EP1731422A1 - Aerial refueling system - Google Patents

Aerial refueling system Download PDF

Info

Publication number
EP1731422A1
EP1731422A1 EP20060253010 EP06253010A EP1731422A1 EP 1731422 A1 EP1731422 A1 EP 1731422A1 EP 20060253010 EP20060253010 EP 20060253010 EP 06253010 A EP06253010 A EP 06253010A EP 1731422 A1 EP1731422 A1 EP 1731422A1
Authority
EP
European Patent Office
Prior art keywords
fuel
refueling
tank
wing
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20060253010
Other languages
German (de)
French (fr)
Other versions
EP1731422B1 (en
Inventor
Theron L. Cutler
Mark A. Shelly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36955378&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1731422(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Boeing Co filed Critical Boeing Co
Publication of EP1731422A1 publication Critical patent/EP1731422A1/en
Application granted granted Critical
Publication of EP1731422B1 publication Critical patent/EP1731422B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D39/00Refuelling during flight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/4673Plural tanks or compartments with parallel flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/4673Plural tanks or compartments with parallel flow
    • Y10T137/4857With manifold or grouped outlets

Definitions

  • the present invention relates in general to refueling aircraft and more specifically to a refueling system functionally installable on a plurality of refueling aircraft platforms.
  • Aircraft in flight are commonly refueled from a refueling aircraft.
  • the refueling aircraft is typically provided with a boom mechanism or a flexible hose which trails behind the aircraft and physically makes a connection to the aircraft to be refueled.
  • Common refueling aircraft have a plurality of wing fuel tanks and a central wing tank.
  • Auxiliary fuel tanks can also be provided within or proximate to a fuselage of the aircraft. Fuel is commonly transferred to the boom or hose via a single wall header which is isolable by one or more shut-off valves.
  • Common refueling systems include pumps to pressurize the fuel for transfer from one or more of the tanks, and valves which are controlled between an open and closed condition by simple on-off switches normally positioned on a refueling system panel and manually selected by a trained refueling operator.
  • refueling systems require the refueling operator within the refueling aircraft to visually monitor flow and pressure indicators and communicate to the receiving aircraft whose operator/pilot can monitor fuel tank levels.
  • the refueling operator is responsible to manually initiate and shut down the flow of fuel. Inadvertent disconnect of the refueling boom or hose can therefore occur before the receiving aircraft receives a full fuel load if an excess number of fuel transfer pumps are operated or if a pressure spike occurs.
  • Some systems provide automatic disconnect of the refueling boom or hose upon reaching a predetermined fuel over-pressure condition. Because of the use of manual monitoring and manual shut-off of fuel flow, operation of these refueling systems also can result in overfilling of the receiving aircraft fuel tanks and subsequent relief valve discharge of fuel.
  • a fuel tank is positioned in at least an aircraft wing to store fuel.
  • At least two fuel pumps operate to transfer the fuel from the tank to a remotely located refueling connection.
  • At least one electrically controlled valve provides each of an open position permitting fuel flow and a closed position isolating fuel flow between the tank and the refueling connection.
  • a computer system automatically varies operation of any quantity of the fuel pumps and controls the electrically controlled valve between the open and closed positions during fuel transfer to the refueling connection.
  • the system further includes double wall fuel pipe manifolds in manned spaces of the aircraft.
  • An outer wall of the manifolds contains fuel escaping due to a rupture in the inner wall.
  • the cavity between the inner and outer walls is directed to un-manned spaces such as a fuel tank, or outside of a pressure hull of the aircraft.
  • the computer system automatically operates a predetermined quantity of the pumps based on input of a predetermined aircraft type to be refueled.
  • the system is further operable to open or close selected isolation valves and energize one or more of the pumps to automatically balance a fuel volume in each of a plurality of tanks of the aircraft, thereby controlling wing bending forces resulting from fuel in at least a fuel tank in each of the wings or a center of gravity of the aircraft.
  • the computer system uses signals from each of a pressure transducer and a flow meter to determine when to energize selected pumps or when to open or shut selected valves.
  • a method for operating an aircraft refueling system is provided.
  • the air refueling system of the present invention offers several advantages.
  • a computer system automatically controls the selection and operation of any number of pumps during fuel transfer, eliminating the need to manually monitor fuel flow and pressure and manually adjust the number of operating pumps.
  • Electrically operated valves are also provided which are automatically controlled by the computer system, for automatically isolating or opening one or more flow paths.
  • the ability to manually control the loading of fuel or moving fuel between tanks using the pumps is also an advantageous feature of the air refueling system.
  • Fuel can be directed to/from any tank individually or simultaneously.
  • Reverse air refueling operation of the tanker aircraft can also be accomplished via manual control of valves and pumps while in receiver mode.
  • Reverse air refueling through a boom of another aircraft can also be accomplished in receiver mode.
  • an aerial refueling system (ARS) of the present invention can be installed or backfitted into a plurality of refueling or tanker aircraft designs, including but not limited to the Boeing 767, Boeing 757, KC-135 and/or KC-10 aircraft.
  • ARS aerial refueling system
  • the present application refers in general to installation in the Boeing 767, including structure and equipment common to that aircraft.
  • ARS 10 is mounted on a tanker aircraft 12 having a fuselage 14, a port wing 16 and a starboard wing 18.
  • ARS 10 includes a receptacle 20 such as a universal aerial refueling receptacle slipway installation which can either receive or transfer fuel.
  • Receptacle 20 is connected to a refueling manifold 22 which generally transfers fuel into or out of a plurality of tanks and directs the fuel to a refueling boom and/or each of a plurality of refueling hoses.
  • a plurality of fuel tanks are provided on tanker aircraft 12 including a forward auxiliary fuel tank 24, a center wing tank 26 separated by a front spar 28 from forward auxiliary fuel tank 24.
  • a rear auxiliary fuel tank 30 is separated from center wing tank 26 by a rear spar 32.
  • Each of the port and starboard wings 16, 18 include a port wing tank 34 and a starboard wing tank 36, respectively.
  • Fuel from any of the tanks of tanker aircraft 12 can be transferred to a refueling boom 38, a refueling hose assembly 40, or one of a first or second wing mounted aerial refueling pod 42, 44.
  • ARS 10 further includes a computer system 46.
  • Computer system 46 and associated software automatically direct the transfer of fuel from or into any of the fuel tanks and from or to any of the refueling boom 38, refueling hose assembly 40 and/or first or second wing mounted aerial refueling pods 42, 44. All valves and pumps associated with ARS 10 are also automatically controlled during normal operation using computer system 46. Computer system 46 therefore eliminates the need for manual control of any of the features of ARS 10 during normal fuel transfer.
  • refueling boom 38 is generally positioned and extendable from a rear of tanker aircraft 12, and receptacle 20 is generally positioned forward of port and starboard wings 16, 18.
  • Forward and rear as used herein therefore refer generally to a forward end of tanker aircraft 12 and an aft end of tanker aircraft 12 respectively.
  • a double-wall manifold 48 is connected to receptacle 20 forming part of refueling manifold 22.
  • Double-wall manifold 48 extends rearward toward a tee 50.
  • a single-wall manifold 52 extends from a double wall branch of tee 50 as double-wall manifold 48 enters forward auxiliary fuel tank 24. It is noted that double-wall manifolds are used in ARS 10 to preclude catastrophic rupture of a fuel line within a manned space of tanker aircraft 12 from disbursing fuel into the manned spaces.
  • single wall manifolds or headers are used within tanks and in non-manned spaces of tanker aircraft 12 for ARS 10.
  • Single-wall manifold 52 is connected to each of a first and second hydraulically driven pump 54, 56.
  • Each of first and second hydraulically driven pumps 54, 56 are powered by a hydraulically driven motor.
  • First and second hydraulically driven pumps 54, 56 are operated either singly or in unison to transfer fuel from forward auxiliary fuel tank 24 into refueling manifold 22.
  • a branch header 58 connected to single-wall manifold 52 includes a normally closed DC motor operated isolation valve 60 having a float 62. Isolation valve 60 is provided to fill forward auxiliary fuel tank 24. Isolation valve 60 is normally controlled by computer system 46 to open or close.
  • float 62 In the event that fuel in forward auxiliary fuel tank 24 reaches a predetermined level, float 62 is actuated by the level of fuel which mechanically shuts isolation valve 60, regardless of the electrical signal provided from computer system 46 to operate the DC motor of isolation valve 60. Float 62 therefore provides a mechanical override to ensure that forward auxiliary fuel tank 24 is not over-pressurized during filling operations.
  • a normally open DC motor operated isolation valve 66 is provided immediately proximate to front spar 28 and within center wing tank 26, to isolate single-wall manifold 64.
  • center wing tank 26 which are used to pump fuel out of center wing tank 26. These include each of a third, fourth, fifth and sixth hydraulically driven pumps 68, 70, 72 and 74. Each of the pumps 68 through 74 discharge into a common header 76 which is also a single-wall header.
  • Common header 76 connects via a connector 78 to each of a pump discharge header 80, isolated within center wing tank 26 by a normally open DC motor operated isolation valve 82, (similar to isolation valve 66) and a common wing tank connecting header 84.
  • Common wing tank connecting header 84 permits flow between port and starboard wing tanks 34, 36 and center wing tank 26.
  • Isolation valve 82 is positioned within center wing tank 26 and proximate to rear spar 32 to isolate pump discharge header 80.
  • pump discharge header 80 passes through rear spar 32
  • pump discharge header 80 is converted to a double-wall manifold 86.
  • a double-wall tee 88 is provided in double-wall manifold 86 having a double-wall branch 90 connected to rear auxiliary fuel tank 30.
  • double-wall branch 90 is converted to a single-wall header 92.
  • Single-wall header 92 is connected to each of a seventh and an eighth hydraulically driven fuel pump 94, 96.
  • Hydraulically driven pumps 94, 96 are similar in design and operation to each of hydraulically driven pumps 54, 56 and 68 through 74.
  • Hydraulically driven pumps 94, 96 are used to discharge fuel from rear auxiliary fuel tank 30 into double-wall manifold 86 which forms a continuous flow path with refueling manifold 22.
  • a branch header 98 is connected to single-wall header 92 and is isolated by a normally closed DC motor operated isolation valve 100.
  • Isolation valve 100 similar to isolation valve 60, is used to fill rear auxiliary fuel tank 30. Also similar to isolation valve 60, isolation valve 100 is provided with a float 102 serving a similar function which will therefore not be further discussed.
  • double-wall manifold 86 further includes a fuel flow meter 104 and a pressure transducer 106.
  • Fuel flow meter 104 is provided to electrically identify to computer system 46 the approximate flow rate of fuel through double-wall manifold 86.
  • the output signal of fuel flow meter 104 is also used by computer system 46 to identify when additional ones of the hydraulically driven pumps in the appropriate tank are operated.
  • An additional or second flow meter (not shown), similar to flow meter 104, can be positioned in double-wall manifold 48 between tee 50 and 28 front spar 28 to improve flow measurement and determine a flow from forward auxiliary tank 24.
  • Pressure transducer 106 is provided to identify a pressure differential with fuel flowing in double-wall manifold 86 whose electrical output signal can be used to close a normally open DC motor operated isolation valve 108. Pressure transducer 106 provides electrical signals to control the position of isolation valve 108 if pressure in a single-wall boom supply header 112 exceeds a predetermined value.
  • a fuel pressure regulator 110 is also provided downstream of isolation valve 108. Pressure regulator 110 normally maintains a predetermined pressure in supply header 112.
  • double-wall boom manifold 86 is converted to single-wall boom supply header 112 as double-wall boom manifold 86 passes through an aircraft pressure hull 114.
  • Single-wall boom supply header 112 is connected to refueling boom 38 which is extended or retracted through aircraft outer aft skin 115 of tanker aircraft 12.
  • Double-wall manifold 116 branches off of double-wall manifold 86.
  • Double-wall manifold 116 connects to a hose reel enclosure 119 which contains refueling hose assembly 40.
  • a normally closed DC motor operated isolation valve 118 isolates a single-wall header 117 from double-wall manifold 116.
  • a hose reel control motor 120 is used to operate refueling hose assembly 40 for extending or retracting the associated refueling hose.
  • a double-wall manifold 122 isolated by a normally closed DC solenoid operated isolation valve 124. Isolation valve 124 is opened by computer system 46 after operation of refueling boom 38.
  • the purpose for double-wall manifold 122 and isolation valve 124 is to permit back flow of fuel to center wing tank 26 which is necessary when refueling boom 38, which is filled with fuel, is retracted into tanker aircraft 12. The excess volume of fuel within the boom supply header 112 is thereby allowed to flow back into center wing tank 26 through double-wall manifold 122.
  • a single-wall header 126 isolated by a normally closed DC solenoid operated isolation valve 128 is provided in hose reel enclosure 119 connected to single-wall header 117.
  • Isolation valve 128 is therefore automatically opened by computer system 46 when refueling hose assembly 40 is retracted.
  • ARS 10 associated with port wing 16 are shown. Because the portions of ARS 10 associated with starboard wing 18 are a mirror image of port wing 16, only the details of port wing 16 will be discussed.
  • a normally open DC motor operated isolation valve 130 is provided to isolate port wing tank 34 from center wing tank 26.
  • a normally closed DC motor operated isolation valve 134 is provided within center wing tank 26, adjacent port wing tank 34, to provide fuel inlet flow to fill center wing tank 26.
  • a float 136 similar in function to float 62 is provided to prevent over-filling center wing tank 26 by mechanically closing isolation valve 134.
  • a normally closed, DC motor operated drain isolation valve 138 is provided within port wing tank 34 and connected to a fuel tank drain riser 140. Fuel in port wing tank 34 is drained by gravity flow via fuel tank drain riser 140 into center wing tank 26.
  • Computer system 46 controls the open or shut position of isolation valve 138 (and its counter-part starboard wing tank isolation valve) to maintain a balanced volume of fuel in each of the port and starboard wing tanks 34, 36. Computations performed by computer system 46 are therefore used to determine the open or shut position of isolation valve 138.
  • a pair of first and second wing tank fill isolation valves 141, 142 are each normally closed, DC motor operated valves.
  • First and second wing tank fill isolation valves 141, 142 are provided to fill port wing tank 34.
  • a pair of valves is used for redundancy.
  • First and second floats 144, 146 are provided for each of first and second wing tank fill isolation valves 141, 142 respectively, operating similar to float 62, to prevent overfill or over-pressurization of port wing tank 34.
  • Each of first and second wing tank fill isolation valves 141, 142 are connected by piping into wing fuel manifold 132.
  • a normally closed fuel pod isolation valve 148 (and a similar counter-part in starboard wing tank 36) is provided to isolate first wing mounted aerial refueling pod 42 (or second wing mounted aerial refueling pod 44).
  • Fuel pod isolation valve 148 is controlled by a DC motor 150 which in turn is controlled by computer system 46. Isolation valve 148 is opened when fuel is transferred using first wing mounted aerial refueling pod 42.
  • First wing mounted aerial refueling pod 42 (and its counter-part second wing mounted aerial refueling pod 44 on starboard wing 18) each have a turbine 152 which rotates a ram air turbine assembly 154.
  • Ram air turbine assembly 154 provides additional power to operate a hose reel motor 156 and also as necessary to boost the fluid pressure in the hose as it extends from a hose reel 158.
