Si on considère l'audition par un être humain d'un signal audiofréquentiel de fréquence et d'amplitude données, le phénomène de masquage auditif se traduit par la non perception, par ce même être humain, de signaux audiofréquentiels émis simultanément et ayant des amplitudes inférieures à des niveaux de seuil donnés. Ainsi, en référence à la figure 1, si on considère un signal monofréquentiel de fréquence f , située dans le spectre audiofréquentiel (typiquement entre 20 et 15 500 Hertz) et d'amplitude Ag, on peut définir un domaine M(fg, AQ) en amplitude et en fréquence tel que tout signal monofréquentiel émis simultanément, de fréquence fs comprise dans un domaine fréquentiel borné [fQm, foM ' avec fom fo e ^OM > ^0' et d'amplitude A < A(fs, f0, AQ) < AQ est inaudible.
Les valeurs frjm' ^0M sont variables pour une fréquence fg donnée. Pratiquement, plus l'amplitude Ag est importante, plus le domaine [forti' fθMJ est large. On notera également que le domaine n'est pas symétrique par rapport à fg, et s'étend plus largement dans le domaine des fréquences supérieures à fg. La valeur de l'amplitude A(fs, fg, A0) est variable en fonction de fs, fg, et de Ag . Pratiquement, plus fs est proche de fg, plus le seuil A(fs, fg, Ag) d' inaudibilité est important.
Le phénomène de masquage auditif est connu depuis plusieurs années. Pour plus de précisions, on se reportera à l'ouvrage "Psychoacoustique, de E. Zwicker et R. Feldtkeller, Ed. Masson, 1981". Les résultats expérimentaux décrits dans cet ouvrage ont donnés lieu à une normalisation (norme ISO/IEC 11172-3) . On pourra définir une courbe de niveau de masque M(S) (illustrée par des pointillés sur la figure 2) pour tout signal S couvrant le spectre audiofréquentiel [fm, fjyj] , avec fm = 20 Hertz et fjj = 15 500 Hertz. Dans l'exemple illustré sur la figure 2, on notera qu'il existe deux domaines [fim' flM^ e [^2 ' f2M^ dans lesquels la courbe de niveau de masque M (S) a une amplitude supérieure à celle du signal S. Concrètement, cela signifie que les composantes spectrales comprises dans ces domaines sont inaudibles pour l'être humain. En conséquence, le rendu auditif subjectif d'un signal S' identique au signal S en dehors de ces domaines, et sans composantes fréquentielles dans ces domaines, sera identique au rendu du signal S illustré sur la figure 2.
La modélisation du phénomène de masquage auditif a donné lieu à la division du spectre audiofréquentiel en vingt-quatre domaines disjoints, appelés bandes critiques, tels que la réunion des ving -quatre bandes critiques couvre le domaine fréquentiel entre 20 Hertz et 15 500 kilohertz. Chaque bande critique B^ (i indice entier de 1 à 24) est définie par sa fréquence centrale fc et sa largeur.
Le tableau ci-dessous donne pour chaque bande critique la valeur de la fréquence centrale et sa largeur.
Bande Fréquence Largeur de bande critique centrale fc (Hz) (Hz)
Bl 60 80
B2 150 100
B3 250 100
B4 350 100
B5 455 110
B6 570 120
B7 700 140
B8 845 150
B9 1 000 160
B10 1 175 190
Bll 1 375 210
B12 1 600 240
B13 1 860 280
B14 2 160 320
B15 2 510 380
B16 2 925 450
B17 3 425 550
B18 4 050 700
B19 4 850 900
B20 5 850 1 100
B21 7 050 1 300
B22 8 600 1 800
B23 10 750 2 500
B24 13 750 3 500 On remarquera que les bandes critiques ont des largeurs variables, la moins large étant la première bande critique B]_, qui couvre les fréquences les plus graves, et la plus large étant la vingt-quatrième bande critique B24 qui couvre les fréquences les plus aigûes.
Pour chaque bande critique, la norme ISO/IEC 11172- 3 définit un niveau de masque de bande critique Nm(i) . Il s'agit d'une approximation du niveau de la courbe de niveau de masque sur l'ensemble de la bande critique (le niveau réel de la courbe de niveau de masque pour un signal donné pouvant varier dans une même bande critique) . Le niveau de masque Nm(i) est défini en fonction des niveaux de masques des huit bandes critiques inférieures (Nm(i-8) à Nm(i-l)) , si elles existent, et des trois bandes supérieures (Nm(i+1) à Nm(i+3) ) , si elles existent.
On a Nιrι(i) = Σ Nm(j) , avec j indice entier positif tel que j e [i-8, ..., i-1, i+1, ... , i+3] , Nm(j) = ιg[Xnm(j) - Av(j) - Vf(j)]/20/
Xnm(j) = 20 log10(Av(j)) + 5.69 dB (pression acoustique) ,
Av(j) = 6.025 + 0.275 * z(j) pour les raies tonales, Av(j) = 2.025 + 0.175 * z(j) pour les raies non tonales, avec Av(j) l'index de masquage de la jιeme bande critique j et z(j) le taux de la jιeme bande critique,
Vf(j) = (i-j-1) * (17 - 0.15 * Xnm(j)) + 17, pour j de i-8 à i-1, et Vf (i+1) = 0.4 * Xnm(i+18) + 6,
Vf (i+2) = 17 * Xnm(i+2) + 6,
Vf(i+3) = 34 * Xnm(i+3) + 6. z(j) est une constante définie pour chaque bande critique et on a z(l) = 0.62 dB, z(2) = 1.8 dB, z(3) = 2.4 dB, z(4) = 3.6 dB, z(5) = 4.7 dB, z(6) = 5.8 dB, z(7)
