EP2148151A2 - System for collecting solar radiation using a collecting surface made with structural elements which can be divided - Google Patents

System for collecting solar radiation using a collecting surface made with structural elements which can be divided Download PDF

Info

Publication number
EP2148151A2
EP2148151A2 EP09490003A EP09490003A EP2148151A2 EP 2148151 A2 EP2148151 A2 EP 2148151A2 EP 09490003 A EP09490003 A EP 09490003A EP 09490003 A EP09490003 A EP 09490003A EP 2148151 A2 EP2148151 A2 EP 2148151A2
Authority
EP
European Patent Office
Prior art keywords
heat
sections
active surface
foregoing
solar radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09490003A
Other languages
German (de)
French (fr)
Other versions
EP2148151A3 (en
Inventor
Valter Rocchetti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mastertag SA
Original Assignee
Mastertag SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mastertag SA filed Critical Mastertag SA
Publication of EP2148151A2 publication Critical patent/EP2148151A2/en
Publication of EP2148151A3 publication Critical patent/EP2148151A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1042Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/003Central heating systems using heat accumulated in storage masses water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/20Solar heat collectors using working fluids having circuits for two or more working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/69Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of shingles or tiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present invention relates to technologies concerning the use of solar energy to heat a fluid.
  • the invention relates to a system for collecting solar radiation for the exchange of the associated heat energy with a fluid and for subsequently conveying the heat carrier fluid towards suitable storage means; a system in which structural elements operate which are connected to each other in such a way as to form a surface suitable for collecting solar radiation.
  • a heat carrier fluid for example water, serving a heating circuit, or a network for distribution of water for sanitary use
  • a heat carrier fluid for example water, serving a heating circuit, or a network for distribution of water for sanitary use
  • the fluid running through the network suitably heated, then reaches a storage tank from which by means of suitable heat exchanges it is then transferred to the various user devices served.
  • modular structural elements were made for collecting and exchanging heat, their geometry and dimensions similar to those of bent tiles for roofing. These elements, connected to each other as appropriate for conventional bent tiles, or even also connected to conventional bent tiles, allow building structures to be obtained which are active in heat collection and heat exchange, but which, unlike conventional solar panels, are perfectly integrated in the building structure even in terms of aesthetics.
  • Such panels in particular have active surfaces which, similarly to the bent tiles for roofing, have a semi-cylindrical shape with its convex part towards the sun and which contains below its concave part tubes through which there flows the heat carrier fluid to be heated by the solar energy striking the surface of the building structure.
  • Structural elements made in that way although appreciable due to their pleasant appearance and their capacity for integration with conventional building structures, have the disadvantage of operating with reduced energy efficiency and, considering that in solar heating theoretical energy exchanges are of a low level, such reduced energy efficiency is a factor penalising the inexpensiveness and the advantage of a heating system made in that way.
  • the active surface of a generic structural element - due to its curvature - is particularly penalised when rays of sunlight strike it at a very oblique angle.
  • the least exposed part of said surface takes away a share of the heat collected by the part which is in contrast more favourably exposed to the radiation, in this way lowering the overall heat yield of the structural element.
  • the main aim of the invention is therefore to overcome the above-mentioned disadvantages with a system having bent tile structural elements designed in such a way that they avoid the dissipation of energy by the less favoured surface and in such a way that they avoid feeding towards the storage means a fluid capable of reducing the temperature of the mass of fluid stored there.
  • the invention achieves said aim with a system whose technical features are clear from the content of the claims herein, in particular claim 1, and from any of the claims directly or indirectly dependent on claim 1.
  • Figure 1 shows a generic building 13 fitted with a system, illustrated as a whole in Figure 3 and labelled 1.
  • the system 1 is designed to be able to collect solar radiation striking a surface 4 suitably exposed to the sun, and to exchange the radiation's associated heat energy with heat storage means 2.
  • the surface 4 is a roof 14 covering the building 13.
  • the heat storage means 2 serve, for example, a system 15 for heating rooms and/or the water used for sanitary equipment.
