US20010000707A1 - Apparatus and methods for home networking - Google Patents

Apparatus and methods for home networking Download PDF

Info

Publication number
US20010000707A1
US20010000707A1 US09/738,054 US73805400A US2001000707A1 US 20010000707 A1 US20010000707 A1 US 20010000707A1 US 73805400 A US73805400 A US 73805400A US 2001000707 A1 US2001000707 A1 US 2001000707A1
Authority
US
United States
Prior art keywords
customer
network
home
home network
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/738,054
Inventor
Dan Kikinis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/738,054 priority Critical patent/US20010000707A1/en
Publication of US20010000707A1 publication Critical patent/US20010000707A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2898Subscriber equipments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection (CSMA-CD)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/06Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
    • H04M11/066Telephone sets adapted for data transmision

Definitions

  • the present invention is in the area of multimedia computing and communication systems, and pertains more particularly to networking with home systems to allow sharing of functions and devices among individual PCs connected to a home network.
  • a problem with more than one computer or network using-appliance, such as an Internet Telephone, WEB browsing set top box, etc. at home is that, just like in the office, a need quickly becomes apparent for connecting the computers in a network of some sort so resources like a printer and a modem may be shared. Still, even if a network were provided allowing sharing of common devices like a printer, allowing each computer to have Internet access is a problem. Given one Internet Service Provider (ISP) and one Internet account, even if several computers have simultaneous access to the Internet provider's server, only one user at a time may browse the Internet. There are traditional, but expensive solutions. Two or more Internet accounts could be maintained, for example, and each computer could have its own modem and dedicated telephone line. For a single family having multiple home computers however, this is not a good solution. Further, the lines in most standard analog home telephone systems are lacking somewhat in the ability to transmit certain types of data at a consistently high frequency. These types of telephone lines can suffer radiation leakage, etc.
  • a home server unit comprising a communication bus for connecting digital devices within the home server interface unit; a CPU coupled to the bus for managing activities of the hone server unit; a random access memory (RAM) coupled to the bus for temporary and dynamic data and instruction storage; a read-only memory (ROM) coupled to the bus for non-volatile storage of an operating system; a hub circuit coupled to the bus and having network ports for connecting to personal computers; an input/output I/O interface circuit coupled to the bus and having at least one parallel port for connecting to printing and scanning devices; and a bridge adapter unit coupled to the bus and having at least one port adapted for connecting to a wide area network and at least one port adapted for connecting to a telephony device.
  • the CPU executing stored control routines manages data transfers between connected PCs and one or more service providers accessed via the wide-area network.
  • one or more of the hub circuit, the I/O interface circuit, and the bridge adapter unit are implemented as plug-in cards, and the bus has a card slot for receiving the one or more plug-in cards.
  • the CPU executing stored control routines, provides simultaneous Internet access for two or more PCs connected to the home server unit.
  • Other functions provided by the home server through the CPU and stored control routines include telephone exchange services for two or more telephony devices connected to the home server unit, receiving incoming facsimile transmissions, and routing such transmissions to any one of connected PCs or connected printers, according to preprogrammed instructions, and providing access to a remote server over the port adapted for wide area network connection, so one or more connected PCs may use storage space on the remote server transparently to the user.
  • the home server unit solves the existing problem of providing wide area network access to multiple computerized appliances without requiring multiple service accounts.
  • a multimedia data distribution system comprising a distribution system adapted to distribute and deliver Asynchronous Transfer Mode signals to the level of an individual home network bus; a micro-PBX connected to the distribution system and to the home network bus; and a converter connected to the home network bus and having an outlet adapted for connecting to conventional single media and multimedia electronic devices.
  • the micro-PBX is adapted to translate between the ATM protocol and a non-ATM data protocol on the home network bus, and to manage the home network bus as a Carrier Sense Multiple Access/Collision Detect (CSMA/CD) type bus, and the converter is adapted to convert signals on the home network bus to a form required by one of the single media and multimedia electronic devices.
  • the single media and multimedia electronic devices include telephones, personal computers (with adapter cards), fax machines, and televisions running through set top boxes.
  • multimedia distribution is accomplished an a relatively inexpensive manner, and by using existing telephone wiring available in most homes and businesses.
  • a home networking system comprising conventional telephone wiring connected to telephone jacks in a customer's premises; and a customer demarcation unit at a customer's premise, having a port connected to outside telephone wiring and a port connected to the conventional telephone wiring in the customer's premise.
  • the customer demarcation unit is adapted to receive signals on the outside telephone wiring, and to drive the conventional telephone wiring in the customer's premises as a local-area network (LAN) using a spread-spectrum high-frequency signal, converting the signals received to the protocol required by the LAN.
  • LAN local-area network
  • connection unit is provided at a connection point for a customer's device to receive signals on the LAN, wherein the connection unit comprises a sensor for sensing signal strength on the network; a microprocessor; a stored program executable by the microprocessor; a path from the LAN to a connection to a customer's device; and a delay line.
  • the microprocessor sensing a minimum signal strength threshold, is adapted to switch the delay line into the path to the customer's device, thereby improving signal strength to the customer's device.
  • FIG. 1 is a block diagram of a home network according to an embodiment of the present invention.
  • FIG. 2 is a line-by-line listing providing routing examples for the network system of FIG. 1.
  • FIG. 3 is a block diagram of a multimedia network system according to an alternative embodiment of the present invention.
  • FIG. 4 is a simplified overview of x-mass tree wiring of a home network system in an embodiment of the present invention.
  • FIG. 5 is an illustrative view of high frequency waves carried on the wiring of FIG. 4.
  • FIG. 6 is a diagrammatic view of a zero voltage phenomena occurring on the wiring of FIG. 4.
  • FIG. 7 is a diagrammatic view of a method for eliminating the zero voltage phenomena of FIG. 6 in an embodiment of the present invention.
  • FIG. 8 is a block diagram of the internal components of a spread-spectrum modulator-demodulator in accordance with an embodiment of the present invention.
  • FIG. 9 is a time chart illustrating spread data and time relationship in an embodiment of the present invention.
  • FIG. 10 is a diagrammatic view of an alternate embodiment where network cards are used.
  • FIG. 11 is a line by line listing of the components for the micro-PBX in an embodiment of the present invention.
  • FIG. 1 is a block diagram of a home network according to an embodiment of the present invention.
  • a Home Server Unit 100 according to a preferred embodiment of the present invention comprises a CPU 104 , an I/O circuit 102 (which may be a single chip), random access memory (RAM) 106 , a read-only memory (ROM) 107 , and a hub circuit 103 .
  • the ROM may in some embodiments be an alterable ROM (AROM) so upgrades in operating systems and the like may be made.
  • AROM alterable ROM
  • the digital elements of Home Sever Unit 100 are connected by a communications bus 115 , which may be one or another of several buses known in the art, such as AT, PCI, and so forth.
  • a plug-in interface 11 on bus 115 similar to or the same as an expansion port interface in a PC, is provided to accept one or another of several different bridge adapter units 101 .
  • Home Server Unit 100 is typically a box that may be located in any convenient location in the home or other environment, with ports for interfacing to other units and services.
  • hub circuit 103 connects to multiple ports 114 for connection to multiple PCs. Four ports are shown and two are used in this example for connection to PCs 130 and 131 .
  • hub circuit 103 is also fashioned as a plug-in unit with a card slot 15 provided, so circuitry may be modularly adapted to a user's specific needs.
  • I/O circuitry 102 connects to at least one parallel port 113 for connecting to peripheral devices such as a printer 132 shown. Other peripherals, such as a second printer (color printer), a scanner, and the like may be connected from one of the I/O ports.
  • Bridge Adapter Unit 101 provides circuitry with ports 111 for connecting to a communications network 110 and ports 112 for connecting to telephony equipment such as facsimile machine 141 and telephone 140 . In some embodiments a large number of telephone ports may be provided, and Bridge Adapter Unit 101 may function as a PBX exchange.
  • Communications network 110 may be for example an ISDN connection to a local telephone company switch, in which case Bridge Adapter Unit 101 will be adapted for ISDN protocol. Communications network 110 may also be an analog telephone link, a cable connection, an Asymmetric Subscriber Digital Line (ASDL), or other link.
  • Asymmetric Subscriber Digital Line ASDL
  • the point of plug-in modularity for bridge adapter unit 101 is that a user may adapt his or her Home Server Unit 100 according to the service available from the home, and change at a later time if a new or different communication service to the home becomes available.
  • a Multi-Bridge Adapter Unit 120 provides for receiving and processing data packets delivered over network 110 , and for sending data packets from the service provider's end to the Home Server Unit, identified for the PC or peripheral device to which each transmission is intended.
  • facsimile messages may be delivered to unit 100 at Bridge Adapter Unit 101 via network 110 , and be routed to facsimile machine 141 .
  • incoming faxes could be routed to laser printer 132 via I/O circuitry 102 .
  • Multi-Bridge Adapter Unit 120 connects to an EthernetTM backbone 121 (in this particular embodiment) to which various equipment may be interfaced, such as a server 123 shown and a support technician workstation 122 .
  • control routines 13 are provided and stored in AROM 107 to be loaded into RAM 106 on start-up of the Home Server Unit. These routines provide for control of all elements connected to bus 115 , and for conversion and routing of data among the various elements and ports.
  • a salient advantage of the invention in this respect is that data protocols of any sort may be utilized and accommodated.
  • FIG. 2 provides routing examples which may be accomplished by Home Server Unit 100 .
  • Data protocols network protocols that may be accommodated are represented in FIG. 2 by NP 0 ), NP 1 , and NP 2 .
  • NP 0 may be, for example TCP/IP protocol, NP 1 Novell Network protocol., and NP 2 MSNet.
  • Lines 210 and 211 represent PC to PC communication through hub circuitry 103 (which may be a single chip).
  • Data from PC 130 for example, may be received in NP 0 and converted to NP 1 for transmission to PC 131 . The conversion would also be made in the reverse, and CPU 104 , executing routines called from RAM 106 , handles the conversion and routing.
  • Different versions of control routines according to the invention may be available for loading to AROM 107 , depending, among other things, on the network adapters and communication protocols of PCs to be connected.
  • Lines 220 through 223 in FIG. 2 represent PC to printer communication.
  • Data for printer 132 received from either of PC 130 and 131 at hub 103 is converted as necessary by CPU 104 executing routines 13 and sent to printer 132 via I/O circuitry 102 and port 113 .
  • Printer data may be queued and buffered using any of the storage devices (RAM 106 , optional hard disk drive 105 , or even AROM 107 ), or any combination.
  • Lines 230 through 233 represent communication between PCs and the Internet.
  • TCP/IP protocol is received from one of the PCs and processed into AU 101 for transmission to ISP equipment AU 120 .
  • Return data, also TCP/IP, is sent from AU 120 via network 110 to AU 101 , then routed to the associated PC by CPU 104 executing control routines 13 .
  • lines 240 through 244 represent communication between a PC and the Internet service provider (ISP) by a different (non TCP) protocol.
  • PCs connected through Adapter Unit 100 to a service provider may have access to disk space, such as on server 123 connected to Ethernet backbone 121 . This is an additional benefit providing a transparent extra high-capacity drive for each user.
  • FIG. 3 is a block diagram of a multimedia network system in an alternative embodiment of the present invention.
  • the system of FIG. 3 distributes multimedia real-time data, both on-demand and broadcast, as well as computer and telephony data, all over the same system, making use of existing telephone wiring in and to a home or office. This is done in an embodiment of the invention by adapting existing hardware elements and data protocols in a new and inventive architecture not before implemented, and in a manner to provide enhanced performance over existing and known proposed systems for multimedia distribution.
  • network cloud 360 represents worldwide data sources, and link 341 is a high speed Asynchronous Transfer Mode (ATM) link operating on a high-speed path such as a fiber-optic line.
  • ATM is not described in detail in this specification, as it is a well-known network protocol and system in the art of telephony, and available to the inventor as well as to all those with skill in the art.
  • Link 341 leads to a subdivision head-end 342 providing distribution to individual homes and businesses.
  • One such individual unit destination is represented by unit 300 , which may be a typical apartment, home, or office.
  • the placement of such subdivision head-ends in embodiments of the invention is a function of distance capability for hardware and data protocols used.
  • An ATM router switch 340 in subdivision head-end 342 receives the ATM data packets from network 360 and distributes them to subsection routers 330 a through 330 c via internal wring such as link 343 a . It will be apparent to those with skill in the art that there may be many more (or fewer) than the three subsection routers shown, but three will be more than sufficient to teach the invention.
