US1795398A - Elevator for boats with constant draft - Google Patents

Elevator for boats with constant draft Download PDF

Info

Publication number
US1795398A
US1795398A US153683A US15368326A US1795398A US 1795398 A US1795398 A US 1795398A US 153683 A US153683 A US 153683A US 15368326 A US15368326 A US 15368326A US 1795398 A US1795398 A US 1795398A
Authority
US
United States
Prior art keywords
chamber
lock
boats
elevator
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US153683A
Inventor
Huguenin Albert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US1795398A publication Critical patent/US1795398A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02CSHIP-LIFTING DEVICES OR MECHANISMS
    • E02C1/00Locks or dry-docks; Shaft locks, i.e. locks of which one front side is formed by a solid wall with an opening in the lower part through which the ships pass
    • E02C1/04Locks or dry-docks; Shaft locks, i.e. locks of which one front side is formed by a solid wall with an opening in the lower part through which the ships pass with floating throughs throughs for inclined plane lifting apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/30Flood prevention; Flood or storm water management, e.g. using flood barriers

Definitions

  • boat elevating apparatus have a great advantage from the fact that the amount of water supporting the boats remains unchanged when the boats are transferred from one level to the other by means of such apparatus.
  • the operation In the case of locks, the operation must be performed upon the volume of water in which the boats are situated, and such operations must be carried out very 1 slowly, in order to avoid an excessive action upon the boat or boats in the lock chamber. It should be further observed that it-is the operation of filling and emptying which requires the greatest, time and which constitutes the principal disadvantage of the lock system, due to the amount of time thus employed.
  • the lock chamber is givenaconstant draft for all the positions which it nal sections of the elevator representing two typical waiting positions, in communication with the left hand higherlevel basin in Fig. 1, and with the right hand lower lever basin in Fig. 2.
  • Fig. 3 is a general cross section of the elevator on the line 3-3 of'Fig. 2 and showing the lock chamber and the floating chamber.
  • the lock chamber (1 consists of a hollow metallic structure having the form of a floating dock, and a watertight arrangement 15 employed between the end surfaces of the lock chamber a an 79 of-the Walls approved desi struction.
  • This device may be of any gn in the practiceof gate con-
  • the lock chamber a which provides for a constant water depth 0, which may vary only very slightly in a maritime plant, but which must be exactly constant for a river plant, is floating in a mass of water d which entirely iills the space between the side walls 6 and the end walls Z) of the float chamber. 011 the down stream side, two circular channels f connect the said float chamber (Z with the lower level basin. These are provided with an axial pump 9 driven by an electric motor h, this latter being disposed in a watertight chamber 71.
  • No gatesare provided for in the circular channels 7 as the motors driving the aXial pump are designed intentionally for a large range of speeds and are furthermore reversible. At low speed, the runners of the pumps are cutting off any water discharge through the channels.
  • Fig. 1 shows the lock chamber in the position in which it is adapted to receive a boat proceeding upon the down stream course, in which case the gate is opened and the gate Z closed.
  • the water level in rZ is maintained at the proper height by the pumps g-k which as above stated may rotate in either direction and also at a variable speed, since only a small speed is necessary in order to cut off the water at (Z from the lower level basin; this difference of level may be above or below the lower level.
  • No gates in the channels f are provided for.
  • the up stream gate is closed; the pumps gh are run at the normal speed and in either direction (Fig. l) to lower the level cl; the lock chamber now sinks and as soon as the water level therein tends to assume the down stream level, the speed of the pumps gh is reduc'edand if necessary the pumps are reversed-in order to maintain a constant water level in the chamber (Z; the gate Z is opened and the boat can then proceed into the lower level basin.
  • Fig. 2 shows the elevator in the position for receiving boats on the lower level; thus the gate Z is in the disappearing position and the gate 70 is closed. In this event the operation is quite the same as above described.
  • the great advantage of the present elevating system consists in the fact that the boats in the lock chamber can be transferred from one level to the other in a very short time, since the water in the float chamber d can be supplied to or discharged from the said cham her by means of pumping apparatus 71. operating at a high speed, through the passage f, and since this water is not in contact with the boat and the sald passage need not be closed during such operations, inasmuch as the pumps gh rotate at reducedspeed and in the proper dir-ection, thus practically cut ting off the channels f and permitting an adjustment of the water level in the float chamber d which may be required at any time for the constant draft of the lock chamber a in the water of the float chamber d.
  • the present system is particularly advantageous for big dimensions of the lock chamher a; of course the loss of time necessary for the operations of a big lock is important and the more so, as the'mean rate of utilization of its capacity is obviously less than for a smaller lock.
  • elevators of this system compare very favourablyespecially for big capacities, against ordinary locks.
  • the aforesaid elevating system is well adapted for use with lock chambers of the largest size, since the structural part of the float chamber need not be perfectly watertight and can thus operate with greater facility in the event of any unequal sinking, and these conditions will be the better fulfilled inasmuch as the float chamber can be provided for such purposes with construction joints properly spaced upon its length.
  • This ad vantage is still further apparent in the case of lock chambers of several hundred meters length, and the equilibration of the weight of the lock chamber on the floating principle with constant draft is without doubt the simplest and most reliable means which can be employed.
  • the channels 7 can be provided with known closing means (not shown), but these, as above mentioned, are unnecessary for the standard operation.
  • a lock chamber with constant draft in the form of a floating dock a float chamber in which is disposed the said lock chamber, the water level of the float chamber being adjustable, channels adapted to connect the float chamber with the lower level basin, a pump in each of the said channels, the said pumps being able to be run at adjustable speed and in either direction in order to obtain the normal control, and also the practically perfect closing of the said channels, and a door at each of the ends of the lock chamber.

