EP1157394B1 - System for writing magnetic scales - Google Patents

System for writing magnetic scales Download PDF

Info

Publication number
EP1157394B1
EP1157394B1 EP00920470A EP00920470A EP1157394B1 EP 1157394 B1 EP1157394 B1 EP 1157394B1 EP 00920470 A EP00920470 A EP 00920470A EP 00920470 A EP00920470 A EP 00920470A EP 1157394 B1 EP1157394 B1 EP 1157394B1
Authority
EP
European Patent Office
Prior art keywords
conductor
shaped conductor
section
cross
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00920470A
Other languages
German (de)
French (fr)
Other versions
EP1157394A1 (en
Inventor
Fritz Dettmann
Uwe Loreit
Carsten Möller
Torsten Schönbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sensitec GmbH
Original Assignee
Sensitec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19940164A external-priority patent/DE19940164A1/en
Application filed by Sensitec GmbH filed Critical Sensitec GmbH
Publication of EP1157394A1 publication Critical patent/EP1157394A1/en
Application granted granted Critical
Publication of EP1157394B1 publication Critical patent/EP1157394B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets

Definitions

  • the present invention relates to an arrangement for what is referred to as writing, in time Sequential section-by-section magnetization of magnetic scales.
  • Magnetic scales are required for length, angle and position determination. They can be done with divisions that exist periodically or in sections magnetized in the opposite direction according to different codes his.
  • Magnetic scales can be linear or circular or any have other shapes. They can be made entirely of hard magnetic material or of hard magnetic material, which is based on a soft magnetic or non-magnetic Carrier located. The surface can be protected by a cover layer.
  • Arrangements for writing magnetic scales according to two different principles are known.
  • the first principle e.g. published patent application DE 41 08 923 A1
  • a disadvantage of this method of Magnetization of magnetic scales is that at the position of the parts of the molded extremely high accuracy requirements must be placed on the electrical conductor go beyond the accuracy requirements of the magnetic scale, because the Transfer of the intended magnetic pattern is not possible without errors.
  • the Shaped electrical conductor is the product of a mechanical manufacture, so that position errors of the scale thus produced cannot be achieved in the range of a few micrometers.
  • the magnetization of the scale takes place in sections that span several areas magnetization to be set, there is an additional accuracy problem at the interfaces of two successively magnetized sections.
  • the poor accuracy results less from the error of the measured positions of the shaped electrical conductor than from the fact that magnetic fields with a Strength that goes beyond the coercive field strength of the scale material, even outside of the section that the electrical conductor occupies. This is the yardstick magnetized here too. Because the direction of magnetization that is finally set in the scale material dependent on the previous history due to the magnetic hysteresis areas of faulty magnetization form at the interfaces, which then limit the accuracy of the magnetic scale.
  • pulse current sources e.g. B. Offenlegungsschrift, DE 34 21 575 A1
  • These pulse current sources deliver current amplitudes up to about 30 kA, are operated with high voltage, have masses of more than 50 kg and are relatively expensive. Because of The high voltage must have relatively rigid leads between the pulse current source and the molded electrical conductor can be used. These supply lines complicate the accurate positioning because it applies forces and vibrations to the molded electrical conductor transfer. The strong current impulse makes them magnetize generated that briefly develops considerable forces at 30 kA.
  • a print head consists of one or two by a narrow one Gap separated magnetic poles, which are surrounded by at least one coil.
  • the soft magnetic Magnetic poles can be magnetized to saturation by a current through the coil become. Currents of less than 1 A are sufficient for this, since the number of turns of the Coil can be adjusted accordingly.
  • At the end of the single-pole arrangement or in the Magnetic field strengths then occur near the gap of the two-pole arrangement are sufficient to magnetize the scale material.
  • the gap is guided directly over the scale to be magnetized. The magnetic field emerges from the soft magnetic material on one side of the gap and on the other side of the gap.
  • Range from that generated by the write head and also from that already created by the magnetized scale material caused field strength is determined. Thereby the errors of two magnetization processes are added. This is also why they fall not particularly small because the magnetic field strength that emerges from the print head with increasing distance from the gap and from the soft magnetic poles with relative low gradient decreases. This is how small fluctuations in distance ultimately work in substantial differences in length of the magnetized areas. Seems cheapest still to be the operating case in which the writing head touches the scale surface directly. However, this is for a high accuracy of the scale because of the different Frictional forces when moving the print head against the scale, which leads to errors the set position, also not optimal.
  • the object of the invention is to provide an arrangement for writing magnetic scales with high accuracy of the dimensions of the magnetized Ranges and with high repeatability of the magnetization within the magnetized Areas is suitable.
  • the arrangement for writing magnetic scales consists of a molded one Current conductor for generating magnetic fields at the location of the scale and one from a capacitor bank, a switch and a control unit composite pulse current source for both current directions. All components are in a compact unit integrated. Due to the compact design, the entire current path is from the capacitor bank extremely short to the shaped conductor. All components and the connecting lines are mounted in a fixed position to each other, so that forces that affect the position of the shaped conductor could change to the magnetized scale, ineffective stay. The short current path and a large cross-section of the lines between the capacitor bank and molded current conductors guarantee low resistance throughout Circuit. Therefore an operating voltage in the low voltage range is sufficient for Generation of the high current required for magnetization.
  • this hairpin-like Shaped conductor By a current pulse through this hairpin-like Shaped conductor will become the benchmark in the area below Connection line is located between the centers of the wires, in one and immediately adjacent magnetized in the other direction. Correct the length of the Area under the connecting line of the centers of the wires with the pole length, then there is a change in the magnetization direction once set in the scale material not mandatory. There are only magnetization processes with the same magnetization direction for every area of the scale. This and the high field gradient A high accuracy of the length and the field strength of the poles is guaranteed if the The position of the shaped conductor is set using a correspondingly accurate measuring system has been. This also applies in the event that the shaped conductor is at a distance located above the scale surface to avoid errors caused by frictional forces.
  • molded current conductors with a band-shaped cross section are used, where the strip thickness is chosen as small as possible, so that the total current in the least Distance to the scale surface is concentrated and generates high magnetic field strengths.
  • the width of the cross section is adapted to the length of the areas to be magnetized, so that the area is magnetized with a current pulse.
  • the shaped one Current conductors can also consist of a number of wires lying directly next to one another exist, which then together fill the band-shaped cross-section and parallel Flows through.
  • the shaped conductor is always in a holder fixed so that the forces occurring during the current pulse neither on its shape can still change something in its position relative to the scale.
  • the bracket with the shaped conductor is interchangeable, so that always for writing the respective Scale optimally shaped conductor can be used.
  • the switch of the pulse current source has the shape of an H-bridge. So that from the Capacitor battery Current pulses in opposite directions with the same amplitude and sent over the same time in the shaped conductor, which is the prerequisite this is because the pole lengths of the opposite direction of magnetization at one periodic scale also match with high accuracy.
  • a switch in the H-bridge MOS transistors are preferably used, with all switches from one equal number of MOS transistors connected in parallel. So will achieved a sufficiently large total current and the resistance of the parallel MOS transistors in the circuit is not current limiting. It is important that the compact structure the arrangement leads to such low inductances in the circuit that the current through the shaped conductor rises to its maximum value in a few tenths of a microsecond.
  • a signal from the control unit allows the MOS transistors to run for a few microseconds be blocked again after the start of the current pulse, because this time period is sufficient for magnetization. This is very low in comparison with the prior art Pulse duration leads to several advantages of the arrangement according to the invention.
  • An advantage consists in the fact that in the short pulse time the voltage at the capacitor bank only drops by a small amount. So can inexpensive electrolytic capacitors are used, which have a high capacity per volume and thus the compact Support the construction of the entire arrangement and its small expansion.
  • Another The advantage is that the small charge of the capacitor battery removed by the pulse current can be supplied again in the pulse pauses by a low current and so only a low power is required to supply the arrangement.
  • the pulse current source is located in a shield made of highly conductive Metal.
  • the only unshielded part is the bracket with the molded conductor, on which, however, the supply and discharge lines are directly adjacent are led. So that the environment of the arrangement is despite the high currents of disturbing or health-endangering electromagnetic fields.
  • the arrangements according to the invention are for writing magnetic scales with in Direction of measurement periodically alternating magnetization direction and magnetic scales with magnetization areas, the lengths of which are assigned to a code.
  • the positioning of the shaped conductor is non-contact the surface of the scale is intended to cause friction resulting in position errors excluded between the molded conductor and the scale surface becomes.
  • FIG. 1 An overview of an entire inventive arrangement for writing magnetic Fig. 1 shows scales. It consists of a shaped current conductor 1, which is in the Writing is located near the surface of the scale. Shaped in a pulse current source 2 Current pulses are fed into the shaped conductor and produce it Proximity of magnetic field strengths sufficient to magnetize the scale material are.
  • the pulse current source 2 consists of a capacitor bank 3, a changeover switch 4 and a control unit 5.
  • the structure of the arrangement is designed so that between Capacitor battery 3 and shaped conductor 1 with a minimum line length if possible high wire cross section. This is a very low impedance connection as Prerequisite for high currents with low operating voltage of the capacitor bank 3 guaranteed.
  • the operating voltage is supplied via the contacts 8.
  • the supply voltage and the input data line for the control unit 5 takes place via the connection contacts 9th
  • the switch 4 has the shape of an H-bridge. There are four switches 7, each consisting of the same number of MOS transistors connected in parallel. This ensures sufficient current portability and a sufficiently low resistance of the switches 7.
  • the particular advantage of using MOS transistors over the thyristors or ignitrons used hitherto is that they can be switched from the conductive back to the blocked state at any time by pulses from the control unit 5.
  • the pulse duration can thus be limited to a few microseconds. This period of time is sufficient to magnetize the scale material in any case. A longer pulse duration has no positive effect on the magnetization due to the decreasing current strength of the pulse. Because of the short pulse time, the capacitor bank 3 is only discharged to a small extent with each individual pulse.
  • the capacitor bank 3 is made up of electrolytic capacitors 6 connected in parallel. Voltages in the low voltage range of less than 60 V are sufficient as the operating voltage. Because of this low voltage and the usability of electrolytic capacitors 6, the volume required for the required capacity is particularly low, which accommodates the low impedance of the circuit. Since only a partial discharge of the capacitor bank 3 of about 5% takes place, the operating current is correspondingly low and can be below 500 mA. Furthermore, the thermal load on the shaped conductor is low because of the short pulse duration, so that small cross sections can be used here, which lead to high magnetic field strengths in the area of the scale material. Finally, the short pulse duration enables high pulse repetition frequencies of approximately 50 s -1 , which increase the economy of the writing process. The entire pulse current source 2 is located in a metal shield 10 so that, despite the high currents and the short switching times, no health-endangering electromagnetic fields emerge.
  • the shaped conductor 1 is in shape and dimensions to the magnetic pattern to be written adapted to the scale.
  • Fig.2 shows a hairpin-shaped current conductor 11 with the Supply lines 12 on a holder 13.
  • the hairpin-shaped current conductor 11 is in the holder 13 embedded and glued firmly.
  • the leads 12 are also fixed to the bracket 13 connected and are located directly next to each other. So one is through the Current pulse-related change in position of the hairpin-shaped conductor 11 opposite excluded the scale. Due to the small distance between the two feed lines 12 is not an essential electromagnetic despite the position of the bracket 13 outside the shield 10 Stray field available.
  • FIG. 3 An enlarged representation of the hairpin-shaped current conductor 11 is shown in FIG. 3.
  • the rectangular one Cross section 17 of the current conductor 11 has the linear dimensions 15 and 16.
  • this cross-section 17 of a circular conductor cross-section 17.1, of two circular conductor cross-sections 17.2 or of four circular conductor cross-sections 17.3 are taken. If there are several conductor cross sections, they are from Flows flow in the same direction. This is by connecting the individual hairpin-shaped ones in series Current conductor possible.
  • the drawing with the cross section 17.2 corresponds, for example the shaped current conductor 1 in FIG. 1.
  • the distance 14 between the two cross sections 17 of the hairpin-shaped current conductor 11 is substantially larger than the dimensions 15, 16 of the cross section 17.
  • the field strength in FIG Plane component of the hairpin-shaped current conductor 11 is shown for different distances 24 at a current of 2200 A above the distance from the center of the hairpin-shaped current conductor 11.
  • the curves 21; 22 and 23 are valid for distances 24 of 0.05 mm, 0.2 mm and 0.4 mm. Particularly for smaller distances 24, a very strong drop in the field strength can be found, for example, in the area above the center points of the conductor cross sections. There is even a change of sign.
  • the curves for the different distances 24 intersect approximately at a point which is at a field strength of 2.5 10 5 A / m. If there is now a scale made of plastic-bonded ferrite, which has a coercive field strength that corresponds to the value mentioned, with its surface parallel to the hairpin-shaped current conductor, its magnetization is set in a vertical direction upwards over a length that corresponds to the distance 14, to a depth of about 0.5 mm. In addition to the distance 14, the magnetic field strength in the region near the surface of the scale with a width of less than 1 mm is large enough to set the magnetization in the opposite direction here.
  • the position of the arrangement with the hairpin-shaped current conductor 11 is shifted exactly 1 mm to the right using a precise measuring arrangement.
  • the direction of the current pulse that follows and therefore also that of the magnetic field is opposite to that of the first.
  • the next section of the scale is magnetized vertically downwards.
  • the areas of this section near the surface were magnetized in this direction already at the first pulse, so that a reversal of the direction of the magnetization already present does not have to take place.
  • a field strength that exceeds the coercive field strength of the material also occurs again in the region of the first magnetized section near the surface. However, it corresponds to the direction of the magnetization inscribed there. No magnetic reversal is required.
  • the lengths of the magnetized areas and also their magnetization value can thus be reproduced with high accuracy using a highly precise position measuring method for setting the position between the scale and the shaped current conductor 11.
  • the cross sections 17.2 and 17.3 shown in FIG. 4 for the hairpin-shaped current conductor 11 are advantageous if there are larger distances 14 between the outgoing and return lines. By it will decrease the field strengths to too low values in the middle between the and avoided return.
  • FIG. 5 shows on a bracket 13 fixed supply line 12 and shaped current conductor 18.
  • FIG. 6 illustrates that this shaped current conductor is band-shaped, the width 19 is substantially larger than the thickness.
  • Different ways to The cross section of the band-shaped conductor 18 is shown in FIG. 7.
  • the thickness distribution 20.1 and 20.3 ensures a uniform field strength of those pointing parallel to the band Field component under the belt over most of the width 19.
  • An arrangement for writing constructed in accordance with the features of the invention magnetic scales with the pulse method compared to the prior art only about 1/100 of the mass and volume, the electrical connection power is 1/100 reduced, the pulse repetition frequency and thus the effectiveness when writing scales has increased by a factor of 100 and the accuracy of the scales obtained has been increased by improved more than tenfold.
  • health protection measures are no longer required in the new arrangement.

