EP1753369B1 - Stent with protruding branch portion for bifurcated vessels - Google Patents

Stent with protruding branch portion for bifurcated vessels Download PDF

Info

Publication number
EP1753369B1
EP1753369B1 EP05756161.5A EP05756161A EP1753369B1 EP 1753369 B1 EP1753369 B1 EP 1753369B1 EP 05756161 A EP05756161 A EP 05756161A EP 1753369 B1 EP1753369 B1 EP 1753369B1
Authority
EP
European Patent Office
Prior art keywords
stent
branch
branch portion
struts
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05756161.5A
Other languages
German (de)
French (fr)
Other versions
EP1753369A4 (en
EP1753369A2 (en
Inventor
Amnon Yadin
Hans Valencia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Stent Technologies Inc
Original Assignee
Advanced Stent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Stent Technologies Inc filed Critical Advanced Stent Technologies Inc
Publication of EP1753369A2 publication Critical patent/EP1753369A2/en
Publication of EP1753369A4 publication Critical patent/EP1753369A4/en
Application granted granted Critical
Publication of EP1753369B1 publication Critical patent/EP1753369B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/856Single tubular stent with a side portal passage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/954Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/065Y-shaped blood vessels
    • A61F2002/067Y-shaped blood vessels modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91508Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a difference in amplitude along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91516Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a change in frequency along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91566Adjacent bands being connected to each other connected trough to trough
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91575Adjacent bands being connected to each other connected peak to trough
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91583Adjacent bands being connected to each other by a bridge, whereby at least one of its ends is connected along the length of a strut between two consecutive apices within a band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0036Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular

Definitions

  • the present invention relates to the field of medical stents and, more particularly, to a stent for the treatment of lesions and other problems in or near a vessel bifurcation.
  • a stent is an endoprosthesis scaffold or other device that typically is intraluminally placed or implanted within a vein, artery, or other tubular body organ for treating an occlusion, stenosis, aneurysm, collapse, dissection, or weakened, diseased, or abnormally dilated vessel or vessel wall, by expanding the vessel or by reinforcing the vessel wall.
  • stents are quite commonly implanted into the coronary, cardiac, pulmonary, neurovascular, peripheral vascular, renal, gastrointestinal and reproductive systems, and have been successfully implanted in the urinary tract, the bile duct, the esophagus, the tracheo-bronchial tree and the brain, to reinforce these body organs.
  • stents Two important current widespread applications for stents are for improving angioplasty results by preventing elastic recoil and remodeling of the vessel wall and for treating dissections in blood vessel walls caused by balloon angioplasty of coronary arteries, as well as peripheral arteries.
  • Conventional stents have been used for treating more complex vascular problems, such as lesions at or near bifurcation points in the vascular system, where a secondary artery branches out of a larger, main artery, with limited success rates.
  • Conventional stent technology is relatively well developed.
  • Conventional stent designs typically feature a straight tubular, single type cellular structure, configuration, or pattern that is repetitive through translation along the longitudinal axis.
  • the repeating structure, configuration, or pattern has strut and connecting members that impede blood flow at bifurcations.
  • the configuration of struts and connecting members may obstruct the use of postoperative devices to treat a branch vessel in the region of a vessel bifurcation.
  • deployment of a first stent in the main lumen may prevent a physician from inserting a branch stent through the ostium of a branch vessel of a vessel bifurcation in cases where treatment of the main vessel is suboptimal because of displaced diseased tissue (for example, due to plaque shifting or "snow plowing"), occlusion, vessel spasm, dissection with or without intimal flaps, thrombosis, embolism, and/or other vascular diseases.
  • the physician may choose either to insert a stent into the branch in cases in which such additional treatment may otherwise be unnecessary, or alternatively the physician may elect not to treat, or to "sacrifice", such side lumen.
  • the use of regular stents to treat diseased vessels at or near a vessel bifurcation may create a risk of compromising the benefit of stent usage to the patient after the initial procedure and in future procedures on the main vessel, branch vessels, and/or the bifurcation point.
  • a regular stent is designed in view of conflicting considerations of coverage versus access. For example, to promote coverage, the cell structure size of the stent may be minimized for optimally supporting a vessel wall, thereby preventing or reducing tissue prolapse. The cell size of a stent may be maximized for providing accessibility of blood flow and of a potentially future implanted branch stent to branch vessels, thereby preventing "stent jailing", and minimizing the amount of implanted material. Regular stent design has typically compromised one consideration for the other in an attempt to address both.
  • ISR in-stent restenosis
  • restenosis is the reoccurrence of the narrowing or blockage of an artery in the area covered by the stent following stent implantation.
  • Patients treated with coronary stents can suffer from in-stent restenosis.
  • stents as delivery vehicles.
  • stents seeded with transfected endothelial cells expressing bacterial beta-galactosidase or human tissue-type plasminogen activator were utilized as therapeutic protein delivery vehicles. See, e.g., Dichek, D. A. et al., "Seeding of Intravascular Stents With Genetically Engineered Endothelial Cells", Circulation, 80: 1347-1353 (1989 ).
  • WO 2004/026180 A2 discloses a stent for use in a bifurcated body lumen having a main branch and a side branch.
  • the stent comprises a radially expandable generally tubular stent body having proximal and distal opposing ends with a body wall having a surface extending therebetween.
  • the stent comprises a branch portion that is at least partially detached from the stent body.
  • the present invention is directed to a stent for use in a bifurcated body lumen having a main branch and a side branch.
  • the stent comprises a radially expandable generally tubular stent body having proximal and distal opposing ends with a body wall having a surface extending therebetween.
  • the surface has a geometrical configuration defining a first pattern, and the first pattern has first pattern struts and connectors arranged in a predetermined configuration.
  • the stent also comprises a branch portion comprised of a second pattern, wherein the branch portion is at least partially detachable from the stent body.
  • the second pattern is configured according to the first pattern having at least one absent connector, and in another embodiment, the second pattern has a plurality of absent connectors.
  • the second pattern may have second pattern struts, and the second pattern struts can be more densely packed than the first pattern struts.
  • FIG. 1 is an illustration of a blood vessel bifurcation having an obstruction
  • FIGS. 2-4 are illustrations of prior art stents implemented at a blood vessel bifurcation
  • Fig. 5 is a flat view of an embodiment of an unexpanded stent ;
  • FIG. 6 is an enlarged view of a portion of the unexpanded stent shown in FIG. 5 ;
  • FIG. 7 is a perspective view of the expandable branch portion of the stent of FIG. 5 in the expanded configuration
  • FIG. 8 is an enlarged view of a portion of another stent
  • FIG. 9 is an enlarged view of a portion of an alternative stent
  • FIG. 10 is a perspective view of the expandable branch portion of the stent of FIG. 9 in the expanded configuration
  • FIG. 11 is a schematic view of the stent of FIG. 5 in the expanded state implemented at a blood vessel bifurcation;
  • FIG. 12 is a schematic view of the stent of FIG. 9 in the expanded state implemented at a blood vessel bifurcation;
  • FIG. 13 is an enlarged view of a portion of another stent
  • FIG. 14 is a flat view of another unexpanded stent
  • FIG. 15 is an enlarged view of a portion of the unexpanded stent shown in FIG. 14 ;
  • FIG. 16 is a view of a portion of another stent
  • FIG. 17 is a flat view of another unexpanded stent .
  • FIG. 18 is a perspective view of the expandable branch portion of the stent of FIG. 17 in the expanded configuration
  • FIG. 19 is a flat view of another unexpanded stent.
  • FIG. 20 is an enlarged view of a portion of the stent of FIG. 19 ;
  • FIG. 21 is a view of the expandable branch portion of the stent of FIG. 19 in the expanded configuration
  • FIG. 22 is a flat view of another unexpanded stent .
  • FIG. 23 is a flat view of another stent
  • FIG. 24 is a view of an expandable branch portion of the stent of FIG. 23 in the expanded condition
  • FIGS. 25-28 are illustrations of the steps for a method of inserting a stent of the present invention.
  • FIGS. 29-31 are illustrations of the steps for another method of inserting a stent of the present invention.
  • FIG. 32 is a view of a herniated balloon for use with the method of FIGS. 29-31 ;
  • FIG. 33 is a view of another stent delivery system for inserting a stent
  • FIG. 34 is a flat view of another unexpanded stent
  • FIG. 35 is a flat view of another stent
  • FIG. 36 is a flat view of another unexpanded stent
  • FIG. 37 is a flat view of an embodiment of an unexpanded stent in accordance with the present invention.
  • FIG. 38 is an enlarged view of a portion of the unexpanded stent shown in FIG. 37 ;
  • FIGS. 39-41 are illustrations of the steps for another method of inserting a stent of the present invention.
  • FIG. 42 is an expanded view of the stent of FIG. 37 in the second extended position
  • FIG. 43 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention.
  • FIG. 44 is an enlarged view of a portion of the unexpanded stent shown in FIG. 43 ;
  • FIG. 45 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention.
  • FIG. 46 is an enlarged view of a portion of the unexpanded stent shown in FIG. 45 ;
  • FIG. 47 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention.
  • FIG. 48 is an enlarged view of a portion of the unexpanded stent shown in FIG. 47 ;
  • FIG. 49 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention.
  • FIG. 50 is an enlarged view of a portion of the unexpanded stent shown in FIG. 49 ;
  • FIG. 51 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention.
  • FIG. 52 is an enlarged view of a portion of the unexpanded stent shown in FIG. 51 ;
  • FIG. 53 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention.
  • FIG. 54 is an enlarged view of a portion of the unexpanded stent shown in FIG. 53 ;
  • FIG. 55 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention.
  • FIG. 56 is an enlarged view of a portion of the unexpanded stent shown in FIG. 55 .
  • the present invention relates to stents for placement at vessel bifurcations and are generally configured to at least partially cover a portion of a branch vessel as well as a main vessel.
  • an exemplary blood vessel bifurcation 1 is shown, having a main vessel 2 extending along a main vessel axis 3 and a branch vessel 4 extending along a branch vessel axis 5.
  • Main vessel 2 and branch vessel 4 are disposed at an angle 11 of less than 90 degrees.
  • An obstruction 6 is located within bifurcation 1, spanning or at least partially obstructing main vessel 2 and a proximal portion branch vessel 4.
  • FIGS. 2-4 examples of prior methods and structures for stenting an obstructed bifurcation are shown.
  • a first stent 8 is introduced into main vessel 2 and an access hole or side opening in the wall of stent 8 is usually created with a balloon to provide access to branch vessel 4 and unobstructed blood flow thereto.
  • the access hole is created by deforming the struts and connectors of the main stent pattern, which may also deform the area of the stent surrounding the created opening and lead to undesirable results.
  • second stent 10 may not provide full coverage of the portion of obstruction 6 in branch vessel 4 due to the angle 11 of the side branch vessel 4 with respect to main vessel 2 and the fact that the ends of the stent typically define a right angle to the longitudinal axis of the lumen.
  • second stent 10 may extend beyond the bifurcation into main vessel 2, as shown in FIG. 4 , and cause potential obstruction of blood flow in main vessel 2 and/or cause problems at the overlapping portions of stents 8 and 10.
  • a stent 12 comprises stent body or wall 14 extending along a longitudinal axis 16 from a proximal end 20 to a distal end 22 and defining a lumen 18 therein.
  • Stent 12 may have a three-dimensional geometrical configuration having variable dimensions (length, width, height, depth, thickness, etc.).
  • stent body 14 is a generally tubular structure.
  • tubular can include an elongate structure that has varied cross-sections and does not require that the cross-section be circular.
  • the cross-section of stent wall 14 may be generally oval.
  • stent body 14 is generally cylindrical.
  • the stent body 14 may have varied cross-sectional shapes along the longitudinal axis 16 of the stent. For example, the circumferences in the proximal and distal parts of the stent may be different. This may occur, for example, if during stent delivery the delivery system causes the stent to distend.
  • Lumen 18 represents the inner volumetric space bounded by stent body 14 .
  • stent 12 is radially expandable from an unexpanded state to an expanded state to allow the stent to expand radially and support the main vessel. In the unexpanded state, stent body 14 defines a lumen 18 having a first volume, and in the expanded state, stent body 14 defines a lumen 18 having a second volume larger than the first volume.
  • FIG. 5 shows stent 12 in an unexpanded state in a flattened elevational view.
  • stent body 14 has a generally cellular configuration and comprises a generally repeatable series of struts 24 and connectors 26 configured in a predetermined general, overall, or main pattern along the length of stent 12.
  • Struts 24 comprise a pair of longitudinal strut portions 25 joined by a curved portion 27 at the proximal ends.
  • Struts 24 are interconnected by curved portion 29 at the distal ends and formed into rings 28 that extend about the circumference of stent 12.
  • a series of the circumferential rings 28 are spaced apart from one another longitudinally along the entire length of stent 12, and connectors 26 connect rings 28 to each other longitudinally.
  • Connectors 26 extend generally longitudinally between adjacent circumferential rings 28 and connect to the respective curved portions 25 , 29 of longitudinally adjacent struts 24 of adjacent rings 28.
  • connectors 26 are generally S-shaped or zigzag-shaped, although other patterns may also be used. Details of patterns that may be used for stent 12 are described more fully in co-pending PCT application IL02/00840, filed October 20, 2002 . Furthermore, many other strut and connector patterns may be used, and the present pattern is shown for illustration purposes only.
  • Stent 12 further includes a branch portion 30 located at some point along the length of stent 12.
  • Branch portion 30 comprises a section or portion of stent wall 14 that is configured to extend into a branch vessel in a vessel bifurcation.
  • branch portion 30 is configured to be movable from an unextended position to an extended position. In the unextended position, branch portion 30 is disposed in the volume defined by the unexpanded stent 12, that is, the branch portion 30 does not protrude radially from stent wall 14. In the extended position, the branch portion 30 extends outwardly from stent wall 14 and branch portion 30 is extended into the branch vessel. As best seen in FIG.
  • branch portion 30 comprises a stent wall section of stent body 14 that is initially flush, coplanar, or cocylindrical with the remainder of stent body 14 and may extend outwardly with respect to the remainder of stent body 14.
  • branch portion 30 is generally adjacent an opening, slit, space, void, or other incongruity in the overall or main pattern of stent body 14. This configuration allows for access into a branch vessel, and at the same time allows for circumferential alignment of the stent within the vessel prior to deployment.
  • multiple branch portions can be incorporated into the stent to permit multiple access to one or more vessels.
  • Branch portion 30 may be positioned in the midsection of stent 12. In alternate examples branch portion 30 may be positioned anywhere along the length of stent 12.
  • branch portion 30 comprises a portion of branch ring 32 and is positioned adjacent and proximal to an opening 34.
  • the portion of branch ring 32 adjacent opening 34 extends into the branch vessel, whereas the circumferential ring 28 adjacent branch ring 32 does not extend into the branch vessel.
  • Opening 34 is formed by an absence of at least one connector 26 adjoining branch ring 32 with a branch opposing ring 33. In some examples four adjacent connectors are absent; however, in alternate examples any number of connectors may be absent to create opening 34.
  • branch ring 32 is substantially similar geometrically to circumferential rings 28 and comprises branch ring struts 36 substantially similar to struts 24; however, a plurality of adjacent struts are free from connectors 26 adjacent opening 34.
  • branch ring 32 is at least partially detachable from stent body 14 to facilitate at least a portion of branch ring 32 to extend outwardly with respect to stent body 14.
  • the geometry of branch ring 32 may vary with respect to circumferential rings 28, and branch ring struts 36 may have different configurations than struts 24.
  • branch portion 30 When stent 12 is expanded, as shown in FIG.7 , branch portion 30 is extended into the branch vessel, causing a portion of branch ring 32 to at least partially cover the inner surface of the branch vessel 4.
  • the stent coverage in the branch vessel includes at least partial coverage of the proximal side of the inner branch vessel wall.
  • branch ring 32 may vary with respect to circumferential rings 28, and branch ring struts 36 may have different configurations than struts 24.
  • branch ring struts 36 are longer than struts 24.
  • branch ring struts 36 are more closely packed circumferentially, resulting in a greater number of branch ring struts 36 per area within branch ring 32 as compared to circumferential rings 28.
  • branch ring struts 36 may be thinner than struts 24.
  • branch ring struts 36 may be made of a different material than struts 24.
  • a branch portion 30 comprises a branch ring 32 having branch ring struts 36 that are longer than struts 24 and a greater number of branch ring struts 36 provided as compared to the number of struts 24 in circumferential rings 28, resulting in a more closely packed branch ring 32.
  • the number of branch ring connectors 38 on both sides of branch ring 32 is lower per branch strut 36 than the number of connectors 26 per strut 24.
  • Opening 34 is adjacent branch ring 32 on a distal side thereof, and the distal ends 46 of at least one, and preferably a plurality, of branch ring struts 40, 42, 44 are free from connectors and detachable from stent body 14.
  • two branch ring struts 48 and 50 positioned laterally adjacent struts 40, 42, and 44 have proximal ends 52 free from connectors.
  • free proximal ends 52 provide less resistance to movement of branch ring 32 during outward expansion with respect to stent body 14. This same procedure can be used to provide one, two, three or more proximal ends in the ring free of connectors.
  • the shape and configuration of branch ring connectors 38 is different than those of connectors 26.
  • branch ring connectors along the proximal side of branch ring 32 are longer than connectors 26 to facilitate greater expansion of branch portion 30 into a vessel side branch.
  • branch ring connectors along the distal side of branch ring 32 are shaped and oriented differently than connectors 26 to facilitate greater expansion of branch portion 30 into the branch vessel.
  • branch ring connectors 38 may also differ among themselves.
  • the longer branch ring struts 36 are generally more flexible than comparable shorter struts because the added length permits more deflection. Also, the added length permits greater coverage vessel wall coverage due to deeper penetration into the branch vessel during extension.
  • different geometries and orientations of branch ring connectors 38 may be used.
  • FIG. 9 another alternate example of stent 29 is shown having a branch portion 30 similar to that of the embodiment of FIG. 8 , except branch ring struts 40, 42, and 44 are longer than the other branch ring struts 36, and the distal ends thereof define an arcuate profile to the proximal side of opening 34. Also, central strut 42 is longer than struts 40, 44 adjacent to strut 42. In this regard, when branch portion 30 is extended, struts 40, 42, and 44 extend further into the branch vessel and provide more coverage of the vessel wall than the example depicted in FIG. 8 . In this regard, this example may more readily cover an obstruction in a bifurcation vessel such as the one depicted in FIG. 1 and, therefore, may provide better blood flow to a branch vessel. Furthermore, as described in more detail below, this example facilitates the use of a second stent in the branch vessel.
  • stent 29 of FIG. 9 is shown in an expanded state with branch portion 30 extended into the branch vessel, causing branch ring 32 to at least partially cover the inner surface of the branch vessel on the proximal side.
  • the distal end of strut 42 of branch ring 32 extends further into the branch vessel than the distal ends of struts 40, 44 because strut 42 is longer in this example than adjacent struts 40, 44.
  • a generally tapered, straight or linear profile along the distal perimeter of branch portion 30 is created when branch portion 30 is expanded into the branch vessel.
  • FIGS. 11 and 12 schematic views are shown of stents 12, 29 of FIGS. 5 and 9 , respectively, in the expanded state as implemented at a blood vessel bifurcation.
  • stent 19 of the example of FIG. 8 has a generally curved or radial profile along the distal perimeter 45 of branch portion 30 as it extends into branch vessel 4.
  • the generally curved or radial profile is due to the particular geometry of branch portion 30 of stent 19 of the example of FIG. 8 .
  • stent 29 of the example of FIG. 9 has a generally tapered, straight or linear profile along the distal perimeter 47 of the branch portion 30 of the stent as it extends into branch vessel 4.
  • the generally straight or linear profile in FIG. 12 is a result of the particular geometry of branch portion 30 of stent 29 of the example of FIG. 9 .
  • central strut 42 of branch ring 32 is longer in this example than struts 40 , 44 adjacent to strut 42, the distal end of strut 42 extends further into branch vessel 4 than the distal ends of struts 40, 44, as best seen in FIG. 10 , thus creating a generally tapered, straight or linear profile along the distal perimeter of branch portion 30.
  • the linear profile is at a right angle with respect to the axis of branch vessel 4. In alternative examples, however, the linear profile may be at any angle with respect to the axis of branch vessel 4.
  • a second stent 51 were to be used in branch vessel 4, the linear profile facilitates better alignment with the second stent and permits coverage of a larger surface area of the branch vessel wall.
  • the linear profile facilitates better alignment with the second stent and permits coverage of a larger surface area of the branch vessel wall.
  • gaps may exist between the two stents at the interface between the radial distal perimeter 45 and an abutting straight or linear edge of a second stent, whereas a close abutting interface may be achieved with stent 29 of FIG. 12 .
  • FIG.13 another example of stent 39 is shown having an alternative example of a branch portion 30 similar to that of the example of FIG. 9 , except lateral branch ring struts 48 and 50 are longer than the other branch ring struts 36, and the proximal ends 52 of branch ring struts 48, 50 extend proximally beyond the other branch ring struts into a space between the branch ring 32 and the adjacent circumferential ring 28.
  • Branch ring struts 48, 50 have proximal ends 52 free from connectors and provide less resistance to movement of branch ring 32 during outward expansion with respect to stent body 14.
  • the longer lateral branch ring struts 48, 50 function similar to a hinge and further facilitate extension of branch ring portion 30 outwardly, which may accommodate a branch vessel disposed at a greater angle 11 ( Fig. 1 ) as compared to stent 29 of the example of FIG. 9 .
  • struts 40, 42, and 44 are longer than branch ring struts 36, they are more flexible and provide more coverage of a vessel wall than the example depicted in FIG. 8 .
  • stent 49 having a stent body 14 that has a longitudinal section 53 that has a different pattern than main pattern 54.
  • Longitudinal section 53 comprises a generally repeatable series of struts 56 and connectors 58 that are smaller in dimension than struts 24 and connectors 26, but are formed into a similar geometrical pattern as main pattern 54.
  • the struts 56 are more numerous per area within rings 28, and rings 28 are more numerous per area in section 53 because the length of struts 56 is shorter than the length of struts 24 and the length of connectors 58 is shorter than the length of connectors 26.
  • stent 49 further includes a branch portion 30 positioned within section 53.
  • Branch portion 30 comprises a branch ring 32 adjacent an opening 34. Opening 34 is formed by an absence of at least one connector 26 adjoining branch ring 32 with branch opposing ring 33.
  • two adjacent connectors are absent; however, in examples any number of connectors may be absent to create opening 34.
  • branch ring 32 is substantially similar geometrically to circumferential rings 28 and comprises branch ring struts 36 substantially similar to struts 56; however, a plurality of adjacent struts are free from connectors 58 adjacent opening 34 and branch ring 32 is at least partially detachable from stent body 14 at opening 34 to facilitate at least a portion of branch ring 32 to extend outwardly with respect to stent body 14.
  • the generally smaller struts and connectors of longitudinal section 53 provide for freer movement of the strut and connector material and facilitate conformance to a vessel wall.
  • the smaller struts and connectors also provide for a relatively more dense surface area coverage of the branch vessel wall, which may be advantageous in achieving a more uniform coverage around the ostium.
  • this example may provide particularly advantageous coverage of a geometrically complex obstruction in a bifurcation vessel since the relatively small pattern may flex or contour around the obstruction and provide coverage therefor. Also, this example is advantageous for relatively small obstructions as the smaller pattern may cover more surface area of obstruction.
  • stent 59 includes an alternate branch portion 30 comprising a portion of three adjacent branch ring sections 60, 62, 64 connected and extending circumferentially from two adjacent circumferential rings 28.
  • Branch ring sections 60, 62, 64 each includes a plurality of branch struts 66 and are connected in the longitudinal direction by branch connectors 68.
  • Struts 66 are shorter longitudinally than struts 24 of rings 28 and connectors 68 are smaller than connectors 26.
  • the distal ring 60 is adjacent opening 34 and the distal ends of struts 66 of ring 60 are detachable from stent body 14 at opening 34 to permit extension of at least a portion of branch ring sections 60, 62, 64 to expand outwardly with respect to stent body 14.
  • the three branch ring sections 60, 62, 64 may extend outwardly in a more radial fashion and this branch portion 30 may be particularly advantageous for adapting or conforming to the shape of the proximal side of the ostium.
  • the branch portion of this example may more readily extend or flex around an obstruction in a bifurcation vessel such as the one depicted in FIG. 1 while providing branch wall coverage and better blood flow to the branch vessel.
  • an alternate stent 69 is shown and includes an alternate branch portion 30.
  • branch portion 30 comprises support struts 70 and an expandable ring 72.
  • Branch portion 30 defines at least one side opening 74.
  • the dimensions of the cell defining side opening 74 are such that the side opening 74 (prior to expansion of the stent) is larger than other openings in stent body 14.
  • the presence of side opening 74 is generally configured to accommodate a side sheath therethrough and allow a physician to access a branch vessel during or after a procedure.
  • side opening 74 is surrounded by expandable ring 72 of continuous material.
  • expandable ring 72 comprises unattached portions, or one portion that only partially covers side opening 74.
  • a series of support struts 70 connect expandable ring 72 with struts 24 and connectors 26.
  • Support struts 70 preferably comprise patterns in a folded or wrap-around configuration that at least partially straighten out during expansion, allowing expendable ring 72 to protrude into the branch vessel.
  • branch portion 30 when stent 69 is expanded, as shown in FIG. 18 , branch portion 30 is extended into the branch vessel, causing expandable ring 74 to at least partially cover the inner surface of the branch vessel.
  • the stent coverage in a portion the branch vessel includes the full circumference of the inner branch vessel wall. In alternative examples, partial coverage or several sections of coverage are present.
  • FIGS. 19-21 another stent 79 is shown having a main stent body 14 and another example of a branch portion 30.
  • FIGS. 19 and 20 show stent 79 in the unexpanded condition where branch portion 30 has not been deployed.
  • FIG. 21 shows the stent 79 in the expanded configuration where the branch portion 30 has been expanded.
  • main stent body 14 includes a main stent pattern having a generally repeatable ring 28 and connector 26 pattern. Branch portion 30 and the surrounding midsection 80 interrupt the repeatable ring 28 and connector 26 pattern of stent 79.
  • branch portion 30 is configured to be both radially expandable and longitudinally expendable into the branch vessel and relative to its longitudinal axis 83 so that, in an example, the branch portion 30 contacts the entire periphery or circumference of the inner wall of the branch vessel in the expanded configuration.
  • branch portion 30 preferably provides 360° coverage of the wall of the branch vessel. That is, branch portion 30 can be extended outward with respect to longitudinal axis 81 of stent 79, and can also be expanded radially about axis 83 so as to contact the vessel (thereby allowing it to be adjustable with respect to vessel size).
  • a structural support member 84 may be provided as a transition between the main stent body 14 and branch portion 30.
  • structural support member 84 may be elliptical to accommodate branch vessels extending at an angle to the main vessel. In alternate examples, other shapes of support member 84 can be used to accommodate the vasculature.
  • the structural support member 84 may include a continuous ring. In this example, structural support member 84 is a full, non-expandable ring and it does not expand radially beyond a particular circumference.
  • rings 86 and 88 are positioned within structural support member 84 and surround a generally circular central branch opening 34 to provide access to the side branch vessel when stent 79 is in the unexpanded condition.
  • Rings 86 and 88 are interconnected by a plurality of inner connectors 90.
  • Outer ring 88 is connected to structural support member 84 by a plurality of outer connectors 92.
  • Rings 86 and 88 are generally curvilinear members.
  • rings 86, 88 can be defined by undulation petals, prongs, or peaks 94.
  • each ring 86, 88 have the same number of undulation peaks 94, but the inner ring may be more closely or tightly arranged, as shown.
  • each ring 86, 88 has eight pedals or undulation peaks 94, although in ulternate examples each ring can have any number of undulation peaks, and the number of peaks need not be equal for each ring.
  • the undulation peaks 94 generally include a pair of strut portions 96 interconnected by curved portions 98, and the strut portions themselves are connected to adjacent strut portions by another curved portion.
  • outer connectors 92 extend between structural support member 84 and outer ring 88, and each outer connector 92 is attached at one end to approximately the middle of a strut portion 96 of outer ring 88 and the structural support member 84 at the other end.
  • outer connectors 92 may also have an undulated shape, although in alternate examples outer connectors 92 may have differing shapes.
  • outer connectors 92 may be evenly or symmetrically spaced about the structural support member 84.
  • the inner ring 86 is attached to the outer ring 88 by a plurality of inner connectors 90 and, in an example, eight inner connectors 90 connect the rings.
  • Inner connectors 90 extend from curved portion 98 of outer ring 88 to curved portion of inner ring 86. As shown in FIG. 20 , in an example, inner connectors 90 have a simple curved shape. Other quantities, configurations, sizes and arrangements of connectors, rings and spacing can be used depending upon the desired results. Varying the connectors can provide for different amounts of flexibility and coverage. The type of configuration of rings and connectors shown addresses the need for radial and longitudinal expansion of branch portion 30, as well as branch vessel coverage. Other configurations and arrangements for the branch portion can be used.
  • the stent pattern surrounding branch portion 30 may be modified with a different pattern to accommodate branch portion 30, as can all of the aforementioned examples.
  • the rings 28 in the midsection 80 may be configured and dimensioned to be denser to provide sufficient coverage and flexibility to compensate for the area occupied by branch portion 30.
  • stent 79 is shown in the expanded configuration, with branch portion 30 deployed.
  • the inner and outer rings 86, 88 shift about the longitudinal branch axis 83 and expand laterally away from the main stent body 14 and into the branch vessel to form a branch coverage portion.
  • the outer connectors 92 can move outwardly and the inner connectors 90 can straighten to a position substantially parallel to longitudinal branch axis 83.
  • the expanded rings 86, 88 have substantially the same expanded diameter, although in alternate examples rings 86, 88 could also have different diameters to accommodate a tapered vessel, if, for example a tapered balloon is used.
  • the branch portion 30 can be extended at different angles to the longitudinal axis 81 of the stent depending upon the geometry of the branch vessel being treated. In this embodiment, the branch portion 30 may preferably extend into the branch vessel about 1.5 - 3 mm.
  • stent 89 having a main stent body 14 and another example of a branch portion 30.
  • Stent 89 is substantially similar to stent 79, except stent 89 has a discontinuous support member 104 surrounding a two concentric ring 86, 88 structure.
  • Support member 104 has a generally elliptical shape and includes a plurality of discontinuities 106 along the perimeter. The configuration of the discontinuous support member facilitates additional flexibility of the branch portion during expansion and generally provides for accommodating a greater range of branch vessel geometries.
  • structural support member 84 may be elliptical to accommodate branch vessels extending at an angle to the main vessel.
  • Stent 99 comprises a main stent body 14 and another example of a branch portion 30.
  • Stent 99 is substantially similar to stent 79, except stent 99 has a branch portion 30 including a support member 108 surrounding three concentric rings 110, 112, 114 instead of two.
  • FIG. 24 when stent 99 is expanded the three concentric ring structure of this example facilitates additional branch wall support because a generally more A dense pattern is created in branch portion 30 with the addition of another concentric ring.
  • FIG. 34 an alternate example of a stent 220 is shown having a main stent body 14 and another example of branch portion 30.
  • FIG. 34 is a flat view of stent 220 shown in an unexpanded condition where branch 30 has not been deployed.
  • Main stent body 14 includes a main stent pattern having a generally repeatable ring 28 and connector 26 pattern.
  • Branch portion 30 and the surrounding midsection 80 interrupt the repeatable ring 28 and connector pattern of stent 220.
  • Branch portion 30 is configured to be extendable into the branch vessel such that the branch portion 30 contacts the entire periphery or circumference of the inner wall of the branch vessel in the expanded configuration.
  • structural support members 224 may be provided as a transition between the main stent body 14 and branch portion 30.
  • Support members 224 comprise generally elliptical half portions positioned in an opposing relation with a space 246 therebetween.
  • Support members 224 surround a two concentric ring 228, 230 structure and a central branch opening 232.
  • Branch opening 232 provides access to the side branch vessel when stent 220 is in the unexpanded condition and a side sheath may pass through opening 232.
  • Rings 228 and 230 are interconnected by a plurality of inner connectors 234.
  • Outer ring 230 is connected to structural support members 224 by a plurality of outer connectors 236.
  • Rings 228, 230 are generally curvilinear members and include undulation petals, prongs, or peaks 238.
  • outer ring 230 includes a greater number of peaks than inner ring 228.
  • Preferably eight outer connectors and eight inner connectors interconnect support members 224 and rings 228, 230.
  • inner and outer connectors 234, 236 are generally straight members and are preferably aligned radially to extend toward the center of branch portion 30. In operation, the intersection of outer connectors 236 with support members 224 form a pivot point about which petals 238 may unfold or pivot outward into the side branch vessel.
  • the generally straight inner and outer connectors pivot together such that the petals 238 open like a flower. '
  • Stent 240 includes structural support members 244 as a transition between the main stent body 14 and branch portion 30.
  • Support members 244 comprise generally elliptical half portions positioned in an opposing relation with a space 246 therebetween.
  • Support members 244 surround a two concentric ring 248, 250 structure and a central branch opening 252.
  • Rings 248 and 250 are interconnected by a plurality of inner connectors 254.
  • Outer ring 248 is connected to structural support members 244 by a plurality of outer connectors 256.
  • Rings 248, 250 are generally curvilinear members and include undulation petals, prongs, or peaks 258.
  • An auxiliary access opening 255 interrupts rings 248, 250 and provides access to the side branch vessel when stent 240 is in the unexpanded condition.
  • a ring portion 257 extends between outer connectors 256 proximal to auxiliary access opening 255.
  • auxiliary access opening 255 is generally larger than central branch opening 252 to more readily receive a side sheath therethrough and to allow for greater access to the side branch.
  • Auxiliary access opening 255 is preferably positioned proximal to central branch opening 252 when loaded on a stent delivery system, however auxiliary access opening 255 can have varying positions in alternate examples.
  • An alternate example of a stent 260 is shown in FIG.
  • struts 264 are pulled radially inward to support the circumference of the ostium. This additional structure improves radial strength and provides additional support to the vessel wall.
  • the branch portion 30 protrudes into the branch vessel when the stent is fully expanded.
  • the branch portion upon expansion can extend into the branch vessel in different lengths depending upon the application,
  • the amount of extension may vary in a range between about 0.1-10.0 mm. In one example the length of extension is 1-3 mm. In another example, the length of extension is approximately 2 mm. In alternative examples, the amount of extension into the branch vessel may be variable for different circumferential segments of branch portion 30. As shown in each of the examples, the branch portion is approximately 2.5 mm in width and about 2.5-3.0 mm in length. However, the branch portion can be dimensioned to accommodate varying size branch vessels.
  • the branch portion can be formed of any tubular shape to accommodate the branch vessel, including, oval or circular, for example.
  • a catheter system may be used for insertion and the stent may be balloon expandable or self-expandable, or the stent may be balloon expandable and the branch portion self expandable, or vice versa.
  • the stent Once the stent is in position in the main vessel and the branch portion is aligned with the side branch the stent can be expanded.
  • the stent is balloon expandable, the stent may be expanded with a single expansion or multiple expansions.
  • the stent can be deployed on a stent delivery system having a balloon catheter and side sheath as described, for example, in U.S. Patent Nos.
  • a kissing balloon technique may be used, whereby one balloon is configured to expand the stent and the other balloon is configured to extend branch portion 30.
  • the stent delivery system may be removed and a second balloon may be passed through the side hole in the branch portion and expanded to expand the branch portion of the stent.
  • the same balloon may be inserted in the main vessel inflated, deflated, retracted and inserted into the branch vessel, and then reinflated to expand branch portion 30 and cause it to protrude into the branch vessel.
  • the stent can be delivered on two balloons and the main portion and the branch portion can be expanded simultaneously.
  • the branch portion can be further expanded with another balloon or balloons.
  • a specially shaped balloon that is capable of expanding the main and branch portions simultaneously.
  • the stent can also be deployed with other types of stent delivery systems.
  • the stent, or portions of the stent can be made of a self-expanding material, and expansion may be accomplished by using self-expanding materials for the stent or at least branch portion 30 thereof, such as Nitinol, Cobalt Chromium, or by using other memory alloys as are well known in the prior art.
  • the stent is comprised of memory alloy such as Nitinol or Cobalt Chromium, or is a mechanically self-expanding stent
  • balloons are not necessarily included on the catheters.
  • any other catheter including ones that are not disclosed herein, may be used to position stents .
  • FIGS. 25-28 illustrations of the steps of one example of a method for employing a stent are shown.
  • the method is depicted utilizing stent 12.
  • Methods for positioning such a catheter system within a vessel and positioning such system at or near a bifurcation are described more fully in U.S. Patent Application No. 10/320,719 filed on December 17, 200 .
  • a catheter system 120 is positioned proximal to a bifurcation, using any known method.
  • a branch guidewire 122 is then advanced through an opening in the stent and into the branch vessel 4, as shown in FIG. 26 .
  • the opening may be a designated side branch opening, such as an opening formed by the absence of some connectors 26, as described above.
  • Branch portion 30 is adjacent the opening.
  • the main catheter 120 is advanced along with the side catheter 124.
  • the second catheter or side sheath 124 is then advanced independently through the opening in the stent and into the branch vessel.
  • Branch portion 30 is positioned over a portion of the lumen of the branch vessel 4 as the side sheath 124 is inserted into branch vessel 4. Referring to FIG.
  • a first balloon 126 located on main catheter 120 is then expanded, causing expansion of the stent body, and a second balloon 128 located on the second catheter or side sheath 124 is also expanded, causing branch portion 30 to be pushed outward with respect to the stent body, thus providing stent coverage of at least a portion of the branch vessel.
  • the balloons are then deflated and the catheter system and guidewires are then removed.
  • FIGS. 29-31 illustrations of the steps of another method for employing a stent are shown.
  • the method is depicted utilizing stent 12.
  • the depicted method may be accomplished using a catheter system having a main catheter 131 including a herniated balloon 135 ( FIG. 32 ).
  • the stent can be deployed on a stent delivery system having a herniated balloon as described, for example, in U.S. Patent Application No. 60/488,006, filed July 18, 2003 .
  • the catheter 131 includes a balloon 135 that has a protruding portion 137 that protrudes outwardly from the cylindrical outer surface 134 of the balloon.
  • the herniated balloon 135, shown in an expanded state, has a generally cylindrical shape and the protruding portion 137 can be any appendage or integral portion of the balloon that moves outwardly from the outer surface 134 of the balloon upon inflation.
  • the protruding portion 137 is a portion of the balloon wall that has greater expandability than other portions of the balloon wall that retain a generally cylindrical shape.
  • protruding portion 137 may be a solid structure attached to the balloon wall.
  • the protruding portion 137 can have any shape desirable to effect deployment of branch portion 30.
  • protruding portion 137 has a hemispherical shape.
  • protruding portion 137 has an ovoid shape.
  • the stent 12 is crimped onto the balloon 135 so that the protruding portion 137 is positioned at the branch portion. As shown, the protruding portion 137 is positioned adjacent or alongside the radially inward side of branch portion 30.
  • the herniated balloon 135 is used to expand the branch portion 30 and/or deploy the outwardly deployable structure of stent 12 by applying a force in the laterally outward direction to the expandable elements by deflecting these elements toward the side branch 4.
  • the protruding portion 137 may be located at any position along the length of the balloon. For example, it can be located on the middle 1/3 of the stent.
  • the balloon may be constructed of composite materials.
  • elastomeric and semi to non compliant materials such as urethane, silicone, and latex, (Elastomeric) polyethylene hytrel pebax polyarylethertherketone, polyoxymethylene, polyamide, polyester thermoplastic polyetheretherketone and polypropylene (semi to non compliant)
  • the balloon may also be constructed by combining the above-mentioned materials with woven textiles such as Kevlar, silk cotton, wool, etc. In this construction, a textile is wound or woven onto a rod that has the shape of the desired herniated balloon and the polymer is then extruded or dip coated over the rod.
  • the composite is cured, heat set or adhesively fused together.
  • the rod is then removed and the remaining shape is a herniated balloon.
  • the balloon can also be constructed by adding an appendage to a conventional balloon by using a molded collar or adhesively attaching an object to the surface of the balloon or by using a mound of adhesive to create the herniation or protruding portion.
  • the balloon can be constructed by molding three small balloons and attaching them in tandem with the center balloon being round in shape. The balloon would share a common inflation port. When the balloon is inflated the center balloon becomes the herniation.
  • protruding portion 137 may be configured to fit directly into an opening in the stent.
  • catheter 131 is advanced over a guidewire 133 and positioned proximal to the bifurcation.
  • the catheter is advanced until the protruding portion 137 of the balloon is positioned at the bifurcation.
  • protruding portion 137 protrudes outwardly from catheter 131 enough so that it actually comes into contact with the bifurcation, thus providing a method of alignment with the branch vessel 4.
  • balloon 135 is expanded, which simultaneously causes the stent to expand and branch portion 30 to be pushed toward the branch vessel 4.
  • the herniated portion 137 expands and extends through the branch portion 30 toward the side branch to open the entrance of the occluded side branch artery.
  • the stent can be delivered using a herniated balloon and a dual lumen delivery system.
  • This system can include a main catheter defining a first lumen with concentric guidewire lumen and balloon inflation lumen, a herniated balloon, as described above, on the main catheter, a side sheath with a guidewire lumen, and a stent.
  • the stent is crimped over the main catheter, balloon and side sheath with the side sheath exiting the stent through branch opening or side hole. The distal end of the side sheath is used for aligning the stent branch opening with the branch vessel 4.
  • the appendage or herniation may be located on a second catheter or side sheath of the delivery system, such as the system 138 depicted in FIG. 33 .
  • the system is a two-balloon system.
  • the smaller balloon 140 can be positioned in the stent in a similar manner as the herniation.
  • the appendage or herniation may have an inflation lumen 141 and a lumen for receiving a guidewire 142 for locating the branch vessel 4.
  • a stent 312 according to an embodiment of the present invention comprises stent body or wall 314 extending along a longitudinal axis 316 from a proximal end 320 to a distal end 322.
  • Stent wall 314 has an exterior surface and an inner surface or undersurface defining a lumen 318 therein.
  • Stent 312 is radially expandable from an unexpanded state to an expanded state to allow the stent to expand radially and support the main vessel.
  • stent body 314 defines a lumen 318 having a first volume
  • stent body 314 defines a lumen 318 having a second volume larger than the first volume.
  • FIG. 37 shows stent 312 in an unexpanded state in a flattened elevational view.
  • stent body 314 has a generally repeatable series of struts 324 and connectors 326 configured in a predetermined main pattern along the length of stent 312.
  • struts 324 comprise a pair of longitudinal strut portions 325 joined by a curved portion 327 at the proximal ends.
  • Struts 324 are interconnected by curved portion 329 at the distal ends and formed into rings 328 that extend about the circumference of stent 312.
