EP1734145A1 - Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component - Google Patents

Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component Download PDF

Info

Publication number
EP1734145A1
EP1734145A1 EP05012633A EP05012633A EP1734145A1 EP 1734145 A1 EP1734145 A1 EP 1734145A1 EP 05012633 A EP05012633 A EP 05012633A EP 05012633 A EP05012633 A EP 05012633A EP 1734145 A1 EP1734145 A1 EP 1734145A1
Authority
EP
European Patent Office
Prior art keywords
layer
layer system
thermal barrier
barrier coating
erosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05012633A
Other languages
German (de)
French (fr)
Inventor
Jochen Dr. Barnikel
Friedhelm Schmitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP05012633A priority Critical patent/EP1734145A1/en
Priority to CN200680021099.7A priority patent/CN101198713B/en
Priority to JP2008515158A priority patent/JP4749467B2/en
Priority to PCT/EP2006/060835 priority patent/WO2006133980A1/en
Priority to US11/922,149 priority patent/US8047775B2/en
Priority to EP06725133A priority patent/EP1891249A1/en
Publication of EP1734145A1 publication Critical patent/EP1734145A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/286Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/121Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/132Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/222Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component

Definitions

  • the invention relates to a component with a thermal barrier coating and a metal erosion control layer according to claim 1, a method for the production according to claim 31 and a method for operating a steam turbine according to claim 32.
  • Thermal barrier coatings which are applied to components, are known from the field of gas turbines, such as in the EP 1 029 115 are described.
  • Thermal barrier coatings allow components to be used at higher temperatures than the base material allows, or to extend service life.
  • Known base materials (substrates) for gas turbines allow operating temperatures of a maximum of 1000 ° C to 1100 ° C, whereas a coating with a thermal barrier coating allows operating temperatures of up to 1350 ° C.
  • the U.S. Patent 5,350,599 discloses an erosion resistant ceramic thermal barrier coating.
  • the US 2003/0152814 A1 discloses a thermal barrier coating system comprising a superalloy substrate, an aluminum oxide layer on the substrate, and a ceramic outer ceramic thermal barrier coating.
  • the EP 0 783 043 A1 discloses an erosion control layer consisting of aluminum oxide or silicon carbide on a ceramic thermal barrier coating.
  • the U.S. Patent 5,683,226 discloses a component of a steam turbine whose erosion resistance is improved.
  • the US 4,405,284 discloses an outer metallic layer that is significantly more porous than the underlying ceramic thermal barrier coating.
  • the EP 0 783 043 Al discloses in the discussion of the prior art that an erosion-resistant coating is constructed in two layers, namely an inner metallic layer and an outer ceramic layer.
  • the US 5,740,515 discloses a ceramic thermal barrier coating on which an outer hard ceramic silicide coating is applied.
  • the WO 00/70190 discloses a component in which an outer metal layer is applied, which has aluminum, which serves to increase the oxidation resistance of the component.
  • the object is achieved by a component according to claim 1, by a method according to claim 31 and by a method according to claim 32.
  • a metallic erosion control layer is of particular advantage because it is elastically and plastically deformable due to its ductility.
  • the thermal barrier coating is not necessarily used only for the purpose of shifting the range of use temperatures upwards, but the thermal expansion due to the temperature differences generated on the component is advantageously evened out and / or reduced. Thus, thermo-mechanical stresses can be avoided or at least reduced.
  • FIG. 1 shows a first exemplary embodiment of a layer system 1 designed according to the invention for a component.
  • layer system 1 and component are used interchangeably when the component has the layer system 1.
  • the component 1 is preferably a component of a gas or steam turbine 300, 303 (FIG. 4), in particular a steam inflow region 333 of a steam turbine 300, a turbine blade 342, 354, 357 (FIG. 4) or a housing part 334, 335, 366 (FIGS. 4, 5) and consists of a substrate 4 (support structure) and a thermal insulation layer 7 applied thereto and an outer metallic erosion protection layer 13 on the thermal insulation layer 7. Between the substrate 4 and the thermal barrier coating 7 at least one metallic bonding layer 10 is arranged.
  • the bonding layer 10 serves to protect against corrosion and / or oxidation of the substrate 4 and / or for better bonding of the thermal barrier coating 7 to the substrate 4. This is particularly the case when the thermal barrier coating 7 made of ceramic and the substrate 4 consists of a metal.
  • the erosion protection layer 13 consists of a metal or a metal alloy and protects the component from erosion and / or wear, as is the case in particular with steam turbines 300, 303 ( Figure 4), which are subject to scaling, which is the case, and in which average flow velocities of about 50 m / s (ie 20 m / s - 100 m / s) and pressures of 350 to 400 bar occur.
  • the density of the thermal barrier coating 7 is preferably 80% - 95% of the theoretical density, wherein the density ⁇ of the metallic erosion control layer 13 is preferably at least 96%, preferably 98% of the theoretical density.
  • metal is meant not only elemental metals, but also alloys, mixed crystals or intermetallic compounds.
  • the bonding layer 10 and the erosion protection layer 13 according to the invention have the same or similar composition.
  • Same composition means that both layers 10, 13 have the same elements with the same proportions (identity), preferably of a MCrAlX alloy or of SC 21, SC 23 or SC 24.
  • Similar composition means that both layers 10, 13 have the same elements, but with slightly different proportions, ie differences of at most 3% per element (for example, layer 10 has chromium content of 30%, the layer 13 can have chromium contents of at least 27% (30-3) or at most 33% (30 + 3) and up to 1% by weight at least one further element can be present.
  • the SC 21 consists of (in wt%) 29% - 31% nickel, 27% - 29% chromium, 7% - 8% aluminum, 0.5% - 0.7% yttrium, 0.3% - 0.7 % Silicon and balance cobalt.
  • the SC 23 consists of (in wt%) 11% - 13% cobalt, 20% - 22% chromium, 10.5% - 11.5% aluminum, 0.3% - 0.5% yttrium, 1.5% - 2.5% rhenium and the rest nickel.
  • the SC 24 consists of (in wt%) 24% - 26% cobalt, 16% - 18% chromium, 9.5% - 11% aluminum, 0.3% - 0.5% yttrium, 1.0% - 1 , 8% rhenium and the rest nickel.
  • the wear / erosion protection layer 13 preferably consists of alloys based on iron, chromium, nickel and / or cobalt or, for example, NiCr 80/20 or NiCrSiB with admixtures of boron (B) and silicon (Si) or NiAl (for example: Ni: 95wt%, Al 5wt%).
  • a metallic erosion protection layer 13 can be used in steam turbines 300, 303, since the operating temperatures in steam turbines in the steam inflow region 333 are a maximum of 450 ° C., 550 ° C., 650 ° C., 750 ° C. or B 50 ° C.
  • a temperature of 750 ° C is used.
  • Metallic erosion protection layers 13 in gas turbines on a ceramic thermal barrier coating 7 within the first stage of the turbine or within the combustion chamber will not executed, since metallic erosion protection layers 13 as an outer layer, the operating temperatures of up to 1350 ° C can not stand.
  • the composition of the iron-based attachment layer 10 exhibits particularly good properties, so that the attachment layer 10 is outstandingly suitable for application to ferritic substrates 4.
  • the coefficients of thermal expansion of substrate 4 and bonding layer 10 can be very well matched to each other (only up to 10% difference) or even equal, so there is no thermally induced stress build-up between substrate 4 and bonding layer 10 comes (thermal mismatch), which could cause a spalling of the bonding layer 10. This is particularly important because in ferritic materials often no heat treatment for diffusion bonding is performed, but the bonding layer 10 (ferritic) largely or only by adhesion to the substrate 4 adheres.
  • the composition of the outer erosion control layer 13 is selected to have a high ductility.
  • High ductility in this context means that elongation at break of 5% (an elongation of 5% leads to the formation of cracks) at the service temperature.
  • Such an erosion protection layer 13 with such a ductility can be present directly on a substrate 4 or on a ceramic thermal barrier coating 7, wherein the composition of the bonding layer 10 then no longer plays a role.
  • the heat-insulating layer 7 is in particular a ceramic layer, which consists for example at least partially of zirconium oxide (partially stabilized or fully stabilized by yttrium oxide and / or magnesium oxide) and / or at least partially of titanium oxide and is for example thicker than 0.1 mm.
  • thermal barrier coatings 7 consisting of 100% of either zirconia or titanium oxide can be used.
  • the ceramic layer 7 can be applied by known coating methods such as atmospheric plasma spraying (APS), vacuum plasma spraying (VPS), low-pressure plasma spraying (LPPS) and by chemical or physical coating methods (CVD, PVD).
  • APS atmospheric plasma spraying
  • VPS vacuum plasma spraying
  • LPPS low-pressure plasma spraying
  • CVD chemical or physical coating methods
  • the substrate 4 is preferably a steel or other iron-based alloy (for example 1% CrMoV or 10-12% chromium steels) or a nickel- or cobalt-based superalloy.
  • the substrate 4 is a ferritic base alloy, a steel or a nickel or cobalt-based superalloy, in particular a 1% CrMoV steel or a 10 to 12 percent chromium steel.
  • the thermal barrier coating 7 at least partially has a certain open and / or closed porosity.
  • the erosion protection layer 13 preferably has a higher density than the thermal barrier coating 7, so that it 13 has a higher erosion resistance.
  • the metallic erosion protection layer 13 has a very low porosity and in particular has a lower roughness, so that a good resistance to erosive erosion is achieved.
  • the bonding layer 10 located between the substrate and the thermal barrier coating is made to have sufficiently high roughness with undercuts to achieve good adhesion of the thermal barrier coating to the tie layer 10 13 a much coarser powder can be used during the injection process.
  • FIG. 2 shows a porous thermal barrier coating 7 with a gradient of porosity.
  • the thermal barrier coating 7 pores 16 are present.
  • the density ⁇ of the thermal barrier coating 7 increases.
  • the layer 7 can be used in the region of greater porosity for thermal insulation and, where appropriate, for erosion protection in the area of lower porosity.
  • the erosion protection layer 13 is preferably applied only locally, and preferably there on the component 1, where the angle of impact of eroding particles on the component 1 between 60 ° and 120 °, preferably between 70 ° and 110 ° or preferably by 80 ° and 100 ° , It is particularly useful to coat the sites which have an angle of incidence of 90 ° +/- 2 ° of the eroding particles. In this almost vertical impact of eroding particles on the surface of a component 1, a metallic erosion protection layer 13 offers the best erosion protection.
  • FIG. 4 shows by way of example a steam turbine 300, 303 with a turbine shaft 309 extending along a rotation axis 306.
  • the steam turbine has a high-pressure turbine section 300 and a medium-pressure turbine section 303, each having an inner housing 312 and an outer housing 315 enclosing this.
  • the high-pressure turbine part 300 is designed, for example, in Topfbauart.
  • the medium-pressure turbine section 303 is double-flow. It is also possible for the medium-pressure turbine section 303 to be single-flow.
  • a bearing 318 is arranged between the high-pressure turbine section 300 and the medium-pressure turbine section 303, the turbine shaft 309 having a bearing region 321 in the bearing 318.
  • the turbine shaft 309 is on another bearing 324 adjacent to the high pressure turbine section 300. In the area of this bearing 324, the high-pressure turbine section 300 has a shaft seal 345.
  • the turbine shaft 309 is sealed from the outer housing 315 of the medium-pressure turbine section 303 by two further shaft seals 345. Between a high-pressure steam inflow region 348 and a steam outlet region 351, the turbine shaft 309 in the high-pressure turbine section 300 has the high-pressure impeller blade 354, 357. This high-pressure bladed runner 354, 357, together with the associated blades, not shown, represents a first blading region 360.
  • the middle-pressure blast turbine 303 has a central steam inflow region 333.
  • the turbine shaft 309 Associated with the steam inflow region 333, the turbine shaft 309 has a radially symmetrical wave shield 363, a cover plate, on the one hand for dividing the steam flow into the two flows of the medium-pressure turbine section 303 and for preventing direct contact of the hot steam with the turbine shaft 309.
  • the turbine shaft 309 has in the medium-pressure turbine section 303 a second blading area 366 with the medium-pressure blades 354, 342.
  • the hot steam flowing through the second blading area 366 flows out of the medium-pressure turbine section 303 from a discharge connection 369 to a downstream low-pressure turbine, not shown.
  • the turbine shaft 309 is composed of two sub-turbine shafts 309a and 309b, which are fixedly connected to one another in the region of the bearing 318.
  • the steam inflow region 333 has a heat insulation layer 7 and an erosion protection layer 13.
  • FIG. 5 shows an enlarged view of a region of the steam turbine 300, 303.
  • the steam turbine 300, 303 consists of an outer housing 334, against which temperatures between 250 ° and 350 ° C. are applied. Temperatures of 450 ° to 800 ° C. prevail at the inflow region 333 as part of an inner housing 335. This results in a temperature difference of at least 200 ° C.
  • the thermal barrier coating 7 is applied to the erosion protection layer 13 on the inside 336 (on the outside 337, for example, not). The thermal barrier coating 7 is present locally only on the inner housing 335 (and not in the blading area 366, for example).
  • the thermal barrier coating 7 may be applied locally, for example in the inner housing 335 in the region of the inflow region 333. Likewise, the thermal barrier coating 7 can be applied locally only in the blading area 366 (FIG. 6). Especially in the inflow region 333, the use of an erosion protection layer 13 is required.
  • thermal barrier coating 7 (TBC) with erosion protection layer 13 is present in the inflow region 333, a Thermal insulation layer 7 without erosion protection layer in the blading area 366 and / or the turbine blades be present.
  • FIG. 7 shows a further exemplary embodiment of a component 1 according to the invention.
  • the thickness of the thermal barrier coating 7 in the inflow region 333 is made thicker than in the blading region 366 of the steam turbine 300, 303. Due to the locally different thickness of the thermal barrier coating 7, the heat input and thus the thermal expansion and thus the expansion behavior of the inner housing 334, consisting of the inflow region 333 and the blading region 366, controlled. Since higher temperatures prevail in the inflow region 333 than in the blading region 366, the thicker heat-insulating layer 7 in the inflow region 333 reduces the heat input into the substrate 4 more than in the blading region 366, where lower temperatures prevail. Thus, the heat input in both the inflow region 333 and subsequent blading region 366 can be kept approximately equal, so that the thermal expansion is approximately equal,
  • the thermal barrier coating 7 is applied here in the entire hot region, ie globally, and has the erosion protection layer 13.
  • FIG. 8 shows a further example of application for the use of a thermal barrier coating 7.
  • the component 1, in particular a housing part is here a valve housing 31, into which a hot steam flows through an inlet channel 46.
  • the inflow passage 46 causes a mechanical weakening of the valve housing.
  • the valve housing 31 consists for example of a cup-shaped housing part 34 and a lid 37th Within the housing part 31, a valve consisting of a valve plug 40 and a spindle 43 is present.
  • a non-uniform axial deformation of the housing 31 and cover 37 occurs.
  • the valve housing 31 would expand axially more strongly in the region of the channel 46, so that tilting of the cover with the spindle 43 occurs, as indicated by dashed lines.
  • thermal barrier coating 7 serves to control the deformation behavior and thus to ensure the tightness of the valve.
  • the thermal barrier coating 7 in turn has the erosion protective layer 13.

