EP1340243A1 - Compact, electrodeless, low pressure gas discharge lamp having an extended shelf life - Google Patents

Compact, electrodeless, low pressure gas discharge lamp having an extended shelf life

Info

Publication number
EP1340243A1
EP1340243A1 EP01994592A EP01994592A EP1340243A1 EP 1340243 A1 EP1340243 A1 EP 1340243A1 EP 01994592 A EP01994592 A EP 01994592A EP 01994592 A EP01994592 A EP 01994592A EP 1340243 A1 EP1340243 A1 EP 1340243A1
Authority
EP
European Patent Office
Prior art keywords
gas discharge
low
discharge lamp
compact
pressure gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01994592A
Other languages
German (de)
French (fr)
Other versions
EP1340243B1 (en
Inventor
Walter Tews
Gundula Roth
Jens Klimke
Conrad Schimke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROTH, GUNDULA
TEWS, WALTER
Original Assignee
Raylux GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raylux GmbH filed Critical Raylux GmbH
Publication of EP1340243A1 publication Critical patent/EP1340243A1/en
Application granted granted Critical
Publication of EP1340243B1 publication Critical patent/EP1340243B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/048Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using an excitation coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/32Special longitudinal shape, e.g. for advertising purposes
    • H01J61/327"Compact"-lamps, i.e. lamps having a folded discharge path

Definitions

  • the invention relates to a compact, electrodeless, low-pressure gas discharge lamp with a long service life, high luminous efficacy and high luminance.
  • the field of application of the invention is light sources for general and municipal lighting in indoor and outdoor areas, in medicine and cosmetics.
  • low-pressure gas discharge lamps produce visible light for lighting purposes when the excited gas is discharged with the aid of suitable phosphors.
  • Compact, low-pressure mercury vapor discharge lamps consisting of a vacuum-tight glass bulb filled with mercury and noble gas, have a fluorescent layer on the inside that shows the short-wave mercury resonance radiation with energies of about 6.71 eV and 4.88 eV in visible Converts light.
  • the useful life is limited by the influence of various factors. So far, the useful life of conventional compact mercury vapor low-pressure discharge lamps has been around 8000 hours.
  • This disadvantage due to the limited useful life of the lamp is due to the fact that electrodes in the form of single, double or triple incandescent filaments are used in the known mercury vapor low-pressure discharge lamps and are subject to a constant aging process.
  • the emitter material applied to these electrodes for effective electron emission is removed from the surface by the influence of the gas discharge and thus reduces the efficiency of the electron emission.
  • the efficiency of the light emission of the mercury vapor low-pressure discharge lamps is constantly decreasing. When all of the emitter material has been consumed, the voltage required to ignite the low-pressure mercury discharge lamps rises so much that the gas discharge in the low-pressure mercury discharge lamp ceases can be ignited.
  • the emitter material removed during this time partially deposits on the inner wall of the low-pressure gas discharge lamp and causes the phosphor layer, which covers the inner wall of the lamp, to turn gray near the electrodes.
  • the electrodes are particularly damaged when the low-pressure mercury discharge lamps are switched on.
  • Another disadvantage of these known low-pressure mercury vapor discharge lamps is that the complex interaction of the removed electrode material and released gases with the effect of short-wave UV radiation or the recombination of mercury ions with electrons on the phosphor surface reduces the emissivity of the phosphor over time the effect decreases particularly strongly, which manifests itself in a considerable decrease in the luminous efficacy or the luminous flux with the lamp burning time and the clear onset of the graying of the entire glass bulb of the discharge vessel of the low-pressure gas discharge lamp.
  • Another effect that limits the useful life of low-pressure mercury discharge lamps is a reaction of the various ingredients in the glass of the discharge vessel with the phosphor coating. These reactions bring about a further decrease in the luminous flux during the lamp life, above all by the graying of the glass of the discharge vessel.
  • low-pressure gas discharge lamps without electrodes have become known, in which electrical energy in the RF range is inductively coupled into the discharge vessel with the aid of a ferrite core, which is ring-shaped in US Pat. No. 3,987,335 and rod-shaped in US Pat. No. 4,010,400.
  • a ferrite core which is ring-shaped in US Pat. No. 3,987,335 and rod-shaped in US Pat. No. 4,010,400.
  • an annular discharge vessel and US 3,987,335 a spherical discharge vessel have been disclosed by US 3,987,334.
  • the Dutch company NV Philips' Gloeilampenfabrieken manufactures the predominantly spherical mercury vapor low-pressure discharge lamp QL ® with a rod-shaped ferrite core.
  • the frequency of the energy coupled into the discharge vessel with the aid of this rod-shaped ferrite core is in a relatively high range, so that measures to avoid electromagnetic losses and to dissipate heat are necessary. Due to its complexity, this lamp system is less suitable for general lighting. For use in general lighting, for example, in US 3,521,120, the compact, also working with a rod-shaped ferrite core electrodeless low-pressure gas discharge lamp Genura ® General Electric Comp. described.
  • the frequency of the energy of this low-pressure gas discharge lamp coupled into the discharge vessel is several megahertz. The generation of energy in this high-frequency range therefore requires a relatively high level of electronic complexity and technically complex measures to avoid electromagnetic losses. The production of this low pressure gas discharge lamp is therefore relatively expensive.
  • DE 29 08 890 C2 specifies SiO 2 coatings with a particle size of less than 100 nm and a surface covering mass between 0.05 mg / cm 2 and 0.7 mg / cm 2 .
  • the low-pressure gas discharge lamp according to US 4,923,425 has comparable coatings with a coating mass greater than 0.7 mg / cm 2 .
  • Protective layers with oxides, which cover the phosphor in low-pressure gas discharge lamps, are described in EP 0638625. The oxides are deposited in such a way that the phosphors together with a organic solvents and an organometallic compound are mixed in a suspension and the organic residues are later burned out.
  • the applications known from the literature relate exclusively to conventional mercury vapor low-pressure discharge lamps.
  • lamps which are derived from a straight or curved rod shape of the discharge vessel and in which the energy required to maintain the electrical discharge is introduced by electrodes which are located on the two rod ends of the discharge vessel.
  • electrodes which are located on the two rod ends of the discharge vessel.
  • the object of the invention is therefore to use suitable technical means to increase the quality parameters such as service life, luminous efficiency and luminance in the compact mercury vapor low-pressure discharge lamp.
  • the compact, electrodeless, low-pressure gas discharge lamp according to the invention with increased service life in particular a low-pressure mercury vapor discharge lamp in a compact design, has a spherical or an annular or a pear-shaped or an ellipsoidal glass bulb as the discharge vessel, on the inner glass surface of which at least one layer containing a phosphor is applied in a known manner ,
  • the side of the glass bulb facing the gas discharge and / or the phosphor-containing layer in the discharge vessel which is exposed to the gas discharge are covered with a chemically largely inert protective layer made of oxide.
  • the protective layer consists of at least one of the oxides Y2O3, Al 2 O 3 , SiO 2 , La 2 O 3 , Sm 2 O 3 , Gd 2 O 3 , MgO, Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Yb 2 O 3 , Lu 2 O 3 , CaO, ZrO 2 , SrO, BaO, and BeO.
  • the protective layer is designed as a continuous coating on the inner glass surface of the discharge vessel and / or on the surface of the phosphor on the inside of the discharge vessel. This layer is suitable for effectively protecting the phosphors introduced in the discharge vessel against reactions with the surrounding medium.
  • the electrical energy is inductively coupled into the discharge vessel of the compact low-pressure discharge lamp an annular, closed ferrite core, which is partly inside the discharge vessel and is provided with a primary winding which is connected to an RF source.
  • a vacuum-tight passage is made in the glass body of the discharge vessel.
  • the primary winding, to which an RF source is connected, is located on the other part of the ring-shaped ferrite core outside the discharge vessel.
  • the part of the ring-shaped ferrite core with the primary winding is arranged in the lamp base.
  • the RF source used to maintain the gas discharge can be integrated according to the invention in the base of the low-pressure gas discharge lamp.
  • the luminescent phosphor layer of the low-pressure gas discharge lamp according to the invention with increased service life, in particular mercury vapor low-pressure discharge lamp in a compact design, contains at least two phosphors which are derived from the chemical compounds - gadolinium-magnesium pentaborate silicate,
  • the phosphors are activated with rare earth ions, in particular with ions of europium, terbium, gadolinium, cerium, dysprosium, samarium and praseodymium, and / or ions of manganese, lead, antimony, tin and bismuth and the alkaline earth metal ions partially substituted by ions of the second subgroup or the rare earth elements Ln can be partially or completely replaced by ions of the third subgroup.
  • the phosphors are used for the compact, electrodeless, low-pressure gas discharge lamp according to the invention with increased service life, in particular a mercury vapor low-pressure discharge lamp in a compact design
  • BSCM cerium-gadolinium-magnesium pentaborate silicate: Mn
  • BAM barium magnesium aluminate: Eu
  • SAPE strontium aluminate: Eu
  • BSOSE barium strontium orthosilicate: Eu
  • CAT cerium magnesium aluminate: Tb
  • LAP lanthanum phosphate: Ce.Tb
  • LAPS lanthanum phosphate silicate: Ce.Tb
  • MgFG magnesium fluorogermanate: Mn (IV),
  • ZSM zinc orthosilicate: Mn, as well
  • BSCG cerium-gadolinium-magnesium pentaborate silicate
  • BSC lanthanum cerium magnesium pentaborate silicate
  • CHP calcium halophosphate: Sb and / or Mn
  • SCP strontium chlorophosphate: Eu and (Ba, Sr, Ca) chlorophosphate: Eu,
  • Strontium fluoroborate Eu, or a combination of these phosphors used.
  • the main influencing factors which can lead to a reduction in the luminous flux with increasing burning time in conventional compact fluorescent lamps are avoided or be significantly reduced.
  • the coating according to the invention with the protective layer effects the isolation of the phosphor-containing layer from the lamp glass, in particular to prevent alkali ions from diffusing into the phosphor and to protect the phosphor from radiation damage and surface reactions with mercury or mercury compounds.
  • This coating is applied by means of a suspension in a manner similar to that which is customary in the prior art for the phosphor-containing coating, and it is suitable for effectively suppressing reactions of the phosphor with the glass body. Furthermore, such a coating contributes to an overall higher luminous efficacy because the wall losses are reduced by reflecting UV radiation on the non-phosphor-containing layer back into the phosphor layer.
  • the compact, electrodeless, low-pressure gas discharge lamp can be used in the interior and exterior of general and municipal lighting, in medicine and in cosmetics.
  • FIG. 1 schematically shows a compact electrodeless low-pressure gas discharge lamp according to the invention with a spherical discharge vessel
  • FIG. 2 shows the view of the gas discharge lamp according to FIG. 1 rotated by 90 degrees
  • FIG. 3 schematically shows a compact electrodeless low-pressure gas discharge lamp according to the invention with an oval, elongated, annular discharge vessel
  • 4 shows the view of the low-pressure gas discharge lamp according to FIG. 3 rotated by 90 degrees
  • Fig. 5 shows a schematic representation of the phosphor and protective coating of the compact, electrodeless, low-pressure gas discharge lamp according to the invention.
  • the embodiments of the low-pressure gas discharge lamp according to the invention shown schematically in FIGS. 1 to 5 show compact, electrodeless mercury vapor low-pressure discharge lamps.
  • the low-pressure gas discharge lamp according to FIGS. 1 and 2 has the base 1 and the socket 2 and is operated with an external RF source. 1 and 2 is which in this embodiment of the light source is predominantly spherical discharge vessel 3 connected to the base 1.
  • the diameter of the discharge vessel 3 is approximately 7 to 20 cm.
  • the discharge vessel has the coldest point 7 required for setting the mercury vapor pressure.
  • the connection of the closed annular ferrite core 4 to the evacuable discharge vessel 3 takes place via a vacuum-tight passage through the discharge vessel 3, the shape of which corresponds to the outer shape of the ferrite core 4.
  • the ferrite core 4 has an outer diameter of 5 to 7 cm with a cross section of at least 2 cm 2 and an inner diameter of 2 to 4 cm.
  • the ferrite core 4, which is divided into two parts for assembly, is located approximately half within the discharge vessel 3 and within the base 1 and is held together by a suitable device.
  • the ferrite core 4 consists of a material which, with an initial permeability of at least 2000, has a saturation flux density of at least 500 mT with low losses in the frequency range from 100 to 500 kHz.
  • the self-heating of the ferrite core 4 is small due to the low core losses.
  • the ferrite core 4 lies partially inside the discharge vessel 3, it is heated by the discharge. Therefore, a MnZn soft ferrite with losses decreasing at higher temperatures and a Curie temperature of at least 200 ° C are preferably used.
  • the primary winding 5 is applied to the part of the ferrite core 4 located outside the discharge vessel 3 in the base 1. It consists of 10 to 20 turns of a strand with heat and radiation resistant insulation.
  • the RF energy required to operate the low-pressure gas discharge lamp is provided by an electronic push-pull circuit which is controlled by a suitable oscillator.
  • the operating frequency is 100 to 500 kHz, preferably 150 to 400 kHz.
  • the primary winding 5 is connected to the RF source via a resonant LC coupling circuit.
  • the 'RF source in conjunction with the coupling circuit ensures reliable operation and ignition of the gas discharge.
  • the inventive use of a push-pull circuit using fast MOSFET transistors enables a high efficiency of this ballast in the specified frequency range.
  • the special shape of the discharge vessel 3 with largely high cross sections results in a very low axial electric field strength with high discharge currents of 3 to 10 A during operation of the low pressure gas discharge lamp.
  • the internal voltage of the gas discharge and thus the secondary voltage of the transformer, which is formed by the ferrite core 4, the primary winding 5 and the gas discharge, are thus very low. For this reason, the core losses have been considerably reduced in comparison with the gas discharge lamp described for example in US 3,500,118.
  • the glass bulb of the discharge vessel 3 is filled with a gas mixture of mercury and a noble gas, for example argon, krypton or a mixture of noble gases, with a filling pressure of 1 ⁇ p ⁇ 4 mbar.
  • the gas discharge mainly generates UV radiation with energies of 6.71 eV and 4.88 eV. The ratio of the generated UV radiation energies depends on the exact dimensions of the discharge vessel 3, the discharge current and the mercury vapor pressure.
  • FIGS. 3 and 4 a further embodiment of the mercury vapor low-pressure discharge lamp according to the invention with the base 1 and the socket 2 is shown schematically.
  • the gas discharge lamp is operated with an external RF source.
  • the predominantly oval discharge vessel 3 is connected to the base 1 in this embodiment of the light source.
  • the largest diameter of the discharge vessel 3 is 7 to 20 cm.
  • the discharge vessel has the coldest point 7 required for setting the mercury vapor pressure.
  • the almost circular cross section of the discharge vessel 3 has a diameter of 2 to 5 cm.
  • the embodiment of the compact electrodeless mercury vapor low-pressure discharge lamp according to the invention according to FIGS. 3 and 4 with the layer 6, for example made of the phosphors BSCT and YOX.Eu, on the inside of the glass bulb of the discharge vessel 3 produces with a system output of 42.1 W a warm white light color and a luminous flux of approx. 3397 Im. 1 to 4 has the two different, special protective layers 7 and 8, of which the protective layer 8 covers the phosphor 6 on the side facing the discharge and the protective layer 7 between the layer of the phosphor 6 and the inside of the glass bulb of the discharge vessel 3 is applied.
  • the protective layer 8 which covers the phosphor 6, is deposited from the gas phase by means of CVD (chemical vapor deposition) using a suitable organometallic precursor compound which is completely thermally below the softening temperature of the glass of the discharge vessel 3
  • a suitable organometallic precursor compound which is completely thermally below the softening temperature of the glass of the discharge vessel 3
  • suitable precursor materials are alkyl, alkoxy or acetylacetonate compounds of the corresponding metal.
  • Compounds R x (OR ') 3 - x Al serve as starting materials for aluminum oxide coatings.
  • x Si (with x: 0-3 and R or R 'as lower alkyl groups such as -CH 3 , -C 2 H 5 , -C 3 H 7 and -CH 9 ).
  • R x (OR ') compounds of the type R x (OR ') are analogous to this.
  • x Si (with x: 0-4 and R or R 'as lower alkyl groups such as -CH 3 , -C 2 H 5 , -C 3 H 7 , -C 4 H 9 and or -C 5 H 11 ) are suitable.
  • the material for the protective layers 7 and 8 is transparent and largely chemically inert for the wavelength range of the mercury excitation and consists of sufficiently small particles which ensure a continuous, dense and adhesive coating.
  • SiO 2 shows complete transmission in the UV range.
  • ZrO 2 weakens approx. 5% of the excitation wavelength of 254 nm. Below 200 nm the transmittance is reduced to 20 percent.
  • V 2 O 5 , Nb 2 O 5 and Y 2 0 3 weaken approx. 15% of the excitation wavelength 254 nm.
  • Y 2 O 3 weakens up to 70% of the radiation below 200 nm.
  • SiO 2 shows interactions with the mercury due to its negative charge behavior, which makes it appear unsuitable as a protective layer material for direct contact with the mercury discharge.
  • the AI 2 O 3 is due to its good availability and due to its property also in comparison to the HfO 2 the most suitable material for the production of the protective layers, especially since aluminum oxide is often also used as a suspension additive to increase the reflectivity.
  • the combination of protective layer 7 and protective layer 8 according to the invention increases the long-term durability of the compact, electrodeless, low-pressure gas discharge lamp.
  • the quality-reducing influences of the interaction processes between the glass of the discharge vessel 3 and the phosphor layer 6 in the case of the low-pressure gas discharge lamp are greatly limited.
  • the compact, electrodeless, low-pressure gas discharge lamps according to the invention with a predominantly spherical discharge vessel 3 are produced.
  • the discharge vessel 3 of the low-pressure gas discharge lamps is first slurried with a suspension of 4 ml of Aerosil Dispersion K330 (Degussa AG), 40 ml of 5% polyethylene oxide solution, 40 ml of deionized water, 2 ml of Arkopal and 0.3 ml of Dispex, dried in a warm air stream and burned out at 550 ° C. This creates the continuous protective layer 7 of approximately 0.15 mg / cm 2 covering mass.
  • the phosphor layer 6 is then passed through by means of a suspension of 100 g of the phosphor mixture in question in 70 ml of deionized water, 0.5 ml of Dispex, 80 ml of 5% polyethylene oxide solution, 2.5 ml of Arkopal and 35 ml of 10% Alon-C solution Slurrying the previously coated discharge vessel 3 of the gas discharge lamp. After drying, the discharge tubes 3 are burned out in an air stream at 550 ° C. With a viscosity of the suspension of 1.5 dPas, a covering mass of the burned-out discharge vessels 3 of approximately 4.5 mg cm 2 is achieved.
  • the electrical and lighting data listed in Tab. 1 are achieved.
  • the phosphor layer 6 is then passed through by means of a suspension of 100 g of the phosphor mixture in question in 70 ml of deionized water, 0.5 ml of Dispex, 80 ml of 5% polyethylene oxide solution, 2.5 ml of Arkopal and 35 ml of 10% Alon-C solution Slurry the previously coated glass bulb of the discharge vessel 3 produced. After drying, the discharge tubes are burned out in an air stream at 550 ° C. With a viscosity of the suspension of 1.5 dPas, a covering mass of the burned-out discharge vessels 3 of approximately 4.5 mg cm 2 is achieved.
  • the second protective layer 8 is obtained by introducing a carrier gas mixture of nitrogen and oxygen into aluminum isopropoxide at approximately 140 ° C. and subsequent thermal decomposition of the aluminum isopropoxide vapor when the loaded carrier gas is introduced into a glass bulb of the discharge vessel 3 heated to 450 ° C.
  • the compact electrodeless low-pressure gas discharge lamps with the numbers 1 to 9 in table 2 work with a system power of approx. 42 W and the low-pressure gas discharge lamps with the numbers 10 and 11 with a system power of approx. 85 W. ,