= 6.7 dB, z(8) = 7.7 dB, z(9) = 8.9 dB, z(10) = 10.0 dB, z (ll) = 10.9 dB, z(12) = 12.0 dB , z (13) = 13.1 dB , z(14) = 14.0 dB, z (15) = 14.9 dB, z(16) = 15.8 dB , z(17) = 16.7 dB, z(18) = 17.7 dB, z(19) = 18.8 dB, z(20) = 19.8 dB , z(21) = 20.9 dB, z(22) = 22.2 dB, z(23) = 23.2 dB , et z (24) = 23.9 dB.
En général, les bandes critiques les plus masquées sont les bandes aigϋes du spectre audiofréquence, qui sont masquées par les bandes graves, statistiquement plus énergétiques . Après ce bref aperçu du phénomène de masquage auditif et de sa modélisation, on va maintenant décrire un exemple de mise en oeuvre de 1 ' invention consistant à transmettre des données dans la bande passante d'un signal audiofréquentiel diffusé. Les données pourront être aussi bien analogiques
(des motifs musicaux par exemple) que numériques (c'est à dire des données binaires) . Les données pourront concerner les signaux audiofréquentiels diffusés (par exemple le nom d'une station de radio ou les références de titres musicaux émis par cette station) et avoir vocation à être perçues par l'auditeur, par exemple par le biais d'un affichage à cristaux liquides. Ce pourra aussi être des données de service intéressant le diffuseur des signaux ou des instances de régulation, et être imperceptibles par l'auditeur.
Dans la suite de la description donnée à titre d'exemple, on supposera que les données sont des données binaires . Ces données seront relatives par exemple aux programmes diffusés par une station de radio. Une station de radio émet généralement en direction de ces auditeurs des signaux audiofréquentiels modulés par des techniques classiques de modulation d'amplitude ou de fréquence. Les signaux audiofréquentiels pourront être une chanson, un générique musical, la voie d'un animateur etc.
L'invention propose de calculer à partir du signal audiofréquentiel à émettre, pour une ou plusieurs des bandes critiques Bj_ du spectre audiofréquentiel, le ou les niveaux de masque de cette ou ces bandes critiques. Si pour une bande critique le niveau de masque est supérieur au niveau du signal audiofréquentiel, on peut éliminer, sans différence perceptible par l'auditeur, la partie correspondante du signal audiofréquentiel. L'invention propose d'insérer les données (on parlera de signaux audiofréquentiels de données) , de manière inaudible pour l'auditeur, dans cette bande critique, ou une partie de cette partie de bande critique, à la place du signal audiofréquentiel originel (pour autant, bien entendu, que le niveau du signal audiofréquentiel de données est inférieur au niveau de masque de la bande critique) . En réception du signal transmis, il suffit de filtrer le signal reçu en fonction des bandes critiques pour séparer le signal audiofréquentiel de données et traiter les données transmises.
On remarquera que le débit d'informations transmises ne pourra pas être en pratique fixe, le signal originel (et donc les niveaux de masque de bande critique Nm(i) correspondants) étant à priori variables dans le temps, que ce soit en fréquence ou en amplitude.
Un système de transmission de données selon l'invention comprendra principalement un dispositif d'insertion de données (dont un exemple est illustré figure 4) et un dispositif de réception de données (dont un exemple est illustré figure 3) . Typiquement, le dispositif d'insertion de données pourra être mis en oeuvre soit au stade d'une régie finale de diffusion sonore ou visuelle, soit au stade de la production des signaux audiofréquentiels. Le dispositif de réception de données comprendra par exemple un dispositif d'affichage des données reçues (si les données sont destinées à l'auditeur) et/ou un dispositif de mémorisation (si les données sont dédiées par exemple à un contrôle d' audiométrie en temps différé) . Le dispositif de réception pourra aussi comprendre un dispositif de réémission des informations, par exemple vers un boîtier de jeu dans le cadre des programmes de télévision interactifs. Le signal audiofréquentiel de données pourra être recueilli, au niveau du dispositif de réception, soit acoustiquement par un simple microphone (disposé à proximité du haut parleur du récepteur de radio) , soit électriquement à l'aide d'un connecteur approprié (tel qu'une sortie d'enregistrement audio) .
En référence à la figure 4, on va décrire à titre d'exemple un dispositif 1 d'insertion de données, ces informations étant dans le cas présent des données binaires . Pour transmettre les données dans le signal audiofréquentiel d'un programme de radio ou de télévision, on remplace dans certaines bandes de fréquences de ce signal, le signal par une modulation numérique. Cette transmission se fait de préférence à un niveau inférieur aux niveaux de masques de ces bandes de fréquence, de manière à assurer le caractère inaudible des informations transmises. Par ailleurs, cette transmission se fait de préférence lorsque ces niveaux de ' masques sont suffisamment élevés pour assurer un rapport signal/bruit satisfaisant par rapport au canal de diffusion.
