Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationEP1736104 B1
Type de publicationOctroi
Numéro de demandeEP20060253224
Date de publication11 mars 2009
Date de dépôt22 juin 2006
Date de priorité23 juin 2005
Autre référence de publicationCA2550713A1, CA2550713C, CN1883406A, CN1883406B, DE602006005550D1, EP1736104A1, US7559452, US20060289600
Numéro de publication06253224, 06253224.7, 2006253224, EP 1736104 B1, EP 1736104B1, EP-B1-1736104, EP06253224, EP1736104 B1, EP1736104B1, EP20060253224
InventeursKenneth S. Wales, Vi Frederick E. Shelton
DéposantEthicon Endo-Surgery, Inc.
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes:  Espacenet, Registre européen des brevets
Surgical instrument having fluid actuated opposing jaws
EP 1736104 B1
Résumé  disponible en
Images(11)
Previous page
Next page
Revendications(10)
  1. A surgical instrument (10), comprising:
    a handle (22) operably configure to produce closure actuation;
    an elongate shaft (18) attached to the handle and defining a longitudinal axis;
    an end effector (14) distally attached to the elongate shaft and comprising ;
    a pair of pivoting members opposingly contacting tissue, each pivoting member including a respective proximally projecting lever (40) constrained to pivot relative to the other proximally projecting lever about a pivot connection; and
    a fluid actuated closure mechanism comprising:
    a fluid actuator positioned (24,26) between the levers proximal to the pivot connection to operably engage with one or more of the respective proximal projecting levers
    a fluid conduit (46,48) communicating fluid with the fluid actuator and extending through the elongate shaft, and
    a fluid reservoir responsive to the closure actuation by the handle to selectively and bi-directionally transfer fluid across the fluid conduit to move at least a portion of the fluid actuator laterally to the longitudinal axis to open and close the end effector.
  2. The surgical instrument of claim 1, wherein the handle (22) is operably configured to produce a reciprocating mechanical closure motion, the fluid reservoir selectively compressed and expanded by the reciprocating mechanical closure motion.
  3. The surgical instrument of claim 1, further comprising control circuitry response to the closure action by the handle to selectively produce a closure signal, the fluid reservoir further comprising an electroactive polymer actuated bi-directional fluid pump (470).
  4. The surgical instrument of claim 1, wherein the pair of pivoting members comprise cutting blades opposingly cutting tissue.
  5. The surgical instrument of claim 1, wherein the pair of pivoting members comprise grasping jaws.
  6. The surgical instrument of claim 1, wherein the lever projecting proximally from a lower pivoting member of the pair of pivoting members comprises a frame (50) of the elongate shaft (18) attached to the handle (22).
  7. The surgical instrument of claim 6, wherein the lower pivoting member comprises a staple channel (30) and the upper pivoting member comprises an anvil (12), the surgical instrument further comprising:
    a staple cartridge (42) received in staple channel;
    a firing bar (60) slidingly received in the elongate channel and distally movable through closed end effector to effect severing and stapling of clamped tissue.
  8. The surgical instrument of claim 1, wherein the shaft further comprises an articulation joint, wherein the fluid conduit further comprise a flexible portion traversing the articulation joint.
  9. The surgical instrument of claim 8, further comprising:
    an outer sheath (130) encompassing the frame of the elongate shaft and the lever of the anvil; and
    a fluid actuator (24, 26) positioned between the lever of the anvil and the outer sheath (130) for opposing the left and right fluid actuators (24, 26) to open the anvil, the handle further operatively configured to differentially expend and compress the opposing fluid actuator and the pair of left and right fluid actuators.
  10. The surgical instrument of claim 7, wherein the handle (22) is operably configured to produce a reciprocating mechanical closure motion, the fluid reservoir selectively compressed and expanded by the reciprocating mechanical closure motion.
Description
    FIELD OF THE INVENTION
  • [0001]
    The present invention relates in general to surgical stapler instruments that are capable of applying lines of staples to tissue while cutting the tissue between those staple lines and, more particularly, to improvements relating to stapler instruments and improvements in processes for forming various components of such stapler instruments.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Surgical instruments for minimally invasive surgery are increasingly relied upon to reduce the hospital stay and recovery time for various surgical procedures. Many of these surgical instruments include mechanisms that actuate an end effector via an elongate shaft that performs a surgical step that entails two opposing surfaces being brought into opposition to each other. For instance, pivotally opposed jaws are used in graspers. Pivotally attached scissor blades are incorporated into cutting devices. Providing an actuating control down the elongate shaft with sufficient strength is complicated by a design goal of minimum cross sectional area so as to pass through a small cannula of a trocar. In addition, the elongate shaft often has a plurality of control functions (e.g., rotation, articulation, etc.) Further, it is desirable to have reduced design complexity so as to provide an economical device.
  • [0003]
    As an illustration of a particularly challenging surgical instrument, surgical staplers have been used in the prior art to simultaneously make a longitudinal incision in tissue and apply lines of staples on opposing sides of the incision. Such instruments commonly include a pair of cooperating jaw members that, if the instrument is intended for endoscopic or laparoscopic applications, are capable of passing through a cannula passageway. One of the jaw members receives a staple cartridge having at least two laterally spaced rows of staples. The other jaw member defines an anvil having staple-forming pockets aligned with the rows of staples in the cartridge. The instrument includes a plurality of reciprocating wedges which, when driven distally, pass through openings in the staple cartridge and engage drivers supporting the staples to effect the firing of the staples toward the anvil.
  • [0004]
    An example of a surgical stapler suitable for endoscopic applications, described in U.S. Pat. No. 5,465,895 , advantageously provides distinct closing and firing actions. Thereby, a clinician is able to close the jaw members upon tissue to position the tissue prior to firing. Once the clinician has determined that the jaw members are properly gripping tissue, the clinician can then fire the surgical stapler, thereby severing and stapling the tissue. The simultaneous severing and stapling avoids complications that may arise when performing such actions sequentially with different surgical tools that respectively only sever or staple.
  • [0005]
    US patent no. 5,779,727 discloses hydraulically operated manoeuvrable surgical scissors wherein a fixed volume bladder reciprocates between the device handle and scissors to actuate the scissors.
  • [0006]
    These minimally invasive surgical instruments have been widely used and have proven to be a significant advance over traditional open surgical techniques. It would be desirable to incorporate yet additional features and capabilities.
  • BRIEF SUMMARY OF THE INVENTION
  • [0007]
    The invention is directed towards a surgical instrument as defined by the claims.
  • [0008]
    The invention overcomes the above-noted and other deficiencies of the prior art by including a surgical instrument that is suitable for minimally invasive surgical procedures which has a handle that positions an end effector through a surgical opening via an elongate shaft. The end effector has a pair of pivoting members opposingly contacting tissue. A fluid actuated closure mechanism responds to a closure action by a fluid actuator attached to the handle by bi-directionally transferring fluid across a fluid conduit to a fluid reservoir positioned to urge the pair of pivoting members closed. Thereby, the integration of fluid conduits within an elongate shaft allows for shafts of a desirable small cross section which are able to perform an important surgical operation.
  • [0009]
    In one aspect of the invention, a surgical instrument has an end effector that is actuated by a fluid actuator to open and close upon tissue. Once closed, a firing bar that is received for reciprocating a longitudinal firing motion in an elongate shaft transfers a longitudinal firing motion from a handle to actuate a staple cartridge and to sever the clamped tissue in the end effector.
  • [0010]
    In yet another aspect of the invention, a surgical instrument includes a handle that produces closure actuation that transfers fluid through a fluid conduit in an elongate shaft to a fluid actuator positioned in a lever cavity to position a lever. The lever of a first tissue contacting member extends proximally into the lever cavity from a pivotal connection with a second tissue contacting member. Fluid transfer advantageously effects pivotal movement of the pair of tissue contacting members.
  • [0011]
    These and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the description thereof.
  • BRIEF DESCRIPTION OF THE FIGURES
  • [0012]
    The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the present invention.
  • [0013]
    FIG. 1 is a perspective view of a surgical stapling and severing instrument having a fluid actuated upper jaw (anvil) in an open position and an electroactive polymer (EAP) medical substance dispensing shaft.
  • [0014]
    FIG. 2 is a disassembled perspective view of an implement portion of the surgical stapling and severing instrument of FIG. 1.
  • [0015]
    FIG. 3 is left side view in a elevation of the implement portion of the surgical stapling and severing instrument of FIG. 1 taken in cross section generally through a longitudinal axis and passing through an offset EAP syringe and receptacle that is in fluid communication with a dispensing groove in an E-beam firing bar.
  • [0016]
    FIG. 4 is a left side detail view in elevation of a distal portion of the implement portion of the surgical stapling and severing instrument of FIG. 1 taken in cross section generally through the longitudinal axis thereof but showing a laterally offset fluid actuator bladder actuator opening the anvil.
  • [0017]
    FIG. 5 is a left side detail view of an E-beam firing bar incorporating medical substance ducting.
  • [0018]
    FIG. 6 is a left side detail view in elevation of the distal portion of the implement portion of the surgical stapling and severing instrument of FIG. 4 taken in cross section generally through the longitudinal axis thereof with the anvil closed.
  • [0019]
    FIG. 7 is a left side detail view of the E-beam firing bar of FIG. 6.
  • [0020]
    FIG. 8 is a top detail view of a joined portion of a lower jaw (staple channel) of the end effector and elongate shaft taken in cross section through the lines 8-8 depicting guidance to the E-beam firing bar.
  • [0021]
    FIG. 9 is a front view of a firing bar guide of the implement portion of the surgical stapling and severing instrument of FIG. 2.
  • [0022]
    FIG. 10 is a left side view of the firing bar guide of FIG. 9 taken in cross section along lines 9-9.
  • [0023]
    FIG. 11 is a front view in elevation of the elongate shaft of the surgical stapling and severing instrument of FIG. 3 taken along lines 11-11 taken through a distal end of the EAP medical substance syringe.
  • [0024]
    FIG. 12 is a left side view of the EAP medical substance syringe of FIG. 11.
  • [0025]
    FIG. 13 is a left side view of the implement portion of the surgical stapling and severing instrument of FIG. 1 partially cut away to show proximal mountings for the EAP medical substance syringe.
  • [0026]
    FIG. 14 is a left side detail view of the EAP medical substance syringe and receptacle of the elongate shaft of the surgical stapling and severing instrument of FIG. 13.
  • [0027]
    FIG. 15 is a top view of the firing bar of the surgical stapling and severing instrument of FIG. 2.
  • [0028]
    FIG. 16 is a left side view of a laminate firing bar showing an internal fluid path in phantom for the surgical stapling and severing instrument of FIG. 1.
  • [0029]
    FIG. 17 is a left side detail view of an alternate E-beam showing an internal fluid path in phantom showing an internal fluid path in phantom.
  • [0030]
    FIG. 18 is a front view in elevation of the laminate firing bar of FIG. 15 taken in cross section along line 18-18 through a proximal open groove of a fluid path.
  • [0031]
    FIG. 19 is a left side view of an alternative surgical stapling and severing instrument of FIG. 1 partially cut away and depicting control circuitry and controls.
  • [0032]
    FIG. 20 is a flow diagram of a sequence of operations performed by control circuitry of the surgical stapling and severing instrument of FIG. 19.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0033]
    Turning to the Drawings, wherein like numerals denote like components throughout the several views, FIGS. 1-2 show a surgical stapling and severing instrument 10 that is capable of practicing the unique benefits of the present invention, including both fluid actuation (e.g., opening, closing/clamping) of an upper jaw (anvil) 12 of an end effector 14 as well as dispensing a medical substance onto tissue as severed. Fluid actuation of the end effector 14 provides a range of design options that avoid some design limitations of traditional mechanical linkages. For example, instances of binding or component failure may be avoided. Further, dispensing liquids onto severed tissue allows for a range of advantageous therapeutic treatments to be applied, such as the application of anesthetics, adhesives, cauterizing substances, antibiotics, coagulant, etc.
  • [0034]
    With particular reference to FIG. 2, the surgical stapling and severing instrument 10 includes an implement portion 16 formed by an elongate shaft 18 and an end effector 14, depicted as a stapling assembly 20. The surgical stapling and severing instrument 10 also includes a handle 22 (FIG. 1) attached proximally to the shaft 18. The handle 22 remains external to the patient as the implement portion 16 is inserted through a surgical opening, or especially a cannula of a trocar that forms a pneumoperitoneum for performing a minimally invasive surgical procedure.
  • [0035]
    Left and right fluid actuator bladders (lift bags) 24, 26 are supported within an aft portion 28 of a staple channel 30. The anvil 12 includes a pair of inwardly directed lateral pivot pins 32, 34 that pivotally engage outwardly open lateral pivot recesses 36, 38 formed in the staple channel 30 distal to the aft portion 28. The anvil 12 includes a proximally directed lever tray 40 that projects into the aft portion 28 of the staple channel 30 overtop and in contact with the fluid actuator bladders (lift bags) 24, 26 such that filling the fluid actuator bladders 24, 26 causes a distal clamping section 41 of the anvil 12 to pivot like a teeter-totter toward a staple cartridge 42 held in an distal portion 44 of the staple channel 30. Evacuation and collapse of the fluid actuator bladders 24, 26, or some other resilient feature of the end effector 14, causes the anvil 12 to open. Left and right fluid conduits 46, 48 communicate respectively with the left and right fluid actuator bladders 24, 26 to bi-directionally transfer fluid for actuation.
  • [0036]
    It will be appreciated that the terms "proximal" and "distal" are used herein with reference to a clinician gripping a handle of an instrument. Thus, the staple applying assembly 20 is distal with respect to the more proximal handle 22. It will be further appreciated that, for convenience and clarity, spatial terms such as "vertical" and "horizontal" are used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
  • [0037]
    The elongate shaft 18 includes a frame 50 (FIG. 2) whose proximal end is rotatably engaged to the handle 22 such that a rotation knob 52 rotates the frame 50 along with the end effector 14. A distal end of the frame has lateral recesses 54 that engage a distal lip 56 of the staple channel 30. The frame 50 includes a laterally centered, bottom firing slot 58 that passes longitudinally through the frame 50 for receiving a two-piece firing bar 60 comprised of a firing bar 62 with a distally attached E-beam 64, the latter translating within the staple applying assembly 20 to sever and staple tissue. A distal portion of the frame 50 includes an upper cavity 66 whose distal and proximal ends communicate through distal and proximal apertures 68, 70, defining there between a cross bar 72 over which a distally projecting clip 74 of a clip spring 76 engages with a lower spring arm 78, distally and downwardly projecting through the upper cavity 66 to bias the firing bar 62 downwardly into engagement with the staple channel 30, especially when the lower spring arm 78 encounters a raised portion 80 on the firing bar 62.
  • [0038]
    Medical substance dispensing is integrated into the elongate shaft 18 by including a laterally offset cylindrical cavity 90 formed in the frame 50 that communicates along its longitudinal length to the outside via a rectangular aperture 92 that is slightly shorter than an electroactive polymer (EAP) syringe 100 that is inserted through the aperture 92 into the cylindrical cavity 90. A proximal portion of the cylindrical cavity 90 contains a longitudinally aligned compression spring 102 that urges a distal dispensing cone 104 of the EAP syringe 100 distally into sealing contact with the frame 50 and allows translation for insertion and removal of the EAP syringe 100. An electrical conductor 106 passes through the frame 50 and is attached to the compression spring 102, which is also formed of an electrically conductive metal. An aft portion of the EAP syringe is conductive and contacts the spring 102 to form a cathode to an EAP actuator 110 held in a proximal portion of the EAP syringe 100. It will be appreciated that another conductor, perhaps traveling with the conductor 106, also electrically communicates to the EAP actuator 110 to serve as the anode.
  • [0039]
    When activated, the EAP actuator 110 longitudinally expands, serving as a plunger to dispel a medical substance 112 in a distal portion of the EAP syringe 100 through the distal dispensing cone 104. Insofar as the EAP actuator 110 laterally contracts to compensate for its longitudinal expansion, a plunger seal 114 maintains a transverse seal within the EAP syringe 100. A vent (not shown), such as around conductor 106 allows air to refill the EAP syringe 100 as the medical substance 112 is dispensed. The vent may rely upon the surface tension of the medical substance 112 to prevent leaking. Alternatively, a one-way valve may be used for the same purpose. As described below, the medical substance 112 is conducted by the frame 50 to a lateral fluid groove 120 that is formed in the firing bar 62 and the E-beam 64 to direct the medical substance to a cutting surface 122 of the E-beam 64. The frame slot 58 is sized to seal the lateral fluid groove 120. The portion of the lateral fluid groove 120 that is positioned under the spring clip 76 is sealed by a firing bar guide 124. In the illustrative version, an outer sheath 82 encompasses the frame 50 and proximally projecting lever tray 40 of the anvil 12. A top distal opening 131 allows closing of the anvil 12.
  • [0040]
    An outer rectangular aperture 132 of the outer sheath 130 is sized and longitudinally positioned to correspond to the rectangular aperture 92 formed in the frame 50. In some applications, the outer sheath 130 may be rotated to selectively align the rectangular aperture 92 with the outer rectangular aperture 132 for insertion or removal of the EAP syringe 100. It should be appreciated that in some applications the EAP syringe 100 may be integrally assembled into an elongate shaft that does not allow for selecting a desired medical substance. For instance, a disposable implement portion with an integral staple cartridge and medical dispensing reservoir may be selected by the clinician as a unit. It is believed that allowing insertion at the time of use, though, has certain advantages including clinical flexibility in selecting a medical substance (e.g., anesthetics, adhesives, antibiotics, cauterizing compound, etc.) and extending the shelf life / simplifying storage and packaging of the implement portion 16.
  • [0041]
    In the illustrative version, an elongate stack of many disk-shaped EAP layers are aligned longitudinally and configured to expand along this longitudinal axis.
    Electroactive polymers (EAPs) are a set of conductive doped polymers that change shape when electrical voltage is applied. In essence, the conductive polymer is paired to some form of ionic fluid or gel and electrodes. Flow of the ions from the fluid/gel into or out of the conductive polymer is induced by the voltage potential applied and this flow induces the shape change of the polymer. The voltage potential ranges from 1V to 4kV, depending on the polymer and ionic fluid used. Some of the EAPs contract when voltage is applied and some expand. The EAPs may be paired to mechanical means such as springs or flexible plates to change the effect that is caused when the voltage is applied.
  • [0042]
    There are two basic types of EAPs and multiple configurations of each type. The two basic types are a fiber bundle and a laminate version. The fiber bundle consists of fibers around 30-50 microns. These fibers may be woven into a bundle much like textiles and are often called EAP yarn because of this. This type of EAP contracts when voltage is applied. The electrodes are usually made up of a central wire core and a conductive outer sheath that also serves to contain the ionic fluid that surrounds the fiber bundles. An example of a commercially available fiber EAP material, manufactured by Santa Fe Science and Technology and sold as PANION™ fiber, is described in U.S. Pat. No. 6,667,825 .
  • [0043]
    The other type is a laminate structure, which consists of a layer of EAP polymer, a layer of ionic gel and two flexible plates that are attached to either side of the laminate. When a voltage is applied, the square laminate plate expands in one direction and contracts in the perpendicular direction. An example of a commercially available laminate (plate) EAP material is manufactured by Artificial Muscle Inc, a division of SRI Laboratories. Plate EAP material is manufactured by EAMEX of Japan and is referred to as thin film EAP.
  • [0044]
    It should be noted that EAPs do not change volume when energized; they merely expand or contract in one direction while doing the opposite in the transverse direction. The laminate version may be used in its basic form by containing one side against a rigid structure and using the other much like a piston. The laminate version may also be adhered to either side of a flexible plate. When one side of the flexible plate EAP is energized, it expands, flexing the plate in the opposite direction. This allows the plate to be flexed in either direction, depending on which side is energized.