  • a satellite dish 350 is an optional component of subdivision head-end 342 , and when present in embodiments of the invention is used to receive digitally-encoded satellite broadcasts. These signals are downloaded via link 351 to a converter 352 , which de-multiplexes the transport strings and converts them into ATM packets which are provided over link 353 to ATM router switch 340 for distribution according to data in the ATM packets.
  • Link 320 is typically existing copper wiring and is based on the well-known Asynchronous Digital Subscriber Line (ADSL) technology.
  • ADSL Asynchronous Digital Subscriber Line
  • a micro-PBX 301 receives the ADSL signals, translates them, and retransmits them on internal wiring represented in FIG. 3 as links 302 a through 302 d.
  • the internal wires are copper, and not all connections are of the star-type, wherein each internal outlet has a separate wire from the receiving junction box. Rather the internal wiring may well be, and usually is, a tree-type network, wherein some outlets stem from other internal trunks lines. It is very common, in fact, for new outlets in home and office situations to be daisy-chained from existing wiring and outlets, rather than being taken from the initial junction box to the home or office. This existing situation is a daunting impediment to the kinds of integrating network solutions that have been so far proposed, which typically require separate lines to each outlet. In that circumstance, existing wiring has to be completely replaced at a substantial penalty in time and cost. In embodiments of the present invention, as described in more detail below, the existing wiring can stay in place and is used without impediment.
  • Line 302 a - 302 c Existing internal wiring of unit 100 used in the illustrated embodiment of the present invention is illustrated as lines 302 a - 302 c .
  • lines 302 b and 302 c are shown as emanating from micro-PBX 301 , while lines 302 a and 302 d proceed from lines 302 b and 302 c respectively.
  • micro-PBX is a converter and bus management system adapted to receive ATM data for all of the devices in the unit 100 to which the micro-PBX is connected, and to route the data in a different protocol onto the internal bus.
  • Micro-PBX 301 operates the in-house wiring as a bus system under a multiple access points type protocol, such as Carrier Sense Multi Access/Collision Detect (CSMA/CD) protocol.
  • CSMA/CD Carrier Sense Multi Access/Collision Detect
  • This is a protocol type well-known in the art that was also the basis of original EthernetTM systems.
  • the sending device first listens on the bus for line free before sending data, then checks for collision.
  • the inventor has selected this type bus management precisely because it allows use of the existing tree-type wiring structure of phone lines of most homes and businesses.
  • converters are provided for each device and outlet to convert the incoming TCP/IP data to the form required by each connected device.
  • television 303 is connected to micro-PBX through a set-top box 304 (which happens to be under the TV in this instance), and box 304 is adapted to receive video stream data addressed to a number assigned to the set-top box, and to translate that data stream to a video presentation playable on television 303 .
  • an adapter box 305 a connects to in-house wiring 305 a and converts incoming data on line 302 c and addressed to the fax machine into an analog data stream on line 307 to the fax machine.
  • a converter box 305 b converts data on line 302 b into an analog data stream on line 308 for voice communication via telephone 309 . Conversion is, of course, bi-directional.
  • Conversion boxes 305 a and 305 b and like converter boxes in various embodiments of the present invention are adapted for mounting to existing telephone jack outlets presenting a new outlet for connecting to the specific device (fax, phone, etc.).
  • PC personal computer
  • conversion is accomplished in an expansion card compatible with any expansion slot in the computer, allowing the multimedia PC to be used both for telephony functions and as a WEB browser via the in-house bus.
  • Another advantage of the illustrated system is that, as each adapter unit in the system, for each specific device, has an assigned number, calls may be placed between specific in-house devices via micro-PBX 301 , which may accomplish many PBX functions. Another advantage is that, by placing a new converter box, new external access numbers may be assigned by a local telephone company remotely by reprogramming micro-PBX 301 on-line.
  • a micro-PBX is installed at the position of the existing telephone junction box where outside telephone service enters the premises (a.k.a. service demarcation).
  • a power adapter is installed to provide the necessary power voltage on the in-house network, which is simply a matter of plugging in a power box at any convenient power outlet and connecting an outlet telephone jack into the house network at any convenient outlet port.
  • Such a unit could also contain a back-up power source for case of power failure.
  • an innovative method and apparatus is provided to be wired into the home network system of FIG. 1 for the purpose of maximizing and maintaining a high quality data communication over existing analog home wiring whereby data can be transmitted and received at a higher frequency without typical analog problems affecting the system such as zero voltage phenomena and radiation leakage.
  • FIG. 4 is an overview of “x-mas tree wiring” (typical home telephone wiring is “organically grown”) as it might appear in a home set up to operate as a network according to an embodiment of the present invention whereby a Customer Demarcation Point (CDP) 401 a is connected to network wiring 400 leading into the home.
  • Network wiring 400 consists of lines that connect to telephone jacks inside the home and will hereafter be referred to line by line.
  • a CDP is the point in the wiring (typically, a utility box outside of the home) where the responsibility of the phone company ends and the responsibility of the customer begins. In this embodiment, there are two lines 400 branching off of the main line coming from CDP 401 a .
  • Connected devices used in conjunction with the home network in accordance to an embodiment of the present invention may include such devices as a PC, fax machine, home based server, converter box for Internet (digital) TV and so on.
  • These connected devices present in previous embodiments, are represented in this instant embodiment by elements 403 a-d .
  • the cabling and or wiring used to connect those devices is represented by elements 402 a-d .
  • connected device 403 a is connected via cable 402 a directly to CDP 401 a bypassing a telephone jack such as telephone jack 401 b .
  • connected device 403 a may be of the form of an outside unit such as a satellite sender/receiver.
  • micro PBX 100 represented in the embodiments of FIGS. 1 and 3 also be applicable to this instant embodiment of the present invention.
  • FIG. 4 and by Fig's to follow.
  • FIG. 5 is an overview of the network wiring of FIG. 4 illustrating the effect of applying a high frequency communication to the network system whereby a standing wave 501 is carried over network line 400 . It is deemed appropriate by the inventor that the level of frequency utilized for the purpose of adequate signal strength for connected devices be from a 900 MHz. Band. However it will be apparent to one with skill in the art that a differing frequency could be utilized.
  • standing waves of the type that are transmitted in a fashion as described above may vary somewhat in frequency and actual formation.
  • standing wave forms may vary slightly in actual form from transmission to transmission and therefore cannot be distributed with perfect uniformity over a specific length of wire so as to allow an imagined point on the wave form to coincide with a set distance point in the wire in a continually repeated fashion.
  • a system that utilizes a fixed receiver or receivers in the line will be unreliable in delivering a high frequency signal strength that can be constantly maintained at a desired level for all connected devices.
  • FIG. 6 is a diagrammatic view further illustrating the effect of “black hole” phenomena in a system with fixed receivers whereby data is being transmitted over network line 400 in a typical standing wave form.
  • a fixed receiver happens to be positioned at a receiving point 600 so as to receive a full percentage of signal strength.
  • a second connected device 403 a has a receiver positioned at a receiving point 601 and is not picking up any usable signal because in this particular transmission, it coincides with a “black hole” such as “black hole” 500 of FIG. 5.
  • standing wave forms are not uniform, and may vary in actual form as described above with reference to FIG.
  • the stability of a series of waves produced by a same source transmission at a same frequency rate is sufficient to cause problems where a receiver happens to be positioned at a repeat location of a “black hole” such as is the case at receiving location 600 . If the receiver were moved about 1 ⁇ 3 of lambda to a receiving location point 602 then the signal strength would be approximately 86% which would be sufficient to operate connected device 403 a.
  • FIG. 7 is a diagrammatic view illustrating a method whereby a receiver can be moved away from “black hole” locations such as “black hole” 500 of FIG. 5.
  • Element 701 represents a connector that is located at the back of a typical receiving board engaged in receiving a signal.
  • Element 702 is a selector which has a choice of selecting connector input direct (sending the signal directly to the board) or connector input delay (sending the signal through delay line 723 ).
  • Delay line 723 has a length equal to 1 ⁇ 3of lambda 502 of FIG. 5 (about 4 inches @ 900 MHz).
  • a controller device 704 is connected to a physical layer adapter, a transceiver, 703 . Controller 704 can detect the rate of error associated with the signal form.
  • controller 704 will foresee the activity and can activate switch 706 to connector input delay position at a predetermined signal strength.
  • delay line 723 Once delay line 723 is activated, the receiver picks up the delayed signal at approximately 86% of full signal strength instead of a lower % associated with a closer proximity to the “black hole”.
  • the receiver in this embodiment thus enabled, has “soft-moved” ⁇ fraction (1/3) ⁇ of lambda (approximately 4 inches with a signal of 900 MHz).
  • enhanced soft-movable receivers such as the one described above will be placed in the same locations with respect to their associated connected devices as conventional fixed receivers would be.
  • each soft-movable receiver must operate independently from other receivers on the system as connected devices will typically vary as to location (distance from signal source) on the system.
  • dual soft-movable receivers may be incorporated and used in association with one connected device as might be the case where a protocol converter box such as described with reference to earlier embodiments is wired in the line some distance away from the connected device. It will be apparent to one with skill in the art that there are many configurations possible with regards to installing soft-movable receivers on the home network system of FIG. 1 without departing from the spirit and scope of the present invention. Such as examples already provided.
  • FIG. 8 is a detailed block diagram illustrating a spreader/despreader device as is used in accordance with an embodiment of the present invention for the purpose of converting a wave form into a broad band signal.
  • This is known in the art as a spread-spectrum modulator/demodulator.
  • element 805 produces a spreader clock at 100 MHz. for input data 811 arriving at 10 MHz. This means that the resulting broad band signal will have a spread of 100 MHz.
  • Box 800 a contains a spreader while box 800 b contains a virtually identical de-spreader.
  • spreaders and de-spreaders are nothing more than random number generators that generate numbers at a specific spread frequency.
  • Numbers generated by spreader 800 a are used to scramble the input signal through gate 803 from where the resulting scrambled data proceeds into modulator 823 where the carrier signal being transmitted at 900 MHz. is phase modulated. From there the signal proceeds into a filter adapter 825 a and then is coupled into the wiring. Via junction taps 827 , the signal is then passed through adapter 825 b and into demodulator 824 from which the data signal emerges still scrambled.
  • terms used here such as spreader/de-spreader, phase modulator, filter adapters and so forth are well known in the art and are common signal filtering components. Therefore, much definition as to the dedicated function of each component is not described.
  • An X-OR-gate 822 is used in this instant embodiment for the purpose of detecting collisions which are then fed into a Sears and Mason B controller driver as CD (collision detect) signals.
  • Box 820 in this instant embodiment represents the modem port 703 of FIG. 7.
  • Element 807 is a phase lock device that locks on to the phase of the out-coming signal and regenerates the 100 MHz. spread clock. From there the signal passes into de-spreader 800 b and passes as un-spread data represented by element number 810 .
  • FIG. 9 is a time chart illustrating the activity produced by the spreader/de-spreader of FIG. 8 wherein a logical one of input data signal is present in time slot 910 and another logical one of data signal 901 is seen in time slot 911 .
  • a spreader clock signal 902 (signal emanating from spreader clock 805 of FIG. 8) is applied to input data signal 901 .
  • Element 903 is the spreader signal emanating from gate 802 of FIG. 8 and element 904 is a combination of the spreader signal and the data signal emanating from gate 803 of FIG. 8. As can be seen in this instant embodiment, spreader signal 903 is inverted in time slot 910 while it is not inverted in time slot 911 .
  • FIG. 10 is a diagrammatic view of an alternate embodiment whereby signal spreading and de-spreading is performed in the CPU by help of a software executed by the CPU, of a connected device on the home network system.
  • a network card (not shown) could be provided for connection to a connected device such as a PC on the home network.
  • This network card is made to transmit the data signal at 100 MHz so that the spreader/de-spreader function illustrated in the Embodiment of FIG. 8 can be eliminated. Rather, this function will now be performed in the CPU of a connected device as described above, and to be described in the following text.
  • a 100 MHz based T-adapter 1000 is provided to transmit the data from a 100 MHz based network card to a PCI bus connector represented by input 1011 and output 1012 into a CPU. Inside the CPU spreader/de-spreader calculations are performed and the resulting data is reduced by approximately 1 ⁇ 8 of the actual transmitted bits of the original input data. Processed data proceeds from the CPU to an output connector 1001 from where data lines are run to a small tuner box containing the necessary components for modulation and demodulation such as are represented in the previous embodiment of FIG. 8. In this embodiment connected devices performing dedicated functions can be easily and inexpensively adapted so as to contain a 100 MHz micro-controller and the necessary tuner components in one small box linked to the CPU and the network cord as described above.
  • FIG. 11 is a line-by-line listing of the typically required features of the micro-PBX of FIG. 3 in an embodiment of the present invention. No further explanation is deemed necessary here as the list of FIG. 11 is self explanatory. Some variation may occur depending on implementation of features and associated software.