Abstract

The invention relates to a compact, electrodeless, low pressure gas discharge lamp which is characterised by a long shelf life and high light efficiency and light density. The inventive gas discharge lamp comprises a ball-shaped, ring-shaped, pear-shaped or ellipsoidal glass body which is used as a gas discharge receptacle, on the inner gas surface of which a layer containing at least two luminous substances is applied. The side of the glass bulb facing the gas discharge and/or the layer containing luminous matter and exposed to the gas discharge in the discharge receptacle are coated with a chemically, largely inert protective layer consisting of an oxide. The electrical energy is introduced into the discharge receptacle in an inductive manner using a ring-shaped closed ferrite core, preferably MnZn soft ferrite, which is partially located inside the discharge receptacle and is provided with a primary winding which is connected to an RF source in the frequency region of between 100 kHz and 500 kHz by means of a resonant LC coupling circuit. Part of the ring-shaped ferrite core is introduced into the discharge receptacle by means of a vacuum-tight passage which is arranged in the glass body. The part of the ferrite core, the primary winding and the coupled RF source in the form of an electronic push-pull circuit are arranged in the base of the lamp. The luminous substances used are derived from, for example, the compounds gadolinium-magnesium pentaborate silicate, alkaline earth aluminate, cerium-magnesium aluminate et al., and are activated by ions of rare earth elements and/or manganese, lead, antimony, tin and bismuth. The inventive compact, electrodeless, low pressure gas discharge lamp is used as a light source for general and communal lighting, inside and outside, in the fields of medicine and cosmetics.

Description

Beschreibungdescription
Kompakte elektrodenlose Niederdruck-Gasentladungslampe mit erhöhter LebensdauerCompact, electrodeless, low-pressure gas discharge lamp with increased service life
Die Erfindung betrifft eine kompakte elektrodenlose Niederdruck-Gasentladungslampe mit langer Lebensdauer, hoher Lichtausbeute sowie hoher Leuchtdichte. Das Anwendungsgebiet der Erfindung sind Lichtquellen für die Allgemein- und Kommunalbeleuchtung im Innen- und Außenbereich, in der Medizin und Kosmetik.The invention relates to a compact, electrodeless, low-pressure gas discharge lamp with a long service life, high luminous efficacy and high luminance. The field of application of the invention is light sources for general and municipal lighting in indoor and outdoor areas, in medicine and cosmetics.
Es ist bekannt, daß Niederdruck-Gasentladungslampen bei der Entladung des angeregten Gases unter Mitwirkung von geeigneten Leuchtstoffen sichtbares Licht für Beleuchtungszwecke erzeugen. Besonders verbreitet sind kompakte Quecksilberdampf-Niederdruck-Entladungslampen, bestehend aus einem vakuumdicht hergestellten und mit Quecksilber und Edelgas gefüllten Glaskolben, der auf seiner Innenseite eine Leuchtstoffschicht besitzt, die die kurzwellige Quecksilberresonanzstrahlung mit Energien von etwa 6,71 eV und 4,88 eV in sichtbares Licht umwandelt. Bei den bekannten Quecksilberdampf-Niederdruck-Entladungslampen besteht ein entscheidender Nachteil darin, daß durch Einfluß verschiedener Faktoren die nutzbare Lebensdauer begrenzt ist. Bisher beträgt die nutzbare Lebensdauer herkömmlicher kompakter Quecksilberdampf-Niederdruck-Entladungslampen etwa 8000 Stunden. Dieser Nachteil infolge begrenzt nutzbare Lampenlebensdauer ist dadurch begründet, daß in den bekannten Quecksilberdampf-Niederdruck-Entladungslampen Elektroden in Form von Einfach-, Doppel- oder Dreifachglühwendel eingesetzt werden, die einem ständigen Alterungsprozeß unterliegen. Das zur effektiven Elektronenemission auf diese Elektroden aufgebrachte Emittermaterial wird durch den Einfluß der Gasentladung von der Oberfläche abgetragen und mindert so die Effizienz der Elektronenemission. Die Effizienz der Lichtemission der Quecksilberdampf-Niederdruck-Entladungslampen nimmt dadurch ständig ab. Ist sämtliches Emittermaterial verbraucht, steigt die zum Zünden der Quecksilberdampf-Niederdruck-Entladungslampen notwendige Spannung so stark an, daß die Gasentladung in der Quecksilberdampf-Niederdruck-Entladungslampe nicht mehr gezündet werden kann. Das während dieser Zeit abgetragene Emittermaterial scheidet sich zum Teil auf der Innenwand der Niederdruck-Gasentladungslampe ab und bewirkt, daß die Leuchtstoffschicht, die die Glaskolbeninnenwand der Lampe bedeckt, in der Nähe der Elektroden grau wird. Besonders beim Anschal- ten der Quecksilberdampf-Niederdruck-Entladungslampen werden die Elektroden geschädigt.It is known that low-pressure gas discharge lamps produce visible light for lighting purposes when the excited gas is discharged with the aid of suitable phosphors. Compact, low-pressure mercury vapor discharge lamps, consisting of a vacuum-tight glass bulb filled with mercury and noble gas, have a fluorescent layer on the inside that shows the short-wave mercury resonance radiation with energies of about 6.71 eV and 4.88 eV in visible Converts light. In the known mercury vapor low-pressure discharge lamps, there is a decisive disadvantage in that the useful life is limited by the influence of various factors. So far, the useful life of conventional compact mercury vapor low-pressure discharge lamps has been around 8000 hours. This disadvantage due to the limited useful life of the lamp is due to the fact that electrodes in the form of single, double or triple incandescent filaments are used in the known mercury vapor low-pressure discharge lamps and are subject to a constant aging process. The emitter material applied to these electrodes for effective electron emission is removed from the surface by the influence of the gas discharge and thus reduces the efficiency of the electron emission. As a result, the efficiency of the light emission of the mercury vapor low-pressure discharge lamps is constantly decreasing. When all of the emitter material has been consumed, the voltage required to ignite the low-pressure mercury discharge lamps rises so much that the gas discharge in the low-pressure mercury discharge lamp ceases can be ignited. The emitter material removed during this time partially deposits on the inner wall of the low-pressure gas discharge lamp and causes the phosphor layer, which covers the inner wall of the lamp, to turn gray near the electrodes. The electrodes are particularly damaged when the low-pressure mercury discharge lamps are switched on.
Durch Meyer, Chr., Nienhuis, H. in : Discharge lamps, KLUWER TECHNISCHE BOEKEN B. V., Philips Technical Library, Deventer-Antwerpen, 1988, S. 69 ff. ist zudem beschrieben worden, daß sich die Lebensdauer der Quecksilberdampf- Niederdruck-Entladungslampen aufgrund der Schädigung der Elektroden noch stärker verkürzt, wenn diese besonders häufig an- bzw. ausgeschaltet werden. Ein weiterer Nachteil bei diesen bekannten Quecksilberdampf-Niederdruck-Entladungslampen besteht darin, daß durch das komplexe Zusammenwirken von abgetragenem Elektrodenmaterial und freigesetzten Gasen mit der Wirkung kurzwelliger UV-Strahlung bzw. der Rekombination von Quecksilberionen mit Elektronen auf der Leuchtstoffoberfläche das Emissionsvermögen des Leuchtstoffes mit der Zeitdauer der Einwirkung besonders stark zurückgeht, was sich in einem erheblichen Rückgang der Lichtausbeute bzw. des Lichtstromes mit der Lampenbrenndauer und dem deutlichen Einsetzen des Grauwerdens des gesam- ten Glaskolbens des Entladungsgefäßes der Niederdruck-Gasentladungslampe äußert.It has also been described by Meyer, Chr., Nienhuis, H. in: Discharge lamps, KLUWER TECHNISCHE BOEKEN BV, Philips Technical Library, Deventer-Antwerpen, 1988, p. 69 ff. That the service life of the mercury vapor low-pressure discharge lamps shortened even more due to the damage to the electrodes if they are switched on and off particularly frequently. Another disadvantage of these known low-pressure mercury vapor discharge lamps is that the complex interaction of the removed electrode material and released gases with the effect of short-wave UV radiation or the recombination of mercury ions with electrons on the phosphor surface reduces the emissivity of the phosphor over time the effect decreases particularly strongly, which manifests itself in a considerable decrease in the luminous efficacy or the luminous flux with the lamp burning time and the clear onset of the graying of the entire glass bulb of the discharge vessel of the low-pressure gas discharge lamp.
Ein weiterer Effekt, der die nutzbare Lebensdauer von Quecksilberdampf-Niederdruck-Entladungslampen einschränkt, ist eine Reaktion der verschiedenen Inhaltsstoffe im Glas des Entladungsgefäßes mit der Leuchtstoffbeschichtung. Diese Reaktionen bewirken die weitere Abnahme des Lichtstromes während der Lampenlebensdauer vor allem durch ein Grauwerden des Glases des Entladungsgefäßes.Another effect that limits the useful life of low-pressure mercury discharge lamps is a reaction of the various ingredients in the glass of the discharge vessel with the phosphor coating. These reactions bring about a further decrease in the luminous flux during the lamp life, above all by the graying of the glass of the discharge vessel.
Um diesen Effekten entgegenzuwirken, sind Niederdruck-Gasentladungslampen ohne Elektroden bekannt geworden, bei denen mit Hilfe eines Ferritkernes, der in US 3,987,335 ringförmig und in US 4,010,400 stabförmig beschrieben ist, elektrische Energie im RF-Bereich induktiv in das Entladungsgefäß eingekoppelt wird. Beim Einsatz dieser Ferritkerne zur induktiven Einkopplung der Energie sind durch US 3,987,334 ein ringförmiges Entladungsgefäß und durch US 3,987,335 ein kugelförmiges Entladungsgefäß bekanntgemacht worden. Die niederländische Firma N. V. Philips' Gloeilampenfabrieken stellt die vorwiegend kugelförmige Quecksilberdampf-Niederdruck-Entladungslampe QL® mit einem stabförmigen Ferritkern her. Die Frequenz der mit Hilfe dieses stabförmigen Ferritkerns in das Entladungsgefäß eingekoppelten Energie liegt in einem relativ hohen Bereich, so daß Maßnahmen zur Vermeidung von elektromagnetischen Verlusten sowie zur Wärmeabfuhr erforderlich sind. Auf Grund seiner Komplexität ist dieses Lampensystem für die Allgemeinbeleuchtung weniger gut geeignet. Für die Verwendung in der Allgemeinbeleuchtung ist beispielsweise in US 3,521,120 die kompakte, ebenfalls mit einem stabförmigen Ferritkern arbeitende elektrodenlose Niederdruck-Gasentladungslampe Genura® der Firma General Electric Comp. beschrieben. Die Frequenz der in das Entladungsgefäß eingekoppelten Energie dieser Niederdruck-Gasentladungslampe liegt bei mehreren Megahertz. Deshalb erfordert die Erzeugung der Energie in diesem Hochfrequenzbereich einen relativ hohen elektronischen Aufwand sowie technisch aufwendige Maßnahmen zur Vermeidung von elektromagnetischen Verlusten. Die Herstellung dieser Niederdruck-Gasentladungslampe ist deshalb relativ kostenaufwendig. Außerdem ist ihre Lichtausbeute im Vergleich zu bekannten kompakten Leuchtstofflampen geringer. Aus der Literatur ist auch bekannt, daß die Lebensdauer bei konventionellen Quecksilberdampf-Niederdruck-Entladungslampen erhöht wird, wenn oxidische Schichten zwischen Innenseite des Lampenglaskolbens und Leuchtstoffschicht aufgetragen werden. In US 3,337,497 wird das Aufbringen durchsichtiger Schichten aus TiO2 oder ZrO2 auf die Innenseite des Lampenglaskolbens beschrieben. Nach US 3,141 ,990 sind auch Schutzschichten aus AI2O3, TiO2 und SiO2 anwendbar.In order to counteract these effects, low-pressure gas discharge lamps without electrodes have become known, in which electrical energy in the RF range is inductively coupled into the discharge vessel with the aid of a ferrite core, which is ring-shaped in US Pat. No. 3,987,335 and rod-shaped in US Pat. No. 4,010,400. When using these ferrite cores for inductive coupling of the energy, an annular discharge vessel and US 3,987,335 a spherical discharge vessel have been disclosed by US 3,987,334. The Dutch company NV Philips' Gloeilampenfabrieken manufactures the predominantly spherical mercury vapor low-pressure discharge lamp QL ® with a rod-shaped ferrite core. The frequency of the energy coupled into the discharge vessel with the aid of this rod-shaped ferrite core is in a relatively high range, so that measures to avoid electromagnetic losses and to dissipate heat are necessary. Due to its complexity, this lamp system is less suitable for general lighting. For use in general lighting, for example, in US 3,521,120, the compact, also working with a rod-shaped ferrite core electrodeless low-pressure gas discharge lamp Genura ® General Electric Comp. described. The frequency of the energy of this low-pressure gas discharge lamp coupled into the discharge vessel is several megahertz. The generation of energy in this high-frequency range therefore requires a relatively high level of electronic complexity and technically complex measures to avoid electromagnetic losses. The production of this low pressure gas discharge lamp is therefore relatively expensive. In addition, their luminous efficacy is lower compared to known compact fluorescent lamps. It is also known from the literature that the service life of conventional low-pressure mercury discharge lamps is increased if oxide layers are applied between the inside of the lamp glass bulb and the phosphor layer. No. 3,337,497 describes the application of transparent layers of TiO 2 or ZrO 2 to the inside of the lamp glass bulb. According to US 3,141,990, protective layers made of Al 2 O 3 , TiO 2 and SiO 2 can also be used.
In DE 29 08 890 C2 sind SiO2-Beschichtungen mit einer Teilchengröße von kleiner als 100 nm und einer flächenbezogenen Belagsmasse zwischen 0,05 mg/cm2 und 0,7 mg/cm2 genannt. Die Niederdruck-Gasentladungslampe nach US 4,923,425 hat vergleichbare Beschichtungen mit einer Belagsmasse größer 0.7 mg/cm2 zum Gegenstand. Schutzschichten mit Oxiden, die den Leuchtstoff in Niederdruck- Gasentladungslampen bedecken, werden in EP 0638625 beschrieben. Die Abscheidung von Oxiden erfolgt derart, daß die Leuchtstoffe zusammen mit einem organischen Lösungsmittel und einer metallorganischen Verbindung in einer Suspension durchmischt werden und die organischen Rückstände später ausgebrannt werden. Die aus der Literatur bekannten Anwendungen beziehen sich ausschließlich auf Quecksilberdampf-Niederdruck-Entladungslampen herkömmlicher Bauart. Diese sind Lampen, die von einer geraden oder gebogenen Stabform des Entladungsgefäßes abgeleitet sind und bei denen die zur Aufrechterhaltung der elektrischen Entladung notwendigen Energie durch Elektroden eingebracht wird, die sich an den beiden Stabenden des Entladungsgefäßes befinden. Bei diesen Lampen kommt es zu Wechselwirkungen von Elektrodenmaterial mit der Gasfüllung sowie dem Leuchtstoff und mit dem Glaskolben des Entladungsgefäßes, die zur Lebensdauerminderung der Niederdruck-Gasentladungslampe führen. Die Aufgabe der Erfindung ist es deshalb, mit geeigneten technischen Mitteln die Qualitätsparameter wie Lebensdauer, Lichtausbeute und Leuchtdichte bei der kompakten Quecksilberdampf-Niederdruck-Entladungslampe zu erhöhen.DE 29 08 890 C2 specifies SiO 2 coatings with a particle size of less than 100 nm and a surface covering mass between 0.05 mg / cm 2 and 0.7 mg / cm 2 . The low-pressure gas discharge lamp according to US 4,923,425 has comparable coatings with a coating mass greater than 0.7 mg / cm 2 . Protective layers with oxides, which cover the phosphor in low-pressure gas discharge lamps, are described in EP 0638625. The oxides are deposited in such a way that the phosphors together with a organic solvents and an organometallic compound are mixed in a suspension and the organic residues are later burned out. The applications known from the literature relate exclusively to conventional mercury vapor low-pressure discharge lamps. These are lamps which are derived from a straight or curved rod shape of the discharge vessel and in which the energy required to maintain the electrical discharge is introduced by electrodes which are located on the two rod ends of the discharge vessel. With these lamps, there is an interaction of electrode material with the gas filling and the fluorescent material and with the glass bulb of the discharge vessel, which leads to a reduction in the service life of the low-pressure gas discharge lamp. The object of the invention is therefore to use suitable technical means to increase the quality parameters such as service life, luminous efficiency and luminance in the compact mercury vapor low-pressure discharge lamp.
Die erfindungsgemäße kompakte elektrodenlose Niederdruck-Gasentladungslampe mit erhöhter Lebensdauer, insbesondere Quecksilberdampf-Niederdruck- Entladungslampe in kompakter Bauweise, besitzt einen kugelförmigen oder einen ringförmigen oder einen birnenförmigen oder einen ellipsoidalen Glaskolben als Entladungsgefäß, auf dessen innere Glasoberfläche in bekannter Weise mindestens eine leuchtstoffhaltige Schicht aufgebracht ist. Die auf der der Gasentladung zugewandten Seite des Glaskolbens und / oder die der Gasentladung ausgesetzte leuchtstoffhaltige Schicht im Entladungsgefäß sind mit einer chemisch weitgehend inerten Schutzschicht aus Oxid überzogen. Die Schutzschicht besteht aus mindestens einem der Oxide Y2O3, AI2O3, SiO2, La2O3, Sm2O3, Gd2O3, MgO, Dy2O3, Ho2O3, Er2O3, Yb2O3, Lu2O3, CaO, ZrO2, SrO, BaO, und BeO.The compact, electrodeless, low-pressure gas discharge lamp according to the invention with increased service life, in particular a low-pressure mercury vapor discharge lamp in a compact design, has a spherical or an annular or a pear-shaped or an ellipsoidal glass bulb as the discharge vessel, on the inner glass surface of which at least one layer containing a phosphor is applied in a known manner , The side of the glass bulb facing the gas discharge and / or the phosphor-containing layer in the discharge vessel which is exposed to the gas discharge are covered with a chemically largely inert protective layer made of oxide. The protective layer consists of at least one of the oxides Y2O3, Al 2 O 3 , SiO 2 , La 2 O 3 , Sm 2 O 3 , Gd 2 O 3 , MgO, Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Yb 2 O 3 , Lu 2 O 3 , CaO, ZrO 2 , SrO, BaO, and BeO.
Die Schutzschicht ist als ein durchgängiger Überzug auf der inneren Glasoberfläche des Entladungsgefäßes und / oder der Oberfläche des Leuchtstoffes an der Innenseite des Entladungsgefäßes ausgeführt. Diese Schicht ist geeignet, die im Entladungsgefäß eingebrachten Leuchtstoffe wirkungsvoll gegen Reaktionen mit dem umgebenden Medium zu schützen.The protective layer is designed as a continuous coating on the inner glass surface of the discharge vessel and / or on the surface of the phosphor on the inside of the discharge vessel. This layer is suitable for effectively protecting the phosphors introduced in the discharge vessel against reactions with the surrounding medium.
Zur Erhöhung der Lebensdauer erfolgt die Einkopplung der elektrischen Energie in das Entladungsgefäß der kompakten Niederdruck-Entladungslampe induktiv mit einem ringförmigen, geschlossenen Ferritkern, der teilweise innerhalb des Entladungsgefäßes liegt und mit einer Primärwicklung versehen ist, die an eine RF-Quelle angeschlossen ist. Für das Einbringen des einen Teils des ringförmigen Ferritkernes ist in den Glaskörper des Entladungsgefäßes ein vakuumdichter Durchgang eingebracht. Auf dem anderen Teil des ringförmigen Ferritkernes außerhalb des Entladungsgefäßes befindet sich die Primärwicklung, an die eine RF-Quelle angeschlossen ist. Der Teil des ringförmigen Ferritkernes mit der Primärwicklung ist im Lampensockel angeordnet.To increase the service life, the electrical energy is inductively coupled into the discharge vessel of the compact low-pressure discharge lamp an annular, closed ferrite core, which is partly inside the discharge vessel and is provided with a primary winding which is connected to an RF source. For the introduction of one part of the ring-shaped ferrite core, a vacuum-tight passage is made in the glass body of the discharge vessel. The primary winding, to which an RF source is connected, is located on the other part of the ring-shaped ferrite core outside the discharge vessel. The part of the ring-shaped ferrite core with the primary winding is arranged in the lamp base.
Die zur Aufrechterhaltung der Gasentladung verwendete RF-Quelle ist erfindungsgemäß im Sockel der Niederdruck-Gasentladungslampe integrierbar. Die lumineszierende Leuchtstoffschicht der erfindungsgemäßen Niederdruck- Gasentladungslampe mit erhöhter Lebensdauer, insbesondere Quecksilberdampf- Niederdruck-Entladungslampe in kompakter Bauweise, enthält mindestens zwei Leuchtstoffe, die sich aus den chemischen Verbindungen - Gadolinium-Magnesiumpentaboratsilikat,The RF source used to maintain the gas discharge can be integrated according to the invention in the base of the low-pressure gas discharge lamp. The luminescent phosphor layer of the low-pressure gas discharge lamp according to the invention with increased service life, in particular mercury vapor low-pressure discharge lamp in a compact design, contains at least two phosphors which are derived from the chemical compounds - gadolinium-magnesium pentaborate silicate,
Erdalkalialuminat,alkaline earth,
Cerium-Magnesiumaluminat,Cerium-magnesium aluminate,
Ln-Oxid,Ln oxide,
Ln-Phosphat, - Erdalkaliorthophosphat,Ln phosphate, alkaline earth orthophosphate,
ErdalkaliorthosilikatErdalkaliorthosilikat
Erdalkalihalophosphat,Erdalkalihalophosphat,
Zinkorthosilikat,Zinc orthosilicate
Magnesiumfluorogermanat, - Bariumdisilikat,Magnesium fluorogermanate, barium disilicate,
Erdalkalitetraborat, ableiten, wobei die Leuchtstoffe mit Ionen der Seltenen Erden, insbesondere mit Ionen von Europium, Terbium, Gadolinium, Cerium, Dysprosium, Samarium und Praseodymium, und / oder Ionen von Mangan, Blei, Antimon, Zinn und Wismut aktiviert sind und die Erdalkalikationen teilweise durch Ionen der Elemente der 2. Nebengruppe substituiert beziehungsweise die Seltenerdelemente Ln teilweise oder ganz durch Ionen der 3. Nebengruppe ersetzt werden können. Für die erfindungsgemäße kompakte elektrodenlose Niederdruck- Gasentladungslampe mit erhöhter Lebensdauer, insbesondere Quecksilberdampf- Niederdruck-Entladungslampe in kompakter Bauweise, werden die LeuchtstoffeDerive alkaline earth metal, the phosphors are activated with rare earth ions, in particular with ions of europium, terbium, gadolinium, cerium, dysprosium, samarium and praseodymium, and / or ions of manganese, lead, antimony, tin and bismuth and the alkaline earth metal ions partially substituted by ions of the second subgroup or the rare earth elements Ln can be partially or completely replaced by ions of the third subgroup. The phosphors are used for the compact, electrodeless, low-pressure gas discharge lamp according to the invention with increased service life, in particular a mercury vapor low-pressure discharge lamp in a compact design
BSCT = Gadolinium-Magnesiumpentaboratsilikat : Ce,Tb, YOX = Yttriumoxid : Eu,BSCT = gadolinium magnesium pentaborate silicate: Ce, Tb, YOX = yttrium oxide: Eu,
BSCM = Cerium-Gadolinium-Magnesiumpentaboratsilikat : Mn,BSCM = cerium-gadolinium-magnesium pentaborate silicate: Mn,
BAM = Barium-Magnesiumaluminat : Eu,BAM = barium magnesium aluminate: Eu,
SAPE = Strontiumaluminat : EuSAPE = strontium aluminate: Eu
BSOSE = Barium-Strontium-Orthosilikat : Eu, CAT = Cerium-Magnesiumaluminat : Tb,BSOSE = barium strontium orthosilicate: Eu, CAT = cerium magnesium aluminate: Tb,
LAP = Lanthanphosphat : Ce.Tb,LAP = lanthanum phosphate: Ce.Tb,
LAPS = Lanthanphosphatsilikat : Ce.Tb,LAPS = lanthanum phosphate silicate: Ce.Tb,
MgFG = Magnesiumfluorogermanat : Mn(IV),MgFG = magnesium fluorogermanate: Mn (IV),
ZSM = Zinkorthosilikat : Mn, sowieZSM = zinc orthosilicate: Mn, as well
BSCG = Cerium- Gadolinium-Magnesium-Pentaboratsilikat,BSCG = cerium-gadolinium-magnesium pentaborate silicate,
BSC = Lanthan-Cerium-Magnesiumpentaboratsilikat,BSC = lanthanum cerium magnesium pentaborate silicate,
CHP = Calciumhalophosphat : Sb und/oder Mn,CHP = calcium halophosphate: Sb and / or Mn,
SCP = Strontiumchlorophosphat : Eu und (Ba,Sr,Ca)-Chloro- phosphat : Eu,SCP = strontium chlorophosphate: Eu and (Ba, Sr, Ca) chlorophosphate: Eu,
Bariumdisilikat : Pb,Barium disilicate: Pb,
Strontium-Magnesiumaluminat : Ce,Strontium magnesium aluminate: Ce,
Bariumfluorophosphat: Pb,Gd,Barium fluorophosphate: Pb, Gd,
Strontiumhexaborat : Pb, Strontiumtetraborat : Eu,Strontium hexaborate: Pb, strontium tetraborate: Eu,
Strontiumfluoroborat : Eu, oder eine Kombination dieser Leuchtstoffe verwendet.Strontium fluoroborate: Eu, or a combination of these phosphors used.
Durch das Aufbringen einer chemisch weitgehend inerten Schutzschicht auf die der Gasentladung zugewandten Seite des Glaskolbens und / oder auf die der Gasentladung ausgesetzten leuchtstoffhaltigen Schicht wird erfindungsgemäß erreicht, daß die Haupteinflußfaktoren, welche bei herkömmlichen kompakten Leuchtstofflampen zur Verringerung des Lichtstromes mit zunehmender Brenndauer führen können, vermieden bzw. deutlich verringert werden. Die erfindungsgemäße Beschichtung mit der Schutzschicht bewirkt die Isolation der leuchtstoffhaltigen Schicht vom Lampenglas insbesondere zur Verhinderung des Eindiffundierens von Alkaliionen in den Leuchtstoff und den Schutz des Leuchtstoffes vor Strahlungsschädigung und Oberflächenreaktionen mit Queck- silber bzw. Quecksilberverbindungen.By applying a chemically largely inert protective layer on the side of the glass bulb facing the gas discharge and / or on the layer containing fluorescent material exposed to the gas discharge, according to the invention the main influencing factors which can lead to a reduction in the luminous flux with increasing burning time in conventional compact fluorescent lamps are avoided or be significantly reduced. The coating according to the invention with the protective layer effects the isolation of the phosphor-containing layer from the lamp glass, in particular to prevent alkali ions from diffusing into the phosphor and to protect the phosphor from radiation damage and surface reactions with mercury or mercury compounds.
Diese Beschichtung wird mittels einer Suspension in ähnlicher Weise aufgetragen, wie es nach dem Stand der Technik bei der leuchtstoffhaltigen Beschichtung üblich ist, und sie ist geeignet, Reaktionen des Leuchtstoffes mit dem Glaskörper wirksam zu unterdrücken. Weiterhin trägt eine derartige Beschichtung zu einer insgesamt höheren Lichtausbeute bei, weil durch Remission von UV-Strahlung an der nichtleuchtstoffhaltigen Schicht zurück in die Leuchtstoffschicht eine Reduzierung der Wandverluste erzielt wird.This coating is applied by means of a suspension in a manner similar to that which is customary in the prior art for the phosphor-containing coating, and it is suitable for effectively suppressing reactions of the phosphor with the glass body. Furthermore, such a coating contributes to an overall higher luminous efficacy because the wall losses are reduced by reflecting UV radiation on the non-phosphor-containing layer back into the phosphor layer.
Erfindungsgemäß ist die kompakte elektrodenlose Niederdruck- Gasentladungslampe im Innen- und Außenbereich der Allgemein- und Kommunal- beleuchtung, in der Medizin und in der Kosmetik anwendbar.According to the invention, the compact, electrodeless, low-pressure gas discharge lamp can be used in the interior and exterior of general and municipal lighting, in medicine and in cosmetics.
Die Erfindung soll nachstehend näher erläutert werden. In der Zeichnung zeigen gemäßThe invention will be explained in more detail below. According to the drawing
Fig. 1 schematisch eine erfindungsgemäße kompakte elektrodenlose Niederdruck-Gasentladungslampe mit kugelförmigem Entladungsgefäß, Fig. 2 die Ansicht der um 90 Grad gedrehten Gasentladungslampe gemäß Fig. 1 , Fig. 3 schematisch eine erfindungsgemäße kompakte elektrodenlose Niederdruck-Gasentladungslampe mit einem ovalen gestreckten, ringförmigen Entladungsgefäß, Fig. 4 die Ansicht der um 90 Grad gedrehten Niederdruck-Gasentladungslampe gemäß Fig. 3,1 schematically shows a compact electrodeless low-pressure gas discharge lamp according to the invention with a spherical discharge vessel, FIG. 2 shows the view of the gas discharge lamp according to FIG. 1 rotated by 90 degrees, FIG. 3 schematically shows a compact electrodeless low-pressure gas discharge lamp according to the invention with an oval, elongated, annular discharge vessel, 4 shows the view of the low-pressure gas discharge lamp according to FIG. 3 rotated by 90 degrees,
Fig. 5 schematisch Darstellung die Leuchtstoff- und Schutzbeschichtung der erfindungsgemäßen kompakten elektrodenlosen Niederdruck-Gasentladungslampe.Fig. 5 shows a schematic representation of the phosphor and protective coating of the compact, electrodeless, low-pressure gas discharge lamp according to the invention.
Die in Fig. 1 bis Fig. 5 schematisch dargestellten Ausführungsformen der erfindungsgemäßen Niederdruck-Gasentladungslampe zeigen kompakte elektrodenlose Quecksilberdampf-Niederdruck-Entladungslampen. Die Niederdruck- Gasentladungslampe gemäß Fig. 1 und Fig. 2 besitzt den Sockel 1 und die Fassung 2 und ist mit einer externen RF-Quelle betrieben. Gemäß Fig. 1 und 2 ist das in dieser Ausführungsform der Lichtquelle vorwiegend kugelförmige Entladungsgefäß 3 mit dem Sockel 1 verbunden. Der Durchmesser des Entladungsgefäßes 3 beträgt etwa 7 bis 20 cm. Das Entladungsgefäß besitzt die für die Einstellung des Quecksilberdampfdrucks erforderliche kälteste Stelle 7. Die Verbindung des geschlossenen ringförmigen Ferritkerns 4 mit dem evakuierbaren Entladungsgefäß 3 erfolgt über einen vakuumdichten Durchgang durch das Entladungsgefäß 3, dessen Form der äußeren Form des Ferritkerns 4 entspricht. Der Ferritkern 4 hat einen äußeren Durchmesser von 5 bis 7 cm bei einem Querschnitt von zumindest 2 cm2 und einem inneren Durchmesser von 2 bis 4 cm. Der zur Montage zweigeteilte Ferritkern 4 befindet sich je etwa zur Hälfte innerhalb des Entladungsgefäßes 3 und innerhalb des Sockels 1 und wird durch eine geeignete Vorrichtung zusammengehalten. Der Ferritkern 4 besteht aus einem Material, daß bei einer Anfangspermeabilität von mindestens 2000 eine Sättigungsflußdichte mindestens 500 mT bei geringen Verlusten im Frequenz- bereich von 100 bis 500 kHz aufweist. Die Eigenerwärmung des Ferritkerns 4 ist aufgrund der geringen Kernverluste klein. Da der Ferritkern 4 jedoch teilweise innerhalb des Entladungsgefäßes 3 liegt, wird er durch die Entladung erhitzt. Deshalb kommt vorzugsweise ein MnZn-Weichferrit mit bei höheren Temperaturen abnehmenden Verlusten und eine Curie-Temperatur von zumindest 200°C zum Einsatz.The embodiments of the low-pressure gas discharge lamp according to the invention shown schematically in FIGS. 1 to 5 show compact, electrodeless mercury vapor low-pressure discharge lamps. The low-pressure gas discharge lamp according to FIGS. 1 and 2 has the base 1 and the socket 2 and is operated with an external RF source. 1 and 2 is which in this embodiment of the light source is predominantly spherical discharge vessel 3 connected to the base 1. The diameter of the discharge vessel 3 is approximately 7 to 20 cm. The discharge vessel has the coldest point 7 required for setting the mercury vapor pressure. The connection of the closed annular ferrite core 4 to the evacuable discharge vessel 3 takes place via a vacuum-tight passage through the discharge vessel 3, the shape of which corresponds to the outer shape of the ferrite core 4. The ferrite core 4 has an outer diameter of 5 to 7 cm with a cross section of at least 2 cm 2 and an inner diameter of 2 to 4 cm. The ferrite core 4, which is divided into two parts for assembly, is located approximately half within the discharge vessel 3 and within the base 1 and is held together by a suitable device. The ferrite core 4 consists of a material which, with an initial permeability of at least 2000, has a saturation flux density of at least 500 mT with low losses in the frequency range from 100 to 500 kHz. The self-heating of the ferrite core 4 is small due to the low core losses. However, since the ferrite core 4 lies partially inside the discharge vessel 3, it is heated by the discharge. Therefore, a MnZn soft ferrite with losses decreasing at higher temperatures and a Curie temperature of at least 200 ° C are preferably used.
Auf den außerhalb des Entladungsgefäßes 3 im Sockel 1 befindlichen Teil des Ferritkerns 4 wird die Primärwicklung 5 aufgebracht. Sie besteht aus 10 bis 20 Windungen einer Litze mit hitze- und strahlungsbeständiger Isolierung. Die zum Betreiben der Niederdruck-Gasentladungslampe notwendige RF-Energie liefert eine elektronische Gegentaktschaltung, die von einem geeigneten Oszillator gesteuert wird. Die Betriebsfrequenz beträgt 100 bis 500 kHz, vorzugsweise 150 bis 400 kHz. Die Primärwicklung 5 ist über eine resonante LC-Koppelschaltung mit der RF-Quelle verbunden. Die' RF-Quelle gewährleistet in Verbindung mit der Koppelschaltung einen zuverlässigen Betrieb sowie die Zündung der Gasentladung. Die erfindungsgemäße Anwendung einer Gegentaktschaltung unter Verwendung schneller MOSFET-Transistoren ermöglicht einen hohen Wirkungsgrad dieses Vorschaltgerätes im angegebenen Frequenzbereich. Die spezielle Form des Entladungsgefäßes 3 mit weitgehend hohen Querschnitten bewirkt eine sehr geringe axiale elektrische Feldstärke bei hohen Entladungs- strömen von 3 bis 10 A während des Betriebes der Niederdruck- Gasentladungslampe. Damit ist die Brennspannung der Gasentladung und somit die Sekundärspannung des Transformators, der durch den Ferritkern 4, der Primärwicklung 5 und Gasentladung gebildet wird, sehr gering. Deshalb sind die Kernverluste im Vergleich mit der beispielsweise in US 3,500,118 beschriebenen Gasentladungslampe erheblich gesenkt worden.The primary winding 5 is applied to the part of the ferrite core 4 located outside the discharge vessel 3 in the base 1. It consists of 10 to 20 turns of a strand with heat and radiation resistant insulation. The RF energy required to operate the low-pressure gas discharge lamp is provided by an electronic push-pull circuit which is controlled by a suitable oscillator. The operating frequency is 100 to 500 kHz, preferably 150 to 400 kHz. The primary winding 5 is connected to the RF source via a resonant LC coupling circuit. The 'RF source in conjunction with the coupling circuit ensures reliable operation and ignition of the gas discharge. The inventive use of a push-pull circuit using fast MOSFET transistors enables a high efficiency of this ballast in the specified frequency range. The special shape of the discharge vessel 3 with largely high cross sections results in a very low axial electric field strength with high discharge currents of 3 to 10 A during operation of the low pressure gas discharge lamp. The internal voltage of the gas discharge and thus the secondary voltage of the transformer, which is formed by the ferrite core 4, the primary winding 5 and the gas discharge, are thus very low. For this reason, the core losses have been considerably reduced in comparison with the gas discharge lamp described for example in US 3,500,118.
Der Glaskolben des Entladungsgefäßes 3 ist mit einer Gasmischung aus Quecksilber und einem Edelgas, beispielsweise Argon, Krypton oder einer Mischung von Edelgasen, mit einem Fülldruck von 1 < p < 4 mBar gefüllt. Die Gasentladung erzeugt vorwiegend UV-Strahlung mit Energien von 6,71 eV und 4,88 eV. Das Verhältnis der erzeugten UV-Strahlungsenergien hängt von den genauen Abmessungen des Entladungsgefäßes 3, der Entladungsstromstärke sowie dem Quecksilberdampfdruck ab. Eine entsprechende Ausführungsfomn der erfindungsgemäßen kompakten elektroden losen Niederdruck-Gasentladungslampe gemäß Fig. 1 und Fig. 2 mit beispielsweise einer Schicht 6 aus den zwei Leuchtstoffe BSCT und YOX auf der Innenseite des Glaskolbens des Entladungsgefäßes 3, die geeignet ist, eine warmweiße Lichtfarbe zu erzeugen, liefert bei einer Systemleistung von 27,8 W einen Lichtstrom von ca. 1887 Im. In Fig. 3 und Fig. 4 ist schematisch eine weitere Ausführungsform der erfindungsgemäßen Quecksilberdampf-Niederdruck-Entladungslampe mit dem Sockel 1 und der Fassung 2 dargestellt. Die Gasentladungslampe wird mit einer externen RF- Quelle betrieben. Gemäß Fig. 3 und 4 ist das in dieser Ausführungsform der Lichtquelle vorwiegend ovale Entladungsgefäß 3 mit dem Sockel 1 verbunden. Der größte Durchmesser des Entladungsgefäßes 3 beträgt 7 bis 20 cm. Das Entladungsgefäß besitzt die für die Einstellung des Quecksilberdampfdrucks erforderliche kälteste Stelle 7. Der fast kreisförmige Querschnitt des Entladungsgefäßes 3 besitzt einen Durchmesser von 2 bis 5 cm. Die Ausführungsform der erfindungsgemäßen kompakten elektrodenlosen Queck- silberdampf-Niederdruck-Entladungslampe gemäß Fig. 3 und Fig. 4 mit der Schicht 6 beispielsweise aus den Leuchtstoffen BSCT und YOX.Eu auf der Innenseite des Glaskolbens des Entladungsgefäßes 3 erzeugt bei einer Systemleistung von 42,1 W eine warmweiße Lichtfarbe und einen Lichtstrom von ca. 3397 Im. Die erfindungsgemäße kompakte elektrodenlose Niederdruck-Gasentladungslampe nach Fig. 1 bis 4 besitzt gemäß Fig. 5 die zwei unterschiedlichen, spezielle Schutzschichten 7 und 8, von denen die Schutzschicht 8 den Leuchtstoff 6 auf der der Entladung zugewandeten Seite bedeckt und die Schutzschicht 7 zwischen der Schicht des Leuchtstoffes 6 und der Innenseite des Glaskolbens des Entladungsgefäßes 3 aufgebracht ist.The glass bulb of the discharge vessel 3 is filled with a gas mixture of mercury and a noble gas, for example argon, krypton or a mixture of noble gases, with a filling pressure of 1 <p <4 mbar. The gas discharge mainly generates UV radiation with energies of 6.71 eV and 4.88 eV. The ratio of the generated UV radiation energies depends on the exact dimensions of the discharge vessel 3, the discharge current and the mercury vapor pressure. A corresponding embodiment of the compact, electrodeless, low-pressure gas discharge lamp according to the invention according to FIGS. 1 and 2 with, for example, a layer 6 of the two phosphors BSCT and YOX on the inside of the glass bulb of the discharge vessel 3, which is suitable for producing a warm white light color, delivers a luminous flux of approx. 1887 Im at a system output of 27.8 W. In FIGS. 3 and 4, a further embodiment of the mercury vapor low-pressure discharge lamp according to the invention with the base 1 and the socket 2 is shown schematically. The gas discharge lamp is operated with an external RF source. 3 and 4, the predominantly oval discharge vessel 3 is connected to the base 1 in this embodiment of the light source. The largest diameter of the discharge vessel 3 is 7 to 20 cm. The discharge vessel has the coldest point 7 required for setting the mercury vapor pressure. The almost circular cross section of the discharge vessel 3 has a diameter of 2 to 5 cm. The embodiment of the compact electrodeless mercury vapor low-pressure discharge lamp according to the invention according to FIGS. 3 and 4 with the layer 6, for example made of the phosphors BSCT and YOX.Eu, on the inside of the glass bulb of the discharge vessel 3 produces with a system output of 42.1 W a warm white light color and a luminous flux of approx. 3397 Im. 1 to 4 has the two different, special protective layers 7 and 8, of which the protective layer 8 covers the phosphor 6 on the side facing the discharge and the protective layer 7 between the layer of the phosphor 6 and the inside of the glass bulb of the discharge vessel 3 is applied.
Bei der erfindungsgemäßen kompakten elektrodenlosen Niederdruck- Gasentladungslampe wird die Schutzschicht 8, die den Leuchtstoff 6 bedeckt, aus der Gasphase mittel CVD (chemical vapour deposition) unter Verwendung einer geeigneten metallorganischen Precursorverbindung abgeschieden, die thermisch unterhalb der Erweichungstemperatur des Glases des Entladungsgefäßes 3 vollständig in das Material der Schutzschicht 8 zersetzbar ist. Als Precursormaterialien eignen sich beispielsweise Alkyl-, Alkoxy- oder Acetylacetonatverbindung des entsprechenden Metalls. Als Ausgangsmaterialien für Aluminiumoxidbeschichtungen dienen Verbindungen Rx(OR')3-xAI. (mit x : 0-3 und R bzw. R' als niedere Alkylgruppen wie -CH3, -C2H5, -C3H7 und -C H9). Für SiO2-Beschichtung sind analog dazu Verbindungen des Typs Rx(OR') .xSi (mit x : 0-4 und R bzw. R' als niedere Alkylgruppen wie -CH3, -C2H5, -C3H7, -C4H9 und oder -C5H11) geeignet. Das Material für die Schutzschichten 7 und 8 ist für den Wellenlängenbereich der Quecksilberanregung transparent und chemisch weitgehend inert und besteht aus hinreichend kleinen Partikeln, die eine durchgängige, dichte und haftfähige Beschichtung gewährleisten. Aufgrund ihrer chemischen Beständigkeit sind oxidische Materialien sehr gut geeignet. Al2O3, SiO2 und HfO2 zeigen im UV-Bereich vollständige Durchlässigkeit. ZrO2 schwächt ca. 5% der Anregungswellenlänge von 254 nm. Unterhalb 200 nm verringert sich die Durchlässigkeit bis auf 20 Prozent. V2O5, Nb2O5 und Y203 schwächen ca. 15 % der Anregungswellenlänge 254 nm. Y2O3 schwächt unterhalb 200 nm bis zu 70 % der Strahlung. Von den vollständig transparenten Materialien zeigt SiO2 wegen seines negativen Ladungsverhaltens Wechselwirkungen mit dem Quecksilber, die es als Schutzschichtmaterial für den direkten Kontakt mit der Quecksilberentladung ungeeignet erscheinen lassen. Erfindungsgemäß ist das AI2O3 wegen seiner guten Verfügbarkeit und aufgrund seiner Eigenschaft auch im Vergleich zum HfO2 das für die Herstellung der Schutzschichten am besten geeignete Material, zumal Aluminumoxid häufig auch als Suspensionszusatz zur Steigerung der Reflektivität eingesetzt wird. Die erfindungsgemäße Kombination von Schutzschicht 7 und Schutzschicht 8 erhöht die Langzeitbeständigkeit bei der kompaktem elektrodenlosen Niederdruck- Gasentladungslampe. Insbesonders werden die qualitätsmindernden Einflüsse der Wechselwirkungsprozesse zwischen dem Glas des Entladungsgefäßes 3 und der Leuchtstoffschicht 6 bei der Niederdruck-Gasentladungslampe stark eingegrenzt.In the compact, electrodeless, low-pressure gas discharge lamp according to the invention, the protective layer 8, which covers the phosphor 6, is deposited from the gas phase by means of CVD (chemical vapor deposition) using a suitable organometallic precursor compound which is completely thermally below the softening temperature of the glass of the discharge vessel 3 Material of the protective layer 8 is decomposable. Examples of suitable precursor materials are alkyl, alkoxy or acetylacetonate compounds of the corresponding metal. Compounds R x (OR ') 3 - x Al serve as starting materials for aluminum oxide coatings. (with x: 0-3 and R or R 'as lower alkyl groups such as -CH 3 , -C 2 H 5 , -C 3 H 7 and -CH 9 ). For SiO 2 coating, compounds of the type R x (OR ') are analogous to this. x Si (with x: 0-4 and R or R 'as lower alkyl groups such as -CH 3 , -C 2 H 5 , -C 3 H 7 , -C 4 H 9 and or -C 5 H 11 ) are suitable. The material for the protective layers 7 and 8 is transparent and largely chemically inert for the wavelength range of the mercury excitation and consists of sufficiently small particles which ensure a continuous, dense and adhesive coating. Due to their chemical resistance, oxidic materials are very suitable. Al 2 O 3 , SiO 2 and HfO 2 show complete transmission in the UV range. ZrO 2 weakens approx. 5% of the excitation wavelength of 254 nm. Below 200 nm the transmittance is reduced to 20 percent. V 2 O 5 , Nb 2 O 5 and Y 2 0 3 weaken approx. 15% of the excitation wavelength 254 nm. Y 2 O 3 weakens up to 70% of the radiation below 200 nm. Of the completely transparent materials, SiO 2 shows interactions with the mercury due to its negative charge behavior, which makes it appear unsuitable as a protective layer material for direct contact with the mercury discharge. According to the invention, the AI 2 O 3 is due to its good availability and due to its property also in comparison to the HfO 2 the most suitable material for the production of the protective layers, especially since aluminum oxide is often also used as a suspension additive to increase the reflectivity. The combination of protective layer 7 and protective layer 8 according to the invention increases the long-term durability of the compact, electrodeless, low-pressure gas discharge lamp. In particular, the quality-reducing influences of the interaction processes between the glass of the discharge vessel 3 and the phosphor layer 6 in the case of the low-pressure gas discharge lamp are greatly limited.
Nachfolgend werden Ausführungsbeispiele zur Herstellung der kompakten elektrodenlosen Niederdruck-Gasentladungslampen mit erfindungsgemäßen Leuchtstoffmischungen verschiedener Zusammensetzung entsprechend Tab. 1 und Tab. 2 angegeben.Exemplary embodiments for the production of the compact, electrodeless, low-pressure gas discharge lamps with phosphor mixtures according to the invention of different compositions are given in accordance with Table 1 and Table 2.
Beispiel 1:Example 1:
Unter Verwendung der Leuchtstoffmischungen für die Gasentladungslampen Nr. 1 bis Nr. 6 sowie Nr. 1a bis Nr. 12a nach Tab. 1 werden die erfindungsgemäßen kompakten elektroden losen Niederdruck-Gasentladungslampen mit vorwiegend kugelförmigem Entladungsgefäß 3 hergestellt. Das Entladungsgefäß 3 der Niederdruck-Gasentladungslampen wird zunächst mit einer Suspension aus 4 ml Aerosil Dispersion K330 (Degussa AG), 40 ml 5%iger Polyäthylenoxidlösung, 40 ml deionisiertem Wasser, 2 ml Arkopal und 0,3 ml Dispex beschlämmt, im warmen Luftstrom getrocknet und bei 550°C ausgebrannt. Dadurch wird die durchgängige Schutzschicht 7 von ca. 0,15 mg/cm2 Belagsmasse erzeugt. Danach wird die Leuchtstoffschicht 6 mittels einer Suspension aus 100 g der betreffenden Leuchtstoffmischung in 70 ml deionisiertem Wasser, 0,5 ml Dispex, 80 ml 5%iger Polyethylenoxidlösung, 2,5 ml Arkopal und 35 ml 10%iger Alon-C- Lösung durch Beschlämmen des vorher beschichteten Entladungsgefäßes 3 der Gasentladungslampe hergestellt. Nach dem Trocknen erfolgt das Ausbrennen der Entladungsgefäße 3 im Luftstrom bei 550 °C. Bei einer Viskosität der Suspension von 1 ,5 dPas wird eine Belagsmasse der ausgebrannten Entladungsgefäße 3 von ca. 4,5 mg- cm"2 erzielt. Durch die geeignete Auswahl der Parameter der RF-Quelle sowie der Primärwicklung 5 auf dem geschlossenen Ferritkern 4 der kompakten Niederdruck-Gasentladungslampe werden die in Tab. 1 aufgeführten elektrischen und lichttechnischen Daten erzielt.Using the phosphor mixtures for the gas discharge lamps No. 1 to No. 6 and No. 1a to No. 12a according to Table 1, the compact, electrodeless, low-pressure gas discharge lamps according to the invention with a predominantly spherical discharge vessel 3 are produced. The discharge vessel 3 of the low-pressure gas discharge lamps is first slurried with a suspension of 4 ml of Aerosil Dispersion K330 (Degussa AG), 40 ml of 5% polyethylene oxide solution, 40 ml of deionized water, 2 ml of Arkopal and 0.3 ml of Dispex, dried in a warm air stream and burned out at 550 ° C. This creates the continuous protective layer 7 of approximately 0.15 mg / cm 2 covering mass. The phosphor layer 6 is then passed through by means of a suspension of 100 g of the phosphor mixture in question in 70 ml of deionized water, 0.5 ml of Dispex, 80 ml of 5% polyethylene oxide solution, 2.5 ml of Arkopal and 35 ml of 10% Alon-C solution Slurrying the previously coated discharge vessel 3 of the gas discharge lamp. After drying, the discharge tubes 3 are burned out in an air stream at 550 ° C. With a viscosity of the suspension of 1.5 dPas, a covering mass of the burned-out discharge vessels 3 of approximately 4.5 mg cm 2 is achieved. By suitable selection of the parameters of the RF source and the primary winding 5 on the closed ferrite core 4 of the compact low-pressure gas discharge lamp, the electrical and lighting data listed in Tab. 1 are achieved.
Beispiel 2:Example 2:
Unter Verwendung der Leuchtstoffmischungen für die erfindungsgemäßen kompakten elektrodenlosen Niederdruck-Gasentladungslampen Nr. 1 bis Nr. 11 nach Tab. 2 mit ellipsoidalen Entladungsgefäß 3 hergestellt. Die Entladungs- gefäße 3 der Gasentladungslampen werden zunächst mit einer Suspension aus 4 ml Aerosil Dispersion K330, 40 ml 5%iger Polyäthylenoxidlösung, 40 ml deionisiertem Wasser, 2 ml Arkopal und 0,3 ml Dispex beschlämmt, im warmen Luftstrom getrocknet und bei 550 °C ausgebrannt. Dadurch wird die durchgängige Schutzschicht 7 von ca. 0,15 mg/cm2 Belagsmasse erzeugt. Danach wird die Leuchtstoffschicht 6 mittels einer Suspension aus 100 g der betreffenden Leuchtstoffmischung in 70 ml deionisiertem Wasser, 0,5 ml Dispex, 80 ml 5%iger Polyethylenoxidlösung, 2,5 ml Arkopal und 35 ml 10%iger Alon-C-Lösung durch Beschlämmen der vorher beschichteten Glaskolben der Entladungsgefäße 3 hergestellt. Nach Trocknen erfolgt das Ausbrennen der Entladungsgefäße im Luftstrom bei 550 °C. Bei einer Viskosität der Suspension von 1 ,5 dPas wird eine Belagsmasse der ausgebrannten Entladungsgefäße 3 von ca. 4,5 mg- cm"2 erzielt. Die zweite Schutzschicht 8 wird durch Einleitung eines Trägergasgemisches aus Stickstoff und Sauerstoff in Aluminiumisopropoxid bei etwa 140 °C und anschließende thermische Zersetzung des Aluminiumisopropoxiddampfes beim Einleiten des beladenen Trägergases in einen auf 450 °C erwärmten Glaskolben des Entladungsgefäßes 3 erzeugt.Manufactured using the phosphor mixtures for the compact, electrodeless, low-pressure gas discharge lamps No. 1 to No. 11 according to Table 2 with an ellipsoidal discharge vessel 3. The discharge tubes 3 of the gas discharge lamps are first slurried with a suspension of 4 ml of Aerosil Dispersion K330, 40 ml of 5% polyethylene oxide solution, 40 ml of deionized water, 2 ml of Arkopal and 0.3 ml of Dispex, dried in a warm air stream and at 550 ° C burned out. This creates the continuous protective layer 7 of approximately 0.15 mg / cm 2 covering mass. The phosphor layer 6 is then passed through by means of a suspension of 100 g of the phosphor mixture in question in 70 ml of deionized water, 0.5 ml of Dispex, 80 ml of 5% polyethylene oxide solution, 2.5 ml of Arkopal and 35 ml of 10% Alon-C solution Slurry the previously coated glass bulb of the discharge vessel 3 produced. After drying, the discharge tubes are burned out in an air stream at 550 ° C. With a viscosity of the suspension of 1.5 dPas, a covering mass of the burned-out discharge vessels 3 of approximately 4.5 mg cm 2 is achieved. The second protective layer 8 is obtained by introducing a carrier gas mixture of nitrogen and oxygen into aluminum isopropoxide at approximately 140 ° C. and subsequent thermal decomposition of the aluminum isopropoxide vapor when the loaded carrier gas is introduced into a glass bulb of the discharge vessel 3 heated to 450 ° C.
Durch die geeignete Auswahl der Parameter der RF-Quelle sowie der Primärwicklung 5 auf dem geschlossenen Ferritkern 4 der kompakten elektrodenlosen Niederdruck-Gasentladungslampe werden die in der Tab. 2 aufgeführten elektrischen und lichttechnischen Daten erzielt.By suitable selection of the parameters of the RF source and the primary winding 5 on the closed ferrite core 4 of the compact, electrodeless, low-pressure gas discharge lamp, the electrical and lighting data listed in Table 2 are achieved.
Die kompakten elektrodenlosen Niederdruck-Gasentladungslampen mit der Nr. 1 bis Nr. 9 in Tab. 2 arbeiten mit einer Systemleistung von ca. 42 W und die Niederdruck-Gasentladungslampen mit der Nr. 10 und Nr. 11 mit einer Systemleistung von ca. 85 W. The compact electrodeless low-pressure gas discharge lamps with the numbers 1 to 9 in table 2 work with a system power of approx. 42 W and the low-pressure gas discharge lamps with the numbers 10 and 11 with a system power of approx. 85 W. ,
Tab. 1 Tab. 1
Tab. 2 Tab. 2

