EP1216098A1 - Vorrichtung zur durchführung chemischer oder biologischer reaktionen - Google Patents

Vorrichtung zur durchführung chemischer oder biologischer reaktionen

Info

Publication number
EP1216098A1
EP1216098A1 EP00966090A EP00966090A EP1216098A1 EP 1216098 A1 EP1216098 A1 EP 1216098A1 EP 00966090 A EP00966090 A EP 00966090A EP 00966090 A EP00966090 A EP 00966090A EP 1216098 A1 EP1216098 A1 EP 1216098A1
Authority
EP
European Patent Office
Prior art keywords
segments
reaction vessel
segment
vessel receiving
receiving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00966090A
Other languages
English (en)
French (fr)
Other versions
EP1216098B1 (de
Inventor
Wolfgang Heimberg
Markus Schürf
Thomas Herrmann
Matthias KNÜLLE
Tilmann Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MWG Biotech AG
Original Assignee
MWG Biotech AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MWG Biotech AG filed Critical MWG Biotech AG
Publication of EP1216098A1 publication Critical patent/EP1216098A1/de
Application granted granted Critical
Publication of EP1216098B1 publication Critical patent/EP1216098B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/54Heating or cooling apparatus; Heat insulating devices using spatial temperature gradients

Definitions

  • the present invention relates to a device for carrying out chemical or biological reactions, with a reaction vessel receiving body for receiving reaction vessels, the reaction vessel receiving body having a plurality of recesses arranged in a regular grid for receiving reaction vessels, a heating device for heating the reaction vessel receiving body, and a cooling device for cooling the reaction vessel receiving element.
  • thermal cyclers or thermal cycler devices and are used to generate certain temperature cycles, that is to say that predetermined temperatures are set in the reaction vessels and predetermined time intervals are maintained.
  • Such a device is known from US 5,525,300.
  • This device has four reaction vessel receiving bodies, which are each formed with recesses arranged in a regular grid.
  • the grid of the recesses corresponds to a grid of reaction vessels known from standardized microtiter plates, so that microtiter plates with their reaction vessels can be inserted into the recesses.
  • the heating and cooling devices of one of the reaction vessel receiving bodies are designed in such a way that a temperature gradient extending across the reaction vessel receiving body can be generated. This means that during a temperature cycle in the individual reaction vessels temperatures can be achieved. This makes it possible to carry out certain experiments at different temperatures at the same time.
  • This temperature gradient is used to determine the optimal denaturation temperature, the optimal annealing temperature and the optimal elongation temperature of a PCR reaction.
  • the same reaction mixture is introduced into the individual reaction vessels and then the temperature cycles necessary for carrying out the PCR reaction are carried out.
  • Such a temperature cycle comprises heating the reaction mixtures to the denaturation temperature, which is usually in the range from 90 ° -95 ° C., cooling to the annealing temperature, which is usually in the range from 40 ° -60 ° C., and heating to the elongation temperature, which is usually in the range of 70 ° -75 ° C.
  • Such a cycle is repeated several times, whereby a predetermined DNA sequence is amplified.
  • a temperature gradient can be set, different but predetermined temperatures are set in the individual reaction vessels. After the cycles have been processed, the reaction products of the individual reaction vessels can be used to determine the temperatures at which the PCR reaction delivers the optimal result for the user. The result can be e.g. be optimized with regard to the product quantity as well as the product quality.
  • the annealing temperature at which the primers are deposited has a strong influence on the result.
  • the elongation temperature can also have an advantageous or disadvantageous effect on the result.
  • the attachment of the bases is accelerated, and the probability of errors with a higher temperature increases.
  • the lifespan of the polymerase is shorter at a higher elongation temperature.
  • a thermal cycler device in which a temperature gradient can be set, makes the determination of the desired temperatures considerably easier, since a reaction mixture in a single thermal cycler device direction can be subjected to cycles with different temperatures at the same time.
  • Another essential parameter for the success of a PCR reaction is the length of time at the individual temperatures for denaturing, annealing and elongation and the rate of change in temperature.
  • these parameters cannot be varied in a series of tests on a single reaction vessel holder. If one wants to test different dwell times and rates of change, this can be carried out in several test series either in one thermal cycler device in succession or in several thermal cycler devices simultaneously.
  • thermocycler devices with several reaction vessel receptacles, each of which is provided with separate cooling, heating and control devices (see US 5,525,300).
  • the reaction mixture to be tested must be distributed over several microtiter plates in order to be tested independently of one another.
  • thermocycler devices or a multiblock thermocycler device To determine the optimal residence times and rates of temperature change, either several thermocycler devices or a multiblock thermocycler device are required, or one must test one after the other in several test series.
  • the purchase of multiple thermocycler devices or a multi-block thermocycler device is expensive and it takes a long time to carry out several successive series of tests.
  • handling is complex if only a part of the reaction vessels of several microtiter plates is filled and these are each tested or optimized in a separate test series. This is particularly disadvantageous in the case of automatically operating devices in which the reaction mixtures are subjected to further work processes, since then several microtiter plates have to be handled separately.
  • No. 5,819,842 discloses a device for the individual, controlled heating of several samples.
  • This device has a plurality of flat heating elements which are arranged in a grid-like manner on a work surface.
  • a cooling device is formed below the heating elements and extends over all heating elements.
  • a specially designed sample plate is placed on the work surface.
  • This sample plate has a grid plate which is covered with a film on the underside. The samples are introduced into the recesses in the grid plate. In this device, the samples lie only on the individual heating elements, separated by the film. This results in an immediate heat transfer.
  • this device has the disadvantage that no commercially available microtiter plate can be used.
  • the invention is based on the object of developing the above-mentioned device in such a way that the disadvantages described above are avoided and the parameters of the PCR method can be optimized very flexibly.
  • the invention has the features specified in claim 1. Advantageous refinements of this are specified in the further claims.
  • the invention is characterized in that the reaction vessel receiving body is subdivided into several segments, the individual segments are thermally decoupled and each segment is assigned a heating device which can be controlled independently of one another.
  • the individual segments of the device can be set independently of one another to different temperatures. This enables not only different temperature levels to be set in the segments, but also keeping them for different lengths or changing them at different rates of change.
  • the device according to the invention thus allows optimization of all physical parameters critical for a PCR method, the optimization process being able to be carried out on a single reaction vessel receiving body in which a microtiter plate can be used.
  • the thermal cycler device according to the invention is particularly suitable for optimizing the multiplex PCR method, in which several different primers are used.
  • FIG. 1 shows a section through a device according to the invention for carrying out chemical or biological reactions according to a first exemplary embodiment
  • FIG. 2 shows a section through a region of a device according to the invention for carrying out chemical or biological reactions according to a second exemplary embodiment
  • FIG. 3 schematically shows the device from FIG. 2 in a top view
  • FIG. 5 shows a section of the device from FIG. 4 in a sectional illustration along the line A-A
  • FIG. 11 shows a device according to the invention, in which segments of a
  • Reaction vessel receiving body are fixed with the tenter frame according to FIG. 10, and
  • FIG. 12 shows a further embodiment of a device according to the invention in section, in which segments of a reaction vessel receptacle are fixed with the tensioning frame according to FIG. 10.
  • a first embodiment of the device 1 according to the invention for carrying out chemical and / or biological reactions is shown schematically in section.
  • the device has a housing 2 with a bottom wall 3 and side walls 4. A piece above the bottom wall 3, an intermediate wall 5 is arranged parallel to the bottom wall 3, on which a plurality of bases 5a are formed. In the embodiment shown in FIG. 1, a total of six bases 5a are provided, which are arranged in two rows of three bases 5a.
  • a heat exchanger 6, a Peltier element 7 and a segment 8 of a reaction vessel receiving body 9 are each arranged on the bases 5a.
  • the heat exchanger 6 is part of a cooling device and the Peltier element 7 is part of a combined heating and cooling device.
  • the elements arranged on the bases 5a heat exchanger, Peltier element, segment
  • the elements arranged on the bases 5a are glued with a highly thermally conductive adhesive resin, as a result of which good heat transfer is achieved between these elements and the elements are also firmly connected to form a segment part 10.
  • the device has a total of six such segment parts 10.
  • a heat-conducting foil or a heat-conducting paste can also be provided.
  • the segments 8 of the reaction vessel receiving body 9 each have a base plate 11 with tubular, thin-walled reaction vessel holders 12 formed integrally thereon.
  • 4 ⁇ 4 reaction vessel holders 12 are arranged on a base plate 11.
  • the distance d between adjacent segments 8 is dimensioned such that the reaction vessel holders 12 of all segments 8 are arranged in a regular grid with a constant grid spacing D.
  • the grid spacing D is selected such that a standardized microtiter plate with its reaction vessels can be inserted into the reaction vessel holder 12.
  • the reaction vessel holder 12 of the device shown in FIG. 1 form a grid with a total of 96 reaction vessel holders which are arranged in eight rows of twelve reaction vessel holders 12.
  • the Peltier elements 7 are each electrically connected to a first control device 13.
  • the heat exchangers 6 are each connected to a second control device 15 via a separate cooling circuit 14. Water, for example, is used as the cooling medium, which is cooled in the cooling temperature control device before it is conveyed to one of the heat exchangers 6.
  • the first control device 13 and the second control device 15 are connected to a central control device 16 which controls the temperature cycles to be carried out in the device.
  • a switching valve 19 is introduced in each cooling circuit 14 and is controlled by the central control unit 16 to open or close the respective cooling circuit 14.
  • a cover 17 is pivotally attached to the housing 2, in which further heating elements 18 in the form of Peltier elements, heating foils or semiconductor heating elements can be arranged.
  • the heating elements 18 form cover heating elements which are each assigned to a segment 8 and are individually connected to the first control device 13, so that each heating element 18 can be controlled individually.
  • the first operating mode all segments are set to the same temperature, which means that the same temperature cycles are carried out on all segments.
  • This mode of operation corresponds to the operation of a conventional thermal cycler device.
  • the segments are driven at different temperatures, the temperatures being controlled such that the temperature difference ⁇ T between adjacent segments 8 is smaller than a predetermined value K, which is, for example, 5 ° -15 ° C.
  • K which is, for example, 5 ° -15 ° C.
  • the value to be selected for K depends on the quality of the thermal decoupling. A higher value can be selected for K, the better the thermal decoupling.
  • the temperature cycles entered by the user can be automatically distributed to the segments 8 by the central control device 16, so that the temperature differences between adjacent segments are kept as small as possible.
  • This second operating mode can be provided with a function with which the user only enters a single temperature cycle or PCR cycle and the central control device 16 then automatically varies this cycle.
  • the parameters to be varied such as temperature, length of stay or rate of temperature change, can be selected individually or in combination by the user.
  • the parameters are varied either according to a linear or sigmoid distribution.
  • the segments 8 In the third operating mode, only some of the segments are controlled.
  • the segments 8 have side edges 20 in plan view (FIGS. 3, 4, 6 to 9).
  • the segments 8 adjacent to a controlled segment 8 on its side edges are not activated.
  • the segments 8 themselves form a regular grid (FIGS. 3, 4, 6, 7 and 8)
  • the controlled segments are distributed as in a checkerboard pattern.
  • three of the six can Segments 8 are controlled, namely the two outer segments of one row and the middle segment of the other row.
  • the controlled segments are not influenced by the other segments, which means that their temperature can be set completely independently of the other controlled segments.
  • FIGS. 2 and 3 A second embodiment of the device according to the invention is shown in FIGS. 2 and 3.
  • the basic structure corresponds to that of FIG. 1, which is why the same parts are provided with the same reference numerals.
  • the second exemplary embodiment differs from the first exemplary embodiment in that the side edges 20 of the segments 8 adjacent to the side walls 4 of the housing 2 engage in a groove 21 running around the inner surface of the side walls 4 and are fixed therein, for example by gluing.
  • the individual segment parts 10 are spatially fixed, which ensures that, despite the formation of the gaps between the segment parts 10, all Action vessel holder 12 are arranged in the grid of the reaction vessels of a microtiter plate.
  • the side walls 4 of the housing 2 are formed from a non-heat-conducting material.
  • This exemplary embodiment can also be modified such that the groove 21 is introduced in a frame which is formed separately from the housing 2. During manufacture, the frame and the segments inserted therein form a separately manageable part that is glued onto the heating and cooling devices.
  • a third embodiment is shown schematically in FIGS. 4 and 5.
  • struts 22 made of a non-heat-conducting material are arranged somewhat below the base plates 11 of the segments 8 in the regions between the segment parts 10 and between the segment parts 10 and the side walls 4 of the housing 2.
  • Hook elements 23, which are angled downward, are formed on the side edges 20 of the segments 8 or of the base plates 11. These hook elements 23 engage in corresponding recesses in the struts 22 (FIG. 5), as a result of which the segments 8 are fixed in their position.
  • the hook elements 23 of adjacent segments 8 are arranged offset from one another.
  • the struts 22 thus form a grid, in the openings of which a segment 8 can be inserted.
  • This type of position fixation is very advantageous since the interfaces between the segments 8 and the struts 22 are very small, as a result of which the heat transfer via the struts 22 is correspondingly low. In addition, this arrangement can be easily implemented even in the confined spaces between adjacent segment parts.
  • reaction vessel receptacle bodies 9 schematically show a top view of reaction vessel receptacle bodies 9, which represent further modifications of the device according to the invention.
  • the individual segments 8 are connected to one unit by means of webs 24 made of a heat-insulating material.
  • the struts 22 are arranged between the side edges 20 of the base plates 11 and fixed to them, for example, by gluing.
  • the segmentation of the reaction vessel receiving body from FIG. 6 corresponds to that of the first and second exemplary embodiment (FIGS. 1-3), 8 4 ⁇ 4 reaction vessel holders being arranged on each segment.
  • the reaction vessel receiving body 9 shown in FIG. 7 is composed of 24 segments 8, each with 4 ⁇ 4 reaction vessel holders 12, the segments 8 in turn being connected by means of thermally insulating webs 24.
  • each segment 8 has only a single reaction vessel holder 12.
  • thermo cycler device which sense the temperatures of the individual segments, so that the temperature of the segments 8 is regulated in a closed control loop according to the temperature values determined by the temperature sensors.
  • infrared sensors can be used as temperature sensors, e.g. are arranged in the lid. With this sensor arrangement, it is possible to directly sample the temperature of the reaction mixture.
  • reaction vessel receiving body 9 shows a reaction vessel receiving body 9 with six segments 8 which are rectangular in plan view and a segment 8a formed in the shape of a double cross from three crossing rows of reaction vessel holders 12.
  • the six rectangular segments 8 are each a row or column of reaction vessel holders spaced from the next rectangular segment. This segmentation is particularly advantageous for the third operating mode explained above, since the rectangular segments 8 do not touch and can therefore be controlled at the same time as desired, with only the segment 8a in the form of a double cross not being controlled.
  • the segments 8 of the reaction vessel receptacle body 9 are made of a highly thermally conductive metal, such as aluminum.
  • the above as non- Heat-conducting materials or materials referred to as heat-insulating are either plastics or ceramics.
  • FIG. 11 Another exemplary embodiment of the device according to the invention is shown in FIG. 11.
  • the individual segments 8b of the reaction vessel receiving body 9 are fixed by means of a clamping frame 25 (FIG. 10).
  • the tensioning frame 25 is formed in a lattice shape from longitudinal struts 26 and transverse struts 27, the struts 26, 27 spanning openings.
  • the reaction vessel holders 12 of the segments 8b extend through these openings.
  • the struts 26, 27 rest approximately form-fittingly on the reaction vessel holders 12 and on the base plate 11 projecting on the reaction vessel holders.
  • the tensioning frame 25 is provided with bores 28 which are penetrated by screw bolts 29 for fixing the tensioning frame on a thermocycler device 1.
  • a separately controllable Peltier element 7 and a cooling body 30 extending over the area of all segments 8b are arranged below the segments 8b.
  • a heat-conducting film 31 is arranged between the heat sink 30 and the Peltier element 7 and between the Peltier element 7 and the respective segment 8b.
  • the heat sink 30 is provided with bores through which the screw bolts 29 extend, which are each fixed with a nut 32 on the side of the heat sink 30 facing away from the reaction vessel receiving body 9.
  • the tenter 25 is made of a non-heat-conducting material, in particular POM or polycarbonate. It thus allows the segments 8b of the reaction vessel receptacle body 9 to be fixed, the individual elements between the segments 8b and the heat sink 30 being under tension, so that good heat transfer between the individual elements is ensured in the vertical direction. Since the stenter itself is thermally conductive, the heat transfer between two adjacent segments 8b is kept low. To further reduce the heat transfer between two adjacent segments, those in contact with the segments 8b can be used Surfaces of the tensioning frame 25 may be provided with narrow webs, so that air gaps are formed between the tensioning frame 25 and the segments 8b in the areas adjacent to the webs.
  • a so-called heat pipe 33 is installed between two rows of reaction vessel holders 12.
  • a heat pipe is sold, for example, by THERMACORE INTERNATIONAL, Inc., USA. It consists of a gas-tight jacket in which there is only a small amount of fluid.
  • the pressure in the heat pipe is so low that the liquid fluid is in a state of equilibrium between the liquid and the gaseous aggregate state and consequently evaporates on a warmer section of the heat pipe and condenses on a cooler section. This compensates for the temperature between the individual sections.
  • water or freon is used as the fluid.
  • FIG. 1 Another embodiment of the thermal cycler device 1 according to the invention is shown in FIG. This thermal cycler device 1 is configured similarly to that shown in FIG. 11, which is why the same parts are designated with the same reference numerals.
  • the segments 8c of this thermal cycler device 1 have no heat pipes. Instead of heat pipes, a temperature compensation plate 34 is provided in the area below the segments 8c. These temperature compensation plates 34 are sheet-like elements, the area of which corresponds to the base area of one of the segments 8c. These temperature compensation plates 34 are hollow bodies with a small amount of fluid and work according to the same functional principle as the heat pipes. This in turn ensures that there are no temperature fluctuations within a segment 8c. However, the temperature compensation plate can also be made of very good heat-conducting materials, such as copper. Additional heating and / or cooling elements such as heating foils, heating coils or Peltier elements can be integrated into such a temperature compensation plate. The heating and cooling elements support homogeneity and allow faster heating and / or cooling rates. A Peltier element, which generally does not have a uniform temperature distribution, is preferably combined with a flat heating element.
  • the invention is described above with reference to exemplary embodiments with 96 recesses for receiving a microtiter plate with 96 reaction vessels.
  • the invention is not limited to this number of recesses.
  • the reaction vessel holder body can also have 384 recesses for holding a corresponding microtiter plate.
  • a cooling device with a liquid cooling medium is used.
  • a gaseous cooling medium in particular air cooling, instead of a liquid cooling medium.
  • reaction vessel receiving bodies described above are formed from a base plate with approximately tubular reaction vessel holders.
  • a metal block in which recesses are made for receiving the reaction vessels of the microtiter plate.
  • Thermocycler device 25 stenter
  • Heat exchanger 31 heat conducting foil
  • Segment 33 heat pipe a segment in the form 34 temperature compensation plate of a double cross b segment c segment
  • Reaction vessel holder body 0 segment part 1 base plate 2 reaction vessel holder 3 first control device 4 cooling circuit 5 second control device 6 central control device 7 cover 8 heating element 9 switching valve 0 side edges 1 groove 2 struts 3 hook element 4 web