Abstract

A multimedia data distribution system comprises a distribution system adapted to distribute and deliver Asynchronous Transfer Mode signals to the level of an individual home network bus, a micro-PBX connected to the distribution system and to the home network bus; and a converter connected to the home network bus and having an outlet adapted for connecting to conventional single media and multimedia electronic devices, such as telephones, personal computers, fax machines, television sets, and the like. The micro-PBX is adapted to translate between the public network data protocol and a Local Area data protocol on the home network bus, and to manage the home network bus as a Carrier Sense Multiple Access/Collision Detect (CSMA/CD) type bus, and the converter is adapted to convert signals on the home network bus to a form required by one of the single media and multimedia electronic devices. In an alternative embodiment of the invention signals on the home network are provided as high-frequency, spread-spectrum signals.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is divisional application of application Ser. No. 09/103,499 which is a Continuation-in Part of application Ser. No. 08/811,648 which is a Continuation-in Part of patent application Ser. No. 08/744,287 and incorporates all of the prior application by reference. [0001]
  • FIELD OF THE INVENTION
  • The present invention is in the area of multimedia computing and communication systems, and pertains more particularly to networking with home systems to allow sharing of functions and devices among individual PCs connected to a home network. [0002]
  • BACKGROUND OF THE INVENTION
  • Continuing development of hardware and applications for home computing, coupled with explosive growth of the global network called the Internet has motivated more and more people to have at least one computer in the home or in a small business. For the purpose of description and teaching in the present application, the concept of a home environment is used. The inventor intends this concept to include any equivalent environment, such as a small business, non-profit organization, government organization, and the like, which might use systems of the sort taught herein. The references to home systems and home computers and the like are meant to include all such situations. [0003]
  • Many people in fact, have two or more computers at home, and many more are contemplating adding at least a second computer. A parallel trend is to adding one or more computerized appliances in addition to a home computer. These appliances are such as Internet Telephones, computerized set-top boxes, and the like. [0004]
  • A problem with more than one computer or network using-appliance, such as an Internet Telephone, WEB browsing set top box, etc. at home is that, just like in the office, a need quickly becomes apparent for connecting the computers in a network of some sort so resources like a printer and a modem may be shared. Still, even if a network were provided allowing sharing of common devices like a printer, allowing each computer to have Internet access is a problem. Given one Internet Service Provider (ISP) and one Internet account, even if several computers have simultaneous access to the Internet provider's server, only one user at a time may browse the Internet. There are traditional, but expensive solutions. Two or more Internet accounts could be maintained, for example, and each computer could have its own modem and dedicated telephone line. For a single family having multiple home computers however, this is not a good solution. Further, the lines in most standard analog home telephone systems are lacking somewhat in the ability to transmit certain types of data at a consistently high frequency. These types of telephone lines can suffer radiation leakage, etc. [0005]
  • Another difficulty with existing home network systems, is that proposed multimedia integrated systems in the current art depend typically on methods that are not compatible with existing home and office wiring. These systems often require that new compatible lines be installed that typically operate at a much higher frequency than can be carried successfully by conventional analog lines. As a result, such systems are expensive to implement and limited in operation. A system and apparatus is needed to enable real-time multimedia data distribution which is also capable of maintaining a high signal strength over existing telephone wiring of most homes and offices. [0006]
  • SUMMARY OF THE INVENTION
  • In a preferred embodiment a home server unit is provided comprising a communication bus for connecting digital devices within the home server interface unit; a CPU coupled to the bus for managing activities of the hone server unit; a random access memory (RAM) coupled to the bus for temporary and dynamic data and instruction storage; a read-only memory (ROM) coupled to the bus for non-volatile storage of an operating system; a hub circuit coupled to the bus and having network ports for connecting to personal computers; an input/output I/O interface circuit coupled to the bus and having at least one parallel port for connecting to printing and scanning devices; and a bridge adapter unit coupled to the bus and having at least one port adapted for connecting to a wide area network and at least one port adapted for connecting to a telephony device. The CPU, executing stored control routines manages data transfers between connected PCs and one or more service providers accessed via the wide-area network. [0007]
  • In alternative embodiments of the home server unit one or more of the hub circuit, the I/O interface circuit, and the bridge adapter unit are implemented as plug-in cards, and the bus has a card slot for receiving the one or more plug-in cards. Also in alternative embodiments of the home server unit the CPU, executing stored control routines, provides simultaneous Internet access for two or more PCs connected to the home server unit. Other functions provided by the home server through the CPU and stored control routines include telephone exchange services for two or more telephony devices connected to the home server unit, receiving incoming facsimile transmissions, and routing such transmissions to any one of connected PCs or connected printers, according to preprogrammed instructions, and providing access to a remote server over the port adapted for wide area network connection, so one or more connected PCs may use storage space on the remote server transparently to the user. [0008]
  • The home server unit according to embodiments of the invention solves the existing problem of providing wide area network access to multiple computerized appliances without requiring multiple service accounts. [0009]
  • In an alternative embodiment of the invention a multimedia data distribution system is provided, comprising a distribution system adapted to distribute and deliver Asynchronous Transfer Mode signals to the level of an individual home network bus; a micro-PBX connected to the distribution system and to the home network bus; and a converter connected to the home network bus and having an outlet adapted for connecting to conventional single media and multimedia electronic devices. The micro-PBX is adapted to translate between the ATM protocol and a non-ATM data protocol on the home network bus, and to manage the home network bus as a Carrier Sense Multiple Access/Collision Detect (CSMA/CD) type bus, and the converter is adapted to convert signals on the home network bus to a form required by one of the single media and multimedia electronic devices. The single media and multimedia electronic devices include telephones, personal computers (with adapter cards), fax machines, and televisions running through set top boxes. In this embodiment and aspect, multimedia distribution is accomplished an a relatively inexpensive manner, and by using existing telephone wiring available in most homes and businesses. [0010]
  • In yet another alternative embodiment of the invention a home networking system is provided, comprising conventional telephone wiring connected to telephone jacks in a customer's premises; and a customer demarcation unit at a customer's premise, having a port connected to outside telephone wiring and a port connected to the conventional telephone wiring in the customer's premise. In this embodiment the customer demarcation unit is adapted to receive signals on the outside telephone wiring, and to drive the conventional telephone wiring in the customer's premises as a local-area network (LAN) using a spread-spectrum high-frequency signal, converting the signals received to the protocol required by the LAN. [0011]
  • In still another embodiment a connection unit is provided at a connection point for a customer's device to receive signals on the LAN, wherein the connection unit comprises a sensor for sensing signal strength on the network; a microprocessor; a stored program executable by the microprocessor; a path from the LAN to a connection to a customer's device; and a delay line. The microprocessor, sensing a minimum signal strength threshold, is adapted to switch the delay line into the path to the customer's device, thereby improving signal strength to the customer's device. [0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a home network according to an embodiment of the present invention. [0013]
  • FIG. 2 is a line-by-line listing providing routing examples for the network system of FIG. 1. [0014]
  • FIG. 3 is a block diagram of a multimedia network system according to an alternative embodiment of the present invention. [0015]
  • FIG. 4 is a simplified overview of x-mass tree wiring of a home network system in an embodiment of the present invention. [0016]
  • FIG. 5 is an illustrative view of high frequency waves carried on the wiring of FIG. 4. [0017]
  • FIG. 6 is a diagrammatic view of a zero voltage phenomena occurring on the wiring of FIG. 4. [0018]
  • FIG. 7 is a diagrammatic view of a method for eliminating the zero voltage phenomena of FIG. 6 in an embodiment of the present invention. [0019]
  • FIG. 8 is a block diagram of the internal components of a spread-spectrum modulator-demodulator in accordance with an embodiment of the present invention. [0020]
  • FIG. 9 is a time chart illustrating spread data and time relationship in an embodiment of the present invention. [0021]
  • FIG. 10 is a diagrammatic view of an alternate embodiment where network cards are used. [0022]
  • FIG. 11 is a line by line listing of the components for the micro-PBX in an embodiment of the present invention. [0023]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 is a block diagram of a home network according to an embodiment of the present invention. A [0024] Home Server Unit 100 according to a preferred embodiment of the present invention comprises a CPU 104, an I/O circuit 102 (which may be a single chip), random access memory (RAM) 106, a read-only memory (ROM) 107, and a hub circuit 103. The ROM may in some embodiments be an alterable ROM (AROM) so upgrades in operating systems and the like may be made. There is also an optional hard disk drive 105. The digital elements of Home Sever Unit 100 are connected by a communications bus 115, which may be one or another of several buses known in the art, such as AT, PCI, and so forth. A plug-in interface 11 on bus 115, similar to or the same as an expansion port interface in a PC, is provided to accept one or another of several different bridge adapter units 101.
  • [0025] Home Server Unit 100 is typically a box that may be located in any convenient location in the home or other environment, with ports for interfacing to other units and services. For example, hub circuit 103 connects to multiple ports 114 for connection to multiple PCs. Four ports are shown and two are used in this example for connection to PCs 130 and 131. In the embodiment shown hub circuit 103 is also fashioned as a plug-in unit with a card slot 15 provided, so circuitry may be modularly adapted to a user's specific needs.
  • I/[0026] O circuitry 102 connects to at least one parallel port 113 for connecting to peripheral devices such as a printer 132 shown. Other peripherals, such as a second printer (color printer), a scanner, and the like may be connected from one of the I/O ports. Bridge Adapter Unit 101 provides circuitry with ports 111 for connecting to a communications network 110 and ports 112 for connecting to telephony equipment such as facsimile machine 141 and telephone 140. In some embodiments a large number of telephone ports may be provided, and Bridge Adapter Unit 101 may function as a PBX exchange.
  • [0027] Communications network 110 may be for example an ISDN connection to a local telephone company switch, in which case Bridge Adapter Unit 101 will be adapted for ISDN protocol. Communications network 110 may also be an analog telephone link, a cable connection, an Asymmetric Subscriber Digital Line (ASDL), or other link. The point of plug-in modularity for bridge adapter unit 101 is that a user may adapt his or her Home Server Unit 100 according to the service available from the home, and change at a later time if a new or different communication service to the home becomes available.
  • At the service provider's end a [0028] Multi-Bridge Adapter Unit 120 provides for receiving and processing data packets delivered over network 110, and for sending data packets from the service provider's end to the Home Server Unit, identified for the PC or peripheral device to which each transmission is intended. For example, facsimile messages may be delivered to unit 100 at Bridge Adapter Unit 101 via network 110, and be routed to facsimile machine 141. Alternatively, incoming faxes could be routed to laser printer 132 via I/O circuitry 102.
  • Returning again to the service provider's end of the system, [0029] Multi-Bridge Adapter Unit 120 connects to an Ethernet™ backbone 121 (in this particular embodiment) to which various equipment may be interfaced, such as a server 123 shown and a support technician workstation 122.
  • In a preferred embodiment of the [0030] invention control routines 13 are provided and stored in AROM 107 to be loaded into RAM 106 on start-up of the Home Server Unit. These routines provide for control of all elements connected to bus 115, and for conversion and routing of data among the various elements and ports. A salient advantage of the invention in this respect is that data protocols of any sort may be utilized and accommodated.