Claims

Patentansprüche claims
1. Kompakte elektroden lose Niederdruck-Gasentladungslampe mit erhöhter Lebensdauer, bestehend aus einem Entladungsgefäß mit einer Füllung aus Quecksilber und mindestens einem Edelgas mit einem Fülldruck von1. Compact, electrode-less, low-pressure gas discharge lamp with increased service life, consisting of a discharge vessel with a filling of mercury and at least one noble gas with a filling pressure of
1< p < 4 mBar und mit mindestens einer leuchtstoffhaltigen Schicht auf der Innenseite der Glaswandung des Entladungsgefäßes, dadurch gekennzeichnet, daß zur Aufrechterhaltung der elektrischen Entladung ein ringförmiger geschlossener Ferritkern (4) vom Sockel (1) der Fassung (2) der Niederdruck-Gasentladungslampe aus durch einen vakuumdichten Durchgang im kugelförmigen oder birnenförmigen oder ellipsoidalen Glaskolben des Entladungsgefäßes (3) teilweise innerhalb des Entladungsgefäßes (3) eingebracht ist, daß sich auf dem anderen Teil des Ferritkerns (4) im Sockel (1) der Fassung (2) der Niederdruck-Gasentladungslampe die Primärwicklung (5) des Ferritkerns (4) befindet und daß auf der der1 <p <4 mbar and with at least one phosphor-containing layer on the inside of the glass wall of the discharge vessel, characterized in that an annular closed ferrite core (4) from the base (1) of the socket (2) of the low-pressure gas discharge lamp is used to maintain the electrical discharge from a vacuum-tight passage in the spherical or pear-shaped or ellipsoidal glass bulb of the discharge vessel (3) is partially introduced within the discharge vessel (3), that on the other part of the ferrite core (4) in the base (1) of the socket (2) the low pressure -Gas discharge lamp the primary winding (5) of the ferrite core (4) and that on the
Gasentladung zugewandten Seite der Oberfläche des Glaskolbens des Entladungsgefäßes (3) und / oder auf der der Gasentladung ausgesetzten Oberfläche der lumineszierenden Leuchtstoffschicht (6) ein durchgängiger Überzug von einer chemisch inerten Schutzschicht (7 ; 8) aus Oxid gegen die Reaktionen mit dem umgebenden Medium angeordnet ist.Gas discharge side of the surface of the glass bulb of the discharge vessel (3) and / or a continuous coating of a chemically inert protective layer (7; 8) made of oxide against the reactions with the surrounding medium is arranged on the surface of the luminescent phosphor layer (6) exposed to the gas discharge is.
2. Kompakte elektrodenlose Niederdruck-Gasentladungslampe mit erhöhter Lebensdauer nach Anspruch 1 , dadurch gekennzeichnet, daß die lumines- zierende Leuchtstoffschicht (6) mindestens zwei Leuchtstoffe enthält, die aus chemischen Verbindungen2. Compact electrodeless low-pressure gas discharge lamp with increased service life according to claim 1, characterized in that the luminescent phosphor layer (6) contains at least two phosphors made of chemical compounds
Gadolinium-Magnesiumpentaboratsilikat,Gadolinium magnesium pentaborate silicate,
Erdalkalialuminat,alkaline earth,
Cerium-Magnesiumaluminat,Cerium-magnesium aluminate,
Ln-Oxid, - Ln-Phosphat,Ln oxide, Ln phosphate,
Erdalkaliorthophosphat,Erdalkaliorthophosphat,
Erdalkaliorthosilikat sowieAlkaline earth orthosilicate as well
Erdalkalihalophosphat, Zinkorthosilikat,Erdalkalihalophosphat, Zinc orthosilicate
Magnesiumfluorogermanat,magnesium fluorogermanate,
Bariumdisilikat, - Erdalkalitetraborat, hergestellt sind, wobei die Leuchtstoffe mit Ionen der Seltenen Erden, insbesondere mit Ionen von Europium, Terbium, Gadolinium, Cerium, Dysprosium, Samarium und Praseodymium, und / oder Ionen von Mangan, Blei, Antimon, Zinn und Wismut aktiviert sind und die Erdalkalikationen teilweise substituiert werden können durch Ionen der Elemente derBarium disilicate, alkaline earth metal laboratory, are produced, the phosphors being activated with rare earth ions, in particular with ions of europium, terbium, gadolinium, cerium, dysprosium, samarium and praseodymium, and / or ions of manganese, lead, antimony, tin and bismuth and the alkaline earth metal cations can be partially replaced by ions of the elements of the
2. Nebengruppe bzw. die Seltenerdelemente Ln teilweise oder ganz durch Ionen der 3. Nebengruppe ersetzt werden können.Second subgroup or the rare earth elements Ln can be partially or completely replaced by ions of the third subgroup.
3. Kompakte elektrodenlose Niederdruck-Gasentladungslampe mit erhöhter Lebensdauer nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die3. Compact electrodeless low-pressure gas discharge lamp with increased life according to claim 1 and 2, characterized in that the
Schutzschichten (7; 8) aus mindestens einem der Oxide Y2O3, AI2O3, SiO2,Protective layers (7; 8) made of at least one of the oxides Y 2 O 3 , Al 2 O 3 , SiO 2 ,
La2O3, Sm2O3, Gd2O3, MgO, Dy2O3, Ho2O3, Er2O3, Yb2O3, Lu2O3, CaO, ZrO2,La 2 O 3 , Sm 2 O 3 , Gd 2 O 3 , MgO, Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Yb 2 O 3 , Lu 2 O 3 , CaO, ZrO 2 ,
SrO, BaO, und BeO bestehen.SrO, BaO, and BeO exist.
4. Kompakte elektrodenlose Niederdruck-Gasentladungslampe mit erhöhter Lebensdauer nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß bei der Leuchtstoffschicht (6) die Leuchtstoffe4. Compact electrodeless low-pressure gas discharge lamp with increased service life according to claim 1 to 3, characterized in that the phosphors in the phosphor layer (6)
BSCT = Gadolinium-Magnesiumpentaboratsilikat : Ce,Tb,BSCT = Gadolinium Magnesium Pentaborate Silicate: Ce, Tb,
YOX = Yttriumoxid : Eu, BSCM = Cerium-Gadolinium-Magnesiumpentaboratsilikat : Mn,YOX = yttrium oxide: Eu, BSCM = cerium-gadolinium-magnesium pentaborate silicate: Mn,
BAM = Barium-Magnesiumaluminat : Eu,BAM = barium magnesium aluminate: Eu,
SAPE = Strontiumaluminat : EuSAPE = strontium aluminate: Eu
BSOSE = Barium-Strontium-Orthosilikat : Eu,BSOSE = barium strontium orthosilicate: Eu,
CAT = Cerium-Magnesiumaluminat : Tb, LAP = Lanthanphosphat : Ce.Tb,CAT = cerium magnesium aluminate: Tb, LAP = lanthanum phosphate: Ce.Tb,
LAPS = Lanthanphosphatsilikat : Ce,Tb,LAPS = lanthanum phosphate silicate: Ce, Tb,
MgFG = Magnesiumfluorogermanat : Mn(IV),MgFG = magnesium fluorogermanate: Mn (IV),
ZSM = Zinkorthosilikat : Mn, sowie BSCG = Cerium- Gadolinium-Magnesium-Pentaboratsilikat,ZSM = zinc orthosilicate: Mn, as well BSCG = cerium-gadolinium-magnesium pentaborate silicate,
BSC = Lanthan-Cerium-Magnesiumpentaboratsilikat, CHP = Calciumhalophosphat : Sb und/oder Mn,BSC = lanthanum cerium magnesium pentaborate silicate, CHP = calcium halophosphate: Sb and / or Mn,
SCP = Strontiumchlorophosphat : Eu und (Ba,Sr,Ca)-Chloro- phosphat : Eu, Bariumdisilikat : Pb, Strontium-Magnesiumaluminat : Ce, Bariumfluorophosphat: Pb,Gd,SCP = strontium chlorophosphate: Eu and (Ba, Sr, Ca) chlorophosphate: Eu, barium disilicate: Pb, strontium magnesium aluminate: Ce, barium fluorophosphate: Pb, Gd,
Strontiumhexaborat : Pb, Strontiumtetraborat : Eu, Strontiumfluoroborat : Eu, oder eine Kombination dieser Leuchtstoffe verwendet sind.Strontium hexaborate: Pb, strontium tetraborate: Eu, strontium fluoroborate: Eu, or a combination of these phosphors are used.
Kompakte elektrodenlose Niederdruck-Gasentladungslampe mit erhöhter Lebensdauer nach Anspruch 1 und 4, dadurch gekennzeichnet, daß die zur Aufrechterhaltung der Gasentladung verwendete RF-Quelle in Form einer elektronischen Gegentaktschaltung im Sockel (1) der Lampe integriert ist.Compact, electrodeless, low-pressure gas discharge lamp with increased service life according to claims 1 and 4, characterized in that the RF source used to maintain the gas discharge is integrated in the form of an electronic push-pull circuit in the base (1) of the lamp.
Kompakte elektrodenlose Niederdruck-Gasentladungslampe mit erhöhter Lebensdauer nach Anspruch 1 und 5, dadurch gekennzeichnet, daß sie im Innen- und Außenbereich der Allgemein- und Kommunalbeleuchtung, in der Medizin und in der Kosmetik anwendbar ist. Compact, electrodeless, low-pressure gas discharge lamp with increased service life according to Claims 1 and 5, characterized in that it can be used in the interior and exterior of general and municipal lighting, in medicine and in cosmetics.
EP01994592A 2000-11-27 2001-11-26 Compact, electrodeless, low pressure gas discharge lamp having an extended shelf life Expired - Lifetime EP1340243B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10058852A DE10058852A1 (en) 2000-11-27 2000-11-27 Compact, electrodeless, low-pressure gas discharge lamp with increased service life
DE10058852 2000-11-27
PCT/DE2001/004482 WO2002043107A1 (en) 2000-11-27 2001-11-26 Compact, electrodeless, low pressure gas discharge lamp having an extended shelf life