Description

Vorrichtung zur Durchführung chemischer oder biologischer Reaktionen
Die vorliegende Erfindung betrifft eine Vorrichtung zur Durchführung chemischer oder biologischer Reaktionen, mit einem Reaktionsgefäßaufnahmekörper zum Aufnahmen von Reaktionsgefäßen, wobei der Reaktionsgefäßaufnahmekörper mehrere in einem regelmäßigen Raster angeordnete Ausnehmungen zur Aufnahme von Reaktionsgefäßen aufweist, einer Heizeinrichtung zum Erhitzen des Reaktionsgefäßaufnahmekörpers, und einer Kühleinrichtung zum Kühlen des Reaktionsgefäßaufnahmekörpers.
Diese Vorrichtungen werden als Thermocycler bzw. Thermocyclervorrichtungen bezeichnet und dienen zum Erzeugen von bestimmten Temperaturzyklen, d.h., dass in den Reaktionsgefäßen vorbestimmte Temperaturen eingestellt und vorbe- stimmte Zeitintervalle gehalten werden.
Eine derartige Vorrichtung ist aus der US 5,525,300 bekannt. Diese Vorrichtung weist vier Reaktionsgefäßaufnahmekörper auf, die jeweils mit in einem regelmäßigen Raster angeordneten Ausnehmungen ausgebildet sind. Das Raster der Aus- nehmungen entspricht einem von standardisierten Mikrotiterplatten bekannten Raster von Reaktionsgefäßen, so dass Mikrotiterplatten mit ihren Reaktionsgefäßen in die Ausnehmungen eingesetzt werden können.
Die Heiz- und Kühleinrichtungen eines der Reaktionsgefäßaufnahmekörper sind derart ausgebildet, dass eine sich über den Reaktionsgefäßaufnahmekörper erstreckender Temperaturgradient erzeugt werden kann. Dies bedeutet, dass während eines Temperaturzyklusses in den einzelnen Reaktionsgefäßen unterschied- liehe Temperaturen erzielt werden können. Hierdurch ist es möglich, bestimmte Experimente gleichzeitig mit unterschiedlichen Temperaturen auszuführen.
Dieser Temperaturgradient wird zum Ermitteln der optimalen Denaturierungstem- peratur, der optimalen Annealingtemperatur und der optimalen Elongationstemperatur einer PCR-Reaktion verwendet. Hierzu wird in den einzelnen Reaktionsgefäßen das gleiche Reaktionsgemisch eingebracht und dann die zum Durchführen der PCR-Reaktion notwendigen Temperaturzyklen ausgeführt. Ein solcher Temperaturzyklus umfaßt das Erhitzen der Reaktionsgemische auf die Denaturierungs- temperatur, die üblicherweise im Bereich von 90°-95°C liegt, das Abkühlen auf die Annealingtemperatur, die üblicherweise im Bereich von 40°-60°C liegt, und das Erhitzen auf die Elongationstemperatur, die üblicherweise im Bereich von 70°- 75°C liegt. Ein solcher Zyklus wird mehrere Male wiederholt, wodurch eine vorbestimmte DNA-Sequenz amplifiziert wird.
Da ein Temperaturgradient eingestellt werden kann, werden in den einzelnen Reaktionsgefäßen unterschiedliche aber vorbestimmte Temperaturen eingestellt. Nach Abarbeitung der Zyklen kann anhand der Reaktionsprodukte der einzelnen Reaktionsgefäße festgestellt werden, bei welchen Temperaturen die PCR- Reaktion das für den Anwender optimale Ergebnis liefert. Das Ergebnis kann hierbei z.B. hinsichtlich der Produktmenge als auch der Produktqualität optimiert werden.
Die Annealingtemperatur, bei der die Primer angelagert werden, hat einen starken Einfluß auf das Ergebnis. Aber auch die Elongationstemperatur kann sich vor- bzw. nachteilhaft auf das Ergebnis auswirken. Bei einer höheren Elongationstemperatur wird die Anlagerung der Basen beschleunigt, wobei die Wahrscheinlichkeit von Fehlern mit höherer Temperatur steigt. Zudem ist bei einer höheren Elongationstemperatur die Lebensdauer der Polymerase kürzer.
Eine Thermocyclervorrichtung, bei der ein Temperaturgradient eingestellt werden kann, stellt eine erhebliche Erleichterung bei der Ermittlung der gewünschten Temperaturen dar, da ein Reaktionsgemisch in einer einzigen Thermocyclervor- richtung gleichzeitig Zyklen mit unterschiedlichen Temperaturen unterzogen werden kann.
Ein weiterer wesentlicher Parameter für den Erfolg einer PCR-Reaktion ist die Verweildauer bei den einzelnen Temperaturen für die Denaturierung, das Annea- ling und der Elongation und die Änderungsrate der Temperatur. Diese Parameter können bei der bekannten Vorrichtung nicht in einer Versuchsreihe an einem einzigen Reaktionsgefäßhalter variiert werden. Will man unterschiedliche Verweildauern und Änderungsraten testen, kann man dies in mehreren Versuchsreihen ent- weder in einer Thermocyclervorrichtung nacheinander oder in mehreren Thermo- cyclervorrichtungen gleichzeitig ausführen.
Hierzu gibt es sogenannte Multiblock-Thermocyclervorrichtungen mit mehreren Reaktionsgefäßaufnahmekörpem, die jeweils mit separaten Kühl-, Heiz- und Steu- ereinrichtungen versehen sind (siehe US 5,525,300). Das zu testende Reaktionsgemisch muß auf mehrere Mikrotiterplatten verteilt werden, um dann unabhängig voneinander getestet zu werden.
Für die Ermittlung der optimalen Verweildauern und Temperaturänderungsraten benötigt man entweder mehrere Thermocyclervorrichtungen oder eine Multiblock- Thermocyclervorrichtung, oder man muß nacheinander in mehreren Versuchsreihen testen. Die Anschaffung mehrerer Thermocyclervorrichtungen oder einer Mul- tiblock-Thermocyclervorrichtung ist teuer und das Durchführen mehrerer aufeinanderfolgender Versuchsreihen dauert lange. Zudem ist die Handhabung aufwendig, wenn nur ein Teil der Reaktionsgefäße mehrerer Mikrotiterplatten gefüllt wird und diese jeweils in einer eigenen Versuchsreihe getestet bzw. optimiert werden. Dies ist insbesondere bei automatisch arbeitenden Vorrichtungen nachteilig, in welchen die Reaktionsgemische weiteren Arbeitsvorgängen unterzogen werden, da dann mehrere Mikrotiterplatten separat gehandhabt werden müssen. Zudem ist es äu- ßerst unpraktisch, wenn nur ein Teil der Reaktionsgefäße der Mikrotiterplatten gefüllt sind, denn die Geräte zur Weiterverarbeitung, wie z.B. Probenkämme zum Übertragen der Reaktionsprodukte auf eine Elektrophoresevorrichtung, sind oftmals auf das Raster der Mikrotiterplatten ausgelegt, weshalb eine Weiterverarbei- tung entsprechend beschränkt ist, wenn nur ein Teil der Reaktionsgefäße der Mikrotiterplatte benutzt werden.
Aus der US 5,819,842 geht eine Vorrichtung zum individuellen, kontrollierten Be- heizen mehrerer Proben hervor. Diese Vorrichtung weist mehrere flächig ausgebildete Heizelemente auf, die rasterartig an einer Arbeitsoberfläche angeordnet sind. Unterhalb der Heizelemente ist eine Kühleinrichtung ausgebildet, die sich über alle Heizelemente erstreckt. Im Betrieb wird eine besonders ausgestaltete Probenplatte auf die Arbeitsoberfläche aufgesetzt. Diese Probenplatte weist eine Gitter- platte auf, die an der Unterseite mit einer Folie bespannt ist. In den Ausnehmungen der Gitterplatte werden die Proben eingebracht. Die Proben liegen bei dieser Vorrichtung lediglich durch die Folie getrennt auf den einzelnen Heizelementen auf. Hierdurch wird ein unmittelbarer Wärmeübergang erzielt. Jedoch ist bei dieser Vorrichtung nachteilig, dass keine handelsübliche Mikrotiterplatte verwendet wer- den kann.
Mit der zunehmenden Automatisierung in der Biotechnologie werden Thermocycler zunehmend in automatisch arbeitenden Fertigungslinien und Robotern als einer von mehreren Arbeitsplätzen eingesetzt. Hierbei ist es üblich, dass die Proben in Mikrotiterplatten gefüllt von einem Arbeitsplatz zum nächsten weitergereicht werden. Würde in einem solchen automatisch arbeitenden Fertigungsprozess die Vorrichtung gemäß der US 5,819,842 eingesetzt werden, so müssten die Proben vor der Temperierung aus einer Mikrotiterplatte in die besonders ausgebildet Probenplatte und nach der Temperierung aus der Probenplatte in eine Mikrotiterplatte pipettiert werden. Hierbei besteht die Gefahr einer Kontamination der Proben. Die Verwendung dieser besonders ausgebildeten Probenplatte muss deshalb als äußerst nachteilig angesehen werden.
Der Erfindung liegt die Aufgabe zugrunde, die eingangs genannte Vorrichtung der- art weiterzubilden, dass die oben beschriebenen Nachteile vermieden werden und die Parameter des PCR-Verfahrens sehr flexibel optimiert werden können. Die Erfindung weist zur Lösung dieser Aufgabe die im Anspruch 1 angegebenen Merkmale auf. Vorteilhafte Ausgestaltungen hiervon sind in den weiteren Ansprüchen angegeben.
Die Erfindung zeichnet sich dadurch aus, dass der Reaktionsgefäßaufnahmekörper in mehrere Segmente unterteilt ist, und die einzelnen Segmente thermisch entkoppelt sind und jedem Segment eine Heizeinrichtung zugeordnet ist, die unabhängig voneinander ansteuerbar sind.
Hierdurch können die einzelnen Segmente der Vorrichtung voneinander unabhängig auf unterschiedliche Temperaturen eingestellt werden. Dies ermöglicht, dass in den Segmenten nicht nur unterschiedliche Temperarturniveaus eingestellt werden können, sondern diese auch unterschiedlich lange gehalten bzw. mit unterschiedlichen Änderungsraten verändert werden können. Die erfindungsgemäße Vorrich- tung erlaubt somit eine Optimierung aller für ein PCR- Verfahren kritischen physikalischen Parameter, wobei der Optimierungsvorgang an einem einzigen Reaktionsgefäßaufnahmekörper durchgeführt werden kann, in dem eine Mikrotiterplatte eingesetzt werden kann.
Mit der erfindungsgemäßen Vorrichtung ist es deshalb möglich, auch die Verweildauern und die Temperaturänderungsraten zu optimieren, ohne dass hierzu das Reaktionsgemisch auf unterschiedliche Mikrotiterplatten verteilt werden muß.
Die erfindungsgemäße Thermocyclervorrichtung ist insbesondere zum Optimieren des Multiplex-PCR-Verfahrens geeignet, bei welchem mehrere unterschiedliche Primer eingesetzt werden.
Die vorstehende Aufgabe, die Merkmale und Vorteile nach der vorliegenden Erfindung können unter Berücksichtigung der folgenden, detaillierten Beschreibung der bevorzugten Ausführungsformen der vorliegenden Erfindung und unter Bezugnahme auf die zugehörigen Zeichnungen besser verstanden werden. Die Erfindung wird im folgenden anhand der Zeichnungen näher erläutert. Diese zeigen in:
Fig.1 einen Schnitt durch eine erfindungsgemäße Vorrichtung zum Durchführen chemischer oder biologischer Reaktionen nach einem ersten Ausführungsbeispiel,
Fig. 2 einen Schnitt durch einen Bereich einer erfindungsgemäßen Vorrichtung zum Durchführen chemischer oder biologischer Reaktionen nach einem zweiten Ausführungsbeispiel,
Fig. 3 schematisch die Vorrichtung aus Fig. 2 in der Draufsicht,
Fig. 4 schematisch eine Vorrichtung nach einem dritten Ausführungsbeispiel in der Draufsicht,
Fig. 5 einen Bereich der Vorrichtung aus Fig. 4 in einer Schnittdarstellung entlang der Linie A-A,
Fig. 6 bis 9 schematisch jeweils eine Draufsicht auf Reaktionsgefäßaufnahmekörper mit unterschiedlicher Segmentierung,
Fig. 10 einen Spannrahmen in der Draufsicht,
Fig. 11 eine erfindungsgemäße Vorrichtung, bei welcher Segmente eines
Reaktionsgefäßaufnahmekörpers mit dem Spannrahmen nach Fig. 10 fixiert sind, und
Fig. 12 eine weitere Ausführungsform einer erfindungsgemäßen Vorrichtung im Schnitt, bei welcher Segmente eines Reaktionsgefäßaufnahmekörpers mit dem Spannrahmen nach Fig. 10 fixiert sind. In Fig. 1 ist ein erstes Ausführungsbeispiel der erfindungsgemäßen Vorrichtung 1 zur Durchführung chemischer und/oder biologischer Reaktionen schematisch im Schnitt dargestellt.
Die Vorrichtung weist ein Gehäuse 2 mit einer Bodenwandung 3 und Seitenwandungen 4 auf. Ein Stück oberhalb der Bodenwandung 3 ist parallel zur Bodenwandung 3 eine Zwischenwandung 5 angeordnet, auf welcher mehrere Sockel 5a ausgebildet sind. Bei dem in Fig. 1 gezeigten Ausführungsbeispiel sind insgesamt sechs Sockel 5a vorgesehen, die in zwei Reihen ä drei Sockel 5a angeordnet sind.
Auf den Sockeln 5a ist jeweils ein Wärmetauscher 6, ein Peltierelement 7 und ein Segment 8 eines Reaktionsgefäßaufnahmekörpers 9 angeordnet. Der Wärmetauscher 6 ist Bestandteil einer Kühleinrichtung und das Peltierelement 7 ist Bestandteil einer kombinierten Heiz- und Kühleinrichtung. Die auf den Sockeln 5a angeordneten Elemente (Wärmetauscher, Peltierelement, Segment) sind mit einem gut wärmeleitenden Klebeharz verklebt, wodurch zwischen diesen Elementen ein guter Wärmeübergang realisiert wird, und die Elemente zudem fest zu einem Segmentteil 10 verbunden sind. Die Vorrichtung weist insgesamt sechs derartige Segmentteile 10 auf. Anstelle von Klebeharz kann auch eine Wärmeleitfolie oder eine Wärmeleitpaste vorgesehen werden.
Die Segmente 8 des Reaktionsgefäßaufnahmekörpers 9 weisen jeweils eine Basisplatte 11 mit einstückig daran ausgebildeten rohrförmigen, dünnwandigen Reaktionsgefäßhaltern 12 auf. Bei dem in Fig. 1 dargestellten Ausführungsbeispiel sind jeweils 4 x 4 Reaktionsgefäßhalter 12 auf einer Basisplatte 11 angeordnet. Der Abstand d zwischen benachbarten Segmenten 8 ist derart bemessen, dass die Reaktionsgefäßhalter 12 aller Segmente 8 in einem regelmäßigen Raster mit konstantem Rasterabstand D angeordnet sind. Der Rasterabstand D ist so gewählt, dass eine standardisierte Mikrotiterplatte mit ihren Reaktionsgefäßen in die Reaktionsgefäßhalter 12 eingesetzt werden kann. Durch Vorsehen des Abstandes d zwischen benachbarten Segmenten wird ein Luftspalt gebildet, der die Segmente 8 bzw. die Segmentteile 10 thermisch entkoppelt.
Die Reaktionsgefäßhalter 12 der in Fig. 1 gezeigten Vorrichtung bilden ein Raster mit insgesamt 96 Reaktionsgefäßhaltern die in acht Reihen ä zwölf Reaktionsgefäßhalter 12 angeordnet sind.
Die Peltierelemente 7 sind jeweils an eine erste Steuereinrichtung 13 elektrisch angeschlossen. Die Wärmetauscher 6 sind jeweils über einen separaten Kühlkreislauf 14 mit einer zweite Steuereinrichtung 15 verbunden. Als Kühlmedium wird bspw. Wasser verwendet, das in der Kühltemperatur-Steuereinrichtung gekühlt wird, bevor es zu einem der Wärmetauscher 6 befördert wird.
Die erste Steuereinrichtung 13 und die zweite Steuereinrichtung 15 sind an eine zentrale Steuereinrichtung 16 angeschlossen, die die in der Vorrichtung auszuführenden Temperaturzyklen steuert. In jedem Kühlkreislauf 14 ist ein Schaltventil 19 eingebracht, das von der zentralen Steuereinheit 16 zum Öffnen oder Schließen des jeweiligen Kühlkreislaufes 14 gesteuert wird.
Am Gehäuse 2 ist schwenkbar ein Deckel 17 befestigt, in dem weitere Heizelemente 18 in Form von Peltierelementen, Heizfolien oder Halbleiterheizelementen angeordnet sein können. Die Heizelemente 18 bilden Deckelheizelemente, die jeweils einem Segment 8 zugeordnet und einzeln mit der ersten Steuereinrichtung 13 verbunden sind, so dass jedes Heizelement 18 individuell angesteuert werden kann.
Nachfolgend wird die Funktionsweise der erfindungsgemäßen Vorrichtung näher erläutert.
Es gibt drei Betriebsmodi. Im ersten Betriebsmodus werden alle Segmente auf die gleiche Temperatur eingestellt, d.h., dass auf allen Segmenten die gleichen Temperaturzyklen abgefahren werden. Dieser Betriebsmodus entspricht dem Betrieb einer herkömmlichen Thermocyclervorrichtung.
Im zweiten Betriebsmodus werden die Segmente mit unterschiedlichen Temperaturen angesteuert, wobei die Temperaturen so gesteuert werden, dass die Temperaturdifferenz ΔT benachbarter Segmente 8 kleiner als ein vorbestimmter Wert K ist, der bspw. 5°-15°C beträgt. Der für K zu wählende Wert hängt von der Güte der thermischen Entkopplung ab. Für K kann ein umso höherer Wert gewählt werden, je besser die thermische Entkopplung ist.
Die vom Anwender eingegebenen Temperaturzyklen können von der zentralen Steuereinrichtung 16 automatisch auf die Segmente 8 verteilt werden, so dass die Temperaturdifferenzen zwischen benachbarten Segmenten so klein wie möglich gehalten werden.
Dieser zweite Betriebsmodus kann mit einer Funktion versehen sein, mit der der Anwender lediglich einen einzigen Temperaturzyklus bzw. PCR-Zyklus eingibt, und die zentrale Steuereinrichtung 16 dann diesen Zyklus automatisch variiert. Die zu variierenden Parameter, wie Temperatur, Verweildauer oder Temperaturänderungsrate, können vom Anwender einzeln oder in Kombination gewählt werden. Die Variation der Parameter erfolgt entweder nach einer linearen oder sigmoiden Verteilung.
Im dritten Betriebsmodus werden nur ein Teil der Segmente angesteuert. Die Segmente 8 besitzen in der Draufsicht (Fig. 3, Fig. 4, Fig. 6 bis 9) Seitenkanten 20. Bei diesem Betriebsmodus werden die zu einem angesteuerten Segment 8 an dessen Seitenkanten benachbarten Segmente 8 nicht angesteuert. Bilden die Segmente 8 selbst ein regelmäßiges Raster (Fig. 3, Fig. 4, Fig. 6, Fig. 7 und Fig. 8), so sind die angesteuerten Segmente wie in einem Schachbrettmuster verteilt. Bei dem in Fig. 1 bis 4 gezeigten Ausführungsbeispielen können drei der sechs Segmente 8 angesteuert werden, nämlich die zwei äußeren Segmente einer Reihe und das mittlere Segment der anderen Reihe.
Bei diesem Betriebsmodus werden die angesteuerten Segmente nicht durch die anderen Segmente beeinflußt, wodurch deren Temperatur vollkommen unabhängig von den weiteren angesteuerten Segmenten eingestellt werden können. Hierdurch ist es möglich, unterschiedlichste Temperaturzyklen auf den einzelnen Segmenten abzufahren, wobei eines der Segmente bspw. auf die Denaturie- rungstemperatur aufgeheizt und ein anderes auf der Annealingtemperatur gehal- ten wird. So ist es möglich, die Verweildauern, d.h., die Zeitintervalle während der die Denaturierungstemperatur, Annealingtemperatur und Elongationstemperatur gehalten wird, als auch die Temperaturänderungsraten nach belieben einzustellen und gleichzeitig an den einzelnen Segmenten abzufahren. Hierdurch ist es möglich, nicht nur die Temperaturen, sondern auch die Verweildauern und die Tempe- raturänderungsraten zu optimieren.
Bei diesem Betriebsmodus kann es zweckmäßig sein, die nicht angesteuerten Segmente 8 etwas zu erhitzen, so dass deren Temperatur etwa im Bereich der niedrigsten Temperatur der hierzu benachbarten angesteuerten Segmente liegt. Hierdurch wird vermieden, dass die nicht angesteuerten Segmente eine Wärmesenke für die angesteuerten Segment bilden und deren Temperaturprofil nachteilig beeinflussen.
Ein zweites Ausführungsbeispiel der erfindungsgemäßen Vorrichtung ist in Fig. 2 und 3 gezeigt. Der grundsätzliche Aufbau entspricht dem aus Fig. 1 weshalb gleiche Teile mit gleichen Bezugszeichen versehen sind.
Das zweite Ausführungsbeispiel unterscheidet sich vom ersten Ausführungsbeispiel dadurch, dass die zu den Seitenwandungen 4 des Gehäuses 2 benachbarten Seitenkanten 20 der Segmente 8 in eine an der Innenfläche der Seitenwandungen 4 umlaufenden Nut 21 eingreifen und darin bspw. durch Kleben fixiert sind. Hierdurch sind die einzelnen Segmentteile 10 räumlich fixiert, wodurch sichergestellt ist, dass trotz der Ausbildung der Spalte zwischen den Segmentteilen 10 alle Re- aktionsgefäßhalter 12 im Raster der Reaktionsgefäße einer Mikrotiterplatte angeordnet sind. Die Seitenwandungen 4 des Gehäuses 2 sind aus einem nichtwärmeleitenden Material ausgebildet. Dieses Ausführungsbeispiel kann auch dahingehend abgewandelt werden, dass die Nut 21 in einem vom Gehäuse 2 separat ausgebildeten Rahmen eingebracht ist. Der Rahmen und die darin eingesteckten Segmente bilden bei der Fertigung ein separat handhabbares Teil, das auf die Heiz- und Kühleinrichtungen aufgeklebt wird.