  • FIG. 2 provides routing examples which may be accomplished by [0031] Home Server Unit 100. Data protocols (network protocols) that may be accommodated are represented in FIG. 2 by NP0), NP1, and NP2. NP0 may be, for example TCP/IP protocol, NP1 Novell Network protocol., and NP2 MSNet. Lines 210 and 211 represent PC to PC communication through hub circuitry 103 (which may be a single chip). Data from PC 130, for example, may be received in NP0 and converted to NP1 for transmission to PC131. The conversion would also be made in the reverse, and CPU 104, executing routines called from RAM 106, handles the conversion and routing. Different versions of control routines according to the invention may be available for loading to AROM 107, depending, among other things, on the network adapters and communication protocols of PCs to be connected.
  • [0032] Lines 220 through 223 in FIG. 2 represent PC to printer communication. Data for printer 132 received from either of PC 130 and 131 at hub 103 is converted as necessary by CPU 104 executing routines 13 and sent to printer 132 via I/O circuitry 102 and port 113. Printer data may be queued and buffered using any of the storage devices (RAM 106, optional hard disk drive 105, or even AROM 107), or any combination.
  • [0033] Lines 230 through 233 represent communication between PCs and the Internet. In this case TCP/IP protocol is received from one of the PCs and processed into AU 101 for transmission to ISP equipment AU 120. Return data, also TCP/IP, is sent from AU 120 via network 110 to AU 101, then routed to the associated PC by CPU 104 executing control routines 13.
  • Finally, [0034] lines 240 through 244 represent communication between a PC and the Internet service provider (ISP) by a different (non TCP) protocol.
  • In the embodiment shown PCs connected through [0035] Adapter Unit 100 to a service provider, depending on control routines provided, may have access to disk space, such as on server 123 connected to Ethernet backbone 121. This is an additional benefit providing a transparent extra high-capacity drive for each user.
  • FIG. 3 is a block diagram of a multimedia network system in an alternative embodiment of the present invention. The system of FIG. 3 distributes multimedia real-time data, both on-demand and broadcast, as well as computer and telephony data, all over the same system, making use of existing telephone wiring in and to a home or office. This is done in an embodiment of the invention by adapting existing hardware elements and data protocols in a new and inventive architecture not before implemented, and in a manner to provide enhanced performance over existing and known proposed systems for multimedia distribution. [0036]
  • Typical existing networks for multimedia data distribution are of a sort called system parallel, which requires duplication of hardware and data paths, resulting in high cost. Some systems offering a form of integration require expensive new cabling. The system of the present invention avoids such duplication and allows use of existing telephone system wiring in virtually all cases, both in, and to the house. [0037]
  • In FIG. 3 [0038] network cloud 360 represents worldwide data sources, and link 341 is a high speed Asynchronous Transfer Mode (ATM) link operating on a high-speed path such as a fiber-optic line. ATM is not described in detail in this specification, as it is a well-known network protocol and system in the art of telephony, and available to the inventor as well as to all those with skill in the art.
  • [0039] Link 341 leads to a subdivision head-end 342 providing distribution to individual homes and businesses. One such individual unit destination is represented by unit 300, which may be a typical apartment, home, or office. The placement of such subdivision head-ends in embodiments of the invention is a function of distance capability for hardware and data protocols used.
  • An [0040] ATM router switch 340 in subdivision head-end 342 receives the ATM data packets from network 360 and distributes them to subsection routers 330 a through 330 c via internal wring such as link 343 a. It will be apparent to those with skill in the art that there may be many more (or fewer) than the three subsection routers shown, but three will be more than sufficient to teach the invention.
  • A [0041] satellite dish 350 is an optional component of subdivision head-end 342, and when present in embodiments of the invention is used to receive digitally-encoded satellite broadcasts. These signals are downloaded via link 351 to a converter 352, which de-multiplexes the transport strings and converts them into ATM packets which are provided over link 353 to ATM router switch 340 for distribution according to data in the ATM packets.
  • From subdivision head-[0042] end 342 data is distributed from each of multiple subsection routers to individual homes and businesses. It will apparent to those with skill in the art that there may be tens, hundreds or even thousands of links to individual destinations, but only one, link 320, is shown herein to adequately describe the present invention.
  • [0043] Link 320 is typically existing copper wiring and is based on the well-known Asynchronous Digital Subscriber Line (ADSL) technology. At the individual home or business 300 a micro-PBX 301 receives the ADSL signals, translates them, and retransmits them on internal wiring represented in FIG. 3 as links 302 a through 302 d.
  • In most existing home or office wiring the internal wires are copper, and not all connections are of the star-type, wherein each internal outlet has a separate wire from the receiving junction box. Rather the internal wiring may well be, and usually is, a tree-type network, wherein some outlets stem from other internal trunks lines. It is very common, in fact, for new outlets in home and office situations to be daisy-chained from existing wiring and outlets, rather than being taken from the initial junction box to the home or office. This existing situation is a formidable impediment to the kinds of integrating network solutions that have been so far proposed, which typically require separate lines to each outlet. In that circumstance, existing wiring has to be completely replaced at a substantial penalty in time and cost. In embodiments of the present invention, as described in more detail below, the existing wiring can stay in place and is used without impediment. [0044]
  • There are, as well-known in the art, a number of different requirements for data within a home or business, and several of these, though not all, are illustrated in FIG. 3. Shown in FIG. 3, for example, are a [0045] television 303 connected to a set-top box 304; a computer 310, a fax machine 307, and a telephone 309. There may, of course, be more than one of each of the devices shown, and other devices as well.
  • Existing internal wiring of [0046] unit 100 used in the illustrated embodiment of the present invention is illustrated as lines 302 a-302 c. For the purpose of illustrating the fact of tree-type architecture, lines 302 b and 302 c are shown as emanating from micro-PBX 301, while lines 302 a and 302 d proceed from lines 302 b and 302 c respectively.
  • In embodiments of the present invention micro-PBX is a converter and bus management system adapted to receive ATM data for all of the devices in the [0047] unit 100 to which the micro-PBX is connected, and to route the data in a different protocol onto the internal bus. Micro-PBX 301 operates the in-house wiring as a bus system under a multiple access points type protocol, such as Carrier Sense Multi Access/Collision Detect (CSMA/CD) protocol. This is a protocol type well-known in the art that was also the basis of original Ethernet™ systems. In this system type, the sending device first listens on the bus for line free before sending data, then checks for collision. The inventor has selected this type bus management precisely because it allows use of the existing tree-type wiring structure of phone lines of most homes and businesses. However other implementations are also possible, such as modulated carriers etc. In micro-PBX 301 the ATM packets are converted to, in this case, TCP/IP protocol, although TCP/IP is not the only choice. Most local-area-network-type protocols could be used easily. Any type of high frequency modulation or direct digital connection could be used that is compatible with asymmetric star wiring (a.k.a. Christmas tree wiring). This also allows micro-PBX 301 to be added at almost any convenient point on the in-house bus.
  • Within [0048] unit 300 converters are provided for each device and outlet to convert the incoming TCP/IP data to the form required by each connected device. For example, television 303 is connected to micro-PBX through a set-top box 304 (which happens to be under the TV in this instance), and box 304 is adapted to receive video stream data addressed to a number assigned to the set-top box, and to translate that data stream to a video presentation playable on television 303.
  • In the case of [0049] fax machine 307, an adapter box 305 a connects to in-house wiring 305 a and converts incoming data on line 302 c and addressed to the fax machine into an analog data stream on line 307 to the fax machine. Similarly a converter box 305 b converts data on line 302 b into an analog data stream on line 308 for voice communication via telephone 309. Conversion is, of course, bi-directional.
  • [0050] Conversion boxes 305 a and 305 b and like converter boxes in various embodiments of the present invention are adapted for mounting to existing telephone jack outlets presenting a new outlet for connecting to the specific device (fax, phone, etc.).
  • In the case of personal computer (PC) [0051] 310, conversion is accomplished in an expansion card compatible with any expansion slot in the computer, allowing the multimedia PC to be used both for telephony functions and as a WEB browser via the in-house bus.
  • In the embodiment of the invention illustrated with reference to FIG. 3, the Micro-PBX and converter boxes need power. Power may be supplied locally at each box by a power converter plugged into a power outlet (not shown). In a preferred embodiment, power is supplied at, for example, 48 volts across two lines of the in-house wiring. The power supply voltage is imposed by a transformer/converter box (not shown) that may be placed at any convenient telephone outlet jack outlet and connected to the power mains system available close by. [0052]
  • Another advantage of the illustrated system is that, as each adapter unit in the system, for each specific device, has an assigned number, calls may be placed between specific in-house devices via [0053] micro-PBX 301, which may accomplish many PBX functions. Another advantage is that, by placing a new converter box, new external access numbers may be assigned by a local telephone company remotely by reprogramming micro-PBX 301 on-line.
  • In embodiments of the present invention, once subdivision headers and subsection routers are available, conversion of any house, apartment, or small business unit is relatively simple. A micro-PBX is installed at the position of the existing telephone junction box where outside telephone service enters the premises (a.k.a. service demarcation). A power adapter is installed to provide the necessary power voltage on the in-house network, which is simply a matter of plugging in a power box at any convenient power outlet and connecting an outlet telephone jack into the house network at any convenient outlet port. Such a unit could also contain a back-up power source for case of power failure. [0054]
  • As a final step, PCs are supplied with expansion cards, TVs with compatible set-top boxes, and converter boxes (see [0055] 305 a and 305 b above) are mounted to existing telephone jack outlets convenient to the equipment to be connected. The conversion is quick and simple, and may, in most cases, easily be performed by the end user with little outlay of time and material.
  • Method and Apparatus for Maintenance of High Frequency Communication over Existing Analog Lines [0056]
  • In another embodiment of the present invention an innovative method and apparatus is provided to be wired into the home network system of FIG. 1 for the purpose of maximizing and maintaining a high quality data communication over existing analog home wiring whereby data can be transmitted and received at a higher frequency without typical analog problems affecting the system such as zero voltage phenomena and radiation leakage. [0057]
  • FIG. 4 is an overview of “x-mas tree wiring” (typical home telephone wiring is “organically grown”) as it might appear in a home set up to operate as a network according to an embodiment of the present invention whereby a Customer Demarcation Point (CDP) [0058] 401 a is connected to network wiring 400 leading into the home. Network wiring 400 consists of lines that connect to telephone jacks inside the home and will hereafter be referred to line by line. A CDP, as is known in the art, is the point in the wiring (typically, a utility box outside of the home) where the responsibility of the phone company ends and the responsibility of the customer begins. In this embodiment, there are two lines 400 branching off of the main line coming from CDP 401 a. A first line (400) is connected to a telephone jack 401 c inside the home. A second line (400) is connected to a telephone jack 401 b which is in turn connected by a line (400) to a telephone jack 401 d. It will be apparent to one with skill in the art that there are limitless configurations possible with regards to home network wiring as described above. For example, there may be more than two lines 400 branching off from CDP 401 a, there may be more three telephone jacks such as telephone jack 401 b connected to network wiring 400, or there may be more than one CDP such as CDP 401 a as might be the case for the subscription to multiple phone companies and so on. The instant embodiment shown in FIG. 4 is meant to illustrate a typical situation and is deemed sufficient by the inventor to adequately illustrate the present invention.