Dans un exemple, les données à émettre peuvent être organisées en trames constituées d'un mot de début et d'un nombre défini de mots de données. On pourra aussi choisir une trame comprenant un mot de début, un nombre variable de mots de données, et un mot de fin.
Le dispositif 1 d'insertion de données illustré sur la figure 4 comprend une entrée 2 pour recevoir le signal audiofréquentiel S originel à émettre (chanson, voie d'un animateur, etc.) , une entrée 3 pour recevoir les données
D à émettre, et une sortie 4 pour fournir un signal de 13
sortie audiofréquentiel S' produit à partir du signal audiofréquentiel S d'origine et des données D.
Le signal audiofréquentiel S est filtré dans un banc de douze filtres passe-bande FPB'13 à FPB'24/ de préférence complexes, recevant le signal audiofréquentiel S en entrée. Le traitement analytique du signal S facilite le calcul d'amplitudes. Chaque filtre complexe produit en sortie la partie réelle (R'13 à R*24) et la partie imaginaire d'13 à ^'24) du signal audiofréquentiel S, dans la bande de fréquence (notées F'l3 à F'24) qu'il laisse passer. Comme on le verra, le banc de filtres passe-bande complexes FPB'2.3 à FPB'24 permet d'éliminer les composantes du signal audiofréquentiel S dans les bandes de fréquence F ' 3 à F'24/ pour y insérer les données. Ces bandes de fréquence
(F' 3 à F'24) sont des bandes comprises dans les bandes critiques B13 à B24. Un organe de calcul d'amplitude OAC1 calcule les amplitudes A'j (j indice entier de 13 à 24) à partir des signaux R'j et I'j fournis par les filtres FPB'13 à FPB'24.
Le signal audiofréquentiel S est également filtré dans un banc de vingt filtres passe-bande FPB5 à FPB24, de préférence complexes, recevant le signal audiofréquentiel S en entrée. Chaque filtre complexe produit en sortie la partie réelle (R5 à R24) et la partie imaginaire (I _3 à I24) du signal audiofréquentiel S, dans la bande de fréquence qu'il laisse passer. Le banc de filtres passe-bande complexes FPB5 à FPB24 permet de calculer les niveaux de masque des bandes critiques B13 à B24. Ce calcul est réalisé à partir d'un organe de calcul d'amplitude OAC2 calculant les amplitudes Aj_ (i indice entier de 5 à 24) à partir des signaux Rj_ et Ij_ fournis par les filtres FPB5 à FPB24 • <-es amplitudes sont fournis à un processeur de calcul ON réalisant le calcul des niveaux de masque Nm(13) à Nm(24) .
Les amplitudes A' 13 à A' 24 et les niveaux de masque Nm(13) à Nm(24) sont fournis à un organe de commande OC qui va les comparer deux à deux afin de déterminer si il existe deux amplitudes A'ji et A'j2 inférieures aux niveaux de masque Nm(jl) et Nm(j2) correspondants (jl et j2 étant deux indices entiers différents compris entre 13 et 24) . Si c'est le cas, il existe aux moins deux bandes de fréquence F'ji et '-j2 dans le spectre audiofréquence pour lesquelles le signal S est inaudible. On peut alors filtrer le signal S afin d'éliminer ces composantes spectrales dans ces deux bandes de fréquence F' j et F'j2-
Pour ce faire, on soustrait les composantes réelles, notées R'i et R'2> du signal S dans ces deux bandes de fréquence F' ji et F'j2 du signal S d'origine. Ces deux composantes R'i et R'2 sont fournies par le biais d'un dispositif de multiplexage MUXP recevant les composantes R'13 à R'24' chacune de ces composantes étant pondérée de telle sorte qu'on les annule toutes sauf deux d'entre elles (R1 ji et R'j2) • La commande de ce dispositif MUXP est faite par l'organe de commande OC. Ces composantes (on a par exemple R'i = R'ji et R'2 = R'j2) sont ensuite soustraites du signal S (celui ci ayant été retardé pour tenir compte du délai de traversée des filtres et du dispositif de multiplexage) dans deux sommateurs SM1 et SM2, de telle sorte qu'on produit un signal audiofréquentiel S'jyj = S - R']_ - R'2- Ce signal audiofréquentiel S'^ est subjectivement identique, pour un auditeur qui le percevrait, au signal S.
L'ensemble formé par les filtres passe-bande F' 3 à F'24, le dispositif de multiplexage MUXP et les sommateurs SM1 et SM2 se comporte comme un filtre coupe- bande adaptatif vis à vis du signal S.
Les bandes de fréquence F' j 1 et F'j2 étant libérées pour permettre l'insertion des données D, on va maintenant s'intéresser à cette insertion.