Ein drittes Ausführungsbeispiel ist schematisch in Fig. 4 und 5 dargestellt. Bei die- sem Ausführungsbeispiel sind in den Bereichen zwischen den Segmentteilen 10 und zwischen den Segmentteilen 10 und den Seitenwandungen 4 des Gehäuses 2 Streben 22 aus einem nicht wärmeleitenden Material etwas unterhalb der Basisplatten 11 der Segmente 8 angeordnet. An den Seitenkanten 20 der Segmente 8 bzw. der Basisplatten 11 sind nach unten abgewinkelte Hakenelemente 23 ausge- bildet. Diese Hakenelemente 23 greifen in korrespondierende Ausnehmungen der Streben 22 ein (Fig. 5), wodurch die Segmente 8 in ihrer Lage fixiert sind. Die Hakenelemente 23 benachbarter Segmente 8 sind zueinander versetzt angeordnet. Die Streben 22 bilden somit ein Gitter, in dessen Öffnungen jeweils ein Segment 8 eingesetzt werden kann.
Diese Art der Lagefixierung ist sehr vorteilhaft, da die Grenzflächen zwischen den Segmenten 8 und den Streben 22 sehr klein sind, wodurch die Wärmeübertragung über die Streben 22 entsprechend gering ist. Zudem kann diese Anordnung auch bei den beengten Raumverhältnissen zwischen benachbarten Segmentteilen ein- fach realisiert werden.
In den Fig. 6 bis 9 sind schematisch in der Draufsicht Reaktionsgefäßaufnahmekörper 9 gezeigt, die weitere Abwandlungen der erfindungsgemäßen Vorrichtung darstellen. Bei diesen Reaktionsgefäßaufnahmekörpem 9 sind die einzelnen Segmente 8 mittels Stegen 24 aus einem wärmeisolierenden Material zu einer Einheit verbunden. Die Streben 22 sind zwischen den Seitenkanten 20 der Basisplatten 11 angeordnet und an diesen bspw. durch Kleben fixiert. Die Segmentierung des Reaktionsgefäßaufnahmekörpers aus Fig. 6 entspricht derjenigen des ersten und zweiten Ausführungsbeispiels (Fig. 1-3), wobei auf jedem Segment 8 4 x 4 Reaktionsgefäßhalter angeordnet sind.
Der in Fig. 7 gezeigte Reaktionsgefäßaufnahmekörper 9 ist aus 24 Segmenten 8 mit jeweils 4 x 4 Reaktionsgefäßhalter 12 zusammengesetzt, wobei die Segmente 8 wiederum mittels thermisch isolierender Stege 24 verbunden sind.
Bei dem in Fig. 8 gezeigten Reaktionsgefäßaufnahmekörper 9 weist jedes Seg- ment 8 lediglich einen einzigen Reaktionsgefäßhalter 12 auf.
Bei den relativ fein untergliederten Reaktionsgefäßaufnahmekörpern 9 ist es zweckmäßig in die Thermocyclervorrichtung Temperatursensoren zu integrieren, die die Temperaturen der einzelnen Segmente abtasten, so dass nach dem von den Temperatursensoren ermittelten Temperaturwerten die Temperatur der Segmente 8 in einer geschlossenen Regelschleife geregelt wird.
Als Temperatursensoren können bspw. Infrarotsensoren verwendet werden, die z.B. im Deckel angeordnet sind. Mit dieser Sensoranordnung ist es möglich, die Temperatur des Reaktionsgemisches direkt abzutasten.
Fig. 9 zeigt einen Reaktionsgefäßaufnahmekörper 9 mit sechs in der Draufsicht rechteckigen Segmenten 8 und ein in der Form eines Doppelkreuzes aus drei sich kreuzenden Reihen von Reaktionsgefäßhaltern 12 ausgebildetes Segment 8a. Die sechs rechteckigen Segmente 8 sind jeweils eine Reihe bzw. Spalte von Reaktionsgefäßhaltern vom nächsten rechteckigen Segment beabstandet. Diese Segmentierung ist besonders vorteilhaft für den oben erläuterten dritten Betriebsmodus, da sich die rechteckförmigen Segmente 8 nicht berühren und deshalb gleichzeitig beliebig angesteuert werden können, wobei lediglich das Segment 8a in Form eines Doppelkreuzes nicht angesteuert wird.
Die Segmente 8 des Reaktionsgafäßaufnahmekörpers 9 sind aus einem gut wärmeleitenden Metall, wie z.B. Aluminium, ausgebildet. Die oben als nicht- wärmeleitenden Materialien bzw. als wärmeisolierend bezeichneten Materialien sind entweder Kunststoffe oder Keramiken.
Ein weiteres Ausführungsbeispiel der erfindungsgemäßen Vorrichtung ist in Fig. 11 gezeigt. Bei diesem Ausführungsbeispiel sind die einzelnen Segmente 8b des Reaktionsgefäßaufnahmekörpers 9 mittels eines Spannrahmens 25 (Fig. 10) fixiert.
Der Spannrahmen 25 ist gitterförmig aus Längsstreben 26 und Querstreben 27 ausgebildet, wobei die Streben 26, 27 Öffnungen aufspannen. Durch diese Öff- nungen erstrecken sich die Reaktionsgefäßhalter 12 der Segmente 8b. Beim vorliegenden Ausführungsbeispiel liegen die Streben 26, 27 etwa formschlüssig an den Reaktionsgefäßhaltern 12 an und auf der an den Reaktionsgefäßhaltern vorstehenden Basisplatte 11 auf. Der Spannrahmen 25 ist mit Bohrungen 28 versehen, die von Schraubbolzen 29 zum Fixieren des Spannrahmens auf einer Ther- mocyclervorrichtung 1 durchgriffen werden.
Unterhalb der Segmente 8b ist jeweils ein separat ansteuerbares Peltierelement 7 und ein sich über den Bereich aller Segmente 8b erstreckender Kühlkörper 30 angeordnet. Zwischen dem Kühlkörper 30 und dem Peltierelement 7 und zwischen dem Peltierelement 7 und dem jeweiligen Segment 8b ist jeweils eine Wärmeleitfolie 31 angeordnet. Der Kühlkörper 30 ist mit Bohrungen versehen, durch die sich die Schraubbolzen 29 erstrecken, die an der vom Reaktionsgefäßaufnahmekörper 9 abgewandten Seite des Kühlkörpers 30 jeweils mit einer Mutter 32 fixiert sind.
Der Spannrahmen 25 ist aus einem nicht wärmeleitenden Material, insbesondere aus POM oder Polycarbonat ausgebildet. Er erlaubt somit eine Fixierung der Segmente 8b des Reaktionsgefäßaufnahmekörpers 9, wobei die einzelnen Elemente zwischen den Segmenten 8b und dem Kühlkörper 30 unter Spannung stehen, so dass in vertikaler Richtung ein guter Wärmeübergang zwischen den einzelnen E- lementen gewährleistet ist. Da der Spannrahmen selbst schlacht wärmeleitend ist, wird die Wärmeübertragung zwischen zwei benachbarten Segmenten 8b gering gehalten. Zur weiteren Verminderung des Wärmeübergangs zwischen zwei benachbarten Segmenten können die mit den Segmenten 8b in Kontakt stehenden Flächen des Spannrahmens 25 mit schmalen Stegen versehen sein, so dass in den an die Stege angrenzenden Bereichen Luftspalte zwischen dem Spannrahmen 25 und den Segmenten 8b ausgebildet sind.
Bei dem in Fig. 11 gezeigte Ausführungsbeispiel sind zwischen zwei Reihen von Reaktionsgefäßhaltern 12 ist jeweils eine sogenannte Heat-Pipe 33 eingebaut. Eine solche Heat-Pipe wird bspw. von der Firma THERMACORE INTERNATIONAL, Inc., USA vertrieben. Sie besteht aus einem gasdichten Mantel, in dem sich lediglich eine geringe Menge Fluid befindet. In der Heat-Pipe besteht ein derart geringer Druck, dass sich das flüssige Fluid in einem Gleichgewichtszustand zwischen dem flüssigen und dem gasförmigen Aggregatszustand befindet und folglich an einem wärmeren Abschnitt der Heat-Pipe verdampft und an einem kühleren Abschnitt kondensiert. Hierdurch wird zwischen den einzelnen Abschnitten die Temperatur ausgeglichen. Als Fluid wird bspw. Wasser oder Freon verwendet.
Durch die Integration einer solchen Heat-Pipe in die Segmente 8b des Reaktionsgefäßaufnahmekörpers 9 wird ein Temperaturausgleich über das Segment 8b bewerkstelligt. Hierdurch wird sichergestellt, dass auf dem gesamten Segment 8b die gleiche Temperatur vorliegt.
Eine weitere Ausführungsform der erfindungsgemäßen Thermocyclervorrichtung 1 ist in Fig. 12 gezeigt. Diese Thermocyclervorrichtung 1 ist ähnlich wie die in Fig. 11 gezeigte ausgebildet, weshalb gleiche Teile mit gleichen Bezugszeichen bezeichnet sind.
Die Segmente 8c dieser Thermocyclervorrichtung 1 weisen jedoch keine Heat- Pipes auf. Anstelle von Heat-Pipes sind im Bereich unterhalb der Segmente 8c jeweils eine Temperaturausgleichsplatte 34 vorgesehen. Diese Temperaturausgleichsplatten 34 sind flächenförmige Elemente, deren Fläche der Grundfläche eines der Segmente 8c entspricht. Diese Temperaturausgleichsplatten 34 sind Hohlkörper mit einer geringen Menge an Fluid und arbeiten nach dem gleichen Funktionsprinzip wie die Heat-Pipes. Hiermit wird wiederum sichergestellt, dass es innerhalb eines Segmentes 8c keine Temperaturschwankungen gibt. Die Temperaturausgleichsplatte kann jedoch auch aus sehr gut wärmeleitenden Materialen, wie z.B. Kupfer, ausgebildet sein. In eine solche Temperaturausgleichsplatte können zusätzliche Heiz- und/oder Kühlelemente, wie z.B. Heizfolien, Heizwendeln oder Peltierelemente, integriert sein. Die Heiz- und Kühlelemente unterstützen die Homogenität und erlauben schnellere Heiz- und/oder Kühlraten. Ein Peltierelement, das in der Regel keine gleichmäßige Temperaturverteilung aufweist, wird vorzugsweise mit einem flächigen Heizelement kombiniert.
Die Erfindung ist oben anhand von Ausführungsbeispielen mit 96 Ausnehmungen zum Aufnehmen einer Mikrotiterplatte mit 96 Reaktionsgefäßen beschrieben. Die Erfindung ist jedoch nicht auf diese Anzahl von Ausnehmungen beschränkt. So kann der Reaktionsgefäßaufnahmekörper bspw. auch 384 Ausnehmungen zum Aufnehmen einer entsprechenden Mikrotiterplatte besitzen. Hinsichtlich vorste- hend im einzelnen nicht näher erläuterter Merkmale der Erfindung wird in übrigen ausdrücklich auf die Ansprüche und die Zeichnung verwiesen.
Bei den oben beschriebenen Ausführungsbeispielen wird eine Kühleinrichtung mit einem flüssigen Kühlmedium verwendet. Im Rahmen der Erfindung ist es auch möglich, anstelle eines flüssigen Kühlmediums auch ein gasförmiges Kühlmedium, insbesondere eine Luftkühlung zu verwenden.
Die oben beschriebenen Reaktionsgefäßaufnahmekörper sind aus einer Basisplatte mit etwa rohrförmigen Reaktionsgefäßhaltern ausgebildet. Im Rahmen der Erfindung ist es auch möglich, einen Metallblock zu verwenden, in dem Ausnehmungen zum Aufnehmen der Reaktionsgefäße der Mikrotiterplatte eingebracht sind.
Bezugszeichenliste
Thermocyclervorrichtung 25 Spannrahmen
Gehäuse 26 Längsstrebe
Bodenwandung 27 Querstrebe
Seitenwandung 28 Bohrung
Zwischenwandung 29 Schraubbolzen a Sockel 30 Kühlkörper
Wärmetauscher 31 Wärmeleitfolie
Peltierelement 32 Mutter
Segment 33 Heat-Pipe a Segment in der Form 34 Temperaturausgleichsplatte eines Doppelkreuzes b Segment c Segment
Reaktionsgefäßaufnahmekörpei 0 Segmentteil 1 Basisplatte 2 Reaktionsgefäßhalter 3 erste Steuereinrichtung 4 Kühlkreislauf 5 zweite Steuereinrichtung 6 zentrale Steuereinrichtung 7 Deckel 8 Heizelement 9 Schaltventil 0 Seitenkanten 1 Nut 2 Streben 3 Hakenelement 4 Steg