  • Connected devices used in conjunction with the home network in accordance to an embodiment of the present invention may include such devices as a PC, fax machine, home based server, converter box for Internet (digital) TV and so on. These connected devices, present in previous embodiments, are represented in this instant embodiment by elements [0059] 403 a-d. Similarly, the cabling and or wiring used to connect those devices is represented by elements 402 a-d. In this instant embodiment, connected device 403 a is connected via cable 402 a directly to CDP 401 a bypassing a telephone jack such as telephone jack 401 b. In this case, connected device 403 a may be of the form of an outside unit such as a satellite sender/receiver. It is intended by the inventor that hardware, converter boxes, and other elements of the present invention such as micro PBX 100 represented in the embodiments of FIGS. 1 and 3 also be applicable to this instant embodiment of the present invention. However, for the purpose clarity, many previous elements already described will not be reintroduced in this additional embodiment illustrated by FIG. 4 and by Fig's to follow.
  • FIG. 5 is an overview of the network wiring of FIG. 4 illustrating the effect of applying a high frequency communication to the network system whereby a [0060] standing wave 501 is carried over network line 400. It is deemed appropriate by the inventor that the level of frequency utilized for the purpose of adequate signal strength for connected devices be from a 900 MHz. Band. However it will be apparent to one with skill in the art that a differing frequency could be utilized.
  • Applying frequencies such as 900 MHz to a typical (conventional) network comprising analog-type lines results in a reflection of the original wave coming back across the line. This backward reflection creates specific areas or locations whereby no usable signal is present due to a signal cancellation caused by the overlap. These zero-voltage signal locations are known in the art and are sometimes referred to as “black holes”. In the instant embodiment a “black hole” [0061] 500 is present along incremented points throughout network line 400 where wave 501 is present. At a frequency of 900 MHz. the distance between “black holes” 500 across network line 400 is approximately 30 centimeters (about one foot). This distance is represented in this embodiment by lambda 502 (wavelength of the signal). Conventional termination impedance-matching set-ups used commonly in analog lines cause a relative stability of the “black hole” phenomena by virtue of their fixed locations in the line. For example, if a receiver of wave signal 501 is close to “black hole” location 500 at the termination point of the signal then the receiver will pick up a percentage of that signal strength related to its closeness to that particular “black hole” location. Therefore, the receiver may pick up zero % of the signal strength if wave 501 terminates at the lambda end point (black hole), or perhaps 50% of the signal if wave 501 terminates at a point half way up it's curve and so on.
  • It is well known in the art that standing waves of the type that are transmitted in a fashion as described above may vary somewhat in frequency and actual formation. Depending on the frequency used for the transmission, and on other variables such as line quality and oscillation factors, standing wave forms may vary slightly in actual form from transmission to transmission and therefore cannot be distributed with perfect uniformity over a specific length of wire so as to allow an imagined point on the wave form to coincide with a set distance point in the wire in a continually repeated fashion. Hence, a system that utilizes a fixed receiver or receivers in the line will be unreliable in delivering a high frequency signal strength that can be constantly maintained at a desired level for all connected devices. It is the intention of the inventor to introduce a unique signal receiving method whereby the level of reception of a typical standing wave sent at a frequency of 900 MHz. can be maintained at approximately 86% of full signal strength over a typical analog telephone line. More detail about this unique signal receiving technique in accordance to with an embodiment of the present invention is provided in description and Figs. below. [0062]
  • FIG. 6 is a diagrammatic view further illustrating the effect of “black hole” phenomena in a system with fixed receivers whereby data is being transmitted over [0063] network line 400 in a typical standing wave form. As the standing wave terminates at connected device 403 b, a fixed receiver happens to be positioned at a receiving point 600 so as to receive a full percentage of signal strength. However, a second connected device 403 a has a receiver positioned at a receiving point 601 and is not picking up any usable signal because in this particular transmission, it coincides with a “black hole” such as “black hole” 500 of FIG. 5. While standing wave forms are not uniform, and may vary in actual form as described above with reference to FIG. 5, the stability of a series of waves produced by a same source transmission at a same frequency rate is sufficient to cause problems where a receiver happens to be positioned at a repeat location of a “black hole” such as is the case at receiving location 600. If the receiver were moved about ⅓ of lambda to a receiving location point 602 then the signal strength would be approximately 86% which would be sufficient to operate connected device 403 a.
  • FIG. 7 is a diagrammatic view illustrating a method whereby a receiver can be moved away from “black hole” locations such as “black hole” [0064] 500 of FIG. 5. Element 701 represents a connector that is located at the back of a typical receiving board engaged in receiving a signal. Element 702 is a selector which has a choice of selecting connector input direct (sending the signal directly to the board) or connector input delay (sending the signal through delay line 723). Delay line 723 has a length equal to ⅓of lambda 502 of FIG. 5 (about 4 inches @ 900 MHz). A controller device 704 is connected to a physical layer adapter, a transceiver, 703. Controller 704 can detect the rate of error associated with the signal form. For example, if the wave begins to move its position so that a “black hole” condition becomes imminent, controller 704 will foresee the activity and can activate switch 706 to connector input delay position at a predetermined signal strength. Once delay line 723 is activated, the receiver picks up the delayed signal at approximately 86% of full signal strength instead of a lower % associated with a closer proximity to the “black hole”. In principal the receiver in this embodiment, thus enabled, has “soft-moved” {fraction (1/3)} of lambda (approximately 4 inches with a signal of 900 MHz). In a preferred embodiment of the present invention enhanced soft-movable receivers such as the one described above will be placed in the same locations with respect to their associated connected devices as conventional fixed receivers would be. Also each soft-movable receiver must operate independently from other receivers on the system as connected devices will typically vary as to location (distance from signal source) on the system. As well, dual soft-movable receivers may be incorporated and used in association with one connected device as might be the case where a protocol converter box such as described with reference to earlier embodiments is wired in the line some distance away from the connected device. It will be apparent to one with skill in the art that there are many configurations possible with regards to installing soft-movable receivers on the home network system of FIG. 1 without departing from the spirit and scope of the present invention. Such as examples already provided.
  • FIG. 8 is a detailed block diagram illustrating a spreader/despreader device as is used in accordance with an embodiment of the present invention for the purpose of converting a wave form into a broad band signal. This is known in the art as a spread-spectrum modulator/demodulator. To further illustrate, [0065] element 805 produces a spreader clock at 100 MHz. for input data 811 arriving at 10 MHz. This means that the resulting broad band signal will have a spread of 100 MHz. Box 800 a contains a spreader while box 800 b contains a virtually identical de-spreader. In principal and as is well known in the art, spreaders and de-spreaders are nothing more than random number generators that generate numbers at a specific spread frequency. Numbers generated by spreader 800 a are used to scramble the input signal through gate 803 from where the resulting scrambled data proceeds into modulator 823 where the carrier signal being transmitted at 900 MHz. is phase modulated. From there the signal proceeds into a filter adapter 825 a and then is coupled into the wiring. Via junction taps 827, the signal is then passed through adapter 825 b and into demodulator 824 from which the data signal emerges still scrambled. It will be apparent to one with skill in the art of electronic communication that terms used here such as spreader/de-spreader, phase modulator, filter adapters and so forth are well known in the art and are common signal filtering components. Therefore, much definition as to the dedicated function of each component is not described. An X-OR-gate 822 is used in this instant embodiment for the purpose of detecting collisions which are then fed into a Sears and Mason B controller driver as CD (collision detect) signals. Box 820 in this instant embodiment represents the modem port 703 of FIG. 7. Element 807 is a phase lock device that locks on to the phase of the out-coming signal and regenerates the 100 MHz. spread clock. From there the signal passes into de-spreader 800 b and passes as un-spread data represented by element number 810.
  • FIG. 9 is a time chart illustrating the activity produced by the spreader/de-spreader of FIG. 8 wherein a logical one of input data signal is present in [0066] time slot 910 and another logical one of data signal 901 is seen in time slot 911. A spreader clock signal 902 (signal emanating from spreader clock 805 of FIG. 8) is applied to input data signal 901. Element 903 is the spreader signal emanating from gate 802 of FIG. 8 and element 904 is a combination of the spreader signal and the data signal emanating from gate 803 of FIG. 8. As can be seen in this instant embodiment, spreader signal 903 is inverted in time slot 910 while it is not inverted in time slot 911. It will be apparent to one with skill in the art that a time chart associated with a signal filtering operation such as the one described above is normally viewed and analyzed by an expert in the field therefore the inventor has chosen not to go into much detail regarding various activities and so on that can be represented by such a time chart except to provide a basic description of the activity depicted here.
  • FIG. 10 is a diagrammatic view of an alternate embodiment whereby signal spreading and de-spreading is performed in the CPU by help of a software executed by the CPU, of a connected device on the home network system. Wherein a network card (not shown) could be provided for connection to a connected device such as a PC on the home network. This network card is made to transmit the data signal at 100 MHz so that the spreader/de-spreader function illustrated in the Embodiment of FIG. 8 can be eliminated. Rather, this function will now be performed in the CPU of a connected device as described above, and to be described in the following text. A 100 MHz based T-[0067] adapter 1000 is provided to transmit the data from a 100 MHz based network card to a PCI bus connector represented by input 1011 and output 1012 into a CPU. Inside the CPU spreader/de-spreader calculations are performed and the resulting data is reduced by approximately ⅛ of the actual transmitted bits of the original input data. Processed data proceeds from the CPU to an output connector 1001 from where data lines are run to a small tuner box containing the necessary components for modulation and demodulation such as are represented in the previous embodiment of FIG. 8. In this embodiment connected devices performing dedicated functions can be easily and inexpensively adapted so as to contain a 100 MHz micro-controller and the necessary tuner components in one small box linked to the CPU and the network cord as described above. The stated goal of an approach such as the one described directly above is to further flatten the spectrum of the signal significantly reducing possible radiation leakage. In this instant embodiment, collision detection is also performed in the CPU and connected cards are assigned addresses which are used by the CPU to tell whether a particular card has to “listen” for a signal or not. It will be apparent to one with skill in the art that there are many ways network cards may be utilized and implemented in a home network system without departing from the spirit and scope of the present invention such as using different frequencies, using different connections for different types of communication and so on.
  • FIG. 11 is a line-by-line listing of the typically required features of the micro-PBX of FIG. 3 in an embodiment of the present invention. No further explanation is deemed necessary here as the list of FIG. 11 is self explanatory. Some variation may occur depending on implementation of features and associated software. [0068]
  • It will be apparent to those with skill in the art that there may be many alterations in the embodiments of the invention shown and described without departing from the spirit and scope of the invention. Many variations have been described above, such as an ability to handle any network protocol between various pieces of connected equipment. There are also many variations in the control routines that may be used, and in the hardware provided as [0069] Adapter Unit 101.
  • In the aspect of invention described with reference to FIG. 3, there are similarly many alterations that might be made without departing from the spirit and scope of the invention. Many of these options have already been described above. For example, there is a broad variance in PBX functions that may be utilized by [0070] micro-PBX 301. Similarly the data protocol used on the in-house wiring may be varied from embodiment to embodiment, depending on compatibility with the CSMA/CD-type network management provided on the in-house wiring. Design and placement of converter boxes may vary as well, and there are a number of alternatives in the way power for internal components may be supplied. The differences are numerous, and the invention is limited only by the breadth of the claims which follow.