Classiquement, on va tout d'abord procéder à une mise en forme des données binaires D. On notera que la réalisation de cette mise en forme est indépendante en tout état de cause de la libération de bandes de fréquence F' -j dans le signal audiofréquentiel S. Les données D à transmettre sont mises en forme dans un dispositif MFB afin de les émettre sous la forme de trame désirée (c'est à dire en insérant des mots de début et éventuellement de fin, des codes redondants etc.) . Puis, on va produire deux signaux audiofréquentiels de données S]_ et ≤2 par le biais d'un modulateur MOD. La modulation numérique utilisée sera par exemple une modulation QPSK
(Quadrature Phase Shift Keying) , les données mises en forme, codées en NRZ (Non Retour à Zéro) modulant en phase deux porteuses de fréquences comprises dans les bandes F' A i et 'j2# de préférence correspondant aux fréquences centrales des bandes F'ji et F'j2 utilisées
(ce qui permet d'utiliser toute la largeur de ces bandes pour émettre les signaux audiofréquentiels de données S et S2) • Cette étape de modulation nécessite bien entendu la connaissance, via l'organe de commande OC, des bandes de fréquence libérées dans le spectre du signal S.
Parallèlement à la libération des bandes F'-ji et F'j2, les niveaux de masque Nm(13) à Nm(24) sont fournis par l'organe ON à un dispositif de multiplexage MUXN qui va produire en sortie deux niveaux N'm = Nm(jl) et N"m = Nm(j2) . Afin de tenir compte de la modulation choisie pour produire les signaux Si et S2, on produit deux coefficients N' et N" , à partir des coefficients N'm et N"m, à l'aide d'un dispositif de contrôle de gain CAG. A l'aide de deux multiplieurs Ml et M2 , on produit ensuite deux signaux audiofréquentiels de données S ' = N' * S]_ et S' 2 = N" * S2. En sommant, dans deux additionneurs SM3 et SM4, les signaux S'l7 S' 2 et S'^, on produit un signal S' = S - (R'i + R'2) + (S' + S'2) - Le signal S' produit comprend à la fois les composantes audiofréquentielles audibles du signal audiofréquentiel S d'origine et les données D (représentées par S'^ et S ' 2 ) qui sont inaudibles .
Une fois le signal S' produit, on va classiquement le moduler selon des techniques connues avant de l'émettre en direction des récepteurs des auditeurs.
On notera que le gain appliqué aux signaux Sj_ et S2 étant uniquement proportionnel aux niveaux de masque des jl-ième et j2-ième bandes F' -j _ et F' -;2 < Ie niveau en amplitude des signaux S ' _ et S' 2 pourra être supérieur aux niveaux d'amplitude des composantes du signal S qui ont été enlevées .
De préférence, les bandes F' 3 à F'24 ont une même largeur pour assurer un débit de données transmises qui soit fixe, quelles que soient les bandes F' 3 à F'24 utilisées pour les transmettre. On peut ainsi utiliser un même type de modulation, quelles que soient les bandes libérées dans le signal S. Dans l'exemple illustré, on prévoit la possibilité de transmettre les données dans les douze dernières bandes critiques, de la bande critique B]_3 (fc = 1860 Hz) à la bande critique B24 (fc = 13 750 Hz) . Comme on l'a vu, ces informations sont transmises dans deux bandes situées chacune dans une des douze bandes critiques. Bien entendu, plus le nombre de bandes F'j utilisées simultanément est important, plus le débit de données transmises sera élevé. On pourra donc réaliser un dispositif d'insertion de données utilisant toutes les bandes F'j libérables. Néanmoins, on remarquera que l'utilisation simultanée d'un nombre réduit de bandes F'j permet de diminuer la probabilité de distorsion du signal audiofréquentiel d'origine si celui- ci varie fortement d'un instant à l'autre (quoique cette probabilité soit faible compte tenu du masquage temporel de l'oreille humaine) .
Quelles que soient la ou les bandes critiques dans lesquelles on insère les données, on comprendra aisément que la ou les bandes F'j utilisées à l'intérieur de ces bandes critiques ont une largeur inférieure ou égale aux largeurs des bandes critiques correspondantes.
Dans l'exemple illustré, le premier banc de filtres passe-bande est constitué de préférence de filtres passe- bande F']_3 à F'24 de largeurs égale à 280 Hz à -3 décibels . Cette largeur correspond à la largeur de la bande critique utilisable pour insérer les données qui a la largeur la plus faible, c'est à dire à la largeur de la treizième bande critique (bien entendu, on suppose ici que les fréquences porteuses utilisées pour produire les signaux audiofréquentiels de données sont égales aux fréquences centrales des bandes critiques) . On a donc peu intérêt à mettre en oeuvre une transmission des données dans les bandes critiques inférieures, celles-ci ayant une largeur plus faible, ce qui limiterait le débit maximal admissible.
Le banc de filtres F ' ^3 à F'24 est réalisé de préférence par filtrage multicadence, ce qui permet d'avoir un temps de propagation constant et un nombre d'opérations limitées.