  • a common refueling hose connector 160 is provided at a distal end of the hose extended by hose reel 158 to connect to an aircraft to be refueled.
  • a fuel jettison line 162 is therefore provided which is connected into wing fuel manifold 132 for discharging excess fuel during this operation.
  • a normally closed DC motor operated isolation valve 164 is provided to permit fuel discharge via fuel jettison line 162. Isolation valve 164 is similarly controlled by computer system 46 and can also be manually selected (for example by a switch at a refueling panel, not shown) to open for this operation.
  • ARS 10 is capable of receiving a maximum fuel load from a KC-10, KC-135, or Boeing 767 Tanker Transport. A minimum on-load rate of 900 gpm is available using current air refueling procedures.
  • ARS 10 uses a Universal Aerial Refueling Receptacle Slipway Installation (UARRSI), designated as receptacle 20, located on the fuselage 14. The five inch shrouded or double wall manifold 48 is routed from receptacle 20 to the ground refueling manifold inside the forward auxiliary tank 24.
  • UARRSI Universal Aerial Refueling Receptacle Slipway Installation
  • ARS 10 The ability to manually control the loading of fuel or moving fuel between tanks using hydraulically driven pumps is an advantageous feature of ARS 10.
  • Fuel can also be directed to/from any tank individually or simultaneously.
  • Reverse air refueling operation of the tanker aircraft can also be accomplished via manual control of valves and pumps while in a "receiver mode".
  • Reverse air refueling through a boom of another aircraft can also be accomplished in receiver mode.
  • the wing isolation valves and fuel level control valves must be manually closed via ARS 10, meaning a switch for each of the valves is manually thrown to shut the valves, over-riding computer control of these valves.
  • the pumps must also be manually operated via ARS 10, meaning a switch for each of the pumps is manually thrown to actuate or shut off the pump, over-riding computer control of the pumps.
  • the gravity drain portion of ARS 10 allows fuel to be transferred between the main port and starboard wing tanks 34, 36 and the center wing tank 26.
  • the 767 aircraft refueling system uses for example a 3 inch manifold penetrating a rib, and a line mounted butterfly valve to control the flow.
  • An actuator for the line mounted butterfly valve is mounted on rear spar 32 using an ITT Corporation adapter and motor.
  • a shaft with U-joints connects the adapter to the valve body.
  • An uptumed end of the manifold, fuel tank drain riser 140 which acts as a standpipe, limiting the amount of fuel that can be drained from any individual wing tank.
  • the wing isolation valve(s) 130 is a normally open valve that is closed in the event of a catastrophic failure of any portion of the wing fuel manifold 132.
  • Isolation valve 130 is for example, a 3 inch valve installed in the wing fuel manifold 132 acting as a ground refuel/pod supply manifold.
  • An actuator for isolation valve 130 (not shown) is mounted on the rear spar 32 also using an ITT Corporation adapter and DC motor.
  • a shaft with U-joints connects the adapter to the valve body.
  • the manifold provides support for the valve, thus no additional brackets are needed.
  • the same three inch valve design is used in both gravity drain and wing isolation applications. This valve is commonly used in the same application (wing isolation) on the KC-135 refueling aircraft.
  • the ITT adapter and motor is similar to that used on the 767 fuel jettison system.
  • a "core" ARS 10 refueling system includes the hydraulically driven refueling pumps and associated manifolds and valves.
  • the placement of the center wing tank pumps 68-74 permit the center wing tank 26 to be pumped down to a reserve volume of approximately 600 gallons.
  • the manifold sizes used are 3, 4 and 5 inch OD, and made for example of welded aluminum piping.
  • the double-wall manifolds are disclosed in United States Patent 6,848,720 , commonly owned by the assignee of the present invention, the subject matter of which is incorporated herein by reference.
  • the manifolds are typically attached to aircraft structure via tie rods and/or brackets. Exemplary manifold end connections are Wiggins AW2020 series, or similar designed flanged connections.
  • the core system extends forward to where the receiver manifolds attach and aft to where the boom manifolds attach.
  • the core system can also interconnect with a "green" aircraft ground refueling manifold.
  • the drain isolation valves 138 are installed in a span-wise beam. These valves permit a greater volume of fuel to flow to the center wing tank pumps than the aircraft structure would normally allow. Drain isolation valves 138 direct one-way flow toward the aft end of center wing tank 26 to preclude the fuel from loading the front spar 28 in a 9g forward event.
  • UARRSI Universal Aerial Refueling Slipway Installation
  • receptacle 20 is secured via tool located fasteners in a pressure box located in the upper part of the 767, in section 41.
  • An electrical actuator (not shown) is installed aft of the receptacle pressure box and is connected to the receptacle.
  • a seal (not shown) is installed on an actuator shaft where it passes through the pressure box.
  • a manual override cable (not shown) is routed parallel to the manifold down to an access panel above where the manifold penetrates the main deck.
  • the receptacle 20 further includes both hydraulic and electrical systems.
  • a drain tube is connected to the bottom of the pressure box and is routed to the lower lobe and connected to a drain mast.
  • a pressure disconnect transducer (not shown) is installed in the manifold immediately down-stream of receptacle 20. ARS 10 also controls the disconnect transducer.
  • ARS 10 further permits tanker aircraft 12 to be refueled while in the air.
  • An interconnect manifold installed as part of the core fuel system allows pressurized fuel to enter a separate ground refuel system from the ARS 10 system.
  • This pressurized fuel can come from the receptacle 20 or from other tanks such as forward and/or rear auxiliary fuel tanks 24, 30 using the hydraulically driven pumps in the tanks.
  • Common header 76 is for example a 5 inch OD pipe which interfaces the core fuel system in the center wing tank 26. Common header 76 routes forward through the span-wise beams to the front spar isolation valve 66. Front spar isolation valve 66 is a 5 inch valve with an actuator installed on the front spar 28 outside the center wing tank 26. Common header 76 passes through the front spar 28 and becomes for example 5 inch shrouded or double-wall manifold 48. Double-wall manifold 48 traverses on the 767 aircraft to the left or port side of tanker aircraft 12 and turns forward and attaches to aircraft stanchions. Double-wall manifold 48 then routes through a lower cargo compartment along the stanchions until it reaches the electrical bay.
  • Double-wall manifold 48 then passes through a fitting in the main deck floor and up into section 41. Double-wall manifold 48 then routes up a side of the fuselage 14 and traverses forward to the receptacle 20 and probe connections. Double-wall manifold 48 in section 41 is supported for example by tie rods.
  • ARS 10 When acting as a receiver system, ARS 10 also provides redundant shutoff capability to the existing fuel level control valves.
  • the existing level control valves are replaced with new level control valves, identified as isolation valves 141, 142 that include provisions for attaching a pilot control line.
  • Level control/isolation valves 141, 142 are otherwise identical to the existing valves in every other way.
  • the pilot flow which is normally retumed to the associated port or starboard wing tank 34, 36 is routed to a pilot valve, identified as first and second floats 144, 146 via a control line. In flight, the first and second floats 144, 146 serve as a redundant shutoff for the fuel level control valves, isolation valves 141, 142.
  • each isolation valve 141, 142 is returned to its associated wing tank 34, 36 and operates normally as long as the first and/or second floats 144, 146 are open.
  • Ground refueling orifice tubes are also replaced with units previously designed for right hand fill optioned aircraft. This permits equal filling of port and starboard wing tanks 34, 36 in flight.
  • the first and second floats 144, 146 are installed at a level in port and starboard wing tanks 34, 36 above a two percent (2%) ullage space to prevent activation when tanker aircraft 12 is on the ground.
  • fuel quantity indication system FQIS
  • Fuel will fill the port or starboard wing tank 34, 36 to the level of the first and/or second floats 144, 146. Fuel will then mechanically close first and/or second floats 144, 146 regardless of the electrical signal directing the position of level control/isolation valves 141, 142.
  • ARS 10 incorporates a built-in test before each air refueling operation.
  • the system uses a pre-check of a solenoid connected to a ground refuel manifold to direct fuel to the float line.
  • the fill rate from the pre-check valve is higher than the drain rate of the float line causing the float to rise. This causes the fuel level control/isolation valve to close.
  • ARS 10 detects the un-commanded valve closure thus confirming the redundant shutoff system is functional.
  • ARS 10 supply fuel to the wing mounted aerial refueling pods 42, 44.
  • ARS 10 can also open an existing fuel jettison manifold.
  • fuel is pumped from the center wing tank 26 through common header 76 into the common wing tank connecting header 84 (part of the core fuel system).
  • An articulated duct allows movement between single wall boom supply header 112 and aircraft structure, single wall boom supply header 112 then travels outside the skin, while inside a boom fairing, to a boom flexible interconnect and then to the boom 38 itself.
  • the solid state pressure transducer 106 is supplied for example by Kulite Semiconductor Corporation and is installed in the flow path of boom manifold 86.
  • Fuel pressure regulator 110 is installed in boom manifold 86 aft of pressure transducer 106 and isolation valve 108.
  • Fuel pressure regulator 110 is a mechanical device that limits the fluid pressure in refueling boom 38 to approximately 65 psig.
  • Fuel pressure regulator 110 operates by sensing a differential pressure and uses this differential pressure to operate a flow control valve (not shown) positioned inside fuel pressure regulator 110.
  • ARS 10 also includes an aerial refueling leak detection system, which provides both active and passive fuel leak systems to mitigate failures. This system portion meets FAA regulations.
  • the aerial refuel manifold leak detection system is an active, redundant system designed to provide the aircrew real-time detection of a contained catastrophic leak.
  • the system also provides a passive leak detection system for pre and post flight ground checks of smaller leaks as well as troubleshooting.
  • the refueling manifold 22 is double walled within the pressure vessel.
  • Pressure activated switches (not shown) are installed on the outer manifold and react to pressure changes in interstitial spaces between the tubes of the double wall manifolds.
  • the switches are set to 30 ⁇ 5 psig. Pressures above this trigger the leak detection system.
  • the outer manifold is also designed to operate at full system pressure.
  • Each isolated section of the refueling manifold (four to six manifold sections) includes two switches for redundancy.
  • the passive portion of the leak detection system includes a series of drains (not shown) connected to the interstitial spaces in the refueling manifold.
  • the drains are connected to the bottoms of each isolated section and run to overboard drains near the bottom of fuselage 14. These drains are checked pre and post flight.
  • the drains have visual indicators at the manifolds to aid in trouble shooting if a leak is detected at the fuselage drains.
  • Each isolated section of the refueling manifold 22 (four to six manifold sections) will drain at the lowest ground attitude point.
  • the ARS 10 system is separate from and can stand alone from the aircraft fuel system and may be operated at all stages of flight within the flight envelope.
  • the ARS 10 operation is designed to reduce crew workload and makes mission controls and displays available to both pilots and the mission systems operator(s).
  • the 767 Tanker ARS 10 system is capable of the following performance:
  • Two wing mounted refuelling pods offload simultaneously at rates of 400 gallons per minute minimum at 50 psig continuously.
  • System performance for other aircraft and modified 767 aircraft can vary from the values given above, depending on the piping size(s), pump characteristics, valve designs, and the like selected by the designer.
  • ARS 10 can operate any one or a combination including up to all four fuel pumps in center wing tank 26.
  • a seven (7) second (maximum) delay is incorporated into the system between the start of each successive pump.
  • Each pump has a three (3) second start-up time to minimize fuel pressure transient loads on both the tanker aircraft 12 and receiver fuel system. This is a mechanical limit and is not software controlled.
  • ARS 10 will command a pump on and wait up to seven seconds for an indication (via pressure switch on the pump). The next pump in line is then commanded on upon closure of the pressure switch which could be in as little as three (3) seconds. Should ARS 10 fail to receive a closed indication signal within seven seconds, the pump in question is flagged as failed and the next pump selected.
  • the ARS 10 system also selects an appropriate number of operating pumps for a specific aircraft to be refueled.
  • the fuel off-load is sequenced to keep tanker aircraft 12 with a predetermined center of gravity (CG) envelope.
  • CG center of gravity
  • the AR pumps and tank levels are controlled to preclude tanker aircraft 12 from being put into an out of CG condition during air refueling operations.
  • the system architecture enables all aircraft fuel to be available for offload (except for reserve fuel) with no degradation to offload rate throughout the range of tanker fuel loads.
  • ARS 10 uses for example hydraulically driven Argo-Tech 6161-27 refueling pumps, four in center wing tank 26 to pump fuel from the center and wing mains and two in each of the auxiliary tank systems.
  • a flame arrestor (not shown) is installed in the inlet to meet FAA requirements.
  • ARS 10 commands the fuel pumps on only after a "contact made” signal is received. This signal is acquired from either the boom or from the pod/hose and drogue unit (HDU). The signal from the boom is sent as long as the boom is plugged into a receptacle. The signal from the pod or HDU is sent as long as the receiver is in the proper fuel range. Any time a contact made signal is lost, all of the fuel pumps are shut down. In the case of the Boom or HDU, the boom fuel return valve and manifold pressure relief valves also open.
  • the fuel pumps of the forward and rear auxiliary fuel tanks 24, 30 discharge directly to the refueling manifold 22. Fuel is therefore not dumped into center wing tank 26. Center wing tank fuel is also discharged directly to refueling manifold 22. Fuel from the wing tanks 34, 36 is gravity drained to the center wing tank 26 and the pumped into the refueling manifold 22. Fuel may be directed from the refueling manifold 22 into the common wing tank connecting header 84 from any tank (wing fuel still must be drained into the center tank first).
  • ARS 10 seeks to maintain a pressure of 60 psig downstream of the fuel pressure regulator 110 to limit surge pressures independent of the number of pumps required by a specific receiver type. If the pressure upstream of the fuel pressure regulator 110 exceeds 73 psig for 30 seconds, ARS 10 will shut down a fuel pump. ARS 10 will restart a pump only if the system pressure drops back below 50 psig for 30 seconds.
  • the gravity drain system allows fuel from the port and starboard wing tanks 34, 36 to be drained into the center wing tank 26. Stand pipes prevent the wings from being drained below a predetermined value.
  • ARS 10 commands the gravity drain isolation valves open any time the required offload exceeds the fuel available in the center wing tank and the auxiliary tanks are empty. The system seeks to maintain an appropriate fuel volume in each wing tank to minimize wing bending loads.
  • the air refueling system of the present invention offers several advantages.
  • a computer system automatically controls the selection and operation of any number of pumps during fuel transfer, eliminating the need to manually monitor fuel flow and pressure and manually adjust the number of operating pumps.
  • Electrically operated valves are also provided which are automatically controlled by the computer system, for automatically isolating or opening one or more flow paths.
  • the ability to manually control the loading of fuel or moving fuel between tanks using the pumps is also an advantageous feature of ARS 10.
  • Fuel can be directed to/from any tank individually or simultaneously.
  • Reverse air refueling operation of the tanker aircraft can also be accomplished via manual control of valves and pumps while in receiver mode.
  • Reverse air refueling through a receptacle of another aircraft can also be accomplished in receiver mode.