Abstract

Gas- or steam-turbine component has a substrate layer (4) under a metal bonding layer (10), a ceramic heat insulation layer (7) and an upper anti-erosion layer (13). The materials making up the bonding layer and anti-erosion layer are the same or of nearly the same composition. Metal bonding layer and anti-erosion layer are an MCrAIX alloy. The bonding layer has 29-31% wt. Nickel, 27-29% wt. Chromium, 7-8% wt. Aluminum, 0.5-0.7% wt. Yttrium and 0.3-0.7% wt. Silicon; the residue is cobalt. The anti-erosion layer consists of 11-13% wt cobalt, 20-22% wt. Chromium, 10.5-11.5% aluminum, 0.3-0.5% Yttrium and 1.5-2.5% Wt. Rhenium; the residue is Nickel. Also claimed is a process to operate a commensurate steam turbine.

Description

Die Erfindung betrifft ein Bauteil mit einer Wärmedämmschicht und einer metallischen Erosionsschutzschicht nach Anspruch 1, ein Verfahren zur Herstellung nach Anspruch 31 und ein Verfahren zum Betreiben einer Dampfturbine nach Anspruch 32.The invention relates to a component with a thermal barrier coating and a metal erosion control layer according to claim 1, a method for the production according to claim 31 and a method for operating a steam turbine according to claim 32.

Wärmedämmschichten, die auf Bauteilen aufgebracht werden, sind aus dem Bereich der Gasturbinen bekannt, wie sie z.B. in der EP 1 029 115 beschrieben sind.Thermal barrier coatings, which are applied to components, are known from the field of gas turbines, such as in the EP 1 029 115 are described.

Wärmedämmschichten erlauben es, Bauteile bei höheren Temperaturen einzusetzen, als es der Grundwerkstoff zulässt, oder die Einsatzdauer zu verlängern.
Bekannte Grundwerkstoffe (Substrate) für Gasturbinen ermöglichen Einsatztemperaturen von maximal 1000°C bis 1100°C, wohingegen eine Beschichtung mit einer Wärmedämmschicht Einsatztemperaturen von bis zu 1350°C ermöglicht.
Thermal barrier coatings allow components to be used at higher temperatures than the base material allows, or to extend service life.
Known base materials (substrates) for gas turbines allow operating temperatures of a maximum of 1000 ° C to 1100 ° C, whereas a coating with a thermal barrier coating allows operating temperatures of up to 1350 ° C.

Die Einsatztemperaturen von Bauteilen in einer Dampfturbine sind deutlich niedriger, sodass dort solche Anforderungen nicht gestellt werden.The operating temperatures of components in a steam turbine are significantly lower, so that such demands are not made there.

Aus der EP 1 029 104 A ist bekannt, eine keramische Erosionsschutzschicht auf eine keramische Wärmedämmschicht einer Gasturbinenschaufel aufzubringen.From the EP 1 029 104 A It is known to apply a ceramic erosion protective layer on a ceramic thermal barrier coating of a gas turbine blade.

Aus der DE 195 35 227 A1 ist bekannt, eine Wärmedämmschicht in einer Dampfturbine vorzusehen, um Werkstoffe mit schlechteren mechanischen Eigenschaften, die aber kostengünstiger sind, für das Substrat, auf das die Wärmedämmschicht aufgebracht wird, verwenden zu können,From the DE 195 35 227 A1 It is known to provide a heat-insulating layer in a steam turbine in order to be able to use materials with poorer mechanical properties, but which are more cost-effective, for the substrate to which the thermal barrier coating is applied.

Die US-PS 5,350,599 offenbart eine erosionsresistente keramische Wärmedämmschicht.The U.S. Patent 5,350,599 discloses an erosion resistant ceramic thermal barrier coating.

Die US 2003/0152814 A1 offenbart ein Wärmedämmschichtsystem bestehend aus einem Substrat aus einer Superlegierung, einer Aluminiumoxidschicht auf dem Substrat und einer Keramik als äußere keramische Wärmedämmschicht.The US 2003/0152814 A1 discloses a thermal barrier coating system comprising a superalloy substrate, an aluminum oxide layer on the substrate, and a ceramic outer ceramic thermal barrier coating.

Die EP 0 783 043 A1 offenbart eine Erosionsschutzschicht bestehend aus Aluminiumoxid oder Siliziumkarbid auf einer keramischen wärmedämmschicht.The EP 0 783 043 A1 discloses an erosion control layer consisting of aluminum oxide or silicon carbide on a ceramic thermal barrier coating.

Die US-PS 5,683,226 offenbart eine Komponente einer Dampfturbine dessen Erosionswiderstand verbessert wird.The U.S. Patent 5,683,226 discloses a component of a steam turbine whose erosion resistance is improved.

Die US 4,405,284 offenbart eine äußere metallische Schicht, die erheblich poröser ist als die unterliegende keramische Wärmedämmschicht.The US 4,405,284 discloses an outer metallic layer that is significantly more porous than the underlying ceramic thermal barrier coating.

Die EP 0 783 043 Al offenbart in der Diskussion des Standes der Technik, dass eine erosionsresistente Beschichtung zweilagig aufgebaut ist, nämlich aus einer inneren metallischen Schicht und einer äußeren Keramikschicht.The EP 0 783 043 Al discloses in the discussion of the prior art that an erosion-resistant coating is constructed in two layers, namely an inner metallic layer and an outer ceramic layer.

Die US 5,740,515 offenbart eine keramische Wärmedämmschicht, auf der eine äußere, harte keramische Silizidbeschichtung aufgebracht ist.The US 5,740,515 discloses a ceramic thermal barrier coating on which an outer hard ceramic silicide coating is applied.

Die WO 00/70190 offenbart ein Bauteil, bei dem eine äußere metallische Schicht aufgebracht wird, die Aluminium aufweist, die zur Erhöhung der Oxidationsbeständigkeit des Bauteils dient.The WO 00/70190 discloses a component in which an outer metal layer is applied, which has aluminum, which serves to increase the oxidation resistance of the component.

Aufgrund von Verunreinigungen in einem Medium und/oder hohen Strömungsgeschwindigkeiten des strömenden Mediums, das an Bauteilen mit einer Wärmedämmschicht vorbeiströmt, kommt es zu einer starken Erosion der wärmedämmschicht,Due to impurities in a medium and / or high flow velocities of the flowing medium, which flows past components with a thermal barrier coating, a strong erosion of the thermal barrier coating occurs,

Daher ist es Aufgabe der Erfindung ein Bauteil, ein Verfahren zur Herstellung des Bauteils und eine sinnvolle Verwendung des Schichtsystems aufzuzeigen, das dieses Problem überwindet.It is therefore an object of the invention to provide a component, a method for producing the component and a meaningful use of the layer system, which overcomes this problem.

Die Aufgabe wird gelöst durch ein Bauteil gemäß Anspruch 1, durch ein Verfahren gemäß Anspruch 31 und durch ein Verfahren gemäß Anspruch 32.The object is achieved by a component according to claim 1, by a method according to claim 31 and by a method according to claim 32.

In den Unteransprüchen sind weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Bauteile aufgelistet.
Die in den Unteransprüchen aufgelisteten Maßnahmen können in vorteilhafter Art und Weise beliebig miteinander verknüpft werden.
In the subclaims further advantageous embodiments of the components according to the invention are listed.
The measures listed in the subclaims can be combined with each other in an advantageous manner.

Insbesondere bei Bauteilen von Turbinen, die zum Antrieb heißen Fluiden ausgesetzt sind, kommt es häufig durch Verzunderungen zu einem mechanischen Einschlag von abgelösten Zunder-Teilchen auf eine spröde keramische Schicht, was zum Ausbrechen von Material, also zur Erosion führen könnte. Obwohl die keramische Schicht dafür ausgelegt ist, Thermoschocks zu überstehen, ist sie anfällig gegenüber der lokal sehr begrenzt auftretenden mechanischen Beanspruchung, da ein Thermoschock globaler auf die gesamte Schicht einwirkt.
Daher ist eine metallische Erosionsschutzschicht von besonderem Vorteil, da sie aufgrund ihrer Duktilität elastisch und plastisch verformbar ist.
In particular, in components of turbines, which are exposed to hot fluids, it often comes through scaling to a mechanical impact of detached scale particles on a brittle ceramic layer, which could lead to breakage of material, ie erosion. Although the ceramic layer is designed to survive thermal shocks, it is susceptible to localized mechanical stress because thermal shock affects the entire layer more globally.
Therefore, a metallic erosion control layer is of particular advantage because it is elastically and plastically deformable due to its ductility.

Die Wärmedämmschicht dient nicht notwendigerweise nur dem Zweck den Bereich der Einsatztemperaturen nach oben zu verschieben, sondern die thermische Dehnung aufgrund der Temperaturunterschiede, die an dem Bauteil erzeugt werden bzw. anliegen, wird in vorteilhafter weise vergleichmäßigt und/oder reduziert. So können thermomechanischen Spannungen vermieden bzw. zumindest reduziert werden.The thermal barrier coating is not necessarily used only for the purpose of shifting the range of use temperatures upwards, but the thermal expansion due to the temperature differences generated on the component is advantageously evened out and / or reduced. Thus, thermo-mechanical stresses can be avoided or at least reduced.

