EP1440425A1 - Systeme anticollision et de blocage de feux de signalisation pour vehicules d'urgence - Google Patents

Systeme anticollision et de blocage de feux de signalisation pour vehicules d'urgence

Info

Publication number
EP1440425A1
EP1440425A1 EP01979327A EP01979327A EP1440425A1 EP 1440425 A1 EP1440425 A1 EP 1440425A1 EP 01979327 A EP01979327 A EP 01979327A EP 01979327 A EP01979327 A EP 01979327A EP 1440425 A1 EP1440425 A1 EP 1440425A1
Authority
EP
European Patent Office
Prior art keywords
emergency vehicle
emergency
vehicles
traffic signal
directional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01979327A
Other languages
German (de)
English (en)
Other versions
EP1440425A4 (fr
EP1440425B1 (fr
Inventor
Dave Gross
Jon Gross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority claimed from PCT/US2001/030520 external-priority patent/WO2003030124A1/fr
Publication of EP1440425A1 publication Critical patent/EP1440425A1/fr
Publication of EP1440425A4 publication Critical patent/EP1440425A4/fr
Application granted granted Critical
Publication of EP1440425B1 publication Critical patent/EP1440425B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0965Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages responding to signals from another vehicle, e.g. emergency vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication

Definitions

  • the present invention relates generally to emergency vehicle warning and coordination systems.
  • the present invention is directed to a system for conveying information among emergency vehicles, and for preempting control of traffic signals in the range of certain emergency vehicles.
  • Emergency vehicles such as fire-fighting engines, ambulances and police cars, generally have the need to cross or pass intersections under the control of traffic signals. This must be accomplished in the least amount of time possible so that the function of an emergency vehicle can be successfully fulfilled. It is generally understood that the more quickly an emergency vehicle can reach the scene of an emergency, the greater are the chances that the victims involved can be helped or successfully treated.
  • Patent No. 3,550,078 re-issue no. 228,100, re-issued August 6, 1974 to Long.
  • the system disclosed provides the ability of an emergency vehicle with the ability to remotely control traffic light signals so as to provide signals that will allow the emergency vehicle to easily pass through intersections without undue delays.
  • this system does not properly alert pedestrians or other drivers at the subject intersection that the traffic light control has been preempted.
  • Determining priority between emergency vehicles is carried out in the system disclosed by U.S. Patent No.4,914,434 to Morgan et al..
  • a controller located at a particular intersection carries out a series of computations based upon signal analysis of competing, incoming emergency vehicles, and then selects which emergency vehicle will be given priority. Accordingly, the selected emergency vehicle is provided with a green light while any competing emergency vehicles are advised that they do not have priority through the intersection.
  • the system also encompasses the selection of alternative routes or pathways that an emergency vehicle can take if it has been preempted from control at a particular intersection.
  • indication that an emergency vehicles control of an intersection traffic signal has been preempted often occurs after it is too late to select alternative routes. In some cases, such indication may not be noticed by the vehicle operator until the emergency vehicle is in the intersection, thereby greatly increasing the risks of accidents between emergency vehicles.
  • an emergency vehicle collision avoidance system including a plurality of emergency vehicles.
  • Each of the emergency vehicles has a device for determining direction of travel of the emergency vehicle and a transceiver arranged to transmit direction signals indicative of the direction of travel of the emergency vehicle.
  • the transceivers also are arranged to receive signals indicative of direction of travel of other emergency vehicles within range of the transceiver.
  • a correlating device for calculating direction vectors based upon the direction of signals of the other emergency vehicles. These direction vectors are depicted on a display so , that the vehicle operator is able to determine sources of possible collisions with other emergency vehicles.
  • Another aspect of the present invention is manifested by a method of identifying emergency vehicles.
  • Another aspect of the present invention is manifested by a method of operating an emergency vehicle collision avoidance system.
  • This system includes a plurality of emergency vehicles where each emergency vehicle operates according to a method including a first step of obtaining directional data indicative of a direction of travel of the subject emergency vehicle.
  • an emergency vehicle sends directional signals to other emergency vehicles indicative of its directional data. These directional signals are sent in a first mode of transmission.
  • Each emergency vehicle then correlates the received directional signals to determine directional vectors based upon directional signals received. From this, relative relationships between the directional vectors are derived. These vectors are then displayed to depict the relative directions of travel of other emergency vehicles with respect to the subject emergency vehicle.
  • Figure 1 is a diagram depicting the environment in which the present invention can operate..
  • Figure 2 is a diagram depicting the directional orientation adopted for use with the present invention
  • Figure 3 (a) is a diagram depicting the control and display panel used for one embodiment the present invention.
  • Figure 3 (b) is a diagram depicting the control display panel used in another embodiment of the present invention, employing GPS data for the display of absolute direction data.
  • Figure 4 is a diagram depicting a calculation to determine relative direction of two vehicles using the present invention.
  • Figure 5 is a diagram depicting electromagnetic energy transmission patterns for two vehicles using the present invention.