Abstract

The invention relates to a system for pulse magnetizing high-precision magnetic scales. The system comprises a shaped current conductor (1) and a pulse current source (2) that is composed of a capacitor bank (3), a transfer switch (4) and a control unit (5). The compact set-up of the system is the prerequisite for a power circuit that has such a low resistance that the required high pulse currents are obtained at supply voltages of below 60 V. The transfer switch is an H bridge with four switches (7) that contain equal numbers of MOS transistors connected in parallel. The short pulse times that are achieved using the MOS transistors allow the use of shaped current conductors with which magnetized areas can be produced with a very high precision. The inventive system provides a means for saving components, electric power and time by a factor of up to 100.

Description

Die vorliegende Erfindung betrifft eine Anordnung zum als Schreiben bezeichneten, in zeitlicher Reihenfolge erfolgenden abschnittsweisen Magnetisieren von magnetischen Maßstäben. Magnetische Maßstäbe werden für die Längen-, Winkel- und Positionsbestimmung benötigt. Sie können mit in periodischer Wiederholung vorhandenen Teilungen oder abschnittsweise entsprechend unterschiedlicher Codes in entgegengesetzter Richtung magnetisiert sein. Magnetische Maßstäbe können linear oder kreisförmig sein oder auch beliebige andere Formen aufweisen. Sie können vollständig aus hartmagnetischem Material bestehen oder aus hartmagnetischem Material, das sich auf einem weichmagnetischen oder nichtmagnetischen Träger befindet. Die Oberfläche kann durch eine Abdeckschicht geschützt sein.The present invention relates to an arrangement for what is referred to as writing, in time Sequential section-by-section magnetization of magnetic scales. Magnetic scales are required for length, angle and position determination. They can be done with divisions that exist periodically or in sections magnetized in the opposite direction according to different codes his. Magnetic scales can be linear or circular or any have other shapes. They can be made entirely of hard magnetic material or of hard magnetic material, which is based on a soft magnetic or non-magnetic Carrier located. The surface can be protected by a cover layer.

Anordnungen zum Schreiben magnetischer Maßstäbe nach zwei unterschiedlichen Prinzipien sind bekannt. Bei dem ersten Prinzip (z. B. Offenlegungsschrift DE 41 08 923 A1) wird ein elektrischer Leiter so geformt und in die unmittelbare Nähe des magnetischen Maßstabes gebracht, daß ein durch ihn fließender Impulsstrom ein Magnetfeld erzeugt, das sich über den ganzen Maßstab oder wenigstens einen erheblichen Abschnitt davon erstreckt und eine solche räumliche Verteilung und Stärke hat, daß dadurch die Magnetisierung in Form des vorgesehenen magnetischen Musters eingestellt wird. Nachteilig bei dieser Methode der Magnetisierung magnetischer Maßstäbe ist es, daß an die Position der Teile des geformten elektrischen Leiters äußerst hohe Genauigkeitsforderungen gestellt werden müssen, die über die Genauigkeitsanforderungen an den magnetischen Maßstab hinausgehen, da die Übertragung des vorgesehenen magnetischen Musters nicht ohne Fehler möglich ist. Der geformte elektrische Leiter ist das Produkt einer mechanischen Fertigung, so daß Positionsfehler des damit hergestellten Maßstabes im Bereich weniger Mikrometer nicht erreicht werden.Arrangements for writing magnetic scales according to two different principles are known. In the first principle (e.g. published patent application DE 41 08 923 A1) a electrical conductor shaped and in the immediate vicinity of the magnetic scale brought that a pulse current flowing through it generates a magnetic field that over extends the full scale or at least a substantial portion thereof and one has such spatial distribution and strength that the magnetization in the form of provided magnetic pattern is set. A disadvantage of this method of Magnetization of magnetic scales is that at the position of the parts of the molded extremely high accuracy requirements must be placed on the electrical conductor go beyond the accuracy requirements of the magnetic scale, because the Transfer of the intended magnetic pattern is not possible without errors. The Shaped electrical conductor is the product of a mechanical manufacture, so that position errors of the scale thus produced cannot be achieved in the range of a few micrometers.

Erfolgt die Magnetisierung des Maßstabes in Abschnitten, die mehrere Bereiche unterschiedlich einzustellender Magnetisierung enthalten, so besteht ein zusätzliches Genauigkeitsproblem an den Schnittstellen je zweier nacheinander magnetisierter Abschnitte. Die mangelhafte Genauigkeit ergibt sich dabei weniger aus dem Fehler der gemessenen Positionen des geformten elektrischen Leiters als daraus, daß magnetische Felder mit einer Stärke, die über die Koerzitivfeldstärke des Maßstabsmaterials hinausgehen, auch noch außerhalb des Abschnittes entstehen, den der elektrische Leiter einnimmt. So wird der Maßstab auch hier magnetisiert. Da die sich im Maßstabsmaterial schließlich einsteliende Magnetisierungsrichtung wegen der magnetischen Hysterese von der Vorgeschichte abhängig ist, bilden sich an den Schnittstellen so Bereiche fehlerhafter Magnetisierung aus, die dann die Genauigkeit des magnetischen Maßstabes begrenzen. The magnetization of the scale takes place in sections that span several areas magnetization to be set, there is an additional accuracy problem at the interfaces of two successively magnetized sections. The poor accuracy results less from the error of the measured positions of the shaped electrical conductor than from the fact that magnetic fields with a Strength that goes beyond the coercive field strength of the scale material, even outside of the section that the electrical conductor occupies. This is the yardstick magnetized here too. Because the direction of magnetization that is finally set in the scale material dependent on the previous history due to the magnetic hysteresis areas of faulty magnetization form at the interfaces, which then limit the accuracy of the magnetic scale.

Weitere Nachteile dieses Prinzips ergeben sich aus dem Aufbau der Impulsstromquellen (z. B. Offenlegungsschrift , DE 34 21 575 A1) solcher Magnetisierungsvorrichtungen. Diese Impulsstromquellen liefern Stromamplituden bis etwa 30 kA, werden mit Hochspannung betrieben, haben Massen von mehr als 50 kg und verursachen einen relativ hohen Aufwand. Wegen der Hochspannung müssen relativ starre Zuleitungen zwischen Impulsstromquelle und dem geformten elektrischen Leiter verwendet werden. Diese Zuleitungen erschweren die genaue Positionierung, weil sie Kräfte und Vibrationen auf den geformten elektrischen Leiter übertragen. Diese werden vor allem auch durch den starken Stromimpuls zum Magnetisieren erzeugt, der bei 30 kA kurzzeitig erhebliche Kräfte entwickelt.Further disadvantages of this principle result from the structure of the pulse current sources (e.g. B. Offenlegungsschrift, DE 34 21 575 A1) such magnetization devices. These pulse current sources deliver current amplitudes up to about 30 kA, are operated with high voltage, have masses of more than 50 kg and are relatively expensive. Because of The high voltage must have relatively rigid leads between the pulse current source and the molded electrical conductor can be used. These supply lines complicate the accurate positioning because it applies forces and vibrations to the molded electrical conductor transfer. The strong current impulse makes them magnetize generated that briefly develops considerable forces at 30 kA.

Das zweite Prinzip zum Schreiben magnetischer Maßstäbe wird in der Patentschrift DE 44 42 682 dargestellt. Hier besteht ein Schreibkopf aus ein oder zwei durch einen schmalen Spalt getrennte Magnetpole, die von mindestens einer Spule umgeben sind. Die weichmagnetischen Magnetpole können durch einen Strom durch die Spule bis zur Sättigung magnetisiert werden. Dazu sind Ströme von weniger als 1 A ausreichend, da die Windungszahl der Spule entsprechend angepaßt werden kann. Am Ende der einpoligen Anordnung oder in der Nähe des Spaltes der zweipoligen Anordnung treten dann magnetische Feldstärken auf, die zur Magnetisierung des Maßstabsmaterials ausreichend sind. Im Falle der zweipoligen Anordnung wird der Spalt direkt über dem zu magnetisierenden Maßstab geführt. Das Magnetfeld tritt hier auf der einen Seite des Spaltes aus dem weichmagnetischen Material aus und auf der anderen Seite des Spaltes wieder ein. In dem Bereich des Maßstabes, in dem die Feldstärke des ausgetretenen Magnetfeldes oberhalb der Koerzitivfeldstärke des Maßstabsmaterials liegt, wird eine Magnetisierung des Maßstabes in die Richtung des jeweils vorhandenen Magnetfeldes erfolgen. Diese ist aber auf beiden Seiten des Spaltes entgegengesetzt. Beim Fortschreiten der Position des Schreibkopfes muß deshalb stets eine Ummagnetisierung eines bereits magnetisierten Bereiches vorgenommen werden. Das ist deshalb nachteilig, weil die Größe des schließlich in einer bestimmten Richtung magnetisiertenThe second principle for writing magnetic scales is described in DE 44 42 682. Here a print head consists of one or two by a narrow one Gap separated magnetic poles, which are surrounded by at least one coil. The soft magnetic Magnetic poles can be magnetized to saturation by a current through the coil become. Currents of less than 1 A are sufficient for this, since the number of turns of the Coil can be adjusted accordingly. At the end of the single-pole arrangement or in the Magnetic field strengths then occur near the gap of the two-pole arrangement are sufficient to magnetize the scale material. In the case of the bipolar arrangement the gap is guided directly over the scale to be magnetized. The magnetic field emerges from the soft magnetic material on one side of the gap and on the other side of the gap. In the area of the scale in which the Field strength of the leaked magnetic field above the coercive force of the scale material is a magnetization of the scale in the direction of each existing magnetic field. But this is opposite on both sides of the gap. As the position of the print head advances, magnetic reversal is always required of an already magnetized area. That is why disadvantageous because the size of the magnetized eventually in a certain direction

Bereiches von der durch den Schreibkopf erzeugten und auch von der durch das bereits aufmagnetisierte Maßstabsmaterial hervorgerufenen Feldstärke bestimmt wird. Dadurch werden die Fehler von zwei Magnetisierungvorgängen addiert. Diese fallen auch deshalb nicht besonders klein aus, weil die magnetische Feldstärke, die aus dem Schreibkopf austritt, mit zunehmendem Abstand vom Spalt und von den weichmagnetischen Polen mit relativ geringem Gradienten abnimmt. So wirken sich geringe Abstandsschwankungen schließlich in wesentlichen Längendifferenzen der magnetisierten Bereiche aus. Am günstigsten scheint noch der Betriebsfall zu sein, bei dem der Schreibkopf die Maßstabsoberfläche direkt berührt. Das ist jedoch für eine hohe Genauigkeit des Maßstabes wegen der unterschiedlichen Reibungskräfte bei der Bewegung des Schreibkopfes gegenüber dem Maßstab, die zu Fehlern der eingestellten Position führen, auch nicht optimal. Range from that generated by the write head and also from that already created by the magnetized scale material caused field strength is determined. Thereby the errors of two magnetization processes are added. This is also why they fall not particularly small because the magnetic field strength that emerges from the print head with increasing distance from the gap and from the soft magnetic poles with relative low gradient decreases. This is how small fluctuations in distance ultimately work in substantial differences in length of the magnetized areas. Seems cheapest still to be the operating case in which the writing head touches the scale surface directly. However, this is for a high accuracy of the scale because of the different Frictional forces when moving the print head against the scale, which leads to errors the set position, also not optimal.

Wenn bei einem kreisförmigen Maßstab über volle 360° abwechselnd gleich lange Pole mit entgegengesetzt gerichteter Magnetisierung hergestellt werden sollen, treten bei Verwendung eines Schreibkopfes mit Spalt durch die entgegengesetzte Feldrichtung auf beiden Seiten des Spaltes in jedem Fall Schwierigkeiten auf, wenn die anfänglich magnetisierten Bereiche nach der Drehung des kreisförmigen Maßstabs um etwa 360° wieder erreicht wird. Diese Stoßstelle ist dann immer mit einem großen Fehler in der Lage der Bereiche der Magnetisierung behaftet.If with a circular scale over full 360 ° alternately long poles with oppositely directed magnetization are to occur when used a printhead with a gap due to the opposite field direction on both Difficulties in any case on the sides of the gap if the initially magnetized Areas after rotation of the circular scale by about 360 ° is reached again. This joint is then always with a large error in the position of the magnetization areas afflicted.

Die Verwendung eines einzigen Magnetpoles mit Spule bringt zwar eine Verbesserung der Feldverteilung, denn die senkrecht aus der Fläche des Poles austretende Magnetfeldkomponente hat nur in der Mitte dieser Fläche ein absolutes Maximum. Wegen der relativ geringen Abnahme der magnetischen Feldstärke quer zur Feldrichtung und einer stärkeren Abnahme mit dem Abstand von der Fläche des Poles ist auch hier der Abstand zwischen Fläche des Poles und der Maßstabsoberfläche äußerst genau einzuhalten. Nötige Ummagnetisierungsvorgänge nahe des Randes der zu erzeugenden Bereiche konstanter Magnetisierung können nicht ausgeschlossen werden. Die Nachteile in der Einhaltung der vorgesehenen Position bei der praktisch bevorzugten berührenden Arbeitsweise sind auch hier vorhanden.The use of a single magnetic pole with a coil brings an improvement in Field distribution, because the magnetic field component emerging perpendicularly from the surface of the pole has an absolute maximum only in the middle of this area. Because of the relatively small Decrease in magnetic field strength across the field direction and a stronger decrease with the distance from the surface of the pole is also the distance between the surface of the Poles and the scale surface must be adhered to extremely precisely. Required magnetic reversal processes near the edge of the areas of constant magnetization to be generated cannot be excluded. The disadvantages in adhering to the intended position with the practically preferred touch method of operation are also available here.

Ein weiterer Nachteil bei der Einhaltung einer genauen Position des Schreibkopfes gegenüber dem Maßstab bei Verwendung von weichmagnetischen, durch Strom in einer Spule aufmagnetisierten Magnetpolen ist dadurch gegeben, daß Kräfte zwischen den Magnetpolen und dem bereits magnetisierten Bereichen des Maßstabes existieren, die wegen der notwendigen geringen Abstände von erheblichem Betrag sind.Another disadvantage of maintaining an exact position compared to the printhead the standard when using soft magnetic, by current in a coil Magnetized magnetic poles is given by the fact that forces between the magnetic poles and the already magnetized areas of the scale exist because of the necessary small distances are of considerable amount.

Die Aufgabe der Erfindung besteht nun darin, eine Anordnung anzugeben, die zum Schreiben magnetischer Maßstäbe bei hoher Genauigkeit der Abmessungen der magnetisierten Bereiche und bei hoher Wiederholgenauigkeit der Magnetisierung innerhalb der magnetisierten Bereiche geeignet ist.The object of the invention is to provide an arrangement for writing magnetic scales with high accuracy of the dimensions of the magnetized Ranges and with high repeatability of the magnetization within the magnetized Areas is suitable.

Die Lösung dieser Aufgabe ist durch die im Hauptanspruch beschriebene Anordnung gegeben, und vorteilhafte Ausführungsformen sind in den Unteransprüchen beschrieben.This object is achieved by the arrangement described in the main claim, and advantageous embodiments are described in the subclaims.

Die Anordnung zum Schreiben von magnetischen Maßstäben besteht aus einem geformten Stromleiter zur Magnetfelderzeugung am Ort des Maßstabes und einer aus einer Kondensatorenbatterie, einem Umschalter und einer Steuereinheit zusammengesetzten Impulsstromquelle für beide Stromrichtungen. Alle Komponenten sind in einer kompakten Einheit integriert. Durch den kompakten Aufbau ist der gesamte Stromweg von der Kondensatorenbatterie bis zum geformten Stromleiter äußerst kurz. Alle Komponenten und die Verbindungsleitungen sind in fester Lage zueinander montiert, so daß Kräfte, die die Position des geformten Stromleiters zum zu magnetisierenden Maßstab verändern könnten, wirkungslos bleiben. Der kurze Stromweg und ein großer Querschnitt der Leitungen zwischen Kondensatorbatterie und geformten Stromleiter garantieren einen geringen Widerstand im gesamten Stromkreis. Deshalb ist eine Betriebsspannung im Niederspannungsbereich ausreichend zur Erzeugung der für die Magnetisierung nötigen hohen Stromstärke.The arrangement for writing magnetic scales consists of a molded one Current conductor for generating magnetic fields at the location of the scale and one from a capacitor bank, a switch and a control unit composite pulse current source for both current directions. All components are in a compact unit integrated. Due to the compact design, the entire current path is from the capacitor bank extremely short to the shaped conductor. All components and the connecting lines are mounted in a fixed position to each other, so that forces that affect the position of the shaped conductor could change to the magnetized scale, ineffective stay. The short current path and a large cross-section of the lines between the capacitor bank and molded current conductors guarantee low resistance throughout Circuit. Therefore an operating voltage in the low voltage range is sufficient for Generation of the high current required for magnetization.

Ein geringer Querschnitt, der ausschließlich direkt auf den geformten Stromleiter, der der Magnetfelderzeugung dient, begrenzt ist, führt wegen der geringen Länge des geformten Stromleiters nicht zu strombegrenzendem Widerstand, ist aber Voraussetzung dafür, daß der Mittelpunkt des geformten Stromleiters sehr nahe an der Oberfläche des Maßstabes positioniert werden kann. So ist die Erzeugung hoher Magnetfetdstärken im Maßstabsmaterial gewährleistet.A small cross-section, which is only directly on the molded conductor, which the Magnetic field generation serves, is limited, leads because of the short length of the molded Current conductor not to limit current, but is a prerequisite for that The center of the shaped conductor is positioned very close to the surface of the scale can be. This ensures the generation of high magnetic field strengths in the scale material.

Da die Abmessungen des geformten Stromleiters an die Abmessungen der zu magnetisierenden Bereiche angepaßt sind, wird durch den Strom im geformten Stromleiter immer eine solche Magnetfeldverteilung erzeugt, daß zwei- oder mehrmaliges Ummagnetisieren des Maßstabsmaterials ausgeschlossen wird. Für das Schreiben von Maßstäben mit periodischer Magnetisierung, bei denen die Pollänge wesentlich kleiner ist als die Spurbreite, werden haamadelförmige Stromleiter benutzt, deren Leiterabstand wesentlich größer ist als der Drahtdurchmesser. Die Feldstärke der senkrecht auf die Maßstabsoberfläche wirkenden Feldkomponente ist im Bereich zwischen den Mittelpunkten der beiden Drähte maximal. Etwa unterhalb der Mittelpunkte tritt ein äußerst starker Feldgradient auf, denn hier ändert die senkrechte Feldkomponente ihr Vorzeichen. Durch einen Stromimpuls durch diesen haamadelartig geformten Stromleiter wird also der Maßstab in dem Bereich, der sich unterhalb der Verbindungslinie zwischen den Mittelpunkten der Drähte befindet, in der einen und unmittelbar angrenzend in die andere Richtung magnetisiert. Stimmt wie vorgesehen die Länge des Bereiches unter der Verbindungslinie der Mittelpunkte der Drähte mit der Pollänge überein, dann ist eine Änderung der einmal eingestellten Magnetisierungsrichtung im Maßstabsmaterial nicht erforderlich. Es gibt nur Magnetisierungsvorgänge mit gleicher Magnetisierungsrichtung für jeden Bereich des Maßstabes. Dadurch und durch den hohen Feldgradienten wird eine hohe Genauigkeit der Länge und der Feldstärke der Pole gewährleistet, wenn die Position des geformten Stromleiters mit einem entsprechend genauen Meßsystem eingestellt wurde. Das gilt auch noch für den Fall, daß sich der geformte Stromleiter in einem Abstand über der Maßstabsoberfläche befindet, um Fehler durch Reibungskräfte zu vermeiden.Since the dimensions of the shaped conductor to the dimensions of the magnetized Areas are adapted, is always one by the current in the molded conductor such magnetic field distribution produces that two or more magnetic reversal of the Scale material is excluded. For writing scales with periodic Magnetization in which the pole length is significantly smaller than the track width Haimelike current conductor used, the conductor spacing is much larger than that Wire diameter. The field strength of those acting perpendicular to the scale surface The field component is maximal in the area between the centers of the two wires. Approximately An extremely strong field gradient occurs below the center points, because here the changes vertical field component its sign. By a current pulse through this hairpin-like Shaped conductor will become the benchmark in the area below Connection line is located between the centers of the wires, in one and immediately adjacent magnetized in the other direction. Correct the length of the Area under the connecting line of the centers of the wires with the pole length, then there is a change in the magnetization direction once set in the scale material not mandatory. There are only magnetization processes with the same magnetization direction for every area of the scale. This and the high field gradient A high accuracy of the length and the field strength of the poles is guaranteed if the The position of the shaped conductor is set using a correspondingly accurate measuring system has been. This also applies in the event that the shaped conductor is at a distance located above the scale surface to avoid errors caused by frictional forces.

Bei größerem Abstand der beiden Teile des haarnadelförmigen geformten Stromleiters ist es vorteilhaft, einen rechteckigen Querschnitt zu wählen, in dem zwei oder mehr runde Drähte angeordnet sind. Dadurch wird eine höhere magnetische Feldstärke und eine bessere Homogenität des Magnetfeldes unterhalb der Fläche des haarnzdelförmigen Stromleiters erreicht, ohne daß der Feldgradient unter dem Leiterquerschnitt damit verringert wird.With a greater distance between the two parts of the hairpin-shaped shaped current conductor, it is advantageous to choose a rectangular cross-section in which two or more round wires are arranged. This will result in a higher magnetic field strength and better homogeneity of the magnetic field below the surface of the hairpin-shaped conductor, without reducing the field gradient under the conductor cross section.

Ist die Spurbreite des Maßstabes nur wenig größer als die Pollänge, wird ein rechteckig geformter Stromleiter eingesetzt. Auch hier kann bei zwei oder mehr Drähten in einem rechtekkigen Querschnitt wieder eine vorteilhafte hohe Magnetfeldstärke und eine gute Feldhomogenität bei hohem Feldgradienten unter der Mitte des Leiterquerschnitts realisiert werden.If the track width of the scale is only slightly larger than the length of the pole, a rectangular shape is formed Current conductor used. Again, with two or more wires in a rectangular one Cross-section again an advantageous high magnetic field strength and good field homogeneity with high field gradients under the middle of the conductor cross section.

Zum Schreiben von Maßstäben, deren Magnetisierung parallel zur Maßstabsoberfläche verlaufen muß, werden geformte Stromleiter mit einem bandförmigen Querschnitt verwendet, wobei die Banddicke so gering wie möglich gewählt ist, damit der gesamte Strom in geringster Entfernung zur Maßstabsoberfläche konzentriert ist und hohe Magnetfeldstärken erzeugt. Die Breite des Querschnitts ist der Länge der zu magnetisierenden Bereiche angepaßt, so daß die Magnetisierung des Bereiches mit einem Stromimpuls erfolgt. Der geformte Stromleiter kann auch aus einer Anzahl von unmittelbar nebeneinander liegenden Drähten bestehen, die dann gemeinsam den bandförmigen Querschnitt ausfüllen und von parallelen Strömen durchflossen werden. Es ist vorteilhaft, die Dicke des Querschnittes an beiden Rändern des Bandes größer zu wählen als im mittleren Teil, oder am Rande Drähte mit größerem Durchmesser zu verwenden, da dadurch eine homogenere Feldverteilung im zu magnetisierenden Bereich vorhanden ist und die Magnetfeldstärke am Rand dieses Bereiches steiler abfällt.For writing scales whose magnetization runs parallel to the scale surface molded current conductors with a band-shaped cross section are used, where the strip thickness is chosen as small as possible, so that the total current in the least Distance to the scale surface is concentrated and generates high magnetic field strengths. The width of the cross section is adapted to the length of the areas to be magnetized, so that the area is magnetized with a current pulse. The shaped one Current conductors can also consist of a number of wires lying directly next to one another exist, which then together fill the band-shaped cross-section and parallel Flows through. It is advantageous to have the thickness of the cross section on both Edges of the tape to choose larger than in the middle part, or on the edge wires with larger Diameter to be used, as this results in a more homogeneous field distribution in the magnetized area Area is present and the magnetic field strength at the edge of this area falls steeply.

Unabhängig von der speziellen Form ist der geformte Stromleiter immer in einer Halterung fixiert, so daß die während des Stromimpulses auftretenden Kräfte weder an seiner Form noch an seiner Position gegenüber dem Maßstab etwas ändern können. Die Halterung mit dem geformten Stromleiter ist auswechselbar, so daß stets der für das Schreiben des jeweiligen Maßstabes optimal geformte Stromleiter eingesetzt werden kann.Regardless of the special shape, the shaped conductor is always in a holder fixed so that the forces occurring during the current pulse neither on its shape can still change something in its position relative to the scale. The bracket with the shaped conductor is interchangeable, so that always for writing the respective Scale optimally shaped conductor can be used.

Der Umschalter der Impulsstromquelle hat die Form einer H-Brücke. Damit können aus der Kondensatorenbatterie Stromimpulse entgegengesetzter Richtung mit gleicher Amplitude und gleichem Zeitverlauf in den geformten Stromleiter geschickt werden, was die Voraussetzung dafür ist, daß die Pollängen der entgegengesetzten Magnetisierungsrichtung bei einem periodischen Maßstab auch mit hoher Genauigkeit übereinstimmen. Als Schalter in der H-Brücke werden bevorzugt MOS-Transistoren eingesetzt, wobei alle Schalter aus einer gleich großen Anzahl von parallel geschalteten MOS-Transistoren bestehen sollen. So wird eine genügend große Gesamtstromstärke erreicht und der Widerstand der parallelen MOS-Transistoren im Stromkreis ist nicht strombegrenzend. Wichtig ist, daß der kompakte Aufbau der Anordnung zu so geringen Induktivitäten im Stromkreis führt, daß der Strom durch den geformten Stromleiter in einigen Zehnteln einer Mikrosekunde auf seinen Maximalwert ansteigt. So können durch ein Signal aus der Steuereinheit die MOS-Transistoren wenige Mikrosekunden nach Beginn des Stromimpulses wieder gesperrt werden, denn diese Zeitdauer ist zur Magnetisierung ausreichend. Diese im Vergleich mit dem Stand der Technik sehr geringe Impulsdauer führt zu mehreren Vorteilen der erfindungsgemäßen Anordnung. Ein Vorteil besteht darin, daß in der kurzen Impulszeit die Spannung an der Kondensatorenbatterie nur um einem geringen Betrag abfällt. So können kostengünstige Elektrolytkondensatoren eingesetzt werden, die eine hohe Kapazität pro Volumen aufweisen und so den kompakten Aufbau der gesamten Anordnung und deren geringe Ausdehnung unterstützen. Ein weiterer Vorteil ist, daß die geringe durch den Impulsstrom entnommene Ladung der Kondensatorbatterie in den Impulspausen durch einen geringen Strom wieder zugeführt werden kann und so nur eine geringe Leistung zur Versorgung der Anordnung aufzubringen ist. Weiter läßt die kurze Impulszeit eine hohe Folgefrequenz zu, so daß hohe Schreibgeschwindigkeiten erreicht werden, die eher durch das Verfahren der Positionierung der Anordnung gegenüber dem Maßstab begrenzt werden als durch die mögliche Impulsfolgefrequenz. Durch die kurze Impulszeit wird im geformten Stromleiter nur eine geringe elektrische Leistung in Wärme umgesetzt. So können für den Stromleiter geringe Querschnitte verwendet werden, ohne daß eine thermische Zerstörung zu befürchten ist. Durch die geringen Querschnitte werden im Bereich des Maßstabes höhere Magnetfelder ermöglicht, da der Abstand der Ströme zur Maßstabsoberfläche sehr gering gehalten werden kann.The switch of the pulse current source has the shape of an H-bridge. So that from the Capacitor battery Current pulses in opposite directions with the same amplitude and sent over the same time in the shaped conductor, which is the prerequisite this is because the pole lengths of the opposite direction of magnetization at one periodic scale also match with high accuracy. As a switch in the H-bridge MOS transistors are preferably used, with all switches from one equal number of MOS transistors connected in parallel. So will achieved a sufficiently large total current and the resistance of the parallel MOS transistors in the circuit is not current limiting. It is important that the compact structure the arrangement leads to such low inductances in the circuit that the current through the shaped conductor rises to its maximum value in a few tenths of a microsecond. A signal from the control unit allows the MOS transistors to run for a few microseconds be blocked again after the start of the current pulse, because this time period is sufficient for magnetization. This is very low in comparison with the prior art Pulse duration leads to several advantages of the arrangement according to the invention. An advantage consists in the fact that in the short pulse time the voltage at the capacitor bank only drops by a small amount. So can inexpensive electrolytic capacitors are used, which have a high capacity per volume and thus the compact Support the construction of the entire arrangement and its small expansion. Another The advantage is that the small charge of the capacitor battery removed by the pulse current can be supplied again in the pulse pauses by a low current and so only a low power is required to supply the arrangement. The leaves short pulse time to a high repetition frequency so that high writing speeds are achieved be opposed by the method of positioning the arrangement the scale as limited by the possible pulse repetition frequency. Because of the short Pulse time is only a low electrical output in heat in the shaped conductor implemented. So small cross sections can be used for the current conductor without that thermal destruction is to be feared. Due to the small cross sections allows higher magnetic fields in the range of the scale, because the distance of the currents to Scale surface can be kept very small.

Die Impulsstromquelle befindet sich erfindungsgemäß in einer Abschirmung aus gut leitendem Metall. Das einzige nicht abgeschirmte Teil ist die Halterung mit dem geformten Stromleiter, auf der die Zuleitungen für Stromzufluß und -abfluß jedoch unmittelbar nebeneinander geführt sind. Damit wird die Umgebung der Anordnung trotz der hohen Stromstärken von störenden oder gesundheitsgefährdenden elektromagnetischen Feldern freigehalten.According to the invention, the pulse current source is located in a shield made of highly conductive Metal. The only unshielded part is the bracket with the molded conductor, on which, however, the supply and discharge lines are directly adjacent are led. So that the environment of the arrangement is despite the high currents of disturbing or health-endangering electromagnetic fields.

Die erfindungsgemäßen Anordnungen sind zum Schreiben magnetischer Maßstäbe mit in Meßrichtung periodisch abwechselnder Magnetisierungsrichtung und magnetischer Maßstäbe mit Magnetisierungsbereichen, deren Längen einem Code zugeordnet sind, vorgesehen. Bei der Verwendung ist die Positionierung des geformten Stromleiters berührungsfrei über der Oberfläche des Maßstabes beabsichtigt, damit eine zu Positionsfehlern führende Reibung zwischen dem geformten Stromleiter und der Maßstabsoberfläche ausgeschlossen wird.The arrangements according to the invention are for writing magnetic scales with in Direction of measurement periodically alternating magnetization direction and magnetic scales with magnetization areas, the lengths of which are assigned to a code. When used, the positioning of the shaped conductor is non-contact the surface of the scale is intended to cause friction resulting in position errors excluded between the molded conductor and the scale surface becomes.

Die Erfindung wird nachstehend an Ausführungsbeispielen näher erläutert. In den zugehörigen Zeichnungen ist folgendes dargestellt::

  • Fig. 1: Übersicht der erfindungsgemäßen Anordnung
  • Fig. 2: Geformter Stromleiter mit Halterung
  • Fig. 3: Haamadelförmiger Stromleiter
  • Fig. 4: Querschnitte des haamadelförmigen Stromleiters
  • Fig. 5: Bandförmiger Stromleiter mit Halterung
  • Fig.6: Bandförmiger Stromleiter
  • Fig.7: Querschnitte des bandförmigen Stromleiters
  • Fig.8: Magnetfeldverlauf.
  • The invention is explained in more detail below using exemplary embodiments. The following is shown in the accompanying drawings:
  • Fig. 1: Overview of the arrangement according to the invention
  • Fig. 2: Shaped conductor with bracket
  • Fig. 3: Haimelike current conductor
  • Fig. 4: Cross sections of the hairpin-shaped conductor
  • Fig. 5: Band-shaped current conductor with holder
  • Fig. 6: Band-shaped current conductor
  • Fig. 7: Cross sections of the ribbon-shaped conductor
  • Fig. 8: Magnetic field course.
  • Eine Übersicht über eine gesamte erfindungsgemäße Anordnung zum Schreiben magnetischer Maßstäbe zeigt Fig. 1. Sie besteht aus einem geformten Stromleiter 1, der sich beim Schreiben nahe der Oberfläche des Maßstabes befindet. In einer Impulsstromquelle 2 geformte Stromimpulse werden in den geformten Stromleiter eingespeist und erzeugen in seiner Nähe Magnetfeldstärken, die zur Magnetisierung des Maßstabsmaterials ausreichend sind. Die Impulsstromquelle 2 besteht aus einer Kondensatorenbatterie 3, einem Umschalter 4 und einer Steuereinheit 5. Der Aufbau der Anordnung ist so ausgeführt, daß sich zwischen Kondensatorenbatterie 3 und geformtem Stromleiter 1 eine minimale Leitungslänge mit möglichst hohem Leitungsquerschnitt befindet. Damit ist eine sehr niederohmige Verbindung als Voraussetzung hoher Stromstärken bei niedriger Betriebsspannung der Kondensatorbatterie 3 gewährleistet. Die Betriebsspannung wird über die Anschlußkontakte 8 zugeführt. Die Versorgungsspannung und die Eingangsdatenleitung für die Steuereinheit 5 erfolgt über die Anschlußkontakte 9.An overview of an entire inventive arrangement for writing magnetic Fig. 1 shows scales. It consists of a shaped current conductor 1, which is in the Writing is located near the surface of the scale. Shaped in a pulse current source 2 Current pulses are fed into the shaped conductor and produce it Proximity of magnetic field strengths sufficient to magnetize the scale material are. The pulse current source 2 consists of a capacitor bank 3, a changeover switch 4 and a control unit 5. The structure of the arrangement is designed so that between Capacitor battery 3 and shaped conductor 1 with a minimum line length if possible high wire cross section. This is a very low impedance connection as Prerequisite for high currents with low operating voltage of the capacitor bank 3 guaranteed. The operating voltage is supplied via the contacts 8. The supply voltage and the input data line for the control unit 5 takes place via the connection contacts 9th

    Der Umschalter 4 hat die Form einer H-Brücke. Es sind vier Schalter 7 vorhanden, die jeweils aus gleich vielen parallel geschalteten MOS-Transistoren bestehen. Damit ist eine ausreichende Stromtragbarkeit und ein genügend geringer Widerstand der Schalter 7 gewährleistet. Der besondere Vorteil des Einsatzes von MOS-Transistoren gegenüber den bisher verwendeten Thyristoren oder Ignitrons besteht darin, daß sie jederzeit durch Impulse aus der Steuereinheit 5 aus dem leitenden wieder in den gesperrten Zustand geschaltet werden können. Damit kann die Impulsdauer auf wenige Mikrosekunden begrenzt werden. Diese Zeitdauer ist zur Magnetisierung des Maßstabsmaterials in jedem Fall ausreichend. Eine längere Impulsdauer bringt wegen der mit der Zeit abnehmenden Stromstärke des Impulses keinerlei positiven Effekt für die Magnetisierung. Wegen der kurzen Impulszeit wird die Kondensatorenbatterie 3 bei jedem einzelnen Impuls nur zu einem geringen Teil entladen. Deshalb ist die Kondensatorenbatterie 3 aus parallel geschalteten Elektrolykondensatoren 6 aufgebaut. Als Betriebsspannung sind Spannungen im Niederspannungsbereich von weniger als 60 V ausreichend. Wegen dieser geringen Spannung und der Verwendbarkeit von Elkos 6 ist das für die erforderliche Kapazität benötigte Volumen besonders gering, was der Niederohmigkeit des Stromkreises entgegenkommt. Da nur eine Teilentladung der Kondensatorbatterie 3 von etwa 5% erfolgt, ist der Betriebsstrom entsprechend gering und kann unter 500 mA liegen. Weiter ist die thermische Belastung des geformten Stromleiters wegen der geringen Impulsdauer gering, so daß hier geringe Querschnitte verwendbar sind, die zu hohen Magnetfeldstärken im Bereich des Maßstabsmaterials führen. Schließlich werden durch die kurze Impulsdauer hohe Impulsfolgefrequenzen von etwa 50 s-1 möglich, die die Wirtschaftlichkeit des Schreibverfahrens erhöhen. Die gesamte Impuisstromquelle 2 befindet sich in einer Metallabschirmung 10, so daß trotz der hohen Ströme und der kurzen Schaltzeiten keine gesundheitsgefährdenden elektromagnetischen Felder austreten.The switch 4 has the shape of an H-bridge. There are four switches 7, each consisting of the same number of MOS transistors connected in parallel. This ensures sufficient current portability and a sufficiently low resistance of the switches 7. The particular advantage of using MOS transistors over the thyristors or ignitrons used hitherto is that they can be switched from the conductive back to the blocked state at any time by pulses from the control unit 5. The pulse duration can thus be limited to a few microseconds. This period of time is sufficient to magnetize the scale material in any case. A longer pulse duration has no positive effect on the magnetization due to the decreasing current strength of the pulse. Because of the short pulse time, the capacitor bank 3 is only discharged to a small extent with each individual pulse. Therefore, the capacitor bank 3 is made up of electrolytic capacitors 6 connected in parallel. Voltages in the low voltage range of less than 60 V are sufficient as the operating voltage. Because of this low voltage and the usability of electrolytic capacitors 6, the volume required for the required capacity is particularly low, which accommodates the low impedance of the circuit. Since only a partial discharge of the capacitor bank 3 of about 5% takes place, the operating current is correspondingly low and can be below 500 mA. Furthermore, the thermal load on the shaped conductor is low because of the short pulse duration, so that small cross sections can be used here, which lead to high magnetic field strengths in the area of the scale material. Finally, the short pulse duration enables high pulse repetition frequencies of approximately 50 s -1 , which increase the economy of the writing process. The entire pulse current source 2 is located in a metal shield 10 so that, despite the high currents and the short switching times, no health-endangering electromagnetic fields emerge.

    Der geformte Stromleiter 1 ist in Form und Abmessungen an das zu schreibende Magnetmuster des Maßstabes angepaßt. Fig.2 zeigt einen haamadelfömigen Stromleiter 11 mit den Zuleitungen 12 auf einer Halterung 13. Der haarnadelförmige Stromleiter 11 ist in die Halterung 13 eingelassen und fest verklebt. Die Zuleitungen 12 sind ebenfalls fest mit der Halterung 13 verbunden und befinden sich unmittelbar nebeneinander. Damit ist eine durch den Stromimpuls bedingte Positionsveränderung des haarnadelförmigen Stromleiters 11 gegenüber dem Maßstab ausgeschlossen. Durch den geringen Abstand der beiden Zuleitungen 12 ist trotz der Lage der Halterung 13 außerhalb der Abschirmung 10 kein wesentliches elektromagnetisches Streufeld vorhanden.The shaped conductor 1 is in shape and dimensions to the magnetic pattern to be written adapted to the scale. Fig.2 shows a hairpin-shaped current conductor 11 with the Supply lines 12 on a holder 13. The hairpin-shaped current conductor 11 is in the holder 13 embedded and glued firmly. The leads 12 are also fixed to the bracket 13 connected and are located directly next to each other. So one is through the Current pulse-related change in position of the hairpin-shaped conductor 11 opposite excluded the scale. Due to the small distance between the two feed lines 12 is not an essential electromagnetic despite the position of the bracket 13 outside the shield 10 Stray field available.

    Eine vergrößerte Darstellung des haarnadelförmigen Stromleiters 11 zeigt Fig. 3. Der rechteckige Querschnitt 17 des Stromleiters 11 hat die linearen Abmessungen 15 und 16. Entsprechend Fig. 4 kann dieser Querschnitt 17 von einem kreisrunden Leiterquerschnitt 17.1, von zwei kreisrunden Leiterquerschnitten 17.2 oder von vier kreisrunden Leiterquerschnitten 17.3 eingenommen werden. Sind mehrere Leiterquerschnitte vorhanden, werden sie von Strömen gleicher Richtung durchflossen. Das ist durch Reihenschaltung der einzelnen haarnadelförmigen Stromleiter möglich. Die Zeichnung mit dem Querschnitt 17.2 entspricht beispielsweise dem geformten Stromleiter 1 in Fig. 1.An enlarged representation of the hairpin-shaped current conductor 11 is shown in FIG. 3. The rectangular one Cross section 17 of the current conductor 11 has the linear dimensions 15 and 16. Correspondingly 4 this cross-section 17 of a circular conductor cross-section 17.1, of two circular conductor cross-sections 17.2 or of four circular conductor cross-sections 17.3 are taken. If there are several conductor cross sections, they are from Flows flow in the same direction. This is by connecting the individual hairpin-shaped ones in series Current conductor possible. The drawing with the cross section 17.2 corresponds, for example the shaped current conductor 1 in FIG. 1.

    Der Abstand 14 der beiden Querschnitte 17 des haarnadelförmigen Stromleiters 11 ist wesentlich größer als die Abmessungen 15, 16 des Querschnitts 17. Für einen Abstand 14 von 1 mm und einen Drahtdurchmesser von 0,3 mm ist in Fig. 8 die Feldstärke der senkrecht auf der Ebene des haarnadelförmigen Stromleiters 11 stehenden Feldkomponente für verschiedene Abstände 24 bei einem Strom von 2200 A über dem Abstand von der Mitte des haarnadelförmigen Stromleiters 11 dargestellt. Die Kurven 21; 22 und 23 sind für Abstände 24 von 0,05 mm, 0,2 mm und 0,4 mm gültig. Besonders für kleinere Abstände 24 ist etwa im Bereich über den Mittelpunkten der Leiterquerschnitte ein sehr starker Abfall der Feldstärke festzustellen. Es ist sogar ein Vorzeichenwechsel vorhanden. Die Kurven für die unterschiedlichen Abstände 24 schneiden sich etwa in einem Punkt, der bei einer Feldstärke von 2,5 105 A/m liegt. Befindet sich nun ein Maßstab aus plastgebundenem Ferrit, der eine Koerzitivfeldstärke hat, die dem genannten Wert entspricht, mit seiner Oberfläche parallel über dem haarnadelförmigen Stromleiter, so wird seine Magnetisierung über einer Länge, die dem Abstand 14 entspricht, in senkrechter Richtung nach oben eingestellt, und zwar bis zu einer Tiefe von etwa 0,5 mm. Neben dem Abstand 14 ist die Magnetfeldstärke im oberflächennahen Bereich des Maßstabes mit einer Breite von weniger als 1 mm groß genug, um hier die Magnetisierung in die entgegengesetzte Richtung einzustellen. Zur Magnetisierung des nächsten Abschnittes des Maßstabes, der nach seiner Fertigstellung periodisch in abwechselnder Richtung magnetisiert sein soll, wird die Position der Anordnung mit dem haamadelförmigen Stromleiter 11 unter Benutzung einer präzisen Meßanordnung genau um 1 mm seitwärts nach rechts verschoben. Die Richtung des dann folgenden Stromimpulses und damit auch die des Magnetfeldes ist der des ersten entgegengesetzt. Der nächste Abschnitt des Maßstabes wird also senkrecht nach unten magnetisiert. Die oberflächennahen Bereiche dieses Abschnittes waren schon beim ersten Impuls in diese Richtung magnetisiert, so daß eine Richtungsumkehr der schon vorhandenen Magnetisierung nicht erfolgen muß. Auch im oberflächennahen Bereich des ersten magnetisierten Abschnittes tritt noch einmal eine Feldstärke auf, die die Koerzitivfeldstärke des Materials übersteigt. Sie stimmt aber mit der Richtung der dort eingeschriebenen Magnetisierung überein. Es ist also keinerlei Ummagnetisierung erforderlich. Damit sind die Längen der magnetisierten Bereiche und auch deren Magnetisierungswert bei Anwendung eines hochgenauen Positionsmeßverfahrens für die Einstellung der Position zwischen Maßstab und geformtem Stromleiter 11 mit hoher Genauigkeit reproduzierbar.The distance 14 between the two cross sections 17 of the hairpin-shaped current conductor 11 is substantially larger than the dimensions 15, 16 of the cross section 17. For a distance 14 of 1 mm and a wire diameter of 0.3 mm, the field strength in FIG Plane component of the hairpin-shaped current conductor 11 is shown for different distances 24 at a current of 2200 A above the distance from the center of the hairpin-shaped current conductor 11. The curves 21; 22 and 23 are valid for distances 24 of 0.05 mm, 0.2 mm and 0.4 mm. Particularly for smaller distances 24, a very strong drop in the field strength can be found, for example, in the area above the center points of the conductor cross sections. There is even a change of sign. The curves for the different distances 24 intersect approximately at a point which is at a field strength of 2.5 10 5 A / m. If there is now a scale made of plastic-bonded ferrite, which has a coercive field strength that corresponds to the value mentioned, with its surface parallel to the hairpin-shaped current conductor, its magnetization is set in a vertical direction upwards over a length that corresponds to the distance 14, to a depth of about 0.5 mm. In addition to the distance 14, the magnetic field strength in the region near the surface of the scale with a width of less than 1 mm is large enough to set the magnetization in the opposite direction here. To magnetize the next section of the scale, which should be periodically magnetized in an alternating direction after its completion, the position of the arrangement with the hairpin-shaped current conductor 11 is shifted exactly 1 mm to the right using a precise measuring arrangement. The direction of the current pulse that follows and therefore also that of the magnetic field is opposite to that of the first. The next section of the scale is magnetized vertically downwards. The areas of this section near the surface were magnetized in this direction already at the first pulse, so that a reversal of the direction of the magnetization already present does not have to take place. A field strength that exceeds the coercive field strength of the material also occurs again in the region of the first magnetized section near the surface. However, it corresponds to the direction of the magnetization inscribed there. No magnetic reversal is required. The lengths of the magnetized areas and also their magnetization value can thus be reproduced with high accuracy using a highly precise position measuring method for setting the position between the scale and the shaped current conductor 11.

    Die in Fig. 4 gezeigten Querschnitte 17.2 und 17.3 für den haamadelförmigen Stromleiter 11 sind vorteilhaft, wenn größere Abstände 14 zwischen der Hin- und Rückleitung liegen. Durch sie wird ein Absinken der Feldstärken auf zu geringe Werte in der Mitte zwischen der hin- und Rückleitung vermieden.The cross sections 17.2 and 17.3 shown in FIG. 4 for the hairpin-shaped current conductor 11 are advantageous if there are larger distances 14 between the outgoing and return lines. By it will decrease the field strengths to too low values in the middle between the and avoided return.

    Zum Schreiben von Maßstäben, deren Magnetisierung parallel zur Oberfläche des Maßstabes einzustellen ist, erweisen sich die in den Fig. 5, Fig. 6 und fig. 7 dargestellten geformten Stromleiter als vorteilhaft. Fig. 5 zeigt auf einer Halterung 13 fixiert die Zuleitung 12 und den geformten Stromleiter 18. Fig. 6 verdeutlicht, daß dieser geformte Stromleiter bandförmig ist, wobei die Breite 19 wesentlich größer als die Dicke ist. Unterschiedliche Möglichkeiten zur Realisierung des Querschnitts des bandförmigen Stromleiters 18 bietet Fig. 7. Die Dickenverteilung 20.1 und 20.3 sorgt für eine gleichmäßige Feldstärke der parallel zum Band zeigenden Feldkomponente unter dem Band über den größten Teil der Breite 19. Eine gleichmäßige Feldstärke der genannten Komponente unter dem Stromleiter bis zum Rand und ein starker Gradient direkt neben dem Rand wird mit dem Querschnitt 20.2 und dem Querschnitt 20.4 für den Fall, daß der Drahtdurchmesser größer als die Dicke des zwischen den beiden Drähten befindlichen Bandes ist, erreicht. Damit ist die Magnetisierung von Maßstabsabschnitten mit hoher Genauigkeit möglich.For writing scales whose magnetization is parallel to the surface of the scale 5, 6 and fig. 7 shaped shown Conductor as advantageous. Fig. 5 shows on a bracket 13 fixed supply line 12 and shaped current conductor 18. FIG. 6 illustrates that this shaped current conductor is band-shaped, the width 19 is substantially larger than the thickness. Different ways to The cross section of the band-shaped conductor 18 is shown in FIG. 7. The thickness distribution 20.1 and 20.3 ensures a uniform field strength of those pointing parallel to the band Field component under the belt over most of the width 19. An even Field strength of the named component under the conductor up to the edge and a strong gradient right next to the edge is with the cross section 20.2 and the cross section 20.4 in the event that the wire diameter is greater than the thickness of the between the two Wires located ribbon is reached. This is the magnetization of scale sections possible with high accuracy.

    Eine entsprechend den Merkmalen der Erfindung aufgebaute Anordnung zum Schreiben magnetischer Maßstäbe mit dem Impulsverfahren hat verglichen mit dem Stand der Technik nur etwa 1/100 der Masse und des Volumens, die elektrische Anschlußleistung ist auf 1/100 reduziert, die Impulsfolgefrequenz und damit die Effektivität beim Schreiben von Maßstäben ist um einen Faktor 100 gestiegen und die Genauigkeit der erhaltenen Maßstäbe wurde um mehr als das Zehnfache verbessert. Dazu entfallen bei der neuen Anordnung Gesundheitsschutzmaßnahmen. An arrangement for writing constructed in accordance with the features of the invention magnetic scales with the pulse method compared to the prior art only about 1/100 of the mass and volume, the electrical connection power is 1/100 reduced, the pulse repetition frequency and thus the effectiveness when writing scales has increased by a factor of 100 and the accuracy of the scales obtained has been increased by improved more than tenfold. In addition, health protection measures are no longer required in the new arrangement.

    Anordnung zum Schreiben von magnetischen MaßstäbenArrangement for writing magnetic scales Liste der BezugszeichenList of reference numbers

    11
    Geformter StromleiterShaped conductor
    22
    ImpulsstromquellePulse power source
    33
    Kondensatorenbatteriecapacitor bank
    44
    Umschalterswitch
    55
    Steuereinheitcontrol unit
    66
    Kondensatorcapacitor
    77
    Schalterswitch
    88th
    Anschluß BetriebsspannungConnection of operating voltage
    99
    Anschluß SteuereinheitControl unit connection
    1010
    Abschirmungshielding
    1111
    Haarnadelförmiger StromleiterHairpin-shaped conductor
    1212
    Zuleitungsupply
    1313
    Halterungbracket
    1414
    Abstanddistance
    1515
    Abmessung des QuerschnittsDimension of the cross section
    1616
    Abmessung des QuerschnittsDimension of the cross section
    1717
    Querschnittcross-section
    17.117.1
    Runder QuerschnittRound cross section
    17.217.2
    Rechteckiger Querschnitt mit zwei runden LeiternRectangular cross section with two round conductors
    17.317.3
    Rechteckiger Querschnitt mit vier runden LeiternRectangular cross section with four round conductors
    1818
    Bandleiterstripline
    1919
    Breite des BandleitersWidth of the strip conductor
    20.120.1
    Dicke des BandleitersStrip conductor thickness
    20.220.2
    Dickenverteilung des BandleitersThickness distribution of the strip conductor
    20.320.3
    Dicke eines zusammengesetzten BandleitersComposite strip conductor thickness
    20.420.4
    Dicke eines zusammengesetzten BandleitersComposite strip conductor thickness
    2121
    Feldverlauf in 0,05 mm AbstandField course at a distance of 0.05 mm
    2222
    Feldverlauf in 0,2 mm AbstandField course at a distance of 0.2 mm
    2323
    Feldverlauf in 0,4 mm AbstandField course at 0.4 mm distance
    2424
    Abstand vom geformten StromleiterDistance from the molded conductor

    Claims (28)

    1. System for writing magnetic scales, which consists of components that include a shaped conductor (1) for producing a magnetic field at the location of the scale and a pulsed current source (2) for both current directions, which consists of a condenser battery (3), a commutator switch (4) and a control unit (5),
      characterised in that
      the shaped conductor consists of a conductor or conductor loop in each case with dimensions adapted to the size of the magnetisation to be induced uniformly in a magnetisation area to be written, the commutator switch comprising MOS transistors arranged as an H-bridge, and the components being integrated in a solid unit which is compact enough for the current switched by the commutator to increase to its maximum value through the shaped conductor in less than one microsecond.
    2. System according to Claim 1,
      characterised in that
      thanks to the compact structure, the current path between the condenser battery (3) and the shaped conductor (1) has a resistance of less than 50 mΩ and the operating voltage of the system is in the low-voltage range.
    3. System according to Claim 2,
      characterised in that
      the shaped conductor (1) for producing a magnetic field at the location of the scale has a conducting cross-section which is substantially smaller than the cross-section of the contact leads (12) from the condenser battery (3) directly to the shaped conductor (1).
    4. System according to Claim 3,
      characterised in that
      the shaped conductor (1) is hairpin-shaped and has a cross-section (17) whose dimensions are substantially smaller than the distance (14) between the in-lead and the out-lead.
    5. System according to Claim 4,
      characterised in that
      the cross-section ( 17) is a circle (17.1).
    6. System according to Claim 5,
      characterised in that
      the diameter of the circle is 0.3 mm and the centre-to-centre distance (14) between the in-lead and the out-lead is 1 mm.
    7. System according to Claim 4,
      characterised in that
      the cross-section (17) is rectangular and this rectangular cross-section (17) is occupied by two or more round wires (17.2, 17.3), the individual hairpin-shaped wires being electrically connected in series.
    8. System according to Claim 3,
      characterised in that
      the shaped conductor (1) consists of a rectangle and has a cross-section whose dimensions are substantially smaller than the length and width of the rectangle.
    9. System according to Claim 8,
      characterised in that
      the cross-section is a circle.
    10. System according to Claim 8,
      characterised in that
      the cross-section is rectangular and this rectangular cross-section is occupied by two or more rectangular wires, the individual rectangular wires being electrically connected in series.
    11. System according to Claim 3,
      characterised in that
      the shaped conductor (1) consists of a strip conductor (18) whose width (19) is substantially larger than its thickness (20.1).
    12. System according to Claim 3,
      characterised in that
      the shaped conductor (1) consists of a strip conductor (18) whose width (19) is substantially larger than its thickness (20.2), the said thickness (20.2) being larger at the two edges than in the middle.
    13. System according to Claim 3,
      characterised in that
      the shaped conductor (1) consists of a number of wires (20.3) immediately adjacent to one another.
    14. System according to Claim 3,
      characterised in that
      the shaped conductor (1) consists of s strip conductor and two wires positioned symmetrically directly adjacent to the strip conductor, and the three said constituents (20.4) are electrically connected in series.
    15. System according to any of Claims 3 to 14,
      characterised in that
      the shaped conductor (1) is fixed in a holder (13).
    16. System according to Claim 15,
      characterised in that
      the shaped conductor (1) with its holder (13) can be exchanged.
    17. System according to Claim 1,
      characterised in that
      each switch (7) consists of several MOS transistors connected in parallel.
    18. System according to Claim 17,
      characterised in that
      the switches (7) can be closed by the control unit (5) after a short pulse time of a few microseconds.
    19. System according to Claim 1,
      characterised in that
      the condenser battery (3) consists of electrolytic capacitors (6).
    20. System according to Claim 19,
      characterised in that
      the charge of the condenser battery (3) is only reduced by a small proportion by each individual pulse.
    21. System according to Claim 20,
      characterised in that
      the said small proportion amounts to 5%.
    22. System according to Claim 21,
      characterised in that
      the current pulse sequence frequency is at most 50 s-1.
    23. System according to Claim 1,
      characterised in that
      the supply current of the system for current pulses of 2000 A is less than 500 mA.
    24. System according to Claim 1,
      characterised in that
      the pulsed current source (2) is located within a screening box (10).
    25. System according to Claim 1,
      characterised in that
      the rigidity of the mechanical structure is high enough for the forces produced by the pulsed current not to result in any miss-adjustment of the position of the shaped conductor (1) relative to the scale.
    26. Use of a system according to any of Claims 1 to 25,
      characterised in that
      scales with periodic magnetisation in the measurement direction are produced.
    27. Use of a system according to any of Claims 1 to 25,
      characterised in that
      scales with magnetisation areas of length determined by a code are produced.
    28. Use of a system according to any of Claims 1 to 25,
      characterised in that
      the shaped conductor (1) is guided over the scale without contacting it.
    EP00920470A 1999-03-06 2000-03-03 System for writing magnetic scales Expired - Lifetime EP1157394B1 (en)

    Applications Claiming Priority (5)

    Application Number Priority Date Filing Date Title
    DE19909889 1999-03-06
    DE19909889 1999-03-06
    DE19940164A DE19940164A1 (en) 1999-03-06 1999-08-25 Arrangement for writing magnetic scales
    DE19940164 1999-08-25
    PCT/EP2000/001859 WO2000054293A1 (en) 1999-03-06 2000-03-03 System for writing magnetic scales

    Publications (2)

    Publication Number Publication Date
    EP1157394A1 EP1157394A1 (en) 2001-11-28
    EP1157394B1 true EP1157394B1 (en) 2004-05-19

    Family

    ID=26052223

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00920470A Expired - Lifetime EP1157394B1 (en) 1999-03-06 2000-03-03 System for writing magnetic scales

    Country Status (5)

    Country Link
    US (1) US6850139B1 (en)
    EP (1) EP1157394B1 (en)
    JP (1) JP2002539438A (en)
    AT (1) ATE267451T1 (en)
    WO (1) WO2000054293A1 (en)

    Families Citing this family (40)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10313643B4 (en) * 2003-03-26 2007-08-09 Highresolution Gmbh Position measuring system
    CA2620828A1 (en) * 2005-09-19 2007-03-29 Schweitzer Engineering Laboratories, Inc. Method and apparatus for routing data streams among intelligent electronic devices
    US7755872B2 (en) * 2006-09-14 2010-07-13 Schweitzer Engineering Laboratories, Inc. System, method and device to preserve protection communication active during a bypass operation
    DE102007063006A1 (en) * 2007-12-21 2009-06-25 Baumer Holding Ag Method and device for producing a material measure for position measuring systems and material measure
    US9371923B2 (en) 2008-04-04 2016-06-21 Correlated Magnetics Research, Llc Magnetic valve assembly
    US8115581B2 (en) 2008-04-04 2012-02-14 Correlated Magnetics Research, Llc Techniques for producing an electrical pulse
    US8179219B2 (en) * 2008-04-04 2012-05-15 Correlated Magnetics Research, Llc Field emission system and method
    US8368495B2 (en) 2008-04-04 2013-02-05 Correlated Magnetics Research LLC System and method for defining magnetic structures
    US7800471B2 (en) 2008-04-04 2010-09-21 Cedar Ridge Research, Llc Field emission system and method
    US8576036B2 (en) 2010-12-10 2013-11-05 Correlated Magnetics Research, Llc System and method for affecting flux of multi-pole magnetic structures
    US8816805B2 (en) 2008-04-04 2014-08-26 Correlated Magnetics Research, Llc. Magnetic structure production
    US8760251B2 (en) 2010-09-27 2014-06-24 Correlated Magnetics Research, Llc System and method for producing stacked field emission structures
    US9105380B2 (en) 2008-04-04 2015-08-11 Correlated Magnetics Research, Llc. Magnetic attachment system
    US8779879B2 (en) 2008-04-04 2014-07-15 Correlated Magnetics Research LLC System and method for positioning a multi-pole magnetic structure
    US8648681B2 (en) 2009-06-02 2014-02-11 Correlated Magnetics Research, Llc. Magnetic structure production
    US8174347B2 (en) 2010-07-12 2012-05-08 Correlated Magnetics Research, Llc Multilevel correlated magnetic system and method for using the same
    US8760250B2 (en) 2009-06-02 2014-06-24 Correlated Magnetics Rsearch, LLC. System and method for energy generation
    US9202616B2 (en) 2009-06-02 2015-12-01 Correlated Magnetics Research, Llc Intelligent magnetic system
    US7843295B2 (en) 2008-04-04 2010-11-30 Cedar Ridge Research Llc Magnetically attachable and detachable panel system
    US8717131B2 (en) 2008-04-04 2014-05-06 Correlated Magnetics Research Panel system for covering a glass or plastic surface
    US8279032B1 (en) 2011-03-24 2012-10-02 Correlated Magnetics Research, Llc. System for detachment of correlated magnetic structures
    US8937521B2 (en) 2012-12-10 2015-01-20 Correlated Magnetics Research, Llc. System for concentrating magnetic flux of a multi-pole magnetic structure
    US8917154B2 (en) 2012-12-10 2014-12-23 Correlated Magnetics Research, Llc. System for concentrating magnetic flux
    US9404776B2 (en) 2009-06-02 2016-08-02 Correlated Magnetics Research, Llc. System and method for tailoring polarity transitions of magnetic structures
    US8704626B2 (en) 2010-05-10 2014-04-22 Correlated Magnetics Research, Llc System and method for moving an object
    US9275783B2 (en) 2012-10-15 2016-03-01 Correlated Magnetics Research, Llc. System and method for demagnetization of a magnetic structure region
    US9257219B2 (en) 2012-08-06 2016-02-09 Correlated Magnetics Research, Llc. System and method for magnetization
    EP2481062A2 (en) 2009-09-22 2012-08-01 Correlated Magnetics Research, LLC Multilevel correlated magnetic system and method for using same
    US9711268B2 (en) 2009-09-22 2017-07-18 Correlated Magnetics Research, Llc System and method for tailoring magnetic forces
    US8638016B2 (en) 2010-09-17 2014-01-28 Correlated Magnetics Research, Llc Electromagnetic structure having a core element that extends magnetic coupling around opposing surfaces of a circular magnetic structure
    US8279031B2 (en) 2011-01-20 2012-10-02 Correlated Magnetics Research, Llc Multi-level magnetic system for isolation of vibration
    US8702437B2 (en) 2011-03-24 2014-04-22 Correlated Magnetics Research, Llc Electrical adapter system
    US9330825B2 (en) 2011-04-12 2016-05-03 Mohammad Sarai Magnetic configurations
    US8963380B2 (en) 2011-07-11 2015-02-24 Correlated Magnetics Research LLC. System and method for power generation system
    US9219403B2 (en) 2011-09-06 2015-12-22 Correlated Magnetics Research, Llc Magnetic shear force transfer device
    US8848973B2 (en) 2011-09-22 2014-09-30 Correlated Magnetics Research LLC System and method for authenticating an optical pattern
    EP2820659A4 (en) 2012-02-28 2016-04-13 Correlated Magnetics Res Llc System for detaching a magnetic structure from a ferromagnetic material
    US9245677B2 (en) 2012-08-06 2016-01-26 Correlated Magnetics Research, Llc. System for concentrating and controlling magnetic flux of a multi-pole magnetic structure
    US9298281B2 (en) 2012-12-27 2016-03-29 Correlated Magnetics Research, Llc. Magnetic vector sensor positioning and communications system
    CN113823473B (en) * 2021-11-24 2022-02-08 宁波兴隆磁性技术有限公司 Covering type magnetizing method of magnetic grid ruler

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE907804C (en) * 1941-10-24 1954-03-29 Aeg Device for magnetizing high-quality steels under increased temperature
    FR2587969B1 (en) * 1985-09-27 1991-10-11 Thomson Csf DE-MAGNET DEVICE, PARTICULARLY FOR NAVAL VESSELS
    DE4442682C2 (en) * 1994-11-30 1997-12-18 Bogen Electronic Gmbh Coding head for magnetizing layers

    Also Published As

    Publication number Publication date
    WO2000054293A1 (en) 2000-09-14
    ATE267451T1 (en) 2004-06-15
    US6850139B1 (en) 2005-02-01
    JP2002539438A (en) 2002-11-19
    EP1157394A1 (en) 2001-11-28

    Similar Documents

    Publication Publication Date Title
    EP1157394B1 (en) System for writing magnetic scales
    DE1198599B (en) Two-dimensional shift register
    DE1524497B1 (en) Arrangement for generating binary signals according to the position of a pen.
    DE1124998B (en) Signal generator with a Hall generator scanning head
    DE1034689B (en) Magnetic memory circuit comprising a plate made of magnetic material
    DE2120910A1 (en) Arrangement for generating electrical signals dependent on the coordinates in a plane
    EP0035466A1 (en) Volume meter
    DE1424575B2 (en) MAGNETIC FIXED VALUE STORAGE
    DE19800774A1 (en) Reference signal generation for magneto-resistive sensor
    DE2743954C2 (en) Circuit arrangement for measuring the flow of a liquid containing electrical charges
    DE6607903U (en) MAGNETIC HEAD ARRANGEMENT.
    DE19940164A1 (en) Arrangement for writing magnetic scales
    DE3739111A1 (en) MAGNETIC FIELD DETECTOR, METHOD AND CIRCUIT FOR GENERATING AN ELECTRICAL SIGNAL WITH THE MAGNETIC FIELD DETECTOR
    DE3401488C1 (en) Measuring probe
    DE430701C (en) Oscillograph for point-by-point recording of periodic electrical phenomena by briefly switching the electrical phenomenon into the circuit of a measuring device
    DE1185227B (en) Scanning device with Hall generator for periodic magnetic recordings
    DE1448881A1 (en) Digital sealer with vernier
    DE1499747C3 (en) Semi-permanent matrix memory
    EP0228579A2 (en) Digitising tablet method for its control
    DE3008582C2 (en) Incremental encoder
    DE3225500A1 (en) MAGNETIC PROBE
    DE1023486B (en) Magnetic storage system
    DE1162406B (en) Cryotron arrangement with two thin conductor strips that cross or run parallel to one another at a short distance from one another
    DE1474367B2 (en)
    DE1283279B (en) Magnetic information storage device

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010725

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    Kind code of ref document: A1

    Designated state(s): AT CH DE FR LI

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: LOREIT, UWE

    Inventor name: DETTMANN, FRITZ

    Inventor name: MOELLER, CARSTEN

    Inventor name: SCHOENBACH, TORSTEN

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: SENSITEC GMBH

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT CH DE FR LI

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50006491

    Country of ref document: DE

    Date of ref document: 20040624

    Kind code of ref document: P

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20040519

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050303

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050331

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050331

    26N No opposition filed

    Effective date: 20050222

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20060317

    Year of fee payment: 7

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20071130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070402

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50006491

    Country of ref document: DE

    Representative=s name: PATENTANWAELTE DANNENBERG, SCHUBERT, GUDEL, DE

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50006491

    Country of ref document: DE

    Representative=s name: STUMPF PATENTANWAELTE PARTGMBB, DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50006491

    Country of ref document: DE

    Representative=s name: STUMPF PATENTANWAELTE PARTGMBB, DE

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20190306

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 50006491

    Country of ref document: DE