Ausführungsbeispiele sind in den Figuren dargestellt.Embodiments are shown in the figures.

Es zeigen

Figur 1
Anordnungsmöglichkeiten einer erfindungsgemäßen Wärmedämmschicht eines Bauteils,
Figur 2, 3
einen Gradienten der Porosität innerhalb der Wärmedämmschicht eines erfindungsgemäß ausgebildeten Bauteils,
Figur 4, 5
eine Dampfturbine,
Figur 6, 7, 8
weitere Ausführungsbeispiele eines erfindungsgemäßen ausgebildeten Bauteils.
Show it
FIG. 1
Possible arrangements of a thermal barrier coating of a component according to the invention,
FIG. 2, 3
a gradient of porosity within the thermal barrier coating of a component designed according to the invention,
FIG. 4, 5
a steam turbine,
FIGS. 6, 7, 8
Further embodiments of a trained component according to the invention.

Figur 1 zeigt ein erstes Ausführungsbeispiel eines erfindungsgemäß ausgebildeten Schichtsystems 1 für ein Bauteil. Im Folgenden werden die Begriffe Schichtsystem 1 und Bauteil synonym verwendet, wenn das Bauteil das Schichtsystem 1 aufweist.
Das Bauteil 1 ist vorzugsweise ein Bauteil einer Gas- oder einer Dampfturbine 300, 303 (Fig. 4), insbesondere ein Dampfeinströmbereich 333 einer Dampfturbine 300, eine Turbinenschaufel 342, 354, 357 (Fig. 4) oder ein Gehäuseteil 334, 335, 366 (Fig. 4, 5) und besteht aus einem Substrat 4 (Tragstruktur) und einer darauf aufgebrachten Wärmedämmschicht 7 sowie einer äußeren metallischen Erosionsschutzschicht 13 auf der Wärmedämmschicht 7.
Zwischen dem Substrat 4 und der Wärmedämmschicht 7 ist zumindest eine metallische Anbindungsschicht 10 angeordnet.
Die Anbindungsschicht 10 dient zum Schutz vor Korrosion und/oder Oxidation des Substrats 4 und/oder zur besseren Anbindung der Wärmedämmschicht 7 an das Substrat 4. Dies ist insbesondere der Fall, wenn die Wärmedämmschicht 7 aus Keramik und das Substrat 4 aus einem Metall besteht.
Die Erosionsschutzschicht 13 besteht aus einem Metall oder einer Metalllegierung und schützt das Bauteil vor Erosion und/oder Verschleiß, wie es insbesondere bei Dampfturbinen 300, 303 (Fig. 4), die einer Verzunderung unterliegen, der Fall ist, und bei der mittlere Strömungsgeschwindigkeiten von etwa 50m/s (d.h. 20m/s - 100 m/s) und Drücke von 350 bis 400 bar auftreten.
FIG. 1 shows a first exemplary embodiment of a layer system 1 designed according to the invention for a component. In the following, the terms layer system 1 and component are used interchangeably when the component has the layer system 1.
The component 1 is preferably a component of a gas or steam turbine 300, 303 (FIG. 4), in particular a steam inflow region 333 of a steam turbine 300, a turbine blade 342, 354, 357 (FIG. 4) or a housing part 334, 335, 366 (FIGS. 4, 5) and consists of a substrate 4 (support structure) and a thermal insulation layer 7 applied thereto and an outer metallic erosion protection layer 13 on the thermal insulation layer 7.
Between the substrate 4 and the thermal barrier coating 7 at least one metallic bonding layer 10 is arranged.
The bonding layer 10 serves to protect against corrosion and / or oxidation of the substrate 4 and / or for better bonding of the thermal barrier coating 7 to the substrate 4. This is particularly the case when the thermal barrier coating 7 made of ceramic and the substrate 4 consists of a metal.
The erosion protection layer 13 consists of a metal or a metal alloy and protects the component from erosion and / or wear, as is the case in particular with steam turbines 300, 303 (Figure 4), which are subject to scaling, which is the case, and in which average flow velocities of about 50 m / s (ie 20 m / s - 100 m / s) and pressures of 350 to 400 bar occur.

Die äußere metallische Erosionsschutzschicht 13 (= äußerste Schicht) ist vorzugsweise dichter als die Wärmedämmschicht 7 ausgebildet.
Dichter in diesem Zusammenhang bedeutet, dass die Porosität der äußeren metallischen Erosionsschutzschicht 13 absolut um mindestens 1%, insbesondere mindestens um 3% höher liegt als die der Wärmedämmschicht 7 (beispielsweise ρ(7) = 90%, d.h. ρ(13) ≥ 91%, insbesondere ≥ 93%).
Die Dichte der Wärmedämmschicht 7 liegt vorzugsweise bei 80% - 95% der theoretischen Dichte, wobei die Dichte ρ der metallischen Erosionsschutzschicht 13 vorzugsweise bei mindestens 96%, vorzugsweise bei 98% der theoretischen Dichte liegt.
The outer metallic erosion protection layer 13 (= outermost layer) is preferably formed denser than the thermal barrier coating 7.
Denser in this context means that the porosity of the outer metallic erosion protection layer 13 is absolutely higher by at least 1%, in particular at least 3% higher than that of the thermal barrier coating 7 (for example ρ (7) = 90%, ie ρ (13) ≥ 91%. , in particular ≥ 93%).
The density of the thermal barrier coating 7 is preferably 80% - 95% of the theoretical density, wherein the density ρ of the metallic erosion control layer 13 is preferably at least 96%, preferably 98% of the theoretical density.

Unter Metall werden nicht nur elementare Metalle, sondern auch Legierungen, Mischkristalle oder intermetallische Verbindungen verstanden.By metal is meant not only elemental metals, but also alloys, mixed crystals or intermetallic compounds.

Die Anbindungsschicht 10 und die Erosionsschutzschicht 13 weisen erfindungsgemäß die gleiche oder ähnliche Zusammensetzung auf.
Gleiche Zusammensetzung bedeutet, dass beide Schichten 10, 13 dieselben Elemente mit denselben Anteilen aufweisen (Identität), vorzugsweise aus einer MCrAlX-Legierung oder aus SC 21, SC 23 oder SC 24, Durch die vorzugsweise Verwendung der gleichen Zusammensetzung für die Erosionsschutzschicht 13 wird die Beschaffung vereinfacht und auch das Korrosionsverhalten des Substrats 4 deutlich verbessert.
The bonding layer 10 and the erosion protection layer 13 according to the invention have the same or similar composition.
Same composition means that both layers 10, 13 have the same elements with the same proportions (identity), preferably of a MCrAlX alloy or of SC 21, SC 23 or SC 24. By preferably using the same composition for the erosion control layer 13, the Procurement simplified and also the corrosion behavior of the substrate 4 significantly improved.

Ähnliche Zusammensetzung bedeutet, dass beide Schichten 10, 13 dieselben Elemente aufweisen, aber mit leicht unterschiedlichen Anteilen, d.h. Unterschiede von maximal 3% pro Element (beispielsweise Schicht 10 hat Chrom-Anteil von 30%, dann kann die Schicht 13 Chrom-Anteile von minimal 27% (30 - 3) oder maximal 33% (30 + 3) aufweisen und dass bis zu 1wt% zumindest ein weiteres Element vorhanden sein kann.Similar composition means that both layers 10, 13 have the same elements, but with slightly different proportions, ie differences of at most 3% per element (for example, layer 10 has chromium content of 30%, the layer 13 can have chromium contents of at least 27% (30-3) or at most 33% (30 + 3) and up to 1% by weight at least one further element can be present.

Die SC 21 besteht aus (in wt%) 29% - 31% Nickel, 27% - 29% Chrom, 7% - 8% Aluminium, 0,5% - 0,7% Yttrium, 0,3% - 0,7% Silizium und Rest Kobalt.The SC 21 consists of (in wt%) 29% - 31% nickel, 27% - 29% chromium, 7% - 8% aluminum, 0.5% - 0.7% yttrium, 0.3% - 0.7 % Silicon and balance cobalt.

Die SC 23 besteht aus (in wt%) 11% - 13% Kobalt, 20% - 22% Chrom, 10,5% - 11,5% Aluminium, 0,3% - 0,5% Yttrium, 1,5% - 2,5% Rhenium und Rest Nickel.The SC 23 consists of (in wt%) 11% - 13% cobalt, 20% - 22% chromium, 10.5% - 11.5% aluminum, 0.3% - 0.5% yttrium, 1.5% - 2.5% rhenium and the rest nickel.

Die SC 24 besteht aus (in wt%) 24% - 26% Kobalt, 16% - 18% Chrom, 9,5% - 11% Aluminium, 0,3% - 0,5% Yttrium, 1,0% - 1,8% Rhenium und Rest Nickel.The SC 24 consists of (in wt%) 24% - 26% cobalt, 16% - 18% chromium, 9.5% - 11% aluminum, 0.3% - 0.5% yttrium, 1.0% - 1 , 8% rhenium and the rest nickel.

Vorzugsweise besteht die Verschleiß/Erosionsschutzschicht 13 aus Legierungen auf der Basis von Eisen, Chrom, Nickel und/oder Kobalt oder beispielsweise NiCr 80/20 oder NiCrSiB mit Beimengungen von Bor (B) und Silizium (Si) oder NiAl (bspw.: Ni: 95wt%, Al 5wt%).The wear / erosion protection layer 13 preferably consists of alloys based on iron, chromium, nickel and / or cobalt or, for example, NiCr 80/20 or NiCrSiB with admixtures of boron (B) and silicon (Si) or NiAl (for example: Ni: 95wt%, Al 5wt%).

Insbesondere kann eine metallische Erosionsschutzschicht 13 bei Dampfturbinen 300, 303 eingesetzt werden, da die Einsatztemperaturen in Dampfturbinen beim Dampfeinströmbereich 333 maximal bei 450°C, 550°C, 650°C, 750°C oder B50°C liegen.In particular, a metallic erosion protection layer 13 can be used in steam turbines 300, 303, since the operating temperatures in steam turbines in the steam inflow region 333 are a maximum of 450 ° C., 550 ° C., 650 ° C., 750 ° C. or B 50 ° C.

Vorzugsweise wird eine Temperatur von 750°C verwendet.Preferably, a temperature of 750 ° C is used.

Für solche Temperaturbereiche gibt es genügend metallische Schichten, die einen hinreichend großen notwendigen Erosionsschutz über die Einsatzdauer des Bauteils 1 bei gleichzeitiger guter Oxidationsbeständigkeit aufweisen.For such temperature ranges, there are enough metallic layers that have a sufficiently large necessary erosion protection over the service life of the component 1 with good oxidation resistance.

Metallische Erosionsschutzschichten 13 in Gasturbinen auf einer keramischen wärmedämmschicht 7 innerhalb der ersten Stufe der Turbine oder innerhalb der Brennkammer werden nicht ausgeführt, da metallische Erosionsschutzschichten 13 als äußere Schicht die Einsatztemperaturen von bis zu 1350°C nicht aushalten können.Metallic erosion protection layers 13 in gas turbines on a ceramic thermal barrier coating 7 within the first stage of the turbine or within the combustion chamber will not executed, since metallic erosion protection layers 13 as an outer layer, the operating temperatures of up to 1350 ° C can not stand.

Die Anbindungsschicht 10 zum Schutz eines Substrats 4 gegen Korrosion und Oxidation bei einer hohen Temperatur weist beispielsweise im wesentlichen folgende Elemente auf (Angabe der Anteile in Gewichtsprozent wt%):

  • 11,5% bis 20,0% Chrom,
  • 0,3% bis 1,5% Silizium,
  • 0,0% bis 1,0% Aluminium,
  • 0,0% bis 0,7% Yttrium und/oder zumindest ein äquivalentes Metall aus der Gruppe umfassend Scandium und die Elemente der Seltenen Erden,
  • Rest Eisen, Kobalt und/oder Nickel sowie herstellungsbedingte Verunreinigungen.
The bonding layer 10 for protecting a substrate 4 against corrosion and oxidation at a high temperature has, for example, substantially the following elements (indication of the parts in wt% wt%):
  • 11.5% to 20.0% chromium,
  • 0.3% to 1.5% silicon,
  • 0.0% to 1.0% aluminum,
  • From 0.0% to 0.7% yttrium and / or at least one equivalent metal from the group comprising scandium and the rare earth elements,
  • Remainder iron, cobalt and / or nickel as well as production-related impurities.