Claims (2)

What is claimed is:
1. A home networking system comprising:
conventional telephone wiring connected to telephone jacks in a customer's premises; and
a customer demarcation unit at a customer's premise, having a port connected to outside telephone wiring and a port connected to the conventional telephone wiring in the customer's premise;
wherein the customer demarcation unit is adapted to receive signals on the outside telephone wiring, and to drive the conventional telephone wiring in the customer's premises as a local-area network (LAN) using a spread-spectrum high-frequency signal, converting the signals received to the protocol required by the LAN.
2. The home networking system of
claim 1
further comprising a connection unit at a connection point for a customer's device to receive signals on the LAN, wherein the connection unit comprises:
a sensor for sensing signal strength on the network;
a microprocessor;
a stored program executable by the microprocessor;
a path from the LAN to a connection to a customer's device; and
a delay line;
wherein the microprocessor, sensing a minimum signal strength threshold, is adapted to switch the delay line into the path to the customer's device, thereby improving signal strength to the customer's device.
US09/738,054 1996-11-06 2000-12-14 Apparatus and methods for home networking Abandoned US20010000707A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/738,054 US20010000707A1 (en) 1996-11-06 2000-12-14 Apparatus and methods for home networking

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US74428796A 1996-11-06 1996-11-06
US81164897A 1997-03-05 1997-03-05
US09/103,499 US6167120A (en) 1996-11-06 1998-06-24 Apparatus and methods for home networking
US09/738,054 US20010000707A1 (en) 1996-11-06 2000-12-14 Apparatus and methods for home networking

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/103,499 Division US6167120A (en) 1996-11-06 1998-06-24 Apparatus and methods for home networking

Publications (1)

Publication Number Publication Date
US20010000707A1 true US20010000707A1 (en) 2001-05-03

Family

ID=27379549

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/103,499 Expired - Fee Related US6167120A (en) 1996-11-06 1998-06-24 Apparatus and methods for home networking
US09/738,054 Abandoned US20010000707A1 (en) 1996-11-06 2000-12-14 Apparatus and methods for home networking

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/103,499 Expired - Fee Related US6167120A (en) 1996-11-06 1998-06-24 Apparatus and methods for home networking

Country Status (1)

Country Link
US (2) US6167120A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010034759A1 (en) * 2000-03-17 2001-10-25 Chiles David Clyde Home-networking
US20020078385A1 (en) * 2000-12-15 2002-06-20 Shoji Suzuki Home server and internet service system
US20030167347A1 (en) * 2002-02-11 2003-09-04 Combs James Lee Home network printer adapter
US7051116B1 (en) 2001-06-21 2006-05-23 America Online, Inc. Client device identification when communicating through a network address translator device
US20070183345A1 (en) * 2006-02-06 2007-08-09 Sereniti, Inc. Managing a home or a small office network
US7337219B1 (en) 2003-05-30 2008-02-26 Aol Llc, A Delaware Limited Liability Company Classifying devices using a local proxy server
US7383339B1 (en) 2002-07-31 2008-06-03 Aol Llc, A Delaware Limited Liability Company Local proxy server for establishing device controls
US7437457B1 (en) 2003-09-08 2008-10-14 Aol Llc, A Delaware Limited Liability Company Regulating concurrent logins associated with a single account
US7463732B1 (en) * 2000-05-05 2008-12-09 3Com Corporation Flexible data outlet
US9924935B2 (en) 2015-10-23 2018-03-27 Smith & Nephew, Inc. Suture anchor assembly with slip fit tip