  • Figure 6 is block diagram depicting relative vehicle locations and base station transmission patterns for components used as part of the present invention.
  • Figure 7 is a flow diagram depicting comprehensive operation of the present invention including a number of auxiliary functions that can be included with the present invention.
  • the environment in which the present invention operates is depicted in Figure 1.
  • the present invention is meant to operate in an environment that includes traffic signals (4) and their controllers (5).
  • Transmitters (1) in emergency vehicles (2) are designed to send signals to traffic signal controllers to preempt control of the traffic signals.
  • Receiving mechanisms (1) in each of the emergency vehicles are used to provide indication of other, similarly equipped, emergency vehicles within range of the emergency vehicle transceivers .
  • a key factor is the use of information regarding other emergency vehicles, in particular direction vectors that can be displayed in relation to the direction vector of a particular vehicle receiving the directional information.
  • Another key aspect of the present invention is the use of transceivers to inform emergency vehicles when control of a particular traffic signal has been preempted in favor of travel of a selected emergency vehicle. Accordingly, when the proper indication is displayed (either graphically or using flashing lights), the emergency vehicle operator knows to take suitable precautions when approaching the intersection controlled by that particular traffic signal.
  • the equipment used to constitute the various elements of the present invention is generally well-known.
  • One aspect of the system of the present invention is constituted by components directed to sending signals to a traffic signal control device (6) in order to preempt control of the traffic signal (4).
  • This operation is carried out to allow swift passage of the emergency vehicle (2) through a particular intersection controlled by the traffic signal control device.
  • An emergency vehicle (EV) transceiver (1) is carried onboard emergency vehicles (2) (police, fire, ambulance and the like) and, when activated, broadcasts directional data preferably using a forward-directed electromagnetic (EM) beam (3) to the traffic signal (4) equipped with a traffic signal (TS) transceiver (5).
  • the directional information is then relayed to the traffic signal control mechanism (6), which commands the traffic signal (4) to go into a Apreemptive@ mode favoring a particular EV approaching the intersection.
  • the traffic signal control device can control the traffic signal so as to allow a selected emergency vehicle to pass through the intersection with as little delay as possible.
  • each EV (2) is a compass mechanism (not shown) which provides the direction of travel of the emergency vehicle in which it is in use.
  • the direction of travel of the emergency vehicle (see Figure 2) is translated into a number between 1-360 (corresponding to the degrees of a circle), according to the pattern depicted in Figure 2. For example, if the emergency vehicle is traveling due north, then the information which is included in its transmitted signal pattern (3) is the number 360. Likewise, if the vehicle is traveling due south the data is transmitted as the number 180, as depicted in Figure 2.
  • display 100 in Figures 3(a) and 3(b) can be provided with an overlay according to the pattern of Figure 2 so that a vehicle operator may more easily recognize the directions at which other emergency vehicles may be approaching his own.
  • the compass mechanism (not shown) can be any number of different direction finding and indication devices, and is located with the transceiver (1) in each emergency vehicle (2). While a simple standard magnetic compass can be used, there may be some problems with respect to recognizing and transmitting direction vectors to other vehicles, as will be described infra. Accordingly a more comprehensive direction- finding system is preferred.
  • GPS global positioning system
  • the non-military version of this system provides sufficiently accurate location data (within ten feet) so as to allow an accurate location of a particular vehicle so equipped to be determined. Multiple readings of the GPS can be translated into a direction vector.
  • One advantage to this system is that precise, location data for a number of emergency vehicles can be quickly and accurately determined, and circulated among the vehicles for display to vehicle operators.
  • One aspect of the GPS system that justifies the cost is that relative locations of other emergency vehicles that can cause potential collisions can be displayed for each emergency vehicle operator. As a result, each operator is better able to identify potential trouble much more quickly, and take appropriate measures.
  • a solid state direction indicator module as installed on a wide variety of General Motors makes of vehicles.
  • This module is relatively inexpensive, provides an electronic readout that is easily modified to the direction-numbering system depicted in Figure 2, and in the more elaborate embodiments, the direction module can generate signals indicative of vehicle direction or transmission to other emergency vehicles (21), as well as traffic signal control mechanisms (6).
  • standard direction signals can be taken from the directional module, transmitted to other vehicles, and then converted to the system depicted in Figure 2 for display within each of the receiving emergency vehicles (2).
  • the TS transceiver (5) receives the information regarding the direction of travel of the emergency vehicle (2) via its EM transmission (3), broadcast by the EV transceiver (1).
  • the information received by the TS transceiver (5) regarding the emergency vehicles direction of travel is relayed to the traffic signal control mechanism (6) which them preempts the traffic signal (4) in the appropriate fashion, to allow the EV to pass quickly through the intersection controlled by the TS (4).
  • Figure 4 depicts the relative direction of travel of three different emergency vehicles, presumed to be using the system of the present invention.