Insbesondere besteht die metallische Anbindungsschicht 10 aus 12, 5% bis 14,0% Chrom,

  • 0,5% bis 1,0% Silizium,
  • 0,1% bis 0,5% Aluminium,
  • 0,0% bis 0,7% Yttrium und/oder zumindest ein äquivalentes Metall aus der Gruppe umfassend Scandium und die Elemente der Seltenen Erden,
  • Rest Eisen und/oder Kobalt und/oder Nickel sowie herstellungsbedingte Verunreinigungen.
In particular, the metallic bonding layer 10 consists of 12, 5% to 14.0% chromium,
  • 0.5% to 1.0% silicon,
  • 0.1% to 0.5% aluminum,
  • From 0.0% to 0.7% yttrium and / or at least one equivalent metal from the group comprising scandium and the rare earth elements,
  • Remainder iron and / or cobalt and / or nickel as well as production-related impurities.

Bevorzugt ist dabei, wenn der Rest bei diesen beiden Anbindungsschichten 10 nur Eisen ist.It is preferred if the remainder of these two bonding layers 10 is only iron.

Die Zusammensetzung der Anbindungsschicht 10 auf Eisenbasis zeigt besonders gute Eigenschaften, so dass die Anbindungsschicht 10 hervorragend zur Aufbringung auf ferritischen Substraten 4 geeignet ist.
Dabei können die thermischen Ausdehnungskoeffizienten von Substrat 4 und Anbindungsschicht 10 sehr gut aneinander angeglichen werden (nur bis zu 10% Unterschied) oder sogar gleich sein, so dass es zu keinem thermisch verursachten Spannungsaufbau zwischen Substrat 4 und Anbindungsschicht 10 kommt (thermal mismatch), der ein Abplatzen der Anbindungsschicht 10 verursachen könnte.
Dies ist besonders wichtig, da bei ferritischen Werkstoffen oft keine Wärmebehandlung zur Diffusionsanbindung durchgeführt wird, sondern die Anbindungsschicht 10 (ferritisch) größtenteils oder nur durch Adhäsion auf dem Substrat 4 haftet.
The composition of the iron-based attachment layer 10 exhibits particularly good properties, so that the attachment layer 10 is outstandingly suitable for application to ferritic substrates 4.
The coefficients of thermal expansion of substrate 4 and bonding layer 10 can be very well matched to each other (only up to 10% difference) or even equal, so there is no thermally induced stress build-up between substrate 4 and bonding layer 10 comes (thermal mismatch), which could cause a spalling of the bonding layer 10.
This is particularly important because in ferritic materials often no heat treatment for diffusion bonding is performed, but the bonding layer 10 (ferritic) largely or only by adhesion to the substrate 4 adheres.

Die Zusammensetzung der äußeren Erosionsschutzschicht 13 wird so gewählt, dass sie eine hohe Duktilität aufweist. Hohe Duktilität in diesem Zusammenhang bedeutet, dass Bruchdehnung von 5% (eine Dehnung von 5% führt zur Bildung von Rissen) bei der Einsatztemperatur aufweist.The composition of the outer erosion control layer 13 is selected to have a high ductility. High ductility in this context means that elongation at break of 5% (an elongation of 5% leads to the formation of cracks) at the service temperature.

Eine solche Erosionsschutzschicht 13 mit einer solchen Duktilität kann direkt auf ein Substrat 4 vorhanden sein oder auf einer keramischen Wärmedämmschicht 7, wobei die Zusammensetzung der Anbindungsschicht 10 dann keine Rolle mehr spielt.Such an erosion protection layer 13 with such a ductility can be present directly on a substrate 4 or on a ceramic thermal barrier coating 7, wherein the composition of the bonding layer 10 then no longer plays a role.

Die Wärmedämmschicht 7 ist insbesondere eine keramische Schicht, die beispielsweise zumindest teilweise aus Zirkonoxid (teilstabilisiert oder vollstabilisiert durch Yttriumoxid und/oder Magnesiumoxid) und/oder zumindest teilweise aus Titanoxid besteht und beispielsweise dicker als 0.1 mm ist. So können Wärmedämmschichten 7, die zu 100% entweder aus Zirkonoxid oder Titanoxid bestehen, verwendet werden.The heat-insulating layer 7 is in particular a ceramic layer, which consists for example at least partially of zirconium oxide (partially stabilized or fully stabilized by yttrium oxide and / or magnesium oxide) and / or at least partially of titanium oxide and is for example thicker than 0.1 mm. Thus, thermal barrier coatings 7 consisting of 100% of either zirconia or titanium oxide can be used.

Die keramische Schicht 7 kann mittels bekannter Beschichtungsverfahren wie atmosphärisches Plasmaspritzen (APS), Vakuumplasmaspritzen (VPS), Niedrigdruckplasmaspritzen (LPPS) sowie durch chemische oder physikalische Beschichtungsmethoden aufgebracht werden (CVD, PVD).The ceramic layer 7 can be applied by known coating methods such as atmospheric plasma spraying (APS), vacuum plasma spraying (VPS), low-pressure plasma spraying (LPPS) and by chemical or physical coating methods (CVD, PVD).

Das Substrat 4 ist vorzugsweise eine Stahl- oder eine sonstige eisenbasierte Legierung (beispielsweise 1%CrMoV oder 10 - 12% Chromstähle) oder eine nickel- oder kobaltbasierte Superlegierung.The substrate 4 is preferably a steel or other iron-based alloy (for example 1% CrMoV or 10-12% chromium steels) or a nickel- or cobalt-based superalloy.

Insbesondere ist das Substrat 4 eine ferritische Basislegierung, ein Stahl- oder eine Nickel- oder kobaltbasierte Superlegierung, insbesondere ein 1%CrMoV-Stahl oder ein 10 bis 12prozentiger Chromstahl.In particular, the substrate 4 is a ferritic base alloy, a steel or a nickel or cobalt-based superalloy, in particular a 1% CrMoV steel or a 10 to 12 percent chromium steel.

Weitere vorteilhafte ferritische Substrate 4 des Schichtsystems 1 bestehen aus einem

  • 1% bis 2%Cr Stahl für Wellen (309, Fig. 4):
    wie z.B. 30CrMoNiV5-11 oder 23CrMoNiWV8-8 oder
  • 1% bis 2%Cr Stahl für Gehäuse (Fig. 4, bspw. 335):
    G17CrMoV5-10 oder G17CrMo9-10 oder
  • 10% Cr-Stahl für wellen (309, Fig. 4):
    X12CrMoWVNbN10-1-1 ,
  • 10% Cr-Stahl für Gehäuse (Fig. 4, bspw. 335):
    GX12CrMoWVNbN10-1-1 oder GX12CrMoVNbN9-1.
Further advantageous ferritic substrates 4 of the layer system 1 consist of a
  • 1% to 2% Cr Steel for Shafts (309, Fig. 4):
    such as 30CrMoNiV5-11 or 23CrMoNiWV8-8 or
  • 1% to 2% Cr steel for housing (Fig. 4, eg 335):
    G17CrMoV5-10 or G17CrMo9-10 or
  • 10% Cr steel for shafts (309, Fig. 4):
    X12CrMoWVNbN10-1-1,
  • 10% Cr-steel for housing (Fig. 4, eg 335):
    GX12CrMoWVNbN10-1-1 or GX12CrMoVNbN9-1.

Für eine möglichst gute Wirkungsweise der Wärmedämmschicht 7 weist die wärmedämmschicht 7 zumindest teilweise eine gewisse offene und/oder geschlossene Porosität auf.For the best possible mode of action of the thermal barrier coating 7, the thermal barrier coating 7 at least partially has a certain open and / or closed porosity.

Die Erosionsschutzschicht 13 weist vorzugsweise eine höhere Dichte als die Wärmedämmschicht 7 auf, damit sie 13 eine höhere Erosionsbeständigkeit aufweist.The erosion protection layer 13 preferably has a higher density than the thermal barrier coating 7, so that it 13 has a higher erosion resistance.

Die metallische Erosionsschutzschicht 13 hat eine sehr geringe Porosität und weist insbesondere eine geringere Rauhigkeit auf, sodass eine gute Beständigkeit gegen erosiven Abtrag erzielt wird.The metallic erosion protection layer 13 has a very low porosity and in particular has a lower roughness, so that a good resistance to erosive erosion is achieved.

Die geringere Porosität und Rauhigkeit der metallischen Erosionsschutzschicht kann mit verschiedenen Techniken erzielt werden:

  1. 1. Verwendung eines Spritzpulvers beim thermischen Spritzen der Erosionsschutzschicht 13, das eine möglichst geringe Korngröße aufweist,
  2. 2. Verdichtung der äußeren metallischen Erosionsschutzschicht 13 nach dem Spritzen durch einen Strahlvorgang, beispielsweise durch Bestrahlen mit Glasperlen oder Stahlkies oder anderen mechanischen Verdichtungs- oder Glättungsverfahren (rollieren, gleitschleifen),
  3. 3. Verschließen der offenen Poren durch Penetrationsmittel,
  4. 4. Wärmebehandlung des gesamten Systems,
  5. 5. Aufschmelzen oder Umschmelzen der obersten Lage oder der kompletten metallischen Erosionsschutzschicht.
The lower porosity and roughness of the metallic erosion control layer can be achieved by various techniques:
  1. 1. Use of a spray powder during thermal spraying of the erosion protection layer 13, which has the smallest possible grain size,
  2. 2. densification of the outer metallic erosion protection layer 13 after spraying by a blasting process, for example by irradiation with glass beads or steel gravel or other mechanical compacting or smoothing processes (rolling, sliding),
  3. 3. closing of the open pores by penetration means,
  4. 4. heat treatment of the entire system,
  5. 5. melting or remelting the uppermost layer or the complete metallic erosion protection layer.

Im Gegensatz dazu wird die Anbindungsschicht 10, die sich zwischen dem Substrat und der Wärmedämmschicht befindet, so ausgeführt, dass sie eine ausreichend hohe Rauhigkeit mit Hinterschneidungen aufweist, um eine gute Haftfestigkeit der Wärmedämmschicht zu der Anbindungsschicht 10 zu erzielen, Dabei kann im vergleich zur Erosionsschutzschicht 13 ein wesentlich gröberes Pulver beim Spritzvorgang benutzt werden.In contrast, the bonding layer 10 located between the substrate and the thermal barrier coating is made to have sufficiently high roughness with undercuts to achieve good adhesion of the thermal barrier coating to the tie layer 10 13 a much coarser powder can be used during the injection process.

Figur 2 zeigt eine poröse Wärmedämmschicht 7 mit einem Gradienten der Porosität.
In der Wärmedämmschicht 7 sind Poren 16 vorhanden. In Richtung einer äußeren Oberfläche nimmt die Dichte ρ der Wärmedämmschicht 7 zu.
So kann die Schicht 7 im Bereich der größeren Porosität zur Wärmedämmung und im Bereich der geringeren Porosität gegebenenfalls auch zum Erosionsschutz verwendet werden.
FIG. 2 shows a porous thermal barrier coating 7 with a gradient of porosity.
In the thermal barrier coating 7 pores 16 are present. In the direction of an outer surface, the density ρ of the thermal barrier coating 7 increases.
Thus, the layer 7 can be used in the region of greater porosity for thermal insulation and, where appropriate, for erosion protection in the area of lower porosity.

somit besteht zu der Anbindungsschicht 10 hin vorzugsweise eine größere Porosität als im Bereich einer äußeren Oberfläche oder der Kontaktfläche zu der Erosionsschutzschicht 13.Thus, there is preferably a greater porosity towards the bonding layer 10 than in the region of an outer surface or the contact surface with the erosion protection layer 13.

In Figur 3 verläuft der Gradient in der Dichte ρ der Wärmedämmschicht 7 entgegengesetzt zu dem in Figur 2.In FIG. 3, the gradient in the density ρ of the thermal barrier coating 7 runs opposite to that in FIG. 2.