Claims

Patentansprüche
1. Vorrichtung zur Durchführung chemischer oder biologischer Reaktionen, mit einem Reaktionsgefäßaufnahmekörper (9) zum Aufnahmen einer Mikrotiterplatte mit mehreren Reaktionsgefäßen, wobei der Reaktionsgefäßaufnahmekörper (9) mehrere in einem regelmäßigen Raster angeordnete Ausnehmungen zur Aufnah- me der jeweiligen Reaktionsgefäße aufweist, einer Heizeinrichtung (7) zum Erhitzen des Reaktionsgefäßaufnahmekörpers (9), und einer Kühleinrichtung (6) zum Kühlen des Reaktionsgefäßaufnahmekörpers (9), dadurch gekennzeichnet, dass der Reaktionsgefäßaufnahmekörper (9) in mehrere Segmente (8) unterteilt ist, und die einzelnen Segmente (8) thermisch entkoppelt sind und jedem Segment (8) eine Heizeinrichtung (7) zugeordnet ist, die unabhängig voneinander ansteuerbar sind.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass jedem Segment (8) des Reaktionsgefäßaufnahmekörpers (9) eine Kühleinrichtung (6) zugeordnet ist, wobei die Kühleinrichtungen (6) unabhängig voneinander ansteuerbar sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Segmente (8) des Reaktionsgefäßaufnahmekörpers (9) aus jeweils einer Basisplatte (11) mit einem oder mehreren rohrförmigen, dünnwandigen Reaktions- gefäßhaltern (12) ausgebildet sind, die einstückig mit der Basisplatte (11) ausgebildet sind.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die einzelnen Segmente (8) dadurch thermisch entkoppelt sind, dass zwischen benachbarten Segmenten (8) ein Luftspalt ausgebildet ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die einzelnen Segmente (8) dadurch thermisch entkoppelt sind, dass zwischen benachbarten Segmenten (8) ein Spalt ausgebildet ist, in dem ein thermischer Isolator eingebracht ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Heizeinrichtungen jeweils ein Peltierelement (7) aufweisen, wobei jeweils einem Segment (8) des Reaktionsgefäßaufnahmekörpers (9) ein Peltierelement (7) zugeordnet ist und die Peltierelemente (7) an die jeweiligen Segmente (8) thermisch gekoppelt sind.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Kühleinrichtungen ein Peltierelement (7) und/oder einen Wärmetauscher (6) umfassen, wobei jeweils einem Segment (8) des Reaktionsgefäßaufnahmekörpers (9) ein Peltierelement (7) und/oder ein Wärmetauscher (6) zugeordnet sind.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Wärmetauscher (6) mit Kühlkanälen versehen sind, die von einem Fluid durchströmt werden können, wobei die Fluidströmung der einzelnen Wärmetauscher (6) unabhängig voneinander gesteuert werden kann.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass das Fluid eine Kühlflüssigkeit, insbesondere Wasser, ist.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Reaktionsgefäßaufnahmekörper (9) in zumindest vier Segmente (8) unterteilt ist.
11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die einzelnen Segmente (8) jeweils die gleiche Anzahl von Ausnehmungen aufweisen.
12. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Segmente (8) an ihren Seitenkanten (20) nach unten weisende Hakenelemente (23) aufweisen, mit welchen sie auf Streben 22 lagern.
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass jedem Segment (8) ein Temperatursensor zugeordnet ist, mit dem die Temperatur des jeweiligen Segmentes (8) erfaßt wird, wobei die Temperatur der Seg- mente (8) nach Maßgabe der von den einzelnen Sensoren erfaßten Temperaturen geregelt wird.
14. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass jedem Segment (8b, 8c) zumindest ein Temperaturausgleichselement (33, 34) zugeordnet ist.
15. Steuereinrichtung zum Ansteuern der Heizeinrichtung und der Kühleinrichtung einer Vorrichtung zur Durchführung chemischer oder biologischer Reaktionen, die nach einem der Ansprüche 1 bis 14 ausgebildet ist, dadurch gekennzeichnet, dass die Steuereinrichtung (13, 16) derart ausgebildet ist, dass die Heizeinrichtungen (7) der einzelnen Segmente (8) individuell ansteuerbar sind.
16. Steuereinrichtung nach Anspruch 15, dadurch gekennzeichnet, dass die Steuereinrichtung (15, 16) derart ausgebildet ist, dass die Kühleinrichtun- gen der einzelnen Segmente (8) individuell ansteuerbar sind.
17. Steuereinrichtung nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass die Steuereinrichtung (13, 15, 16) in einem Betriebsmodus nur einen Teil der Segmente ansteuert, wobei die Segmente (8) Seitenkanten (20) aufweisen, und die zu einem angesteuerten Segment (8) an dessen Seitenkanten (20) benachbarten Segmente (8) nicht angesteuert werden.
18. Steuereinrichtung nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass die Segmente in einem Betriebsmodus derart angesteuert werden, dass der Temperaturunterschied benachbarter Segmente (8) kleiner als eine vorbestimmte Temperaturdifferenz (ΔT) ist.
EP00966090A 1999-10-01 2000-09-29 Vorrichtung zur durchführung chemischer oder biologischer reaktionen Expired - Lifetime EP1216098B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE29917313U DE29917313U1 (de) 1999-10-01 1999-10-01 Vorrichtung zur Durchführung chemischer oder biologischer Reaktionen
DE29917313U 1999-10-01
PCT/EP2000/009569 WO2001024930A1 (de) 1999-10-01 2000-09-29 Vorrichtung zur durchführung chemischer oder biologischer reaktionen