  • the key attribute of the present invention is to depict (in display 100 of Figures 3(a) and 3(b)) the relative directions of travel of multiple emergency vehicles on a potential collision course. With this information, the angle of an impending collision can be calculated and displayed as depicted in Figures 3(a) and 3(b).
  • the value of AY@ (in Figure 4) represent a number between 1 and 360, the value 45 corresponds to the direction of travel of the selected emergency vehicle in #1 (at which the reading will be displayed) in Figure 4. Also, the value of AX@ represents a number between 1 and 360 that corresponds to the direction of travel of a second emergency vehicle, #2 having a value of 180. Accordingly, the angle of impending collision from emergency vehicle #l's frame reference is calculated and presented as AZ@ using Equation #1 in Figure 4 :
  • Overlay 50 on display 100 of Figure 3(a) is used to always indicate to the emergency vehicle operator the direction in which his own vehicle is oriented. While this orientation does not provide the absolute direction of any of the vehicles, the relative directions of the emergency vehicles 2 and 3 are displayed with respect to the constant orientation of emergency vehicle #1. Overlay 50 which reminds the vehicle operator of the alignment of his own vehicle relative to other vehicles can be provided by the pattern depicted in Figure 2. This embodiment of the present invention is relatively simple, being confined to depicting only the relative directions between emergency vehicles.
  • Equation #1 Another example of the mathematical calculation using Equation #1 pertains to the vehicle #3 in Figure 4.
  • emergency vehicle #1 is traveling in a true northeasterly direction. Accordingly, its EV transceiver is broadcasting the number 45.
  • the angle of the impending collision between emergency vehicles #1 and #3 can be displayed as a 45 D vector from the northeast.
  • the collision avoidance system (CAS) display 100 would have a reading of 45 corresponds to the angle of impending collision between emergency vehicle #1 and #3, as seen from #l's frame of reference or frontally from the right at a 45-degree angle (Vector 8A in Figure 3(b)). This is the direction in which the driver of emergency vehicle #1 should look to see the impending collision and have ample time to avoid it.
  • the two vectors (7), (8b) represent the direction of vehicle #2, and vehicle #1, respectively.
  • the two vectors may be designated differently (such as by different colors, patterns and the like) so that any emergency vehicle operator can easily identify his own vehicle on the display.
  • the display provides the direction at which the receiving emergency vehicle (#1) is headed and the vector at which a possible collision may occur with vehicle #2.
  • the calculated angle between the two can be added to the display, thereby making the pending situation clear to the emergency vehicle operator in the shortest amount of time.
  • the orientation of the respective vectors can be done in any reasonable fashion that facilitates easy recognition by the emergency vehicle operator. Accordingly, any variation in the orientation of the respective vehicle vectors and the angles between them fall within the concept of the present invention.
  • each emergency vehicle can display multiple impending collision arrows, each corresponding to the direction of approach of the other emergency vehicles from its frame of reference.
  • display 100 can be configured to show multiple approaching emergency vehicles using the present invention.
  • the display can also be configured to depict the direction of travel of the selected vehicle, as well, as indicated by arrow 8(b) in Figure 3(b).
  • the controller (not shown) for the transceiver in each emergency vehicle can also carry out a calculation of the distances between various emergency vehicles. This value can also be indicated on display 100.
  • Display 100 need not be a separate display screen as depicted in Figures 3(a) and 3(b). Rather, the display mechanism can be a standard Aheads-up@ display commonly used in aerodynamics and adopted in automobiles.
  • the advantages of such displays are already well-known.
  • a Aheads-up@ display allows a vehicle operator to use the present invention while still concentrating on the traffic in front of his own vehicle. There is no necessity for looking down at an extra display screen while driving the emergency vehicle under intense circumstances.
  • existing Aheads-up@ displays can be used after modification so as to limit the amount of new equipment to be added to the emergency vehicle. Further, the use of Aheads-up@ displays would be particularly efficacious on motorcycles, or in other situations when Ahands-free@ operation would be considered desirable.
  • EV transceivers (22) have the capability of varying the width of transmission patterns (23) and (24).
  • a five-ten degree forward transmission pattern (23) can be used when in a crowded city environment.
  • a 180 degree forward transmission pattern (24) is used in a low-density environment.
  • the wide pattern (24) helps to activate a maximum of other nearby EV transceivers (22), giving ample collision avoidance warning to other similarly equipped vehicles (21) where no traffic signals are present to act as Atransponders@ to relay the information to them.
  • the transmission patterns can be controlled using control switch as depicted in Figures 3(a) and 3(b).
  • a potential problem which may occur during an emergency call is when an ambulance arrives on the scene of an accident at or near an intersection that is equipped with the present invention. It is often imperative for the operator of the ambulance to exit the vehicle as quickly as possible to begin rendering medical attention to victims immediately. If in his or her haste, the operator of the emergency vehicle neglects to deactivate the traffic signal control system, any traffic signals nearby will continue to be preempted. This situation could also preclude another emergency vehicle from properly preempting the traffic signal control in its favor as it nears the scene of the accident.