  • a series of the circumferential rings 328 are spaced longitudinally along the entire length of stent 312, and connectors 326 connect rings 328 to each other longitudinally.
  • Connectors 326 extend generally longitudinally between adjacent circumferential rings 328 and connect to the respective curved portions 327, 329 of longitudinally adjacent struts 324 of adjacent rings 328.
  • Stent 312 further includes a branch portion 330 located at some point along the length of stent 312.
  • branch portion 330 comprises a section or portion of stent wall 314 that is configured to extend into the ostium of a branch vessel in a vessel bifurcation.
  • branch portion 330 is configured to be movable from an unextended position to an extended position. In the unextended position, branch portion 330 is disposed in the volume defined by the unexpanded stent 312, that is, the branch portion 330 does not protrude radially from stent wall 314. In the extended position, the branch portion 330 extends outwardly from stent wall 314 and branch portion 330 is extended into the branch vessel. As best seen in FIG.
  • branch portion 330 comprises a stent wall section of stent body 314 that is initially flush, coplanar, or cocylindrical with the remainder of stent body 314 and may extend outwardly with respect to the remainder of stent body 314.
  • branch portion 330 comprises a proximal branch portion 332 that is connected to a portion of branch ring 334 and includes a distal branch portion 336 that extends into an opening 337 in the distally adjacent circumferential ring 338.
  • distal branch portion 336 is not attached to ring 338; however in alternate embodiments distal branch portion may be attached to ring 338.
  • the proximal branch portion 332 and distal branch portion 336 extend into the branch vessel, whereas the branch ring 334 and distally adjacent circumferential ring 338 do not extend into the branch vessel.
  • branch portion 330 has a modified strut structure comprising a generally open strut configuration with a row of distal branch portion struts 340, 342, 344 in phase with and offset, or spaced, in the distal direction from proximal branch portion struts 350, 352, 354.
  • the row of distal branch struts have a generally "W" configuration and the branch struts have respective curved portions 341, 343, 345 at the distal end interconnecting the longitudinal portions, e.g., 347, of distal branch portion struts 340, 342, 344.
  • Distal branch struts 340, 342, 344 are interconnected at the proximal end by curved portions 349, 351.
  • branch portion 330 may have varied geometries and configurations of proximal branch portion 332 and/or distal branch portion 336.
  • the number of struts in the distal branch portion may differ from the number of struts in the proximal branch portion.
  • the size and shape of the proximal branch struts and distal branch struts may be varied in alternate designs.
  • FIGS. 39-42 illustrations of the steps of one exemplary method for delivering stent 312 are shown.
  • catheter system 370 is positioned over a main guidewire 371 proximal to a bifurcation, using any known method and branch portion 330 is positioned adjacent the opening of branch vessel 4.
  • a side sheath or branch guidewire 372 is then advanced through opening 364 and into the branch vessel 4, as shown in FIG. 40 .
  • the second catheter or side sheath 372 is then advanced through opening 364 and into the branch vessel.
  • Branch portion 330 is positioned over a portion of the lumen of the branch vessel 4 as the side sheath 372 is inserted into branch vessel 4.
  • Stent 312 is then expanded, causing expansion of the stent body and causing branch portion 330 to extend outward with respect to the stent body to a first extended position.
  • a balloon 376 located on main catheter 370 may be used to expand the stent.
  • balloon 376 may be herniated balloon or a combination of cylindrical and dimple balloons with an expandable protrusion 374 positioned adjacent the branch portion 330.
  • branch portion 330 Upon expansion of stent 312, branch portion 330, including distal branch portion struts 340, 342, 344 and proximal branch portion struts 350, 352, 354, may pivot at curved regions 364, 366, such that the distal end of branch portion 330 may extend outward from the remainder of stent body 314 and into the branch vessel.
  • branch portion 330 When the branch portion 330 is in the first extended position, stent coverage is provided to at least a portion of the branch vessel.
  • a portion of branch portion 330 at least partially covers the inner surface of the branch vessel, for example the proximal side of the branch vessel wall.
  • the balloon may be deflated and branch portion 330 may be further extended to a second extended position, shown in FIG 42 .
  • the branch portion 330 may be extended into the second extended position by pivoting distal branch portion struts 340,342,344 inward about curved regions 360, 362 and pivoting the proximal curved portions 349, 351 downward about the outside lateral distal curved portions 341 and 345.
  • distal branch portion struts 340, 342, 344 are spaced from the proximal branch portion struts 350, 352, 354 to support the branch vessel wall opposite the proximal branch portion struts.
  • the exterior surface of the proximal branch portion struts 350, 352, 354 contact and support the branch vessel wall and the undersurface of the distal branch portion struts 340, 342, 344 contact and support the branch vessel opposite the proximal branch portion struts in the second extended position.
  • the entire periphery of the branch vessel wall may be provided with stent coverage as the proximal branch portion struts preferably cover and support a proximal portion of the branch vessel wall and the distal branch portion struts preferably cover and support a distal portion of the branch vessel wall.
  • branch portion 430 is similar geometrically to branch portion 330 described above; however, distal branch portion 436 is attached to distally adjacent ring 438 by a single connector 470.
  • Connector 470 longitudinally connects at least one of distal branch struts 440, 442, 444 to ring 438.
  • connector 470 connects ring 438 to one of the proximal curved portions 449, 451 interconnecting distal branch struts 440, 442, 444.
  • branch portion 430 is extended in much the same manner as branch portion 330, except a portion of the distal branch portion adjacent connector 470 at least partially resists extension outward to the first extended position and the distal branch portion may rotate outward with respect to the junction or point at which connector 470 meets the branch struts.
  • connector 470 In the second extended position, connector 470 preferably contacts and supports a portion of the ostium or the transition area of the vessel wall where the main vessel meets the branch vessel.
  • branch portion 530 is similar geometrically to branch portion 430 described above; however, distal branch portion 536 is attached to distally adjacent circumferential ring 538 by a pair of connectors 570, 572.
  • Connectors 570, 572 each longitudinally connect at least one of distal branch struts 540, 542, 554 to circumferential ring 538.
  • connectors 570, 572 connect ring 538 to the proximal curved portions 549, 551 interconnecting distal branch struts 540, 542, 544.
  • branch portion 530 is extended in much the same manner as branch portion 430, except a portion of the distal branch portion adjacent both connectors 570, 572 at least partially resists extension outward to the first extended position and the distal branch portion may rotate outward with respect to the junction or point at which connectors 570, 572 meet the branch struts.
  • connectors 570, 572 In the second extended position, connectors 570, 572 preferably contact and support a portion of the ostium or the transition area of the vessel wall where the main vessel meets the branch vessel.
  • branch portion 630 is similar geometrically to branch portion 330 described above; however, proximal branch portion 632 and distal branch portion 636 only have two branch struts respectively.
  • branch portion 630 has a modified strut structure comprising a generally open strut configuration with a row of distal struts 640, 642 in phase with and offset, or spaced, in the distal direction from proximal struts 650, 652.
  • the row of distal branch struts 640, 642 have a similar size, shape and configuration as proximal branch struts 650, 652.
  • Distal branch struts 640, 642 are interconnected at the proximal end by curved portion 649.
  • the outside lateral portions of distal struts 640, 642 are connected to the curved proximal regions 660, 662 of outside lateral portions of proximal struts 650, 652, thus defining a single bounded space or opening 664 between the distal branch portion struts 640, 642 and the proximal branch portion struts 650, 652.
  • distal branch portion struts 640, 642 and proximal branch portion struts 650, 652 may pivot at curved regions 660, 662, such that the distal end of branch portion 630 may extend outward from the remainder of stent body 614 and into the branch vessel.
  • stent coverage is provided to at least a portion of the branch vessel.
  • the branch portion 630 may be extended into the second extended position by pivoting distal branch portion struts 640, 642 inward about curved regions 660, 662 and pivoting the proximal curved portion 649 downward about the distal curved portions 641 and 645.
  • branch portion struts 640, 642 are spaced from the proximal branch portion struts 650, 652 to support the branch vessel wall opposite the proximal branch portion struts.
  • branch portion 730 is similar geometrically to branch portion 330 described above; however the outside lateral proximal branch struts 750, 754, extend proximally beyond the other branch ring struts and connect to adjacent struts at curved regions 766, 768, positioned between the branch ring 734 and the proximally adjacent circumferential ring 728.
  • the longer lateral proximal branch struts 750, 754 function similar to a hinge and further facilitate extension of branch portion 730 outwardly.
  • branch portion 730 is configured to extend outwardly with respect to stent body 714.
  • branch portion 730 When branch portion 730 is fully extended it may provide at least partial stent coverage of both the proximal and distal side of the inner branch vessel wall.
  • branch portion 730 may pivot at curved regions 766, 768, such that the branch portion 730 is in a first position extended outward from the remainder of stent body 714 and into the branch vessel to support a portion of the branch vessel wall.
  • Branch portion 730 may be further extended to a second position by pivoting distal branch portion struts 740, 742, 744 inward about curved regions 760, 762 and pivoting the proximal curved portions 749, 751 downward about the outside lateral distal curved portions 741 and 745.
  • branch portion struts 740, 742, 744 are spaced from the proximal branch portion struts 750, 752, 754 to support the branch vessel wall opposite the proximal branch portion struts.
  • proximal branch portion struts 750; 752, 754 contact and support the branch vessel wall and the undersurface of the distal branch portion struts 740, 742, 744 contact and support the branch vessel wall in the second extended position.
  • Stent 712 may be delivered in a similar manner as described above with respect to stent 312 and branch portion 730 may be extended in a similar manner as branch portion 330.
  • branch portion be moved from the first extended position to the second extended position by applying force in the distal direction on a second catheter extending through opening 764 to move and/or pivot the distal portion struts 740, 742, 744 with respect to the proximal branch portion struts 750, 752, 754.
  • branch portion 830 is similar geometrically to branch portion 330 described above; however, branch portion 830 has a modified strut structure comprising a nested strut configuration with distal branch portion 836 nested within proximal branch portion 832.
  • distal branch struts 840, 842, 844 are in phase with and nested within proximal struts 850, 852, 854 of branch portion 830.
  • Longitudinal strut portions 845 and the respective curved portions 847 of distal branch portion struts 840, 842, 844 are positioned within longitudinal strut portions 855 and the respective curved portions 857 of respective proximal branch portion struts 850, 852, 854.
  • the outside lateral distal struts 840, 844 are connected to the outside lateral proximal struts 850, 854 at curved regions 860, 862, thus defining a single bounded space or opening 863 between the distal branch portion struts 840, 842, 844 and the proximal branch portion struts 850, 852, 854. As best seen in FIG.
  • opening 863 is smaller than the opening 364 of branch portion 330 described above.
  • branch portion 830 is configured to extend outwardly with respect to stent body 814. When branch portion 830 is fully extended it may provide at least partial stent coverage of both the proximal and distal side of the inner branch vessel wall. In particular, branch portion 830 may pivot at curved regions 864, 866, such that the branch portion 830 is in a first position extended outward from the remainder of stent body 814 and into the branch vessel to support a portion of the branch vessel wall.
  • Branch portion 830 may be further extended to a second position by pivoting distal branch portion struts 840, 842, 844 inward about curved regions 860, 862 and separating the distal branch portion struts 840, 842, 844 from the proximal branch portion struts 850, 852, 854 to support the branch vessel opposite the proximal branch portion struts. It will be recognized that the exterior surface of the proximal branch portion struts 850, 852, 854 contact and support the branch vessel wall and the undersurface of the distal branch portion struts 840, 842, 844 contact and support the branch vessel wall in the second extended position.
  • Stent 812 may be delivered in a similar manner as described above with respect to stent 312 and branch portion 830 may be extended in a similar manner as branch portion 330.
  • branch portion 830 may be moved from the first extended position to the second extended position by applying force in the distal direction on a second catheter extending through opening 863 to move and/or pivot the distal portion struts 840, 842, 844 with respect to the proximal branch portion struts 850, 852, 854.
  • branch portion 930 is similar geometrically to branch portion 830 described above; however, branch portion 930 has a modified strut structure wherein the outside lateral distal branch struts 940, 944 are connected to the outside lateral proximal branch struts 950, 954 at curved regions 960, 962 adjacent the proximal end of outside lateral proximal struts 950, 954.
  • branch portion 930 may pivot at curved regions 960, 962, such that the branch portion 930 is in a first position extended outward from the remainder of stent body 914 and into the branch vessel to support a portion of the branch vessel wall.
  • Branch portion 930 may be further extended to a second position by pivoting distal branch portion struts 940, 942, 944 inward about curved regions 960, 962 and pivoting the proximal curved regions 949, 951 of distal branch portion struts 940, 942, 944 downward about the distal curved portions 941 and 945.
  • distal branch portion struts 940, 942, 944 are spaced from the proximal branch portion struts 950, 952, 954 to support the branch vessel wall opposite the proximal branch portion struts. It will be recognized that the exterior surface of the proximal branch portion struts 950, 952, 954 contact and support the branch vessel wall and the undersurface of the distal branch portion struts 940, 942, 944 contact and support the branch vessel wall in the second extended position.
  • Stent 912 may be delivered in a similar manner as described above with respect to stent 812 and branch portion 930 may be extended in a similar manner as branch portion 830.
  • branch portion 1030 is similar geometrically to branch portion 830 described above; however, distal branch portion is attached to distally adjacent ring 1038 by a single connector 1070.
  • Connector 1070 longitudinally connects at least one of distal branch struts 1040, 1042, 1044 to ring 1038.
  • connector 1070 connects ring 1038 to one of the proximal curved portions 1049, 1051, 1053 of distal branch struts 1040, 1042, 1044.
  • branch portion 1030 is extended in much the same manner as branch portion 830, except a portion of the distal branch portion adjacent connector 1070 at least partially resists extension outward to the first extended position and the distal branch portion may rotate outward with respect to the junction or point at which connector 1070 meets the distal branch struts.
  • connector 1070 In the second extended position, connector 1070 preferably contacts and supports a portion of the ostium or the transition area of the vessel wall where the main vessel meets the branch vessel.
  • the stents described herein may have one or more drugs coated thereon.
  • An exemplary drug coating is described in WO 04/009771 .
  • One particular application for the use of a stent with a branch portion 30, 330, 430, 530, 630, 630, 830, 930, 1030 described above is for localized drug delivery.
  • One or more drug coatings may be present at any location in or on the walls of stents according to the present invention, including in or on the wall of the main vessel portion of the stents, or in or on the wall of the branch portion of stents.
  • the position of depot(s) depends on desired site(s) of highest concentration of drug delivery.
  • the length, width, and thickness of a depot are variables that can be tailored according to the desired drug distribution and the size of the main and branch vessels to be treated.
  • a depot that is thick enough to impede, fluid flow in a narrow vessel may be an optimal thickness for a larger vessel.
  • Stents according to the present invention can be used as vehicles for localized delivery of drugs to cells of the walls of both the main and branch vessels at the location of the stent.
  • Drugs that are particularly suitable for treatment of cells in the immediate area of the stent include anti-restenosis and anti-thrombotic drugs.
  • different concentrations of drugs, or different drugs may be included in depot(s) located in or on different areas of the stent walls. For example, it may be desirable to treat the cells of the main vessel with a first drug, combination of drugs, and/or concentration of drug(s) and to treat the cells of the branch vessel with a second, different, drug, combination of drugs, and/or concentration of drug(s).
  • kits comprising a stent or stents according to the present invention.
  • a kit according to the present invention may include, for example, delivery catheter(s), balloon(s), and/or instructions for use.
  • the stent(s) may be mounted in or on a balloon or catheter. Alternatively, the stent(s) may be separate from the balloon or catheter and may be mounted therein or thereon prior to use.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims the benefit of U.S. Provisional Application No. 60/577,579, filed June 8,2004 .
  • FIELD OF THE INVENTION
  • The present invention relates to the field of medical stents and, more particularly, to a stent for the treatment of lesions and other problems in or near a vessel bifurcation.
  • BACKGROUND OF THE INVENTION
  • A stent is an endoprosthesis scaffold or other device that typically is intraluminally placed or implanted within a vein, artery, or other tubular body organ for treating an occlusion, stenosis, aneurysm, collapse, dissection, or weakened, diseased, or abnormally dilated vessel or vessel wall, by expanding the vessel or by reinforcing the vessel wall. In particular, stents are quite commonly implanted into the coronary, cardiac, pulmonary, neurovascular, peripheral vascular, renal, gastrointestinal and reproductive systems, and have been successfully implanted in the urinary tract, the bile duct, the esophagus, the tracheo-bronchial tree and the brain, to reinforce these body organs. Two important current widespread applications for stents are for improving angioplasty results by preventing elastic recoil and remodeling of the vessel wall and for treating dissections in blood vessel walls caused by balloon angioplasty of coronary arteries, as well as peripheral arteries. Conventional stents have been used for treating more complex vascular problems, such as lesions at or near bifurcation points in the vascular system, where a secondary artery branches out of a larger, main artery, with limited success rates.
  • Conventional stent technology is relatively well developed. Conventional stent designs typically feature a straight tubular, single type cellular structure, configuration, or pattern that is repetitive through translation along the longitudinal axis. In many stent designs, the repeating structure, configuration, or pattern has strut and connecting members that impede blood flow at bifurcations. Furthermore, the configuration of struts and connecting members may obstruct the use of postoperative devices to treat a branch vessel in the region of a vessel bifurcation. For example, deployment of a first stent in the main lumen may prevent a physician from inserting a branch stent through the ostium of a branch vessel of a vessel bifurcation in cases where treatment of the main vessel is suboptimal because of displaced diseased tissue (for example, due to plaque shifting or "snow plowing"), occlusion, vessel spasm, dissection with or without intimal flaps, thrombosis, embolism, and/or other vascular diseases. As a result, the physician may choose either to insert a stent into the branch in cases in which such additional treatment may otherwise be unnecessary, or alternatively the physician may elect not to treat, or to "sacrifice", such side lumen. Accordingly, the use of regular stents to treat diseased vessels at or near a vessel bifurcation may create a risk of compromising the benefit of stent usage to the patient after the initial procedure and in future procedures on the main vessel, branch vessels, and/or the bifurcation point.
  • A regular stent is designed in view of conflicting considerations of coverage versus access. For example, to promote coverage, the cell structure size of the stent may be minimized for optimally supporting a vessel wall, thereby preventing or reducing tissue prolapse. The cell size of a stent may be maximized for providing accessibility of blood flow and of a potentially future implanted branch stent to branch vessels, thereby preventing "stent jailing", and minimizing the amount of implanted material. Regular stent design has typically compromised one consideration for the other in an attempt to address both. Problems the present inventors observed involving side branch jailing, fear of plaque shifting, total occlusion, and difficulty of the procedure are continuing to drive the present inventors' into the development of novel, non-conventional or special stents, which are easier, safer, and more reliable to use for treating the above-indicated variety of vascular disorders.
  • Although conventional stents are routinely used in clinical procedures, clinical data shows that these stents are not capable of completely preventing in-stent restenosis (ISR) or restenosis caused by intimal hyperplasia. In-stent restenosis is the reoccurrence of the narrowing or blockage of an artery in the area covered by the stent following stent implantation. Patients treated with coronary stents can suffer from in-stent restenosis.
  • Many pharmacological attempts have been made to reduce the amount of restenosis caused by intimal hyperplasia. Many of these attempts have dealt with the systemic delivery of drugs via oral or intravascular introduction. However, success with the systemic approach has been limited.
  • Systemic delivery of drugs is inherently limited since it is difficult to achieve constant drug delivery to the inflicted region and since systemically administered drugs often cycle through concentration peaks and valleys, resulting in time periods of toxicity and ineffectiveness. Therefore, to be effective, anti-restenosis drugs should be delivered in a localized manner.
  • One approach for localized drug delivery utilizes stents as delivery vehicles. For example, stents seeded with transfected endothelial cells expressing bacterial beta-galactosidase or human tissue-type plasminogen activator were utilized as therapeutic protein delivery vehicles. See, e.g., Dichek, D. A. et al., "Seeding of Intravascular Stents With Genetically Engineered Endothelial Cells", Circulation, 80: 1347-1353 (1989).
  • U.S. Pat. No. 5,679,400 , International Patent Application WO 91/12779 , entitled "Intraluminal Drug Eluting Prosthesis," and International Patent Application WO 90/13332 , entitled "Stent With Sustained Drug Delivery" disclose stent devices capable of delivering antiplatelet agents, anticoagulant agents, antimigratory agents, antimetabolic agents, and other anti-restenosis drugs.
  • U.S. Patents Nos. 6,273,913 , 6,383,215 , 6,258,121 , 6,231,600 , 5,837,008 , 5,824,048 , 5,679,400 and 5,609,629 teach stents coated with various pharmaceutical agents such as rapamycin, 17-beta-estradiol, taxol and dexamethasone.
  • WO 2004/026180 A2 discloses a stent for use in a bifurcated body lumen having a main branch and a side branch. The stent comprises a radially expandable generally tubular stent body having proximal and distal opposing ends with a body wall having a surface extending therebetween. The stent comprises a branch portion that is at least partially detached from the stent body.
  • Although prior art references disclose numerous stent configurations coated with one or more distinct anti-restenosis agents, they do not disclose the inventive stent design of the present application. There is, therefore, a need for a stent design that can effectively provide ostial branch support in a vessel bifurcation and effectively act as a delivery vehicle for drugs useful in preventing restenosis. This is particularly true in complicated cases, such as lesions located at a bifurcation.
  • SUMMARY OF THE INVENTION
  • The present invention is defined by the features of the claims. The present invention is directed to a stent for use in a bifurcated body lumen having a main branch and a side branch. The stent comprises a radially expandable generally tubular stent body having proximal and distal opposing ends with a body wall having a surface extending therebetween. The surface has a geometrical configuration defining a first pattern, and the first pattern has first pattern struts and connectors arranged in a predetermined configuration. The stent also comprises a branch portion comprised of a second pattern, wherein the branch portion is at least partially detachable from the stent body.
  • In one embodiment, the second pattern is configured according to the first pattern having at least one absent connector, and in another embodiment, the second pattern has a plurality of absent connectors. The second pattern may have second pattern struts, and the second pattern struts can be more densely packed than the first pattern struts.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented to provide what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the invention may be embodied in practice.
  • In the drawings:
  • FIG. 1 is an illustration of a blood vessel bifurcation having an obstruction;
  • FIGS. 2-4 are illustrations of prior art stents implemented at a blood vessel bifurcation;
  • Fig. 5 is a flat view of an embodiment of an unexpanded stent ;
  • FIG. 6 is an enlarged view of a portion of the unexpanded stent shown in FIG. 5;
  • FIG. 7 is a perspective view of the expandable branch portion of the stent of FIG. 5 in the expanded configuration;
  • FIG. 8 is an enlarged view of a portion of another stent;
  • FIG. 9 is an enlarged view of a portion of an alternative stent;
  • FIG. 10 is a perspective view of the expandable branch portion of the stent of FIG. 9 in the expanded configuration;
  • FIG. 11 is a schematic view of the stent of FIG. 5 in the expanded state implemented at a blood vessel bifurcation;
  • FIG. 12 is a schematic view of the stent of FIG. 9 in the expanded state implemented at a blood vessel bifurcation;
  • FIG. 13 is an enlarged view of a portion of another stent;
  • FIG. 14 is a flat view of another unexpanded stent;
  • FIG. 15 is an enlarged view of a portion of the unexpanded stent shown in FIG. 14;
  • FIG. 16 is a view of a portion of another stent;
  • FIG. 17 is a flat view of another unexpanded stent ;
  • FIG. 18 is a perspective view of the expandable branch portion of the stent of FIG. 17 in the expanded configuration;
  • FIG. 19 is a flat view of another unexpanded stent;
  • FIG. 20 is an enlarged view of a portion of the stent of FIG. 19;
  • FIG. 21 is a view of the expandable branch portion of the stent of FIG. 19 in the expanded configuration;
  • FIG. 22 is a flat view of another unexpanded stent ;
  • FIG. 23 is a flat view of another stent;
  • FIG. 24 is a view of an expandable branch portion of the stent of FIG. 23 in the expanded condition;
  • FIGS. 25-28 are illustrations of the steps for a method of inserting a stent of the present invention;
  • FIGS. 29-31 are illustrations of the steps for another method of inserting a stent of the present invention;
  • FIG. 32 is a view of a herniated balloon for use with the method of FIGS. 29-31;
  • FIG. 33 is a view of another stent delivery system for inserting a stent;
  • FIG. 34 is a flat view of another unexpanded stent;
  • FIG. 35 is a flat view of another stent;
  • FIG. 36 is a flat view of another unexpanded stent;
  • FIG. 37 is a flat view of an embodiment of an unexpanded stent in accordance with the present invention;
  • FIG. 38 is an enlarged view of a portion of the unexpanded stent shown in FIG. 37;
  • FIGS. 39-41 are illustrations of the steps for another method of inserting a stent of the present invention;
  • FIG. 42 is an expanded view of the stent of FIG. 37 in the second extended position;
  • FIG. 43 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention;
  • FIG. 44 is an enlarged view of a portion of the unexpanded stent shown in FIG. 43;
  • FIG. 45 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention;
  • FIG. 46 is an enlarged view of a portion of the unexpanded stent shown in FIG. 45;
  • FIG. 47 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention;
  • FIG. 48 is an enlarged view of a portion of the unexpanded stent shown in FIG. 47;
  • FIG. 49 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention;
  • FIG. 50 is an enlarged view of a portion of the unexpanded stent shown in FIG. 49;
  • FIG. 51 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention;
  • FIG. 52 is an enlarged view of a portion of the unexpanded stent shown in FIG. 51;
  • FIG. 53 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention;
  • FIG. 54 is an enlarged view of a portion of the unexpanded stent shown in FIG. 53;
  • FIG. 55 is a flat view of another embodiment of an unexpanded stent in accordance with the present invention; and
  • FIG. 56 is an enlarged view of a portion of the unexpanded stent shown in FIG. 55.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention relates to stents for placement at vessel bifurcations and are generally configured to at least partially cover a portion of a branch vessel as well as a main vessel. Referring to FIG. 1, an exemplary blood vessel bifurcation 1 is shown, having a main vessel 2 extending along a main vessel axis 3 and a branch vessel 4 extending along a branch vessel axis 5. Main vessel 2 and branch vessel 4 are disposed at an angle 11 of less than 90 degrees. An obstruction 6 is located within bifurcation 1, spanning or at least partially obstructing main vessel 2 and a proximal portion branch vessel 4.
  • Prior attempts at relieving main vessel 2 and branch vessel 4 from obstruction 6, such as the one depicted in FIG. 1, have been problematic. Referring to FIGS. 2-4, examples of prior methods and structures for stenting an obstructed bifurcation are shown. As shown in FIG. 2, a first stent 8 is introduced into main vessel 2 and an access hole or side opening in the wall of stent 8 is usually created with a balloon to provide access to branch vessel 4 and unobstructed blood flow thereto. Typically, the access hole is created by deforming the struts and connectors of the main stent pattern, which may also deform the area of the stent surrounding the created opening and lead to undesirable results. Also, if stent 8 is used alone, at least a portion of obstruction 6 located within branch vessel 4 is left without stent coverage. Referring to FIGS. 3 and 4, one prior solution has been to introduce a second stent 10 into branch vessel 4, for example via a second catheter inserted through a side opening of first stent 8. As can be seen in FIGS. 3 and 4, such a configuration may introduce additional problems. For example, as shown in FIG. 3, second stent 10 may not provide full coverage of the portion of obstruction 6 in branch vessel 4 due to the angle 11 of the side branch vessel 4 with respect to main vessel 2 and the fact that the ends of the stent typically define a right angle to the longitudinal axis of the lumen. Alternatively, second stent 10 may extend beyond the bifurcation into main vessel 2, as shown in FIG. 4, and cause potential obstruction of blood flow in main vessel 2 and/or cause problems at the overlapping portions of stents 8 and 10.
  • Referring now to FIGS. 5-7, a stent 12 comprises stent body or wall 14 extending along a longitudinal axis 16 from a proximal end 20 to a distal end 22 and defining a lumen 18 therein. Stent 12 may have a three-dimensional geometrical configuration having variable dimensions (length, width, height, depth, thickness, etc.). In a preferred example, stent body 14 is a generally tubular structure. As defined herein, "tubular" can include an elongate structure that has varied cross-sections and does not require that the cross-section be circular. For example, the cross-section of stent wall 14 may be generally oval. In an alternate example, stent body 14 is generally cylindrical. Also, the stent body 14 may have varied cross-sectional shapes along the longitudinal axis 16 of the stent. For example, the circumferences in the proximal and distal parts of the stent may be different. This may occur, for example, if during stent delivery the delivery system causes the stent to distend. Lumen 18 represents the inner volumetric space bounded by stent body 14. In an example, stent 12 is radially expandable from an unexpanded state to an expanded state to allow the stent to expand radially and support the main vessel. In the unexpanded state, stent body 14 defines a lumen 18 having a first volume, and in the expanded state, stent body 14 defines a lumen 18 having a second volume larger than the first volume.
  • FIG. 5 shows stent 12 in an unexpanded state in a flattened elevational view. As shown in FIG. 5, stent body 14 has a generally cellular configuration and comprises a generally repeatable series of struts 24 and connectors 26 configured in a predetermined general, overall, or main pattern along the length of stent 12. Struts 24 comprise a pair of longitudinal strut portions 25 joined by a curved portion 27 at the proximal ends. Struts 24 are interconnected by curved portion 29 at the distal ends and formed into rings 28 that extend about the circumference of stent 12. A series of the circumferential rings 28 are spaced apart from one another longitudinally along the entire length of stent 12, and connectors 26 connect rings 28 to each other longitudinally. Connectors 26 extend generally longitudinally between adjacent circumferential rings 28 and connect to the respective curved portions 25, 29 of longitudinally adjacent struts 24 of adjacent rings 28. In an example, connectors 26 are generally S-shaped or zigzag-shaped, although other patterns may also be used. Details of patterns that may be used for stent 12 are described more fully in co-pending PCT application IL02/00840, filed October 20, 2002 . Furthermore, many other strut and connector patterns may be used, and the present pattern is shown for illustration purposes only.
  • Stent 12 further includes a branch portion 30 located at some point along the length of stent 12. Branch portion 30 comprises a section or portion of stent wall 14 that is configured to extend into a branch vessel in a vessel bifurcation. In general, branch portion 30 is configured to be movable from an unextended position to an extended position. In the unextended position, branch portion 30 is disposed in the volume defined by the unexpanded stent 12, that is, the branch portion 30 does not protrude radially from stent wall 14. In the extended position, the branch portion 30 extends outwardly from stent wall 14 and branch portion 30 is extended into the branch vessel. As best seen in FIG. 6, branch portion 30 comprises a stent wall section of stent body 14 that is initially flush, coplanar, or cocylindrical with the remainder of stent body 14 and may extend outwardly with respect to the remainder of stent body 14. In this regard, branch portion 30 is generally adjacent an opening, slit, space, void, or other incongruity in the overall or main pattern of stent body 14. This configuration allows for access into a branch vessel, and at the same time allows for circumferential alignment of the stent within the vessel prior to deployment. In other examples, multiple branch portions can be incorporated into the stent to permit multiple access to one or more vessels. Branch portion 30 may be positioned in the midsection of stent 12. In alternate examples branch portion 30 may be positioned anywhere along the length of stent 12.
  • As best seen in FIG. 6, in a first example branch portion 30 comprises a portion of branch ring 32 and is positioned adjacent and proximal to an opening 34. Upon extension of branch portion 30, the portion of branch ring 32 adjacent opening 34 extends into the branch vessel, whereas the circumferential ring 28 adjacent branch ring 32 does not extend into the branch vessel. Opening 34 is formed by an absence of at least one connector 26 adjoining branch ring 32 with a branch opposing ring 33. In some examples four adjacent connectors are absent; however, in alternate examples any number of connectors may be absent to create opening 34. In this example, branch ring 32 is substantially similar geometrically to circumferential rings 28 and comprises branch ring struts 36 substantially similar to struts 24; however, a plurality of adjacent struts are free from connectors 26 adjacent opening 34. In this regard, branch ring 32 is at least partially detachable from stent body 14 to facilitate at least a portion of branch ring 32 to extend outwardly with respect to stent body 14. In some examples the geometry of branch ring 32 may vary with respect to circumferential rings 28, and branch ring struts 36 may have different configurations than struts 24.
  • When stent 12 is expanded, as shown in FIG.7, branch portion 30 is extended into the branch vessel, causing a portion of branch ring 32 to at least partially cover the inner surface of the branch vessel 4. Thus, in an example, the stent coverage in the branch vessel includes at least partial coverage of the proximal side of the inner branch vessel wall.
  • Various alternative examples provide varying geometries of branch portion 30. For example, branch ring 32 may vary with respect to circumferential rings 28, and branch ring struts 36 may have different configurations than struts 24. In one alternate example, branch ring struts 36 are longer than struts 24. In another embodiment, branch ring struts 36 are more closely packed circumferentially, resulting in a greater number of branch ring struts 36 per area within branch ring 32 as compared to circumferential rings 28. In another example branch ring struts 36 may be thinner than struts 24. In yet another example branch ring struts 36 may be made of a different material than struts 24.
  • Referring to FIG. 8, another stent 19 is shown wherein a branch portion 30 comprises a branch ring 32 having branch ring struts 36 that are longer than struts 24 and a greater number of branch ring struts 36 provided as compared to the number of struts 24 in circumferential rings 28, resulting in a more closely packed branch ring 32. Furthermore, the number of branch ring connectors 38 on both sides of branch ring 32 is lower per branch strut 36 than the number of connectors 26 per strut 24. Opening 34 is adjacent branch ring 32 on a distal side thereof, and the distal ends 46 of at least one, and preferably a plurality, of branch ring struts 40, 42, 44 are free from connectors and detachable from stent body 14. In this example, two branch ring struts 48 and 50 positioned laterally adjacent struts 40, 42, and 44 have proximal ends 52 free from connectors. In this regard, free proximal ends 52 provide less resistance to movement of branch ring 32 during outward expansion with respect to stent body 14. This same procedure can be used to provide one, two, three or more proximal ends in the ring free of connectors. Additionally, the shape and configuration of branch ring connectors 38 is different than those of connectors 26. For example branch ring connectors along the proximal side of branch ring 32 are longer than connectors 26 to facilitate greater expansion of branch portion 30 into a vessel side branch. Also, branch ring connectors along the distal side of branch ring 32 are shaped and oriented differently than connectors 26 to facilitate greater expansion of branch portion 30 into the branch vessel. In alternate examples, branch ring connectors 38 may also differ among themselves. Also, the longer branch ring struts 36 are generally more flexible than comparable shorter struts because the added length permits more deflection. Also, the added length permits greater coverage vessel wall coverage due to deeper penetration into the branch vessel during extension. In alternate examples, different geometries and orientations of branch ring connectors 38 may be used.
  • Referring to FIG. 9, another alternate example of stent 29 is shown having a branch portion 30 similar to that of the embodiment of FIG. 8, except branch ring struts 40, 42, and 44 are longer than the other branch ring struts 36, and the distal ends thereof define an arcuate profile to the proximal side of opening 34. Also, central strut 42 is longer than struts 40, 44 adjacent to strut 42. In this regard, when branch portion 30 is extended, struts 40, 42, and 44 extend further into the branch vessel and provide more coverage of the vessel wall than the example depicted in FIG. 8. In this regard, this example may more readily cover an obstruction in a bifurcation vessel such as the one depicted in FIG. 1 and, therefore, may provide better blood flow to a branch vessel. Furthermore, as described in more detail below, this example facilitates the use of a second stent in the branch vessel.
  • Referring to FIG. 10, stent 29 of FIG. 9 is shown in an expanded state with branch portion 30 extended into the branch vessel, causing branch ring 32 to at least partially cover the inner surface of the branch vessel on the proximal side. The distal end of strut 42 of branch ring 32 extends further into the branch vessel than the distal ends of struts 40, 44 because strut 42 is longer in this example than adjacent struts 40, 44. In this regard, a generally tapered, straight or linear profile along the distal perimeter of branch portion 30 is created when branch portion 30 is expanded into the branch vessel.
  • Referring to FIGS. 11 and 12, schematic views are shown of stents 12, 29 of FIGS. 5 and 9, respectively, in the expanded state as implemented at a blood vessel bifurcation. As shown in FIG. 11, stent 19 of the example of FIG. 8 has a generally curved or radial profile along the distal perimeter 45 of branch portion 30 as it extends into branch vessel 4. The generally curved or radial profile is due to the particular geometry of branch portion 30 of stent 19 of the example of FIG. 8. In particular, because all of the branch ring struts 36 of branch ring 32 are of equal length in this example, the distal ends of struts 36 radially expand equidistantly into branch vessel 4, thereby creating a generally curved or radial profile along the distal perimeter 45 of branch portion 30. Referring to FIG. 12, stent 29 of the example of FIG. 9 has a generally tapered, straight or linear profile along the distal perimeter 47 of the branch portion 30 of the stent as it extends into branch vessel 4. The generally straight or linear profile in FIG. 12 is a result of the particular geometry of branch portion 30 of stent 29 of the example of FIG. 9. In particular, because central strut 42 of branch ring 32 is longer in this example than struts 40, 44 adjacent to strut 42, the distal end of strut 42 extends further into branch vessel 4 than the distal ends of struts 40, 44, as best seen in FIG. 10, thus creating a generally tapered, straight or linear profile along the distal perimeter of branch portion 30. In an example, the linear profile is at a right angle with respect to the axis of branch vessel 4. In alternative examples, however, the linear profile may be at any angle with respect to the axis of branch vessel 4. One advantageous feature of the linear profile along the distal perimeter of branch portion 30 shown in FIG. 12 is that if a second stent 51 were to be used in branch vessel 4, the linear profile facilitates better alignment with the second stent and permits coverage of a larger surface area of the branch vessel wall. For example, if a second stent 51 were to be used in combination with stent 12 of FIG. 11, gaps may exist between the two stents at the interface between the radial distal perimeter 45 and an abutting straight or linear edge of a second stent, whereas a close abutting interface may be achieved with stent 29 of FIG. 12.
  • Referring to FIG.13, another example of stent 39 is shown having an alternative example of a branch portion 30 similar to that of the example of FIG. 9, except lateral branch ring struts 48 and 50 are longer than the other branch ring struts 36, and the proximal ends 52 of branch ring struts 48, 50 extend proximally beyond the other branch ring struts into a space between the branch ring 32 and the adjacent circumferential ring 28. Branch ring struts 48, 50 have proximal ends 52 free from connectors and provide less resistance to movement of branch ring 32 during outward expansion with respect to stent body 14. In this regard, the longer lateral branch ring struts 48, 50 function similar to a hinge and further facilitate extension of branch ring portion 30 outwardly, which may accommodate a branch vessel disposed at a greater angle 11 (Fig. 1) as compared to stent 29 of the example of FIG. 9. Again, since struts 40, 42, and 44 are longer than branch ring struts 36, they are more flexible and provide more coverage of a vessel wall than the example depicted in FIG. 8.
  • Referring now to FIGS. 14 and 15, another example of stent 49 is shown having a stent body 14 that has a longitudinal section 53 that has a different pattern than main pattern 54. Longitudinal section 53 comprises a generally repeatable series of struts 56 and connectors 58 that are smaller in dimension than struts 24 and connectors 26, but are formed into a similar geometrical pattern as main pattern 54. In this regard, the struts 56 are more numerous per area within rings 28, and rings 28 are more numerous per area in section 53 because the length of struts 56 is shorter than the length of struts 24 and the length of connectors 58 is shorter than the length of connectors 26. In an example, the same number of connectors 58 extend between adjacent rings 28; however, because the struts are more numerous in longitudinal section 53, connectors 58 extend longitudinally between every other strut of adjacent rings 28. As shown in FIG. 15, stent 49 further includes a branch portion 30 positioned within section 53. Branch portion 30 comprises a branch ring 32 adjacent an opening 34. Opening 34 is formed by an absence of at least one connector 26 adjoining branch ring 32 with branch opposing ring 33. In an example, two adjacent connectors are absent; however, in examples any number of connectors may be absent to create opening 34. In this example branch ring 32 is substantially similar geometrically to circumferential rings 28 and comprises branch ring struts 36 substantially similar to struts 56; however, a plurality of adjacent struts are free from connectors 58 adjacent opening 34 and branch ring 32 is at least partially detachable from stent body 14 at opening 34 to facilitate at least a portion of branch ring 32 to extend outwardly with respect to stent body 14. The generally smaller struts and connectors of longitudinal section 53 provide for freer movement of the strut and connector material and facilitate conformance to a vessel wall. The smaller struts and connectors also provide for a relatively more dense surface area coverage of the branch vessel wall, which may be advantageous in achieving a more uniform coverage around the ostium. In particular, this example may provide particularly advantageous coverage of a geometrically complex obstruction in a bifurcation vessel since the relatively small pattern may flex or contour around the obstruction and provide coverage therefor. Also, this example is advantageous for relatively small obstructions as the smaller pattern may cover more surface area of obstruction.