Die Erosionsschutzschicht 13 wird vorzugsweise nur lokal, aufgebracht und vorzugsweise dort auf dem Bauteil 1, wo der Auftreffwinkel von erodierenden Teilchen auf das Bauteil 1 zwischen 60° und 120°, vorzugsweise zwischen 70° und 110° oder vorzugsweise um 80° und 100° liegt. Besonders sinnvoll ist es die Stellen zu beschichten, die einen Auftreffwinkel von 90° +/- 2° der erodierenden Teilchen aufweisen. Bei diesem nahezu senkrechten Auftreffen von erodierenden Teilchen auf die Oberfläche eines Bauteils 1 bietet eine metallische Erosionsschutzschicht 13 den besten Erosionsschutz.The erosion protection layer 13 is preferably applied only locally, and preferably there on the component 1, where the angle of impact of eroding particles on the component 1 between 60 ° and 120 °, preferably between 70 ° and 110 ° or preferably by 80 ° and 100 ° , It is particularly useful to coat the sites which have an angle of incidence of 90 ° +/- 2 ° of the eroding particles. In this almost vertical impact of eroding particles on the surface of a component 1, a metallic erosion protection layer 13 offers the best erosion protection.

In Figur 4 ist beispielhaft eine Dampfturbine 300, 303 mit einer sich entlang einer Rotationsachse 306 erstreckenden Turbinenwelle 309 dargestellt.FIG. 4 shows by way of example a steam turbine 300, 303 with a turbine shaft 309 extending along a rotation axis 306.

Die Dampfturbine weist eine Hochdruck-Teilturbine 300 und eine Mitteldruck-Teilturbine 303 mit jeweils einem Innengehäuse 312 und einem dieses umschließende Außengehäuse 315 auf. Die Hochdruck-Teilturbine 300 ist beispielsweise in Topfbauart ausgeführt. Die Mitteldruck-Teilturbine 303 ist zweiflutig ausgeführt. Es ist ebenfalls möglich, dass die Mitteldruck-Teilturbine 303 einflutig ausgeführt ist. Entlang der Rotationsachse 306 ist zwischen der Hochdruck-Teilturbine 300 und der Mitteldruck-Teilturbine 303 ein Lager 318 angeordnet, wobei die Turbinenwelle 309 in dem Lager 318 einen Lagerbereich 321 aufweist. Die Turbinenwelle 309 ist auf einem weiteren Lager 324 neben der Hochdruck-Teilturbine 300 aufgelagert. Im Bereich dieses Lagers 324 weist die Hochdruck-Teilturbine 300 eine Wellendichtung 345 auf. Die Turbinenwelle 309 ist gegenüber dem Außengehäuse 315 der Mitteldruck-Teilturbine 303 durch zwei weitere Wellendichtungen 345 abgedichtet. Zwischen einem Hochdruck-Dampfeinströmbereich 348 und einem Dampfaustrittsbereich 351 weist die Turbinenwelle 309 in der Hochdruck-Teilturbine 300 die Hochdruck-Laufbeschaufelung 354, 357 auf. Diese Hochdruck-Laufbeschaufelung 354, 357 stellt mit den zugehörigen, nicht näher dargestellten Laufschaufeln einen ersten Beschaufelungsbereich 360 dar. Die Mitteldruck-Teilturbine 303 weist einen zentralen Dampfeinströmbereich 333 auf. Dem Dampfeinströmbereich 333 zugeordnet weist die Turbinenwelle 309 eine radialsymmetrische wellenabschirmung 363, eine Abdeckplatte, einerseits zur Teilung des Dampfstromes in die beiden Fluten der Mitteldruck-Teilturbine 303 sowie zur Verhinderung eines direkten Kontaktes des heißen Dampfes mit der Turbinenwelle 309 auf. Die Turbinenwelle 309 weist in der Mitteldruck-Teilturbine 303 einen zweiten Beschaufelungsbereich 366 mit den Mitteldruck-Laufschaufeln 354, 342 auf. Der durch den zweiten Beschaufelungsbereich 366 strömende heiße Dampf strömt aus der Mitteldruck-Teilturbine 303 aus einem Abströmstutzen 369 zu einer strömungstechnisch nachgeschalteten, nicht dargestellten Niederdruck-Teilturbine.The steam turbine has a high-pressure turbine section 300 and a medium-pressure turbine section 303, each having an inner housing 312 and an outer housing 315 enclosing this. The high-pressure turbine part 300 is designed, for example, in Topfbauart. The medium-pressure turbine section 303 is double-flow. It is also possible for the medium-pressure turbine section 303 to be single-flow. Along the axis of rotation 306, a bearing 318 is arranged between the high-pressure turbine section 300 and the medium-pressure turbine section 303, the turbine shaft 309 having a bearing region 321 in the bearing 318. The turbine shaft 309 is on another bearing 324 adjacent to the high pressure turbine section 300. In the area of this bearing 324, the high-pressure turbine section 300 has a shaft seal 345. The turbine shaft 309 is sealed from the outer housing 315 of the medium-pressure turbine section 303 by two further shaft seals 345. Between a high-pressure steam inflow region 348 and a steam outlet region 351, the turbine shaft 309 in the high-pressure turbine section 300 has the high-pressure impeller blade 354, 357. This high-pressure bladed runner 354, 357, together with the associated blades, not shown, represents a first blading region 360. The middle-pressure blast turbine 303 has a central steam inflow region 333. Associated with the steam inflow region 333, the turbine shaft 309 has a radially symmetrical wave shield 363, a cover plate, on the one hand for dividing the steam flow into the two flows of the medium-pressure turbine section 303 and for preventing direct contact of the hot steam with the turbine shaft 309. The turbine shaft 309 has in the medium-pressure turbine section 303 a second blading area 366 with the medium-pressure blades 354, 342. The hot steam flowing through the second blading area 366 flows out of the medium-pressure turbine section 303 from a discharge connection 369 to a downstream low-pressure turbine, not shown.

Die Turbinenwelle 309 ist aus zwei Teilturbinenwellen 309a und 309b zusammengesetzt, die im Bereich des Lagers 318 fest miteinander verbunden sind.The turbine shaft 309 is composed of two sub-turbine shafts 309a and 309b, which are fixedly connected to one another in the region of the bearing 318.

Insbesondere weist der Dampfeinströmbereich 333 eine Wärmedämmschicht 7 und eine Erosionsschutzschicht 13 auf.In particular, the steam inflow region 333 has a heat insulation layer 7 and an erosion protection layer 13.

Figur 5 zeigt eine vergrößerte Darstellung eines Bereichs der Dampfturbine 300, 303.
Die Dampfturbine 300, 303 besteht im Bereich des Einströmbereichs 333 aus einem äußeren Gehäuse 334, an dem Temperaturen zwischen 250° bis 350°C anliegen.
An dem Einströmbereich 333 als Teil eines Innengehäuses 335 herrschen Temperaturen von 450° bis 800°C.
Somit ergibt sich eine Temperaturdifferenz von mindestens 200°C.
Auf das Innengehäuse 335, an dem die hohen Temperaturen anliegen, wird die Wärmedämmschicht 7 mit der Erosionsschutzschicht 13 auf der Innenseite 336 aufgebracht (auf der Außenseite 337 beispielsweise nicht).
Die Wärmedämmschicht 7 ist lokal nur an dem Innengehäuse 335 vorhanden (und beispielsweise nicht im Beschaufelungsbereich 366).
Durch die Aufbringung einer wärmedämmschicht 7 mit der Erosionsschutzschicht 13 wird der Wärmeeintrag in das Innengehäuse 335 verringert, so dass das thermische Ausdehnungsverhalten beeinflusst wird. Dadurch kann das gesamte Verformungsverhalten des Innengehäuses 335 und des Dampfeinströmbereichs 333 kontrolliert eingestellt werden. Dies kann erfolgen durch eine Variation der Dicke der Wärmedämmschicht 7 oder die Aufbringung von verschiedenen Materialien an verschiedenen Stellen der Oberfläche des Innengehäuses 335.
Ebenso kann die Porosität an verschiedenen Stellen des Innengehäuses 335 verschieden sein.
Die Wärmedämmschicht 7 kann lokal, beispielsweise im Innengehäuse 335 im Bereich des Einströmbereichs 333 aufgebracht sein.
Ebenso kann die wärmedämmschicht 7 nur im Beschaufelungsbereich 366 lokal aufgebracht sein (Fig. 6).
Besonderes im Einströmbereich 333 ist der Einsatz einer Erosionsschutzschicht 13 gefordert.
FIG. 5 shows an enlarged view of a region of the steam turbine 300, 303.
In the region of the inflow region 333, the steam turbine 300, 303 consists of an outer housing 334, against which temperatures between 250 ° and 350 ° C. are applied.
Temperatures of 450 ° to 800 ° C. prevail at the inflow region 333 as part of an inner housing 335.
This results in a temperature difference of at least 200 ° C.
On the inner housing 335, which abut the high temperatures, the thermal barrier coating 7 is applied to the erosion protection layer 13 on the inside 336 (on the outside 337, for example, not).
The thermal barrier coating 7 is present locally only on the inner housing 335 (and not in the blading area 366, for example).
By the application of a thermal barrier coating 7 with the erosion protection layer 13, the heat input into the inner housing 335 is reduced, so that the thermal expansion behavior is influenced. As a result, the entire deformation behavior of the inner housing 335 and the Dampfeinströmbereichs 333 can be controlled. This can be done by a variation of the thickness of the thermal barrier coating 7 or the application of different materials at different locations of the surface of the inner housing 335th
Likewise, the porosity at different locations of the inner housing 335 may be different.
The thermal barrier coating 7 may be applied locally, for example in the inner housing 335 in the region of the inflow region 333.
Likewise, the thermal barrier coating 7 can be applied locally only in the blading area 366 (FIG. 6).
Especially in the inflow region 333, the use of an erosion protection layer 13 is required.

Wenn die Wärmedämmschicht 7 (TBC) mit Erosionsschutzschicht 13 im Einströmbereich 333 vorhanden ist, kann eine Wärmedämmschicht 7 ohne Erosionsschutzschicht im Beschaufelungsbereich 366 und/oder den Turbinenschaufeln vorhanden sein. Einströmbereich Beschaufelungsbereich Turbinenschaufel TBC Ja + 13 Nein Nein TBC Ja + 13 Ja Nein TBC Ja + 13 Nein Ja TBC Ja + 13 Ja + 13 Nein TBC Ja Ja + 13 Nein TBC Ja Nein Ja + 13 If the thermal barrier coating 7 (TBC) with erosion protection layer 13 is present in the inflow region 333, a Thermal insulation layer 7 without erosion protection layer in the blading area 366 and / or the turbine blades be present. inflow blading turbine blade TBC Yes + 13 No No TBC Yes + 13 Yes No TBC Yes + 13 No Yes TBC Yes + 13 Yes + 13 No TBC Yes Yes + 13 No TBC Yes No Yes + 13

Figur 7 zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Bauteils 1.
Hier ist die Dicke der Wärmedämmschicht 7 im Einströmbereich 333 dicker ausgeführt als im Beschaufelungsbereich 366 der Dampfturbine 300, 303.
Durch die lokal unterschiedliche Dicke der Wärmedämmschicht 7 wird der Wärmeeintrag und damit die thermische Ausdehnung und somit das Ausdehnungsverhalten des Innengehäuses 334, bestehend aus dem Einströmbereich 333 und dem Beschaufelungsbereich 366, kontrolliert eingestellt.
Da im Einströmbereich 333 höhere Temperaturen herrschen als im Beschaufelungsbereich 366 wird durch die dickere Wärmedämmschicht 7 im Einströmbereich 333 der wärmeeintrag in das Substrat 4 stärker reduziert als im Beschaufelungsbereich 366, wo geringere Temperaturen herrschen. Somit kann der Wärmeeintrag sowohl im Einströmbereich 333 und anschließendem Beschaufelungsbereich 366 ungefähr gleich gehalten werden, so dass die thermische Ausdehnung ungefähr gleich ist,
FIG. 7 shows a further exemplary embodiment of a component 1 according to the invention.
Here, the thickness of the thermal barrier coating 7 in the inflow region 333 is made thicker than in the blading region 366 of the steam turbine 300, 303.
Due to the locally different thickness of the thermal barrier coating 7, the heat input and thus the thermal expansion and thus the expansion behavior of the inner housing 334, consisting of the inflow region 333 and the blading region 366, controlled.
Since higher temperatures prevail in the inflow region 333 than in the blading region 366, the thicker heat-insulating layer 7 in the inflow region 333 reduces the heat input into the substrate 4 more than in the blading region 366, where lower temperatures prevail. Thus, the heat input in both the inflow region 333 and subsequent blading region 366 can be kept approximately equal, so that the thermal expansion is approximately equal,

Ebenso kann im Bereich des Einströmbereichs 333 ein anderes Material vorhanden sein als im Beschaufelungsbereich 366. Die Wärmedämmschicht 7 ist hier im gesamten heißen Bereich, also global, aufgebracht und weist die Erosionsschutzschicht 13 auf.Likewise, in the region of the inflow region 333, a different material may be present than in the blading region 366. The thermal barrier coating 7 is applied here in the entire hot region, ie globally, and has the erosion protection layer 13.