Abstract

An aircraft aerial refueling system includes a fuel tank positioned in at least an aircraft wing (34,36) to store fuel. At least two fuel pumps operate to transfer the fuel from the tank to a remotely located refueling connection (38). At least one electrically controlled valve provides each of an open position permitting fuel flow and a closed position isolating fuel flow between the tank and the refueling connection. A computer system (46) automatically varies operation of any quantity of the fuel pumps and controls the electrically controlled valve between the open and closed positions during fuel transfer to the refueling connection. The system also includes double wall fuel pipe manifolds (22) in manned spaces of the aircraft.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 60/689,666, filed on June 10, 2005 . The present application is generally related to subject matter disclosed in co-filed applications: "Shrouded Body Flow Meter Assembly", U.S. Provisional Application 60/689,677, filed on June 10, 2005 ; "Shrouded Valve Apparatus And Related Methods", U.S. Utility Application No. 11/150,853, filed on June 10, 2005 ; "Redundant Seal Fitting - Fluid Carrying Apparatus", (Boeing Docket No. 05-0564); "Surge Pressure Reducing Hose Assembly", (Boeing Docket No. 05-0565); "Manifold Mounting - Load Carrying Apparatus, Infinitely Adjustable", (Boeing Docket No. 05-0566); and "Ball Joint Assembly - Fluid Conducting Apparatus, Fully Articulating", (Boeing Docket No. 05-0564). The disclosures of the above applications are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates in general to refueling aircraft and more specifically to a refueling system functionally installable on a plurality of refueling aircraft platforms.
  • BACKGROUND OF THE INVENTION
  • Aircraft in flight are commonly refueled from a refueling aircraft. The refueling aircraft is typically provided with a boom mechanism or a flexible hose which trails behind the aircraft and physically makes a connection to the aircraft to be refueled. Common refueling aircraft have a plurality of wing fuel tanks and a central wing tank. Auxiliary fuel tanks can also be provided within or proximate to a fuselage of the aircraft. Fuel is commonly transferred to the boom or hose via a single wall header which is isolable by one or more shut-off valves. Common refueling systems include pumps to pressurize the fuel for transfer from one or more of the tanks, and valves which are controlled between an open and closed condition by simple on-off switches normally positioned on a refueling system panel and manually selected by a trained refueling operator.
  • Common refueling systems require the refueling operator within the refueling aircraft to visually monitor flow and pressure indicators and communicate to the receiving aircraft whose operator/pilot can monitor fuel tank levels. The refueling operator is responsible to manually initiate and shut down the flow of fuel. Inadvertent disconnect of the refueling boom or hose can therefore occur before the receiving aircraft receives a full fuel load if an excess number of fuel transfer pumps are operated or if a pressure spike occurs. Some systems provide automatic disconnect of the refueling boom or hose upon reaching a predetermined fuel over-pressure condition. Because of the use of manual monitoring and manual shut-off of fuel flow, operation of these refueling systems also can result in overfilling of the receiving aircraft fuel tanks and subsequent relief valve discharge of fuel.
  • SUMMARY OF THE INVENTION
  • According to one embodiment of an air refueling system of the present invention, a fuel tank is positioned in at least an aircraft wing to store fuel. At least two fuel pumps operate to transfer the fuel from the tank to a remotely located refueling connection. At least one electrically controlled valve provides each of an open position permitting fuel flow and a closed position isolating fuel flow between the tank and the refueling connection. A computer system automatically varies operation of any quantity of the fuel pumps and controls the electrically controlled valve between the open and closed positions during fuel transfer to the refueling connection.
  • According to another embodiment, the system further includes double wall fuel pipe manifolds in manned spaces of the aircraft. An outer wall of the manifolds contains fuel escaping due to a rupture in the inner wall. The cavity between the inner and outer walls is directed to un-manned spaces such as a fuel tank, or outside of a pressure hull of the aircraft.
  • According to still another embodiment, the computer system automatically operates a predetermined quantity of the pumps based on input of a predetermined aircraft type to be refueled. The system is further operable to open or close selected isolation valves and energize one or more of the pumps to automatically balance a fuel volume in each of a plurality of tanks of the aircraft, thereby controlling wing bending forces resulting from fuel in at least a fuel tank in each of the wings or a center of gravity of the aircraft. The computer system uses signals from each of a pressure transducer and a flow meter to determine when to energize selected pumps or when to open or shut selected valves.
  • According to yet a further embodiment, a method for operating an aircraft refueling system is provided.
  • The air refueling system of the present invention offers several advantages. A computer system automatically controls the selection and operation of any number of pumps during fuel transfer, eliminating the need to manually monitor fuel flow and pressure and manually adjust the number of operating pumps. Electrically operated valves are also provided which are automatically controlled by the computer system, for automatically isolating or opening one or more flow paths. The ability to manually control the loading of fuel or moving fuel between tanks using the pumps is also an advantageous feature of the air refueling system. Fuel can be directed to/from any tank individually or simultaneously. Reverse air refueling operation of the tanker aircraft can also be accomplished via manual control of valves and pumps while in receiver mode. Reverse air refueling through a boom of another aircraft can also be accomplished in receiver mode.
  • The features, functions, and advantages can be achieved independently in various embodiments of the present inventions or may be combined in yet other embodiments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
    • Figure 1 is a plan view of an aircraft having an air refueling system of the present invention;
    • Figure 2 is a plan view of the forward and central tank sections of the air refueling system shown in Figure 1;
    • Figure 3 is a is a plan view of the aft tank and fuselage sections of the air refueling system shown in Figure 1; and
    • Figure 4 is a plan view of the port wing of Figure 1 showing exemplary wing system details for an aircraft refueling system of the present invention.
    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
  • It is initially noted that an aerial refueling system (ARS) of the present invention can be installed or backfitted into a plurality of refueling or tanker aircraft designs, including but not limited to the Boeing 767, Boeing 757, KC-135 and/or KC-10 aircraft. For exemplary purposes only, the present application refers in general to installation in the Boeing 767, including structure and equipment common to that aircraft.
  • According to one preferred embodiment of the present invention and referring generally to Figure 1, ARS 10 is mounted on a tanker aircraft 12 having a fuselage 14, a port wing 16 and a starboard wing 18. ARS 10 includes a receptacle 20 such as a universal aerial refueling receptacle slipway installation which can either receive or transfer fuel. Receptacle 20 is connected to a refueling manifold 22 which generally transfers fuel into or out of a plurality of tanks and directs the fuel to a refueling boom and/or each of a plurality of refueling hoses.
  • A plurality of fuel tanks are provided on tanker aircraft 12 including a forward auxiliary fuel tank 24, a center wing tank 26 separated by a front spar 28 from forward auxiliary fuel tank 24. A rear auxiliary fuel tank 30 is separated from center wing tank 26 by a rear spar 32. Each of the port and starboard wings 16, 18 include a port wing tank 34 and a starboard wing tank 36, respectively. Fuel from any of the tanks of tanker aircraft 12 can be transferred to a refueling boom 38, a refueling hose assembly 40, or one of a first or second wing mounted aerial refueling pod 42, 44.
  • ARS 10 further includes a computer system 46. Computer system 46 and associated software automatically direct the transfer of fuel from or into any of the fuel tanks and from or to any of the refueling boom 38, refueling hose assembly 40 and/or first or second wing mounted aerial refueling pods 42, 44. All valves and pumps associated with ARS 10 are also automatically controlled during normal operation using computer system 46. Computer system 46 therefore eliminates the need for manual control of any of the features of ARS 10 during normal fuel transfer.
  • For reference, refueling boom 38 is generally positioned and extendable from a rear of tanker aircraft 12, and receptacle 20 is generally positioned forward of port and starboard wings 16, 18. Forward and rear as used herein therefore refer generally to a forward end of tanker aircraft 12 and an aft end of tanker aircraft 12 respectively.
  • As best seen in reference to Figure 2, a double-wall manifold 48 is connected to receptacle 20 forming part of refueling manifold 22. Double-wall manifold 48 extends rearward toward a tee 50. A single-wall manifold 52 extends from a double wall branch of tee 50 as double-wall manifold 48 enters forward auxiliary fuel tank 24. It is noted that double-wall manifolds are used in ARS 10 to preclude catastrophic rupture of a fuel line within a manned space of tanker aircraft 12 from disbursing fuel into the manned spaces. Generally, single wall manifolds or headers are used within tanks and in non-manned spaces of tanker aircraft 12 for ARS 10. Single-wall manifold 52 is connected to each of a first and second hydraulically driven pump 54, 56. Each of first and second hydraulically driven pumps 54, 56 are powered by a hydraulically driven motor. First and second hydraulically driven pumps 54, 56 are operated either singly or in unison to transfer fuel from forward auxiliary fuel tank 24 into refueling manifold 22. A branch header 58 connected to single-wall manifold 52 includes a normally closed DC motor operated isolation valve 60 having a float 62. Isolation valve 60 is provided to fill forward auxiliary fuel tank 24. Isolation valve 60 is normally controlled by computer system 46 to open or close. In the event that fuel in forward auxiliary fuel tank 24 reaches a predetermined level, float 62 is actuated by the level of fuel which mechanically shuts isolation valve 60, regardless of the electrical signal provided from computer system 46 to operate the DC motor of isolation valve 60. Float 62 therefore provides a mechanical override to ensure that forward auxiliary fuel tank 24 is not over-pressurized during filling operations.
  • As double-wall manifold 48 crosses front spar 28 it is converted to a single-wall manifold 64 within center wing tank 26. Any fuel which discharges from the inner wall of double-wall manifold 48 upon catastrophic rupture is therefore discharged into center wing tank 26. A normally open DC motor operated isolation valve 66 is provided immediately proximate to front spar 28 and within center wing tank 26, to isolate single-wall manifold 64.
  • Four hydraulically driven pumps are provided within center wing tank 26 which are used to pump fuel out of center wing tank 26. These include each of a third, fourth, fifth and sixth hydraulically driven pumps 68, 70, 72 and 74. Each of the pumps 68 through 74 discharge into a common header 76 which is also a single-wall header. Common header 76 connects via a connector 78 to each of a pump discharge header 80, isolated within center wing tank 26 by a normally open DC motor operated isolation valve 82, (similar to isolation valve 66) and a common wing tank connecting header 84. Common wing tank connecting header 84 permits flow between port and starboard wing tanks 34, 36 and center wing tank 26. Isolation valve 82 is positioned within center wing tank 26 and proximate to rear spar 32 to isolate pump discharge header 80.