  • the surface 4 for collecting solar radiation comprises a plurality of component structural elements 3, with modular shape and dimensions - for example having a shape similar to the bent tiles of conventional building roofing - and designed to be placed alongside each other so as to form, and/or integrate with, the building 13 roofing.
  • Figure 2 shows how each structural element 3 has a substantially semi-cylindrical hollow shape, with two flat base surfaces 20 substantially having the shape of an arc of a circle.
  • the element 3 has a convex extrados lateral surface 16, exposed to the outside of the building 13; a concave intrados lateral surface 17, facing the inside of the building 13; and an inner cavity 18, delimited between the extrados and intrados surfaces 16, 17 and the two bases 20.
  • the cavity 18 houses an active surface 5 - preferably divided into two sections 5a and 5b - for collecting solar heat and exchanging it with a heat carrier fluid circulating between the element 3 and the heat storage means 2.
  • the active surface 5, that is to say, the two sections 5a and 5b of which a preferred embodiment of it consists, is a thin sheet of material which is good at conducting heat (for example a copper alloy) and may be shaped in such a way that it is either substantially two-dimensional, in space, or three-dimensional as shown for example by the preferred embodiment of the invention described herein.
  • the active surface 5 has a shape similar to that of a building structure element designed in the shape of a bent tile.
  • Figures 2 and 3 also show how the two sections 5a and 5b of the active surface 5 are physically separate from each other, and symmetrical with one another relative to a structural element 3 centre line plane 9.
  • Each section 5a or 5b has seats 11 to which there are connected respective separate tubular conveying components 10, inside which the heat carrier fluid travels.
  • Each of the conveying components 10 belongs to a water circuit (only partly illustrated) which connects with the storage means 2 the corresponding sections 5a or 5b of suitably combined groups of elements 3. Said groups may be made with the most diverse grouping criteria. One possible criterion may be - for example - the water connection to a single conveying component 10 from the corresponding sections 5a or 5b of a row of elements 3 arranged in series along directions 21 which are longitudinal relative to the conveying components 10.
  • the sheets of heat conducting material used to make the individual sections 5a and 5b and the respective conveying components 10 are preferably connected to each other in such a way that they operate as a single body.
  • the conveying components 10 and the sheets used to make the sections 5a and 5b may be welded to each other.
  • Figure 2 also shows how the structural element 3 has, at the extrados surface 16, a wall 12 which is transparent to solar radiation, covering the active surface 5 (that is to say, its sections 5a and 5b) and for example made of a glassy material or a material having similar properties, or even made of lenses which concentrate the solar radiation striking the wall.
  • the structural element comprises an opaque, heat insulating wall 13, located behind the active surface 5 and the respective sections 5a and 5b.
  • the separate sections 5a and 5b of the active surface 5 are able to exchange heat with the storage means 2, selectively, and only when a predetermined condition occurs, which is detected by suitable sensor means 6.
  • the sensor means 6 consist, in particular, of suitably positioned temperature detectors 7 which directly detect (if necessary also measuring it) the local temperature of the sections 5a or 5b or the temperature of the fluid at and close to them.
  • the system 1 also comprises control means 19 which, operating between the temperature detectors 7 and hydraulic connections 8 positioned on the conveying components 10, open or close fluid transit between the storage means 2 and the sections 5a and 5b of the structural elements 3 according to the difference in heat existing, detected instantaneously, and according to the sign of said difference.
  • Transit of the fluid of the sections 5a and 5b is only allowed towards the storage means 2 and only when the instantaneous temperature of the fluid behind the sections 5a and/or 5b is higher than the temperature of the fluid contained in the storage means 2.
  • the system 1 gives a high level of heat efficiency because, during the hours when the sun is far from the zenith position, or far from the line perpendicular to the sloping plane of the roof 14, heat collection and exchange are carried out only by the sections 5a and 5b most favourably exposed without the possibility of the energy benefits acquired being penalised by the low or insufficient temperature condition of the heat carrier fluid associated with the sections that are in the shade or with the sections that are not adequately exposed to the sun.
  • the heating transients are at least halved, and the availability of hot water is correspondingly more immediate.
  • the invention achieves the aims indicated, allowing highly efficient solar systems to be obtained; which can be suitably used for a greater number of hours throughout the day and for more days per year.