  • the control system of the present invention is connected so that when the emergency light system is activated, the traffic signal preemption operation of the present invention is also activated.
  • the emergency lights running when an ambulance (or other emergency vehicle) stops on an emergency call.
  • the status of the traffic preemption system is generally not foremost in the mind of the emergency personnel arriving on the scene. As a result, traffic signal preemption could continue in favor of the now-halted emergency vehicle, which has arrived at the scene.
  • the EV transceiver (1) can also be connected to the vehicle's transmission.
  • the system's traffic signal preemption mode is automatically disengaged.
  • the system is automatically returned to the Aauto@ mode (11) when the vehicle is put back into gear while the mode switch itself (10) physically remains in the Aauto@ position.
  • the systems traffic signal preemption mode is automatically disengaged when the vehicle's transmission is in park.
  • the system is automatically returned to the Amanual@ mode (12) when the vehicle is put back into gear while the mode switch itself (10) physically remains in the Amanual@ mode.
  • the traffic signal transceiver or ATS transceiver® (labeled (5) in figure 1) is affixed to the traffic signal (4).
  • control of the traffic signal (4) is preempted in favor of EV (25).
  • Traffic signal transceiver (5) (depicted as (29) in Figure 6). also acts to omnidirectionally rebroadcast via transmission pattern (30) (of Figure 6) the data received regarding the direction of travel of the subject emergency vehicle (25) to any other emergency vehicles (34) approaching the intersection.
  • This transmission pattern (30) rebroadcast by the TS transceiver (29) is either on a different frequency, different mode of operation or has some other distinguishable characteristic to allow other TS transceivers (31) to recognize it as being discernable from the normal broadcast pattern (27) of an EV transceiver (26). If this were not the case, more than one TS transceiver (31) might be affected, and the corresponding traffic signals (32) inappropriately preempted. This operation could cause a Adomino-like@ chain reaction, with each TS transceiver (29) relaying the information on to others close enough to be within range of its broadcast.
  • a TS transceiver's (29) broadcast transmission (30) must only affect other EV transceivers (33) and not other TS transceivers (31).
  • an EV transmission (27) (in Figure 6) will affect both other EV transceivers (33) and any TS transceivers (29) and (31) within range.
  • a strobe (not shown) at the base of the TS transceiver (5) in Figure 1 is activated by the receipt of a signal beam (3) from an EV transceiver (1), thereby alerting nearby traffic of the emergency vehicle's approach.
  • This also allows the driver of an emergency vehicle the additional visual confirmation of having acquired control of the traffic signal (4) without having to visually divert his attention from the road to the display (100) of the EV transceiver (1) in his vehicle to check the traffic signal status on the control board of Figure 3.
  • a control panel and display for the present invention is depicted in Figure 3. This arrangement is simply one example of a control and display arrangement that can be used with the present invention, and the present invention is not at all limited thereby.
  • Display 100 is shown as having two arrows.
  • Arrow 8 depicts the original direction of the subject vehicle.
  • Arrow 7 is shown as being at a 45 D angle to arrow 8, and indicates the travel direction of another EV for a potential collision with vehicle 1 of Figure 4.
  • Display 100 may be arranged to show any number of arrows indicative of vehicles using the system of the present invention within range of a particular receiving vehicle.
  • an L.E.D. Astatus@ indicator 9
  • verifies communication link with TS transceiver by lighting the L.E.D. green, for example. If not in communication with a TS transceiver, the L.E.D. is lit red.
  • a 3- position mode switch (10) is arranged with L.E.D. visual confirmation next to each mode position of the mode switch (10).
  • the mode switch is constituted by a toggle switch.
  • An L.E.D. (11) lights green when mode switch (10) is in Aauto@ mode.
  • the Aauto@ mode of the EV transceiver automatically engages the traffic light control feature only when the siren or light bar is activated on the vehicle. Even when siren and red lights are not activated, the receiving capability with audio and visual alarms remains operative.
  • L.E.D. (12) lights green when the mode switch (10) is in the Amanual@ mode.
  • the traffic light control feature When in the Amanual@ mode, the traffic light control feature is constantly engaged, and both audio and visual collision avoidance features are operational.
  • This mode may be used by an unmarked police car, for example, which desires full use of the features, but does not wish to use its siren or light bar.
  • L.E.D. (13) lights red when in the Aoff@ mode. In this mode, traffic lights are not affected. Visual and audible collision alarms still remain operative, unless audio alarm toggle (19) is in the Aoff@ position, then a visual collision alert only is available. Broadcast beam width can be adjusted by two-position mode switch (14), which is accompanied by L.E.D. visual confirmation next to each position of the toggle switch (14). It should be noted that a two-positioned toggle switch is not necessary for the operation of the present invention. Rather, the use of this switch to select between high and low density areas is merely one variation that can be used in the present invention.
  • a wide variety of transmission beam patterns can be used with the present invention.
  • the L.E.D. (15) lights green when toggle switch (14) is in the Acountry@ or wide dispersement position.
  • the broadcast beam (depicted in Figure 5) radiates in a
  • This position is used in rural areas, for example, where no similarly equipped traffic signals are within range. This allows for direct Avehicle to vehicle@ transmission of collision avoidance information without an appropriately equipped traffic signal within a range to rebroadcast the information to other EV transceivers.
  • the L.E.D. (16) lights green when toggle switch (14) is in the Acity@ or narrow dispersment position.
  • the broadcast beam (23) of Figure 5 radiates forward at a 10 degree angle. This position is used when the emergency vehicle is likely to encounter traffic signals equipped with the present invention.
  • the narrow broadcast pattern (23) of between 5-10°, helps to limit the number of conflicting signals received by each traffic signal (4) within crowded urban environments.
  • the L.E.D. (17) lights green and indicates that the audio alarm toggle switch (19) is in the Aon@ position.
  • the L.E.D. (18) lights red and indicates that audio alarm toggle switch (19) is in the Aoff@ position.
  • Audio alarm volume knob (20) controls a rheostat (or other appropriate electronic control) that allows the vehicle operator to adjust the volume of the intrusive audible collision alarm.
  • a press to test button (41) is located at the center of the circular portion of the display 100, depicting arrows 7,8.
  • FIG. 7 is a flow diagram depicting the comprehensive operation of a system encompassing a plurality of embodiments of the present invention. However, other embodiments of the present invention beyond the scope of the Figure 7 system are also possible. It should be noted that the system, which operation is depicted in Figure 7 also extends far beyond the most basic embodiment of the present invention, and admits to many variations and alternatives. Some of these are described below.
  • step 200 the basic operation of obtaining direction of travel data is carried out. This can be done in a number of different ways well known to those skilled in this technology. A variety of different techniques can be used, including : gyroscopes; electronic detection of the position of magnetic compasses; radio triangulation; and, the use of global positioning systems (GPS). In the most advanced embodiment of the present invention the use of GPS is preferred.
  • GPS global positioning systems
  • a plurality of emergency vehicles (2) are used in the system of the invention, and each derives directional information regarding its movements from one of the aforementioned methods of obtaining directional data.
  • This directional information is translated to the orientation depicted in Figure 2.
  • each emergency vehicle throughout the inventive system uses common orientation so that a common set of directions can be provided for comparison of the direction of travel of each of the vehicles.
  • This translation to the orientation of Figure 2 is easily accomplished by the microprocessor control of any of the aforementioned directional data systems. Accordingly, the translation of orientation can be carried out by the controller or microprocessor that controls the display (100). Such manipulation of display data is well-known to those in the display technology. Accordingly, further elaboration on the translation of directional data from standard systems to Figure 2 orientation is not necessary for an understanding of the present invention.
  • step 200 is absolutely necessary for the operation of the present invention
  • step 201 is not.
  • each of the traffic signals (4) (in Figure 1) sends out data regarding its location (as translated to the Figure 2 orientation of the present invention).
  • the traffic signal identity data can also be sent. This later type of information is helpful when dealing in highly congested areas where the traffic signal transceivers (5) are arranged to send a variety of different acknowledgment and informative signals as to be explained infra.
  • the traffic signal for transceivers (5) are preferably controlled by a traffic signal control device 6. This device can control the operation of a plurality of traffic signals, for one or a plurality of intersections.
  • the control device (6) also controls the transceivers to operate in a manner so that the preprogrammed location data of all traffic signals under the control device control are transmitted as indicated at step 201.
  • the control device will also be used to control other operations of the traffic signal transceivers (5), as is explained infra.
  • step 202 the traffic signal location information is received by any emergency vehicle (2) within range of the traffic signal transceiver (5).
  • the location information of the traffic signal location has already been translated into the orientation of Figure 2 so that the location information can be fed directly to display 100 (as depicted in Figure 3).
  • display 100 can be labeled to reflect the direction orientation of Figure 2.
  • the display can also be programmed to depict the location of traffic signals (4), the changing positions of other emergency vehicles (2), and the position as well as direction of travel of the emergency vehicle in which the particular display is mounted.
  • Each of the emergency vehicles (2) transmits its identification code and directional information so as to be received by traffic signals (4) that are within the range (step 206) and by other emergency vehicles (2) that are within range (step 205).
  • transmission of the emergency vehicle (2) identity code receives that of the directional information so that the microprocessors controlling other emergency vehicle transceivers and traffic signal transceivers can take appropriate action in processing this data (at steps 207 and 208, respectively).
  • a single frequency and/or mode of transmission is preferably used by the emergency vehicles (2) for transmitting directional and I.D. data.
  • Any type of electromagnetic radiation or any type of wave configuration, modulation, encoding and/or pulsing can be used to carry out this aspect of the present invention.
  • digital transmissions of various types such as those used to exchange handshake codes in cellular telephone systems, can also be used.
  • highly complex forms of communication such as cellular digital packet data