Publications (2)

Publication Number Publication Date
EP1216098A1 true EP1216098A1 (de) 2002-06-26
EP1216098B1 EP1216098B1 (de) 2003-07-23

Family

ID=8079714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00966090A Expired - Lifetime EP1216098B1 (de) 1999-10-01 2000-09-29 Vorrichtung zur durchführung chemischer oder biologischer reaktionen

Country Status (9)

Country Link
US (6) US20070110634A1 (de)
EP (1) EP1216098B1 (de)
JP (1) JP2003511221A (de)
KR (1) KR100696138B1 (de)
AT (1) ATE245487T1 (de)
AU (1) AU774199B2 (de)
DE (2) DE29917313U1 (de)
NO (1) NO20021340D0 (de)
WO (1) WO2001024930A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515944A (ja) * 2003-05-30 2007-06-21 アプレラ コーポレイション 温度均一性を提供するための熱循環装置および方法
EP2898952A1 (de) 2006-09-06 2015-07-29 Life Technologies Corporation Verfahren zur Durchführung chemischer oder biologischer Reaktionen

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7133726B1 (en) * 1997-03-28 2006-11-07 Applera Corporation Thermal cycler for PCR
DE29917313U1 (de) 1999-10-01 2001-02-15 Mwg Biotech Ag Vorrichtung zur Durchführung chemischer oder biologischer Reaktionen
EP1343973B2 (de) 2000-11-16 2020-09-16 California Institute Of Technology Vorrichtung und verfahren zur durchführung von assays und screening mit hohem durchsatz
DE10062890A1 (de) * 2000-12-12 2002-06-27 Eppendorf Ag Labortemperiereinrichtung zur Temperierung von Reaktionsproben
DE10062889A1 (de) * 2000-12-12 2002-06-27 Eppendorf Ag Labortemperiereinrichtung zur Temperierung auf unterschiedliche Temperaturen
EP1228804B1 (de) * 2001-02-05 2005-11-23 Eppendorf Ag Vorrichtung zur Temperierung von Reaktionsproben
AU2002307152A1 (en) 2001-04-06 2002-10-21 California Institute Of Technology Nucleic acid amplification utilizing microfluidic devices
JP4639558B2 (ja) * 2001-09-07 2011-02-23 株式会社島津製作所 マイクロウエルチップ
EP1463796B1 (de) 2001-11-30 2013-01-09 Fluidigm Corporation Mikrofluidische vorrichtung und verfahren zu ihrer verwendung
EP1499706A4 (de) 2002-04-01 2010-11-03 Fluidigm Corp Mikrofluidische partikelanalysesysteme
DE10221763A1 (de) 2002-05-15 2003-12-04 Eppendorf Ag Thermocycler mit in Cyclen angesteuertem Temperierblock
GB0219393D0 (en) * 2002-08-20 2002-09-25 Quanta Biotech Ltd Control apparatus
GB0221167D0 (en) * 2002-09-12 2002-10-23 Quanta Biotech Ltd Control apparatus
EP1551753A2 (de) 2002-09-25 2005-07-13 California Institute Of Technology Hochintegriertes mikrofluidisches netzwerk
JP5695287B2 (ja) 2002-10-02 2015-04-01 カリフォルニア インスティテュート オブ テクノロジー 微小流体の核酸解析
US7604965B2 (en) 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
AU2004243070B2 (en) * 2003-05-23 2010-04-15 Bio-Rad Laboratories, Inc. Localized temperature control for spatial arrays of reaction media
NL1024578C2 (nl) * 2003-10-21 2005-04-22 Univ Delft Tech Inrichting voor het uitvoeren van een reactie.
US7833709B2 (en) 2004-05-28 2010-11-16 Wafergen, Inc. Thermo-controllable chips for multiplex analyses
US7799283B2 (en) 2004-11-12 2010-09-21 Ortho-Clinical Diagnostics, Inc. Heating and cooling multiple containers or multi-chamber containers
ES2401437T3 (es) * 2005-04-04 2013-04-19 Roche Diagnostics Gmbh Termociclado de un bloque que comprende múltiples muestras
JP4630786B2 (ja) * 2005-10-04 2011-02-09 キヤノン株式会社 生化学処理装置、dna増幅精製装置、該装置を含むdna検査装置
DE102006004157A1 (de) * 2006-01-30 2007-08-02 Eppendorf Ag Vorrichtung und Verfahren zum Inkubieren von Zellen
US7815868B1 (en) 2006-02-28 2010-10-19 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening
US8232091B2 (en) 2006-05-17 2012-07-31 California Institute Of Technology Thermal cycling system
WO2008070198A2 (en) * 2006-05-17 2008-06-12 California Institute Of Technology Thermal cycling system
US20080038163A1 (en) 2006-06-23 2008-02-14 Applera Corporation Systems and Methods for Cooling in Biological Analysis Instruments
DE102007003754A1 (de) * 2007-01-19 2008-07-24 Eppendorf Ag Temperiervorrichtung mit Kalibrierungseinrichtung
CA2677833C (en) 2007-01-22 2016-05-03 Wafergen, Inc. Apparatus for high throughput chemical reactions
US9475051B2 (en) 2007-02-27 2016-10-25 Sony Corporation Nucleic acid amplifier
WO2008117200A2 (en) * 2007-03-23 2008-10-02 Koninklijke Philips Electronics N.V. Integrated microfluidic device with reduced peak power consumption
DE102007057651A1 (de) * 2007-11-28 2009-06-18 Nickl, Julius, Dr. Thermisches Schwingen zum zyklischen Temperieren von biologischen medizinischen und chemischen Proben
JP2009254260A (ja) * 2008-04-15 2009-11-05 Sony Corp 反応処理装置
JP4544335B2 (ja) 2008-04-15 2010-09-15 ソニー株式会社 反応処理装置
DE102008023660B4 (de) * 2008-04-21 2010-02-11 Hirt Zerspanungstechnik Gmbh Vorrichtung zum Erwärmen eines Gegenstandes mittels Wasserbad
WO2012033396A1 (en) * 2008-12-18 2012-03-15 Universiti Sains Malaysia A disposable multiplex polymerase chain reaction (pcr) chip and device
SG184539A1 (en) 2010-04-09 2012-11-29 Life Technologies Corp Improved thermal uniformity for thermal cycler instrumentation using dynamic control
JP5249988B2 (ja) * 2010-05-07 2013-07-31 株式会社日立ハイテクノロジーズ 核酸増幅装置及びそれを用いた核酸検査装置
CN103551212B (zh) 2010-07-23 2016-01-20 贝克曼考尔特公司 试剂盒
DE102010040685A1 (de) * 2010-09-14 2012-03-15 Hamilton Bonaduz Ag Temperiervorrichtung zur thermischen Verfestigung von Wirkstoff-Beads
JP5689274B2 (ja) * 2010-10-05 2015-03-25 株式会社日立ハイテクノロジーズ 核酸検査装置及び容器搬送方法
CA2819254C (en) 2010-12-03 2020-04-14 Zackery Kent Evans Thermal cycler apparatus and related methods
US8945843B2 (en) * 2010-12-09 2015-02-03 Analogic Corporation Thermocooler with thermal breaks that thermally isolate a thermocycling region from at least one guard heat region
JP2011160811A (ja) * 2011-05-20 2011-08-25 Sony Corp 反応処理装置
JP5759818B2 (ja) * 2011-07-25 2015-08-05 株式会社日立ハイテクノロジーズ 核酸検査装置
BR112014011035A2 (pt) 2011-11-07 2017-06-13 Beckman Coulter, Inc. sistema de aliquotagem e fluxo de trabalho
JP6062449B2 (ja) 2011-11-07 2017-01-18 ベックマン コールター, インコーポレイテッド 標本コンテナ検出
EP2776848B1 (de) 2011-11-07 2019-12-25 Beckman Coulter, Inc. System und verfahren zum transport von probenbehältern
WO2013070755A2 (en) 2011-11-07 2013-05-16 Beckman Coulter, Inc. Centrifuge system and workflow
ES2844324T3 (es) 2011-11-07 2021-07-21 Beckman Coulter Inc Brazo robótico
KR20140091032A (ko) 2011-11-07 2014-07-18 베크만 컬터, 인코포레이티드 검체 수송 시스템의 자기 감쇠
DE102011119174A1 (de) 2011-11-23 2013-05-23 Inheco Industrial Heating And Cooling Gmbh Vapor Chamber
JP5801334B2 (ja) * 2013-03-08 2015-10-28 株式会社日立ハイテクノロジーズ 核酸増幅装置及びそれを用いた核酸検査装置
US20140338860A1 (en) * 2013-05-17 2014-11-20 Anthony Walter Demsia Combination Vessel Holder for Heat Block Incubation
JP6655539B2 (ja) 2013-09-16 2020-02-26 ライフ テクノロジーズ コーポレーション サーモサイクラー熱均一性を提供するための器具、システム、及び方法
GB201319759D0 (en) 2013-11-08 2013-12-25 Thomsen Lars Device and method for heating a fluid chamber
CN103642683A (zh) * 2013-12-19 2014-03-19 江苏金太生命科技有限公司 同时进行多项pcr的pcr仪
GB201401584D0 (en) * 2014-01-29 2014-03-19 Bg Res Ltd Intelligent detection of biological entities
US10471431B2 (en) 2014-02-18 2019-11-12 Life Technologies Corporation Apparatuses, systems and methods for providing scalable thermal cyclers and isolating thermoelectric devices
DE102014018308A1 (de) * 2014-12-10 2016-06-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Temperierkörper für eine Multiwell-Platte und Verfahren und Vorrichtung zum Einfrieren und/oder Auftauen von biologischen Proben
EP3822361A1 (de) 2015-02-20 2021-05-19 Takara Bio USA, Inc. Verfahren zur schnellen präzisen abgabe, visualisierung und analyse von einzelzellen
SG10201700260XA (en) * 2016-06-10 2018-01-30 Star Array Pte Ltd Rapid thermal cycling for sample analyses and processing
CA3020629A1 (en) 2016-07-21 2018-01-25 Takara Bio Usa, Inc. Multi-z imaging and dispensing with multi-well devices
CN106244447A (zh) * 2016-07-29 2016-12-21 车团结 一种聚合酶链式反应仪及其温度控制系统
CN106047688A (zh) * 2016-07-29 2016-10-26 车团结 一种聚合酶链式反应仪及其温度控制系统
US10427162B2 (en) 2016-12-21 2019-10-01 Quandx Inc. Systems and methods for molecular diagnostics
GB2576304B (en) * 2018-07-26 2020-09-09 Evonetix Ltd Accessing data storage provided using double-stranded nucleic acid molecules
EP3941634A4 (de) * 2019-03-18 2023-01-11 Seegene, Inc. Thermocycler mit probenhalteranordnung
CN112604616A (zh) * 2020-11-17 2021-04-06 华东师范大学 一种连续合成微化学反应与在线监测的自动控制系统和方法