Publications (2)

Publication Number Publication Date
EP1340243A1 true EP1340243A1 (en) 2003-09-03
EP1340243B1 EP1340243B1 (en) 2007-07-18

Family

ID=7664841

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01994592A Expired - Lifetime EP1340243B1 (en) 2000-11-27 2001-11-26 Compact, electrodeless, low pressure gas discharge lamp having an extended shelf life

Country Status (6)

Country Link
EP (1) EP1340243B1 (en)
AT (1) ATE367648T1 (en)
AU (1) AU2002224741A1 (en)
DE (2) DE10058852A1 (en)
RU (1) RU2003119071A (en)
WO (1) WO2002043107A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7800289B2 (en) 2005-10-20 2010-09-21 Minebea Co., Ltd. Electrodeless gas discharge lamp

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004018590A1 (en) 2004-04-16 2005-11-03 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Fluorescent composition for a low-pressure discharge lamp with a very high color temperature
KR100706184B1 (en) 2005-12-26 2007-04-12 주식회사 디엠에스 Fluorescent lamp and manufacturing method thereof

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3141990A (en) * 1960-04-06 1964-07-21 Sylvania Electric Prod Fluorescent lamp having a tio2 coating on the inner surface of the bulb
US3521120A (en) * 1968-03-20 1970-07-21 Gen Electric High frequency electrodeless fluorescent lamp assembly
NL169533C (en) * 1971-08-28 1982-07-16 Philips Nv LOW-PRESSURE MERCURY DISCHARGE LAMP.
DE2601664C3 (en) * 1975-01-20 1980-07-24 General Electric Co., Schenectady, N.Y. (V.St.A.) Fluorescent lamp
DE2659859C2 (en) * 1975-01-20 1985-08-01 General Electric Co., Schenectady, N.Y. Device for maintaining an electrical discharge
US3987335A (en) * 1975-01-20 1976-10-19 General Electric Company Electrodeless fluorescent lamp bulb RF power energized through magnetic core located partially within gas discharge space
US4010400A (en) * 1975-08-13 1977-03-01 Hollister Donald D Light generation by an electrodeless fluorescent lamp
DE2826091A1 (en) * 1978-06-14 1980-01-03 Patra Patent Treuhand MERCURY VAPOR LOW-PRESSURE DISCHARGE LAMP FOR RADIATION PURPOSES
US4298828A (en) * 1979-02-21 1981-11-03 Westinghouse Electric Corp. High frequency electrodeless lamp having a gapped magnetic core and method
NL7901897A (en) * 1979-03-09 1980-09-11 Philips Nv ELECTRESSLESS GAS DISCHARGE LAMP.
US4357559A (en) * 1980-03-17 1982-11-02 General Electric Company Fluorescent lamp utilizing phosphor combination
NL8202778A (en) * 1982-07-09 1984-02-01 Philips Nv LOW-PRESSURE MERCURY DISCHARGE LAMP.
JPH0619975B2 (en) * 1984-04-18 1994-03-16 松下電子工業株式会社 Fluorescent lamp emitting light in three wavelength range
NL8500738A (en) * 1985-03-14 1986-10-01 Philips Nv ELECTRESSLESS LOW PRESSURE DISCHARGE LAMP.
NL8500736A (en) * 1985-03-14 1986-10-01 Philips Nv ELECTRESSLESS LOW PRESSURE DISCHARGE LAMP.
SE458365B (en) * 1987-04-27 1989-03-20 Lumalampan Ab GAS EMISSIONS LAMP OF METAL TYPE
US4923425A (en) * 1987-06-12 1990-05-08 Gte Products Corporation Fluorescent lamp with a predetermined CRI and method for making
DE3729711A1 (en) * 1987-09-04 1989-03-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh MERCURY LOW PRESSURE DISCHARGE LAMP FOR UV RADIATION
GB8823691D0 (en) * 1988-10-08 1988-11-16 Emi Plc Thorn Aquarium lighting
US5105122A (en) * 1989-08-18 1992-04-14 U.S. Philips Corporation Electrodeless low-pressure mercury vapor discharge lamp
US5051277A (en) * 1990-01-22 1991-09-24 Gte Laboratories Incorporated Method of forming a protective bi-layer coating on phosphore particles
EP0550937B1 (en) * 1992-01-07 1997-03-19 Koninklijke Philips Electronics N.V. Low-pressure mercury discharge lamp
US5714836A (en) * 1992-08-28 1998-02-03 Gte Products Corporation Fluorescent lamp with improved phosphor blend
US6057649A (en) * 1993-05-11 2000-05-02 U.S. Philips Corporation Illumination unit, electrodeless low-pressure discharge lamp, and coil suitable for use therein
GB9310100D0 (en) * 1993-05-17 1993-06-30 Ge Lighting Ltd Fluorescent lamp for use in aquaria
US5604396A (en) * 1993-07-30 1997-02-18 Toshiba Lighting & Technology Corporation Luminescent material for mercury discharge lamp including phosphor and a continuous protective layer
US5898265A (en) * 1996-05-31 1999-04-27 Philips Electronics North America Corporation TCLP compliant fluorescent lamp
US6144152A (en) * 1997-12-19 2000-11-07 U.S. Phillips Corporation Luminescent screen for low pressure mercury discharge lamp with specific emission range
EP0924746B1 (en) * 1997-12-19 2003-10-08 Koninklijke Philips Electronics N.V. Low-pressure mercury discharge lamp
JPH11312491A (en) * 1998-04-28 1999-11-09 Matsushita Electron Corp Fluorescent lamp and its manufacture
DE69922485T2 (en) * 1998-11-12 2005-11-03 Koninklijke Philips Electronics N.V. LOW PRESSURE MERCURY VAPOR DISCHARGE LAMP
US20020067129A1 (en) * 1999-05-03 2002-06-06 John C. Chamberlain Ferrite core for electrodeless flourescent lamp operating at 50-500 khz

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0243107A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7800289B2 (en) 2005-10-20 2010-09-21 Minebea Co., Ltd. Electrodeless gas discharge lamp

Also Published As

Publication number Publication date
AU2002224741A1 (en) 2002-06-03
WO2002043107A1 (en) 2002-05-30
ATE367648T1 (en) 2007-08-15
RU2003119071A (en) 2004-12-10
DE50112745D1 (en) 2007-08-30
EP1340243B1 (en) 2007-07-18
DE10058852A1 (en) 2002-06-06

Similar Documents

Publication Publication Date Title
KR0145631B1 (en) Luminescent material for mercury discharge lamp including phosphor and a continuous protective layer
US5612590A (en) Electric lamp having fluorescent lamp colors containing a wide bandwidth emission red phosphor
DE10129630A1 (en) Low pressure gas discharge lamp with fluorescent coating
DE4311197A1 (en) Method for operating an incoherently radiating light source
EP0550937B1 (en) Low-pressure mercury discharge lamp
DE10129464A1 (en) Low pressure gas discharge lamp with mercury-free gas filling
KR100480882B1 (en) Fluorescent lamp, its manufacturing method, and information display using the same
JP4150362B2 (en) Manufacturing method of phosphor for lamp
EP1160834B1 (en) Low-pressure mercury discharge lamp with an external tube
DE10057881A1 (en) Gas discharge lamp, used in e.g. color copiers and color scanners, comprises a discharge vessel, filled with a gas, having a wall made from a dielectric material and a wall with a surface partially transparent for visible radiation
DE19806213B4 (en) Compact energy saving lamp
JPH07316551A (en) Phosphor for mercury vapor luminescence lamp, mercury vapor luminescence lamp produced by using the phosphor and lighting unit involving the lamp
DE102012203419A1 (en) Phosphor and fluorescent lamp containing the same
US3569762A (en) Electron discharge lamps with rare earth phosphor coating
EP1340243B1 (en) Compact, electrodeless, low pressure gas discharge lamp having an extended shelf life
DE60313194T2 (en) LOW PRESSURE MERCURY DISCHARGE LAMPS
DE10026913A1 (en) Gas discharge lamp with fluorescent layer
EP1271618A2 (en) Discharge lamp for dielectrically impeded discharges comprising blue phosphor
JPH11172244A (en) Phosphor, manufacture thereof and fluorescent lamp
KR20120065336A (en) Electrode for discharge lamp, and process for production thereof
KR20030011554A (en) Florescent lamp and lighting apparatus
JP2007305422A (en) Electrode for discharge lamp, and fluorescent lamp using it
EP1254943A2 (en) Downconversion phosphor and gas discharge lamp with such a phosphor
JPH07268318A (en) Fluorescent substance, its production and fluorescent lamp
JP2003272559A (en) Fluorescent lamp

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHIMKE, CONRAD

Inventor name: TEWS, WALTER

Inventor name: KLIMKE, JENS

Inventor name: ROTH, GUNDULA

RBV Designated contracting states (corrected)

Designated state(s): AT DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TEWS, WALTER

Owner name: ROTH, GUNDULA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50112745

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071002

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080314

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090723 AND 20090729

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20100506 AND 20100512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101110

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101124

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101124

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 367648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121126

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50112745

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121126