  • [0045]
    An EAP actuator usually consists of numerous layers or fibers bundled together to work in cooperation. The mechanical configuration of the EAP determines the EAP actuator and its capabilities for motion. The EAP may be formed into long stands and wrapped around a single central electrode. A flexible exterior outer sleeve will form the other electrode for the actuator as well as contain the ionic fluid necessary for the function of the device. In this configuration when the electrical field is applied to the electrodes, the strands of EAP shorten. This configuration of EAP actuator is called a fiber EAP actuator. Likewise, the laminate configuration may be placed in numerous layers on either side of a flexible plate or merely in layers on itself to increase its capabilities. Typical fiber structures have an effective strain of 2-4% where the typical laminate version achieves 20-30%, utilizing much higher voltages.
  • [0046]
    For instance, a laminate EAP composite may be formed from a positive plate electrode layer attached to an EAP layer, which in turn is attached to an ionic cell layer, which in turn is attached to a negative plate electrode layer. A plurality of laminate EAP composites may be affixed in a stack by adhesive layers there between to form an EAP plate actuator. It should be appreciated that opposing EAP actuators may be formed that can selectively bend in either direction.
  • [0047]
    A contracting EAP fiber actuator may include a longitudinal platinum cathode wire that passes through an insulative polymer proximal end cap through an elongate cylindrical cavity formed within a plastic cylinder wall that is conductively doped to serve as a positive anode. A distal end of the platinum cathode wire is embedded into an insulative polymer distal end cap. A plurality of contracting polymer fibers are arranged parallel with and surrounding the cathode wire and have their ends embedded into respective end caps. The plastic cylinder wall is peripherally attached around respective end caps to enclose the cylindrical cavity to seal in ionic fluid or gel that fills the space between contracting polymer fibers and cathode wire. When a voltage is applied across the plastic cylinder wall (anode) and cathode wire, ionic fluid enters the contracting polymer fibers, causing their outer diameter to swell with a corresponding contraction in length, thereby drawing the end caps toward one another.
  • [0048]
    Additional description of applications of EAP actuators in a surgical instrument are described in commonly-owned U.S. Pat. Application Ser. No. 11/082,495 filed on 17 March 2005, and entitled "SURGICAL INSTRUMENT INCORPORATING AN ELECTRICALLY ACTUATED ARTICULATION MECHANISM".
  • [0049]
    Returning to FIG. 1, the handle 22 controls closure of the anvil 12, firing of the two-piece firing bar 60, and dispensing of the medical substance. In an illustrative version, a pistol grip 140 may be grasped and a thumb button 142 depressed as desired to control closure of the anvil 12. The thumb button 142 provides a proportional electrical signal to an EAP dispensing actuator (not shown) similar to the EAP syringe 100 to transfer fluid through the conduits 46, 48 to the fluid actuator bladders 24, 26 to close the anvil 12 (FIG. 2). When the thumb button 142 is fully depressed, a mechanical toggle lock (not shown) engages to hold the thumb button 142 down until a full depression releases the toggle lock for releasing the thumb button 142. Thus, when the thumb button 142 is held down, the surgeon has a visual indication that the end effector 14 is closed and clamped, and they may be maintained in this position by continued activation of an EAP dispensing actuator or by a locking feature. For instance, control circuitry may sense movement of the thumb button 142, causing a normally closed EAP shutoff valve (not shown) to open that communicates between the EAP dispensing actuator and the conduits 46, 48. Once movement ceases, the EAP shutoff valve is allowed to close again, maintaining the anvil 12 position. In addition, a manual release could be incorporated to defeat such a lockout to open the anvil 12.
  • [0050]
    As an alternative, a closure trigger (not shown) or other actuator may be included that bi-directionally transfers fluid to the fluid actuator bladders 24, 26. In published US application No 2006/0190028 , a number of such fluid actuators for articulation of a pivoting shaft are described that may be adapted for closing the anvil 12. To take full advantage of the differential fluid transfer described for several of these versions, it should be appreciated that an opposing lift bag (not shown) may be placed above the lever tray 40 of the anvil 12 to assert an opening force as the left and right fluid actuator bladders (lift bags) 24, 26 collapse.
  • [0051]
    To avoid undesirable firing situations, sensing may be advantageously incorporated into the control circuitry. For instance, a pressure transducer and/or position sensing may be positioned to monitor the fluid transfer and/or anvil position. For instance, the proximity of the anvil to the 12 to the staple channel 30 may be sensed and firing locked out if not closed. Monitoring may detect a fluid pressure exceeding a threshold indicating that anvil 12 commanded closed with something preventing this closing (e.g., excessive tissue in the end effector 14). Similarly, a fluid pressure below a lower threshold with anvil 12 commanded open may indicate an inability for the anvil 12 to open (e.g., abutting tissue). Colored light emitting diodes (LEDs) (not shown) on the handle 22 may give an indication to the surgeon by color, flashing, etc. These indications may include POWER ON, Self-Test GOOD, Self-Test BAD, BATTERY LOW, ANVIL OPEN, ANVIL CLOSED, ANVIL BLOCKED OPEN, ANVIL BLOCK CLOSED. An indication that would warrant precluding firing may be used to disable firing.
  • [0052]
    With particular reference to FIG. 3, the handle 22 includes a firing trigger 150 (FIG. 1) that is drawn proximally toward the pistol grip 140 to cause a firing rod 152 to move distally in a proximal portion 154 of the elongate shaft 18. A distal bracket 156 of the firing rod 152 engages an upward proximal hook 158 of the firing bar 62. A dynamic seal 160 within the frame 50 seals to the firing rod 152 so that the implement portion is pneumatically sealed when inserted into an insufflated abdomen.
  • [0053]
    An anti-backup mechanism 170 of the firing rod 152 may be advantageously included for a handle 22 that includes a multiple stroke firing trigger 150 and a retraction biased firing mechanism coupled to the firing rod 152 (not shown). In particular, an anti-backup locking plate 172 has the firing rod 152 pass through a closely fitting through hole (not shown) that binds when a retracting firing rod 152 tips the lock plate 172 backward as shown with the bottom of the locking plate held in position within the frame 50. An anti-backup cam sleeve 174 is positioned distal to the anti-backup locking plate 172 and urged into contact by a more distal compression spring 176 through which the firing rod 152 passes and that is compressed within the frame 50. It should be appreciated that mechanisms in the handle 22 may manually release the anti-backup mechanism 170 for retraction of the firing rod 152.
  • [0054]
    In FIGS. 4-5, the end effector 14, which in the illustrative version is a staple applying assembly 20, is opened by having fluid actuator bladder 24 deflated, drawing down lever tray 40 of the anvil 12, which pivots about pin 32 raising distal clamping section 41 thereby allowing positioning body tissue 180 between the anvil 12 and staple cartridge 42. The E-beam 64 has an upper pin 182 that resides within an anvil pocket 184 allowing repeated opening and closing of the anvil 12. An anvil slot 186, formed along the length of the anvil 12, receives the upper pin 182 when the anvil 12 is closed and the two piece firing bar 60 is distally advanced. A middle pin 188 slides within the staple cartridge 42 above the staple channel 30 in opposition to a bottom pin or foot 190 that slides along a bottom surface of the staple channel 30.
  • [0055]
    In FIGS. 6-7, the staple applying assembly 20 has been closed by expanding the fluid actuator bladder (lift bag) 24, raising the lever tray 40 of the anvil 12 until flush with the outer sheath 130, with a proximal upwardly bent tip 192 of the lever tray 40 allowed to enter the top distal opening 131. This bent tip 192', in combination with the opening 131, advantageously allows greater radial travel for the anvil 12 as well as presenting an abutting surface rather than a piercing tip to the underlying fluid actuator bladder 24. When the anvil 12 is closed, the upper pin 182 is aligned with the anvil slot 186 for firing and the tissue 180 is flattened to a thickness appropriate for severing and stapling.
  • [0056]
    In FIGS. 7-8, the E-beam 64 is cut away to show its bottom foot 190 riding along a downwardly open laterally widened recess 200 that communicates with a narrow longitudinal slot 202 through which a vertical portion 204 of the E-beam 64 passes. A proximal aperture 206 to the narrow longitudinal slot 202 allows an assembly entrance for the lower foot 190. A bottom bump 208 is positioned on the firing bar 62 to drop into the proximal aperture 206 during an initial portion of firing travel under the urging of the clip spring 76 against the upper portion 80 of the firing bar 62 for proper engagement and for possible interaction with an end effector firing lockout mechanism (not shown). Also, this position allows for the end effector 14 to be pinched shut to facilitate insertion through a surgical entry point such as a cannula of a trocar (not shown). With reference to FIGS. 8-10, the firing bar guide 124 laterally contacts a portion of the firing bar 62 to close the corresponding portion of the lateral fluid groove 120. In FIG. 11, the EAP syringe 100 in the cylindrical cavity 90 has its distal dispensing cone 104 communicating with a radial fluid passage 220 formed in the frame 50 that communicates in turn with the lateral fluid groove 120. In FIG. 12, before installation in the surgical stapling and severing instrument 10, the EAP syringe 100 may be advantageously sealed with a disposable cap 230. In FIGS. 13-14, the EAP syringe 100 is shown without the disposable cap 230 and urged by spring 230 distally to engage the distal dispensing cone 104 into communication with the radial fluid passage 220.
  • [0057]
    It should be appreciated that one or more sensor in the surgical stapling and severing instrument 10 may sense a firing condition (e.g., movement of firing bar or mechanism coupled to the firing bar, position of the firing trigger, a separate user control to dispense, etc.) and activate dispensing control circuitry to effect dispensing.
  • [0058]
    In FIGS. 15-18, an alternate two-piece firing bar 300 is formed from longitudinally laminated left half and right half firing bar portions 302, 304 that form a firing bar 305 attached to an E-beam 309. Thereby, fluid transfer down the firing bar 300 may be further constrained. In particular, a left side fluid groove 310 in the left half firing bar portion 302 transitions distally to a pair of aligned internal fluid grooves 312, 314 respectively in the left and right half firing bar portions 302, 304, defining an internal fluid passage 316. Since the E-beam 309 is laterally thicker and of short longitudinal length, a drilled fluid passage 320 is formed therein between a cutting surface 322 and an aft edge aligned to communicate with the internal fluid passage 316.
  • [0059]
    In FIG. 19, an alternate surgical stapling and severing instrument 410 that is capable of practicing the unique benefits of the present invention, including both fluid actuation (e.g., opening, closing/clamping) of an upper jaw (anvil) 412 of an end effector 414 as well as dispensing a medical substance onto tissue as severed. An implement portion 416 is formed by an elongate shaft 418 and the end effector 414, depicted as a stapling assembly 420. The surgical stapling and severing instrument 410 also includes a handle 22 attached proximally to the shaft 418. The handle 422 remains external to the patient as the implement portion 416 is inserted through a surgical opening, or especially a cannula of a trocar that forms a pneumoperitoneum for performing a minimally invasive surgical procedure.
  • [0060]
    A fluid actuator bladders (lift bag) 424 is supported within a staple channel 430 beneath a proximally directed lever 440 that projects such that filling the fluid actuator bladder 424, 26 causes the anvil 412 to pivot like a teeter-totter toward a staple cartridge 442 held in an distal portion 44 of the staple channel 30. Evacuation and collapse of the fluid actuator bladder 424 is assisted by a resilient pressure transducer 425 positioned above the anvil lever 440 in opposition to the fluid actuator bladder 424, urging fluid to flow proximally through a fluid conduit 446.
  • [0061]
    Control circuitry 450 is powered when enabled by an ON/OFF switch 452 to electrically connect batteries 454 that are physically accessed via a battery cap 456 that closes a battery compartment 457 in a pistol grip 458 of the handle 422. A controller (e.g., microcontroller, programmed logic array, analog control circuit, etc.) 460 receives electrical signals from switches that are actuated by a user or from sensors that indicate a state of the instrument 410. For instance, a thumb button pressure sensor 462 contacting a thumb button 464 senses a closure command. This closure command signal may be a discrete open / close signal or a more continuous value indicating intermediate degrees of closure. Alternatively, the controller 460 may sense a first depression of the thumb button 464 to close and sense a second depression of the thumb button 464 to then open.
  • [0062]
    The controller 460 responds to the closure signal by activating an electrical fluid control, which in the illustrative version is an EAP syringe actuator 470 containing an EAP stack actuator 472 that translates a plunger 474 within a cylinder 476 to dispense fluid through the fluid conduit 446. The cylinder 476 may be advantageously sized to produce a desired fluid flow rate at a desired fluid pressure to effect closure without excessive pressure if too much tissue is grasped.
  • [0063]
    The pressure of the fluid may be advantageously sensed by a fluid pressure transducer 478 attached to the cylinder 476 and/or by sensing movement of the anvil 412 from the resilient pressure transducer 425. Alternatively or in addition, fluid volume transferred may be advantageously sensed, such as by Hall effect transducers 480, 482 attached to the cylinder 476 to sense a target incorporated into the plunger 474. The controller 460 may provide indications to the surgeon via an alphanumeric display (not shown) or via a plurality of LEDs, such as a POWER LED 490, an ANVIL POSITION LED 492, and FAULT LED 494. The controller 460 may also sense firing, such as a trigger sensor 496, and in response thereto command the EAP medical substance dispenser 100 to dispense.
  • [0064]
    In use, as depicted in FIG. 20, an end effector closure and dispensing control procedure, or sequence of operations, 500 is performed by the control circuitry 460 of FIG. 19. In response to power being supplied (block 502), the POWER LED is illuminated (FIG. 504). A determination is made as to whether a close command has been sensed (block 506). If not, a CLOSED LED is extinguished (if lit) (block 508). The closure actuator is deactivated (if currently activated) to allow resilient opening of the anvil (block 510). Firing is disabled (FIG. 512) and processing loops back to block 504 to continue waiting for a close command. If a close command is sensed in block 506, then the closure actuator is activated (block 514) and a predetermined time elapses waiting for the anvil to respond (block 516). Then a determination is made in block 518 as to whether successful closing has occurred, such as by comparing a pressure profile or by sensing a position (e.g., anvil, anvil). If not satisfied, then the FAULT LED is illuminated (block 520). The closure actuator is deactivated (block 522) and processing stops (block 524). User intervention may require cycling of power to reset the device. If in block 518 the anvil was successfully closed, then the CLOSED LED is illuminated (block 526). The closure actuator is maintained in this closed condition (block 528), which may be assisted by a clamping lock that allows deactivating the closure actuator. Firing is enabled (block 530). Then a determination is made as to whether the close command is still present (block 532). If not, processing loops back to block 504 to open the end effector. If still closed in block 532, then a further determination is made as to whether firing of the end effector is sensed (block 534). If so, medical substance dispensing is activated (block 536). Else, processing loops back to block 532 to continue waiting for firing.
  • [0065]
    While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art.
  • [0066]
    For example, while a non-articulating shaft is described herein for clarity, it should be appreciated that fluid actuated end effector and/or medical substance dispensing may be incorporated into an articulating shaft. In particular, flexible fluid conduits may be incorporated that pass through an articulation joint of a shaft. Alternatively, passages may be formed in a flex-neck type articulation joint to transfer fluid there through.
  • [0067]
    As another example, while both medical substance dispensing and fluid actuated anvil closing are illustrated herein, applications consistent with aspects of the invention may include either of these features. Further, for applications in which an adhesive and/or cauterizing medical substance is dispensed, it should be appreciated that features such as staples may be omitted.
  • [0068]
    As another example, while a staple applying assembly 20 is illustrated herein, it should be appreciated that other end effectors (graspers, cutting devices, etc.) may benefit from either or both of fluid controlled closing and medical substance dispensing.
  • [0069]
    As yet another example, a receptacle for the EAP syringe may be formed in the handle rather than in the elongate shaft.
  • [0070]
    While an electroactive polymer plunger has various advantages, it should be appreciated that other types of electrically actuated devices may be employed to dispense a medical substance through the elongate shaft to the end effector.
  • [0071]
    As yet an additional example, a symmetric arrangement for a second EAP syringe may be formed in the elongate channel so that two medical substances may be simultaneously dispensed during firing.
  • [0072]
    As yet a further example, while a staple applying apparatus provides an illustrative embodiment, it should be appreciated that other endoscopic instruments may benefit from the ability to dispense a liquid at or near a distal end thereof. Examples of instruments that may benefit include, but are not limited to, an ablation device, a grasper, a cauterizing tool, an anastomotic ring introduction device, a surgical stapler, a linear stapler, etc. As such, those instruments that do not employ a firing bar that serves herein as a convenient fluid passage to a cutting surface may instead incorporate ducting or fluid conduits to an appropriate location.
  • [0073]
    While an electroactive polymer plunger has various advantages, it should be appreciated that other types of electrically actuated devices may be employed to dispense a medical substance through the elongate shaft to the end effector.
  • [0074]
    As yet an additional example, a fluid actuator bladder that is constrained within a recess of the elongate shaft may be substituted with a cylinder and piston ram.
  • [0075]
    It should be appreciated that in some applications consistent with the invention, both pivoting members of an end effector pivot with respect to a distal end of the end effector in a scissor-like arrangement. Thus, a fluid actuator bladder may be positioned to assert a force to separate or to draw together respective levers proximally projecting from a pivoting connection of these pivoting members to effect closure (e.g., grasping, cutting) or opening.
  • [0076]
    As an alternative, it should be appreciated that a fluid actuator bladder may be positioned distal to the pivotal engagement between opposing jaws to urge the jaws open.
  • [0077]
    As another example, although a handle 22 for direct manipulation by a surgeon is depicted for clarity, a robotically positioned instrument consistent with aspects of the invention may advantageously take advantage of the electrical control and sensing with fluid transfer actuation as described herein.
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
EP1769756B229 sept. 200610 juil. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument having load sensing control circuitry
US795468314 déc. 20077 juin 2011Cardica, Inc.Feeder belt with integrated surgical staples
US796343226 mai 201021 juin 2011Cardica, Inc.Driverless surgical stapler
US80700369 mars 20096 déc. 2011Cardica, IncTrue multi-fire surgical stapler configured to fire staples of different sizes
US815714531 mai 200717 avr. 2012Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US81571534 févr. 201117 avr. 2012Ethicon Endo-Surgery, Inc.Surgical instrument with force-feedback capabilities
US816197723 sept. 200824 avr. 2012Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US816718518 nov. 20101 mai 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US81721244 févr. 20118 mai 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US818655531 janv. 200629 mai 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with mechanical closure system
US818656016 oct. 200929 mai 2012Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US819679513 août 201012 juin 2012Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US81967963 févr. 201112 juin 2012Ethicon Endo-Surgery, Inc.Shaft based rotary drive system for surgical instruments
US82057813 juin 201126 juin 2012Ethicon Endo-Surgery, Inc.Surgical stapler with apparatus for adjusting staple height
US821041123 sept. 20083 juil. 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument
US821553129 janv. 201010 juil. 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a medical substance dispenser
US822068824 déc. 200917 juil. 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument with electric actuator directional control assembly
US826730030 déc. 200918 sept. 2012Ethicon Endo-Surgery, Inc.Dampening device for endoscopic surgical stapler
US827255125 avr. 201125 sept. 2012Cardica, Inc.Method of utilizing a driverless surgical stapler
US82921552 juin 201123 oct. 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with tactile position feedback
US830804022 avr. 201013 nov. 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US831707028 févr. 200727 nov. 2012Ethicon Endo-Surgery, Inc.Surgical stapling devices that produce formed staples having different lengths
US832245527 juin 20064 déc. 2012Ethicon Endo-Surgery, Inc.Manually driven surgical cutting and fastening instrument
US83225892 juil. 20104 déc. 2012Ethicon Endo-Surgery, Inc.Surgical stapling instruments
US83333133 juin 201118 déc. 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a firing member return mechanism
US834813129 sept. 20068 janv. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US83534371 févr. 201015 janv. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a geared return mechanism
US835343819 nov. 200915 janv. 2013Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid cap assembly configured for easy removal
US835343919 nov. 200915 janv. 2013Ethicon Endo-Surgery, Inc.Circular stapler introducer with radially-openable distal end portion
US83602969 sept. 201029 janv. 2013Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US836029729 sept. 200629 janv. 2013Ethicon Endo-Surgery, Inc.Surgical cutting and stapling instrument with self adjusting anvil
US836597629 sept. 20065 févr. 2013Ethicon Endo-Surgery, Inc.Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US837149115 févr. 200812 févr. 2013Ethicon Endo-Surgery, Inc.Surgical end effector having buttress retention features
US839351430 sept. 201012 mars 2013Ethicon Endo-Surgery, Inc.Selectively orientable implantable fastener cartridge
US83979715 févr. 200919 mars 2013Ethicon Endo-Surgery, Inc.Sterilizable surgical instrument
US840395631 oct. 200826 mars 2013Cardica, Inc.Multiple-use surgical stapler
US840843922 avr. 20102 avr. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US841457719 nov. 20099 avr. 2013Ethicon Endo-Surgery, Inc.Surgical instruments and components for use in sterile environments
US84247404 nov. 201023 avr. 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a directional switching mechanism
US843924529 juil. 201114 mai 2013Cardica, Inc.True multi-fire endocutter
US843924620 juil. 201014 mai 2013Cardica, Inc.Surgical stapler with cartridge-adjustable clamp gap
US844403629 juil. 201021 mai 2013Ethicon Endo-Surgery, Inc.Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US845390729 juil. 20104 juin 2013Ethicon Endo-Surgery, Inc.Motor driven surgical fastener device with cutting member reversing mechanism
US845390812 août 20104 juin 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved firing trigger arrangement
US845391429 mai 20124 juin 2013Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument with electric actuator directional control assembly
US845952010 janv. 200711 juin 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US845952514 févr. 200811 juin 2013Ethicon Endo-Sugery, Inc.Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US847467730 sept. 20102 juil. 2013Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix and a cover
US84799699 févr. 20129 juil. 2013Ethicon Endo-Surgery, Inc.Drive interface for operably coupling a manipulatable surgical tool to a robot
US848541229 sept. 200616 juil. 2013Ethicon Endo-Surgery, Inc.Surgical staples having attached drivers and stapling instruments for deploying the same
US84854135 févr. 200916 juil. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument comprising an articulation joint
US849999312 juin 20126 août 2013Ethicon Endo-Surgery, Inc.Surgical staple cartridge
US850580029 oct. 201213 août 2013Cardica, Inc.Feeder belt for true multi-fire surgical stapler
US85172395 févr. 200927 août 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument comprising a magnetic element driver
US851724314 févr. 201127 août 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US85172449 juil. 201227 août 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a medical substance dispenser
US852960030 sept. 201010 sept. 2013Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix
US85345281 mars 201117 sept. 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a multiple rate directional switching mechanism
US854012811 janv. 200724 sept. 2013Ethicon Endo-Surgery, Inc.Surgical stapling device with a curved end effector
US854012926 juil. 201024 sept. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved firing trigger arrangement
US85401308 févr. 201124 sept. 2013Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US854013115 mars 201124 sept. 2013Ethicon Endo-Surgery, Inc.Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US854013317 mars 201024 sept. 2013Ethicon Endo-Surgery, Inc.Staple cartridge
US856187028 févr. 201122 oct. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US856765628 mars 201129 oct. 2013Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US85734619 févr. 20125 nov. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instruments with cam-driven staple deployment arrangements
US85734659 févr. 20125 nov. 2013Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US858491914 févr. 200819 nov. 2013Ethicon Endo-Sugery, Inc.Surgical stapling apparatus with load-sensitive firing mechanism
US859076229 juin 200726 nov. 2013Ethicon Endo-Surgery, Inc.Staple cartridge cavity configurations
US86022871 juin 201210 déc. 2013Ethicon Endo-Surgery, Inc.Motor driven surgical cutting instrument
US86022889 févr. 201210 déc. 2013Ethicon Endo-Surgery. Inc.Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US860804415 févr. 200817 déc. 2013Ethicon Endo-Surgery, Inc.Feedback and lockout mechanism for surgical instrument
US860804510 oct. 200817 déc. 2013Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US86080467 janv. 201017 déc. 2013Ethicon Endo-Surgery, Inc.Test device for a surgical tool
US86164319 févr. 201231 déc. 2013Ethicon Endo-Surgery, Inc.Shiftable drive interface for robotically-controlled surgical tool
US862227414 févr. 20087 janv. 2014Ethicon Endo-Surgery, Inc.Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US862227519 nov. 20097 janv. 2014Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid distal end portion
US863198717 mai 201021 janv. 2014Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US863199025 avr. 201121 janv. 2014Cardica, Inc.Staple trap for surgical stapler
US863199221 oct. 200921 janv. 2014Cardica, Inc.Feeder belt with padded staples for true multi-fire surgical stapler
US863246213 juil. 201121 janv. 2014Ethicon Endo-Surgery, Inc.Trans-rectum universal ports
US86361873 févr. 201128 janv. 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems that produce formed staples having different lengths
US863618919 avr. 201128 janv. 2014Cardica, Inc.Active wedge for surgical stapler
US863673614 févr. 200828 janv. 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument
US865212010 janv. 200718 févr. 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US865717414 févr. 200825 févr. 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument having handle based power source
US865717629 avr. 201125 févr. 2014Ethicon Endo-Surgery, Inc.Tissue thickness compensator for a surgical stapler
US86571789 janv. 201325 févr. 2014Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US866813024 mai 201211 mars 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US867220730 juil. 201018 mars 2014Ethicon Endo-Surgery, Inc.Transwall visualization arrangements and methods for surgical circular staplers
US86722085 mars 201018 mars 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US867915528 juil. 201125 mars 2014Cardica, Inc.Surgical method utilizing a true multiple-fire surgical stapler
US868425327 mai 20111 avr. 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US86958661 oct. 201015 avr. 2014Ethicon Endo-Surgery, Inc.Surgical instrument having a power control circuit
US873361329 sept. 201027 mai 2014Ethicon Endo-Surgery, Inc.Staple cartridge
US873447813 juil. 201127 mai 2014Ethicon Endo-Surgery, Inc.Rectal manipulation devices
US874003430 sept. 20103 juin 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with interchangeable staple cartridge arrangements
US874003730 sept. 20103 juin 2014Ethicon Endo-Surgery, Inc.Compressible fastener cartridge
US874003829 avr. 20113 juin 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising a releasable portion
US87465292 déc. 201110 juin 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US874653028 sept. 201210 juin 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US874653529 avr. 201110 juin 2014Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising detachable portions
US874723828 juin 201210 juin 2014Ethicon Endo-Surgery, Inc.Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US875274720 mars 201217 juin 2014Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US875274927 mai 201117 juin 2014Ethicon Endo-Surgery, Inc.Robotically-controlled disposable motor-driven loading unit
US875746530 sept. 201024 juin 2014Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix and an alignment matrix
US87638756 mars 20131 juil. 2014Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US876387730 sept. 20101 juil. 2014Ethicon Endo-Surgery, Inc.Surgical instruments with reconfigurable shaft segments
US877700429 avr. 201115 juil. 2014Ethicon Endo-Surgery, Inc.Compressible staple cartridge comprising alignment members
US87835419 févr. 201222 juil. 2014Frederick E. Shelton, IVRobotically-controlled surgical end effector system
US878354230 sept. 201022 juil. 2014Ethicon Endo-Surgery, Inc.Fasteners supported by a fastener cartridge support
US878354330 juil. 201022 juil. 2014Ethicon Endo-Surgery, Inc.Tissue acquisition arrangements and methods for surgical stapling devices
US878973811 mai 201129 juil. 2014Cardica, Inc.Surgical method for stapling tissue
US87897396 sept. 201129 juil. 2014Ethicon Endo-Surgery, Inc.Continuous stapling instrument
US878974030 juil. 201029 juil. 2014Ethicon Endo-Surgery, Inc.Linear cutting and stapling device with selectively disengageable cutting member
US878974123 sept. 201129 juil. 2014Ethicon Endo-Surgery, Inc.Surgical instrument with trigger assembly for generating multiple actuation motions
US879449718 déc. 20125 août 2014Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US88008389 févr. 201212 août 2014Ethicon Endo-Surgery, Inc.Robotically-controlled cable-based surgical end effectors
US880084115 mars 201112 août 2014Ethicon Endo-Surgery, Inc.Surgical staple cartridges
US880173430 juil. 201012 août 2014Ethicon Endo-Surgery, Inc.Circular stapling instruments with secondary cutting arrangements and methods of using same
US880173530 juil. 201012 août 2014Ethicon Endo-Surgery, Inc.Surgical circular stapler with tissue retention arrangements
US880832519 nov. 201219 août 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with staples having crown features for increasing formed staple footprint
US881402430 sept. 201026 août 2014Ethicon Endo-Surgery, Inc.Fastener system comprising a plurality of connected retention matrix elements
US88206059 févr. 20122 sept. 2014Ethicon Endo-Surgery, Inc.Robotically-controlled surgical instruments
US882790313 juil. 20119 sept. 2014Ethicon Endo-Surgery, Inc.Modular tool heads for use with circular surgical instruments
US88336326 sept. 201116 sept. 2014Ethicon Endo-Surgery, Inc.Firing member displacement system for a stapling instrument
US884000330 sept. 201023 sept. 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with compact articulation control arrangement
US88406033 juin 201023 sept. 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US88447899 févr. 201230 sept. 2014Ethicon Endo-Surgery, Inc.Automated end effector component reloading system for use with a robotic system
US885135424 déc. 20097 oct. 2014Ethicon Endo-Surgery, Inc.Surgical cutting instrument that analyzes tissue thickness
US885769315 mars 201114 oct. 2014Ethicon Endo-Surgery, Inc.Surgical instruments with lockable articulating end effector
US885769429 avr. 201114 oct. 2014Ethicon Endo-Surgery, Inc.Staple cartridge loading assembly
US885859013 juil. 201114 oct. 2014Ethicon Endo-Surgery, Inc.Tissue manipulation devices
US886400730 sept. 201021 oct. 2014Ethicon Endo-Surgery, Inc.Implantable fastener cartridge having a non-uniform arrangement
US886400929 avr. 201121 oct. 2014Ethicon Endo-Surgery, Inc.Tissue thickness compensator for a surgical stapler comprising an adjustable anvil
US889394923 sept. 201125 nov. 2014Ethicon Endo-Surgery, Inc.Surgical stapler with floating anvil
US889946330 sept. 20102 déc. 2014Ethicon Endo-Surgery, Inc.Surgical staple cartridges supporting non-linearly arranged staples and surgical stapling instruments with common staple-forming pockets
US88994655 mars 20132 déc. 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising drivers for deploying a plurality of staples
US889946619 nov. 20092 déc. 2014Ethicon Endo-Surgery, Inc.Devices and methods for introducing a surgical circular stapling instrument into a patient
US89059771 juin 20059 déc. 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US891147114 sept. 201216 déc. 2014Ethicon Endo-Surgery, Inc.Articulatable surgical device
US892578230 sept. 20106 janv. 2015Ethicon Endo-Surgery, Inc.Implantable fastener cartridge comprising multiple layers
US89257883 mars 20146 janv. 2015Ethicon Endo-Surgery, Inc.End effectors for surgical stapling instruments
US892659815 mars 20116 janv. 2015Ethicon Endo-Surgery, Inc.Surgical instruments with articulatable and rotatable end effector
US893168227 mai 201113 janv. 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US897380418 mars 201410 mars 2015Ethicon Endo-Surgery, Inc.Cartridge assembly having a buttressing member
US897895429 avr. 201117 mars 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising an adjustable distal portion
US897895513 juil. 201117 mars 2015Ethicon Endo-Surgery, Inc.Anvil assemblies with collapsible frames for circular staplers
US897895630 sept. 201017 mars 2015Ethicon Endo-Surgery, Inc.Jaw closure arrangements for surgical instruments
US899167721 mai 201431 mars 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US899242227 mai 201131 mars 2015Ethicon Endo-Surgery, Inc.Robotically-controlled endoscopic accessory channel
US899805820 mai 20147 avr. 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US900523018 janv. 201314 avr. 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US901654229 avr. 201128 avr. 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising compressible distortion resistant components
US902849428 juin 201212 mai 2015Ethicon Endo-Surgery, Inc.Interchangeable end effector coupling arrangement
US90285197 févr. 201112 mai 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US903320330 sept. 201019 mai 2015Ethicon Endo-Surgery, Inc.Fastening instrument for deploying a fastener system comprising a retention matrix
US903320413 juil. 201119 mai 2015Ethicon Endo-Surgery, Inc.Circular stapling devices with tissue-puncturing anvil features
US904422730 sept. 20102 juin 2015Ethicon Endo-Surgery, Inc.Collapsible fastener cartridge
US904422830 sept. 20102 juin 2015Ethicon Endo-Surgery, Inc.Fastener system comprising a plurality of fastener cartridges
US904422915 mars 20112 juin 2015Ethicon Endo-Surgery, Inc.Surgical fastener instruments
US904423013 févr. 20122 juin 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US905008323 sept. 20089 juin 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US905008423 sept. 20119 juin 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck arrangement
US905594123 sept. 201116 juin 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck
US906077027 mai 201123 juin 2015Ethicon Endo-Surgery, Inc.Robotically-driven surgical instrument with E-beam driver
US907251525 juin 20147 juil. 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US907253527 mai 20117 juil. 2015Ethicon Endo-Surgery, Inc.Surgical stapling instruments with rotatable staple deployment arrangements
US907253628 juin 20127 juil. 2015Ethicon Endo-Surgery, Inc.Differential locking arrangements for rotary powered surgical instruments
US907865326 mars 201214 juil. 2015Ethicon Endo-Surgery, Inc.Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US908460017 févr. 201221 juil. 2015Cardica, Inc.Anvil-side staple trap
US908460115 mars 201321 juil. 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US908933013 juil. 201128 juil. 2015Ethicon Endo-Surgery, Inc.Surgical bowel retractor devices
US909533919 mai 20144 août 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US910135815 juin 201211 août 2015Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
US910138528 juin 201211 août 2015Ethicon Endo-Surgery, Inc.Electrode connections for rotary driven surgical tools
US91076636 sept. 201118 août 2015Ethicon Endo-Surgery, Inc.Stapling instrument comprising resettable staple drivers
US911386230 sept. 201025 août 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a variable staple forming system
US911386430 sept. 201025 août 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instruments with separate and distinct fastener deployment and tissue cutting systems
US911386529 avr. 201125 août 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising a layer
US911387424 juin 201425 août 2015Ethicon Endo-Surgery, Inc.Surgical instrument system
US911388313 juil. 201125 août 2015Ethicon Endo-Surgery, Inc.Collapsible anvil plate assemblies for circular surgical stapling devices
US911388413 juil. 201125 août 2015Ethicon Endo-Surgery, Inc.Modular surgical tool systems
US911965728 juin 20121 sept. 2015Ethicon Endo-Surgery, Inc.Rotary actuatable closure arrangement for surgical end effector
US912565413 juil. 20118 sept. 2015Ethicon Endo-Surgery, Inc.Multiple part anvil assemblies for circular surgical stapling devices
US912566228 juin 20128 sept. 2015Ethicon Endo-Surgery, Inc.Multi-axis articulating and rotating surgical tools
US913194021 févr. 201315 sept. 2015Ethicon Endo-Surgery, Inc.Staple cartridge
US913822526 févr. 201322 sept. 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US914442721 mars 201429 sept. 2015Cardica, Inc.Surgical method utilizing a true multiple-fire surgical stapler
US914927417 févr. 20116 oct. 2015Ethicon Endo-Surgery, Inc.Articulating endoscopic accessory channel
US915553626 avr. 201113 oct. 2015Cardica, Inc.Circular stapler
US916803829 avr. 201127 oct. 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising a tissue thickness compensator
US91680393 avr. 201227 oct. 2015Cardica, Inc.Surgical stapler with staples of different sizes
US917991123 mai 201410 nov. 2015Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US917991227 mai 201110 nov. 2015Ethicon Endo-Surgery, Inc.Robotically-controlled motorized surgical cutting and fastening instrument
US918614325 juin 201417 nov. 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US91986616 sept. 20111 déc. 2015Ethicon Endo-Surgery, Inc.Stapling instrument comprising a plurality of staple cartridges stored therein
US919866226 juin 20121 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator having improved visibility
US920487814 août 20148 déc. 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US920487928 juin 20128 déc. 2015Ethicon Endo-Surgery, Inc.Flexible drive member
US920488028 mars 20128 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising capsules defining a low pressure environment
US921112028 mars 201215 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of medicaments
US921112113 janv. 201515 déc. 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US921112213 juil. 201115 déc. 2015Ethicon Endo-Surgery, Inc.Surgical access devices with anvil introduction and specimen retrieval structures
US921601923 sept. 201122 déc. 2015Ethicon Endo-Surgery, Inc.Surgical stapler with stationary staple drivers
US922050028 mars 201229 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising structure to produce a resilient load
US922050128 mars 201229 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensators
US922675128 juin 20125 janv. 2016Ethicon Endo-Surgery, Inc.Surgical instrument system including replaceable end effectors
US923294128 mars 201212 janv. 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a reservoir
US92329457 juil. 201412 janv. 2016Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US923789127 mai 201119 janv. 2016Ethicon Endo-Surgery, Inc.Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US924171428 mars 201226 janv. 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator and method for making the same
US927179925 juin 20141 mars 2016Ethicon Endo-Surgery, LlcRobotic surgical system with removable motor housing
US92724068 févr. 20131 mars 2016Ethicon Endo-Surgery, LlcFastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US927791928 mars 20128 mars 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising fibers to produce a resilient load
US92829628 févr. 201315 mars 2016Ethicon Endo-Surgery, LlcAdhesive film laminate
US92829667 févr. 201415 mars 2016Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US928297428 juin 201215 mars 2016Ethicon Endo-Surgery, LlcEmpty clip cartridge lockout
US928305423 août 201315 mars 2016Ethicon Endo-Surgery, LlcInteractive displays
US928920615 déc. 201422 mars 2016Ethicon Endo-Surgery, LlcLateral securement members for surgical staple cartridges
US928921021 mai 201222 mars 2016Ethicon Endo-Surgery, LlcSurgical stapler with apparatus for adjusting staple height
US928921217 sept. 201022 mars 2016Ethicon Endo-Surgery, Inc.Surgical instruments and batteries for surgical instruments
US928925628 juin 201222 mars 2016Ethicon Endo-Surgery, LlcSurgical end effectors having angled tissue-contacting surfaces
US929546429 avr. 201129 mars 2016Ethicon Endo-Surgery, Inc.Surgical stapler anvil comprising a plurality of forming pockets
US930175228 mars 20125 avr. 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising a plurality of capsules
US930175328 mars 20125 avr. 2016Ethicon Endo-Surgery, LlcExpandable tissue thickness compensator
US930175529 avr. 20115 avr. 2016Ethicon Endo-Surgery, LlcCompressible staple cartridge assembly
US93017599 févr. 20125 avr. 2016Ethicon Endo-Surgery, LlcRobotically-controlled surgical instrument with selectively articulatable end effector
US930796525 juin 201212 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-microbial agent
US93079861 mars 201312 avr. 2016Ethicon Endo-Surgery, LlcSurgical instrument soft stop
US930798725 sept. 201412 avr. 2016Ethicon Endo-Surgery, LlcSurgical cutting instrument that analyzes tissue thickness
US930798828 oct. 201312 avr. 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US930798926 juin 201212 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorportating a hydrophobic agent
US931424625 juin 201219 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US931424726 juin 201219 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating a hydrophilic agent
US932051825 juin 201226 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an oxygen generating agent
US932051926 avr. 201126 avr. 2016Cardica, Inc.Single-trigger clamping and firing of surgical stapler
US932052019 août 201526 avr. 2016Ethicon Endo-Surgery, Inc.Surgical instrument system
US932052129 oct. 201226 avr. 2016Ethicon Endo-Surgery, LlcSurgical instrument
US932052328 mars 201226 avr. 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising tissue ingrowth features
US93267671 mars 20133 mai 2016Ethicon Endo-Surgery, LlcJoystick switch assemblies for surgical instruments
US932676812 mars 20133 mai 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US93267696 mars 20133 mai 2016Ethicon Endo-Surgery, LlcSurgical instrument
US93267706 mars 20133 mai 2016Ethicon Endo-Surgery, LlcSurgical instrument
US933297428 mars 201210 mai 2016Ethicon Endo-Surgery, LlcLayered tissue thickness compensator
US933298427 mars 201310 mai 2016Ethicon Endo-Surgery, LlcFastener cartridge assemblies
US933298714 mars 201310 mai 2016Ethicon Endo-Surgery, LlcControl arrangements for a drive member of a surgical instrument
US934547725 juin 201224 mai 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US934547810 nov. 201124 mai 2016Cardica, Inc.Method for surgical stapling
US934548113 mars 201324 mai 2016Ethicon Endo-Surgery, LlcStaple cartridge tissue thickness sensor system
US935172614 mars 201331 mai 2016Ethicon Endo-Surgery, LlcArticulation control system for articulatable surgical instruments
US935172714 mars 201331 mai 2016Ethicon Endo-Surgery, LlcDrive train control arrangements for modular surgical instruments
US935173028 mars 201231 mai 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising channels
US93580031 mars 20137 juin 2016Ethicon Endo-Surgery, LlcElectromechanical surgical device with signal relay arrangement
US935800522 juin 20157 juin 2016Ethicon Endo-Surgery, LlcEnd effector layer including holding features
US936423028 juin 201214 juin 2016Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotary joint assemblies
US936423328 mars 201214 juin 2016Ethicon Endo-Surgery, LlcTissue thickness compensators for circular surgical staplers
US937035819 oct. 201221 juin 2016Ethicon Endo-Surgery, LlcMotor-driven surgical cutting and fastening instrument with tactile position feedback
US93703645 mars 201321 juin 2016Ethicon Endo-Surgery, LlcPowered surgical cutting and stapling apparatus with manually retractable firing system
US938698327 mai 201112 juil. 2016Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument
US93869848 févr. 201312 juil. 2016Ethicon Endo-Surgery, LlcStaple cartridge comprising a releasable cover
US938698515 oct. 201212 juil. 2016Ethicon Endo-Surgery, LlcSurgical cutting instrument
US938698828 mars 201212 juil. 2016Ethicon End-Surgery, LLCRetainer assembly including a tissue thickness compensator
US939301510 mai 201319 juil. 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with cutting member reversing mechanism
US93989111 mars 201326 juil. 2016Ethicon Endo-Surgery, LlcRotary powered surgical instruments with multiple degrees of freedom
US940262618 juil. 20122 août 2016Ethicon Endo-Surgery, LlcRotary actuatable surgical fastener and cutter
US940860428 févr. 20149 août 2016Ethicon Endo-Surgery, LlcSurgical instrument comprising a firing system including a compliant portion
US940860512 juil. 20129 août 2016Cardica, Inc.Single-trigger clamping and firing of surgical stapler
US940860628 juin 20129 août 2016Ethicon Endo-Surgery, LlcRobotically powered surgical device with manually-actuatable reversing system
US941483828 mars 201216 août 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprised of a plurality of materials
US943341928 mars 20126 sept. 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of layers
US944581323 août 201320 sept. 2016Ethicon Endo-Surgery, LlcClosure indicator systems for surgical instruments
US94519585 août 201327 sept. 2016Ethicon Endo-Surgery, LlcSurgical instrument with firing actuator lockout
US94684381 mars 201318 oct. 2016Eticon Endo-Surgery, LLCSensor straightened end effector during removal through trocar
US948047628 mars 20121 nov. 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising resilient members
US948621420 mai 20138 nov. 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US949216714 mars 201315 nov. 2016Ethicon Endo-Surgery, LlcArticulatable surgical device with rotary driven cutting member
US949821930 juin 201522 nov. 2016Ethicon Endo-Surgery, LlcDetachable motor powered surgical instrument
US951082823 août 20136 déc. 2016Ethicon Endo-Surgery, LlcConductor arrangements for electrically powered surgical instruments with rotatable end effectors
US951083023 oct. 20146 déc. 2016Ethicon Endo-Surgery, LlcStaple cartridge
US951706328 mars 201213 déc. 2016Ethicon Endo-Surgery, LlcMovable member for use with a tissue thickness compensator
US95170685 août 201313 déc. 2016Ethicon Endo-Surgery, LlcSurgical instrument with automatically-returned firing member
US952202912 mars 201320 déc. 2016Ethicon Endo-Surgery, LlcMotorized surgical cutting and fastening instrument having handle based power source
US95497325 mars 201324 janv. 2017Ethicon Endo-Surgery, LlcMotor-driven surgical cutting instrument
US95497338 mai 201324 janv. 2017Cardica, Inc.Surgical stapler with cartridge-adjustable clamp gap
US954973523 déc. 201324 janv. 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a firing member including fastener transfer surfaces
US95547941 mars 201331 janv. 2017Ethicon Endo-Surgery, LlcMultiple processor motor control for modular surgical instruments
US956103213 août 20137 févr. 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising a staple driver arrangement
US956103828 juin 20127 févr. 2017Ethicon Endo-Surgery, LlcInterchangeable clip applier
US95660618 févr. 201314 févr. 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasably attached tissue thickness compensator
US957257422 juin 201521 févr. 2017Ethicon Endo-Surgery, LlcTissue thickness compensators comprising therapeutic agents
US957257727 mars 201321 févr. 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a tissue thickness compensator including openings therein
US957464430 mai 201321 févr. 2017Ethicon Endo-Surgery, LlcPower module for use with a surgical instrument
US95856578 févr. 20137 mars 2017Ethicon Endo-Surgery, LlcActuator for releasing a layer of material from a surgical end effector
US95856587 avr. 20167 mars 2017Ethicon Endo-Surgery, LlcStapling systems
US958566011 nov. 20137 mars 2017Ethicon Endo-Surgery, LlcMethod for testing a surgical tool
US958566223 déc. 20137 mars 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising an extendable firing member
US95856638 mars 20167 mars 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument configured to apply a compressive pressure to tissue
US95920508 févr. 201314 mars 2017Ethicon Endo-Surgery, LlcEnd effector comprising a distal tissue abutment member
US959205212 mars 201414 mars 2017Ethicon Endo-Surgery, LlcStapling assembly for forming different formed staple heights
US959205322 mai 201414 mars 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising multiple regions
US95920544 nov. 201514 mars 2017Ethicon Endo-Surgery, LlcSurgical stapler with stationary staple drivers
US95970759 juin 201421 mars 2017Ethicon Endo-Surgery, Inc.Tissue acquisition arrangements and methods for surgical stapling devices
US960359528 févr. 201428 mars 2017Ethicon Endo-Surgery, LlcSurgical instrument comprising an adjustable system configured to accommodate different jaw heights
US960359830 août 201328 mars 2017Ethicon Endo-Surgery, LlcSurgical stapling device with a curved end effector
US960399129 juil. 201328 mars 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument having a medical substance dispenser
US96158268 févr. 201311 avr. 2017Ethicon Endo-Surgery, LlcMultiple thickness implantable layers for surgical stapling devices
US962962314 mars 201325 avr. 2017Ethicon Endo-Surgery, LlcDrive system lockout arrangements for modular surgical instruments
US96296297 mars 201425 avr. 2017Ethicon Endo-Surgey, LLCControl systems for surgical instruments
US962981420 mars 201425 avr. 2017Ethicon Endo-Surgery, LlcTissue thickness compensator configured to redistribute compressive forces
US96491109 avr. 201416 mai 2017Ethicon LlcSurgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US964911128 juin 201216 mai 2017Ethicon Endo-Surgery, LlcReplaceable clip cartridge for a clip applier
US965561411 mars 201323 mai 2017Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument with an end effector
US965562430 août 201323 mai 2017Ethicon LlcSurgical stapling device with a curved end effector
US966211015 sept. 201530 mai 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument with an articulatable end effector
US967535530 août 201313 juin 2017Ethicon LlcSurgical stapling device with a curved end effector
US967537224 mai 201313 juin 2017Ethicon LlcMotor-driven surgical cutting instrument with electric actuator directional control assembly
US968187023 déc. 201320 juin 2017Ethicon LlcArticulatable surgical instruments with separate and distinct closing and firing systems
US968723014 mars 201327 juin 2017Ethicon LlcArticulatable surgical instrument comprising a firing drive
US968723121 oct. 201327 juin 2017Ethicon LlcSurgical stapling instrument
US968723624 févr. 201427 juin 2017Ethicon Endo-Surgery, Inc.Surgical instrument having a power control circuit
US96872378 juin 201527 juin 2017Ethicon Endo-Surgery, LlcStaple cartridge including collapsible deck arrangement
US969036226 mars 201427 juin 2017Ethicon LlcSurgical instrument control circuit having a safety processor
US969377724 févr. 20144 juil. 2017Ethicon LlcImplantable layers comprising a pressed region
US97003091 mars 201311 juil. 2017Ethicon LlcArticulatable surgical instruments with conductive pathways for signal communication
US970031023 août 201311 juil. 2017Ethicon LlcFiring member retraction devices for powered surgical instruments
US97003178 févr. 201311 juil. 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasable tissue thickness compensator
US970032128 mai 201411 juil. 2017Ethicon LlcSurgical stapling device having supports for a flexible drive mechanism
US970699119 févr. 201418 juil. 2017Ethicon Endo-Surgery, Inc.Staple cartridge comprising staples including a lateral base
US972409129 août 20138 août 2017Ethicon LlcSurgical stapling device
US972409223 déc. 20138 août 2017Ethicon LlcModular surgical instruments
US97240945 sept. 20148 août 2017Ethicon LlcAdjunct with integrated sensors to quantify tissue compression
US972409813 nov. 20148 août 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising an implantable layer
US973069212 mars 201315 août 2017Ethicon LlcSurgical stapling device with a curved staple cartridge
US973069517 sept. 201515 août 2017Ethicon Endo-Surgery, LlcPower management through segmented circuit
US973069723 avr. 201515 août 2017Ethicon Endo-Surgery, LlcSurgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US973366326 mars 201415 août 2017Ethicon LlcPower management through segmented circuit and variable voltage protection
US97373015 sept. 201422 août 2017Ethicon LlcMonitoring device degradation based on component evaluation
US97373028 mars 201622 août 2017Ethicon LlcSurgical stapling instrument having a restraining member
US973730310 sept. 201522 août 2017Ethicon LlcArticulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US974392825 mars 201429 août 2017Ethicon Endo-Surgery, Inc.Surgical instrument having a feedback system
US974392926 mars 201429 août 2017Ethicon LlcModular powered surgical instrument with detachable shaft assemblies
US975049828 sept. 20155 sept. 2017Ethicon Endo Surgery, LlcDrive systems for surgical instruments
US975049926 mars 20145 sept. 2017Ethicon LlcSurgical stapling instrument system
US975050124 mai 20165 sept. 2017Ethicon Endo-Surgery, LlcSurgical stapling devices having laterally movable anvils
US97571237 mars 201312 sept. 2017Ethicon LlcPowered surgical instrument having a transmission system
US975712424 févr. 201412 sept. 2017Ethicon LlcImplantable layer assemblies
US97571285 sept. 201412 sept. 2017Ethicon LlcMultiple sensors with one sensor affecting a second sensor's output or interpretation
US975713012 mars 201412 sept. 2017Ethicon LlcStapling assembly for forming different formed staple heights
US976366223 déc. 201319 sept. 2017Ethicon LlcFastener cartridge comprising a firing member configured to directly engage and eject fasteners from the fastener cartridge
US97702458 févr. 201326 sept. 2017Ethicon LlcLayer arrangements for surgical staple cartridges
US977560824 févr. 20143 oct. 2017Ethicon LlcFastening system comprising a firing member lockout
US977560923 août 20133 oct. 2017Ethicon LlcTamper proof circuit for surgical instrument battery pack
US977561330 août 20133 oct. 2017Ethicon LlcSurgical stapling device with a curved end effector
US977561425 janv. 20163 oct. 2017Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotatable staple deployment arrangements
US97821691 mars 201310 oct. 2017Ethicon LlcRotary powered articulation joints for surgical instruments
US97888348 févr. 201317 oct. 2017Ethicon LlcLayer comprising deployable attachment members
US97888365 sept. 201417 oct. 2017Ethicon LlcMultiple motor control for powered medical device
US97953817 avr. 201624 oct. 2017Ethicon Endo-Surgery, LlcRobotically-controlled shaft based rotary drive systems for surgical instruments
US979538220 août 201324 oct. 2017Ethicon LlcFastener cartridge assembly comprising a cam and driver arrangement
US979538322 sept. 201624 oct. 2017Ethicon LlcTissue thickness compensator comprising resilient members
US979538427 mars 201324 oct. 2017Ethicon LlcFastener cartridge comprising a tissue thickness compensator and a gap setting element
US98016269 avr. 201431 oct. 2017Ethicon LlcModular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US980162726 sept. 201431 oct. 2017Ethicon LlcFastener cartridge for creating a flexible staple line
US980162826 sept. 201431 oct. 2017Ethicon LlcSurgical staple and driver arrangements for staple cartridges
US980163420 oct. 201431 oct. 2017Ethicon LlcTissue thickness compensator for a surgical stapler
US980461826 mars 201431 oct. 2017Ethicon LlcSystems and methods for controlling a segmented circuit
US980824414 mars 20137 nov. 2017Ethicon LlcSensor arrangements for absolute positioning system for surgical instruments
US98082466 mars 20157 nov. 2017Ethicon Endo-Surgery, LlcMethod of operating a powered surgical instrument
US980824730 juin 20157 nov. 2017Ethicon LlcStapling system comprising implantable layers
US980824923 août 20137 nov. 2017Ethicon LlcAttachment portions for surgical instrument assemblies
US98144609 avr. 201414 nov. 2017Ethicon LlcModular motor driven surgical instruments with status indication arrangements
US981446223 juin 201414 nov. 2017Ethicon LlcAssembly for fastening tissue comprising a compressible layer
WO2009033057A2 *5 sept. 200812 mars 2009Cardica, Inc.Endocutter with staple feed
WO2009033057A3 *5 sept. 200811 juin 2009Cardica IncEndocutter with staple feed
Classifications
Classification internationaleA61B17/28, A61B17/068, A61B17/00, A61B17/32, A61B17/072, A61B17/115
Classification coopérativeA61B2017/2912, A61B2017/07214, A61B2017/07285, A61B2017/2932, A61B17/3201, A61B2017/00893, A61B17/29, A61B17/00491, A61B17/068, A61B17/320016, A61B2017/00544, A61B17/07207, A61B17/115, A61B2017/00539
Classification européenneA61B17/068, A61B17/115, A61B17/32E, A61B17/072B, A61B17/29, A61B17/3201
Événements juridiques
DateCodeÉvénementDescription
27 déc. 2006AXRequest for extension of the european patent to
Extension state: AL BA HR MK YU
27 déc. 2006AKDesignated contracting states:
Kind code of ref document: A1
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR
18 juil. 200717PRequest for examination filed
Effective date: 20070608
20 juil. 2007REGReference to a national code
Ref country code: HK
Ref legal event code: DE
Ref document number: 1098323
Country of ref document: HK
15 août 200717QFirst examination report
Effective date: 20070718
5 sept. 2007AKXPayment of designation fees
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR
11 mars 2009AKDesignated contracting states:
Kind code of ref document: B1
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR
11 mars 2009REGReference to a national code
Ref country code: GB
Ref legal event code: FG4D
13 mars 2009REGReference to a national code
Ref country code: CH
Ref legal event code: EP
15 avr. 2009REGReference to a national code
Ref country code: IE
Ref legal event code: FG4D
23 avr. 2009REFCorresponds to:
Ref document number: 602006005550
Country of ref document: DE
Date of ref document: 20090423
Kind code of ref document: P
31 juil. 2009PG25Lapsed in a contracting state announced via postgrant inform. from nat. office to epo
Ref country code: NL
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
Ref country code: FI
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
Ref country code: SI
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
Ref country code: LT
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
3 août 2009NLV1Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
31 août 2009PG25Lapsed in a contracting state announced via postgrant inform. from nat. office to epo
Ref country code: SE
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090611
Ref country code: PL
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
Ref country code: LV
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
Ref country code: AT
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
30 sept. 2009PG25Lapsed in a contracting state announced via postgrant inform. from nat. office to epo
Ref country code: BE
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
30 oct. 2009PG25Lapsed in a contracting state announced via postgrant inform. from nat. office to epo
Ref country code: PT
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090824
Ref country code: EE
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
Ref country code: CZ
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
Ref country code: ES
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090622
30 nov. 2009PG25Lapsed in a contracting state announced via postgrant inform. from nat. office to epo
Ref country code: RO
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
Ref country code: SK
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
Ref country code: IS
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090711
29 janv. 2010PG25Lapsed in a contracting state announced via postgrant inform. from nat. office to epo
Ref country code: BG
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090611
Ref country code: DK
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
Ref country code: MC
Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES
Effective date: 20090630
17 févr. 201026NNo opposition filed
Effective date: 20091214
31 mars 2010REGReference to a national code
Ref country code: IE
Ref legal event code: MM4A
30 avr. 2010PG25Lapsed in a contracting state announced via postgrant inform. from nat. office to epo
Ref country code: IE
Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES
Effective date: 20090622
29 oct. 2010PG25Lapsed in a contracting state announced via postgrant inform. from nat. office to epo
Ref country code: GR
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090612
31 janv. 2011REGReference to a national code
Ref country code: CH
Ref legal event code: PL
31 mars 2011PG25Lapsed in a contracting state announced via postgrant inform. from nat. office to epo
Ref country code: CH
Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES
Effective date: 20090630
Ref country code: LI
Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES
Effective date: 20090630
29 avr. 2011PG25Lapsed in a contracting state announced via postgrant inform. from nat. office to epo
Ref country code: LU
Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES
Effective date: 20090622
Ref country code: CH
Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES
Effective date: 20100630
Ref country code: LI
Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES
Effective date: 20100630
30 juin 2011PG25Lapsed in a contracting state announced via postgrant inform. from nat. office to epo
Ref country code: HU
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090912
31 août 2011PG25Lapsed in a contracting state announced via postgrant inform. from nat. office to epo
Ref country code: TR
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
30 sept. 2011PG25Lapsed in a contracting state announced via postgrant inform. from nat. office to epo
Ref country code: CY
Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT
Effective date: 20090311
17 janv. 2014REGReference to a national code
Ref country code: HK
Ref legal event code: WD
Ref document number: 1098323
Country of ref document: HK
16 mai 2016REGReference to a national code
Ref country code: FR
Ref legal event code: PLFP
Year of fee payment: 11
11 mai 2017REGReference to a national code
Ref country code: FR
Ref legal event code: PLFP
Year of fee payment: 12
31 juil. 2017PGFPPostgrant: annual fees paid to national office
Ref country code: FR
Payment date: 20170511
Year of fee payment: 12
Ref country code: GB
Payment date: 20170621
Year of fee payment: 12
Ref country code: DE
Payment date: 20170613
Year of fee payment: 12
31 août 2017PGFPPostgrant: annual fees paid to national office
Ref country code: IT
Payment date: 20170619
Year of fee payment: 12