Abstract

A system (1) for collecting solar radiation and exchanging the heat energy with heat storage means (2) comprises structural elements (3) which are connected to each other in such a way as to form a surface (4) suitable for collecting solar radiation. The structural elements (3) in turn comprise an active surface (5) for collecting and exchanging heat at least functionally divided into separate sections (5a, 5b), each section being designed to selectively exchange heat with the storage means (2) when a predetermined condition detected by suitable sensor means (6) occurs.

Description

  • The present invention relates to technologies concerning the use of solar energy to heat a fluid.
  • More particularly, the invention relates to a system for collecting solar radiation for the exchange of the associated heat energy with a fluid and for subsequently conveying the heat carrier fluid towards suitable storage means; a system in which structural elements operate which are connected to each other in such a way as to form a surface suitable for collecting solar radiation.
  • There are prior art systems for heating a heat carrier fluid (for example water, serving a heating circuit, or a network for distribution of water for sanitary use) which use collecting panels consisting of structural elements that have active surfaces which absorb the solar irradiation heat, exchanging it with an underlying network of tubes connected to them. The fluid running through the network, suitably heated, then reaches a storage tank from which by means of suitable heat exchanges it is then transferred to the various user devices served.
  • Depending on the exposure and orientation of the panels belonging to the collecting surface, and depending on the angle of the panels relative to the positions of the sun at the various times of day, the heat yield of such panels is known to vary greatly.
  • Therefore, to prevent the panels - for example connected to the sloping plane of the roof which is in the shade or in any case exposed to less favourable orientations - from being able to introduce relatively cold water into the storage systems, which may therefore take away the heat already stored there, conventional systems equip the batteries of solar panels with valves which intercept the hydraulic connections with the storage means so as to prevent backward heat exchange from the storage means towards the panels.
  • Recently, in order to simultaneously save energy and safeguard the architectural value of certain types of building roofing, modular structural elements were made for collecting and exchanging heat, their geometry and dimensions similar to those of bent tiles for roofing. These elements, connected to each other as appropriate for conventional bent tiles, or even also connected to conventional bent tiles, allow building structures to be obtained which are active in heat collection and heat exchange, but which, unlike conventional solar panels, are perfectly integrated in the building structure even in terms of aesthetics.
  • Such panels in particular have active surfaces which, similarly to the bent tiles for roofing, have a semi-cylindrical shape with its convex part towards the sun and which contains below its concave part tubes through which there flows the heat carrier fluid to be heated by the solar energy striking the surface of the building structure.
  • Structural elements made in that way, although appreciable due to their pleasant appearance and their capacity for integration with conventional building structures, have the disadvantage of operating with reduced energy efficiency and, considering that in solar heating theoretical energy exchanges are of a low level, such reduced energy efficiency is a factor penalising the inexpensiveness and the advantage of a heating system made in that way.
  • Within the bent tile structure, the active surface of a generic structural element - due to its curvature - is particularly penalised when rays of sunlight strike it at a very oblique angle. Indeed, within the active surface of a bent tile the least exposed part of said surface takes away a share of the heat collected by the part which is in contrast more favourably exposed to the radiation, in this way lowering the overall heat yield of the structural element.
  • The main aim of the invention is therefore to overcome the above-mentioned disadvantages with a system having bent tile structural elements designed in such a way that they avoid the dissipation of energy by the less favoured surface and in such a way that they avoid feeding towards the storage means a fluid capable of reducing the temperature of the mass of fluid stored there.
  • Accordingly, the invention achieves said aim with a system whose technical features are clear from the content of the claims herein, in particular claim 1, and from any of the claims directly or indirectly dependent on claim 1.
  • The advantages of the present invention are also more apparent in the detailed description which follows, with reference to the accompanying drawings which illustrate a preferred, non-limiting embodiment of the invention, in which:
    • Figure 1 is a schematic assembly view of building roofing with integrated elements of a system in accordance with the invention;
    • Figure 2 is an enlarged schematic view of an element of the roofing of Figure 1;
    • Figure 3 is a schematic illustration of the system indicating the operating principle.
  • With reference to the accompanying drawings, Figure 1 shows a generic building 13 fitted with a system, illustrated as a whole in Figure 3 and labelled 1.
  • The system 1 is designed to be able to collect solar radiation striking a surface 4 suitably exposed to the sun, and to exchange the radiation's associated heat energy with heat storage means 2.
  • In the example described, the surface 4 is a roof 14 covering the building 13. The heat storage means 2 serve, for example, a system 15 for heating rooms and/or the water used for sanitary equipment.