  • Referring generally now to Figure 3, where pump discharge header 80 passes through rear spar 32, pump discharge header 80 is converted to a double-wall manifold 86. A double-wall tee 88 is provided in double-wall manifold 86 having a double-wall branch 90 connected to rear auxiliary fuel tank 30. Within rear auxiliary fuel tank 30 double-wall branch 90 is converted to a single-wall header 92. Single-wall header 92 is connected to each of a seventh and an eighth hydraulically driven fuel pump 94, 96. Hydraulically driven pumps 94, 96 are similar in design and operation to each of hydraulically driven pumps 54, 56 and 68 through 74. Hydraulically driven pumps 94, 96 are used to discharge fuel from rear auxiliary fuel tank 30 into double-wall manifold 86 which forms a continuous flow path with refueling manifold 22. A branch header 98 is connected to single-wall header 92 and is isolated by a normally closed DC motor operated isolation valve 100. Isolation valve 100, similar to isolation valve 60, is used to fill rear auxiliary fuel tank 30. Also similar to isolation valve 60, isolation valve 100 is provided with a float 102 serving a similar function which will therefore not be further discussed.
  • From tee 88, double-wall manifold 86 further includes a fuel flow meter 104 and a pressure transducer 106. Fuel flow meter 104 is provided to electrically identify to computer system 46 the approximate flow rate of fuel through double-wall manifold 86. The output signal of fuel flow meter 104 is also used by computer system 46 to identify when additional ones of the hydraulically driven pumps in the appropriate tank are operated. An additional or second flow meter (not shown), similar to flow meter 104, can be positioned in double-wall manifold 48 between tee 50 and 28 front spar 28 to improve flow measurement and determine a flow from forward auxiliary tank 24. Pressure transducer 106 is provided to identify a pressure differential with fuel flowing in double-wall manifold 86 whose electrical output signal can be used to close a normally open DC motor operated isolation valve 108. Pressure transducer 106 provides electrical signals to control the position of isolation valve 108 if pressure in a single-wall boom supply header 112 exceeds a predetermined value. A fuel pressure regulator 110 is also provided downstream of isolation valve 108. Pressure regulator 110 normally maintains a predetermined pressure in supply header 112.
  • With continued reference to Figure 3, double-wall boom manifold 86 is converted to single-wall boom supply header 112 as double-wall boom manifold 86 passes through an aircraft pressure hull 114. Single-wall boom supply header 112 is connected to refueling boom 38 which is extended or retracted through aircraft outer aft skin 115 of tanker aircraft 12.
  • Between pressure transducer 106 and isolation valve 108, a double-wall manifold 116 branches off of double-wall manifold 86. Double-wall manifold 116 connects to a hose reel enclosure 119 which contains refueling hose assembly 40. Within the hose reel enclosure 119 a normally closed DC motor operated isolation valve 118 isolates a single-wall header 117 from double-wall manifold 116. A hose reel control motor 120 is used to operate refueling hose assembly 40 for extending or retracting the associated refueling hose.
  • Also provided within pressure hull 114 and connected to double-wall manifold 86 is a double-wall manifold 122 isolated by a normally closed DC solenoid operated isolation valve 124. Isolation valve 124 is opened by computer system 46 after operation of refueling boom 38. The purpose for double-wall manifold 122 and isolation valve 124 is to permit back flow of fuel to center wing tank 26 which is necessary when refueling boom 38, which is filled with fuel, is retracted into tanker aircraft 12. The excess volume of fuel within the boom supply header 112 is thereby allowed to flow back into center wing tank 26 through double-wall manifold 122. For similar purposes, a single-wall header 126 isolated by a normally closed DC solenoid operated isolation valve 128 is provided in hose reel enclosure 119 connected to single-wall header 117. When the hose of refueling hose assembly 40 is retracted, the excess fuel within the hose is allowed to transfer back through single-wall header 117 and into double-wall manifold 122 toward center wing tank 26. Isolation valve 128 is therefore automatically opened by computer system 46 when refueling hose assembly 40 is retracted.
  • Referring generally now to Figure 4, the portions of ARS 10 associated with port wing 16 are shown. Because the portions of ARS 10 associated with starboard wing 18 are a mirror image of port wing 16, only the details of port wing 16 will be discussed. From common wing tank connecting header 84 in center wing tank 26, a normally open DC motor operated isolation valve 130 is provided to isolate port wing tank 34 from center wing tank 26. A normally closed DC motor operated isolation valve 134 is provided within center wing tank 26, adjacent port wing tank 34, to provide fuel inlet flow to fill center wing tank 26. A float 136 similar in function to float 62 is provided to prevent over-filling center wing tank 26 by mechanically closing isolation valve 134. A normally closed, DC motor operated drain isolation valve 138 is provided within port wing tank 34 and connected to a fuel tank drain riser 140. Fuel in port wing tank 34 is drained by gravity flow via fuel tank drain riser 140 into center wing tank 26. Computer system 46 controls the open or shut position of isolation valve 138 (and its counter-part starboard wing tank isolation valve) to maintain a balanced volume of fuel in each of the port and starboard wing tanks 34, 36. Computations performed by computer system 46 are therefore used to determine the open or shut position of isolation valve 138.
  • A pair of first and second wing tank fill isolation valves 141, 142 are each normally closed, DC motor operated valves. First and second wing tank fill isolation valves 141, 142 are provided to fill port wing tank 34. A pair of valves is used for redundancy. First and second floats 144, 146 are provided for each of first and second wing tank fill isolation valves 141, 142 respectively, operating similar to float 62, to prevent overfill or over-pressurization of port wing tank 34. Each of first and second wing tank fill isolation valves 141, 142 are connected by piping into wing fuel manifold 132.
  • A normally closed fuel pod isolation valve 148 (and a similar counter-part in starboard wing tank 36) is provided to isolate first wing mounted aerial refueling pod 42 (or second wing mounted aerial refueling pod 44). Fuel pod isolation valve 148 is controlled by a DC motor 150 which in turn is controlled by computer system 46. Isolation valve 148 is opened when fuel is transferred using first wing mounted aerial refueling pod 42. First wing mounted aerial refueling pod 42 (and its counter-part second wing mounted aerial refueling pod 44 on starboard wing 18) each have a turbine 152 which rotates a ram air turbine assembly 154. Ram air turbine assembly 154 provides additional power to operate a hose reel motor 156 and also as necessary to boost the fluid pressure in the hose as it extends from a hose reel 158. A common refueling hose connector 160 is provided at a distal end of the hose extended by hose reel 158 to connect to an aircraft to be refueled.
  • In the event that tanker aircraft 12 needs to land before delivering its full load of fuel, fuel can be jettisoned to reduce the landing weight of tanker aircraft 12. A fuel jettison line 162 is therefore provided which is connected into wing fuel manifold 132 for discharging excess fuel during this operation. A normally closed DC motor operated isolation valve 164 is provided to permit fuel discharge via fuel jettison line 162. Isolation valve 164 is similarly controlled by computer system 46 and can also be manually selected (for example by a switch at a refueling panel, not shown) to open for this operation.
  • As noted herein, ARS 10 is capable of receiving a maximum fuel load from a KC-10, KC-135, or Boeing 767 Tanker Transport. A minimum on-load rate of 900 gpm is available using current air refueling procedures. ARS 10 uses a Universal Aerial Refueling Receptacle Slipway Installation (UARRSI), designated as receptacle 20, located on the fuselage 14. The five inch shrouded or double wall manifold 48 is routed from receptacle 20 to the ground refueling manifold inside the forward auxiliary tank 24.
  • The ability to manually control the loading of fuel or moving fuel between tanks using hydraulically driven pumps is an advantageous feature of ARS 10. Fuel can also be directed to/from any tank individually or simultaneously. Reverse air refueling operation of the tanker aircraft can also be accomplished via manual control of valves and pumps while in a "receiver mode". Reverse air refueling through a boom of another aircraft can also be accomplished in receiver mode. The wing isolation valves and fuel level control valves must be manually closed via ARS 10, meaning a switch for each of the valves is manually thrown to shut the valves, over-riding computer control of these valves. During reverse air refueling, the pumps must also be manually operated via ARS 10, meaning a switch for each of the pumps is manually thrown to actuate or shut off the pump, over-riding computer control of the pumps.
  • The gravity drain portion of ARS 10 allows fuel to be transferred between the main port and starboard wing tanks 34, 36 and the center wing tank 26. The 767 aircraft refueling system uses for example a 3 inch manifold penetrating a rib, and a line mounted butterfly valve to control the flow. An actuator for the line mounted butterfly valve is mounted on rear spar 32 using an ITT Corporation adapter and motor. A shaft with U-joints connects the adapter to the valve body. An uptumed end of the manifold, fuel tank drain riser 140, which acts as a standpipe, limiting the amount of fuel that can be drained from any individual wing tank.
  • The wing isolation valve(s) 130 is a normally open valve that is closed in the event of a catastrophic failure of any portion of the wing fuel manifold 132. Isolation valve 130 is for example, a 3 inch valve installed in the wing fuel manifold 132 acting as a ground refuel/pod supply manifold. An actuator for isolation valve 130 (not shown) is mounted on the rear spar 32 also using an ITT Corporation adapter and DC motor. A shaft with U-joints connects the adapter to the valve body. The manifold provides support for the valve, thus no additional brackets are needed. The same three inch valve design is used in both gravity drain and wing isolation applications. This valve is commonly used in the same application (wing isolation) on the KC-135 refueling aircraft. The ITT adapter and motor is similar to that used on the 767 fuel jettison system.
  • A "core" ARS 10 refueling system includes the hydraulically driven refueling pumps and associated manifolds and valves. The placement of the center wing tank pumps 68-74 permit the center wing tank 26 to be pumped down to a reserve volume of approximately 600 gallons. The manifold sizes used are 3, 4 and 5 inch OD, and made for example of welded aluminum piping. The double-wall manifolds are disclosed in United States Patent 6,848,720 , commonly owned by the assignee of the present invention, the subject matter of which is incorporated herein by reference. The manifolds are typically attached to aircraft structure via tie rods and/or brackets. Exemplary manifold end connections are Wiggins AW2020 series, or similar designed flanged connections. The core system extends forward to where the receiver manifolds attach and aft to where the boom manifolds attach. The core system can also interconnect with a "green" aircraft ground refueling manifold.
  • The drain isolation valves 138 are installed in a span-wise beam. These valves permit a greater volume of fuel to flow to the center wing tank pumps than the aircraft structure would normally allow. Drain isolation valves 138 direct one-way flow toward the aft end of center wing tank 26 to preclude the fuel from loading the front spar 28 in a 9g forward event.
  • The Universal Aerial Refueling Slipway Installation (UARRSI) or receptacle 20 is secured via tool located fasteners in a pressure box located in the upper part of the 767, in section 41. An electrical actuator (not shown) is installed aft of the receptacle pressure box and is connected to the receptacle. A seal (not shown) is installed on an actuator shaft where it passes through the pressure box. A manual override cable (not shown) is routed parallel to the manifold down to an access panel above where the manifold penetrates the main deck.