Figur 8 zeigt ein weiteres Anwendungsbeispiel für die Verwendung einer wärmedämmschicht 7.
Das Bauteil 1, insbesondere ein Gehäuseteil, ist hier ein Ventilgehäuse 31, in das durch einen Einströmkanal 46 ein heißer Dampf einströmt.
Der Einströmkanal 46 bewirkt eine mechanische Schwächung des Ventilgehäuses.
Das Ventilgehäuse 31 besteht beispielsweise aus einem topfförmigen Gehäuseteil 34 und einem Deckel 37.
Innerhalb des Gehäuseteils 31 ist ein Ventil bestehend aus einem Ventilkegel 40 und einer Spindel 43 vorhanden.
Infolge Bauteil-Kriechens kommt es zu einer ungleichförmigen axialen Verformung des Gehäuses 31 und Deckels 37. Das Ventilgehäuse 31 würde sich im Bereich des Kanals 46 axial stärker ausdehnen, so dass es zu einer Verkippung des Deckels mit der Spindel 43 kommt, wie gestrichelt angedeutet. Dadurch sitzt der Ventilkegel 34 nicht mehr richtig auf, so dass die Dichtheit des Ventils reduziert wird.
Durch die Aufbringung einer Wärmedämmschicht 7 auf eine Innenseite 49 des Gehäuses 31 wird eine Vergleichmäßigung des Verformungsverhaltens erreicht, so dass sich beide Enden 52, 55 des Gehäuses 31 und des Deckels 37 gleichmäßig ausdehnen.
FIG. 8 shows a further example of application for the use of a thermal barrier coating 7.
The component 1, in particular a housing part, is here a valve housing 31, into which a hot steam flows through an inlet channel 46.
The inflow passage 46 causes a mechanical weakening of the valve housing.
The valve housing 31 consists for example of a cup-shaped housing part 34 and a lid 37th
Within the housing part 31, a valve consisting of a valve plug 40 and a spindle 43 is present.
As a result of component creeping, a non-uniform axial deformation of the housing 31 and cover 37 occurs. The valve housing 31 would expand axially more strongly in the region of the channel 46, so that tilting of the cover with the spindle 43 occurs, as indicated by dashed lines. As a result, the valve cone 34 no longer sits properly, so that the tightness of the valve is reduced.
By applying a thermal barrier coating 7 on an inner side 49 of the housing 31, a homogenization of the deformation behavior is achieved, so that both ends 52, 55 of the housing 31 and the cover 37 expand uniformly.

Insgesamt dient das Aufbringen der Wärmedämmschicht 7 dazu, das Verformungsverhalten zu kontrollieren und damit die Dichtheit des Ventils zu gewährleisten.
Die wärmedämmschicht 7 weist wiederum die Erosionsschutzschicht 13 auf.
Overall, the application of the thermal barrier coating 7 serves to control the deformation behavior and thus to ensure the tightness of the valve.
The thermal barrier coating 7 in turn has the erosion protective layer 13.

Claims (34)

Schichtsystem für ein Bauteil (1, 31, 334, 335, 342, 354, 357, 366)
insbesondere für eine Dampfturbine (300, 303),
zumindest bestehend aus
einem Substrat (4),
einer metallischen Anbindungsschicht (10),
einer Wärmedämmschicht (7) auf der metallischen Anbindungsschicht (10),
insbesondere einer keramischen Wärmedämmschicht (7),
und einer äußeren metallischen Erosionsschutzschicht (13) auf der Wärmedämmschicht (7),
dadurch gekennzeichnet, dass
die Anbindungsschicht (10) und die Erosionsschutzschicht (13) die gleiche oder ähnliche Zusammensetzung aufweisen.
Layer system for a component (1, 31, 334, 335, 342, 354, 357, 366)
in particular for a steam turbine (300, 303),
at least consisting of
a substrate (4),
a metallic bonding layer (10),
a thermal barrier coating (7) on the metallic bonding layer (10),
in particular a ceramic thermal barrier coating (7),
and an outer metallic erosion protection layer (13) on the thermal barrier coating (7),
characterized in that
the bonding layer (10) and the erosion control layer (13) have the same or similar composition.
Schichtsystem nach Anspruch 1,
dadurch gekennzeichnet, dass
das Material der Anbindungsschicht (10) und der Erosionsschutzschicht (13) eine MCrAlX-Legierung ist.
Layer system according to claim 1,
characterized in that
the material of the bonding layer (10) and the erosion control layer (13) is an MCrAlX alloy.
Schichtsystem nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
das Material der Anbindungsschicht (10) (in wt%), insbesondere auch das Material der Erosionsschutzschicht (13),
aus 29% - 31% Nickel, 27% - 29% Chrom, 7% - 8% Aluminium, 0,5% - 0,7% Yttrium, 0,3% - 0,7% Silizium
und Rest Kobalt besteht.
Layer system according to claim 1 or 2,
characterized in that
the material of the bonding layer (10) (in wt%), in particular also the material of the erosion protection layer (13),
out 29% - 31% Nickel, 27% - 29% Chrome, 7% - 8th% Aluminum, 0.5% - 0.7% Yttrium, 0.3% - 0.7% silicon
and balance cobalt exists.
Schichtsystem eil nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
das Material der Anbindungsschicht (10) (in wt%), insbesondere auch das Material der Erosionsschutzschicht (13),
aus 11% - 13% Kobalt, 20% - 22% Chrom, 10,5% - 11,5% Aluminium, 0,3% - 0,5% Yttrium, 1,5% - 2,5% Rhenium
und Rest Nickel besteht.
Layer system according to claim 1 or 2,
characterized in that
the material of the bonding layer (10) (in wt%), in particular also the material of the erosion protection layer (13),
out 11% - 13% Cobalt, 20% - 22% Chrome, 10.5% - 11.5% Aluminum, 0.3% - 0.5% Yttrium, 1.5% - 2.5% rhenium
and the rest is nickel.
Schichtsystem nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
das Material der Anbindungsschicht (10) (in wt%), insbesondere auch das Material der Erosionsschutzschicht (13),
aus 24% - 26% Kobalt, 16% - 18% Chrom, 9,5% - 11% Aluminium, 0,3% - 0,5% Yttrium, 1,0% - 1,8% Rhenium
und Rest Nickel besteht.
Layer system according to claim 1 or 2,
characterized in that
the material of the bonding layer (10) (in wt%), in particular also the material of the erosion protection layer (13),
out 24% - 26% Cobalt, 16% - 18% Chrome, 9.5% - 11% Aluminum, 0.3% - 0.5% Yttrium, 1.0% - 1.8% rhenium
and the rest is nickel.
Schichtsystem nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
das Material der Anbindungsschicht (10) (in wt%), insbesondere auch das Material der Erosionsschutzschicht (13),
aus 11,5% - 20% Chrom, 0,3% - 1,5% Silizium, 0% - 1% Aluminium, 0% - 4% Yttrium
sowie Rest Eisen besteht.
Layer system according to claim 1 or 2,
characterized in that
the material of the bonding layer (10) (in wt%), in particular also the material of the erosion protection layer (13),
out 11.5% - 20% Chrome, 0.3% - 1.5% Silicon, 0% - 1% Aluminum, 0% - 4% yttrium
as well as remainder iron exists.
Schichtsystem nach Anspruch 6,
dadurch gekennzeichnet, dass
das Material der Anbindungsschicht (10) (in wt%), insbesondere auch das Material der Erosionsschutzschicht (13),
aus 12,5% - 14% Chrom, 0,5% - 1,0% Silizium, 0,1% - 0,5% Aluminium, 0% - 4% Yttrium,
sowie Rest Eisen besteht.
Layer system according to claim 6,
characterized in that
the material of the bonding layer (10) (in wt%), in particular also the material of the erosion protection layer (13),
out 12.5% - 14% chromium, 0.5% - 1.0% silicon, 0.1% - 0.5% aluminum, 0% - 4% yttrium,
as well as remainder iron exists.
Schichtsystem nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die Erosionsschutzschicht (13) und die Anbindungsschicht (10) aus einer eisen-, nickel-, chrom- oder kobaltbasierten Legierung,
insbesondere NiCr80/20, bestehen.
Layer system according to claim 1 or 2,
characterized in that
the erosion protection layer (13) and the bonding layer (10) made of an iron, nickel, chromium or cobalt-based alloy,
especially NiCr80 / 20.
Schichtsystem nach Anspruch 1,
dadurch gekennzeichnet, dass
die Erosionsschutzschicht (13) und die Anbindungsschicht (10) aus einer Nickel-Chrom-Legierung mit Beimengungen von Silizium (Si) und/oder Bor (B) (NiCrSiB) bestehen.
Layer system according to claim 1,
characterized in that
the erosion protection layer (13) and the bonding layer (10) consist of a nickel-chromium alloy with admixtures of silicon (Si) and / or boron (B) (NiCrSiB).
Schichtsystem nach Anspruch 1,
dadurch gekennzeichnet, dass
die Erosionsschutzschicht (13) und die Anbindungsschicht (10) aus einer Nickel-Aluminium-Legierung bestehen.
Layer system according to claim 1,
characterized in that
the erosion protection layer (13) and the bonding layer (10) consist of a nickel-aluminum alloy.
Schichtsystem nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, dass
die Anbindungsschicht (10) und die Erosionsschutzschicht (13) die gleiche Zusammensetzung aufweisen.
Layer system according to one of claims 1 to 10,
characterized in that
the bonding layer (10) and the erosion control layer (13) have the same composition.
Schichtsystem nach Anspruch 1,
dadurch gekennzeichnet,
dass die Erosionsschutzschicht (13) eine geringere Porosität als die wärmedämmschicht (7) aufweist, dass insbesondere der Unterschied in der Dichte zumindest 1%, insbesondere zumindest 3% beträgt.
Layer system according to claim 1,
characterized,
that the erosion protection layer (13) has a lower porosity than the thermal barrier coating (7), that in particular the difference in density is at least 1%, in particular at least 3%.
Schichtsystem nach Anspruch 1 oder 12,
dadurch gekennzeichnet, dass
die Erosionsschutzschicht (13) eine Dichte von mindestens 96%,
insbesondere 98%,
der theoretischen Dichte der Erosionsschutzschicht (13) aufweist.
Layer system according to claim 1 or 12,
characterized in that
the erosion control layer (13) has a density of at least 96%,
especially 98%,
the theoretical density of the erosion control layer (13).
Schichtsystem nach Anspruch 1, 12 oder 13,
dadurch gekennzeichnet, dass
die Dichte der Wärmedämmschicht (7) 80% - 95% der theoretischen Dichte der Wärmedämmschicht (13) beträgt.
Layer system according to claim 1, 12 or 13,
characterized in that
the density of the thermal barrier coating (7) is 80% - 95% of the theoretical density of the thermal barrier coating (13).
Schichtsystem nach Anspruch 1, 12 oder 14,
dadurch gekennzeichnet, dass
die Wärmedämmschicht (7) zumindest teilweise porös ist.
Layer system according to claim 1, 12 or 14,
characterized in that
the thermal barrier coating (7) is at least partially porous.
Schichtsystem nach Anspruch 12, 14 oder 15,
dadurch gekennzeichnet, dass
die Wärmedämmschicht (7) einen Gradienten in der Porosität aufweist.
Layer system according to claim 12, 14 or 15,
characterized in that
the thermal barrier coating (7) has a gradient in porosity.
Schichtsystem nach Anspruch 16,
dadurch gekennzeichnet, dass
die Porosität der Wärmedämmschicht (7) im äußeren Bereich der Wärmedämmschicht (7) am größten ist.
Layer system according to claim 16,
characterized in that
the porosity of the thermal barrier coating (7) in the outer region of the thermal barrier coating (7) is greatest.
Schichtsystem nach Anspruch 16,
dadurch gekennzeichnet, dass
die Porosität der wärmedämmschicht (7) im äußeren Bereich der Wärmedämmschicht (7) am kleinsten ist.
Layer system according to claim 16,
characterized in that
the porosity of the thermal barrier coating (7) in the outer region of the thermal barrier coating (7) is smallest.
Schichtsystem nach Anspruch 1, 2, 8, 9 oder 10,
dadurch gekennzeichnet, dass
das Material der metallischen Erosionsschutzschicht (13) eine hohe Duktilität aufweist,
insbesondere eine Bruchdehnung von 5% aufweist.
Layer system according to claim 1, 2, 8, 9 or 10,
characterized in that
the material of the metallic erosion protection layer (13) has a high ductility,
in particular has an elongation at break of 5%.
Schichtsystem nach Anspruch 1,
dadurch gekennzeichnet, dass
das Schichtsystem (1) ein Gehäuseteil (31, 334, 335, 366) einer Gas- oder Dampfturbine (300, 303) ist.
Layer system according to claim 1,
characterized in that
the layer system (1) is a housing part (31, 334, 335, 366) of a gas or steam turbine (300, 303).
Schichtsystem nach Anspruch 20,
dadurch gekennzeichnet, dass
das Schichtsystem (1) ein Turbinengehäuse (366) oder ein Ventilgehäuse (31) ist.
Layer system according to claim 20,
characterized in that
the layer system (1) is a turbine housing (366) or a valve housing (31).
Schichtsystem nach Anspruch 1,
dadurch gekennzeichnet, dass
das Schichtsystem (1) eine Turbinenschaufel (342, 354, 357) ist.
Layer system according to claim 1,
characterized in that
the layer system (1) is a turbine blade (342, 354, 357).
Schichtsystem nach Anspruch 1, 19, 20, 21 oder 22,
dadurch gekennzeichnet, dass
die Erosionsschutzschicht (13) dort,
insbesondere nur dort,
auf dem Bauteil (1) vorhanden ist,
wo ein Auftreffwinkel von erodierenden Teilchen auf das Bauteil (1) zwischen 60° - 120°,
insbesondere zwischen 70° und 110° beträgt.
Layer system according to claim 1, 19, 20, 21 or 22,
characterized in that
the erosion protection layer (13) there,
especially only there,
is present on the component (1),
where an angle of impact of eroding particles on the component (1) is between 60 ° -120 °,
in particular between 70 ° and 110 °.
Schichtsystem nach einem der Ansprüche 1 oder 20 bis 23,
dadurch gekennzeichnet,
dass das Schichtsystem (1) aus einem Substrat (4) besteht, auf dem (4) die Wärmedämmschicht (7) vorhanden ist, und
dass das Substrat (4) aus einer nickel-, kobalt- oder insbesondere eisenbasierten Legierung gebildet ist.
Layer system according to one of claims 1 or 20 to 23,
characterized,
that the layer system (1) consists of a substrate (4) on which (4) the thermal barrier coating (7) is present, and
that the substrate (4) is formed from a nickel, cobalt or, especially, iron-based alloy.
Schichtsystem nach Anspruch 1, 12, 14 oder 24,
dadurch gekennzeichnet, dass
die Wärmedämmschicht (7) zumindest teilweise, insbesondere ganz aus Zirkonoxid (ZrO2) besteht.
Layer system according to claim 1, 12, 14 or 24,
characterized in that
the thermal barrier coating (7) consists at least partially, in particular entirely of zirconium oxide (ZrO 2 ).
Schichtsystem nach Anspruch 1, 12, 14, 24 oder 25,
dadurch gekennzeichnet, dass
die Wärmedämmschicht (7) zumindest teilweise, insbesondere ganz aus Titanoxid (TiO2) besteht.
Layer system according to claim 1, 12, 14, 24 or 25,
characterized in that
the thermal barrier coating (7) consists at least partially, in particular entirely of titanium oxide (TiO 2 ).
Schichtsystem nach Anspruch 1,
dadurch gekennzeichnet, dass
die Schichtsystem (1) im Einströmbereich (333) und im Beschaufelungsbereich (366) einer Dampfturbine (300, 303) aufgebracht ist.
Layer system according to claim 1,
characterized in that
the layer system (1) is applied in the inflow region (333) and in the blading region (366) of a steam turbine (300, 303).
Schichtsystem nach Anspruch 1,
dadurch gekennzeichnet, dass
die Schichtsystem (1) nur im Einströmbereich (333) einer Dampfturbine (300, 303) aufgebracht ist.
Layer system according to claim 1,
characterized in that
the layer system (1) is applied only in the inflow region (333) of a steam turbine (300, 303).
Schichtsystem nach Anspruch 1,
dadurch gekennzeichnet, dass
die Schichtsystem (1) nur im Beschaufelungsbereich (366) einer Dampfturbine (300, 303) aufgebracht ist.
Layer system according to claim 1,
characterized in that
the layer system (1) is applied only in the blading area (366) of a steam turbine (300, 303).
Schichtsystem nach Anspruch 1,
dadurch gekennzeichnet, dass
die Anbindungsschicht (10) die Wärmedämmschicht (7) und
die Erosionsschutzschicht (13) bei wieder aufgearbeiteten Bauteilen (1) aufgebracht ist.
Layer system according to claim 1,
characterized in that
the bonding layer (10) the thermal barrier coating (7) and
the erosion protection layer (13) is applied to refurbished components (1).
Verfahren zur Herstellung eines Bauteils nach einem der Ansprüche 1 bis 30,
dadurch gekennzeichnet, dass
die Erosionsschutzachicht (13) nach dem Aufbringen auf die wärmedämmschicht (17) verdichtet wird.
Method for producing a component according to one of claims 1 to 30,
characterized in that
the Erosionsschutzachicht (13) after application to the thermal barrier coating (17) is compressed.
Verfahren zum Betreiben einer Dampfturbine (300, 303)
wobei in der Dampfturbine (300, 303) ein Dampf mit erodierenden Teilchen strömt,
die auf innere Oberflächen der Dampfturbine (303, 303) treffen,
wobei zumindest die inneren Oberflächen der Dampfturbine (300, 303) mit einem Schichtsystem (1),
insbesondere nach einem oder mehreren der Ansprüche 1 bis 31, versehen werden,
auf die die Teilchen mit einem Winkel von 60° - 120°, insbesondere 70° - 110° auftreffen.
Method for operating a steam turbine (300, 303)
wherein steam with eroding particles flows in the steam turbine (300, 303),
which hit inner surfaces of the steam turbine (303, 303),
wherein at least the inner surfaces of the steam turbine (300, 303) are provided with a layer system (1),
in particular according to one or more of claims 1 to 31,
on which the particles impinge at an angle of 60 ° - 120 °, in particular 70 ° - 110 °.
Verfahren nach Anspruch 32,
dadurch gekennzeichnet, dass
wobei die inneren Oberflächen der Dampfturbine (300, 303) mit einem Schichtsystem (1),
insbesondere nach einem oder mehreren der Ansprüche 1 bis 31, versehen werden,
auf die die Teilchen mit einem Winkel von 80° - 100°, insbesondere um 90° auftreffen.
Method according to claim 32,
characterized in that
the inner surfaces of the steam turbine (300, 303) being provided with a layer system (1),
in particular according to one or more of claims 1 to 31,
on which the particles impinge at an angle of 80 ° - 100 °, in particular by 90 °.
Verfahren nach Anspruch 32 oder 33,
dadurch gekennzeichnet, dass
nur die inneren Oberflächen der Dampfturbine (300, 303) mit einem Schichtsystem (1),
insbesondere nach einem oder mehreren der Ansprüche 1 bis 31, versehen werden,
auf die die Teilchen mit einem Winkel von 80° - 100°, insbesondere um 90° auftreffen.
A method according to claim 32 or 33,
characterized in that
only the inner surfaces of the steam turbine (300, 303) with a layer system (1),
in particular according to one or more of claims 1 to 31,
on which the particles impinge at an angle of 80 ° - 100 °, in particular by 90 °.
EP05012633A 2005-06-13 2005-06-13 Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component Withdrawn EP1734145A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP05012633A EP1734145A1 (en) 2005-06-13 2005-06-13 Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component
CN200680021099.7A CN101198713B (en) 2005-06-13 2006-03-17 Layer system for a component comprising a thermally insulating layer and a metallic anti-erosion layer, method for the production and method for the operation of a steam turbine
JP2008515158A JP4749467B2 (en) 2005-06-13 2006-03-17 COATING SYSTEM HAVING INSULATION LAYER AND METAL EROSION PROTECTION LAYER FOR COMPONENT, METHOD FOR PRODUCING THE COATING SYSTEM, AND METHOD FOR OPERATING STEAM TURBINE
PCT/EP2006/060835 WO2006133980A1 (en) 2005-06-13 2006-03-17 Layer system for a component comprising a thermally insulating layer and a metallic anti-erosion layer, method for the production and method for the operation of a steam turbine
US11/922,149 US8047775B2 (en) 2005-06-13 2006-03-17 Layer system for a component comprising a thermal barrier coating and metallic erosion-resistant layer, production process and method for operating a steam turbine
EP06725133A EP1891249A1 (en) 2005-06-13 2006-03-17 Layer system for a component comprising a thermally insulating layer and a metallic anti-erosion layer, method for the production and method for the operation of a steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05012633A EP1734145A1 (en) 2005-06-13 2005-06-13 Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component

Publications (1)

Publication Number Publication Date
EP1734145A1 true EP1734145A1 (en) 2006-12-20

Family

ID=35106823

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05012633A Withdrawn EP1734145A1 (en) 2005-06-13 2005-06-13 Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component
EP06725133A Withdrawn EP1891249A1 (en) 2005-06-13 2006-03-17 Layer system for a component comprising a thermally insulating layer and a metallic anti-erosion layer, method for the production and method for the operation of a steam turbine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06725133A Withdrawn EP1891249A1 (en) 2005-06-13 2006-03-17 Layer system for a component comprising a thermally insulating layer and a metallic anti-erosion layer, method for the production and method for the operation of a steam turbine

Country Status (5)

Country Link
US (1) US8047775B2 (en)
EP (2) EP1734145A1 (en)
JP (1) JP4749467B2 (en)
CN (1) CN101198713B (en)
WO (1) WO2006133980A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1956105A1 (en) * 2005-10-25 2008-08-13 Siemens Aktiengesellschaft Alloy, protective layer for protecting a component from corrosion and oxidisation in high temperatures and component
EP2022951A1 (en) * 2007-08-08 2009-02-11 Siemens Aktiengesellschaft Method for manufacturing a turbine casing and turbine casing
EP2031183A1 (en) * 2007-08-28 2009-03-04 Siemens Aktiengesellschaft Steam turbine shaft with heat insulation layer
EP2112252A1 (en) * 2008-04-25 2009-10-28 Zircotec Limited A thermal barrier, an article with a thermal barrier, and a method of applying a thermal barrier to a surface
EP2270258A3 (en) * 2009-06-29 2011-03-16 Hitachi, Ltd. High reliability turbine metal sealing material
CN102248716A (en) * 2011-05-20 2011-11-23 九江学院 Metal ceramic coating and preparation method thereof
EP2241648A3 (en) * 2009-04-17 2011-11-30 United Technologies Corporation Abrasive thermal coating
WO2014160256A1 (en) * 2013-03-14 2014-10-02 Siemens Energy, Inc. Method and apparatus for fabrication and repair of thermal barriers

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2100680B1 (en) 2008-02-29 2013-02-27 Siemens Aktiengesellschaft Method for producing a component
EP2112334A1 (en) 2008-04-21 2009-10-28 Siemens Aktiengesellschaft Outer housing for a turbo engine
EP2143884A1 (en) 2008-07-11 2010-01-13 Siemens Aktiengesellschaft Rotor disc for a turbomachine
JP5395574B2 (en) 2008-11-27 2014-01-22 株式会社東芝 Steam equipment
EP2196559A1 (en) 2008-12-15 2010-06-16 ALSTOM Technology Ltd Thermal barrier coating system, components coated therewith and method for applying a thermal barrier coating system to components
EP2233600B1 (en) * 2009-03-26 2020-04-29 Ansaldo Energia Switzerland AG Method for the protection of a thermal barrier coating system and a method for the renewal of such a protection
CN102459685B (en) * 2009-05-26 2014-11-19 西门子公司 Layered coating system with a mcralx layer and a chromium rich layer and a method to produce it
US9341118B2 (en) * 2009-12-29 2016-05-17 Rolls-Royce Corporation Various layered gas turbine engine component constructions
US8708659B2 (en) 2010-09-24 2014-04-29 United Technologies Corporation Turbine engine component having protective coating
EP2697408B1 (en) 2011-04-13 2018-09-12 Rolls-Royce Corporation Interfacial diffusion barrier layer including iridium on a metallic substrate
CN102416459A (en) * 2011-11-28 2012-04-18 机械科学研究总院先进制造技术研究中心 Ultrahigh temperature forming mold and manufacturing method thereof
US9771811B2 (en) * 2012-01-11 2017-09-26 General Electric Company Continuous fiber reinforced mesh bond coat for environmental barrier coating system
RU2534714C2 (en) * 2013-03-15 2014-12-10 Федеральное Государственное Унитарное Предприятие "Научно-Производственное Объединение "Техномаш" Production of erosion- and heat-resistant coatings
US20150093237A1 (en) * 2013-09-30 2015-04-02 General Electric Company Ceramic matrix composite component, turbine system and fabrication process
CN104562006B (en) * 2013-10-25 2018-08-14 通用电气公司 With the element of anti-corrosion layer protection and the method for manufacturing the element
US10266958B2 (en) * 2013-12-24 2019-04-23 United Technologies Corporation Hot corrosion-protected articles and manufacture methods
EP2918705B1 (en) 2014-03-12 2017-05-03 Rolls-Royce Corporation Coating including diffusion barrier layer including iridium and oxide layer and method of coating
EP3015644B1 (en) * 2014-10-29 2018-12-12 General Electric Technology GmbH Steam turbine rotor
CN104451519B (en) * 2014-11-26 2017-01-18 华东理工大学 Multi-layer thermal barrier coating and forming method thereof
JP6459050B2 (en) * 2015-02-13 2019-01-30 三菱日立パワーシステムズ株式会社 Gas turbine component, intermediate structure of gas turbine component, gas turbine, method for manufacturing gas turbine component, and method for repairing gas turbine component
DE102015106002A1 (en) * 2015-04-20 2016-10-20 Gottfried Wilhelm Leibniz Universität Hannover Electrical component, construction component of a technical object and method for its production
US20170122561A1 (en) * 2015-10-28 2017-05-04 General Electric Company Methods of repairing a thermal barrier coating of a gas turbine component and the resulting components
US20170122560A1 (en) * 2015-10-28 2017-05-04 General Electric Company Gas turbine component with improved thermal barrier coating system
JP6908973B2 (en) * 2016-06-08 2021-07-28 三菱重工業株式会社 Manufacturing methods for thermal barrier coatings, turbine components, gas turbines, and thermal barrier coatings
CN113811638B (en) * 2019-05-22 2024-03-05 合肥国轩高科动力能源有限公司 Housing for a single cell with a heat insulation layer
CN110284096A (en) * 2019-07-26 2019-09-27 清华大学无锡应用技术研究院 A kind of thermal barrier coating of novel porosity gradient
CN110643925A (en) * 2019-09-19 2020-01-03 成都正恒动力股份有限公司 Multilayer inner hole coating and spraying method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005989A (en) * 1976-01-13 1977-02-01 United Technologies Corporation Coated superalloy article
US4101713A (en) * 1977-01-14 1978-07-18 General Electric Company Flame spray oxidation and corrosion resistant superalloys
US5683226A (en) * 1996-05-17 1997-11-04 Clark; Eugene V. Steam turbine components with differentially coated surfaces
EP1283278A2 (en) * 2001-08-02 2003-02-12 Siemens Westinghouse Power Corporation Segmented thermal barrier coating and method of manufacturing the same
EP1541808A1 (en) * 2003-12-11 2005-06-15 Siemens Aktiengesellschaft Turbine component with a heat- and erosion resistant coating
EP1541810A1 (en) * 2003-12-11 2005-06-15 Siemens Aktiengesellschaft Use of a thermal barrier coating for a part of a steam turbine and a steam turbine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3018620C2 (en) * 1980-05-16 1982-08-26 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Thermally insulating and sealing lining for a thermal turbo machine
US4585481A (en) * 1981-08-05 1986-04-29 United Technologies Corporation Overlays coating for superalloys
US4497669A (en) * 1983-07-22 1985-02-05 Inco Alloys International, Inc. Process for making alloys having coarse, elongated grain structure
US4787945A (en) * 1987-12-21 1988-11-29 Inco Alloys International, Inc. High nickel chromium alloy
US5268238A (en) * 1989-08-10 1993-12-07 Siemens Aktiengesellschaft Highly corrosion and/or oxidation-resistant protective coating containing rhenium applied to gas turbine component surface and method thereof
US5350599A (en) * 1992-10-27 1994-09-27 General Electric Company Erosion-resistant thermal barrier coating
US5740515A (en) * 1995-04-06 1998-04-14 Siemens Aktiengesellschaft Erosion/corrosion protective coating for high-temperature components
JPH0978258A (en) * 1995-09-20 1997-03-25 Toshiba Corp High-temperature member having thermal insulation coating film and its production
DE19535227A1 (en) 1995-09-22 1997-03-27 Asea Brown Boveri Casing for high pressure steam turbine
US5683825A (en) 1996-01-02 1997-11-04 General Electric Company Thermal barrier coating resistant to erosion and impact by particulate matter
US6764771B1 (en) 1997-11-03 2004-07-20 Siemens Aktiengesellschaft Product, especially a gas turbine component, with a ceramic heat insulating layer
DE59801546D1 (en) 1997-11-03 2001-10-25 Siemens Ag GAS JET PVD METHOD FOR PRODUCING A LAYER WITH MoSi2
KR20020005035A (en) 1999-05-14 2002-01-16 칼 하인쯔 호르닝어 Component and method for producing a protective coating on a component
CA2348145C (en) * 2001-05-22 2005-04-12 Surface Engineered Products Corporation Protective system for high temperature metal alloys
US20030152814A1 (en) * 2002-02-11 2003-08-14 Dinesh Gupta Hybrid thermal barrier coating and method of making the same
US20050153160A1 (en) * 2004-01-12 2005-07-14 Yourong Liu Durable thermal barrier coating having low thermal conductivity
JP4568094B2 (en) * 2004-11-18 2010-10-27 株式会社東芝 Thermal barrier coating member and method for forming the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005989A (en) * 1976-01-13 1977-02-01 United Technologies Corporation Coated superalloy article
US4101713A (en) * 1977-01-14 1978-07-18 General Electric Company Flame spray oxidation and corrosion resistant superalloys
US5683226A (en) * 1996-05-17 1997-11-04 Clark; Eugene V. Steam turbine components with differentially coated surfaces
EP1283278A2 (en) * 2001-08-02 2003-02-12 Siemens Westinghouse Power Corporation Segmented thermal barrier coating and method of manufacturing the same
EP1541808A1 (en) * 2003-12-11 2005-06-15 Siemens Aktiengesellschaft Turbine component with a heat- and erosion resistant coating
EP1541810A1 (en) * 2003-12-11 2005-06-15 Siemens Aktiengesellschaft Use of a thermal barrier coating for a part of a steam turbine and a steam turbine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1956105A1 (en) * 2005-10-25 2008-08-13 Siemens Aktiengesellschaft Alloy, protective layer for protecting a component from corrosion and oxidisation in high temperatures and component
EP2022951A1 (en) * 2007-08-08 2009-02-11 Siemens Aktiengesellschaft Method for manufacturing a turbine casing and turbine casing
WO2009019152A1 (en) * 2007-08-08 2009-02-12 Siemens Aktiengesellschaft Method for producing a turbine housing and turbine housing
JP2010535970A (en) * 2007-08-08 2010-11-25 シーメンス アクチエンゲゼルシヤフト Manufacturing method of turbine casing and turbine casing
CN101779004B (en) * 2007-08-08 2013-03-06 西门子公司 Method for producing a turbine housing and turbine housing
JP2012140961A (en) * 2007-08-08 2012-07-26 Siemens Ag Manufacturing method of turbine housing and the turbine housing
EP2031183A1 (en) * 2007-08-28 2009-03-04 Siemens Aktiengesellschaft Steam turbine shaft with heat insulation layer
EP2112252A1 (en) * 2008-04-25 2009-10-28 Zircotec Limited A thermal barrier, an article with a thermal barrier, and a method of applying a thermal barrier to a surface
US8186946B2 (en) 2009-04-17 2012-05-29 United Technologies Corporation Abrasive thermal coating
EP2241648A3 (en) * 2009-04-17 2011-11-30 United Technologies Corporation Abrasive thermal coating
EP2270258A3 (en) * 2009-06-29 2011-03-16 Hitachi, Ltd. High reliability turbine metal sealing material
US8801373B2 (en) 2009-06-29 2014-08-12 Hitachi Ltd. High-reliability turbine metal sealing material
CN102248716A (en) * 2011-05-20 2011-11-23 九江学院 Metal ceramic coating and preparation method thereof
WO2014160256A1 (en) * 2013-03-14 2014-10-02 Siemens Energy, Inc. Method and apparatus for fabrication and repair of thermal barriers

Also Published As

Publication number Publication date
JP4749467B2 (en) 2011-08-17
JP2008544127A (en) 2008-12-04
CN101198713A (en) 2008-06-11
EP1891249A1 (en) 2008-02-27
WO2006133980A1 (en) 2006-12-21
US8047775B2 (en) 2011-11-01
US20090053069A1 (en) 2009-02-26
CN101198713B (en) 2010-08-18

Similar Documents

Publication Publication Date Title
EP1734145A1 (en) Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component
WO2005061856A1 (en) Turbine component comprising a thermal insulation layer and an anti-erosion layer
EP1541810A1 (en) Use of a thermal barrier coating for a part of a steam turbine and a steam turbine
EP1953252B1 (en) Alloy compositions of the MCrAlY type and articles comprising the same
EP1951928B1 (en) Coating system including a mixed gadolinium pyrochlor phase.
EP1054077B1 (en) A titanium article having a protective coating and a method of applying a protective coating to a titanium article
EP2193225B1 (en) Bimetallic bond layer for thermal barrier coating on superalloy
EP2458025B1 (en) Alloy, protective coating and component
WO2005042802A1 (en) Protective layer for the protection of a component against corrosion and oxidation at elevated temperatures, and component
EP1902160B1 (en) Ceramic heat insulating layer
EP1144727A1 (en) Antiabrasion coating
DE102004045049A1 (en) Protection layer application, involves applying undercoating with heat insulating layer, and subjecting diffusion layer to abrasive treatment, so that outer structure layer of diffusion layer is removed by abrasive treatment
WO2008110607A1 (en) Turbine component with thermal insulation layer
EP1798299B1 (en) Alloy, protective coating and component
EP1806418A1 (en) Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member
EP1783236A1 (en) Alloy, protecting coating for a component protection against corrosion and oxidation at high temperature and component
EP1854898A1 (en) Alloy, protective layer and component
EP1892311B1 (en) Turbine Blade with a coating system
EP1541713A1 (en) Metallic Protective Coating
EP3201459B1 (en) Piston, piston machine having such a piston, and motor vehicle having such a piston machine
EP1996795B1 (en) Quasicrystalline compound and the use thereof as a heat insulating layer
WO2008110608A1 (en) Method for repairing a component
EP4155431A1 (en) Method for producing and correspondingly produced component made of a nickel-based superalloy for the hot gas channel of a turbo engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070621

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566