  • The surface 4 for collecting solar radiation comprises a plurality of component structural elements 3, with modular shape and dimensions - for example having a shape similar to the bent tiles of conventional building roofing - and designed to be placed alongside each other so as to form, and/or integrate with, the building 13 roofing.
  • More particularly, Figure 2 shows how each structural element 3 has a substantially semi-cylindrical hollow shape, with two flat base surfaces 20 substantially having the shape of an arc of a circle.
  • The element 3 has a convex extrados lateral surface 16, exposed to the outside of the building 13; a concave intrados lateral surface 17, facing the inside of the building 13; and an inner cavity 18, delimited between the extrados and intrados surfaces 16, 17 and the two bases 20. The cavity 18 houses an active surface 5 - preferably divided into two sections 5a and 5b - for collecting solar heat and exchanging it with a heat carrier fluid circulating between the element 3 and the heat storage means 2.
  • The active surface 5, that is to say, the two sections 5a and 5b of which a preferred embodiment of it consists, is a thin sheet of material which is good at conducting heat (for example a copper alloy) and may be shaped in such a way that it is either substantially two-dimensional, in space, or three-dimensional as shown for example by the preferred embodiment of the invention described herein.
  • As shown in Figures 2 and 3, the active surface 5 has a shape similar to that of a building structure element designed in the shape of a bent tile.
  • Figures 2 and 3 also show how the two sections 5a and 5b of the active surface 5 are physically separate from each other, and symmetrical with one another relative to a structural element 3 centre line plane 9.
  • Each section 5a or 5b has seats 11 to which there are connected respective separate tubular conveying components 10, inside which the heat carrier fluid travels.
  • Each of the conveying components 10 belongs to a water circuit (only partly illustrated) which connects with the storage means 2 the corresponding sections 5a or 5b of suitably combined groups of elements 3. Said groups may be made with the most diverse grouping criteria. One possible criterion may be - for example - the water connection to a single conveying component 10 from the corresponding sections 5a or 5b of a row of elements 3 arranged in series along directions 21 which are longitudinal relative to the conveying components 10.
  • The sheets of heat conducting material used to make the individual sections 5a and 5b and the respective conveying components 10 are preferably connected to each other in such a way that they operate as a single body.
  • If the materials used to make them allow it, the conveying components 10 and the sheets used to make the sections 5a and 5b may be welded to each other.
  • Figure 2 also shows how the structural element 3 has, at the extrados surface 16, a wall 12 which is transparent to solar radiation, covering the active surface 5 (that is to say, its sections 5a and 5b) and for example made of a glassy material or a material having similar properties, or even made of lenses which concentrate the solar radiation striking the wall.
  • At the intrados surface 17, the structural element comprises an opaque, heat insulating wall 13, located behind the active surface 5 and the respective sections 5a and 5b.
  • In practice, the separate sections 5a and 5b of the active surface 5 are able to exchange heat with the storage means 2, selectively, and only when a predetermined condition occurs, which is detected by suitable sensor means 6. The sensor means 6 consist, in particular, of suitably positioned temperature detectors 7 which directly detect (if necessary also measuring it) the local temperature of the sections 5a or 5b or the temperature of the fluid at and close to them.
  • The system 1 also comprises control means 19 which, operating between the temperature detectors 7 and hydraulic connections 8 positioned on the conveying components 10, open or close fluid transit between the storage means 2 and the sections 5a and 5b of the structural elements 3 according to the difference in heat existing, detected instantaneously, and according to the sign of said difference.
  • Transit of the fluid of the sections 5a and 5b is only allowed towards the storage means 2 and only when the instantaneous temperature of the fluid behind the sections 5a and/or 5b is higher than the temperature of the fluid contained in the storage means 2.
  • Operating in that way, the system 1 gives a high level of heat efficiency because, during the hours when the sun is far from the zenith position, or far from the line perpendicular to the sloping plane of the roof 14, heat collection and exchange are carried out only by the sections 5a and 5b most favourably exposed without the possibility of the energy benefits acquired being penalised by the low or insufficient temperature condition of the heat carrier fluid associated with the sections that are in the shade or with the sections that are not adequately exposed to the sun.
  • Moreover, since the total mass of fluid to be heated by the heat is at least halved in two independent circuits, (obviously converging in an operating fashion towards the same storage means 2) the heating transients are at least halved, and the availability of hot water is correspondingly more immediate.
  • The invention achieves the aims indicated, allowing highly efficient solar systems to be obtained; which can be suitably used for a greater number of hours throughout the day and for more days per year.
  • The construction solutions possible, with relatively simple and inexpensive construction, allow lasting, reliable system duration.
  • Finally, said operating and economic advantages accompany the possibility of favouring architectural construction solutions valuable even in terms of aesthetics and the environment.
  • The invention described above is susceptible of industrial application and may be modified and adapted in several ways without thereby departing from the scope of the inventive concept. Moreover, all details of the invention may be substituted by technically equivalent elements.