Family Cites Families (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3063893A (en) * 1959-11-24 1962-11-13 Kenya Pyrethrum Board Stabilized pyrethrum compositions
US3260413A (en) * 1964-08-31 1966-07-12 Scientific Industries Automatic chemical analyzer
US3036893A (en) 1960-03-14 1962-05-29 Scientific Industries Automatic chemical analyzer
US3216804A (en) * 1962-01-31 1965-11-09 Scientific Industries Automatic chemical analyzer and sample dispenser
US3128239A (en) * 1962-06-29 1964-04-07 Robert Z Page Biological detection equipment
US3261668A (en) * 1962-08-14 1966-07-19 Scientific Industries Chemical analyzer tape
US3271112A (en) * 1962-12-12 1966-09-06 Donald L Williams Apparatus for laboratory testing
US3368872A (en) * 1964-08-31 1968-02-13 Scientific Industries Automatic chemical analyzer
US3581072A (en) * 1968-03-28 1971-05-25 Frederick Nymeyer Auction market computation system
US3573747A (en) * 1969-02-24 1971-04-06 Institutional Networks Corp Instinet communication system for effectuating the sale or exchange of fungible properties between subscribers
US4412287A (en) * 1975-05-29 1983-10-25 Braddock Iii Walter D Automated stock exchange
DE3265723D1 (en) 1982-03-18 1985-10-03 Turgut Koruk Quantized (digital) heating plate
US4903201A (en) * 1983-11-03 1990-02-20 World Energy Exchange Corporation Automated futures trading exchange
US4677552A (en) * 1984-10-05 1987-06-30 Sibley Jr H C International commodity trade exchange
US4674044A (en) * 1985-01-30 1987-06-16 Merrill Lynch, Pierce, Fenner & Smith, Inc. Automated securities trading system
US5656493A (en) * 1985-03-28 1997-08-12 The Perkin-Elmer Corporation System for automated performance of the polymerase chain reaction
US5038852A (en) * 1986-02-25 1991-08-13 Cetus Corporation Apparatus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
US5333675C1 (en) * 1986-02-25 2001-05-01 Perkin Elmer Corp Apparatus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
JPH0743748B2 (ja) * 1986-02-17 1995-05-15 株式会社オークネット 競売情報伝送処理システムの情報伝送処理方法
CA1339653C (en) * 1986-02-25 1998-02-03 Larry J. Johnson Appartus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
US4864516A (en) * 1986-03-10 1989-09-05 International Business Machines Corporation Method for implementing an on-line presentation in an information processing system
US4799156A (en) * 1986-10-01 1989-01-17 Strategic Processing Corporation Interactive market management system
US4823265A (en) * 1987-05-11 1989-04-18 Nelson George E Renewable option accounting and marketing system
EP0342155A3 (de) * 1988-05-13 1990-06-27 Agrogen-Stiftung Laboratoriumsgerät zum wahlweisen Heizen und Kühlen
GB8814962D0 (en) * 1988-06-23 1988-07-27 Lep Scient Ltd Biochemical reaction machine
US4865986A (en) * 1988-10-06 1989-09-12 Coy Corporation Temperature control apparatus
DE8814398U1 (de) * 1988-11-17 1989-02-16 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Ev, 3400 Goettingen, De
US4950608A (en) * 1989-04-25 1990-08-21 Scinics Co., Ltd. Temperature regulating container
US5504007A (en) 1989-05-19 1996-04-02 Becton, Dickinson And Company Rapid thermal cycle apparatus
US5168446A (en) * 1989-05-23 1992-12-01 Telerate Systems Incorporated System for conducting and processing spot commodity transactions
US5077665A (en) * 1989-05-25 1991-12-31 Reuters Limited Distributed matching system
US5136501A (en) * 1989-05-26 1992-08-04 Reuters Limited Anonymous matching system
US5101353A (en) * 1989-05-31 1992-03-31 Lattice Investments, Inc. Automated system for providing liquidity to securities markets
US5297031A (en) * 1990-03-06 1994-03-22 Chicago Board Of Trade Method and apparatus for order management by market brokers
US5205200A (en) * 1990-07-26 1993-04-27 Wright John J Hydraulic booster device for linear actuator
DE4029004C1 (de) * 1990-09-13 1992-04-02 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Ev, 3400 Goettingen, De
US5063507A (en) * 1990-09-14 1991-11-05 Plains Cotton Cooperative Association Goods database employing electronic title or documentary-type title
US5243515A (en) * 1990-10-30 1993-09-07 Lee Wayne M Secure teleprocessing bidding system
US5258908A (en) * 1990-11-02 1993-11-02 Foreign Exchange Transaction Services, Inc. Detection and prevention of duplicate trading transactions over a communications network
US5305200A (en) * 1990-11-02 1994-04-19 Foreign Exchange Transaction Services, Inc. Financial exchange system having automated recovery/rollback of unacknowledged orders
US5280422A (en) * 1990-11-05 1994-01-18 Watlow/Winona, Inc. Method and apparatus for calibrating and controlling multiple heaters
KR100236506B1 (ko) * 1990-11-29 2000-01-15 퍼킨-엘머시터스인스트루먼츠 폴리머라제 연쇄 반응 수행 장치
GB9027249D0 (en) * 1990-12-17 1991-02-06 Reuters Ltd Offer matching system
US5297032A (en) * 1991-02-01 1994-03-22 Merrill Lynch, Pierce, Fenner & Smith Incorporated Securities trading workstation
CA2059078C (en) * 1991-02-27 1995-10-03 Alexander G. Fraser Mediation of transactions by a communications system
US5994056A (en) * 1991-05-02 1999-11-30 Roche Molecular Systems, Inc. Homogeneous methods for nucleic acid amplification and detection
DE69131251T2 (de) * 1991-08-15 1999-12-09 Ibm System und Verfahren zur Verarbeitung von gespeicherte Bilder darstellenden Daten
US5426281A (en) * 1991-08-22 1995-06-20 Abecassis; Max Transaction protection system
FI915731A0 (fi) 1991-12-05 1991-12-05 Derek Henry Potter Foerfarande och anordning foer reglering av temperaturen i ett flertal prov.
US5375055A (en) * 1992-02-03 1994-12-20 Foreign Exchange Transaction Services, Inc. Credit management for electronic brokerage system
DE4234086A1 (de) * 1992-02-05 1993-08-12 Diagen Inst Molekularbio Verfahren zur bestimmung von in vitro amplifizierten nukleinsaeuresequenzen
US5325297A (en) * 1992-06-25 1994-06-28 System Of Multiple-Colored Images For Internationally Listed Estates, Inc. Computer implemented method and system for storing and retrieving textual data and compressed image data
US5598557A (en) * 1992-09-22 1997-01-28 Caere Corporation Apparatus and method for retrieving and grouping images representing text files based on the relevance of key words extracted from a selected file to the text files
CA2100134C (en) * 1992-09-29 1999-06-22 Raymond Otto Colbert Secure credit/debit card authorization
US5601141A (en) * 1992-10-13 1997-02-11 Intelligent Automation Systems, Inc. High throughput thermal cycler
US5794219A (en) * 1996-02-20 1998-08-11 Health Hero Network, Inc. Method of conducting an on-line auction with bid pooling
US5441576A (en) 1993-02-01 1995-08-15 Bierschenk; James L. Thermoelectric cooler
JPH0728689A (ja) * 1993-07-09 1995-01-31 Hitachi Ltd 情報処理装置
US5377258A (en) * 1993-08-30 1994-12-27 National Medical Research Council Method and apparatus for an automated and interactive behavioral guidance system
US5525300A (en) * 1993-10-20 1996-06-11 Stratagene Thermal cycler including a temperature gradient block
US5394324A (en) * 1993-12-08 1995-02-28 Xerox Corporation Auction-based control system for energy resource management in a building
US5694546A (en) * 1994-05-31 1997-12-02 Reisman; Richard R. System for automatic unattended electronic information transport between a server and a client by a vendor provided transport software with a manifest list
DE4435107C1 (de) * 1994-09-30 1996-04-04 Biometra Biomedizinische Analy Miniaturisierter Fluß-Thermocycler
US5717989A (en) * 1994-10-13 1998-02-10 Full Service Trade System Ltd. Full service trade system
US5715314A (en) * 1994-10-24 1998-02-03 Open Market, Inc. Network sales system
JPH08161412A (ja) * 1994-12-07 1996-06-21 Oak Net:Kk オークション情報送信処理システム
US5710889A (en) * 1995-02-22 1998-01-20 Citibank, N.A. Interface device for electronically integrating global financial services
US5553145A (en) * 1995-03-21 1996-09-03 Micali; Silvia Simultaneous electronic transactions with visible trusted parties
US5845265A (en) * 1995-04-26 1998-12-01 Mercexchange, L.L.C. Consignment nodes
US7937312B1 (en) * 1995-04-26 2011-05-03 Ebay Inc. Facilitating electronic commerce transactions through binding offers
US5689652A (en) * 1995-04-27 1997-11-18 Optimark Technologies, Inc. Crossing network utilizing optimal mutual satisfaction density profile
US5845266A (en) * 1995-12-12 1998-12-01 Optimark Technologies, Inc. Crossing network utilizing satisfaction density profile with price discovery features
US5640569A (en) * 1995-04-28 1997-06-17 Sun Microsystems, Inc. Diverse goods arbitration system and method for allocating resources in a distributed computer system
US5657389A (en) * 1995-05-08 1997-08-12 Image Data, Llc Positive identification system and method
US5706457A (en) * 1995-06-07 1998-01-06 Hughes Electronics Image display and archiving system and method
US5664115A (en) * 1995-06-07 1997-09-02 Fraser; Richard Interactive computer system to match buyers and sellers of real estate, businesses and other property using the internet
US5826244A (en) * 1995-08-23 1998-10-20 Xerox Corporation Method and system for providing a document service over a computer network using an automated brokered auction
US5873069A (en) * 1995-10-13 1999-02-16 American Tv & Appliance Of Madison, Inc. System and method for automatic updating and display of retail prices
US5715402A (en) * 1995-11-09 1998-02-03 Spot Metals Online Method and system for matching sellers and buyers of spot metals
US5771291A (en) * 1995-12-11 1998-06-23 Newton; Farrell User identification and authentication system using ultra long identification keys and ultra large databases of identification keys for secure remote terminal access to a host computer
US5884056A (en) * 1995-12-28 1999-03-16 International Business Machines Corporation Method and system for video browsing on the world wide web
US5905975A (en) * 1996-01-04 1999-05-18 Ausubel; Lawrence M. Computer implemented methods and apparatus for auctions
US6055518A (en) * 1996-02-01 2000-04-25 At&T Corporation Secure auction systems
US5926794A (en) * 1996-03-06 1999-07-20 Alza Corporation Visual rating system and method
US5850442A (en) * 1996-03-26 1998-12-15 Entegrity Solutions Corporation Secure world wide electronic commerce over an open network
US6243691B1 (en) * 1996-03-29 2001-06-05 Onsale, Inc. Method and system for processing and transmitting electronic auction information
US5835896A (en) * 1996-03-29 1998-11-10 Onsale, Inc. Method and system for processing and transmitting electronic auction information
US6825047B1 (en) * 1996-04-03 2004-11-30 Applera Corporation Device and method for multiple analyte detection
US5799285A (en) * 1996-06-07 1998-08-25 Klingman; Edwin E. Secure system for electronic selling
US5890138A (en) * 1996-08-26 1999-03-30 Bid.Com International Inc. Computer auction system
US5802856A (en) * 1996-07-31 1998-09-08 Stanford University Multizone bake/chill thermal cycling module
US6047264A (en) * 1996-08-08 2000-04-04 Onsale, Inc. Method for supplying automatic status updates using electronic mail
JP3407561B2 (ja) * 1996-09-04 2003-05-19 株式会社日立製作所 競り装置およびその方法
US6192407B1 (en) * 1996-10-24 2001-02-20 Tumbleweed Communications Corp. Private, trackable URLs for directed document delivery
US6119137A (en) * 1997-01-30 2000-09-12 Tumbleweed Communications Corp. Distributed dynamic document conversion server
US5790790A (en) * 1996-10-24 1998-08-04 Tumbleweed Software Corporation Electronic document delivery system in which notification of said electronic document is sent to a recipient thereof
DE29623597U1 (de) * 1996-11-08 1999-01-07 Eppendorf Geraetebau Netheler Temperierblock mit Temperiereinrichtungen
DE19646115C2 (de) * 1996-11-08 2000-05-25 Eppendorf Geraetebau Netheler Verwendung von Temperiereinrichtungen zur Temperierung eines Temperierblockes
US5905974A (en) * 1996-12-13 1999-05-18 Cantor Fitzgerald Securities Automated auction protocol processor
US6035402A (en) * 1996-12-20 2000-03-07 Gte Cybertrust Solutions Incorporated Virtual certificate authority
US5924072A (en) * 1997-01-06 1999-07-13 Electronic Data Systems Corporation Knowledge management system and method
CA2287379C (en) * 1997-01-10 2005-10-04 Silicon Gaming-Nevada Method and apparatus for providing authenticated, secure on-line communication between remote locations
US5872848A (en) * 1997-02-18 1999-02-16 Arcanvs Method and apparatus for witnessed authentication of electronic documents
US6047274A (en) * 1997-02-24 2000-04-04 Geophonic Networks, Inc. Bidding for energy supply
US5922074A (en) * 1997-02-28 1999-07-13 Xcert Software, Inc. Method of and apparatus for providing secure distributed directory services and public key infrastructure
JP3357812B2 (ja) * 1997-03-18 2002-12-16 株式会社東芝 相互与信サーバ装置及び分散相互与信システム
US5803500A (en) * 1997-03-27 1998-09-08 Mossberg; Bjoern E. F. Method and kit for conducting an auction
ATE211025T1 (de) 1997-03-28 2002-01-15 Pe Corp Ny Thermo-zyklus-vorrichtung zur ausführung der polymerase-kettenreaktion
US6061448A (en) * 1997-04-01 2000-05-09 Tumbleweed Communications Corp. Method and system for dynamic server document encryption
US5974412A (en) * 1997-09-24 1999-10-26 Sapient Health Network Intelligent query system for automatically indexing information in a database and automatically categorizing users
US6106784A (en) * 1997-09-26 2000-08-22 Applied Chemical & Engineering Systems, Inc. Thawing station
US6558947B1 (en) * 1997-09-26 2003-05-06 Applied Chemical & Engineering Systems, Inc. Thermal cycler
AU9786798A (en) * 1997-10-10 1999-05-03 Biosepra Inc. Aligned multiwell multiplate stack and method for processing biological/chemicalsamples using the same
US5991739A (en) * 1997-11-24 1999-11-23 Food.Com Internet online order method and apparatus
US6093370A (en) * 1998-06-11 2000-07-25 Hitachi, Ltd. Polynucleotide separation method and apparatus therefor
US6058417A (en) * 1998-10-23 2000-05-02 Ebay Inc. Information presentation and management in an online trading environment
US6178408B1 (en) * 1999-07-14 2001-01-23 Recot, Inc. Method of redeeming collectible points
US6633785B1 (en) * 1999-08-31 2003-10-14 Kabushiki Kaisha Toshiba Thermal cycler and DNA amplifier method
DE29917313U1 (de) 1999-10-01 2001-02-15 Mwg Biotech Ag Vorrichtung zur Durchführung chemischer oder biologischer Reaktionen
US7437325B2 (en) * 2002-03-05 2008-10-14 Pablo Llc System and method for performing automatic spread trading
GB2366628B (en) * 2000-09-11 2002-09-18 Bookham Technology Plc Method and apparatus for temperature control
US7727479B2 (en) * 2000-09-29 2010-06-01 Applied Biosystems, Llc Device for the carrying out of chemical or biological reactions
US7340429B2 (en) * 2000-10-23 2008-03-04 Ebay Inc. Method and system to enable a fixed price purchase within a online auction environment
US7813995B2 (en) * 2002-03-05 2010-10-12 Trading Technologies International, Inc. System and method for estimating a spread value
DE10221763A1 (de) 2002-05-15 2003-12-04 Eppendorf Ag Thermocycler mit in Cyclen angesteuertem Temperierblock
US7523064B2 (en) * 2002-11-13 2009-04-21 Trading Technologies International, Inc. System and method for facilitating trading of multiple tradeable objects in an electronic trading environment
US8676383B2 (en) 2002-12-23 2014-03-18 Applied Biosystems, Llc Device for carrying out chemical or biological reactions
US20040241048A1 (en) * 2003-05-30 2004-12-02 Applera Corporation Thermal cycling apparatus and method for providing thermal uniformity
US7122799B2 (en) 2003-12-18 2006-10-17 Palo Alto Research Center Incorporated LED or laser enabled real-time PCR system and spectrophotometer
US7398229B2 (en) * 2004-06-04 2008-07-08 Isis Innovation Limited System and method for conducting electronic commerce
WO2006002403A1 (en) 2004-06-23 2006-01-05 Applera Corporation Thermal cycler
SG184539A1 (en) 2010-04-09 2012-11-29 Life Technologies Corp Improved thermal uniformity for thermal cycler instrumentation using dynamic control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0124930A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515944A (ja) * 2003-05-30 2007-06-21 アプレラ コーポレイション 温度均一性を提供するための熱循環装置および方法
US8859271B2 (en) 2003-05-30 2014-10-14 Applied Biosystems, Llc Thermal cycling apparatus and method for providing thermal uniformity
US10010887B2 (en) 2003-05-30 2018-07-03 Applied Biosystems, Llc Thermal cycling apparatus and method for providing thermal uniformity
EP2898952A1 (de) 2006-09-06 2015-07-29 Life Technologies Corporation Verfahren zur Durchführung chemischer oder biologischer Reaktionen