Description

March 10, 1931.
A. HUGUENIN ELEVATOR FOR BOATS WITH CONSTANT DRAFT Filed Dec. 9, 192a WJM W Patented Mar. 10, 1931 A UNITED STATES ArsN T oFFICE ALBERT HUGUENIN, on PARIS, FRANCE E EVATO ron' Boers WITH. CONSTANT DRAFT Application filed December 9, 1926, Serial No. 153,683, and in France December 21, 1925.
As compared with locks, boat elevating apparatus have a great advantage from the fact that the amount of water supporting the boats remains unchanged when the boats are transferred from one level to the other by means of such apparatus. In the case of locks, the operation must be performed upon the volume of water in which the boats are situated, and such operations must be carried out very 1 slowly, in order to avoid an excessive action upon the boat or boats in the lock chamber. It should be further observed that it-is the operation of filling and emptying which requires the greatest, time and which constitutes the principal disadvantage of the lock system, due to the amount of time thus employed. a
In the case of navigable canals or streams,
the loss of water represented by each. opera tion at the locks is not to be counted as an economical factor, although in the case of artificial canals the water must generally be pumped to the upper reach or channel, since it is usually impossible to obtain a supply from a naturalwater course in a sufficient quantity. For all other uses of locks which are necessary when differences of level are set up on a navigable stream for power purposesand artificial canals are now in use both for navigation and for, supplying hydroelectric developments the loss of water at each-operation of the locks represents a corresponding consumption of energy which could be recovered bythe power plant and which is lost due to the lock operations;
Inpractice, each lock operation represents an expenditure of energy, and except for a small number of ,cases,-'this cannot be considered as negligible. 7 w
Since the boat elevator will always require a considerable expenditure of energy which is already supplied for the purpose, the two I systems are quite the same-from this standpoint, when used in combination with a hydro-electric development. Q In order to reduce this consumption of power to the minimum amount in the case of both elevating apparatus, it was first desired to obtain a complete equilibrium between the weight of the movable lock-chamber and the water contained therein,'this being constant, whether the lock-chamber contains one or more boats or not, upon the whole coursecovered by the lock-chamber.-
This exact equilibration can only be obtained 'by the use of weights which are equal to the'weight of the lock chamber itself, and all-theknown systems which utilize the floating of 'thefl'ock chamber are defective from the'fact that'the equilibrium is not exact throughout the-whole course of the lock chamber, but is exact only at a single moment and is defective for the remainder of the stroke.
The known methods for equilibration on the floating principle are in allcases defective from the fact that the immersion is either too great or to 0 small at the end of the course,
and is exact only for a position corresponding. to about the middle of the course. It is however undeniable that the equilibration on the floating principle oflers great'advanta'ges in the way of simple operation, and the present invention relates -to 'a' system by which the desired resultis obtained in an approved manner, and
the lock chamber is givenaconstant draft for all the positions which it nal sections of the elevator representing two typical waiting positions, in communication with the left hand higherlevel basin in Fig. 1, and with the right hand lower lever basin in Fig. 2.
Fig. 3 is a general cross section of the elevator on the line 3-3 of'Fig. 2 and showing the lock chamber and the floating chamber.
The lock chamber (1 consists of a hollow metallic structure having the form of a floating dock, and a watertight arrangement 15 employed between the end surfaces of the lock chamber a an 79 of-the Walls approved desi struction.
d the corresponding flat faces of the float chamber, at either end. This device (not shown) may be of any gn in the practiceof gate con- The lock chamber a which provides for a constant water depth 0, which may vary only very slightly in a maritime plant, but which must be exactly constant for a river plant, is floating in a mass of water d which entirely iills the space between the side walls 6 and the end walls Z) of the float chamber. 011 the down stream side, two circular channels f connect the said float chamber (Z with the lower level basin. These are provided with an axial pump 9 driven by an electric motor h, this latter being disposed in a watertight chamber 71. No gatesare provided for in the circular channels 7 as the motors driving the aXial pump are designed intentionally for a large range of speeds and are furthermore reversible. At low speed, the runners of the pumps are cutting off any water discharge through the channels. The two right and left hand water channels, i. e. the upper and lower channels or reaches, .are closed off from the said lock chamber by the two gates 71: and Z, known per se.