  • The receptacle 20 further includes both hydraulic and electrical systems. A drain tube is connected to the bottom of the pressure box and is routed to the lower lobe and connected to a drain mast. A pressure disconnect transducer (not shown) is installed in the manifold immediately down-stream of receptacle 20. ARS 10 also controls the disconnect transducer.
  • ARS 10 further permits tanker aircraft 12 to be refueled while in the air. An interconnect manifold installed as part of the core fuel system allows pressurized fuel to enter a separate ground refuel system from the ARS 10 system. This pressurized fuel can come from the receptacle 20 or from other tanks such as forward and/or rear auxiliary fuel tanks 24, 30 using the hydraulically driven pumps in the tanks.
  • Common header 76 is for example a 5 inch OD pipe which interfaces the core fuel system in the center wing tank 26. Common header 76 routes forward through the span-wise beams to the front spar isolation valve 66. Front spar isolation valve 66 is a 5 inch valve with an actuator installed on the front spar 28 outside the center wing tank 26. Common header 76 passes through the front spar 28 and becomes for example 5 inch shrouded or double-wall manifold 48. Double-wall manifold 48 traverses on the 767 aircraft to the left or port side of tanker aircraft 12 and turns forward and attaches to aircraft stanchions. Double-wall manifold 48 then routes through a lower cargo compartment along the stanchions until it reaches the electrical bay. Double-wall manifold 48 then passes through a fitting in the main deck floor and up into section 41. Double-wall manifold 48 then routes up a side of the fuselage 14 and traverses forward to the receptacle 20 and probe connections. Double-wall manifold 48 in section 41 is supported for example by tie rods.
  • When acting as a receiver system, ARS 10 also provides redundant shutoff capability to the existing fuel level control valves. The existing level control valves are replaced with new level control valves, identified as isolation valves 141, 142 that include provisions for attaching a pilot control line. Level control/ isolation valves 141, 142 are otherwise identical to the existing valves in every other way. The pilot flow, which is normally retumed to the associated port or starboard wing tank 34, 36 is routed to a pilot valve, identified as first and second floats 144, 146 via a control line. In flight, the first and second floats 144, 146 serve as a redundant shutoff for the fuel level control valves, isolation valves 141, 142. The pilot flow from each isolation valve 141, 142 is returned to its associated wing tank 34, 36 and operates normally as long as the first and/or second floats 144, 146 are open. Ground refueling orifice tubes (not shown) are also replaced with units previously designed for right hand fill optioned aircraft. This permits equal filling of port and starboard wing tanks 34, 36 in flight.
  • The first and second floats 144, 146 are installed at a level in port and starboard wing tanks 34, 36 above a two percent (2%) ullage space to prevent activation when tanker aircraft 12 is on the ground. In the event that the fuel quantity indication system (FQIS) does not shut off level control/ isolation valves 141, 142, fuel will fill the port or starboard wing tank 34, 36 to the level of the first and/or second floats 144, 146. Fuel will then mechanically close first and/or second floats 144, 146 regardless of the electrical signal directing the position of level control/ isolation valves 141, 142.
  • ARS 10 incorporates a built-in test before each air refueling operation. The system uses a pre-check of a solenoid connected to a ground refuel manifold to direct fuel to the float line. The fill rate from the pre-check valve is higher than the drain rate of the float line causing the float to rise. This causes the fuel level control/isolation valve to close. ARS 10 detects the un-commanded valve closure thus confirming the redundant shutoff system is functional.
  • The wing portions of ARS 10 supply fuel to the wing mounted aerial refueling pods 42, 44. ARS 10 can also open an existing fuel jettison manifold. To supply fuel to either of the refueling pods 42, 44, fuel is pumped from the center wing tank 26 through common header 76 into the common wing tank connecting header 84 (part of the core fuel system).
  • An articulated duct allows movement between single wall boom supply header 112 and aircraft structure, single wall boom supply header 112 then travels outside the skin, while inside a boom fairing, to a boom flexible interconnect and then to the boom 38 itself.
  • The solid state pressure transducer 106 is supplied for example by Kulite Semiconductor Corporation and is installed in the flow path of boom manifold 86. Fuel pressure regulator 110 is installed in boom manifold 86 aft of pressure transducer 106 and isolation valve 108. Fuel pressure regulator 110 is a mechanical device that limits the fluid pressure in refueling boom 38 to approximately 65 psig. Fuel pressure regulator 110 operates by sensing a differential pressure and uses this differential pressure to operate a flow control valve (not shown) positioned inside fuel pressure regulator 110.
  • ARS 10 also includes an aerial refueling leak detection system, which provides both active and passive fuel leak systems to mitigate failures. This system portion meets FAA regulations. The aerial refuel manifold leak detection system is an active, redundant system designed to provide the aircrew real-time detection of a contained catastrophic leak. The system also provides a passive leak detection system for pre and post flight ground checks of smaller leaks as well as troubleshooting.
  • For the active system, the refueling manifold 22 is double walled within the pressure vessel. Pressure activated switches (not shown) are installed on the outer manifold and react to pressure changes in interstitial spaces between the tubes of the double wall manifolds. A catastrophic leak of the inner manifold, caused by a ruptured tube or failed o-ring, causes the interstitial space to become pressurized during refueling operations. The switches are set to 30 ± 5 psig. Pressures above this trigger the leak detection system. The outer manifold is also designed to operate at full system pressure. Each isolated section of the refueling manifold (four to six manifold sections) includes two switches for redundancy.
  • The passive portion of the leak detection system includes a series of drains (not shown) connected to the interstitial spaces in the refueling manifold. The drains are connected to the bottoms of each isolated section and run to overboard drains near the bottom of fuselage 14. These drains are checked pre and post flight. The drains have visual indicators at the manifolds to aid in trouble shooting if a leak is detected at the fuselage drains. Each isolated section of the refueling manifold 22 (four to six manifold sections) will drain at the lowest ground attitude point.
  • The ARS 10 system is separate from and can stand alone from the aircraft fuel system and may be operated at all stages of flight within the flight envelope. The ARS 10 operation is designed to reduce crew workload and makes mission controls and displays available to both pilots and the mission systems operator(s).
  • For example only, the 767 Tanker ARS 10 system is capable of the following performance:
    • Boom offload rates of 900 gallons per minute minimum at 50 psig continuously;
    • Centerline hose and drogue offload rates of 600 gallons minimum per minute at 50 psig continuously; and
  • Two wing mounted refuelling pods offload simultaneously at rates of 400 gallons per minute minimum at 50 psig continuously.
  • System performance for other aircraft and modified 767 aircraft can vary from the values given above, depending on the piping size(s), pump characteristics, valve designs, and the like selected by the designer.
  • ARS 10 can operate any one or a combination including up to all four fuel pumps in center wing tank 26. A seven (7) second (maximum) delay is incorporated into the system between the start of each successive pump. Each pump has a three (3) second start-up time to minimize fuel pressure transient loads on both the tanker aircraft 12 and receiver fuel system. This is a mechanical limit and is not software controlled.
  • ARS 10 will command a pump on and wait up to seven seconds for an indication (via pressure switch on the pump). The next pump in line is then commanded on upon closure of the pressure switch which could be in as little as three (3) seconds. Should ARS 10 fail to receive a closed indication signal within seven seconds, the pump in question is flagged as failed and the next pump selected.
  • The ARS 10 system also selects an appropriate number of operating pumps for a specific aircraft to be refueled. The fuel off-load is sequenced to keep tanker aircraft 12 with a predetermined center of gravity (CG) envelope. The AR pumps and tank levels are controlled to preclude tanker aircraft 12 from being put into an out of CG condition during air refueling operations. The system architecture enables all aircraft fuel to be available for offload (except for reserve fuel) with no degradation to offload rate throughout the range of tanker fuel loads.
  • ARS 10 uses for example hydraulically driven Argo-Tech 6161-27 refueling pumps, four in center wing tank 26 to pump fuel from the center and wing mains and two in each of the auxiliary tank systems. A flame arrestor (not shown) is installed in the inlet to meet FAA requirements. ARS 10 commands the fuel pumps on only after a "contact made" signal is received. This signal is acquired from either the boom or from the pod/hose and drogue unit (HDU). The signal from the boom is sent as long as the boom is plugged into a receptacle. The signal from the pod or HDU is sent as long as the receiver is in the proper fuel range. Any time a contact made signal is lost, all of the fuel pumps are shut down. In the case of the Boom or HDU, the boom fuel return valve and manifold pressure relief valves also open.
  • The fuel pumps of the forward and rear auxiliary fuel tanks 24, 30 (body tanks) discharge directly to the refueling manifold 22. Fuel is therefore not dumped into center wing tank 26. Center wing tank fuel is also discharged directly to refueling manifold 22. Fuel from the wing tanks 34, 36 is gravity drained to the center wing tank 26 and the pumped into the refueling manifold 22. Fuel may be directed from the refueling manifold 22 into the common wing tank connecting header 84 from any tank (wing fuel still must be drained into the center tank first).
  • ARS 10 seeks to maintain a pressure of 60 psig downstream of the fuel pressure regulator 110 to limit surge pressures independent of the number of pumps required by a specific receiver type. If the pressure upstream of the fuel pressure regulator 110 exceeds 73 psig for 30 seconds, ARS 10 will shut down a fuel pump. ARS 10 will restart a pump only if the system pressure drops back below 50 psig for 30 seconds.
  • The gravity drain system allows fuel from the port and starboard wing tanks 34, 36 to be drained into the center wing tank 26. Stand pipes prevent the wings from being drained below a predetermined value. ARS 10 commands the gravity drain isolation valves open any time the required offload exceeds the fuel available in the center wing tank and the auxiliary tanks are empty. The system seeks to maintain an appropriate fuel volume in each wing tank to minimize wing bending loads.
  • The air refueling system of the present invention offers several advantages. A computer system automatically controls the selection and operation of any number of pumps during fuel transfer, eliminating the need to manually monitor fuel flow and pressure and manually adjust the number of operating pumps. Electrically operated valves are also provided which are automatically controlled by the computer system, for automatically isolating or opening one or more flow paths. The ability to manually control the loading of fuel or moving fuel between tanks using the pumps is also an advantageous feature of ARS 10. Fuel can be directed to/from any tank individually or simultaneously. Reverse air refueling operation of the tanker aircraft can also be accomplished via manual control of valves and pumps while in receiver mode. Reverse air refueling through a receptacle of another aircraft can also be accomplished in receiver mode.
  • While various preferred embodiments have been described, those skilled in the art will recognize modifications or variations which might be made without departing from the inventive concept. The examples illustrate the invention and are not intended to limit it. Therefore, the description and claims should be interpreted liberally with only such limitation as is necessary in view of the pertinent prior art.