  • the power level, mode of transmission and frequency will all be constrained by the system configuration, including the number of traffic lights within a particular area of a particular size, the traffic density, expected number of emergency vehicles equipped with the present invention and existing traffic coordination schemes.
  • transmission patterns (3) (such as shown in Figure 1) will be used. While a 10° radiation pattern has been previously suggested, it should be understood that the transmission pattern may be varied over a wide range, from approximately 5° to 360°.
  • the transmission pattern will be determined by the system operator, based upon existing traffic configurations and density. Likewise the range of the transmission (and it's accompanying power level) will also be determined to some extent by the density of traffic and traffic signals, as well as the general street configuration. As previously stated, the additional constraints of FCC rules and municipal ordinance rules will also be applied.
  • the system of the present invention is sufficiently flexible to be adapted to almost any traffic pattern or configuration in a wide range of environments while still maintaining the basic components that distinguish it from the conventional technology.
  • a key aspect of the present invention is the reception by other emergency vehicles (2) of the identity codes and directional data of any emergency vehicle within range and equipped with the present invention.
  • This data is processed (step 207) in a manner well-known in the display art so that a vector (such as 7,8 in Figure 3) is generated on display (100). This is done for every emergency vehicle in range so that the number of vectors are generated by display (100) if other emergency vehicles are in range.
  • step 207 can easily be supplemented by the generation of a vector representing the travel of the emergency vehicle in which the display 100 is contained. While this additional feature is not necessary for the operation of the present invention, it can greatly help the vehicle operator easily ascertain where his vehicle is with respect to the vector representing other vehicles.
  • the directional information from each of the other emergency vehicles (2) is compared to that of the emergency vehicle receiving the data, and the operation of Equation #1 (in Figure 4) is carried out to provide the relative angles between direction of movement of the receiving emergency vehicle and any other emergency vehicles within its range.
  • Equation #1 The display of relative directional vectors to that of the receiving emergency vehicle constitutes the key component for collision avoidance.
  • This process is simplified through the use of Equation #1 in the system emergency vehicle.
  • the calculations using Equation #1 are carried out by any number of system controllers that are suitably programmed for arithmetic computation.
  • Such controllers are preferably constituted by the controllers used to control cellular telephones and similar transceivers.
  • controllers are preferably constituted by the controllers used to control cellular telephones and similar transceivers.
  • controllers are preferably constituted by the controllers used to control cellular telephones and similar transceivers.
  • more powerful controllers are generally used in the control of displays, such as (100).
  • the programming necessary to carry out all of the aforementioned processes are well within the skill of those programming microprocessors and similar equipment, and need no further elaboration for purposes of understanding the present invention.
  • Another ancillary feature of the present invention is the additional programming of the controller that handles the emergency vehicle display and transceivers so that the display is immediately cleared of any vehicles that are behind the path of travel of the emergency vehicle receiving the data.
  • the automatic reset of the display is carried out at step 211, and can be facilitated in a number of different ways.
  • the simplest and least expensive way is through the use of forward-looking narrow-beam transmission patterns for each of the emergency vehicles. Once vehicles having such transmission patterns pass each other, transmissions can no longer be detected by those vehicles. Accordingly, indications of such vehicles will be removed from the display.
  • narrow-beamed transmission patterns are not always used in the operation of the present invention. Accordingly, other techniques must be used.
  • One variation is the use of signal strength calculations.
  • the controller of the display and transceiver in emergency vehicles can be programmed so that signals failing to maintain predetermined parameters will cause the controller to immediately wipe any indication corresponding to these emergency vehicles from display.
  • More complex programming can be used to carry out algorithms that allow tracking of emergency vehicles running parallel to the receiving emergency vehicle, as well as those that have passed behind the receiving emergency vehicle.
  • Selection of the operating parameters as well as the algorithms for determining elimination of directional display vectors includes techniques found in the cellular telephone systems. Any number of these techniques can be used to effect reset step 211.
  • An ancillary, but very useful, component of the present invention is the preemption of traffic signals to favor the movement of emergency vehicle 2 through a particular traffic signal with a minimum of wasted time.
  • the identity and directional information of any emergency vehicles (2) within range of a particular traffic signal (4) is received.
  • the signals from all the emergency vehicles are all presumed to be requests for preemption of traffic signal control so as to favor a particular emergency vehicle passing quickly through the intersection controlled by the traffic signal.
  • a selection process at step 208 is carried out.
  • this selection is based upon received signal strength, where the emergency vehicle (2) having the strongest signal strength as received by the traffic signal (4), is given priority by the traffic signal control device (6).
  • This operation of necessity, must be automatic and relatively simple.
  • the traffic signal is controlled to allow the selected emergency vehicle (2) to pass through the intersection without being stopped or slowed by a red light.
  • the selection process is carried out on the basis of selecting between signal strengths of a plurality of emergency vehicle (2) signals, choosing the strongest.
  • other parameters can be used to select the most appropriate emergency vehicle for preemption of traffic signal control.
  • Preemption of traffic signal control is carried out at step 210, overriding the normal traffic light sequence as controlled by traffic signal control device 6.
  • traffic signal (4) is controlled so that passage through the intersection controlled by the traffic signal is facilitated for emergency vehicle (2) (the selected emergency vehicle).
  • emergency vehicle (2) the selected emergency vehicle
  • the traffic signal controller be capable of identifying the direction of travel of the selected emergency vehicle.
  • the traffic signal controller can be the normal control device (6) or an additional controller preferably included as transceiver (5). In either case the function of this controller must encompass the identification and travel vector of the selected emergency vehicle.
  • the transceiver (5) at the traffic signal begins to broadcast a signal indicative of the preemption by the selected emergency vehicle (step 212).
  • This signal is preferably broadcast in a 360 D radiation pattern, and uses a second frequency and/or transmission mode from that originally used by the emergency vehicles when transmitting their identification and direction signals at step 204. This second frequency and/or transmission mode is also different from that used when the locations of the traffic signals are broadcast at step 201.
  • the broadcast generated at step 212 contains the identification of the selected emergency vehicle (2).
  • the broadcast signal identifying the selected emergency vehicle (2) is received by the other emergency vehicles (step 213).
  • the data broadcast at step 212 is processed for display.
  • a display would modify the existing display vector for the selected EV. to indicate that this particular emergency vehicle had priority, and that the subject traffic signal would be controlled so as to allow the selected emergency vehicle to move easily through the intersection controlled by the traffic signal.
  • the modification to the display can be done in any appropriate manner, such as changing the color of the display vector corresponding to the selected emergency vehicle, or by intermittent display (flashing) of the vector corresponding to the selected emergency vehicle.
  • the radical change in display (step 217) would indicate to the operators of the non-selected emergency vehicles, as well as the operator of the selected emergency vehicle that a particular emergency vehicle had preempted the control of the traffic signal so that the light would be green in favor of the selected emergency vehicle.
  • the reset operation as step 219 does this.
  • the means for determining that emergency vehicle vectors or traffic signals are no longer relevant to a particular emergency vehicle would be contained in the standard control circuitry normally used for cellular telephone systems.
  • the decision to delete part of a display could be handled in the same manner as used by a cellular equipment when determining which base station should be selected. While this is normally done on the basis of received signal strength (at the cellular mobile unit) there are a number of different techniques and algorithms that can be used to select the most appropriate base station. These same techniques can be applied to determine when a traffic signal is no longer relevant or when the direction vectors of other emergency vehicles are no longer relevant to a particular emergency vehicle. As previously indicated, the use of tight directional transmission patterns also facilitates this decision making process by removing transmission patterns of irrelevant emergency vehicles from the range of other emergency vehicles and traffic signals.
  • a similar process can be carried out at step 214, where determination is made at the preempted traffic signal that the selected emergency vehicle has passed through the intersection.
  • step 218 An extra feature that can be added to the system of the present invention is the operation of step 218.
  • the traffic signal transceiver 5 broadcasts the signal indicative that the original preemption by the now departed selected emergency vehicle has been revoked, and that the system for that traffic signal has now reverted to its initial state.
  • This signal can be broadcast on the same frequency and/or transmission as the broadcast announcing the original preemption.
  • the reversion signal can remain the same for each reversion.
  • the signaling protocols for the present invention remain as simple as possible.
  • the flexibility in the various signal-handling techniques used to facilitate the present invention is provided by techniques currently used in the cellular telephone art.
  • the selection of the most appropriate emergency vehicle to preempt normal traffic signal control can utilize all the techniques used in cellular telephone systems for selecting between the most appropriate base stations to be used.
  • various location techniques used by both cellular telephone systems and in the more-precise global positioning systems can be used to provide a display of not only direction vectors for moving vehicles but also precise locations of those vehicles with respect to each other and the various traffic signals equipped with the present invention.
  • the present invention is sufficiently flexible to operate in virtually any type of traffic environment. While a number of embodiments of the present invention have been described by way of example, the present invention is not limited thereto.
EP01979327A 2001-10-01 2001-10-01 Systeme anticollision et de blocage de feux de signalisation pour vehicules d'urgence Expired - Lifetime EP1440425B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2001/030520 WO2003030124A1 (fr) 2000-01-26 2001-10-01 Systeme anticollision et de blocage de feux de signalisation pour vehicules d'urgence

Publications (3)

Publication Number Publication Date
EP1440425A1 true EP1440425A1 (fr) 2004-07-28
EP1440425A4 EP1440425A4 (fr) 2005-06-08
EP1440425B1 EP1440425B1 (fr) 2006-12-13

Family

ID=32505151

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01979327A Expired - Lifetime EP1440425B1 (fr) 2001-10-01 2001-10-01 Systeme anticollision et de blocage de feux de signalisation pour vehicules d'urgence

Country Status (4)

Country Link
EP (1) EP1440425B1 (fr)
AT (1) ATE348380T1 (fr)
CA (1) CA2462103C (fr)
DE (1) DE60125249D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106652501A (zh) * 2017-01-10 2017-05-10 邱向东 一种救援车辆灯控路口自动识别放行系统及其放行方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008010816A1 (de) * 2008-02-23 2009-08-27 Meyer, Rüdiger System zur Warnung von Verkehrsteilnehmern vor herannahenden Fahrzeugen im Sondereinsatz
JP7077616B2 (ja) * 2017-12-28 2022-05-31 トヨタ自動車株式会社 表示制御装置および表示制御方法
US10192433B1 (en) * 2018-02-07 2019-01-29 Delphi Technologies, Llc Traffic control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997868A (en) * 1973-02-20 1976-12-14 Ribnick Gerson D Emergency vehicle warning system
US5572201A (en) * 1994-08-05 1996-11-05 Federal Signal Corporation Alerting device and system for abnormal situations
US5926113A (en) * 1995-05-05 1999-07-20 L & H Company, Inc. Automatic determination of traffic signal preemption using differential GPS
US6087961A (en) * 1999-10-22 2000-07-11 Daimlerchrysler Corporation Directional warning system for detecting emergency vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997868A (en) * 1973-02-20 1976-12-14 Ribnick Gerson D Emergency vehicle warning system
US5572201A (en) * 1994-08-05 1996-11-05 Federal Signal Corporation Alerting device and system for abnormal situations
US5926113A (en) * 1995-05-05 1999-07-20 L & H Company, Inc. Automatic determination of traffic signal preemption using differential GPS
US6087961A (en) * 1999-10-22 2000-07-11 Daimlerchrysler Corporation Directional warning system for detecting emergency vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO03030124A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106652501A (zh) * 2017-01-10 2017-05-10 邱向东 一种救援车辆灯控路口自动识别放行系统及其放行方法

Also Published As

Publication number Publication date
CA2462103C (fr) 2009-09-15
EP1440425A4 (fr) 2005-06-08
ATE348380T1 (de) 2007-01-15
CA2462103A1 (fr) 2003-04-10
EP1440425B1 (fr) 2006-12-13
DE60125249D1 (de) 2007-01-25

Similar Documents

Publication Publication Date Title
US6326903B1 (en) Emergency vehicle traffic signal pre-emption and collision avoidance system
CN101299301B (zh) 具有集成数字地图的慢速或停止车辆的提前顾问
US5289182A (en) Electronic anti-collison device carried on board a vehicle
US6940422B1 (en) Emergency vehicle traffic signal preemption system
US7099774B2 (en) GPS based vehicle warning and location system
US7382274B1 (en) Vehicle interaction communication system
US7099776B2 (en) GPS-based vehicle warning and location system and method
US6630892B1 (en) Danger warning system
US20020102961A1 (en) Emergency vehicle warning system
KR20150029471A (ko) 차량의 추월 위험 경고 장치 및 방법
US20210049909A1 (en) System for communication of hazardous vehicle and road conditions
GB2431761A (en) Method for alerting vehicles to a hazard using vehicle to vehicle communications.
KR20010067134A (ko) 긴급차량 우선제어 기능을 갖는 차량 통행 지원장치
WO2004047047A1 (fr) Procédé et système de prévention des collisions de la route
US6232889B1 (en) System and method for signal light preemption and vehicle tracking
US6850170B2 (en) On-board vehicle system and method for receiving and indicating driving-related signals
US20050035878A1 (en) Early warning system for approaching emergency vehicle
US20040155795A1 (en) Systems and methods for motor vehicle-based emergency/hazard detection
JP2016173652A (ja) 車載端末装置及び歩車間通信システム及び軌跡表示方法
JP4082346B2 (ja) 車々間通信装置
CA2462103C (fr) Systeme anticollision et de blocage de feux de signalisation pour vehicules d'urgence
US20020175829A1 (en) System and method for warning of an upcoming precautionary zone
JPH1125391A (ja) 交通信号警告システム
US20190236945A1 (en) Vehicle Alarm System, Alarm Device and Alarm Method Thereof
JP4429436B2 (ja) 交通制御システム

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

A4 Supplementary search report drawn up and despatched

Effective date: 20050422

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 08G 1/087 B

Ipc: 7G 08G 1/16 B

Ipc: 7G 08G 1/0965 A

17Q First examination report despatched

Effective date: 20050630

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061213

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60125249

Country of ref document: DE

Date of ref document: 20070125

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070514

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180926

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001