  • Referring to FIG. 16, another example of stent 59 is shown and includes an alternate branch portion 30 comprising a portion of three adjacent branch ring sections 60, 62, 64 connected and extending circumferentially from two adjacent circumferential rings 28. Branch ring sections 60, 62, 64 each includes a plurality of branch struts 66 and are connected in the longitudinal direction by branch connectors 68. Struts 66 are shorter longitudinally than struts 24 of rings 28 and connectors 68 are smaller than connectors 26. The distal ring 60 is adjacent opening 34 and the distal ends of struts 66 of ring 60 are detachable from stent body 14 at opening 34 to permit extension of at least a portion of branch ring sections 60, 62, 64 to expand outwardly with respect to stent body 14. In this example, the three branch ring sections 60, 62, 64 may extend outwardly in a more radial fashion and this branch portion 30 may be particularly advantageous for adapting or conforming to the shape of the proximal side of the ostium. Furthermore, the branch portion of this example may more readily extend or flex around an obstruction in a bifurcation vessel such as the one depicted in FIG. 1 while providing branch wall coverage and better blood flow to the branch vessel.
  • Referring to FIGS. 17 and 18, an alternate stent 69 is shown and includes an alternate branch portion 30. In this particular example, branch portion 30 comprises support struts 70 and an expandable ring 72. Branch portion 30 defines at least one side opening 74. In one example, the dimensions of the cell defining side opening 74 are such that the side opening 74 (prior to expansion of the stent) is larger than other openings in stent body 14. The presence of side opening 74 is generally configured to accommodate a side sheath therethrough and allow a physician to access a branch vessel during or after a procedure. In a particular example, as shown in FIG. 17, side opening 74 is surrounded by expandable ring 72 of continuous material. In alternative examples, expandable ring 72 comprises unattached portions, or one portion that only partially covers side opening 74. A series of support struts 70 connect expandable ring 72 with struts 24 and connectors 26. Support struts 70 preferably comprise patterns in a folded or wrap-around configuration that at least partially straighten out during expansion, allowing expendable ring 72 to protrude into the branch vessel.
  • In this example, when stent 69 is expanded, as shown in FIG. 18, branch portion 30 is extended into the branch vessel, causing expandable ring 74 to at least partially cover the inner surface of the branch vessel. Thus, in an example, the stent coverage in a portion the branch vessel includes the full circumference of the inner branch vessel wall. In alternative examples, partial coverage or several sections of coverage are present.
  • Referring to FIGS. 19-21, another stent 79 is shown having a main stent body 14 and another example of a branch portion 30. FIGS. 19 and 20 show stent 79 in the unexpanded condition where branch portion 30 has not been deployed. FIG. 21 shows the stent 79 in the expanded configuration where the branch portion 30 has been expanded. As shown, main stent body 14 includes a main stent pattern having a generally repeatable ring 28 and connector 26 pattern. Branch portion 30 and the surrounding midsection 80 interrupt the repeatable ring 28 and connector 26 pattern of stent 79. In this example, branch portion 30 is configured to be both radially expandable and longitudinally expendable into the branch vessel and relative to its longitudinal axis 83 so that, in an example, the branch portion 30 contacts the entire periphery or circumference of the inner wall of the branch vessel in the expanded configuration. In this regard, branch portion 30 preferably provides 360° coverage of the wall of the branch vessel. That is, branch portion 30 can be extended outward with respect to longitudinal axis 81 of stent 79,
    and can also be expanded radially about axis 83 so as to contact the vessel (thereby allowing it to be adjustable with respect to vessel size).
  • Referring to FIG. 20, an enlarged view of section 80 of stent 79 is shown. In an example, a structural support member 84 may be provided as a transition between the main stent body 14 and branch portion 30. In one aspect structural support member 84 may be elliptical to accommodate branch vessels extending at an angle to the main vessel. In alternate examples, other shapes of support member 84 can be used to accommodate the vasculature. The structural support member 84 may include a continuous ring. In this example, structural support member 84 is a full, non-expandable ring and it does not expand radially beyond a particular circumference.
  • As shown in FIGS. 19 and 20, two concentric rings, inner ring 86 and outer ring 88, are positioned within structural support member 84 and surround a generally circular central branch opening 34 to provide access to the side branch vessel when stent 79 is in the unexpanded condition. Rings 86 and 88 are interconnected by a plurality of inner connectors 90. Outer ring 88 is connected to structural support member 84 by a plurality of outer connectors 92. Rings 86 and 88 are generally curvilinear members. For example, rings 86, 88 can be defined by undulation petals, prongs, or peaks 94. In an example, each ring 86, 88 have the same number of undulation peaks 94, but the inner ring may be more closely or tightly arranged, as shown. In another example, each ring 86, 88 has eight pedals or undulation peaks 94, although in ulternate examples each ring can have any number of undulation peaks, and the number of peaks need not be equal for each ring. The undulation peaks 94 generally include a pair of strut portions 96 interconnected by curved portions 98, and the strut portions themselves are connected to adjacent strut portions by another curved portion. In an example, eight outer connectors 92 extend between structural support member 84 and outer ring 88, and each outer connector 92 is attached at one end to approximately the middle of a strut portion 96 of outer ring 88 and the structural support member 84 at the other end. As shown, outer connectors 92 may also have an undulated shape, although in alternate examples outer connectors 92 may have differing shapes. In another aspect , outer connectors 92 may be evenly or symmetrically spaced about the structural support member 84. The inner ring 86 is attached to the outer ring 88 by a plurality of inner connectors 90 and, in an example, eight inner connectors 90 connect the rings. Inner connectors 90 extend from curved portion 98 of outer ring 88 to curved portion of inner ring 86. As shown in FIG. 20, in an example, inner connectors 90 have a simple curved shape. Other quantities, configurations, sizes and arrangements of connectors, rings and spacing can be used depending upon the desired results. Varying the connectors can provide for different amounts of flexibility and coverage. The type of configuration of rings and connectors shown addresses the need for radial and longitudinal expansion of branch portion 30, as well as branch vessel coverage. Other configurations and arrangements for the branch portion can be used.
  • Referring again to FIGS. 19 and 20, the stent pattern surrounding branch portion 30 may be modified with a different pattern to accommodate branch portion 30, as can all of the aforementioned examples. In particular, the rings 28 in the midsection 80 may be configured and dimensioned to be denser to provide sufficient coverage and flexibility to compensate for the area occupied by branch portion 30.
  • Referring now to FIG. 21, stent 79 is shown in the expanded configuration, with branch portion 30 deployed. Upon expansion of branch portion 30, the inner and outer rings 86, 88 shift about the longitudinal branch axis 83 and expand laterally away from the main stent body 14 and into the branch vessel to form a branch coverage portion. Upon expansion, the outer connectors 92 can move outwardly and the inner connectors 90 can straighten to a position substantially parallel to longitudinal branch axis 83. In an example, the expanded rings 86, 88 have substantially the same expanded diameter, although in alternate examples rings 86, 88 could also have different diameters to accommodate a tapered vessel, if, for example a tapered balloon is used. The branch portion 30 can be extended at different angles to the longitudinal axis 81 of the stent depending upon the geometry of the branch vessel being treated. In this embodiment, the branch portion 30 may preferably extend into the branch vessel about 1.5 - 3 mm.
  • Referring now to FIG. 22, another example of a stent 89 is shown having a main stent body 14 and another example of a branch portion 30. Stent 89 is substantially similar to stent 79, except stent 89 has a discontinuous support member 104 surrounding a two concentric ring 86, 88 structure. Support member 104 has a generally elliptical shape and includes a plurality of discontinuities 106 along the perimeter. The configuration of the discontinuous support member facilitates additional flexibility of the branch portion during expansion and generally provides for accommodating a greater range of branch vessel geometries. In one aspect structural support member 84 may be elliptical to accommodate branch vessels extending at an angle to the main vessel.
  • Referring to FIGS. 23 and 24, another example of a stent 99 is shown in the unexpanded and expanded states, respectively. Stent 99 comprises a main stent body 14 and another example of a branch portion 30. Stent 99 is substantially similar to stent 79, except stent 99 has a branch portion 30 including a support member 108 surrounding three concentric rings 110, 112, 114 instead of two. As can be seen in FIG. 24, when stent 99 is expanded the three concentric ring structure of this example facilitates additional branch wall support because a generally more A dense pattern is created in branch portion 30 with the addition of another concentric ring.
  • Referring to FIG. 34, an alternate example of a stent 220 is shown having a main stent body 14 and another example of branch portion 30. FIG. 34 is a flat view of stent 220 shown in an unexpanded condition where branch 30 has not been deployed. Main stent body 14 includes a main stent pattern having a generally repeatable ring 28 and connector 26 pattern. Branch portion 30 and the surrounding midsection 80 interrupt the repeatable ring 28 and connector pattern of stent 220. Branch portion 30 is configured to be extendable into the branch vessel such that the branch portion 30 contacts the entire periphery or circumference of the inner wall of the branch vessel in the expanded configuration.
  • In an example, structural support members 224 may be provided as a transition between the main stent body 14 and branch portion 30. Support members 224 comprise generally elliptical half portions positioned in an opposing relation with a space 246 therebetween. Support members 224 surround a two concentric ring 228, 230 structure and a central branch opening 232. Branch opening 232 provides access to the side branch vessel when stent 220 is in the unexpanded condition and a side sheath may pass through opening 232. Rings 228 and 230 are interconnected by a plurality of inner connectors 234. Outer ring 230 is connected to structural support members 224 by a plurality of outer connectors 236. Rings 228, 230 are generally curvilinear members and include undulation petals, prongs, or peaks 238. In this example outer ring 230 includes a greater number of peaks than inner ring 228. Preferably eight outer connectors and eight inner connectors interconnect support members 224 and rings 228, 230. In this example, inner and outer connectors 234, 236 are generally straight members and are preferably aligned radially to extend toward the center of branch portion 30. In operation, the intersection of outer connectors 236 with support members 224 form a pivot point about which petals 238 may unfold or pivot outward into the side branch vessel. In a preferred embodiment, the generally straight inner and outer connectors pivot together such that the petals 238 open like a flower. '
  • Referring to FIG. 35, an alternative example of a stent 240 is shown having an alternate example of a branch portion 30. Stent 240 includes structural support members 244 as a transition between the main stent body 14 and branch portion 30. Support members 244 comprise generally elliptical half portions positioned in an opposing relation with a space 246 therebetween. Support members 244 surround a two concentric ring 248, 250 structure and a central branch opening 252. Rings 248 and 250 are interconnected by a plurality of inner connectors 254. Outer ring 248 is connected to structural support members 244 by a plurality of outer connectors 256. Rings 248, 250 are generally curvilinear members and include undulation petals, prongs, or peaks 258. An auxiliary access opening 255 interrupts rings 248, 250 and provides access to the side branch vessel when stent 240 is in the unexpanded condition. A ring portion 257 extends between outer connectors 256 proximal to auxiliary access opening 255. In this example auxiliary access opening 255 is generally larger than central branch opening 252 to more readily receive a side sheath therethrough and to allow for greater access to the side branch. Auxiliary access opening 255 is preferably positioned proximal to central branch opening 252 when loaded on a stent delivery system, however auxiliary access opening 255 can have varying positions in alternate examples. An alternate example of a stent 260 is shown in FIG. 36 that is similar to stent 240 and it additionally includes lateral connecting members 262 that extend through space 246 and connect the outer ring 250 to struts 264 laterally outside branch portion 30. In this regard, when branch portion 30 is extended into the side branch, struts 264 are pulled radially inward to support the circumference of the ostium. This additional structure improves radial strength and provides additional support to the vessel wall.
  • In all of the above examples, the branch portion 30 protrudes into the branch vessel when the stent is fully expanded. The branch portion upon expansion can extend into the branch vessel in different lengths depending upon the application, The amount of extension may vary in a range between about 0.1-10.0 mm. In one example the length of extension is 1-3 mm. In another example, the length of extension is approximately 2 mm. In alternative examples, the amount of extension into the branch vessel may be variable for different circumferential segments of branch portion 30. As shown in each of the examples, the branch portion is approximately 2.5 mm in width and about 2.5-3.0 mm in length. However, the branch portion can be dimensioned to accommodate varying size branch vessels. The branch portion can be formed of any tubular shape to accommodate the branch vessel, including, oval or circular, for example.
  • In general, a wide variety of delivery systems and deployment methods may be used with the aforementioned stent examples. For example, a catheter system may be used for insertion and the stent may be balloon expandable or self-expandable, or the stent may be balloon expandable and the branch portion self expandable, or vice versa. Once the stent is in position in the main vessel and the branch portion is aligned with the side branch the stent can be expanded. If the stent is balloon expandable, the stent may be expanded with a single expansion or multiple expansions. In particular, the stent can be deployed on a stent delivery system having a balloon catheter and side sheath as described, for example, in U.S. Patent Nos. 6,325,826 and 6,210,429 . In one example, a kissing balloon technique may be used, whereby one balloon is configured to expand the stent and the other balloon is configured to extend branch portion 30. After the main portion of the stent is expanded in the main vessel, the stent delivery system may be removed and a second balloon may be passed through the side hole in the branch portion and expanded to expand the branch portion of the stent. In an alternate example, the same balloon may be inserted in the main vessel inflated, deflated, retracted and inserted into the branch vessel, and then reinflated to expand branch portion 30 and cause it to protrude into the branch vessel. Alternatively, the stent can be delivered on two balloons and the main portion and the branch portion can be expanded simultaneously. As needed, the branch portion can be further expanded with another balloon or balloons. Yet another alternative is to use a specially shaped balloon that is capable of expanding the main and branch portions simultaneously. The stent can also be deployed with other types of stent delivery systems. Alternatively, the stent, or portions of the stent, can be made of a self-expanding material, and expansion may be accomplished by using self-expanding materials for the stent or at least branch portion 30 thereof, such as Nitinol, Cobalt Chromium, or by using other memory alloys as are well known in the prior art.
  • The construction and operation of catheters suitable for the purpose of the present invention are further described in U.S. Patent Application No. 09/663,111, filed September 15, 2000 , which is a continuation-in-part of U.S. Patent Application No. 09/614,472, filed July 11, 2000 , which is a continuation-in-part of U.S. Patent Application Nos. 09/325,996, filed June 4, 1999 , and 09/455,299, filed December 6, 1999 . It should be noted that the catheters taught in the above applications are exemplary, and that other catheters that are suitable with the stents of the subject application are included within the scope of the present application. In alternative examples, catheters without balloons may be used. For example, if the stent is comprised of memory alloy such as Nitinol or Cobalt Chromium, or is a mechanically self-expanding stent, balloons are not necessarily included on the catheters. Furthermore, any other catheter, including ones that are not disclosed herein, may be used to position stents .
  • Referring now to FIGS. 25-28, illustrations of the steps of one example of a method for employing a stent are shown. By way of example, the method is depicted utilizing stent 12. Methods for positioning such a catheter system within a vessel and positioning such system at or near a bifurcation are described more fully in U.S. Patent Application No. 10/320,719 filed on December 17, 200 . As shown in FIG. 25, a catheter system 120 is positioned proximal to a bifurcation, using any known method. A branch guidewire 122 is then advanced through an opening in the stent and into the branch vessel 4, as shown in FIG. 26. In an example, the opening may be a designated side branch opening, such as an opening formed by the absence of some connectors 26, as described above. Branch portion 30 is adjacent the opening. As shown in FIG. 27, if the side sheath 124 is attached to the main catheter 120, the main catheter 120 is advanced along with the side catheter 124. Alternatively, if the side sheath 124 is separate from to the main catheter 120, the second catheter or side sheath 124 is then advanced independently through the opening in the stent and into the branch vessel. Branch portion 30 is positioned over a portion of the lumen of the branch vessel 4 as the side sheath 124 is inserted into branch vessel 4. Referring to FIG. 28, a first balloon 126 located on main catheter 120 is then expanded, causing expansion of the stent body, and a second balloon 128 located on the second catheter or side sheath 124 is also expanded, causing branch portion 30 to be pushed outward with respect to the stent body, thus providing stent coverage of at least a portion of the branch vessel. The balloons are then deflated and the catheter system and guidewires are then removed.
  • Referring now to FIGS. 29-31, illustrations of the steps of another method for employing a stent are shown. By way of example, the method is depicted utilizing stent 12. The depicted method may be accomplished using a catheter system having a main catheter 131 including a herniated balloon 135 (FIG. 32). In particular, the stent can be deployed on a stent delivery system having a herniated balloon as described, for example, in U.S. Patent Application No. 60/488,006, filed July 18, 2003 . As shown in FIG. 29, the catheter 131 includes a balloon 135 that has a protruding portion 137 that protrudes outwardly from the cylindrical outer surface 134 of the balloon.
  • Referring to Fig. 32, the herniated balloon 135, shown in an expanded state, has a generally cylindrical shape and the protruding portion 137 can be any appendage or integral portion of the balloon that moves outwardly from the outer surface 134 of the balloon upon inflation. In an example, the protruding portion 137 is a portion of the balloon wall that has greater expandability than other portions of the balloon wall that retain a generally cylindrical shape. In another example protruding portion 137 may be a solid structure attached to the balloon wall. The protruding portion 137 can have any shape desirable to effect deployment of branch portion 30. In one example, protruding portion 137 has a hemispherical shape. In another example, protruding portion 137 has an ovoid shape. In use, the stent 12 is crimped onto the balloon 135 so that the protruding portion 137 is positioned at the branch portion. As shown, the protruding portion 137 is positioned adjacent or alongside the radially inward side of branch portion 30. The herniated balloon 135 is used to expand the branch portion 30 and/or deploy the outwardly deployable structure of stent 12 by applying a force in the laterally outward direction to the expandable elements by deflecting these elements toward the side branch 4. The protruding portion 137 may be located at any position along the length of the balloon. For example, it can be located on the middle 1/3 of the stent.
  • In one example, the balloon may be constructed of composite materials. For example, a combination of elastomeric and semi to non compliant materials such as urethane, silicone, and latex, (Elastomeric) polyethylene hytrel pebax polyarylethertherketone, polyoxymethylene, polyamide, polyester thermoplastic polyetheretherketone and polypropylene (semi to non compliant), may be used. The balloon may also be constructed by combining the above-mentioned materials with woven textiles such as Kevlar, silk cotton, wool, etc. In this construction, a textile is wound or woven onto a rod that has the shape of the desired herniated balloon and the polymer is then extruded or dip coated over the rod. The composite is cured, heat set or adhesively fused together. The rod is then removed and the remaining shape is a herniated balloon. The balloon can also be constructed by adding an appendage to a conventional balloon by using a molded collar or adhesively attaching an object to the surface of the balloon or by using a mound of adhesive to create the herniation or protruding portion. In an alternate example, the balloon can be constructed by molding three small balloons and attaching them in tandem with the center balloon being round in shape. The balloon would share a common inflation port. When the balloon is inflated the center balloon becomes the herniation.
  • Referring again to FIGS. 29-31, protruding portion 137 may be configured to fit directly into an opening in the stent. As shown in FIG. 29, catheter 131 is advanced over a guidewire 133 and positioned proximal to the bifurcation. As shown in FIG. 30, the catheter is advanced until the protruding portion 137 of the balloon is positioned at the bifurcation. In one example, protruding portion 137 protrudes outwardly from catheter 131 enough so that it actually comes into contact with the bifurcation, thus providing a method of alignment with the branch vessel 4. Finally, as shown in FIG. 31, balloon 135 is expanded, which simultaneously causes the stent to expand and branch portion 30 to be pushed toward the branch vessel 4. Upon inflation of the balloon, the herniated portion 137 expands and extends through the branch portion 30 toward the side branch to open the entrance of the occluded side branch artery.
  • In an alternative method, the stent can be delivered using a herniated balloon and a dual lumen delivery system. This system can include a main catheter defining a first lumen with concentric guidewire lumen and balloon inflation lumen, a herniated balloon, as described above, on the main catheter, a side sheath with a guidewire lumen, and a stent. The stent is crimped over the main catheter, balloon and side sheath with the side sheath exiting the stent through branch opening or side hole. The distal end of the side sheath is used for aligning the stent branch opening with the branch vessel 4.
  • In another example, the appendage or herniation may be located on a second catheter or side sheath of the delivery system, such as the system 138 depicted in FIG. 33. In this case, the system is a two-balloon system. The smaller balloon 140 can be positioned in the stent in a similar manner as the herniation. The appendage or herniation may have an inflation lumen 141 and a lumen for receiving a guidewire 142 for locating the branch vessel 4.
  • Referring to FIGS. 37-38, a stent 312 according to an embodiment of the present invention comprises stent body or wall 314 extending along a longitudinal axis 316 from a proximal end 320 to a distal end 322. Stent wall 314 has an exterior surface and an inner surface or undersurface defining a lumen 318 therein. Stent 312 is radially expandable from an unexpanded state to an expanded state to allow the stent to expand radially and support the main vessel. In the unexpanded state, stent body 314 defines a lumen 318 having a first volume, and in the expanded state, stent body 314 defines a lumen 318 having a second volume larger than the first volume.
  • FIG. 37 shows stent 312 in an unexpanded state in a flattened elevational view. As shown in FIG. 37, stent body 314 has a generally repeatable series of struts 324 and connectors 326 configured in a predetermined main pattern along the length of stent 312. As described in previous embodiments, struts 324 comprise a pair of longitudinal strut portions 325 joined by a curved portion 327 at the proximal ends. Struts 324 are interconnected by curved portion 329 at the distal ends and formed into rings 328 that extend about the circumference of stent 312. A series of the circumferential rings 328 are spaced longitudinally along the entire length of stent 312, and connectors 326 connect rings 328 to each other longitudinally. Connectors 326 extend generally longitudinally between adjacent circumferential rings 328 and connect to the respective curved portions 327, 329 of longitudinally adjacent struts 324 of adjacent rings 328.
  • Stent 312 further includes a branch portion 330 located at some point along the length of stent 312. As described in previous embodiments, branch portion 330 comprises a section or portion of stent wall 314 that is configured to extend into the ostium of a branch vessel in a vessel bifurcation. In general, branch portion 330 is configured to be movable from an unextended position to an extended position. In the unextended position, branch portion 330 is disposed in the volume defined by the unexpanded stent 312, that is, the branch portion 330 does not protrude radially from stent wall 314. In the extended position, the branch portion 330 extends outwardly from stent wall 314 and branch portion 330 is extended into the branch vessel. As best seen in FIG. 38, branch portion 330 comprises a stent wall section of stent body 314 that is initially flush, coplanar, or cocylindrical with the remainder of stent body 314 and may extend outwardly with respect to the remainder of stent body 314.
  • As best seen in FIG. 38, one embodiment of branch portion 330 comprises a proximal branch portion 332 that is connected to a portion of branch ring 334 and includes a distal branch portion 336 that extends into an opening 337 in the distally adjacent circumferential ring 338. In this embodiment, distal branch portion 336 is not attached to ring 338; however in alternate embodiments distal branch portion may be attached to ring 338. Upon extension of branch portion 330, the proximal branch portion 332 and distal branch portion 336 extend into the branch vessel, whereas the branch ring 334 and distally adjacent circumferential ring 338 do not extend into the branch vessel. In this embodiment, branch portion 330 has a modified strut structure comprising a generally open strut configuration with a row of distal branch portion struts 340, 342, 344 in phase with and offset, or spaced, in the distal direction from proximal branch portion struts 350, 352, 354. In this embodiment, the row of distal branch struts have a generally "W" configuration and the branch struts have respective curved portions 341, 343, 345 at the distal end interconnecting the longitudinal portions, e.g., 347, of distal branch portion struts 340, 342, 344. Distal branch struts 340, 342, 344 are interconnected at the proximal end by curved portions 349, 351. The outside lateral distal struts 340, 344 are connected to the curved distal regions 360, 362 of outside lateral proximal struts 350, 354, thus defining a single bounded space or opening 364 between the distal branch portion struts 340, 342, 344 and the proximal branch portion struts 350, 352, 354. In alternative embodiments, branch portion 330 may have varied geometries and configurations of proximal branch portion 332 and/or distal branch portion 336. For example, in alternate embodiments, the number of struts in the distal branch portion may differ from the number of struts in the proximal branch portion. Also, the size and shape of the proximal branch struts and distal branch struts may be varied in alternate designs.
  • Referring now to FIGS. 39-42, illustrations of the steps of one exemplary method for delivering stent 312 are shown. As shown in FIG. 39, catheter system 370 is positioned over a main guidewire 371 proximal to a bifurcation, using any known method and branch portion 330 is positioned adjacent the opening of branch vessel 4. A side sheath or branch guidewire 372 is then advanced through opening 364 and into the branch vessel 4, as shown in FIG. 40. As shown in FIG. 41, the second catheter or side sheath 372 is then advanced through opening 364 and into the branch vessel. Branch portion 330 is positioned over a portion of the lumen of the branch vessel 4 as the side sheath 372 is inserted into branch vessel 4. Stent 312 is then expanded, causing expansion of the stent body and causing branch portion 330 to extend outward with respect to the stent body to a first extended position. In a preferred embodiment, a balloon 376 located on main catheter 370 may be used to expand the stent. In one embodiment, balloon 376 may be herniated balloon or a combination of cylindrical and dimple balloons with an expandable protrusion 374 positioned adjacent the branch portion 330. Upon expansion of stent 312, branch portion 330, including distal branch portion struts 340, 342, 344 and proximal branch portion struts 350, 352, 354, may pivot at curved regions 364, 366, such that the distal end of branch portion 330 may extend outward from the remainder of stent body 314 and into the branch vessel. When the branch portion 330 is in the first extended position, stent coverage is provided to at least a portion of the branch vessel. In particular, a portion of branch portion 330 at least partially covers the inner surface of the branch vessel, for example the proximal side of the branch vessel wall. Next, the balloon may be deflated and branch portion 330 may be further extended to a second extended position, shown in FIG 42. In particular, the branch portion 330 may be extended into the second extended position by pivoting distal branch portion struts 340,342,344 inward about curved regions 360, 362 and pivoting the proximal curved portions 349, 351 downward about the outside lateral distal curved portions 341 and 345. As best seen in the fully expanded view of FIG. 42, in this second extended position, distal branch portion struts 340, 342, 344 are spaced from the proximal branch portion struts 350, 352, 354 to support the branch vessel wall opposite the proximal branch portion struts. It will be recognized that the exterior surface of the proximal branch portion struts 350, 352, 354 contact and support the branch vessel wall and the undersurface of the distal branch portion struts 340, 342, 344 contact and support the branch vessel opposite the proximal branch portion struts in the second extended position. In this regard, the entire periphery of the branch vessel wall may be provided with stent coverage as the proximal branch portion struts preferably cover and support a proximal portion of the branch vessel wall and the distal branch portion struts preferably cover and support a distal portion of the branch vessel wall. Once branch portion 330 is extended to the second extended position the catheter system and guidewires are then removed.
  • Referring to FIGS. 43-44, an alternative stent 412 and branch portion 430 is shown. Upon extension of branch portion 430, the proximal branch portion 432 and distal branch portion 436 extend into the branch vessel, whereas the branch ring 434 and distally adjacent circumferential ring 438 do not extend into the branch vessel. In this embodiment, branch portion 430 is similar geometrically to branch portion 330 described above; however, distal branch portion 436 is attached to distally adjacent ring 438 by a single connector 470. Connector 470 longitudinally connects at least one of distal branch struts 440, 442, 444 to ring 438. In this embodiment, connector 470 connects ring 438 to one of the proximal curved portions 449, 451 interconnecting distal branch struts 440, 442, 444. In operation, branch portion 430 is extended in much the same manner as branch portion 330, except a portion of the distal branch portion adjacent connector 470 at least partially resists extension outward to the first extended position and the distal branch portion may rotate outward with respect to the junction or point at which connector 470 meets the branch struts. In the second extended position, connector 470 preferably contacts and supports a portion of the ostium or the transition area of the vessel wall where the main vessel meets the branch vessel.
  • Referring to FIGS. 45-46, an alternative stent 512 and branch portion 530 is shown. Upon extension of branch portion 530 outwardly from stent body 514, the proximal branch portion 532 and distal branch portion 536 extend into the branch vessel, whereas the branch ring 534 and distally adjacent circumferential ring 538 do not extend into the branch vessel. In this embodiment, branch portion 530 is similar geometrically to branch portion 430 described above; however, distal branch portion 536 is attached to distally adjacent circumferential ring 538 by a pair of connectors 570, 572. Connectors 570, 572 each longitudinally connect at least one of distal branch struts 540, 542, 554 to circumferential ring 538. In this embodiment, connectors 570, 572 connect ring 538 to the proximal curved portions 549, 551 interconnecting distal branch struts 540, 542, 544. In operation, branch portion 530 is extended in much the same manner as branch portion 430, except a portion of the distal branch portion adjacent both connectors 570, 572 at least partially resists extension outward to the first extended position and the distal branch portion may rotate outward with respect to the junction or point at which connectors 570, 572 meet the branch struts. In the second extended position, connectors 570, 572 preferably contact and support a portion of the ostium or the transition area of the vessel wall where the main vessel meets the branch vessel.
  • Referring to FIGS. 47-48 , an alternative stent 612 and branch portion 630 is shown. In this embodiment, branch portion 630 is similar geometrically to branch portion 330 described above; however, proximal branch portion 632 and distal branch portion 636 only have two branch struts respectively. In this embodiment, branch portion 630 has a modified strut structure comprising a generally open strut configuration with a row of distal struts 640, 642 in phase with and offset, or spaced, in the distal direction from proximal struts 650, 652. In this embodiment, the row of distal branch struts 640, 642 have a similar size, shape and configuration as proximal branch struts 650, 652. Distal branch struts 640, 642 are interconnected at the proximal end by curved portion 649. The outside lateral portions of distal struts 640, 642 are connected to the curved proximal regions 660, 662 of outside lateral portions of proximal struts 650, 652, thus defining a single bounded space or opening 664 between the distal branch portion struts 640, 642 and the proximal branch portion struts 650, 652. In operation and upon expansion of branch portion 630, distal branch portion struts 640, 642 and proximal branch portion struts 650, 652 may pivot at curved regions 660, 662, such that the distal end of branch portion 630 may extend outward from the remainder of stent body 614 and into the branch vessel. When the branch portion 630 is in the first extended position, stent coverage is provided to at least a portion of the branch vessel. The branch portion 630 may be extended into the second extended position by pivoting distal branch portion struts 640, 642 inward about curved regions 660, 662 and pivoting the proximal curved portion 649 downward about the distal curved portions 641 and 645. In this second extended position branch portion struts 640, 642 are spaced from the proximal branch portion struts 650, 652 to support the branch vessel wall opposite the proximal branch portion struts.
  • Referring to FIGS. 49-50, an alternative stent 712 and branch portion 730 is shown. In this embodiment, branch portion 730 is similar geometrically to branch portion 330 described above; however the outside lateral proximal branch struts 750, 754, extend proximally beyond the other branch ring struts and connect to adjacent struts at curved regions 766, 768, positioned between the branch ring 734 and the proximally adjacent circumferential ring 728. In this regard, the longer lateral proximal branch struts 750, 754 function similar to a hinge and further facilitate extension of branch portion 730 outwardly. As described above with respect to other embodiments, in operation, branch portion 730 is configured to extend outwardly with respect to stent body 714. When branch portion 730 is fully extended it may provide at least partial stent coverage of both the proximal and distal side of the inner branch vessel wall. In particular, branch portion 730 may pivot at curved regions 766, 768, such that the branch portion 730 is in a first position extended outward from the remainder of stent body 714 and into the branch vessel to support a portion of the branch vessel wall. Branch portion 730 may be further extended to a second position by pivoting distal branch portion struts 740, 742, 744 inward about curved regions 760, 762 and pivoting the proximal curved portions 749, 751 downward about the outside lateral distal curved portions 741 and 745. In this second extended position, branch portion struts 740, 742, 744 are spaced from the proximal branch portion struts 750, 752, 754 to support the branch vessel wall opposite the proximal branch portion struts. It will be recognized that the exterior surface of the proximal branch portion struts 750; 752, 754 contact and support the branch vessel wall and the undersurface of the distal branch portion struts 740, 742, 744 contact and support the branch vessel wall in the second extended position. Stent 712 may be delivered in a similar manner as described above with respect to stent 312 and branch portion 730 may be extended in a similar manner as branch portion 330. In particular, branch portion be moved from the first extended position to the second extended position by applying force in the distal direction on a second catheter extending through opening 764 to move and/or pivot the distal portion struts 740, 742, 744 with respect to the proximal branch portion struts 750, 752, 754.
  • As shown in FIGS. 51-52, an alternative stent 812 and branch portion 830 is shown. In this embodiment, branch portion 830 is similar geometrically to branch portion 330 described above; however, branch portion 830 has a modified strut structure comprising a nested strut configuration with distal branch portion 836 nested within proximal branch portion 832. In particular, in the unextended position, distal branch struts 840, 842, 844 are in phase with and nested within proximal struts 850, 852, 854 of branch portion 830. Longitudinal strut portions 845 and the respective curved portions 847 of distal branch portion struts 840, 842, 844 are positioned within longitudinal strut portions 855 and the respective curved portions 857 of respective proximal branch portion struts 850, 852, 854. The outside lateral distal struts 840, 844 are connected to the outside lateral proximal struts 850, 854 at curved regions 860, 862, thus defining a single bounded space or opening 863 between the distal branch portion struts 840, 842, 844 and the proximal branch portion struts 850, 852, 854. As best seen in FIG. 52, opening 863 is smaller than the opening 364 of branch portion 330 described above. As described above with respect to other embodiments, in operation, branch portion 830 is configured to extend outwardly with respect to stent body 814. When branch portion 830 is fully extended it may provide at least partial stent coverage of both the proximal and distal side of the inner branch vessel wall. In particular, branch portion 830 may pivot at curved regions 864, 866, such that the branch portion 830 is in a first position extended outward from the remainder of stent body 814 and into the branch vessel to support a portion of the branch vessel wall. Branch portion 830 may be further extended to a second position by pivoting distal branch portion struts 840, 842, 844 inward about curved regions 860, 862 and separating the distal branch portion struts 840, 842, 844 from the proximal branch portion struts 850, 852, 854 to support the branch vessel opposite the proximal branch portion struts. It will be recognized that the exterior surface of the proximal branch portion struts 850, 852, 854 contact and support the branch vessel wall and the undersurface of the distal branch portion struts 840, 842, 844 contact and support the branch vessel wall in the second extended position. Stent 812 may be delivered in a similar manner as described above with respect to stent 312 and branch portion 830 may be extended in a similar manner as branch portion 330. In particular, branch portion 830 may be moved from the first extended position to the second extended position by applying force in the distal direction on a second catheter extending through opening 863 to move and/or pivot the distal portion struts 840, 842, 844 with respect to the proximal branch portion struts 850, 852, 854.
  • As shown in FIGS. 53-54, an alternative stent 912 and branch portion 930 is shown. In this embodiment, branch portion 930 is similar geometrically to branch portion 830 described above; however, branch portion 930 has a modified strut structure wherein the outside lateral distal branch struts 940, 944 are connected to the outside lateral proximal branch struts 950, 954 at curved regions 960, 962 adjacent the proximal end of outside lateral proximal struts 950, 954. In this regard, in operation, branch portion 930 may pivot at curved regions 960, 962, such that the branch portion 930 is in a first position extended outward from the remainder of stent body 914 and into the branch vessel to support a portion of the branch vessel wall. Branch portion 930 may be further extended to a second position by pivoting distal branch portion struts 940, 942, 944 inward about curved regions 960, 962 and pivoting the proximal curved regions 949, 951 of distal branch portion struts 940, 942, 944 downward about the distal curved portions 941 and 945. In this second extended position, distal branch portion struts 940, 942, 944 are spaced from the proximal branch portion struts 950, 952, 954 to support the branch vessel wall opposite the proximal branch portion struts. It will be recognized that the exterior surface of the proximal branch portion struts 950, 952, 954 contact and support the branch vessel wall and the undersurface of the distal branch portion struts 940, 942, 944 contact and support the branch vessel wall in the second extended position. Stent 912 may be delivered in a similar manner as described above with respect to stent 812 and branch portion 930 may be extended in a similar manner as branch portion 830.
  • Referring to FIGS. 55-56, an alternative stent 1012 and branch portion 1030 is shown. In this embodiment, branch portion 1030 is similar geometrically to branch portion 830 described above; however, distal branch portion is attached to distally adjacent ring 1038 by a single connector 1070. Connector 1070 longitudinally connects at least one of distal branch struts 1040, 1042, 1044 to ring 1038. In this embodiment, connector 1070 connects ring 1038 to one of the proximal curved portions 1049, 1051, 1053 of distal branch struts 1040, 1042, 1044. In operation, branch portion 1030 is extended in much the same manner as branch portion 830, except a portion of the distal branch portion adjacent connector 1070 at least partially resists extension outward to the first extended position and the distal branch portion may rotate outward with respect to the junction or point at which connector 1070 meets the distal branch struts. In the second extended position, connector 1070 preferably contacts and supports a portion of the ostium or the transition area of the vessel wall where the main vessel meets the branch vessel.
  • The stents described herein may have one or more drugs coated thereon. An exemplary drug coating is described in WO 04/009771 . One particular application for the use of a stent with a branch portion 30, 330, 430, 530, 630, 630, 830, 930, 1030 described above is for localized drug delivery.
  • One or more drug coatings may be present at any location in or on the walls of stents according to the present invention, including in or on the wall of the main vessel portion of the stents, or in or on the wall of the branch portion of stents. The position of depot(s) depends on desired site(s) of highest concentration of drug delivery.
  • Thus, the length, width, and thickness of a depot are variables that can be tailored according to the desired drug distribution and the size of the main and branch vessels to be treated. For example, a depot that is thick enough to impede, fluid flow in a narrow vessel may be an optimal thickness for a larger vessel.
  • Stents according to the present invention can be used as vehicles for localized delivery of drugs to cells of the walls of both the main and branch vessels at the location of the stent. Drugs that are particularly suitable for treatment of cells in the immediate area of the stent include anti-restenosis and anti-thrombotic drugs. If desired, different concentrations of drugs, or different drugs, may be included in depot(s) located in or on different areas of the stent walls. For example, it may be desirable to treat the cells of the main vessel with a first drug, combination of drugs, and/or concentration of drug(s) and to treat the cells of the branch vessel with a second, different, drug, combination of drugs, and/or concentration of drug(s). As another example, it may be desirable to maintain a high concentration of anti-restenosis drug(s) near the bifurcation of the vessels. As yet another non-limiting example, it may be desirable to maintain a high concentration of anti-restenosis drug(s) at the three open ends (two on the main portion and one on the branch portion) of the stent. It will be appreciated by one skilled in the art upon reading the present disclosure that many combinations of two or more depots are possible within the spirit and scope of the present invention.
  • The present invention also provides kits comprising a stent or stents according to the present invention. In addition to a stent or stents, a kit according to the present invention may include, for example, delivery catheter(s), balloon(s), and/or instructions for use. In kits according to the present invention, the stent(s) may be mounted in or on a balloon or catheter. Alternatively, the stent(s) may be separate from the balloon or catheter and may be mounted therein or thereon prior to use.
  • While the invention has been described in conjunction with specific embodiments and examples thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art upon reading the present disclosure. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the scope of the appended claims.