Claims (18)

  1. A system for collecting solar radiation and exchanging the heat energy with heat storage means (2), comprising structural elements (3) which are connected to each other in such a way as to form a surface (4) designed to collect solar radiation, the system being characterised in that at least one structural element (3) comprises an active surface (5) for collecting and exchanging heat at least functionally divided into separate sections (5a, 5b), each section being designed to selectively exchange heat with the storage means (2) when a predetermined condition detected by suitable sensor means (6) occurs.
  2. The system according to claim 1, characterised in that the sensor means (6) comprise detectors (7) for the temperature reached by each of the sections (5a, 5b), the system (1) comprising control means (19) designed to selectively intercept hydraulic connections (8), being operatively inserted between the storage means (2) and the sections (5a, 5b), according to the difference in heat existing between the storage means (2) and each of the sections (5a and 5b).
  3. The system according to either of the foregoing claims, characterised in that the active surface (5) has a substantially two-dimensional shape.
  4. The system according to any of the foregoing claims, characterised in that the active surface (5) has a three-dimensional shape in space.
  5. The system according to claim 3 or 4, characterised in that the active surface (5) is shaped in such a way that it is similar to a building structure element.
  6. The system according to claim 5, characterised in that the active surface (5) is shaped like a bent tile and the building structure comprises building roofing (14).
  7. The system according to any of the foregoing claims, characterised in that at least two of the sections (5a, 5b) of the active surface (5) of the structural element (3) are physically separate from each other.
  8. The system according to claim 7, characterised in that the sections (5a, 5b) are substantially symmetrical with each other relative to a structural element (3) centre line plane (9).
  9. The system according to any of the foregoing claims, characterised in that the sections (5a, 5b) are connected to separate conveying components (10), inside which a heat carrier fluid travels.
  10. The system according to any of the foregoing claims, characterised in that the active surface (5) comprises a material which is good at conducting heat.
  11. The system according to claims 9 and 10, characterised in that the sheet of heat conducting material and the conveying components (10) are connected in such a way that they substantially operate as a single body.
  12. The system according to claim 11, characterised in that the surface (5; 5a, 5b) comprises seats (11) for housing the conveying components (10).
  13. The system according to any of the foregoing claims, characterised in that the one or each structural element (3) comprises a wall (12) which is transparent to solar radiation, covering the active surface (5).
  14. The system according to claim 13, characterised in that the structural element (3) comprises a heat insulating wall (13) located behind the active surface (5).
  15. The system according to claim 13, characterised in that the transparent wall (12) is made of a glassy material or of a similar material.
  16. The system according to claim 13 or 15, characterised in that the transparent wall (12) comprises lenses designed to concentrate the solar radiation on the sections (5a, 5b).
  17. A structural roofing element characterised in that it is made according to any of the foregoing claims.
  18. Building roofing, characterised in that it comprises at least one structural element (3) made according to any of the foregoing claims.
EP09490003A 2008-07-23 2009-07-20 System for collecting solar radiation using a collecting surface made with structural elements which can be divided Withdrawn EP2148151A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SM200800043A SM200800043B (en) 2008-07-23 2008-07-23 Plant for collecting solar radiation by means of a collection surface formed with partializable structural elements

Publications (2)

Publication Number Publication Date
EP2148151A2 true EP2148151A2 (en) 2010-01-27
EP2148151A3 EP2148151A3 (en) 2010-08-11

Family

ID=41210583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09490003A Withdrawn EP2148151A3 (en) 2008-07-23 2009-07-20 System for collecting solar radiation using a collecting surface made with structural elements which can be divided

Country Status (2)

Country Link
EP (1) EP2148151A3 (en)
SM (1) SM200800043B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184481A (en) 1977-08-01 1980-01-22 August Tornquist Directional self-supporting pyramid shaped hot water solar absorber
US4326502A (en) 1975-04-07 1982-04-27 Ljubomir Radenkovic Solar energy collecting system
US4327705A (en) 1979-11-01 1982-05-04 Steutermann Edward M Solar heat recovery control
US4444177A (en) 1980-12-22 1984-04-24 Hermann Kirchmayer Apparatus for converting solar energy into heat
EP0110836A2 (en) 1982-11-30 1984-06-13 INDUSTRIA MECCANICA LATERIZI S.p.A. Modular solar panel structure effective to be applied on roof coverings
US6220339B1 (en) 1995-09-12 2001-04-24 Edmond D. Krecke Energy system for buildings

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2326668A1 (en) * 1975-10-03 1977-04-29 Inmobilien Finance Trading Est Roof mounted solar energy collector - has tile-sized component with concentrating lens and flat black coloured copper pipe
US4299201A (en) * 1979-06-19 1981-11-10 Junjiro Tsubota Solar energy focusing means

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326502A (en) 1975-04-07 1982-04-27 Ljubomir Radenkovic Solar energy collecting system
US4184481A (en) 1977-08-01 1980-01-22 August Tornquist Directional self-supporting pyramid shaped hot water solar absorber
US4327705A (en) 1979-11-01 1982-05-04 Steutermann Edward M Solar heat recovery control
US4444177A (en) 1980-12-22 1984-04-24 Hermann Kirchmayer Apparatus for converting solar energy into heat
EP0110836A2 (en) 1982-11-30 1984-06-13 INDUSTRIA MECCANICA LATERIZI S.p.A. Modular solar panel structure effective to be applied on roof coverings
US6220339B1 (en) 1995-09-12 2001-04-24 Edmond D. Krecke Energy system for buildings

Also Published As

Publication number Publication date
SM200800043B (en) 2009-09-07
EP2148151A3 (en) 2010-08-11
SM200800043A (en) 2008-07-30

Similar Documents

Publication Publication Date Title
Li et al. Building integrated solar concentrating systems: A review
Buker et al. Building integrated solar thermal collectors–A review
Singh et al. Recent developments in integrated collector storage (ICS) solar water heaters: A review
Zondag Flat-plate PV-Thermal collectors and systems: A review
Hasan et al. Photovoltaic thermal module concepts and their performance analysis: a review
CA2629875C (en) Modular multifunctional solar structure
Abdelrazik et al. The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review
US20090199892A1 (en) Solar earth module
US9874376B2 (en) Coaxial tube solar heater with nighttime cooling
Hudon Solar energy–water heating
Emmanuel et al. A review on the influence of the components on the performance of PVT modules
CN203891495U (en) Solar heating structure of building
JP2009535599A (en) Solar energy device for collecting and collecting heat
Prado et al. Innovations in passive solar water heating systems
Kocer et al. A comparison of flat plate and evacuated tube solar collectors with f-chart method
WO2007013115A1 (en) Element covering the roof and relative system capable of producing energy by solar radiation
EP2148151A2 (en) System for collecting solar radiation using a collecting surface made with structural elements which can be divided
CN102080886A (en) Device for storing energy by using soil
WO2007045933A1 (en) Pergola solar collector system constructed from long heating elements
Tang et al. Solar collectors and solar hot water systems
CN106482362A (en) A kind of roof tile type solar collector
RU2338129C1 (en) Solar house (versions)
Cremers et al. New cooling PV-T collectors, multi-color PV modules and a cooling glass tower—key innovations of home+, stuttgarts house for solar Decathlon Europe 2010
EP2270874A2 (en) Thermo-electric double faced solar collector and method of double collection of solar energy
CN102051985A (en) Method and system for building solar house city

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F24J 2/40 20060101ALI20100707BHEP

Ipc: F24J 2/34 20060101ALI20100707BHEP

Ipc: F24J 2/04 20060101AFI20091028BHEP

17P Request for examination filed

Effective date: 20110119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160202