Le second banc de filtres F5 à F24 est de préférence obtenu à partir de filtres passe-bande reconstructibles (c'est à dire de filtres tels que la somme des signaux filtrés en sortie est identique au signal d'entrée avant filtrage) dont les gabarits correspondent aux bandes critiques. Autrement dit, on a intérêt à calculer le plus justement possible les niveaux de masque des bandes critiques, ce qui permet d'éviter de produire des signaux audiofréquentiels de données qui pourraient être audibles.
Les informations binaires sont par exemple regroupées par mots de trente-deux bits. Une trame transmise comportera par exemple un mot de début, codé sur trente-deux bits et un mot de données de trente-deux bits. Le mot de début est par exemple composé de neuf premiers bits constituant une rampe d'accrochage utilisée dans le dispositif de réception, les vingt-trois bits suivants formant un mot de synchronisation. Le mot de données est par exemple composé de trois octets représentant les données et d'un dernier octet de redondance pour la mise en oeuvre d'un code correcteur d'erreur si un tel code est utilisé. Cette organisation des trames d'informations correspond à une transmission des informations sur des blocs temporels du signal audiofréquentiel d'une durée de 256 millisecondes, ce qui correspond à la durée nécessaire pour transmettre soixante-quatre bits, c'est à dire deux • trames de données. On peut ainsi atteindre un débit binaire maximal de 500 bits par seconde.
De préférence, on émet les trames de données à la condition que les niveaux de masque des bandes critiques utilisées pour insérer les données soient supérieures au niveau d'énergie minimale permettant de résister aux perturbations apportées par le canal.
Bien qu'on ne l'ait pas précisé, il est bien entendu préférable de ne pas libérer de bandes de fréquence dans le signal audiofréquentiel d'origine quand on n'a pas de données à transmettre. Pour cela il suffit d'annuler les signaux produits en sortie du dispositif de multiplexage MUXP. Ainsi, même si le niveau de masque du signal d'origine varie rapidement et de manière importante, il n'y aura pas de risque de perturbation du signal d'origine par suppression de fréquences audibles. Une fois la transmission de données réalisée, on procédera de préférence à une annulation progressive des signaux de sortie du dispositif de multiplexage MUXP afin de diminuer la probabilité de rendre le "rebouchage" audible.
Si le niveau de masque du signal audiofréquentiel d'origine chute et qu'on a émis le mot de début, on continuera de préférence à émettre afin de faciliter le traitement des données au niveau du dispositif de réception. Si les données sont codées sur trente deux bits c'est peu gênant du fait du masquage auditif temporel .
Le dispositif 5 d'extraction de données illustré sur la figure 3 comprend une entrée 6 pour recevoir le signal audiofréquentiel S' .
Le signal audiofréquentiel S' est filtré dans un banc de douze filtres passe-bande FPB" 3 à FPB"24, ayant des gabarits identiques aux douze filtres FPB']_3 à FPB'24- On produit ainsi douze signaux audiofréquentiels S ' 13 à S '24' correspondants aux composantes spectrales du signal S' dans les bandes F' 13 à F'24 dans lesquelles sont susceptibles de se trouver des données insérées par un dispositif analogue à celui décrit en référence à la figure 4.
Le dispositif 5 comporte un banc de douze démodulateurs DEMOD13 à DEM0D24, chaque démodulateur étant associé à l'un des filtre passe-bande. Une fois les signaux démodulés, on les échantillonne dans des échantillonneurs EC]_3 à EC24 associés à des dispositifs de récupération d'horloge RC 3 à RC24, afin de produire des données binaires.
Une fois les signaux audiofréquentiels échantillonnés, les données binaires produites sont traitées dans des organes de reconnaissance RTB13 à R B24 afin de déterminer si ces données sont représentatives de données transmises (auquel cas des bits de synchronisation de mots de début seront présents) ou si ces données ne correspondent à rien (la probabilité étant assez faible qu'on puisse produire par échantillonnage, à partir d'un signal audiofréquentiel quelconque, des bits correspondants aux bits de synchronisation d'un mot de début) .
Bien entendu, si les données émises ne sont pas des données numériques mais des données analogiques, telles qu'un motif musical par exemple, on adaptera les dispositifs d'insertion et d'extraction de données en conséquence. En particulier, il ne sera pas nécessaire d'utiliser des dispositifs de modulation, de démodulation et d'échantillonnage. Ceux-ci seront remplacés par des moyens de transposition en fréquence des données à insérer pour adapter les fréquences des données aux fréquences libérées dans le dispositif d'insertion.

Claims

REVENDICATIONS
1 - Système de diffusion de données (D) , ces informations étant transmises dans la bande passante d'un signal audiofréquentiel (S) diffusé, caractérisé en ce qu'il comprend : - des moyens de détermination dans au moins une bande de fréquence (F'13, ..., F'24) de l'amplitude (A'13, ..., A'24) du signal audiofréquentiel (S) et de comparaison de cette amplitude avec un niveau de masque auditif (Nm(13) , ... , Nm(24) ) associé à cette bande de fréquence, des moyens d'élimination des composantes fréquentielles du signal audiofréquentiel dans la dite bande de fréquence si l'amplitude du signal est inférieur au niveau de masque auditif de la dite bande, et - des moyens d'insertion des dites données dans cette bande de fréquence à un niveau inférieur ou égal au niveau de masque auditif de la dite bande de fréquence.
2 - Système selon la revendication 1, caractérisé en ce que la bande de fréquence (F1 3, ..., F'24) est comprise dans une bande de référence (B13, ... , B24) •
3 - Système selon la revendication 2, caractérisé en ce que la bande de fréquence a une fréquence centrale identique à la fréquence centrale de la bande de référence. 4 - Système selon la revendication 1, caractérisé en ce qu'il comprend des moyens d'insertion des données dans au moins deux bandes de fréquence (F'ji, F'j2) distinctes .
5 - Système selon la revendication 4, caractérisé en ce que les bandes de fréquence distincte sont comprises dans des bandes de référence (Bji, B 2) de largeurs distinctes.
6 - Système selon la revendication 5, caractérisé en ce que les bandes de fréquence distinctes ont une fréquence centrale identique à la fréquence centrale de la bande de référence dans laquelle elles sont comprises.
7 - Système selon l'une des revendications 5 à 6, caractérisé en ce que les bandes de fréquence distinctes ont la même largeur.
8 - Système selon la revendication 7, caractérisé en ce que la largeur des bandes de fréquence distinctes est égale à la largeur de la bande de référence dans lesquelles elles sont comprises ayant la largeur la plus faible.
EP96920890A 1995-06-02 1996-06-03 Systeme de diffusion de donnees utilisant les proprietes de l'oreille humaine Expired - Lifetime EP0829145B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9506727 1995-06-02
FR9506727A FR2734977B1 (fr) 1995-06-02 1995-06-02 Systeme de diffusion de donnees.
PCT/FR1996/000833 WO1996038927A1 (fr) 1995-06-02 1996-06-03 Systeme de diffusion de donnees utilisant les proprietes de l'oreille humaine

Publications (2)

Publication Number Publication Date
EP0829145A1 true EP0829145A1 (fr) 1998-03-18
EP0829145B1 EP0829145B1 (fr) 1999-01-27

Family

ID=9479715

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96920890A Expired - Lifetime EP0829145B1 (fr) 1995-06-02 1996-06-03 Systeme de diffusion de donnees utilisant les proprietes de l'oreille humaine

Country Status (12)

Country Link
US (1) US6151578A (fr)
EP (1) EP0829145B1 (fr)
JP (1) JP3033193B2 (fr)
AU (1) AU702731B2 (fr)
BR (1) BR9608865A (fr)
CA (1) CA2222198C (fr)
DE (1) DE69601465T2 (fr)
ES (1) ES2129975T3 (fr)
FR (1) FR2734977B1 (fr)
PL (1) PL179960B1 (fr)
TR (1) TR199701496T1 (fr)
WO (1) WO1996038927A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014067968A1 (fr) 2012-10-30 2014-05-08 Tdf Procédé et module de basculement d'un premier programme vers un deuxième programme, procédé de diffusion, tête de réseau, programme d'ordinateur et medium de stockage correspondants

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614914B1 (en) 1995-05-08 2003-09-02 Digimarc Corporation Watermark embedder and reader
US6944298B1 (en) 1993-11-18 2005-09-13 Digimare Corporation Steganographic encoding and decoding of auxiliary codes in media signals
US6611607B1 (en) 1993-11-18 2003-08-26 Digimarc Corporation Integrating digital watermarks in multimedia content
US6560349B1 (en) 1994-10-21 2003-05-06 Digimarc Corporation Audio monitoring using steganographic information
US5945932A (en) * 1997-10-30 1999-08-31 Audiotrack Corporation Technique for embedding a code in an audio signal and for detecting the embedded code
US6272176B1 (en) 1998-07-16 2001-08-07 Nielsen Media Research, Inc. Broadcast encoding system and method
US7006555B1 (en) 1998-07-16 2006-02-28 Nielsen Media Research, Inc. Spectral audio encoding
GB2342548B (en) * 1998-10-02 2003-05-07 Central Research Lab Ltd Apparatus for,and method of,encoding a signal
CA2809775C (fr) 1999-10-27 2017-03-21 The Nielsen Company (Us), Llc Extraction et correlation de signature audio
GB2358999A (en) * 2000-02-02 2001-08-08 Central Research Lab Ltd A system and method for labelling a signal
US6968564B1 (en) * 2000-04-06 2005-11-22 Nielsen Media Research, Inc. Multi-band spectral audio encoding
US6879652B1 (en) 2000-07-14 2005-04-12 Nielsen Media Research, Inc. Method for encoding an input signal
US7908021B1 (en) * 2000-11-02 2011-03-15 Sigmatel, Inc. Method and apparatus for processing content data
US6999715B2 (en) * 2000-12-11 2006-02-14 Gary Alan Hayter Broadcast audience surveillance using intercepted audio
US8964604B2 (en) 2000-12-26 2015-02-24 Polycom, Inc. Conference endpoint instructing conference bridge to dial phone number
US8977683B2 (en) 2000-12-26 2015-03-10 Polycom, Inc. Speakerphone transmitting password information to a remote device
US7864938B2 (en) * 2000-12-26 2011-01-04 Polycom, Inc. Speakerphone transmitting URL information to a remote device
US8948059B2 (en) 2000-12-26 2015-02-03 Polycom, Inc. Conference endpoint controlling audio volume of a remote device
US7339605B2 (en) 2004-04-16 2008-03-04 Polycom, Inc. Conference link between a speakerphone and a video conference unit
US9001702B2 (en) 2000-12-26 2015-04-07 Polycom, Inc. Speakerphone using a secure audio connection to initiate a second secure connection
DE60101549T2 (de) * 2001-04-06 2004-09-23 Swatch Ag System und Verfahren zum Zugriff auf Informationen und/oder Daten im Internet
US8934382B2 (en) 2001-05-10 2015-01-13 Polycom, Inc. Conference endpoint controlling functions of a remote device
US8934381B2 (en) * 2001-12-31 2015-01-13 Polycom, Inc. Conference endpoint instructing a remote device to establish a new connection
US8102984B2 (en) * 2001-12-31 2012-01-24 Polycom Inc. Speakerphone and conference bridge which receive and provide participant monitoring information
US8223942B2 (en) * 2001-12-31 2012-07-17 Polycom, Inc. Conference endpoint requesting and receiving billing information from a conference bridge
US8144854B2 (en) 2001-12-31 2012-03-27 Polycom Inc. Conference bridge which detects control information embedded in audio information to prioritize operations
US8885523B2 (en) 2001-12-31 2014-11-11 Polycom, Inc. Speakerphone transmitting control information embedded in audio information through a conference bridge
US7978838B2 (en) 2001-12-31 2011-07-12 Polycom, Inc. Conference endpoint instructing conference bridge to mute participants
US7787605B2 (en) 2001-12-31 2010-08-31 Polycom, Inc. Conference bridge which decodes and responds to control information embedded in audio information
US7742588B2 (en) * 2001-12-31 2010-06-22 Polycom, Inc. Speakerphone establishing and using a second connection of graphics information
US8705719B2 (en) 2001-12-31 2014-04-22 Polycom, Inc. Speakerphone and conference bridge which receive and provide participant monitoring information
US8947487B2 (en) 2001-12-31 2015-02-03 Polycom, Inc. Method and apparatus for combining speakerphone and video conference unit operations
US20030131350A1 (en) 2002-01-08 2003-07-10 Peiffer John C. Method and apparatus for identifying a digital audio signal
US20030195978A1 (en) * 2002-04-11 2003-10-16 International Business Machines Corporation Audio buffer selective data processing
US6993285B2 (en) * 2002-04-11 2006-01-31 International Business Machines Corporation Audio buffer processing
US6801965B2 (en) 2002-04-11 2004-10-05 International Business Machines Corporation Audio buffer station allocation
WO2004038538A2 (fr) 2002-10-23 2004-05-06 Nielsen Media Research, Inc. Procedes et appareil permettant d'inserer des donnees numeriques utilises avec des donnees audio/video compressees
US8126029B2 (en) 2005-06-08 2012-02-28 Polycom, Inc. Voice interference correction for mixed voice and spread spectrum data signaling
US8199791B2 (en) * 2005-06-08 2012-06-12 Polycom, Inc. Mixed voice and spread spectrum data signaling with enhanced concealment of data
US7796565B2 (en) * 2005-06-08 2010-09-14 Polycom, Inc. Mixed voice and spread spectrum data signaling with multiplexing multiple users with CDMA
WO2008103738A2 (fr) 2007-02-20 2008-08-28 Nielsen Media Research, Inc. Procédés et appareil pour caractériser des supports
US8458737B2 (en) * 2007-05-02 2013-06-04 The Nielsen Company (Us), Llc Methods and apparatus for generating signatures
EP2210252B1 (fr) 2007-11-12 2017-05-24 The Nielsen Company (US), LLC Procédés et dispositifs pour effectuer le tatouage audio et la détection et l'extraction de tatouage
US8457951B2 (en) 2008-01-29 2013-06-04 The Nielsen Company (Us), Llc Methods and apparatus for performing variable black length watermarking of media
US8600531B2 (en) 2008-03-05 2013-12-03 The Nielsen Company (Us), Llc Methods and apparatus for generating signatures

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8611014D0 (en) * 1986-05-06 1986-06-11 Emi Plc Thorn Signal identification
DE3806411C2 (de) * 1988-02-29 1996-05-30 Thomson Brandt Gmbh Verfahren zur Übertragung eines Tonsignals und eines Zusatzsignals
NL8901032A (nl) * 1988-11-10 1990-06-01 Philips Nv Coder om extra informatie op te nemen in een digitaal audiosignaal met een tevoren bepaald formaat, een decoder om deze extra informatie uit dit digitale signaal af te leiden, een inrichting voor het opnemen van een digitaal signaal op een registratiedrager, voorzien van de coder, en een registratiedrager verkregen met deze inrichting.
FR2681997A1 (fr) * 1991-09-30 1993-04-02 Arbitron Cy Procede et dispositif d'identification automatique d'un programme comportant un signal sonore.
US5319735A (en) * 1991-12-17 1994-06-07 Bolt Beranek And Newman Inc. Embedded signalling
US5450490A (en) * 1994-03-31 1995-09-12 The Arbitron Company Apparatus and methods for including codes in audio signals and decoding
US5945932A (en) * 1997-10-30 1999-08-31 Audiotrack Corporation Technique for embedding a code in an audio signal and for detecting the embedded code

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9638927A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014067968A1 (fr) 2012-10-30 2014-05-08 Tdf Procédé et module de basculement d'un premier programme vers un deuxième programme, procédé de diffusion, tête de réseau, programme d'ordinateur et medium de stockage correspondants

Also Published As

Publication number Publication date
PL323534A1 (en) 1998-03-30
TR199701496T1 (xx) 1998-03-21
AU6228796A (en) 1996-12-18
JPH10507054A (ja) 1998-07-07
FR2734977B1 (fr) 1997-07-25
ES2129975T3 (es) 1999-06-16
BR9608865A (pt) 1999-06-15
DE69601465D1 (de) 1999-03-11
CA2222198A1 (fr) 1996-12-05
FR2734977A1 (fr) 1996-12-06
JP3033193B2 (ja) 2000-04-17
US6151578A (en) 2000-11-21
EP0829145B1 (fr) 1999-01-27
PL179960B1 (pl) 2000-11-30
CA2222198C (fr) 2007-09-25
AU702731B2 (en) 1999-03-04
DE69601465T2 (de) 1999-06-10
MX9709127A (es) 1998-08-30
WO1996038927A1 (fr) 1996-12-05

Similar Documents

Publication Publication Date Title
EP0829145B1 (fr) Systeme de diffusion de donnees utilisant les proprietes de l&#39;oreille humaine
RU2523934C2 (ru) Передатчик
EP1002388B1 (fr) Systeme et procede d&#39;integration ou d&#39;extraction de donnees dans des signaux analogiques au moyen de caracteristiques de signal distribuees
JP2006154851A (ja) 音声信号にコードを含める共に復号化する装置及び方法
KR19990044450A (ko) 오디오신호에 보조데이터를 전송하기 위한 방법 및 장치
EP1886535B1 (fr) Procede pour produire une pluralite de signaux temporels
EP0199410A1 (fr) Système pour la transmission secrète de signaux audio, et téléviseur pour la réception de tels signaux
WO2007068833A1 (fr) Systeme de diffusion sonore
FR2713852A1 (fr) Multiplexage fréquentiel d&#39;un signal de données et d&#39;un signal sonore.
EP1554877A2 (fr) Desembrouillage adaptatif et progressif de flux audio
CA2358719C (fr) Systeme et procede de radiodiffusion assurant une continuite de service
BE889427A (fr) Circuit de suppression des effets de modulation dans des compresseurs, des expanseurs et des dispositifs de reduction des bruits
FR2730111A1 (fr) Procede d&#39;emission-reception de donnees d&#39;information, notamment en radiophonie, et systeme d&#39;emission-reception pour la mise en oeuvre d&#39;un tel procede
EP0731588A1 (fr) Modulateur en phase multi-résolution, pour systèmes multiporteuses
MXPA97009127A (en) Da&#39;s diffusion system
FR2780228A1 (fr) Dispositif de transmission d&#39;informations audio et video
EP1815622B1 (fr) Procédé de diffusion d&#39;un signal numérique transmis au voisinage d&#39;un signal analogique, dispositif de diffusion et signal numérique correspondants
KR20040058203A (ko) 신호 내 보조 정보를 부호화하기 위한 시스템
FR2889011A1 (fr) Procede et dispositif de reception d&#39;un signal numerique transmis au voisinage d&#39;un signal analogique
FR2485836A1 (fr) Circuit de suppression des effets de modulation en frequences intermediaires dans des compresseurs, des expanseurs et des dispositifs de reduction des bruits
FR2931614A1 (fr) Procede de restitution d&#39;un canal de donnees audio, produit programme d&#39;ordinateur, moyen de stockage et premier dispositif recepteur correspondants
FR2845543A1 (fr) Systeme d&#39;embrouillage securise de flux audio
FR2571192A1 (fr) Procede d&#39;association d&#39;un message acoustique principal et d&#39;un message secondaire pour transmission ou enregistrement
FR2645692A1 (fr) Systeme pour la transmission secrete de signaux audio : cryptophonie par inversion de spectre. television, radio, telephone suivant le procede. dispositifs pour realiser des codeurs ou des decodeurs
WO2001082513A1 (fr) PROCEDE ET DISPOSITIF DE CODAGE D&#39;INFORMATIONS SUR LA BANDE AUDIO D&#39;UN SYSTèME DE TRANSMISSION DU SON

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES GB IT LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980515

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES GB IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KATZAROV S.A.

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990128

REF Corresponds to:

Ref document number: 69601465

Country of ref document: DE

Date of ref document: 19990311

ITF It: translation for a ep patent filed

Owner name: PORTA CHECCACCI & ASSOCIATI S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2129975

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150603

Year of fee payment: 20

Ref country code: CH

Payment date: 20150521

Year of fee payment: 20

Ref country code: DE

Payment date: 20150521

Year of fee payment: 20

Ref country code: GB

Payment date: 20150527

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150522

Year of fee payment: 20

Ref country code: NL

Payment date: 20150521

Year of fee payment: 20

Ref country code: IT

Payment date: 20150529

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69601465

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20160602

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160602

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160604