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6370149B1 (en) * 1998-07-20 2002-04-09 Ameritech Corporation Telecommunication system, method and subscriber unit for use therein
JP2000513916A (en) 1997-06-25 2000-10-17 サムソン エレクトロニクス カンパニー リミテッド Method and apparatus for home network automatic tree generator
US7103834B1 (en) * 1997-06-25 2006-09-05 Samsung Electronics Co., Ltd. Method and apparatus for a home network auto-tree builder
US6480510B1 (en) 1998-07-28 2002-11-12 Serconet Ltd. Local area network of serial intelligent cells
US7269680B1 (en) 1998-08-06 2007-09-11 Tao Logic Systems Llc System enabling device communication in an expanded computing device
US7734852B1 (en) 1998-08-06 2010-06-08 Ahern Frank W Modular computer system
US7966078B2 (en) * 1999-02-01 2011-06-21 Steven Hoffberg Network media appliance system and method
US6956826B1 (en) 1999-07-07 2005-10-18 Serconet Ltd. Local area network for distributing data communication, sensing and control signals
US6760601B1 (en) * 1999-11-29 2004-07-06 Nokia Corporation Apparatus for providing information services to a telecommunication device user
US7228153B2 (en) * 1999-11-29 2007-06-05 Nokia Corporation Apparatus for providing information services to a telecommunication device user
FI109951B (en) * 1999-12-29 2002-10-31 Valtion Teknillinen Controller and its control method
US8620286B2 (en) 2004-02-27 2013-12-31 Synchronoss Technologies, Inc. Method and system for promoting and transferring licensed content and applications
US8156074B1 (en) 2000-01-26 2012-04-10 Synchronoss Technologies, Inc. Data transfer and synchronization system
US6671757B1 (en) 2000-01-26 2003-12-30 Fusionone, Inc. Data transfer and synchronization system
US7382786B2 (en) * 2000-01-31 2008-06-03 3E Technologies International, Inc. Integrated phone-based home gateway system with a broadband communication device
CN1416632A (en) * 2000-01-31 2003-05-07 爱普泰克微系统公司 Broadband communications access device
US7990985B2 (en) * 2000-01-31 2011-08-02 3E Technologies International, Inc. Broadband communications access device
US6438109B1 (en) * 2000-02-07 2002-08-20 Motorola, Inc. Method to establish a home network on multiple physical layers
US6549616B1 (en) 2000-03-20 2003-04-15 Serconet Ltd. Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets
US20020059616A1 (en) * 2000-03-31 2002-05-16 Ucentric Holdings, Inc. System and method for providing video programming information to television receivers over a unitary set of channels
US6594719B1 (en) 2000-04-19 2003-07-15 Mobility Electronics Inc. Extended cardbus/pc card controller with split-bridge ™technology
US6842459B1 (en) 2000-04-19 2005-01-11 Serconet Ltd. Network combining wired and non-wired segments
JP4004211B2 (en) * 2000-06-19 2007-11-07 三洋電機株式会社 Network server and network system
US8073954B1 (en) * 2000-07-19 2011-12-06 Synchronoss Technologies, Inc. Method and apparatus for a secure remote access system
US7895334B1 (en) 2000-07-19 2011-02-22 Fusionone, Inc. Remote access communication architecture apparatus and method
ATE485650T1 (en) 2000-08-30 2010-11-15 Tmt Coaxial Networks Inc METHOD AND SYSTEM FOR A HOME NETWORK
US9094226B2 (en) 2000-08-30 2015-07-28 Broadcom Corporation Home network system and method
US8724485B2 (en) 2000-08-30 2014-05-13 Broadcom Corporation Home network system and method
US7818435B1 (en) 2000-12-14 2010-10-19 Fusionone, Inc. Reverse proxy mechanism for retrieving electronic content associated with a local network
DE10065674A1 (en) * 2000-12-29 2002-07-04 Bsh Bosch Siemens Hausgeraete Method and device for controlling household appliances and control system
JP2004525557A (en) * 2001-02-13 2004-08-19 ティー.エム.ティー.サード ミレニアム テクノロジーズ リミティド CableRAN networking with coaxial cable
US20050204066A9 (en) * 2001-02-13 2005-09-15 T.M.T. Third Millenium Technologies Ltd. Cableran home networking over coaxial cables
US20020194605A1 (en) * 2001-05-18 2002-12-19 T.M.T. Third Millenium Technologies Ltd. Cableran networking over coaxial cables
US7653701B2 (en) * 2001-02-23 2010-01-26 Hewlett-Packard Development Company, L.P. Network system and method for automatically transferring data in a plurality of input and output formats to a computer network
US8615566B1 (en) 2001-03-23 2013-12-24 Synchronoss Technologies, Inc. Apparatus and method for operational support of remote network systems
JP2002314630A (en) * 2001-04-17 2002-10-25 Oki Micro Design Co Ltd Device for transferring data
DE50209622D1 (en) * 2001-04-24 2007-04-19 Siemens Ag Switching device and central switch control with internal broadband bus
US6693996B2 (en) * 2001-08-14 2004-02-17 Sharp Laboratories Of America, Inc. System and method for data backup in a home network telephone
IL161190A0 (en) 2001-10-11 2004-08-31 Serconet Ltd Outlet with analog signal adapter, method for use thereof and a network using said outlet
JP2005520397A (en) * 2002-03-12 2005-07-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Server for standby management in the network
US20040030709A1 (en) * 2002-08-12 2004-02-12 Gateway, Inc. Personalized setup poster generation
US20040049714A1 (en) * 2002-09-05 2004-03-11 Marples David J. Detecting errant conditions affecting home networks
US6771164B1 (en) 2002-09-05 2004-08-03 Nrc Corporation Automatic identification of local devices
IL152824A (en) 2002-11-13 2012-05-31 Mosaid Technologies Inc Addressable outlet and a network using same
KR100513866B1 (en) * 2003-02-06 2005-09-09 삼성전자주식회사 Legacy fax service system in home network and method thereof
IL154921A (en) 2003-03-13 2011-02-28 Mosaid Technologies Inc Telephone system having multiple distinct sources and accessories therefor
EP1625707A4 (en) * 2003-05-22 2007-10-10 Coaxsys Inc Networking methods and apparatus
IL157787A (en) 2003-09-07 2010-12-30 Mosaid Technologies Inc Modular outlet for data communications network
WO2005010715A2 (en) 2003-07-21 2005-02-03 Fusionone, Inc. Device message management system
IL159838A0 (en) 2004-01-13 2004-06-20 Yehuda Binder Information device
IL160417A (en) 2004-02-16 2011-04-28 Mosaid Technologies Inc Outlet add-on module
US9542076B1 (en) 2004-05-12 2017-01-10 Synchronoss Technologies, Inc. System for and method of updating a personal profile
ES2585353T3 (en) 2004-05-12 2016-10-05 Synchronoss Technologies, Inc. Advanced contact identification system
WO2006017466A2 (en) * 2004-08-02 2006-02-16 Coaxsys, Inc. Computer networking techniques
US7603494B2 (en) * 2005-01-05 2009-10-13 At&T Intellectual Property I, L.P. Home networking resource management
US7697522B2 (en) 2006-11-20 2010-04-13 Broadcom Corporation Systems and methods for aggregation of packets for transmission through a communications network
US8090043B2 (en) 2006-11-20 2012-01-03 Broadcom Corporation Apparatus and methods for compensating for signal imbalance in a receiver
US7782850B2 (en) 2006-11-20 2010-08-24 Broadcom Corporation MAC to PHY interface apparatus and methods for transmission of packets through a communications network
US7742495B2 (en) 2006-11-20 2010-06-22 Broadcom Corporation System and method for retransmitting packets over a network of communication channels
US8345553B2 (en) 2007-05-31 2013-01-01 Broadcom Corporation Apparatus and methods for reduction of transmission delay in a communication network
US20090165070A1 (en) * 2007-12-19 2009-06-25 Broadcom Corporation SYSTEMS AND METHODS FOR PROVIDING A MoCA COMPATABILITY STRATEGY
US8181111B1 (en) 2007-12-31 2012-05-15 Synchronoss Technologies, Inc. System and method for providing social context to digital activity
US8098770B2 (en) 2008-05-06 2012-01-17 Broadcom Corporation Unbiased signal-to-noise ratio estimation for receiver having channel estimation error
US9112717B2 (en) 2008-07-31 2015-08-18 Broadcom Corporation Systems and methods for providing a MoCA power management strategy
US8238227B2 (en) 2008-12-22 2012-08-07 Broadcom Corporation Systems and methods for providing a MoCA improved performance for short burst packets
US8254413B2 (en) 2008-12-22 2012-08-28 Broadcom Corporation Systems and methods for physical layer (“PHY”) concatenation in a multimedia over coax alliance network
US8213309B2 (en) 2008-12-22 2012-07-03 Broadcom Corporation Systems and methods for reducing latency and reservation request overhead in a communications network
US8553547B2 (en) 2009-03-30 2013-10-08 Broadcom Corporation Systems and methods for retransmitting packets over a network of communication channels
US20100254278A1 (en) 2009-04-07 2010-10-07 Broadcom Corporation Assessment in an information network
US8730798B2 (en) 2009-05-05 2014-05-20 Broadcom Corporation Transmitter channel throughput in an information network
US8867355B2 (en) 2009-07-14 2014-10-21 Broadcom Corporation MoCA multicast handling
US8942250B2 (en) 2009-10-07 2015-01-27 Broadcom Corporation Systems and methods for providing service (“SRV”) node selection
US8255006B1 (en) 2009-11-10 2012-08-28 Fusionone, Inc. Event dependent notification system and method
US8611327B2 (en) 2010-02-22 2013-12-17 Broadcom Corporation Method and apparatus for policing a QoS flow in a MoCA 2.0 network
US8514860B2 (en) 2010-02-23 2013-08-20 Broadcom Corporation Systems and methods for implementing a high throughput mode for a MoCA device
US8943428B2 (en) 2010-11-01 2015-01-27 Synchronoss Technologies, Inc. System for and method of field mapping
CN103684948B (en) * 2013-12-13 2016-08-17 中国航空工业集团公司第六三一研究所 A kind of 1553B bus list sorting optimization method