Fig. 1 shows the lock chamber in the position in which it is adapted to receive a boat proceeding upon the down stream course, in which case the gate is opened and the gate Z closed. The water level in rZ is maintained at the proper height by the pumps g-k which as above stated may rotate in either direction and also at a variable speed, since only a small speed is necessary in order to cut off the water at (Z from the lower level basin; this difference of level may be above or below the lower level. No gates in the channels f are provided for.
As soon as the boat enters the lock chamber a, the up stream gate is closed; the pumps gh are run at the normal speed and in either direction (Fig. l) to lower the level cl; the lock chamber now sinks and as soon as the water level therein tends to assume the down stream level, the speed of the pumps gh is reduc'edand if necessary the pumps are reversed-in order to maintain a constant water level in the chamber (Z; the gate Z is opened and the boat can then proceed into the lower level basin.
Fig. 2 shows the elevator in the position for receiving boats on the lower level; thus the gate Z is in the disappearing position and the gate 70 is closed. In this event the operation is quite the same as above described.
The great advantage of the present elevating system consists in the fact that the boats in the lock chamber can be transferred from one level to the other in a very short time, since the water in the float chamber d can be supplied to or discharged from the said cham her by means of pumping apparatus 71. operating at a high speed, through the passage f, and since this water is not in contact with the boat and the sald passage need not be closed during such operations, inasmuch as the pumps gh rotate at reducedspeed and in the proper dir-ection, thus practically cut ting off the channels f and permitting an adjustment of the water level in the float chamber d which may be required at any time for the constant draft of the lock chamber a in the water of the float chamber d.
Another advantage inherent in the said system consists in the great simplicity and strength of the small number of parts entering into the construction of the aforesaid elevating apparatus, and the entire absence of all mechanical friction in moving the lock chamber, whereby a great advantage is ob tained over the known elevating apparatus.
The present system is particularly advantageous for big dimensions of the lock chamher a; of course the loss of time necessary for the operations of a big lock is important and the more so, as the'mean rate of utilization of its capacity is obviously less than for a smaller lock. Thus elevators of this system compare very favourablyespecially for big capacities, against ordinary locks.
The aforesaid elevating system is well adapted for use with lock chambers of the largest size, since the structural part of the float chamber need not be perfectly watertight and can thus operate with greater facility in the event of any unequal sinking, and these conditions will be the better fulfilled inasmuch as the float chamber can be provided for such purposes with construction joints properly spaced upon its length. This ad vantage is still further apparent in the case of lock chambers of several hundred meters length, and the equilibration of the weight of the lock chamber on the floating principle with constant draft is without doubt the simplest and most reliable means which can be employed.
Due to the total elimination of all control for closing the aforesaid filling and emptying passage, as concerns the operation of the whole elevator, an essential advantage is obtained as concerns the saving of time in the operation of the boat elevator.
For inspection purposes, and for the temporary suspension of the operation, the channels 7 can be provided with known closing means (not shown), but these, as above mentioned, are unnecessary for the standard operation.
Having thus described my apparatus, what I claim as new therein, and my own invention, is:
In an elevator for boats, the combination of a lock chamber with constant draft in the form of a floating dock, a float chamber in which is disposed the said lock chamber, the water level of the float chamber being adjustable, channels adapted to connect the float chamber with the lower level basin, a pump in each of the said channels, the said pumps being able to be run at adjustable speed and in either direction in order to obtain the normal control, and also the practically perfect closing of the said channels, and a door at each of the ends of the lock chamber.
In testimony whereof I have hereunto affixed my signature.
ALBERT HUGUENIN.
US153683A 1925-12-21 1926-12-09 Elevator for boats with constant draft Expired - Lifetime US1795398A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1795398X 1925-12-21