Claims (10)

  1. A stent for implantation in a bifurcated body lumen having a main branch vessel and a side branch vessel, wherein the stent (312) comprises:
    a main stent body (314) with a body wall extending along a longitudinal axis from a distal end to a proximal end and defining a main lumen extending therethrough; and
    a branch portion (330) comprising a branch portion wall connected to the body wall, the branch portion (330) positioned between the distal and proximal ends of said main stent body (314) and movable with respect to the main stent body (314) from a first position to a second position, characterized in that:
    in the first position the branch portion wall is substantially coplanar with said body wall and in a second position the branch portion wall is offset with respect to the body wall, and
    the branch portion wall comprises a proximal portion (332) including proximal branch portion struts (350, 352, 354) and a distal portion (336) including distal branch portion struts (340, 342, 344), wherein in the second position an undersurface of the distal branch portion struts (340, 342, 344) contacts and supports the branch vessel opposite the proximal branch portion struts (350, 352, 354).
  2. The stent of claim 1, wherein in the second position the proximal portion (332) of the branch portion wall is configured to contact and support a first section of the branch vessel wall and the distal portion (336) of the branch portion wall is configured to contact and support a second section of the branch vessel wall opposite the first section.
  3. The stent of claim 1, wherein the distal portion (336) of the branch portion wall comprises a free end portion that is not connected to the body wall such that the free end portion is independently movable with respect to the main stent body (314).
  4. The stent of claim 3, wherein the free end portion comprises said distal branch portion struts (340, 342, 344), each strut having at least one end free from a connector.
  5. The stent of claim 1, wherein in the second position the branch portion wall is extended outwardly with respect to the body wall.
  6. The stent of claim 1, wherein the main body (314) is generally tubular.
  7. The stent of claim 1, wherein the main body (314) is generally cylindrical.
  8. The stent of claim 1, wherein the main stent body (314) is generally radially expandable.
  9. The stent of claim 1, wherein the main stent body (314) comprises a first pattern of rows of struts and connectors, wherein said rows of struts are connected to each other by said connectors.
  10. The stent of claim 9, wherein said branch portion (330) comprises a second pattern of rows of struts and connectors, wherein said second pattern has a different configuration than said first pattern.
EP05756161.5A 2004-06-08 2005-06-06 Stent with protruding branch portion for bifurcated vessels Not-in-force EP1753369B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US57757904P 2004-06-08 2004-06-08
PCT/US2005/019612 WO2005122959A2 (en) 2004-06-08 2005-06-06 Stent with protruding branch portion for bifurcated vessels

Publications (3)

Publication Number Publication Date
EP1753369A2 EP1753369A2 (en) 2007-02-21
EP1753369A4 EP1753369A4 (en) 2008-02-13
EP1753369B1 true EP1753369B1 (en) 2013-05-29

Family

ID=35510237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05756161.5A Not-in-force EP1753369B1 (en) 2004-06-08 2005-06-06 Stent with protruding branch portion for bifurcated vessels

Country Status (5)

Country Link
US (3) US7578841B2 (en)
EP (1) EP1753369B1 (en)
JP (1) JP5054524B2 (en)
CA (1) CA2559540A1 (en)
WO (1) WO2005122959A2 (en)

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599316B2 (en) * 1996-11-04 2003-07-29 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6325826B1 (en) * 1998-01-14 2001-12-04 Advanced Stent Technologies, Inc. Extendible stent apparatus
EP0944366B1 (en) * 1996-11-04 2006-09-13 Advanced Stent Technologies, Inc. Extendible double stent
US7341598B2 (en) 1999-01-13 2008-03-11 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US6835203B1 (en) 1996-11-04 2004-12-28 Advanced Stent Technologies, Inc. Extendible stent apparatus
US8257425B2 (en) * 1999-01-13 2012-09-04 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
CA2360551C (en) * 1999-01-27 2009-12-22 Scimed Life Systems, Inc. Bifurcation stent delivery system
JP2003532446A (en) * 1999-09-23 2003-11-05 アドバンスド ステント テクノロジーズ, インコーポレイテッド Bifurcated stent system and method of use
WO2002067653A2 (en) 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent and delivery system
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US20060253480A1 (en) * 2002-04-06 2006-11-09 Staples Peter E Collaborative design process for a design team, outside suppliers, and outside manufacturers
US7326242B2 (en) * 2002-11-05 2008-02-05 Boston Scientific Scimed, Inc. Asymmetric bifurcated crown
US8109987B2 (en) 2003-04-14 2012-02-07 Tryton Medical, Inc. Method of treating a lumenal bifurcation
US7731747B2 (en) 2003-04-14 2010-06-08 Tryton Medical, Inc. Vascular bifurcation prosthesis with multiple thin fronds
US7972372B2 (en) 2003-04-14 2011-07-05 Tryton Medical, Inc. Kit for treating vascular bifurcations
US7758630B2 (en) 2003-04-14 2010-07-20 Tryton Medical, Inc. Helical ostium support for treating vascular bifurcations
US8083791B2 (en) 2003-04-14 2011-12-27 Tryton Medical, Inc. Method of treating a lumenal bifurcation
US7717953B2 (en) * 2004-10-13 2010-05-18 Tryton Medical, Inc. Delivery system for placement of prosthesis at luminal OS
US8298280B2 (en) * 2003-08-21 2012-10-30 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US8007528B2 (en) * 2004-03-17 2011-08-30 Boston Scientific Scimed, Inc. Bifurcated stent
EP1753369B1 (en) 2004-06-08 2013-05-29 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US9427340B2 (en) * 2004-12-14 2016-08-30 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
ATE508714T1 (en) * 2005-01-10 2011-05-15 Trireme Medical Inc STENT WITH SELF-EXPANDABLE AREA
US9101500B2 (en) * 2005-01-10 2015-08-11 Trireme Medical, Inc. Stent with self-deployable portion having wings of different lengths
FR2881946B1 (en) * 2005-02-17 2008-01-04 Jacques Seguin DEVICE FOR THE TREATMENT OF BODILY CONDUIT AT BIFURCATION LEVEL
US7922754B2 (en) 2005-04-18 2011-04-12 Trireme Medical, Inc. Apparatus and methods for delivering prostheses to luminal bifurcations
US8608789B2 (en) 2005-05-24 2013-12-17 Trireme Medical, Inc. Delivery system for bifurcation stents
US8480728B2 (en) * 2005-05-26 2013-07-09 Boston Scientific Scimed, Inc. Stent side branch deployment initiation geometry
US20060271161A1 (en) * 2005-05-26 2006-11-30 Boston Scientific Scimed, Inc. Selective treatment of stent side branch petals
US8317855B2 (en) * 2005-05-26 2012-11-27 Boston Scientific Scimed, Inc. Crimpable and expandable side branch cell
US20070050016A1 (en) * 2005-08-29 2007-03-01 Boston Scientific Scimed, Inc. Stent with expanding side branch geometry
US8038706B2 (en) * 2005-09-08 2011-10-18 Boston Scientific Scimed, Inc. Crown stent assembly
US8043366B2 (en) * 2005-09-08 2011-10-25 Boston Scientific Scimed, Inc. Overlapping stent
US7731741B2 (en) * 2005-09-08 2010-06-08 Boston Scientific Scimed, Inc. Inflatable bifurcation stent
US20070112418A1 (en) * 2005-11-14 2007-05-17 Boston Scientific Scimed, Inc. Stent with spiral side-branch support designs
US8343211B2 (en) * 2005-12-14 2013-01-01 Boston Scientific Scimed, Inc. Connectors for bifurcated stent
US8435284B2 (en) * 2005-12-14 2013-05-07 Boston Scientific Scimed, Inc. Telescoping bifurcated stent
US20070142904A1 (en) * 2005-12-20 2007-06-21 Boston Scientific Scimed, Inc. Bifurcated stent with multiple locations for side branch access
US7540881B2 (en) 2005-12-22 2009-06-02 Boston Scientific Scimed, Inc. Bifurcation stent pattern
US20070208411A1 (en) * 2006-03-06 2007-09-06 Boston Scientific Scimed, Inc. Bifurcated stent with surface area gradient
US20070208414A1 (en) * 2006-03-06 2007-09-06 Shawn Sorenson Tapered strength rings on a bifurcated stent petal
US7833264B2 (en) * 2006-03-06 2010-11-16 Boston Scientific Scimed, Inc. Bifurcated stent
US20070208415A1 (en) * 2006-03-06 2007-09-06 Kevin Grotheim Bifurcated stent with controlled drug delivery
US8298278B2 (en) * 2006-03-07 2012-10-30 Boston Scientific Scimed, Inc. Bifurcated stent with improvement securement
US8197536B2 (en) * 2006-03-10 2012-06-12 Cordis Corporation Method for placing a medical device at a bifurcated conduit
US20070225798A1 (en) * 2006-03-23 2007-09-27 Daniel Gregorich Side branch stent
US8348991B2 (en) * 2006-03-29 2013-01-08 Boston Scientific Scimed, Inc. Stent with overlap and high expansion
US20070233233A1 (en) * 2006-03-31 2007-10-04 Boston Scientific Scimed, Inc Tethered expansion columns for controlled stent expansion
US20070260304A1 (en) * 2006-05-02 2007-11-08 Daniel Gregorich Bifurcated stent with minimally circumferentially projected side branch
US20070270935A1 (en) * 2006-05-18 2007-11-22 Abbott Laboratories Dual balloon catheter and deployment of same
EP2051673A2 (en) 2006-06-23 2009-04-29 Boston Scientific Limited Bifurcated stent with twisted hinges
JP2009542319A (en) * 2006-06-30 2009-12-03 ボストン サイエンティフィック リミテッド Stent with variable expansion column along circumference
EP2059291B1 (en) * 2006-08-23 2017-04-05 Abbott Laboratories Catheter system for delivering medical devices
US8216267B2 (en) * 2006-09-12 2012-07-10 Boston Scientific Scimed, Inc. Multilayer balloon for bifurcated stent delivery and methods of making and using the same
US7951191B2 (en) * 2006-10-10 2011-05-31 Boston Scientific Scimed, Inc. Bifurcated stent with entire circumferential petal
US8206429B2 (en) 2006-11-02 2012-06-26 Boston Scientific Scimed, Inc. Adjustable bifurcation catheter incorporating electroactive polymer and methods of making and using the same
US7842082B2 (en) 2006-11-16 2010-11-30 Boston Scientific Scimed, Inc. Bifurcated stent
US20080147174A1 (en) * 2006-12-11 2008-06-19 Trireme Medical, Inc. Apparatus and method of using markers to position stents in bifurcations
FR2911063B1 (en) 2007-01-09 2009-03-20 Stentys S A S Soc Par Actions RUPTIBLE BRIDGE STRUCTURE FOR STENT, AND STENT INCLUDING SUCH BRIDGE STRUCTURES.
US7959668B2 (en) 2007-01-16 2011-06-14 Boston Scientific Scimed, Inc. Bifurcated stent
US8118861B2 (en) * 2007-03-28 2012-02-21 Boston Scientific Scimed, Inc. Bifurcation stent and balloon assemblies
US8647376B2 (en) * 2007-03-30 2014-02-11 Boston Scientific Scimed, Inc. Balloon fold design for deployment of bifurcated stent petal architecture
US7942661B2 (en) * 2007-07-18 2011-05-17 Boston Scientific Scimed, Inc. Bifurcated balloon folding method and apparatus
US7959669B2 (en) * 2007-09-12 2011-06-14 Boston Scientific Scimed, Inc. Bifurcated stent with open ended side branch support
US7833266B2 (en) 2007-11-28 2010-11-16 Boston Scientific Scimed, Inc. Bifurcated stent with drug wells for specific ostial, carina, and side branch treatment
US8277501B2 (en) 2007-12-21 2012-10-02 Boston Scientific Scimed, Inc. Bi-stable bifurcated stent petal geometry
US8747456B2 (en) * 2007-12-31 2014-06-10 Boston Scientific Scimed, Inc. Bifurcation stent delivery system and methods
US8221494B2 (en) 2008-02-22 2012-07-17 Endologix, Inc. Apparatus and method of placement of a graft or graft system
US8333003B2 (en) * 2008-05-19 2012-12-18 Boston Scientific Scimed, Inc. Bifurcation stent crimping systems and methods
US8932340B2 (en) 2008-05-29 2015-01-13 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
US8308793B2 (en) * 2008-06-10 2012-11-13 Boston Scientific Scimed, Inc. Bifurcation catheter assembly with dynamic side branch lumen
US20090326643A1 (en) * 2008-06-27 2009-12-31 Boston Scientific Scimed, Inc. Balloon folding apparatus and method
JP5134729B2 (en) 2008-07-01 2013-01-30 エンドロジックス、インク Catheter system
US9005274B2 (en) * 2008-08-04 2015-04-14 Stentys Sas Method for treating a body lumen
US11298252B2 (en) 2008-09-25 2022-04-12 Advanced Bifurcation Systems Inc. Stent alignment during treatment of a bifurcation
US8821562B2 (en) 2008-09-25 2014-09-02 Advanced Bifurcation Systems, Inc. Partially crimped stent
EP2344068B1 (en) 2008-09-25 2022-10-19 Advanced Bifurcation Systems Inc. Partially crimped stent
US8828071B2 (en) 2008-09-25 2014-09-09 Advanced Bifurcation Systems, Inc. Methods and systems for ostial stenting of a bifurcation
CN101732114B (en) * 2008-11-04 2014-07-30 上海微创医疗器械(集团)有限公司 Coronary artery stent with medicine carrying grooves
RU2567831C2 (en) * 2009-02-02 2015-11-10 Кордис Корпорейшн Construction of flexible stent
GB2469073A (en) * 2009-03-31 2010-10-06 Barking Havering And Redbridge Balloon Assisted Occlusion of Aneurysms
EP2429452B1 (en) 2009-04-28 2020-01-15 Endologix, Inc. Endoluminal prosthesis system
US20100318170A1 (en) * 2009-06-15 2010-12-16 Richard Newhauser Proximal catheter flap for managing wire twist
EP2266508A1 (en) * 2009-06-25 2010-12-29 Biotronik VI Patent AG Stent with improved stent design
US8382818B2 (en) 2009-07-02 2013-02-26 Tryton Medical, Inc. Ostium support for treating vascular bifurcations
US20110087318A1 (en) 2009-10-09 2011-04-14 Daugherty John R Bifurcated highly conformable medical device branch access
JP5401293B2 (en) * 2009-12-16 2014-01-29 テルモ株式会社 Biological organ dilator
CA2794064A1 (en) 2010-03-24 2011-09-29 Advanced Bifurcation Systems, Inc. Methods and systems for treating a bifurcation with provisional side branch stenting
CA2794078A1 (en) 2010-03-24 2011-09-29 Advanced Bifurcation Systems, Inc. Stent alignment during treatment of a bifurcation
EP2549952A4 (en) 2010-03-24 2017-01-04 Advanced Bifurcation Systems, Inc. System and methods for treating a bifurcation
JP5697138B2 (en) * 2010-09-27 2015-04-08 株式会社カネカ Stent delivery catheter system
US20120109279A1 (en) 2010-11-02 2012-05-03 Endologix, Inc. Apparatus and method of placement of a graft or graft system
US9707108B2 (en) 2010-11-24 2017-07-18 Tryton Medical, Inc. Support for treating vascular bifurcations
CN103237526B (en) 2010-12-06 2015-12-02 科维蒂恩有限合伙公司 Vascular remodeling device
EP3449879B1 (en) 2011-02-08 2020-09-23 Advanced Bifurcation Systems Inc. System for treating a bifurcation with a fully crimped stent
CA2826760A1 (en) 2011-02-08 2012-08-16 Advanced Bifurcation Systems, Inc. Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use
CN105232195B (en) 2011-03-01 2018-06-08 恩朵罗杰克斯股份有限公司 Delivery catheter system
EP2706926B1 (en) 2011-05-11 2016-11-30 Covidien LP Vascular remodeling device
US8501882B2 (en) 2011-12-19 2013-08-06 Chevron Phillips Chemical Company Lp Use of hydrogen and an organozinc compound for polymerization and polymer property control
EP2841024B1 (en) 2012-04-26 2017-05-03 Tryton Medical, Inc. Support for treating vascular bifurcations
KR101424201B1 (en) * 2012-08-14 2014-08-13 이종훈 Stent provided with window and graft thereof
US9186267B2 (en) 2012-10-31 2015-11-17 Covidien Lp Wing bifurcation reconstruction device
US20140128901A1 (en) * 2012-11-05 2014-05-08 Kevin Kang Implant for aneurysm treatment
US10709587B2 (en) * 2013-11-05 2020-07-14 Hameem Unnabi Changezi Bifurcated stent and delivery system
US9375810B2 (en) 2014-01-24 2016-06-28 Q3 Medical Devices Limited Bidirectional stent and method of use thereof
US11129737B2 (en) 2015-06-30 2021-09-28 Endologix Llc Locking assembly for coupling guidewire to delivery system
US11559387B2 (en) * 2017-09-12 2023-01-24 W. L Gore & Associates, Inc. Substrate with rotatable struts for medical device
EP3708129A1 (en) * 2019-03-15 2020-09-16 Biotronik Ag Implant

Family Cites Families (330)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309994A (en) 1980-02-25 1982-01-12 Grunwald Ronald P Cardiovascular cannula
US4774949A (en) 1983-06-14 1988-10-04 Fogarty Thomas J Deflector guiding catheter
EP0226061B1 (en) * 1985-12-17 1994-02-16 United States Surgical Corporation High molecular weight bioresorbable polymers and implantation devices thereof
DE3715699A1 (en) 1987-05-12 1988-12-01 Foerster Ernst CATHETER AND ENDOSCOPE FOR THE TRANSPAPILLARY DISPLAY OF THE GALLEN BLADDER
US4935190A (en) * 1987-07-10 1990-06-19 William G. Whitney Method of making balloon retention catheter
US4769005A (en) 1987-08-06 1988-09-06 Robert Ginsburg Selective catheter guide
US4896670A (en) 1988-04-19 1990-01-30 C. R. Bard, Inc. Kissing balloon catheter
US4906244A (en) * 1988-10-04 1990-03-06 Cordis Corporation Balloons for medical devices and fabrication thereof
US5087246A (en) * 1988-12-29 1992-02-11 C. R. Bard, Inc. Dilation catheter with fluted balloon
US5147302A (en) * 1989-04-21 1992-09-15 Scimed Life Systems, Inc. Method of shaping a balloon of a balloon catheter
WO1990013332A1 (en) 1989-05-11 1990-11-15 Cedars-Sinai Medical Center Stent with sustained drug delivery
US4994071A (en) 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5037392A (en) * 1989-06-06 1991-08-06 Cordis Corporation Stent-implanting balloon assembly
US5318587A (en) * 1989-08-25 1994-06-07 C. R. Bard, Inc. Pleated balloon dilatation catheter and method of use
US5147385A (en) 1989-11-01 1992-09-15 Schneider (Europe) A.G. Stent and catheter for the introduction of the stent
US5053007A (en) * 1989-12-14 1991-10-01 Scimed Life Systems, Inc. Compression balloon protector for a balloon dilatation catheter and method of use thereof
WO1991012779A1 (en) 1990-02-28 1991-09-05 Medtronic, Inc. Intralumenal drug eluting prosthesis
US5320634A (en) 1990-07-03 1994-06-14 Interventional Technologies, Inc. Balloon catheter with seated cutting edges
US5163989A (en) * 1990-08-27 1992-11-17 Advanced Cardiovascular Systems, Inc. Method for forming a balloon mold and the use of such mold
AR246020A1 (en) 1990-10-03 1994-03-30 Hector Daniel Barone Juan Carl A ball device for implanting an intraluminous aortic prosthesis, for repairing aneurysms.
EP0479730B1 (en) 1990-10-04 1995-04-19 Schneider (Europe) Ag Balloon dilatation catheter
DE69133523T2 (en) * 1990-11-09 2006-09-21 Boston Scientific Corp., Watertown Balloon for medical catheter
US5112900A (en) * 1990-11-28 1992-05-12 Tactyl Technologies, Inc. Elastomeric triblock copolymer compositions and articles made therewith
US5628783A (en) 1991-04-11 1997-05-13 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system and method
US5304220A (en) 1991-07-03 1994-04-19 Maginot Thomas J Method and apparatus for implanting a graft prosthesis in the body of a patient
FR2678508B1 (en) 1991-07-04 1998-01-30 Celsa Lg DEVICE FOR REINFORCING VESSELS OF THE HUMAN BODY.
JP3619527B2 (en) * 1991-10-16 2005-02-09 オリンパス株式会社 In-vivo indwelling tube
US5387235A (en) 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5693084A (en) 1991-10-25 1997-12-02 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5226887A (en) * 1992-02-07 1993-07-13 Interventional Technologies, Inc. Collapsible folding angioplasty balloon
US5209799A (en) * 1992-04-17 1993-05-11 Inverventional Technologies, Inc. Method for manufacturing a folding balloon catheter
US5342387A (en) 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5447497A (en) * 1992-08-06 1995-09-05 Scimed Life Systems, Inc Balloon catheter having nonlinear compliance curve and method of using
US5348538A (en) * 1992-09-29 1994-09-20 Scimed Life Systems, Inc. Shrinking balloon catheter having nonlinear or hybrid compliance curve
US5487730A (en) * 1992-12-30 1996-01-30 Medtronic, Inc. Balloon catheter with balloon surface retention means
US5523092A (en) * 1993-04-14 1996-06-04 Emory University Device for local drug delivery and methods for using the same
US5824048A (en) * 1993-04-26 1998-10-20 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
US5464650A (en) * 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
IL106738A (en) 1993-08-19 1998-02-08 Mind E M S G Ltd Device for external correction of deficient valves in venous junctions
US5746745A (en) * 1993-08-23 1998-05-05 Boston Scientific Corporation Balloon catheter
US5639278A (en) 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5632772A (en) 1993-10-21 1997-05-27 Corvita Corporation Expandable supportive branched endoluminal grafts
EP0728157B1 (en) * 1993-10-21 2001-07-25 CONDEA Vista Company Alumina thickened latex formulations
US5350361A (en) * 1993-11-10 1994-09-27 Medtronic, Inc. Tri-fold balloon for dilatation catheter and related method
US5607444A (en) 1993-12-02 1997-03-04 Advanced Cardiovascular Systems, Inc. Ostial stent for bifurcations
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5830182A (en) * 1994-03-02 1998-11-03 Scimed Life Systems, Inc. Block copolymer elastomer catheter balloons
US5951941A (en) * 1994-03-02 1999-09-14 Scimed Life Systems, Inc. Block copolymer elastomer catheter balloons
US6171278B1 (en) * 1994-03-02 2001-01-09 Scimed Life Systems, Inc. Block copolymer elastomer catheter balloons
US6406457B1 (en) 1994-03-02 2002-06-18 Scimed Life Systems, Inc. Block copolymer elastomer catheter balloons
US6146356A (en) 1994-03-02 2000-11-14 Scimed Life Systems, Inc. Block copolymer elastomer catheter balloons
JP3494654B2 (en) * 1994-03-02 2004-02-09 シメッド ライフ システムズ インコーポレイテッド Block copolymer elastomer, catheter, balloon
US5733303A (en) * 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
US5456666A (en) * 1994-04-26 1995-10-10 Boston Scientific Corp Medical balloon folding into predetermined shapes and method
US5810767A (en) * 1994-05-11 1998-09-22 Localmed, Inc. Method and apparatus for pressurized intraluminal drug delivery
US5683451A (en) 1994-06-08 1997-11-04 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal prostheses
US5458572A (en) * 1994-07-01 1995-10-17 Boston Scientific Corp. Catheter with balloon folding into predetermined configurations and method of manufacture
US5636641A (en) * 1994-07-25 1997-06-10 Advanced Cardiovascular Systems, Inc. High strength member for intracorporeal use
US5609605A (en) 1994-08-25 1997-03-11 Ethicon, Inc. Combination arterial stent
US5891108A (en) * 1994-09-12 1999-04-06 Cordis Corporation Drug delivery stent
CA2134997C (en) 1994-11-03 2009-06-02 Ian M. Penn Stent
CA2175720C (en) * 1996-05-03 2011-11-29 Ian M. Penn Bifurcated stent and method for the manufacture and delivery of same
US5613980A (en) 1994-12-22 1997-03-25 Chauhan; Tusharsindhu C. Bifurcated catheter system and method
NL9500094A (en) 1995-01-19 1996-09-02 Industrial Res Bv Y-shaped stent and method of deployment.
US6231600B1 (en) * 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
CA2186029C (en) 1995-03-01 2003-04-08 Brian J. Brown Improved longitudinally flexible expandable stent
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US20070073384A1 (en) 1995-03-01 2007-03-29 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US5549552A (en) * 1995-03-02 1996-08-27 Scimed Life Systems, Inc. Balloon dilation catheter with improved pushability, trackability and crossability
WO1996028116A1 (en) * 1995-03-10 1996-09-19 Cardiovascular Concepts, Inc. Tubular endoluminar prosthesis having oblique ends
US5709713A (en) 1995-03-31 1998-01-20 Cardiovascular Concepts, Inc. Radially expansible vascular prosthesis having reversible and other locking structures
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US20020091433A1 (en) 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
FR2733682B1 (en) 1995-05-04 1997-10-31 Dibie Alain ENDOPROSTHESIS FOR THE TREATMENT OF STENOSIS ON BIFURCATIONS OF BLOOD VESSELS AND LAYING EQUIPMENT THEREFOR
US5591228A (en) 1995-05-09 1997-01-07 Edoga; John K. Methods for treating abdominal aortic aneurysms
US5833657A (en) * 1995-05-30 1998-11-10 Ethicon, Inc. Single-walled balloon catheter with non-linear compliance characteristic
US5707348A (en) * 1995-06-06 1998-01-13 Krogh; Steve S. Intravenous bandage
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US6280413B1 (en) 1995-06-07 2001-08-28 Medtronic Ave, Inc. Thrombolytic filtration and drug delivery catheter with a self-expanding portion
AU5776696A (en) 1995-06-08 1997-01-09 Bard Galway Limited Bifurcated endovascular stent
FR2737969B1 (en) 1995-08-24 1998-01-30 Rieu Regis INTRALUMINAL ENDOPROSTHESIS IN PARTICULAR FOR ANGIOPLASTY
US5824036A (en) 1995-09-29 1998-10-20 Datascope Corp Stent for intraluminal grafts and device and methods for delivering and assembling same
US5669924A (en) 1995-10-26 1997-09-23 Shaknovich; Alexander Y-shuttle stent assembly for bifurcating vessels and method of using the same
FR2740346A1 (en) 1995-10-30 1997-04-30 Debiotech Sa ANGIOPLASTY DEVICE FOR ARTERIAL BIFURCATION
US5632762A (en) 1995-11-09 1997-05-27 Hemodynamics, Inc. Ostial stent balloon
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
US5882334A (en) * 1995-12-04 1999-03-16 Target Therapeutics, Inc. Balloon/delivery catheter assembly with adjustable balloon positioning
US6017363A (en) 1997-09-22 2000-01-25 Cordis Corporation Bifurcated axially flexible stent
US6258116B1 (en) 1996-01-26 2001-07-10 Cordis Corporation Bifurcated axially flexible stent
US6436104B2 (en) 1996-01-26 2002-08-20 Cordis Corporation Bifurcated axially flexible stent
US6796997B1 (en) * 1996-03-05 2004-09-28 Evysio Medical Devices Ulc Expandable stent
US6124007A (en) 1996-03-06 2000-09-26 Scimed Life Systems Inc Laminate catheter balloons with additive burst strength and methods for preparation of same
US6071285A (en) 1996-03-25 2000-06-06 Lashinski; Robert D. Rapid exchange folded balloon catheter and stent delivery system
US5824042A (en) 1996-04-05 1998-10-20 Medtronic, Inc. Endoluminal prostheses having position indicating markers
BE1010183A3 (en) 1996-04-25 1998-02-03 Dereume Jean Pierre Georges Em Luminal endoprosthesis FOR BRANCHING CHANNELS OF A HUMAN OR ANIMAL BODY AND MANUFACTURING METHOD THEREOF.
US6783543B2 (en) 2000-06-05 2004-08-31 Scimed Life Systems, Inc. Intravascular stent with increasing coating retaining capacity
US5922021A (en) * 1996-04-26 1999-07-13 Jang; G. David Intravascular stent
US6770092B2 (en) 1996-05-03 2004-08-03 Medinol Ltd. Method of delivering a bifurcated stent
US6251133B1 (en) 1996-05-03 2001-06-26 Medinol Ltd. Bifurcated stent with improved side branch aperture and method of making same
UA58485C2 (en) 1996-05-03 2003-08-15 Медінол Лтд. Method for manufacture of bifurcated stent (variants) and bifurcated stent (variants)
US6440165B1 (en) 1996-05-03 2002-08-27 Medinol, Ltd. Bifurcated stent with improved side branch aperture and method of making same
US5851464A (en) 1996-05-13 1998-12-22 Cordis Corporation Method of making a fuseless soft tip catheter
US5718684A (en) * 1996-05-24 1998-02-17 Gupta; Mukesh Multi-lobed balloon catheter
US5669932A (en) 1996-05-29 1997-09-23 Isostent, Inc. Means for accurately positioning an expandable stent
EP0844853B1 (en) 1996-05-31 2003-12-17 Ave Galway Limited Bifurcated endovascular stents
US5617878A (en) 1996-05-31 1997-04-08 Taheri; Syde A. Stent and method for treatment of aortic occlusive disease
US5755773A (en) 1996-06-04 1998-05-26 Medtronic, Inc. Endoluminal prosthetic bifurcation shunt
US8728143B2 (en) 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
FR2749500B1 (en) 1996-06-06 1998-11-20 Jacques Seguin DEVICE ALLOWING THE TREATMENT OF BODY DUCTS AT THE LEVEL OF A BIFURCATION
US7238197B2 (en) * 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
US5697971A (en) 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US5676697A (en) 1996-07-29 1997-10-14 Cardiovascular Dynamics, Inc. Two-piece, bifurcated intraluminal graft for repair of aneurysm
US5922020A (en) * 1996-08-02 1999-07-13 Localmed, Inc. Tubular prosthesis having improved expansion and imaging characteristics
US5749825A (en) 1996-09-18 1998-05-12 Isostent, Inc. Means method for treatment of stenosed arterial bifurcations
US5755778A (en) 1996-10-16 1998-05-26 Nitinol Medical Technologies, Inc. Anastomosis device
US6596020B2 (en) 1996-11-04 2003-07-22 Advanced Stent Technologies, Inc. Method of delivering a stent with a side opening
US7220275B2 (en) 1996-11-04 2007-05-22 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US6835203B1 (en) 1996-11-04 2004-12-28 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6325826B1 (en) 1998-01-14 2001-12-04 Advanced Stent Technologies, Inc. Extendible stent apparatus
US7341598B2 (en) 1999-01-13 2008-03-11 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US6692483B2 (en) 1996-11-04 2004-02-17 Advanced Stent Technologies, Inc. Catheter with attached flexible side sheath
EP0944366B1 (en) 1996-11-04 2006-09-13 Advanced Stent Technologies, Inc. Extendible double stent
US7591846B2 (en) 1996-11-04 2009-09-22 Boston Scientific Scimed, Inc. Methods for deploying stents in bifurcations
US6599316B2 (en) 1996-11-04 2003-07-29 Advanced Stent Technologies, Inc. Extendible stent apparatus
US5972017A (en) 1997-04-23 1999-10-26 Vascular Science Inc. Method of installing tubular medical graft connectors
US6261320B1 (en) 1996-11-21 2001-07-17 Radiance Medical Systems, Inc. Radioactive vascular liner
FR2756173B1 (en) 1996-11-22 1999-02-12 Marcade Jean Paul MODULAR AND EXPANDABLE ENDOPROSTHESIS FOR THE ARTERIAL NETWORK
ZA9710342B (en) 1996-11-25 1998-06-10 Alza Corp Directional drug delivery stent and method of use.
US5749890A (en) 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
IT1289815B1 (en) 1996-12-30 1998-10-16 Sorin Biomedica Cardio Spa ANGIOPLASTIC STENT AND RELATED PRODUCTION PROCESS
DE29701758U1 (en) 1997-02-01 1997-03-27 Jomed Implantate Gmbh Radially expandable stent for implantation in a body vessel, particularly in the area of a vascular branch
DE29701883U1 (en) 1997-02-04 1997-03-27 Beck Harry Central lubrication
US5720735A (en) 1997-02-12 1998-02-24 Dorros; Gerald Bifurcated endovascular catheter
US6096073A (en) 1997-02-25 2000-08-01 Scimed Life Systems, Inc. Method of deploying a stent at a lesion site located at a bifurcation in a parent vessel
US20020133222A1 (en) * 1997-03-05 2002-09-19 Das Gladwin S. Expandable stent having a plurality of interconnected expansion modules
US5843172A (en) * 1997-04-15 1998-12-01 Advanced Cardiovascular Systems, Inc. Porous medicated stent
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US6273913B1 (en) * 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
WO1998047447A1 (en) 1997-04-23 1998-10-29 Dubrul William R Bifurcated stent and distal protection system
US6033433A (en) * 1997-04-25 2000-03-07 Scimed Life Systems, Inc. Stent configurations including spirals
US6013054A (en) 1997-04-28 2000-01-11 Advanced Cardiovascular Systems, Inc. Multifurcated balloon catheter
EP0876805B2 (en) 1997-05-07 2010-04-07 Cordis Corporation Intravascular stent and stent delivery system for ostial vessel obstructions
DE29708803U1 (en) * 1997-05-17 1997-07-31 Jomed Implantate Gmbh Radially expandable stent for implantation in a body vessel in the area of a vascular branch
US5906641A (en) 1997-05-27 1999-05-25 Schneider (Usa) Inc Bifurcated stent graft
CA2235911C (en) 1997-05-27 2003-07-29 Schneider (Usa) Inc. Stent and stent-graft for treating branched vessels
EP0891751A1 (en) 1997-07-18 1999-01-20 Thomas Prof. Dr. Ischinger Vascular stent for bifurcations, sidebranches and ostial lesions and an application catheter and method for implantation
IT1293690B1 (en) 1997-08-08 1999-03-08 Sorin Biomedica Cardio Spa ANGIOPLASTIC STENT, PARTICULARLY FOR THE TREATMENT OF AORTO-HOSPITAL AND HOSPITAL INJURIES.
US6361544B1 (en) 1997-08-13 2002-03-26 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6165195A (en) 1997-08-13 2000-12-26 Advanced Cardiovascylar Systems, Inc. Stent and catheter assembly and method for treating bifurcations
ES2290995T3 (en) 1997-09-24 2008-02-16 Med Institute, Inc. RADIALLY EXPANDABLE ENDOPROTESIS.
US6520988B1 (en) 1997-09-24 2003-02-18 Medtronic Ave, Inc. Endolumenal prosthesis and method of use in bifurcation regions of body lumens
US6086611A (en) 1997-09-25 2000-07-11 Ave Connaught Bifurcated stent
US5972027A (en) * 1997-09-30 1999-10-26 Scimed Life Systems, Inc Porous stent drug delivery system
US5928193A (en) 1997-10-03 1999-07-27 Boston Scientific Corporation Balloon catheterization
US6013091A (en) * 1997-10-09 2000-01-11 Scimed Life Systems, Inc. Stent configurations
US5893887A (en) 1997-10-14 1999-04-13 Iowa-India Investments Company Limited Stent for positioning at junction of bifurcated blood vessel and method of making
US6273908B1 (en) 1997-10-24 2001-08-14 Robert Ndondo-Lay Stents
US6033435A (en) 1997-11-03 2000-03-07 Divysio Solutions Ulc Bifurcated stent and method for the manufacture and delivery of same
AU749980B2 (en) 1997-11-07 2002-07-04 Advanced Bio Prosthetic Surfaces, Ltd. Metallic Intravascular Stent and Method of Manufacturing a Metallic Intravascular Stent
DE69830227T2 (en) 1997-11-07 2006-02-02 Ave Connaught BALLOON CATHETER FOR THE REPAIR OF REFILLING BLOOD VESSELS
US6030414A (en) 1997-11-13 2000-02-29 Taheri; Syde A. Variable stent and method for treatment of arterial disease
US6013055A (en) * 1997-11-13 2000-01-11 Boston Scientific Corporation Catheter balloon having selected folding characteristics
US5961548A (en) 1997-11-18 1999-10-05 Shmulewitz; Ascher Bifurcated two-part graft and methods of implantation
US6129754A (en) 1997-12-11 2000-10-10 Uni-Cath Inc. Stent for vessel with branch
CA2220864A1 (en) 1998-01-20 1999-07-20 Nisar Huq A bifurcation stent
US6395018B1 (en) 1998-02-09 2002-05-28 Wilfrido R. Castaneda Endovascular graft and process for bridging a defect in a main vessel near one of more branch vessels
AU754966B2 (en) 1998-02-12 2002-11-28 Thomas R. Marotta Endovascular prosthesis
US6033380A (en) * 1998-02-13 2000-03-07 Cordis Corporation Six-pleated catheter balloon and device for forming same
WO1999040876A2 (en) 1998-02-17 1999-08-19 Jang G David Tubular stent consists of chevron-shape expansion struts and ipsilaterally attached m-frame connectors
US5938697A (en) * 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6113579A (en) 1998-03-04 2000-09-05 Scimed Life Systems, Inc. Catheter tip designs and methods for improved stent crossing
US6099497A (en) 1998-03-05 2000-08-08 Scimed Life Systems, Inc. Dilatation and stent delivery system for bifurcation lesions
US6132461A (en) 1998-03-27 2000-10-17 Intratherapeutics, Inc. Stent with dual support structure
US6241762B1 (en) 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US7208011B2 (en) 2001-08-20 2007-04-24 Conor Medsystems, Inc. Implantable medical device with drug filled holes
US7208010B2 (en) 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US7179289B2 (en) 1998-03-30 2007-02-20 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US6149957A (en) 1998-04-09 2000-11-21 Nestec S.A. Aroma recovery process
US6206916B1 (en) 1998-04-15 2001-03-27 Joseph G. Furst Coated intraluminal graft
US6093203A (en) 1998-05-13 2000-07-25 Uflacker; Renan Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation
US6129757A (en) 1998-05-18 2000-10-10 Scimed Life Systems Implantable members for receiving therapeutically useful compositions
US6168621B1 (en) 1998-05-29 2001-01-02 Scimed Life Systems, Inc. Balloon expandable stent with a self-expanding portion
US6129738A (en) 1998-06-20 2000-10-10 Medtronic Ave, Inc. Method and apparatus for treating stenoses at bifurcated regions
US6261319B1 (en) 1998-07-08 2001-07-17 Scimed Life Systems, Inc. Stent
US6264662B1 (en) 1998-07-21 2001-07-24 Sulzer Vascutek Ltd. Insertion aid for a bifurcated prosthesis
US20020038146A1 (en) 1998-07-29 2002-03-28 Ulf Harry Expandable stent with relief cuts for carrying medicines and other materials
US6143002A (en) 1998-08-04 2000-11-07 Scimed Life Systems, Inc. System for delivering stents to bifurcation lesions
CA2340652C (en) 1998-08-20 2013-09-24 Cook Incorporated Coated implantable medical device comprising paclitaxel
US6117117A (en) 1998-08-24 2000-09-12 Advanced Cardiovascular Systems, Inc. Bifurcated catheter assembly
US6126652A (en) 1998-09-08 2000-10-03 Medtronic Inc. Catheter balloon refolding tool and method of use
US6206915B1 (en) 1998-09-29 2001-03-27 Medtronic Ave, Inc. Drug storing and metering stent
US6017324A (en) 1998-10-20 2000-01-25 Tu; Lily Chen Dilatation catheter having a bifurcated balloon
US6293967B1 (en) 1998-10-29 2001-09-25 Conor Medsystems, Inc. Expandable medical device with ductile hinges
DE19855421C2 (en) 1998-11-02 2001-09-20 Alcove Surfaces Gmbh Implant
JP4189127B2 (en) 1998-12-11 2008-12-03 エンドロジックス、インク Intraluminal artificial blood vessels
US6059824A (en) 1998-12-23 2000-05-09 Taheri; Syde A. Mated main and collateral stent and method for treatment of arterial disease
US20050060027A1 (en) 1999-01-13 2005-03-17 Advanced Stent Technologies, Inc. Catheter balloon systems and methods
US7655030B2 (en) 2003-07-18 2010-02-02 Boston Scientific Scimed, Inc. Catheter balloon systems and methods
AU2851000A (en) 1999-01-15 2000-08-01 Ventrica, Inc. Methods and devices for forming vascular anastomoses
IT1309583B1 (en) 1999-02-26 2002-01-24 Ams Italia S R L PERFECTED CATHETER FOR VASCULAR INTERVENTIONS.
US6261316B1 (en) 1999-03-11 2001-07-17 Endologix, Inc. Single puncture bifurcation graft deployment system
US6558422B1 (en) 1999-03-26 2003-05-06 University Of Washington Structures having coated indentations
US6258099B1 (en) * 1999-03-31 2001-07-10 Scimed Life Systems, Inc. Stent security balloon/balloon catheter
DE19921788A1 (en) 1999-05-11 2000-11-16 Jomed Implantate Gmbh Device for implanting vascular supports
US6290673B1 (en) 1999-05-20 2001-09-18 Conor Medsystems, Inc. Expandable medical device delivery system and method
US7387639B2 (en) 1999-06-04 2008-06-17 Advanced Stent Technologies, Inc. Short sleeve stent delivery catheter and methods
US6884258B2 (en) 1999-06-04 2005-04-26 Advanced Stent Technologies, Inc. Bifurcation lesion stent delivery using multiple guidewires
US6258121B1 (en) * 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US6551351B2 (en) 1999-07-02 2003-04-22 Scimed Life Systems Spiral wound stent
DE19934923A1 (en) 1999-07-20 2001-01-25 Biotronik Mess & Therapieg Balloon catheter
DE19938377A1 (en) 1999-08-06 2001-03-01 Biotronik Mess & Therapieg Stent for vascular branching
DE60018582T2 (en) 1999-08-18 2006-01-19 Microchips, Inc., Bedford THERMALLY ACTIVATABLE MICROCHIP AS CHARGING DEVICE FOR CHEMICALS
US6293968B1 (en) * 1999-09-02 2001-09-25 Syde A. Taheri Inflatable intraluminal vascular stent
US6713119B2 (en) 1999-09-03 2004-03-30 Advanced Cardiovascular Systems, Inc. Biocompatible coating for a prosthesis and a method of forming the same
US6379381B1 (en) 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6287628B1 (en) 1999-09-03 2001-09-11 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
JP2003532446A (en) 1999-09-23 2003-11-05 アドバンスド ステント テクノロジーズ, インコーポレイテッド Bifurcated stent system and method of use
US6689156B1 (en) 1999-09-23 2004-02-10 Advanced Stent Technologies, Inc. Stent range transducers and methods of use
US6383213B2 (en) 1999-10-05 2002-05-07 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
CA2392006C (en) 1999-11-17 2011-03-15 Microchips, Inc. Microfabricated devices for the delivery of molecules into a carrier fluid
US6387120B2 (en) 1999-12-09 2002-05-14 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6254593B1 (en) 1999-12-10 2001-07-03 Advanced Cardiovascular Systems, Inc. Bifurcated stent delivery system having retractable sheath
US6361555B1 (en) 1999-12-15 2002-03-26 Advanced Cardiovascular Systems, Inc. Stent and stent delivery assembly and method of use
US6325822B1 (en) 2000-01-31 2001-12-04 Scimed Life Systems, Inc. Braided stent having tapered filaments
ES2420279T3 (en) 2000-03-02 2013-08-23 Microchips, Inc. Microfabricated devices and methods for storage and selective exposure of chemicals
CA2397980C (en) 2000-03-03 2009-08-04 Cook Incorporated Endovascular device having a stent
US6210433B1 (en) 2000-03-17 2001-04-03 LARRé JORGE CASADO Stent for treatment of lesions of bifurcated vessels
US6468301B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Repositionable and recapturable vascular stent/graft
EP1273027B1 (en) 2000-04-12 2007-02-07 Aixtron AG Reaction chamber with at least one hf feedthrough
US6423091B1 (en) 2000-05-16 2002-07-23 Cordis Corporation Helical stent having flat ends
US6334864B1 (en) 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
AU2001261801A1 (en) 2000-05-22 2001-12-03 Orbus Medical Technologies Inc. Self-expanding stent
US6395326B1 (en) 2000-05-31 2002-05-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
US6709451B1 (en) 2000-07-14 2004-03-23 Norman Noble, Inc. Channeled vascular stent apparatus and method
US7101391B2 (en) * 2000-09-18 2006-09-05 Inflow Dynamics Inc. Primarily niobium stent
US8070792B2 (en) 2000-09-22 2011-12-06 Boston Scientific Scimed, Inc. Stent
US6699278B2 (en) 2000-09-22 2004-03-02 Cordis Corporation Stent with optimal strength and radiopacity characteristics
US6254632B1 (en) 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
US6773429B2 (en) 2000-10-11 2004-08-10 Microchips, Inc. Microchip reservoir devices and facilitated corrosion of electrodes
WO2002030329A2 (en) 2000-10-13 2002-04-18 Rex Medical, L.P. Covered stents with side branch
US6764507B2 (en) 2000-10-16 2004-07-20 Conor Medsystems, Inc. Expandable medical device with improved spatial distribution
DE20122506U1 (en) 2000-10-16 2005-12-08 Conor Medsystems, Inc., Menlo Park Expandable medical device for delivering a beneficial agent
US6506437B1 (en) 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
US6758859B1 (en) 2000-10-30 2004-07-06 Kenny L. Dang Increased drug-loading and reduced stress drug delivery device
US6582394B1 (en) 2000-11-14 2003-06-24 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcated vessels
US6645242B1 (en) 2000-12-11 2003-11-11 Stephen F. Quinn Bifurcated side-access intravascular stent graft
AU2003279704A1 (en) * 2000-12-27 2004-04-08 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US6752829B2 (en) 2001-01-30 2004-06-22 Scimed Life Systems, Inc. Stent with channel(s) for containing and delivering a biologically active material and method for manufacturing the same
US20040073294A1 (en) 2002-09-20 2004-04-15 Conor Medsystems, Inc. Method and apparatus for loading a beneficial agent into an expandable medical device
DE10107795B4 (en) 2001-02-13 2014-05-15 Berlex Ag Vascular support with a basic body, method for producing the vascular support, apparatus for coating the vascular support
US6695877B2 (en) * 2001-02-26 2004-02-24 Scimed Life Systems Bifurcated stent
US7799064B2 (en) 2001-02-26 2010-09-21 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
WO2002067653A2 (en) * 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent and delivery system
FR2822370B1 (en) 2001-03-23 2004-03-05 Perouse Lab TUBULAR ENDOPROSTHESIS COMPRISING A DEFORMABLE RING AND REQUIRED OF INTERVENTION FOR ITS IMPLANTATION
JP2004525704A (en) 2001-03-26 2004-08-26 マシーン ソリューションズ インコーポレイテッド Balloon folding technology
US8337540B2 (en) 2001-05-17 2012-12-25 Advanced Cardiovascular Systems, Inc. Stent for treating bifurcations and method of use
US6749628B1 (en) 2001-05-17 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
JP2004529735A (en) 2001-06-18 2004-09-30 イーバ コーポレイション Prosthetic implants and their use
US6718599B2 (en) 2001-06-25 2004-04-13 Termax Corporation Spring fastener with ergonomically balanced removal to insertion force ratio
JP2005505429A (en) 2001-06-28 2005-02-24 マイクロチップス・インコーポレーテッド Method for hermetically sealing a microchip reservoir device
ES2266148T5 (en) 2001-07-20 2012-11-06 Sorin Biomedica Cardio S.R.L. Stent
US6743259B2 (en) * 2001-08-03 2004-06-01 Core Medical, Inc. Lung assist apparatus and methods for use
US7056338B2 (en) 2003-03-28 2006-06-06 Conor Medsystems, Inc. Therapeutic agent delivery device with controlled therapeutic agent release rates
US7563270B2 (en) 2001-08-23 2009-07-21 Gumm Darrel C Rotating stent delivery system for side branch access and protection and method of using same
US6946092B1 (en) 2001-09-10 2005-09-20 Scimed Life Systems, Inc. Medical balloon
US7252679B2 (en) 2001-09-13 2007-08-07 Cordis Corporation Stent with angulated struts
US7004963B2 (en) * 2001-09-14 2006-02-28 Scimed Life Systems, Inc. Conformable balloons
US7479149B2 (en) 2001-10-25 2009-01-20 Boston Scientific Scimed, Inc. Balloon configuring apparatus
US7828838B2 (en) 2001-11-28 2010-11-09 Aptus Endosystems, Inc. Devices, systems, and methods for prosthesis delivery and implantation, including a prosthesis assembly
US7014654B2 (en) 2001-11-30 2006-03-21 Scimed Life Systems, Inc. Stent designed for the delivery of therapeutic substance or other agents
US7918867B2 (en) * 2001-12-07 2011-04-05 Abbott Laboratories Suture trimmer
US6939368B2 (en) * 2002-01-17 2005-09-06 Scimed Life Systems, Inc. Delivery system for self expanding stents for use in bifurcated vessels
US6964681B2 (en) * 2002-01-29 2005-11-15 Medtronic Vascular, Inc. Flared stent and method of use
US7951164B2 (en) 2002-02-28 2011-05-31 Boston Scientific Scimed, Inc. Balloon folding apparatus, methods and products
US7758605B2 (en) 2002-02-28 2010-07-20 Boston Scientific Scimed, Inc. Balloon folding apparatus, methods and products
AU2003234651B2 (en) 2002-05-28 2005-10-06 The Cleveland Clinic Foundation Minimally invasive treatment system for aortic aneurysms
US6858038B2 (en) 2002-06-21 2005-02-22 Richard R. Heuser Stent system
US6761734B2 (en) 2002-07-22 2004-07-13 William S. Suhr Segmented balloon catheter for stenting bifurcation lesions
AU2003249309A1 (en) 2002-07-24 2004-02-09 Advanced Stent Technologies, Inc. Stents capable of controllably releasing histone deacetylase inhibitors
US20040127976A1 (en) 2002-09-20 2004-07-01 Conor Medsystems, Inc. Method and apparatus for loading a beneficial agent into an expandable medical device
US20040059406A1 (en) 2002-09-20 2004-03-25 Cully Edward H. Medical device amenable to fenestration
CA2499594A1 (en) 2002-09-20 2004-04-01 Conor Medsystems, Inc. Expandable medical device with openings for delivery of multiple beneficial agents
US20040068161A1 (en) 2002-10-02 2004-04-08 Couvillon Lucien Alfred Thrombolysis catheter
US7326242B2 (en) * 2002-11-05 2008-02-05 Boston Scientific Scimed, Inc. Asymmetric bifurcated crown
AU2003287633A1 (en) 2002-11-08 2004-06-03 Innovational Holdings, Llc Method and apparatus for reducing tissue damage after ischemic injury
US20040142014A1 (en) 2002-11-08 2004-07-22 Conor Medsystems, Inc. Method and apparatus for reducing tissue damage after ischemic injury
US20040143321A1 (en) 2002-11-08 2004-07-22 Conor Medsystems, Inc. Expandable medical device and method for treating chronic total occlusions with local delivery of an angiogenic factor
US7314480B2 (en) 2003-02-27 2008-01-01 Boston Scientific Scimed, Inc. Rotating balloon expandable sheath bifurcation delivery
US20040202692A1 (en) 2003-03-28 2004-10-14 Conor Medsystems, Inc. Implantable medical device and method for in situ selective modulation of agent delivery
US7163555B2 (en) 2003-04-08 2007-01-16 Medtronic Vascular, Inc. Drug-eluting stent for controlled drug delivery
US7731747B2 (en) 2003-04-14 2010-06-08 Tryton Medical, Inc. Vascular bifurcation prosthesis with multiple thin fronds
US20040225345A1 (en) * 2003-05-05 2004-11-11 Fischell Robert E. Means and method for stenting bifurcated vessels
JP2007521843A (en) 2003-05-15 2007-08-09 バイオメリクス コーポレーション Reticulated elastomeric matrix, its manufacture and use in implantable devices
US6904658B2 (en) 2003-06-02 2005-06-14 Electroformed Stents, Inc. Process for forming a porous drug delivery layer
US7169179B2 (en) 2003-06-05 2007-01-30 Conor Medsystems, Inc. Drug delivery device and method for bi-directional drug delivery
US8298280B2 (en) 2003-08-21 2012-10-30 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
WO2005034810A1 (en) 2003-10-10 2005-04-21 Cook Incorporated Stretchable prosthesis fenestration
WO2005037133A2 (en) 2003-10-10 2005-04-28 Arshad Quadri System and method for endoluminal grafting of bifurcated and branched vessels
US7070616B2 (en) 2003-10-31 2006-07-04 Cordis Corporation Implantable valvular prosthesis
US20080208307A1 (en) 2003-11-03 2008-08-28 B-Balloon Ltd. Treatment of Vascular Bifurcations
US7338509B2 (en) 2003-11-06 2008-03-04 Boston Scientific Scimed, Inc. Electroactive polymer actuated sheath for implantable or insertable medical device
US9078780B2 (en) 2003-11-08 2015-07-14 Cook Medical Technologies Llc Balloon flareable branch vessel prosthesis and method
US6997989B2 (en) 2003-12-08 2006-02-14 Boston Scientific Scimed, Inc. Medical implant processing chamber
US20050131526A1 (en) 2003-12-10 2005-06-16 Shing-Chiu Wong Stent and balloon system for bifurcated vessels and lesions
US7686841B2 (en) 2003-12-29 2010-03-30 Boston Scientific Scimed, Inc. Rotating balloon expandable sheath bifurcation delivery system
US7922753B2 (en) 2004-01-13 2011-04-12 Boston Scientific Scimed, Inc. Bifurcated stent delivery system
US7225518B2 (en) 2004-02-23 2007-06-05 Boston Scientific Scimed, Inc. Apparatus for crimping a stent assembly
US7744619B2 (en) 2004-02-24 2010-06-29 Boston Scientific Scimed, Inc. Rotatable catheter assembly
US8137397B2 (en) 2004-02-26 2012-03-20 Boston Scientific Scimed, Inc. Medical devices
US20050209673A1 (en) 2004-03-04 2005-09-22 Y Med Inc. Bifurcation stent delivery devices
US20050273149A1 (en) 2004-06-08 2005-12-08 Tran Thomas T Bifurcated stent delivery system
EP1753369B1 (en) 2004-06-08 2013-05-29 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US7972351B2 (en) 2004-07-13 2011-07-05 Boston Scientific Scimed, Inc. Balloon folding design and method and apparatus for making balloons
US20060034884A1 (en) 2004-08-10 2006-02-16 Stenzel Eric B Coated medical device having an increased coating surface area
US20060041303A1 (en) 2004-08-18 2006-02-23 Israel Henry M Guidewire with stopper
US8119153B2 (en) 2004-08-26 2012-02-21 Boston Scientific Scimed, Inc. Stents with drug eluting coatings
ATE389370T1 (en) 2004-09-02 2008-04-15 Med Inst Inc MODULAR PROSTHESIS AND METHODS FOR BRANCH VESSELS
WO2006036319A2 (en) * 2004-09-15 2006-04-06 Conor Medsystems, Inc. Bifurcation stent with crushable end and method for delivery of a stent to a bifurcation
US20060093643A1 (en) 2004-11-04 2006-05-04 Stenzel Eric B Medical device for delivering therapeutic agents over different time periods
ATE508714T1 (en) 2005-01-10 2011-05-15 Trireme Medical Inc STENT WITH SELF-EXPANDABLE AREA
US8353944B2 (en) 2005-03-14 2013-01-15 Boston Scientific Scimed, Inc. Bifurcation delivery system
US8480728B2 (en) 2005-05-26 2013-07-09 Boston Scientific Scimed, Inc. Stent side branch deployment initiation geometry
US7485140B2 (en) 2005-06-17 2009-02-03 Boston Scientific Scimed, Inc. Bifurcation stent assembly
US7637939B2 (en) 2005-06-30 2009-12-29 Boston Scientific Scimed, Inc. Hybrid stent
US20070055358A1 (en) * 2005-08-22 2007-03-08 Krolik Jeffrey A Axially compressible flared stents and apparatus and methods for delivering them
US20070050016A1 (en) 2005-08-29 2007-03-01 Boston Scientific Scimed, Inc. Stent with expanding side branch geometry
US7404823B2 (en) 2005-10-31 2008-07-29 Boston Scientific Scimed, Inc. Stent configurations
US20070173787A1 (en) 2005-11-01 2007-07-26 Huang Mark C T Thin-film nitinol based drug eluting stent
US20070173923A1 (en) 2006-01-20 2007-07-26 Savage Douglas R Drug reservoir stent

Also Published As

Publication number Publication date
EP1753369A4 (en) 2008-02-13
US7951192B2 (en) 2011-05-31
US7578841B2 (en) 2009-08-25
EP1753369A2 (en) 2007-02-21
US20060036315A1 (en) 2006-02-16
WO2005122959A3 (en) 2007-03-15
US20110230960A1 (en) 2011-09-22
JP5054524B2 (en) 2012-10-24
US20090319030A1 (en) 2009-12-24
WO2005122959A2 (en) 2005-12-29
JP2008501480A (en) 2008-01-24
CA2559540A1 (en) 2005-12-29
US8425590B2 (en) 2013-04-23

Similar Documents

Publication Publication Date Title
EP1753369B1 (en) Stent with protruding branch portion for bifurcated vessels
US7220275B2 (en) Stent with protruding branch portion for bifurcated vessels
EP1643937B1 (en) Stent with protruding branch portion for bifurcated vessels
US8257425B2 (en) Stent with protruding branch portion for bifurcated vessels
EP1824415B1 (en) Stent with protruding branch portion for bifurcated vessels
CA2383297C (en) Bifurcation stent system and method
EP1890643B1 (en) Bifurcation stent assembly
EP1954218B1 (en) Twisting bifurcation delivery system
WO2004026180A2 (en) Stent with protruding branch portion for bifurcated vessels
AU2005203457B2 (en) Bifurcated stent and stent delivery system
JP5101530B2 (en) Stent delivery system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061103

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VALENCIA, HANS

Inventor name: YADIN, AMNON

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20080116

17Q First examination report despatched

Effective date: 20081120

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 613883

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005039808

Country of ref document: DE

Effective date: 20130725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130529

Year of fee payment: 9

Ref country code: GB

Payment date: 20130605

Year of fee payment: 9

Ref country code: IE

Payment date: 20130611

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130624

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 613883

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130529

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130929

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130909

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130830

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130619

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

26N No opposition filed

Effective date: 20140303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005039808

Country of ref document: DE

Effective date: 20140303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005039808

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140606

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005039808

Country of ref document: DE

Effective date: 20150101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140606

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140606

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140606

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050606

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130606