Claims (36)

  1. An aerial refueling system for an aircraft, comprising:
    at least one fuel tank positioned in at least an aircraft wing operable to store a volume of fuel;
    a refueling connection remotely located from the at least one fuel tank;
    at least two fuel pumps operable to transfer the fuel from the at least one fuel tank to the remotely located refueling connection;
    at least one electrically controlled valve having each of an open position permitting fuel flow and a closed position isolating fuel flow between the tank and the refueling connection; and
    a computer system operable to automatically vary operation of any quantity of the fuel pumps and control the electrically controlled valve between one of the open and closed positions during transfer of the fuel to the refueling connection.
  2. The refueling system of Claim 1, wherein the refueling connection comprises:
    a refueling boom;
    a refueling hose assembly; and
    one of a first and second wing mounted aerial refueling pod.
  3. The refueling system of Claim 2, further comprising:
    a port wing including a port wing tank; and
    a starboard wing including a starboard wing tank;
    wherein the fuel from each of the port and starboard wing tanks is transferrable to at least one of the refueling boom, the refueling hose assembly, and one of the first and second wing mounted aerial refueling pods.
  4. The refueling system of Claim 3, wherein the at least one fuel tank further comprises:
    a forward auxiliary fuel tank;
    a center wing tank separated by a front spar from the forward auxiliary fuel tank; and
    a rear auxiliary fuel tank separated from the center wing tank by a rear spar;
    wherein the fuel from any of the forward auxiliary fuel tank, the center wing tank, and the rear auxiliary fuel tank is transferrable to the refueling connection.
  5. The refueling system of Claim 4, further comprising a predetermined aircraft type to be refueled enterable into the computer system, the computer system being in communication with a predetermined quantity of the pumps for automatic pump operation based on the predetermined aircraft type to be refueled.
  6. The refueling system of Claim 5, further comprising a fuel volume in each of the plurality of tanks operably used by the computer system to one of open and close selected ones of the isolation valves and energize at least one of the pumps to automatically balance the fuel volume about a center of gravity of the aircraft.
  7. The refueling system of Claim 5, further comprising a wing bending force resulting from the fuel volume in each of the port and starboard wings being controllable by the computer system.
  8. The refueling system of Claim 1, further comprising at least one double wall fuel pipe positioned in a manned space of the aircraft having an inner wall, an outer wall, and a cavity between the inner and outer walls, the outer wall operable to temporarily contain any portion of the fuel escaping through the inner wall.
  9. The refueling system of Claim 8, further comprising:
    a pressure transducer connected to the double wall fuel pipe;
    wherein a signal from the pressure transducer is used by the computer system to determine when to energize selected ones of the pumps and when to open or shut the at least one valve.
  10. The refueling system of Claim 9, further comprising:
    a normally open DC motor operated isolation valve positioned in the double wall fuel pipe;
    wherein an electrical output signal from the pressure transducer is operable to close the normally open DC motor operated isolation valve.
  11. The refueling system of Claim 10, further comprising a single wall boom supply header connected to the double wall fuel pipe, the electrical output signal from the pressure transducer being operable to control a position of the motor operated isolation valve if a pressure in the single-wall boom supply header exceeds a predetermined value.
  12. The refueling system of Claim 8, further comprising:
    a flow meter connected to the double wall fuel pipe operable to identify to the computer system an approximate flow rate of the fuel through the double wall fuel pipe; and
    a signal from the flow meter used by the computer system to determine when to energize selected ones of the pumps and when to open or shut the at least one valve.
  13. The refueling system of Claim 8, further comprising a fuel pressure regulator positioned in the double wall fuel pipe downstream of a predetermined isolation valve, wherein the fuel pressure regulator is operable to maintain a predetermined pressure in the system.
  14. An aircraft aerial refueling system, comprising:
    a wing tank positioned in an aircraft wing operable to store a fuel;
    at least two fuel pumps operable to transfer the fuel from the wing tank to a remotely located refueling connection;
    at least one electrically controlled valve operable to control flow of the fuel flow between the wing tank and the refueling connection;
    a computer system operable to automatically vary operation of any quantity of the fuel pumps and control the electrically controlled valve between one of an open and a closed position during transfer of the fuel to the refueling connection; and
    at least one double wall fuel pipe positioned in a manned space of the aircraft having an inner wall, an outer wall, and a cavity between the inner and outer walls, the outer wall operable to temporarily contain any portion of the fuel escaping through the inner wall.
  15. The system of Claim 14, further comprising a cavity between the inner and outer walls directed to an un-manned space.
  16. The system of Claim 15, wherein the un-manned space comprises a second fuel tank.
  17. The system of Claim 15, wherein the un-manned space comprises outside of a pressure hull of the aircraft.
  18. The system of Claim 14, further comprising:
    a center wing tank;
    a single wall wing fuel manifold connecting the center wing tank to the wing tank and further connected to the double wall fuel pipe; and
    a gravity induced drain riser connected to the single wall fuel manifold.
  19. The system of Claim 18, further comprising a motor operated isolation valve connected in the single wall fuel manifold and operable by the computer system to isolate the wing tank from the center wing tank.
  20. The system of Claim 19, further comprising:
    a wing tank fill isolation valve connected to the drain riser; and
    a float connected to the wing tank fill isolation valve operable by the computer system to prevent overfill and over-pressurization of the wing tank.
  21. A refueling aircraft, comprising:
    a plurality of fuel tanks each containing a fuel, including:
    a first wing tank and a second wing tank cross connected by a connecting header;
    a forward auxiliary fuel tank connected to the connecting header;
    a center wing tank connected to the connecting header and separated by a front spar from the forward auxiliary fuel tank; and
    a rear auxiliary fuel tank connected to the connecting header and separated from the center wing tank by a rear spar;
    a first double wall fuel pipe positioned proximate the forward auxiliary fuel tank space and connecting the forward auxiliary fuel tank to the connecting header;
    a second double wall fuel pipe positioned proximate the rear auxiliary fuel tank space and connecting the rear auxiliary fuel tank to the connecting header;
    a refueling connection remotely located from the plurality of fuel tanks; and
    a computer system operable to automatically control transfer of the fuel to the refueling connection.
  22. The refueling aircraft of Claim 21, further comprising at least two pumps operable to transfer the fuel from between a predetermined one of the plurality of tanks to the refueling connection.
  23. The refueling aircraft of Claim 22, further comprising a plurality of electrically controlled valves having each of an open position permitting fuel flow and a closed position isolating fuel flow between a predetermined one of the plurality of tanks and the refueling connection.
  24. The refueling aircraft of Claim 23, further comprising:
    a single wall manifold connecting the plurality of fuel tanks; and
    an individual one of the electrically controlled valves positioned to isolate each of the first and second double wall pipes;
    wherein the computer system is operable to vary operation of any quantity of the fuel pumps and control the electrically controlled valve between one of the open and closed positions.
  25. The refueling aircraft of Claim 21, wherein each of the first and second double wall fuel pipes comprises:
    an inner wall;
    an outer wall surrounding the inner wall, and
    a cavity between the inner and outer walls, the outer wall operable to temporarily contain any portion of the fuel escaping through the inner wall.
  26. The refueling aircraft of Claim 25, wherein any portion of the fuel in the cavity between the inner and outer walls is directed to an un-manned space.
  27. The refueling aircraft of Claim 21, wherein the fuel from each of the first and second wing tanks is transferable to each of a refueling boom, a refueling hose assembly, and one of a first and second wing mounted aerial refueling pods.
  28. The refueling aircraft of Claim 21, wherein the connecting header comprises a plurality of single wall manifolds, including:
    a first manifold connected to the first double wall fuel pipe at the front spar; and
    a second manifold connected to the second double wall fuel pipe at the rear spar.
  29. The refueling aircraft of Claim 28, wherein the plurality of single wall manifolds further comprises:
    a wing fuel manifold connected to each of the first and second wing tanks; and
    a supply header connected to the refueling connection.
  30. A method for operating an aircraft refueling system, the aircraft refueling system having a computer system, a plurality of fuel tanks containing a fuel, a plurality of fuel pumps, a plurality of motor operated valves, and at least one refueling connection, the method comprising:
    using the computer system to signal at least one of the motor operated valves to open;
    initiating a flow of the fuel to the at least one of the refueling connections using at least one of the pumps;
    sensing a flow condition of the fuel;
    signaling the flow condition to the computer system; and
    varying an operating quantity of the pumps in response to the flow condition.
  31. The method of Claim 30, further comprising connecting the plurality of fuel tanks using a single wall manifold by operation of first ones of the valves.
  32. The method of Claim 30, further comprising joining individual ones of the fuel tanks located in manned spaces of an aircraft to the single wall manifold using a double wall pipe by opening second ones of the valves.
  33. The method of Claim 30, further comprising connecting a flow meter to the computer system prior to the signaling step.
  34. The method of Claim 30, further comprising further comprising connecting a pressure transducer to the computer system prior to the signaling step.
  35. The method of Claim 30, further comprising shutting off the at least one of the pumps upon completion of a refueling operation.
  36. The method of Claim 30, further comprising controlling a center of gravity of the aircraft by transferring the fuel into select ones of the fuel tanks.
EP20060253010 2005-06-10 2006-06-12 Aerial refueling system Revoked EP1731422B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US68966605P 2005-06-10 2005-06-10
US11/313,190 US7458543B2 (en) 2005-06-10 2005-12-20 Aerial refueling system

Publications (2)

Publication Number Publication Date
EP1731422A1 true EP1731422A1 (en) 2006-12-13
EP1731422B1 EP1731422B1 (en) 2008-08-20

Family

ID=36955378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060253010 Revoked EP1731422B1 (en) 2005-06-10 2006-06-12 Aerial refueling system

Country Status (5)

Country Link
US (2) US7458543B2 (en)
EP (1) EP1731422B1 (en)
AT (1) ATE405489T1 (en)
DE (1) DE602006002315D1 (en)
ES (1) ES2312096T3 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7665479B2 (en) 2005-06-10 2010-02-23 The Boeing Company Aerial refueling system
EP2293982A1 (en) * 2008-01-28 2011-03-16 Sikorsky Aircraft Corporation Fuel jettison system
WO2012030444A1 (en) 2010-08-31 2012-03-08 The Boeing Company Aerial refueling boom nozzle with integral pressure regulation
EP2612815A3 (en) * 2011-09-11 2014-07-30 The Boeing Company Speed card-controlled override fuel pump assist field
US8844583B2 (en) 2010-07-29 2014-09-30 Airbus Operations Limited Refuel valve assembly and method for refuelling an aircraft
EP2517957A3 (en) * 2011-04-28 2015-12-16 Airbus Operations Limited Aircraft aerial refuelling system

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6889940B1 (en) * 2004-01-29 2005-05-10 The Boeing Company Auxiliary fuel tank systems for aircraft and methods for their manufacture and use
US7357149B2 (en) * 2004-01-29 2008-04-15 The Boeing Company Auxiliary fuel tank systems for aircraft and methods for their manufacture and use
US7051979B2 (en) * 2004-01-29 2006-05-30 The Boeing Company Auxiliary fuel tank systems for aircraft and methods for their manufacture and use
US9090354B2 (en) * 2006-03-02 2015-07-28 The Boeing Company System and method for identifying a receiving aircraft during airborne fueling
GB0606200D0 (en) * 2006-03-28 2006-05-10 Airbus Uk Ltd Aircraft refuelling system
US9000905B2 (en) 2006-08-21 2015-04-07 Nmhg Oregon, Llc Auxiliary fuel tank
DE102007011620B4 (en) * 2007-01-22 2012-11-08 Airbus Operations Gmbh Lining scaffolding for a plane
US7900333B2 (en) * 2007-04-26 2011-03-08 The Boeing Company Sealing bladderless system and method
US20090091126A1 (en) * 2007-10-04 2009-04-09 Carns James A Shrouded coupling assemblies for conduits
US9360144B2 (en) 2007-10-22 2016-06-07 The Boeing Company Conduit with joint covered by a boot
US7942452B2 (en) * 2007-11-20 2011-05-17 The Boeing Company Flange fitting with leak sensor port
JP2011507755A (en) * 2007-12-21 2011-03-10 ザ・ボーイング・カンパニー Aircraft command and control system
US8977528B2 (en) * 2009-04-27 2015-03-10 The Boeing Company Bonded rework simulation tool
US9108738B1 (en) * 2009-05-19 2015-08-18 The Boeing Company Apparatus for refueling aircraft
US8568545B2 (en) * 2009-06-16 2013-10-29 The Boeing Company Automated material removal in composite structures
DE102009029245B4 (en) 2009-09-07 2021-12-02 EUKLIT GmbH Aircraft tank
US20110084162A1 (en) * 2009-10-09 2011-04-14 Honeywell International Inc. Autonomous Payload Parsing Management System and Structure for an Unmanned Aerial Vehicle
DE102009055108B4 (en) 2009-12-21 2021-03-18 EUKLIT GmbH Tank with tubular wrapped film and process
US8342453B2 (en) * 2010-02-09 2013-01-01 Thunder Bay Aircraft Leasing Inc. System for airborne transport of flammable liquids
CA2693567C (en) 2010-02-16 2014-09-23 Environmental Refueling Systems Inc. Fuel delivery system and method
US8851424B2 (en) * 2010-05-06 2014-10-07 Embraer S.A. Systems and methods to provide compliance with structural load requirements for aircraft with additional fuel tankage
RU2563381C2 (en) * 2010-06-01 2015-09-20 Энтертекник Fuelling hardware and method of aircraft tanks refuelling
GB201012723D0 (en) * 2010-07-29 2010-09-15 Airbus Operations Ltd Improvements relating to venting gas from a tank
US8439311B2 (en) 2010-08-23 2013-05-14 The Boeing Company Aerial refueling boom and boom pivot
US9150310B1 (en) * 2010-09-10 2015-10-06 The Boeing Company Methods and systems for directing remote aerial refueling operations
EP2622255B1 (en) * 2010-09-30 2017-04-12 General Electric Company Cryogenic fuel storage system for an aircraft
US8979028B2 (en) * 2010-10-12 2015-03-17 Parker-Hannifin Corporation Anti-cross flow fuel vent system architecture
DE102010050000B4 (en) * 2010-11-02 2015-02-19 Airbus Defence and Space GmbH Fuel line in an aircraft
ES2397332B1 (en) * 2011-07-06 2014-09-02 Eads Construcciones Aeronauticas, S.A. CISTERNA PLANE WITH A FUEL SUPPLY DEVICE BY HOSE AND BASKET GENERATOR OF ELECTRICAL ENERGY
US8905356B2 (en) * 2011-07-06 2014-12-09 Eads Construcciones Aeronáuticas, S.A. Air to air refueling system with an autonomous electrical system
US9469410B2 (en) * 2011-07-22 2016-10-18 Carleton Life Support Systems Inc. Aerial refueling system, apparatus and methods
US9038955B2 (en) 2012-07-26 2015-05-26 Honda Patents & Technologies North America, Llc Fuel transfer system controlled by float valves
JP6131785B2 (en) * 2013-08-30 2017-05-24 株式会社Ihi Aircraft engine fuel supply system
US9656741B2 (en) * 2013-09-24 2017-05-23 The Boeing Company Control interface for leading and trailing edge devices
US9631744B2 (en) 2013-10-09 2017-04-25 Mide Technology Corporation Aerial refueling hose
EP2876052A1 (en) * 2013-11-25 2015-05-27 EADS Construcciones Aeronauticas S.A. A hose and drogue in-flight refueling system with an active fuel pressure control
US10137998B2 (en) * 2015-02-11 2018-11-27 Konstantinos Margetis System and apparatus for refueling aircraft from a watercraft
US10326980B2 (en) * 2016-02-04 2019-06-18 Simmonds Precision Products, Inc. Imaging system for fuel tank analysis
US10067515B2 (en) 2016-04-13 2018-09-04 The Boeing Company Receiver surge test tool assembly, system, and method
US10759649B2 (en) 2016-04-22 2020-09-01 American Energy Innovations, Llc System and method for automatic fueling of hydraulic fracturing and other oilfield equipment
US10882732B2 (en) 2016-04-22 2021-01-05 American Energy Innovations, Llc System and method for automatic fueling of hydraulic fracturing and other oilfield equipment
US10289126B2 (en) 2016-10-11 2019-05-14 Fuel Automation Station, LLC Mobile distribution station with guided wave radar fuel level sensors
US9790080B1 (en) 2016-10-11 2017-10-17 Fuel Automation Station, LLC Mobile distribution station with fail-safes
US10087065B2 (en) 2016-10-11 2018-10-02 Fuel Automation Station, LLC Mobile distribution station having sensor communication lines routed with hoses
US9586805B1 (en) 2016-10-11 2017-03-07 Fuel Automation Station, LLC Mobile distribution station with aisle walkway
US9815683B1 (en) 2016-10-11 2017-11-14 Fuel Automation Station, LLC Method and system for mobile distribution station
US10429857B2 (en) 2017-01-20 2019-10-01 The Boeing Company Aircraft refueling with sun glare prevention
US10633243B2 (en) 2017-02-24 2020-04-28 Fuel Automation Station, Llc. Mobile distribution station
US10150662B1 (en) 2017-10-27 2018-12-11 Fuel Automation Station, Llc. Mobile distribution station with additive injector
US10981665B2 (en) * 2018-01-08 2021-04-20 The Boeing Company System and method for aerial refueling door actuation
US10794522B2 (en) 2018-04-05 2020-10-06 The Boeing Company Flexible double walled hose connection
US10926996B2 (en) 2018-05-04 2021-02-23 Fuel Automation Station, Llc. Mobile distribution station having adjustable feed network
CA3051985C (en) 2018-08-24 2022-08-09 Fuel Automation Station, LLC Mobile distribution station having satellite dish
EP3715815B1 (en) * 2019-04-08 2023-03-29 Airbus Defence and Space, S.A.U. System and method for monitoring the degradation status of refueling hoses
US11691752B2 (en) 2019-10-15 2023-07-04 The Boeing Company Dual walled tube flexible joint seal systems and methods
US11142449B2 (en) 2020-01-02 2021-10-12 Fuel Automation Station, LLC Method and system for dispensing fuel using side-diverting fuel outlets
US11827421B2 (en) 2020-01-17 2023-11-28 Fuel Automation Station, LLC Fuel cap assembly with cylindrical coupler
US11867185B2 (en) * 2021-04-30 2024-01-09 Federal Industries, Inc. Fuel pump driven by a variable displacement motor for aerial refueling operation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297896A (en) * 1992-02-19 1994-03-29 Environ Products, Inc. Environmentally safe underground piping system
US6889940B1 (en) * 2004-01-29 2005-05-10 The Boeing Company Auxiliary fuel tank systems for aircraft and methods for their manufacture and use

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US724675A (en) * 1902-08-29 1903-04-07 William M Ferry Fluid-conducting pipe.
US1969430A (en) 1929-12-23 1934-08-07 Shinn Devices Corp Refueling equipment
GB374873A (en) 1931-03-11 1932-06-13 Richard Howard Halbeard Improvements in or relating to cisterns or other tanks
US2475635A (en) * 1945-01-08 1949-07-12 Elmer C Parsons Multiple conduit
US2557438A (en) * 1945-06-18 1951-06-19 Lockheed Aircraft Corp Fuel transfer system, including automatic and sequential selection of fuel tanks
US2585480A (en) 1946-07-02 1952-02-12 Makhonine Jean Device for changing the loading of aircraft wings
US2692102A (en) 1949-04-01 1954-10-19 Flight Refueling Ltd Apparatus for towing and refueling aircraft in flight
US2668066A (en) * 1951-02-10 1954-02-02 Berkeley Pump Company Coupling means for tubular casing
US2771090A (en) * 1951-10-12 1956-11-20 Flight Refueling Ltd Liquid flow control systems
US2767943A (en) * 1951-10-15 1956-10-23 Ii Raymond B Janney Air to air refueling of fighter aircraft
US2688066A (en) * 1953-07-22 1954-08-31 Kingsley A Doutt Hydraulic flash welder control
US2823880A (en) 1955-03-10 1958-02-18 Honeywell Regulator Co Aircraft fuel load center of gravity control means
US2926688A (en) * 1956-05-08 1960-03-01 Beech Aircraft Corp Precise control distribution of airplane fuel stores
US3008674A (en) * 1958-03-03 1961-11-14 Thomas E Abraham Aircraft in-flight refueling apparatus
US3275061A (en) * 1964-01-02 1966-09-27 Boeing Co Fuel feeding systems
US3279522A (en) * 1964-01-02 1966-10-18 Boeing Co Fuel feeding systems
US3181899A (en) * 1964-01-27 1965-05-04 Corning Glass Works Assembly for connecting pipe to an apertured tank
US3276468A (en) 1964-03-23 1966-10-04 Parker Hannifin Corp Fluid pumping system with auxiliary shut-off control responsive to overpressure
US3169667A (en) * 1964-08-10 1965-02-16 Richard T Headrick Aircraft fuel and defuel apparatus
US3374622A (en) * 1966-06-09 1968-03-26 Lucas Industries Ltd Fuel systems for gas turbine engines
GB1307671A (en) 1969-03-04 1973-02-21 Flight Refueling Ltd Hose reel mechanisms
US3669136A (en) 1969-03-25 1972-06-13 Siai Marchetti Spa Fuel delivery system for a plurality of aircraft engines
US3627239A (en) 1970-04-20 1971-12-14 Gen Electric Aircraft engine fuel system
US3782400A (en) * 1972-03-17 1974-01-01 Xar Ind Inc Valving system for supplying fuel to tanks and transferring fuel between tanks
US4090524A (en) 1974-02-11 1978-05-23 Aeroquip Corporation Frangible valved fitting
US3928903A (en) * 1975-01-29 1975-12-30 Atlantic Richfield Co Method of making a double-walled pipe assembly
US4038817A (en) * 1975-06-02 1977-08-02 General Electric Company Fuel jettison system
US4149739A (en) * 1977-03-18 1979-04-17 Summa Corporation Dual passage pipe for cycling water to an undersea mineral aggregate gathering apparatus
DE2744674A1 (en) 1977-10-04 1979-04-05 Wilhelm Schulz Sealed flanged pipe coupling - has sealing gasket with ring located between inner pipe and coupling holes or slots in flanges
IT8252814V0 (en) 1982-01-13 1982-01-13 Borletti Spa SEALING GROUP OF A TANK HOLE
AT391932B (en) 1983-10-31 1990-12-27 Wolf Erich M PIPELINE
US4609169A (en) 1984-08-14 1986-09-02 The United States Of America As Represented By The Secretary Of The Air Force Propellant tank resupply system
US4591115A (en) * 1984-10-18 1986-05-27 The United States Of America As Represented By The Secretary Of The Navy Automatic/manual fuel tank supply balance system
CH678221A5 (en) 1987-11-11 1991-08-15 Fischer Ag Georg
AU2991489A (en) 1988-02-19 1989-08-24 Whittaker Controls, Inc. Aerial refueling system
US5141178A (en) * 1988-02-19 1992-08-25 Whittaker Controls, Inc. Aerial refueling system
US4929000A (en) * 1988-12-02 1990-05-29 American Metal Products Company Multiple walled chimney
US4932609A (en) * 1989-02-27 1990-06-12 United Technologies Corporation Fuel transfer system for aircraft
GB2237251A (en) 1989-10-27 1991-05-01 Plessey Co Plc In-flight refueling apparatus
NO170650C (en) 1990-03-19 1992-11-11 Holta & Haaland As A clip
US5321945A (en) * 1990-04-02 1994-06-21 Honeywell Inc. Apparatus for controlling fuel transfers in a distributed fuel tank system
US5449203A (en) * 1991-04-04 1995-09-12 Sharp; Bruce R. Fittings for connection to double wall pipeline systems
US5326052A (en) 1991-10-02 1994-07-05 Enig Associates, Inc. Controllable hose-and-drogue in-flight refueling system
PL172670B1 (en) * 1992-10-17 1997-10-31 Uponor Ltd Branching pipe union
FR2705082B1 (en) 1993-05-12 1995-08-04 Aerospatiale In-flight refueling system.
US5449204A (en) * 1993-10-22 1995-09-12 Greene; Karen C. Double containment fitting
US5499656A (en) * 1993-12-23 1996-03-19 Hughes Aircraft Company Integrated storage and transfer system and method for spacecraft propulsion systems
EP0670264A1 (en) * 1994-03-02 1995-09-06 Daimler-Benz Aerospace Aktiengesellschaft Fuel delivery system
RU2142897C1 (en) 1994-08-19 1999-12-20 Анатолий Викторович Егоршев Tanker aeroplane
US5573206A (en) * 1994-08-19 1996-11-12 Able Corporation Hose and drogue boom refueling system, for aircraft
GB2298908A (en) 1995-03-15 1996-09-18 Ford Motor Co Fuel tank tubular fittings
US5785276A (en) * 1995-12-22 1998-07-28 The Boeing Company Actuated roll axis aerial refueling boom
WO1997033792A1 (en) 1996-03-15 1997-09-18 Tsoi, Ljudmila Alexandrovna Method of refuelling a cargo-carrying aircraft and a suitable refuelling system
US5810292A (en) * 1996-07-24 1998-09-22 Sargent Fletcher, Inc. Aerial refueling system with telescoping refueling probe
RU2104229C1 (en) 1996-08-19 1998-02-10 Государственное унитарное предприятие "Пилотажно-исследовательский центр" Aircraft in-flight fuelling system
DE59705705D1 (en) 1996-10-24 2002-01-17 Ila Ag EXHAUST PIPE FLUID FROM AN EXHAUST GAS PIPING SYSTEM, AND THIS PIPING SYSTEM
RU2111154C1 (en) 1997-06-11 1998-05-20 Виктор Александрович Бублик Device for check of aircraft in-flight refuelling process
US5906336A (en) * 1997-11-14 1999-05-25 Eckstein; Donald Method and apparatus for temporarily interconnecting an unmanned aerial vehicle
RU2140381C1 (en) 1997-12-10 1999-10-27 Акционерное общество открытого типа "ОКБ Сухого" Aircraft system for refuelling receiver aircraft
NL1007899C2 (en) * 1997-12-24 1999-06-25 Dhv Water Bv Coupling element for membrane elements.
US6089252A (en) * 1998-06-16 2000-07-18 Robertson Aviation Llc Manifold for auxiliary fuel tank
US5996939A (en) * 1998-08-28 1999-12-07 The Boeing Company Aerial refueling boom with translating pivot
IT244388Y1 (en) * 1998-11-23 2002-03-11 Nupi S P A FITTINGS FOR DOUBLE WALL PIPES
GB9910393D0 (en) * 1999-05-05 1999-07-07 Lucas Ind Plc Electrical generator,an aero-engine including such a generator and an aircraft including such a generator
GB9913032D0 (en) 1999-06-05 1999-08-04 British Aerospace Aircraft structure fatigue alleviation
DE10013751A1 (en) 2000-03-20 2001-10-11 Schmidt Schieferstein Herrmann Universal in-flight refueling system has flight exchangeable boom or hose systems
US6866228B2 (en) * 2000-07-21 2005-03-15 Asher Bartov Aerial refueling hose reel drive controlled by a variable displacement hydraulic motor and method for controlling aerial refueling hose reel
US6454212B1 (en) * 2000-08-22 2002-09-24 Asher Bartov Aerial refueling hose reel drive controlled by a variable displacement hydraulic motor and method for controlling aerial refueling hose reel
US6601800B2 (en) * 2000-09-19 2003-08-05 Charles Howard Ollar Aerial refueling pod and constant tension line apparatus
AU2001291570A1 (en) 2000-09-21 2002-04-02 Richard Lawrence Ken Woodland Roll on - roll off, portable aerial spraying, particulate dispersal, and refueling systems apparatus
US6604711B1 (en) * 2000-11-20 2003-08-12 Sargent Fletcher, Inc. Autonomous system for the aerial refueling or decontamination of unmanned airborne vehicles
GB2373488A (en) 2001-03-21 2002-09-25 Bae Systems Plc Launching, refuelling and recovering an aircraft
GB0106990D0 (en) 2001-03-21 2001-05-09 Bae Systems Plc A system for airborne launch of an aircraft from a larger carrier aircraft
FR2825815B1 (en) 2001-06-08 2003-08-22 Thales Sa METHOD FOR MANAGING THE IN-FLIGHT FUELING OF AN AIRCRAFT FLOTILE
US6676379B2 (en) * 2001-12-06 2004-01-13 Honeywell International Inc. Ram air turbine with speed increasing gearbox
US6736354B2 (en) * 2002-02-04 2004-05-18 Honda Giken Kogyo Kabushiki Kaisha Airplane fuel supply system and airplane wing pipeline assembly method
EP1361156A1 (en) 2002-05-07 2003-11-12 Smiths Aerospace, Inc. Boom deploy system
IL149988A (en) 2002-06-03 2005-09-25 Nir Padan System and method for enhancing the fuel storage volume and fuel carriage capacity of external fuel stores carried by an aerial vehicle
US6598830B1 (en) * 2002-06-12 2003-07-29 Sikorsky Aircraft Corporation Telescoping refueling probe
US6848720B2 (en) * 2002-08-09 2005-02-01 The Boeing Company Shrouded fluid-conducting apparatus
US6669145B1 (en) * 2002-12-30 2003-12-30 The Boeing Company Apparatus, method and system for fluid-motion-powered modulation of a retroreflector for remote position sensing
US7315656B2 (en) 2003-05-22 2008-01-01 The Boeing Company Methods and apparatus for enhanced viewing of aerial refueling operations
IL157401A (en) 2003-08-14 2008-06-05 Nir Padan Apparatus and system for the air-to-air arming of aerial vehicles
US6913228B2 (en) * 2003-09-04 2005-07-05 Supersonic Aerospace International, Llc Aircraft with active center of gravity control
US6997415B2 (en) * 2003-12-31 2006-02-14 Gulfstream Aerospace Corporation Method and arrangement for aircraft fuel dispersion
US7051979B2 (en) * 2004-01-29 2006-05-30 The Boeing Company Auxiliary fuel tank systems for aircraft and methods for their manufacture and use
US7357149B2 (en) * 2004-01-29 2008-04-15 The Boeing Company Auxiliary fuel tank systems for aircraft and methods for their manufacture and use
US7093801B2 (en) * 2004-05-28 2006-08-22 The Boeing Company Positioning system, device, and method for in-flight refueling
US6966525B1 (en) * 2004-06-28 2005-11-22 The Boeing Company In-flight refueling system, alignment system, and method for automatic alignment and engagement of an in-flight refueling boom
US7281687B2 (en) * 2004-07-14 2007-10-16 The Boeing Company In-flight refueling system and method for facilitating emergency separation of in-flight refueling system components
US7097139B2 (en) * 2004-07-22 2006-08-29 The Boeing Company In-flight refueling system, damping device and method for damping oscillations in in-flight refueling system components
US7309047B2 (en) * 2005-02-25 2007-12-18 The Boeing Company Systems and methods for controlling flexible communication links used for aircraft refueling
US7188807B2 (en) * 2005-03-11 2007-03-13 The Boeing Company Refueling booms with multiple couplings and associated methods and systems
US7458543B2 (en) 2005-06-10 2008-12-02 The Boeing Company Aerial refueling system
US7219857B2 (en) * 2005-06-20 2007-05-22 The Boeing Company Controllable refueling drogues and associated systems and methods
US7337795B2 (en) * 2005-10-17 2008-03-04 The Boeing Company Fuel balancing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297896A (en) * 1992-02-19 1994-03-29 Environ Products, Inc. Environmentally safe underground piping system
US5297896B1 (en) * 1992-02-19 1996-01-30 Environ Prod Inc Environmentally safe underground piping system
US6889940B1 (en) * 2004-01-29 2005-05-10 The Boeing Company Auxiliary fuel tank systems for aircraft and methods for their manufacture and use

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7665479B2 (en) 2005-06-10 2010-02-23 The Boeing Company Aerial refueling system
EP2293982A1 (en) * 2008-01-28 2011-03-16 Sikorsky Aircraft Corporation Fuel jettison system
EP2293982A4 (en) * 2008-01-28 2013-09-11 Sikorsky Aircraft Corp Fuel jettison system
US8844583B2 (en) 2010-07-29 2014-09-30 Airbus Operations Limited Refuel valve assembly and method for refuelling an aircraft
WO2012030444A1 (en) 2010-08-31 2012-03-08 The Boeing Company Aerial refueling boom nozzle with integral pressure regulation
US8485474B2 (en) 2010-08-31 2013-07-16 The Boeing Company Aerial refueling boom nozzle with integral pressure regulation
EP2517957A3 (en) * 2011-04-28 2015-12-16 Airbus Operations Limited Aircraft aerial refuelling system
US9409651B2 (en) 2011-04-28 2016-08-09 Airbus Operations Limited Aircraft aerial refuelling system
US9845160B2 (en) 2011-04-28 2017-12-19 Airbus Operations Limited Aircraft aerial refuelling system
EP2612815A3 (en) * 2011-09-11 2014-07-30 The Boeing Company Speed card-controlled override fuel pump assist field
US8950186B2 (en) 2011-09-11 2015-02-10 The Boeing Company Speed card-controlled override fuel pump assist
US9732678B2 (en) 2011-09-11 2017-08-15 The Boeing Company Speed card-controlled override fuel pump assist

Also Published As

Publication number Publication date
US7458543B2 (en) 2008-12-02
ATE405489T1 (en) 2008-09-15
EP1731422B1 (en) 2008-08-20
ES2312096T3 (en) 2009-02-16
US20090032645A1 (en) 2009-02-05
US7665479B2 (en) 2010-02-23
DE602006002315D1 (en) 2008-10-02
US20060278761A1 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
US7458543B2 (en) Aerial refueling system
US7357355B2 (en) Auxiliary fuel tank systems for aircraft and methods for their manufacture and use
US7568660B2 (en) Auxiliary fuel tank systems for aircraft and methods for their manufacture and use
EP1731769B1 (en) Systems and methods for providing back-up hydraulic power for aircraft, including tanker aircraft
US3383078A (en) Auxiliary fluid system
US20060260826A1 (en) Portable airborne firefighting and sensing system
US20060214059A1 (en) Refueling booms with multiple couplings and associated methods and systems
US9845160B2 (en) Aircraft aerial refuelling system
EP1731815B1 (en) Systems and methods for distributing loads from fluid conduits, including aircraft fuel conduits
EP0168843B1 (en) Hydraulic reserve system for aircraft
US20110147530A1 (en) Auxiliary fuel tank system
EP1754660B1 (en) Flexible air refueling boom extendable tube
EP0168844B1 (en) Improved hydraulic system for aircraft
US2879016A (en) In-flight refueling assembly
EP3130540A1 (en) Tanker aircraft capacity extension system and method
EP2611691B1 (en) Aerial refueling boom nozzle with integral pressure regulation
US11897614B2 (en) Multi-purpose passenger aircraft, use thereof, operation method therefore and passenger aircraft series
Ford The Boeing 777 fuel system
RU1778977C (en) Fuel system of in-flight refuelling unit
Unusable Fuel system excludes management and control manipulation
US20210107650A1 (en) Aerial firefighting system
Siddeley Powerplant: Fuel System
Johnson et al. Crashworthy Fuel System Design Criteria and Analyses
Eudy Saturn V Mechanical Ground Support Equipment
STOCKEMER AH-56A onboard fueling capability.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060619

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20070301

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006002315

Country of ref document: DE

Date of ref document: 20081002

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2312096

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081120

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090120

26 Opposition filed

Opponent name: EADS CONSTRUCCIONES AERONAUTICAS S.A.

Effective date: 20090508

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081120

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090612

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: EADS CONSTRUCCIONES AERONAUTICAS S.A.

Effective date: 20090508

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160627

Year of fee payment: 11

Ref country code: ES

Payment date: 20160627

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160628

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160628

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 602006002315

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 602006002315

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20161129

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20161129