Publications (1)

Publication Number Publication Date
US1795398A true US1795398A (en) 1931-03-10

Family

ID=9681133

Family Applications (1)

Application Number Title Priority Date Filing Date
US153683A Expired - Lifetime US1795398A (en) 1925-12-21 1926-12-09 Elevator for boats with constant draft

Country Status (1)

Country Link
US (1) US1795398A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614630A (en) * 1991-02-08 1997-03-25 Cambridge Neuroscience, Inc. Acenaphthyl substituted guanidines and methods of use thereof
US5637622A (en) * 1990-03-02 1997-06-10 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon Tri- and tetra-substituted guanidines and their use as excitatory amino acid antagonists
US5741661A (en) * 1991-02-08 1998-04-21 Cambridge Neuroscience, Inc. Substituted guanidines and derivatives thereof as modulators of neurotransmitter release and novel methodology for identifying neurotransmitter release blockers
US5847006A (en) * 1991-02-08 1998-12-08 Cambridge Neuroscience, Inc. Therapeutic guanidines
US5922772A (en) * 1993-11-23 1999-07-13 Cambridge Neuroscience, Inc. Therapeutic substituted guanidines
US6143791A (en) * 1994-02-03 2000-11-07 Cambridge Neuroscience, Inc. Therapeutic guanidines
US6147063A (en) * 1993-05-27 2000-11-14 Cambridge Neuroscience, Inc. Therapeutic substituted guanidines
US6174924B1 (en) 1994-02-03 2001-01-16 Cambridge Neuroscience, Inc. Therapeutic guanidines
US6251948B1 (en) 1990-03-02 2001-06-26 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon Tri-and tetra-substituted guanidines and their use as excitatory amino acid antagonists
US6787569B1 (en) 1994-02-03 2004-09-07 Cambridge Neuroscience, Inc. Therapeutic guanidines
US9242704B2 (en) * 2014-06-09 2016-01-26 Roland Lawes Floating canal system for seas with tendency to freeze

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5767162A (en) * 1990-03-02 1998-06-16 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon Tri-and tetra-substituted guanidines and their use as excitatory amino acid antagonists
US6251948B1 (en) 1990-03-02 2001-06-26 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon Tri-and tetra-substituted guanidines and their use as excitatory amino acid antagonists
US5637622A (en) * 1990-03-02 1997-06-10 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon Tri- and tetra-substituted guanidines and their use as excitatory amino acid antagonists
US5798390A (en) * 1990-03-02 1998-08-25 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon Tri- and tetra-substituted guanidines and their use as excitatory amino acid antagonists
US5837737A (en) * 1991-02-08 1998-11-17 Cambridge Neuroscience, Inc. Hydrazinedicarboximidamide compounds and pharmaceutical composition comprising same
US6071969A (en) * 1991-02-08 2000-06-06 Cambridge Neuroscience, Inc. Substituted aminoguanidines and methods of use thereof
US5677348A (en) * 1991-02-08 1997-10-14 Cambridge Neuroscience, Inc. Substituted aminoguanidines and methods of use thereof
US5681861A (en) * 1991-02-08 1997-10-28 Cambridge Neuroscience, Inc. Aminoguanidines and methods of use of same
US5686495A (en) * 1991-02-08 1997-11-11 Cambridge Neuroscience, Inc. Substituted hydrazinedicarboximidamides and methods of use thereof
US5741661A (en) * 1991-02-08 1998-04-21 Cambridge Neuroscience, Inc. Substituted guanidines and derivatives thereof as modulators of neurotransmitter release and novel methodology for identifying neurotransmitter release blockers
US5652269A (en) * 1991-02-08 1997-07-29 Cambridge Neuroscience, Inc. Substituted hydrazinecarboximidamides and methods of use thereof
US5637623A (en) * 1991-02-08 1997-06-10 Cambridge Neuroscience, Inc. Substituted adamantyl guanidines and methods of use there of
US5614630A (en) * 1991-02-08 1997-03-25 Cambridge Neuroscience, Inc. Acenaphthyl substituted guanidines and methods of use thereof
US5847006A (en) * 1991-02-08 1998-12-08 Cambridge Neuroscience, Inc. Therapeutic guanidines
US5622968A (en) * 1991-02-08 1997-04-22 Cambridge Neuroscience, Inc. Acenaphthyl substituted guanidines and methods of use thereof
US5670519A (en) * 1991-02-08 1997-09-23 Cambridge Neuroscience, Inc. Acenaphthyl-substituted guanidines and methods of use thereof
US6153604A (en) * 1993-05-27 2000-11-28 Cambridge Neuroscience, Inc. Therapeutic substituted guanidines
US6147063A (en) * 1993-05-27 2000-11-14 Cambridge Neuroscience, Inc. Therapeutic substituted guanidines
US6013675A (en) * 1993-11-23 2000-01-11 Cambridge Neuroscience, Inc. Therapeutic substituted guanidines
US5955507A (en) * 1993-11-23 1999-09-21 Cambridge Neuroscience, Inc. Therapeutic substituted guanidines
US6156741A (en) * 1993-11-23 2000-12-05 Cambridge Neuroscience, Inc. Therapeutic substituted guanidines
US5922772A (en) * 1993-11-23 1999-07-13 Cambridge Neuroscience, Inc. Therapeutic substituted guanidines
US6143791A (en) * 1994-02-03 2000-11-07 Cambridge Neuroscience, Inc. Therapeutic guanidines
US6174924B1 (en) 1994-02-03 2001-01-16 Cambridge Neuroscience, Inc. Therapeutic guanidines
US6288123B1 (en) 1994-02-03 2001-09-11 Cambridge Neurosciences, Inc. Therapeutic guanidines
US6787569B1 (en) 1994-02-03 2004-09-07 Cambridge Neuroscience, Inc. Therapeutic guanidines
US9242704B2 (en) * 2014-06-09 2016-01-26 Roland Lawes Floating canal system for seas with tendency to freeze

Similar Documents

Publication Publication Date Title
US1795398A (en) Elevator for boats with constant draft
US4345159A (en) Hydropowered bulkhead
US3372645A (en) Power-accumulation system
CN110004889A (en) A kind of hydraulic engineering flashboard
CN108331068B (en) Long-distance double PCCP water delivery and lifting system
US2021345A (en) Canal lock
CN220410842U (en) Large pontoon type pump station with straight gate for blocking river
KR102356458B1 (en) Submersible device for buoyancy fountain
US3452962A (en) Method of reducing pressure rise in a hydraulic machine
CN217419525U (en) Novel pump brake with bottom sealing structure
US1670140A (en) Tide motor
US2500354A (en) Apparatus for controlling silt accumulation
US1313965A (en) Tidal-power plant
CN109853493B (en) Pump valve pipeline type fish passing method
SU140374A1 (en) Device for controlling the flow of water
US1069479A (en) Propulsion mechanism for vessels.
US30564A (en) Canal and bivek lock
SU894053A1 (en) Lock for passing ships under bridges
US3098360A (en) Water quality control means
GB156315A (en) Improvements in or relating to pumping installations
Morgan et al. DISCUSSION ON HYDRAULICS PAPER NO. 16: CONTROL OF FLOW BY GATES AND VALVES.
RU2124094C1 (en) Device for recovering water from well
SU1054497A1 (en) Hydraulic structure
RU2125140C1 (en) Device for delivering water from well
CN106759170B (en) A kind of tide power generation method and tidal power generation system