Also Published As

Publication number Publication date
WO2001024930A1 (de) 2001-04-12
AU774199B2 (en) 2004-06-17
NO20021340L (no) 2002-03-18
AU7660500A (en) 2001-05-10
US8389288B2 (en) 2013-03-05
US7611674B2 (en) 2009-11-03
ATE245487T1 (de) 2003-08-15
US20070140926A1 (en) 2007-06-21
US20100120100A1 (en) 2010-05-13
KR100696138B1 (ko) 2007-03-20
DE29917313U1 (de) 2001-02-15
JP2003511221A (ja) 2003-03-25
US9914125B2 (en) 2018-03-13
US20140030170A1 (en) 2014-01-30
KR20020038765A (ko) 2002-05-23
DE50003023D1 (de) 2003-08-28
EP1216098B1 (de) 2003-07-23
NO20021340D0 (no) 2002-03-18
US20120264206A1 (en) 2012-10-18
US8721972B2 (en) 2014-05-13
US20070110634A1 (en) 2007-05-17
US20100120099A1 (en) 2010-05-13

Similar Documents

Publication Publication Date Title
EP1216098B1 (de) Vorrichtung zur durchführung chemischer oder biologischer reaktionen
DE60108482T2 (de) Prozessoptimierungsreaktor mit parallelem durchfluss
EP1022059B1 (de) Miniaturisierter Fluss-Thermocycler
DE19519015C1 (de) Miniaturisierter Mehrkammer-Thermocycler
DE60017148T2 (de) Temperaturreglung für mehrgefäss-reaktionsvorrichtung
WO1999041015A1 (de) Miniaturisierter temperaturzonen flussreaktor
DE60029256T2 (de) Vorrichtung zum schnellen thermischen recycling
US7727479B2 (en) Device for the carrying out of chemical or biological reactions
DE69133579T2 (de) Automatisierte Polymerasekettenreaktion
EP1426110B1 (de) Laborthermostat, aufweisend einen Temperierblock mit Temperiereinrichtungen, und Verfahren zu dessen Verwendung
EP0642828A1 (de) Reaktionsbehälteranordnung für eine Vorrichtung zur automatischen Durchführung von Tenperaturzyklen
EP1256378A2 (de) Vorrichtung und Verfahren zur paralellen Durchführung von Experimenten
WO1998057739A1 (de) Reaktionsgefässhaltevorrichtung
DE60201257T2 (de) Verfahren und vorrichtung zur kontinuerlichen durchführung einer biologischen, chemischen oder biochemischen reaktion
EP1148948A1 (de) Vorrichtung zum selektiven temperieren einzelner behältnisse
WO2005115624A1 (de) Temperierverfahren und-vorrichtung für die temperaturbehandlung kleiner flüssigkeitsmengen
DE10221763A1 (de) Thermocycler mit in Cyclen angesteuertem Temperierblock
DE102005044021A1 (de) Labortemperiereinrichtung mit Oberseite
EP1214969A1 (de) Labortemperiereinrichtung zur Temperierung von Reaktionsproben
WO2022100854A1 (de) Temperiervorrichtung und verfahren zum heizen und kühlen
DE20221055U1 (de) Thermocycler mit in Zyklen angesteuertem Temperierblock
EP1228804A2 (de) Vorrichtung zur Temperierung von Reaktionsproben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020306

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20030723

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030723

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030723

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030723

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030723

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50003023

Country of ref document: DE

Date of ref document: 20030828

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030929

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030929

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031023

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031103

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030723

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
BERE Be: lapsed

Owner name: *MWG-BIOTECH A.G.

Effective date: 20030930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090514 AND 20090520

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20100121 AND 20100127

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190815

Year of fee payment: 20

Ref country code: DE

Payment date: 20190917

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190926

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50003023

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200928