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441180A (en) * 1979-06-01 1984-04-03 Licentia Patent-Verwaltungs-Gmbh Service integrated communication transmission and interchange system
US5090024A (en) * 1989-08-23 1992-02-18 Intellon Corporation Spread spectrum communications system for networks
US5347516A (en) * 1991-04-14 1994-09-13 Nec Corporation System for access from LAN to ISDN with means for changing between use of packet switch and line switch without interruption of data transmission
US5521924A (en) * 1990-11-30 1996-05-28 Fujitsu Limited Telephone subscriber accomodation system in a broadband network
US5606446A (en) * 1994-03-08 1997-02-25 Optimux Systems Corporation Optical telecommunications system employing multiple phase-compensated optical signals
US5740366A (en) * 1991-10-01 1998-04-14 Norand Corporation Communication network having a plurality of bridging nodes which transmit a beacon to terminal nodes in power saving state that it has messages awaiting delivery
US5754548A (en) * 1994-03-31 1998-05-19 U.S. Philips Corporation Interconnection of local communication bus system
US5764750A (en) * 1994-08-05 1998-06-09 Lucent Technologies, Inc. Communicating between diverse communications environments
US5844596A (en) * 1989-07-14 1998-12-01 Inline Connection Corporation Two-way RF communication at points of convergence of wire pairs from separate internal telephone networks
US5848070A (en) * 1995-08-29 1998-12-08 Alcatel N.V. Multiframe structure and handling protocol for a telecommunication network
US5881099A (en) * 1993-02-17 1999-03-09 Matsushita Electric Industrial Co., Ltd. Signal processing circuit for spread spectrum communications
US5949812A (en) * 1996-12-12 1999-09-07 Trimble Navigation Limited Method and system for conserving battery reserves in a navigation receiver by slowing and/or stopping the system clock during low demand
US5966411A (en) * 1996-12-18 1999-10-12 Alcatel Usa Sourcing, L.P. Multipath equalization using taps derived from a parallel correlator
US6069899A (en) * 1997-08-28 2000-05-30 Broadcam Homenetworking, Inc. Home area network system and method
US6229818B1 (en) * 1997-07-07 2001-05-08 Advanced Micro Devices, Inc. Active isolation system and method for allowing local and remote data transfers across a common data link
US6243394B1 (en) * 1997-02-06 2001-06-05 Verizon Laboratories Inc. Apparatus for ADSL access
US6493875B1 (en) * 1997-02-19 2002-12-10 Next Level Communications, Inc. In-home wireless
US6535517B1 (en) * 1997-06-20 2003-03-18 Telefonaktiebolaget L M Ericsson (Publ) Network access device monitoring
US6622304B1 (en) * 1996-09-09 2003-09-16 Thomas W. Carhart Interface system for computing apparatus and communications stations
US6665299B1 (en) * 1998-01-14 2003-12-16 At&T Corp. Method and system for telephony and high speed data access on a broadband access network

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341415A (en) * 1992-09-22 1994-08-23 Paul Baran Method and apparatus for sharing of common in-house wiring to permit multiple telephone carriers to serve the same customer
US5864607A (en) * 1996-08-23 1999-01-26 Compaq Computer Corp. Communication with a computer using telephones
US5870465A (en) * 1997-08-21 1999-02-09 Data Race, Inc. Telephony adapter system for providing a user with a virtual presence to an office
US6026150A (en) * 1997-10-30 2000-02-15 Epigram Network protocol--based home entertainment network

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441180A (en) * 1979-06-01 1984-04-03 Licentia Patent-Verwaltungs-Gmbh Service integrated communication transmission and interchange system
US5844596A (en) * 1989-07-14 1998-12-01 Inline Connection Corporation Two-way RF communication at points of convergence of wire pairs from separate internal telephone networks
US5090024A (en) * 1989-08-23 1992-02-18 Intellon Corporation Spread spectrum communications system for networks
US5574748A (en) * 1989-08-23 1996-11-12 Intellon Corporation Spread spectrum communications system for network
US5521924A (en) * 1990-11-30 1996-05-28 Fujitsu Limited Telephone subscriber accomodation system in a broadband network
US5347516A (en) * 1991-04-14 1994-09-13 Nec Corporation System for access from LAN to ISDN with means for changing between use of packet switch and line switch without interruption of data transmission
US5740366A (en) * 1991-10-01 1998-04-14 Norand Corporation Communication network having a plurality of bridging nodes which transmit a beacon to terminal nodes in power saving state that it has messages awaiting delivery
US5881099A (en) * 1993-02-17 1999-03-09 Matsushita Electric Industrial Co., Ltd. Signal processing circuit for spread spectrum communications
US5606446A (en) * 1994-03-08 1997-02-25 Optimux Systems Corporation Optical telecommunications system employing multiple phase-compensated optical signals
US5754548A (en) * 1994-03-31 1998-05-19 U.S. Philips Corporation Interconnection of local communication bus system
US5764750A (en) * 1994-08-05 1998-06-09 Lucent Technologies, Inc. Communicating between diverse communications environments
US5848070A (en) * 1995-08-29 1998-12-08 Alcatel N.V. Multiframe structure and handling protocol for a telecommunication network
US6622304B1 (en) * 1996-09-09 2003-09-16 Thomas W. Carhart Interface system for computing apparatus and communications stations
US5949812A (en) * 1996-12-12 1999-09-07 Trimble Navigation Limited Method and system for conserving battery reserves in a navigation receiver by slowing and/or stopping the system clock during low demand
US5966411A (en) * 1996-12-18 1999-10-12 Alcatel Usa Sourcing, L.P. Multipath equalization using taps derived from a parallel correlator
US6243394B1 (en) * 1997-02-06 2001-06-05 Verizon Laboratories Inc. Apparatus for ADSL access
US6493875B1 (en) * 1997-02-19 2002-12-10 Next Level Communications, Inc. In-home wireless
US6535517B1 (en) * 1997-06-20 2003-03-18 Telefonaktiebolaget L M Ericsson (Publ) Network access device monitoring
US6229818B1 (en) * 1997-07-07 2001-05-08 Advanced Micro Devices, Inc. Active isolation system and method for allowing local and remote data transfers across a common data link
US6069899A (en) * 1997-08-28 2000-05-30 Broadcam Homenetworking, Inc. Home area network system and method
US6665299B1 (en) * 1998-01-14 2003-12-16 At&T Corp. Method and system for telephony and high speed data access on a broadband access network

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010034759A1 (en) * 2000-03-17 2001-10-25 Chiles David Clyde Home-networking
US20010036192A1 (en) * 2000-03-17 2001-11-01 Chiles David Clyde Home-networking
US7359973B2 (en) 2000-03-17 2008-04-15 Aol Llc, A Delaware Limited Liability Company Home-networking
US7353280B2 (en) * 2000-03-17 2008-04-01 Aol Llc, A Delaware Limited Liability Company Home-networking
US7463732B1 (en) * 2000-05-05 2008-12-09 3Com Corporation Flexible data outlet
US20060143694A1 (en) * 2000-12-15 2006-06-29 Shoji Suzuki Home server and internet service system
US20020078385A1 (en) * 2000-12-15 2002-06-20 Shoji Suzuki Home server and internet service system
US7484005B2 (en) 2001-06-21 2009-01-27 Aol, Llc, A Delaware Corporation Client device identification when communicating through a network address translator device
US7814230B2 (en) 2001-06-21 2010-10-12 Richard Rodriguez-Val Client device identification when communicating through a network address translator device
US20060129698A1 (en) * 2001-06-21 2006-06-15 America Online, Inc., A Delaware Corporation Client device identification when communicating through a network address translator device
US7051116B1 (en) 2001-06-21 2006-05-23 America Online, Inc. Client device identification when communicating through a network address translator device
US20090177797A1 (en) * 2001-06-21 2009-07-09 Aol Llc, A Delaware Limited Liability Company (Formerly Known As America Online, Inc.) Client device identification when communicating through a network address translator device
US20030167347A1 (en) * 2002-02-11 2003-09-04 Combs James Lee Home network printer adapter
US7383339B1 (en) 2002-07-31 2008-06-03 Aol Llc, A Delaware Limited Liability Company Local proxy server for establishing device controls
US7337219B1 (en) 2003-05-30 2008-02-26 Aol Llc, A Delaware Limited Liability Company Classifying devices using a local proxy server
US7437457B1 (en) 2003-09-08 2008-10-14 Aol Llc, A Delaware Limited Liability Company Regulating concurrent logins associated with a single account
US20070183345A1 (en) * 2006-02-06 2007-08-09 Sereniti, Inc. Managing a home or a small office network
US9924935B2 (en) 2015-10-23 2018-03-27 Smith & Nephew, Inc. Suture anchor assembly with slip fit tip

Also Published As

Publication number Publication date
US6167120A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
US6167120A (en) Apparatus and methods for home networking
US6560234B1 (en) Universal premises distribution platform
US6243394B1 (en) Apparatus for ADSL access
US8300654B2 (en) Broadband multi-drop local network, interface and method for multimedia access
US6011548A (en) System for integrating satellite boardband data distributed over a cable TV network with legacy corporate local area networks
US7961705B2 (en) High bandwidth data transport system
US7944978B2 (en) High bandwidth data transport system
US7920580B2 (en) Coordinated multi-network data services
US7039939B1 (en) Method and apparatus for creating virtual upstream channels for enhanced lookahead channel parameter testing
US20020059634A1 (en) Capacity scaling and functional element redistribution within an in-building coax cable internet Access system
US20040045032A1 (en) MiniMAC implementation of a distributed cable modem termination system (CMTS) architecture
US20080107188A1 (en) High bandwidth data transport system
CA2525355A1 (en) A method and apparatus for transmission of digital signals over a coaxial cable
WO2005101810A1 (en) Single wire return device for downstream ip signals
CN102123216A (en) Dynamic multicode home networking modem device
EP1099349B1 (en) Method and apparatus for data communication
KR20050058287A (en) Ultra-wideband communication through a wire medium
US8775660B2 (en) Bandwidth and topology management device for home networks
Gillett Connecting Homes to the Internet: An Engineering Cost Model of Cable vs. ISDN
Chrissan Uni-DSLT: One DSL for universal service
Kos et al. CATV broadband technologies
CN104378268A (en) Integrated broadband access system fusing EPON and EOC
Kos et al. New services over CATV network
Boyd et al. EPON over Coax (EPoC)
KR100223657B1 (en) Apparatus and method of teansmitting and receiving control imformation among telephone station and network system of vod service

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION