US20010007956A1 - Valve prosthesis for implantation in body channels - Google Patents

Valve prosthesis for implantation in body channels Download PDF

Info

Publication number
US20010007956A1
US20010007956A1 US09/795,802 US79580201A US2001007956A1 US 20010007956 A1 US20010007956 A1 US 20010007956A1 US 79580201 A US79580201 A US 79580201A US 2001007956 A1 US2001007956 A1 US 2001007956A1
Authority
US
United States
Prior art keywords
frame
valvular structure
balloon
valvular
prosthetic valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/795,802
Inventor
Brice Letac
Alain Cribier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8225366&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20010007956(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US09/795,802 priority Critical patent/US20010007956A1/en
Publication of US20010007956A1 publication Critical patent/US20010007956A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2415Manufacturing methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2409Support rings therefor, e.g. for connecting valves to tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/243Deployment by mechanical expansion
    • A61F2/2433Deployment by mechanical expansion using balloon catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2475Venous valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/90Stent for heart valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/902Method of implanting
    • Y10S623/904Heart

Definitions

  • the present invention relates to a valve prosthesis for implantation in body channels, more particularly but not only to, cardiac valve prosthesis to be implanted by a transcutaneous catheterization technique.
  • valve prosthesis can be also applied to other body channels provided with native valves, such as veins or in organs (liver, intestine, urethra, . . .).
  • the present invention also relates to a method for implanting a valve prosthesis, such as the valve according to the present invention.
  • Implantable valves which will be indifferently designated hereafter as “IV”, “valve prosthesis” or “prosthetic valve”, permits the reparation of a valvular defect by a less invasive technique in place of the usual surgical valve implantation which, in the case of valvular heart diseases, requires thoracotomy and extracorporeal circulation.
  • IV Intravascular valve
  • a particular use for the IV concerns patients who cannot be operated on because of an associated disease or because of very old age or also patients who could be operated on but only at a very high risk.
  • the IV of the present invention and the process for implanting said IV can be used in various heart valve diseases, the following description will first concern the aortic orifice in aortic stenosis, more particularly in its degenerative form in elderly patients.
  • Aortic stenosis is a disease of the aortic valve in the left ventricle of the heart.
  • the aortic valvular orifice is normally capable of opening during systole up to 4 to 6 cm 2 , therefore allowing free ejection of the ventricular blood volume into the aorta.
  • This aortic valvular orifice can become tightly stenosed, and therefore the blood cannot anymore be freely ejected from the left ventricle. In fact, only a reduced amount of blood can be ejected by the left ventricle which has to markedly increase the intra-cavitary pressure to force the stenosed aortic orifice.
  • the patients can have syncope, chest pain, and mainly difficulty in breathing. The evolution of such a disease is disastrous when symptoms of cardiac failure appear, since 50% of the patients die in the year following the first symptoms of the disease.
  • Aortic stenosis is a very common disease in people above seventy years old and occurs more and more frequently as the subject gets older. As evidenced, the present tendency of the general evolution of the population is becoming older and older. Also, it can be evaluated, as a crude estimation, that about 30 to 50% of the subjects who are older than 80 years and have a tight aortic stenosis, either cannot be operated on for aortic valve replacement with a reasonable surgical risk or even cannot be considered at all for surgery.
  • an IV would not have to produce a large opening of the aortic orifice since an opening about 2 cm 2 would be sufficient in most subjects, in particular in elderly subjects, whose cardiac output probably does not reach more than 6 to 8 l/min. during normal physical activity.
  • the surgically implanted mechanical valves have an opening area which is far from the natural valve opening that ranges from 2 to 2.5 cm 2 , mainly because of the room taken by the large circular structure supporting the valvular part of the device.
  • Such valves tend to imitate the natural valve.
  • this type of design is inherently fragile, and such structures are not strong enough to be used in the case of aortic stenosis because of the strong recoil that will distort this weak structure and because they would not be able to resist the balloon inflation performed to position the implantable valve.
  • this valvular structure is attached to a metallic frame of thin wires that will not be able to be tightly secured against the valve annulus.
  • the metallic frame of this implantable valve is made of thin wires like in stents, which are implanted in vessels after balloon dilatation.
  • Such a light stent structure is too weak to allow the implantable valve to be forcefully embedded into the aortic annulus. Moreover, there is a high risk of massive regurgitation (during the diastolic phase) through the spaces between the frame wires which is another prohibitive risk that would make this implantable valve impossible to use in clinical practice.
  • an important point in view of the development of the IV is that it is possible to maximally inflate a balloon placed inside the compressed implantable valve to expand it and insert it in the stenosed aortic valve up to about 20 to 23 mm in diameter.
  • the balloon is absolutely stiff and cylindrical without any waist.
  • the implantable valve is squeezed and crushed between the strong aortic annulus and the rigid balloon with the risk of causing irreversible damage to the valvular structure of the implantable valve.
  • the invention is aimed to overcome these drawbacks and to implant an IV which will remain reliable for years.
  • a particular aim of the present invention is to provide an IV, especially aimed at being used in case of aortic stenosis, which structure is capable of resisting the powerful recoil force and to stand the forceful balloon inflation performed to deploy the IV and to embed it in the aortic annulus.
  • Another aim of the present invention is to provide an efficient prosthesis valve which can be implanted by a catheterization technique, in particular in a stenosed aortic orifice, taking advantage of the strong structure made of the distorted stenosed valve and of the large opening area produced by preliminary balloon inflation, performed as an initial step of the procedure.
  • a further aim of the present invention is to provide an implantable valve which would not produce any risk of fluid regurgitation.
  • a further aim of the present invention is to provide a valve prosthesis implantation technique using a two-balloon catheter and a two-frame device.
  • valve prosthesis of the type mentioned in the introductory part and wherein said valve prosthesis comprises a callapsible continuous structure with guiding means providing stiffness and a frame to which said structure is fastened, said frame being strong enough to resist the recoil phenomenon of the fibrous tissue of the diseased valve.
  • the IV which is strongly embedded, enables the implantable valve to be maintained in the right position without any risk of further displacement, which would be a catastrophic event.
  • this valvular structure comprises a valvular tissue compatible with the human body and blood, which is supple and resistant to allow said valvular structure to pass from a closed state to an open state to allow a body fluid, more particularly the blood, exerting pressure on said valvular structure, to flow.
  • the valvular tissue forms a continuous surface and is provided with guiding means formed or incorporated within, creating stiffened zones which induce the valvular structure to follow a patterned movement from its open position to its closed state and vice-versa, providing therefore a structure sufficiently rigid to prevent diversion, in particular into the left ventricle and thus preventing any regurgitation of blood into the left ventricle in case of aortic implantation.
  • the guided structure of the IV of the invention allows the tissue of this structure to open and close with the same patterned movement while occupying as little space as possible in the closed state of the valve. Therefore, owing to these guiding means, the valvular structure withstands the unceasing movements under blood pressure changes during the heart beats.
  • the valvular structure has a substantially truncated hyperboloidal shape in its expanded position, with a larger base and a growing closer neck, ending in a smaller extremity forming the upper part of the valvular structure.
  • the valvular structure has a curvature at its surface that is concave towards the aortic wall. Such a shape produces a strong and efficient structure in view of the systolo-diastolic movement of the valvular tissue.
  • Such a valvular structure with its simple and regular shape also lowers the risk of being damaged by forceful balloon inflation at the time of IV deployment.
  • a trunco-hyperboloidal shape with a small diameter at the upper extremity facilitates the closure of the valve at the beginning of diastole in initiating the starting of the reverse movement of the valvular tissue towards its base.
  • Another advantage of this truncated hyperboloidal shape is that the upper extremity of the valvular structure, because of its smaller diameter, remains at a distance from the coronary ostia during systole as well as during diastole, thus offering an additional security to ensure not to impede at all the passage of blood from the aorta to the coronary ostia.
  • the guiding means of the valvular structure are inclined strips from the base to the upper extremity of the valvular structure with regard to the central axis of the valvular structure.
  • This inclination initiates and imparts a general helicoidal movement of the valvular structure around said central axis at the time of closure or opening of said structure, such a movement enabling to help initiate and finalize the closure of the valvular structure.
  • this movement improves the collapse of the valvular structure towards its base at the time of diastole and during the reversal of flow at the very beginning of diastole.
  • the valvular structure thus falls down, folding on itself and collapses on its base, therefore closing the aortic orifice.
  • the strips can be pleats, strenghthening struts or thickened zones.
  • said guiding means are rectilinear strips from the base to the upper extremity of the valvular structure.
  • the guiding means can comprise pleats, struts or thickened zones.
  • the stiffened zones then created can be advantageously two main portions, trapezoidal in shape, formed symmetrically one to each other with regard to the central axis of the valvular structure, and two less rigid portions separating said two main portions to lead to a tight closeness in shape of a closed slot at the time of closure of the upper extremities of the main portions of the valvular structure.
  • the thickened zones can be extended up to form the stiffened zones.
  • each of said main slightly rigid portions occupy approximately one third of the circumference of the valvular structure when this latter is in its open position.
  • the slightly rigid portions maintain the valvular structure closed during diastole by firmly applying themselves on each other.
  • the closure of the valvular structure at the time of diastole thus does not have any tendency to collapse too much towards the aortic annulus.
  • the guiding means are a number of pleats formed within the tissue by folding, or formed by recesses or grooves made in the tissue.
  • the shape of the pleats is adapted to achieve a global shape of the desired type for said position.
  • the guiding means are made of strengthening struts, preferably at least three, incorporated in the tissue in combination or not with said pleats.
  • the guiding means and in particular, the strengthening struts, help to prevent the valvular tissue from collapsing back too much and to reverse inside the left ventricle through the base of the frame, preventing the risk of blood regurgitation.
  • said valvular tissue is made of synthetic biocompatible material such as Teflon® or Dacron®, polyethylene, polyamide, or made of biological material such as pericardium, porcine leaflets and the like. These materials are commonly used in cardiac surgery and are quite resistant, particularly to folding movements due to the increasing, systolo-diastolic movements of the valvular tissue and particularly at the junction with the frame of the implantable valve.
  • the valvular structure is fastened along a substantial portion of an expandable frame, by sewing, by molding or by gluing to exhibit a tightness sufficiently hermetical to prevent any regurgitation of said body fluid between the frame and the valvular structure.
  • an internal cover is coupled or is integral to the valvular structure and placed between said valvular structure and the internal wall of the frame to prevent any passage of the body fluid through said frame. Therefore, there is no regurgitation of blood as it would be the case if there were any space between the valvular structure fastened on the frame and the zone of application of the frame on the aortic annulus.
  • the internal cover makes a sort of “sleeve” at least below the fastening of the valvular structure covering the internal surface of the frame and thus prevents any regurgitation of blood through the frame.
  • the frame is a substantially cylindrical structure capable of maintaining said body channel open in its expanded state and supporting said collapsible valvular structure.
  • the frame is made of a material which is distinguishable from biological tissue to be easily visible by non invasive imaging techniques.
  • said frame is a stainless metal structure or a foldable plastic material, made of intercrossing, preferably with rounded and smooth linear bars.
  • This frame is strong enough to resist the recoil phenomenon of the fibrous tissue of the diseased valve.
  • the size of the bars and their number are determined to give both the maximal rigidity when said frame is expanded and the smallest volume when the frame is compressed.
  • the frame has projecting curved extremities and presents a concave shape. This is aimed at reinforcing the embedding and the locking of the implantable valve in the distorted aortic orifice.
  • the IV is made in two parts, a first reinforced frame coupled with a second frame which is made of thinner bars than said first frame and which is embedded inside the second frame.
  • This second frame to which the valvular structure is fastened as described above, is preferably less bulky than the first frame to occupy as little space as possible and to be easily expanded using low pressure balloon inflation.
  • the present invention also relates to a double balloon catheter to separately position the first frame in the dilated stenosed aortic valve and place the second frame that comprises the valvular structure.
  • This catheter comprises two balloons fixed on a catheter shaft and separated by few centimeters.
  • the first balloon is of the type sufficiently strong to avoid bursting even at a very high pressure inflation and is aimed at carrying, in its deflated state, a strong frame aimed at scaffolding the previously dilated stenosed aortic valve.
  • the second balloon is aimed at carrying the second frame with the valvular structure.
  • each balloon has an external diameter which is smaller than known balloons since each element to be expanded is smaller.
  • the shaft of said double balloon catheter comprises two lumens for successive and separate inflation of each balloon.
  • an additional lumen capable of allowing a rapid inflation takes additional room in the shaft.
  • the invention also relates to a method of using a two-balloon catheter with a first frame and second frame to which a valve prosthesis of the type previously described is fastened.
  • FIGS. 1 a , 1 b and 1 c illustrate, in section views, respectively, the normal aortic valve in systole, in diastole and a stenosed aortic valve;
  • FIGS. 2 a and 2 b illustrate two examples of a metallic frame which are combined to a valvular structure according to the present invention
  • FIGS. 3 a and 3 b illustrate a frame according to the invention in its expanded position with an opening out of the extremities, respectively, with a cylindrical and a concave shape;
  • FIGS. 4 a and b illustrate an IV of the invention respectively in its compressed position and in its expanded position in an open position as in systole;
  • FIGS. 5 a and 5 b illustrate respectively an IV of the invention in its closed position and a sectional view according to the central axis of such a valvular structure which is closed as in diastole;
  • FIGS. 6 a to 6 b illustrate a sectional view according to the central axis of an IV according to the present invention and showing the internal cover and the external cover of the valvular structure overlapping partially or non overlapping the frame bars;
  • FIG. 7 illustrates the frontal zig-zag fastening line of the valvular tissue on the frame
  • FIGS. 8 a and 8 b illustrate, respectively, a perspective view of a valvular structure and an internal cover made all of one piece and a perspective view of the corresponding frame into which they will be inserted and fastened;
  • FIGS. 9 a and 9 b illustrate inclined strengthening struts, an example of a valvular structure according to the invention, respectively in the open position and in the closed position;
  • FIGS. 10 a and 10 b illustrate an example of a valvular structure comprising pleats, respectively in the open and in the closed position;
  • FIGS. 11 a and 11 b illustrate a valvular structure comprising two trapezoidal slightly rigid portions, respectively in the open and in the closed position;
  • FIGS. 11 c to 11 e illustrate a valvular structure comprising a rectangular stiffened zone, respectively in the open, intermediate and closed position;
  • FIGS. 12 a and 12 b illustrate, respectively, a perspective and cross sectional views of an implantable valve in its compressed presentation squeezed on a balloon catheter;
  • FIGS. 13 a to 13 l illustrate views of the successive procedure steps for the IV implantation in a stenosed aortic orifice
  • FIG. 14 illustrate an implantable valve made in two parts in its compressed presentation squeezed on a two-balloon catheter with a reinforced frame on a first balloon and with the implantable valve on the second balloon;
  • FIGS. 15 a to 15 f illustrate the successive steps of the implantation of the implantation valve in two parts with a two-balloon catheter
  • the arrows A indicates the general direction of the blood flow.
  • the semi-lunar leaflets 1 and 2 of a native aortic valve (with only two out of three shown here) are thin, supple and move easily from the completely open position (systole) to the closed position (diastole).
  • the leaflets originate from an aortic annulus 2 a.
  • FIGS. 1 a to 1 c show also the coronary artery ostium 6 a and 6 b and FIG. 1 a shows, in particular, the mitral valve 7 of the left ventricle cavity 4 .
  • An implantable valve according to the invention essentially comprises a supple valvular structure supported by a strong frame.
  • the positioning of the implantable valve is an important point since the expanded frame has to be positioned exactly at the level of the native valvular leaflets 1 , 2 of the native valve, the structures of which are pushed aside by the inflated balloon.
  • the implantable valve is positioned with the fastening line of the valvular structure on the frame exactly on the remains of the crushed stenosed valve to prevent any regurgitation of blood.
  • any risk of regurgitation of blood is eliminated with the presence of an internal cover, as will be described below.
  • the upper limit of the frame should be placed below the opening of the coronary arteries, i.e., the coronary ostia 6 , or at their level so that the frame does not impede free blood flow in the coronary arteries.
  • This point is a delicate part of positioning an IV since the distance between the superior limit of the leaflets of the natural valve and the coronary ostia 6 is only about 5 to 6 mm.
  • the ostia are located in the Valsalva sinus 8 which constitutes a hollow that are located a little out of the way. This helps to prevent from impeding the coronary blood flow by the IV.
  • the operator evaluates the exact positioning of the coronary ostia by looking at the image produced by a sus-valvular angiogram with contrast injection performed before the implantation procedure.
  • This image will be fixed in the same projection on a satellite TV screen and will permit the evaluation of the level of the origin of the right and left coronary arteries.
  • a thin guide wire is positioned in each of the coronary arteries to serve as a marker of the coronary ostia.
  • the lower part of the frame of the IV preferably extends by 2 or 3 mm inside the left ventricle 4 , below the aortic annulus 2 a .
  • this part of the frame should not reach the insertion of the septal leaflet of the mitral valve 7 , so that it does not interfere with its movements, particularly during diastole.
  • FIGS. 2 a and 2 b show respectively an example of a cylindrical frame 10 comprising intercrossing linear bars 11 , with two intersections 1 by bar 11 , the bars 11 being soldered or provided from a folded wire to constitute the frame, with for instance a 20 mm, 15 mm or 12 mm height, and an example with only one intersection of bars 11 .
  • a frame is expandable from a size of about 4 to 5 millimeters to a size of about 20 to 25 mm in diameter, or even to about 30-35 mm (or more) in particular cases, for instance for the mitral valve.
  • said frame in its fully expanded state, has a height of approximately between 10 and 15 mm and in its fully compressed frame, a height of approximately 20 mm.
  • the number and the size of the bars are adapted to be sufficiently strong and rigid when the frame is fully open in the aortic orifice to resist the strong recoil force exerted by the distorted stenosed aortic orifice after deflation of the balloon used in the catheterization technique which has been previously maximally inflated to enlarge the stenosed valve orifice;
  • the frame may have several configurations according to the number of bars 11 and intersections. This number, as well as the size and the strength of the bars 11 , are calculated taking into account all the requirements described, i.e., a small size in its compressed form, its capacity to be enlarged up to at least 20 mm in diameter and being strong when positioned in the aortic orifice to be able to be forcefully embedded in the remains of the diseased aortic valve and to resist the recoil force of the aortic annulus.
  • the diameter of the bars is choosen, for instance, in the range of 0.1-0.6 mm.
  • a frame particularly advantageous presents, when deployed in its expanded state, an opening out 12 at both extremities as shown in FIGS. 3 a and 3 b , the frame having a linear profile (FIG. 3 a ) or a concave shape profile (FIG. 3 b ). This is aimed at reinforcing the embedding of the IV in the aortic orifice.
  • the free extremities of the openings 12 are rounded and very smooth to avoid any traumatism of the aorta or of the myocardium.
  • the structure of a preferred frame used in the present invention both maintains the aortic orifice fully open once dilated and produces a support for the valvular structure.
  • the frame is also foldable. When folded by compression, the diameter of said frame is about 4 to 5 millimeters, in view of its transcutaneous introduction.
  • F French, a unit usually used in cardiology field
  • the frame is able to expand under the force of an inflated balloon up to a size of 20 to 23 mm in diameter.
  • the frame is preferably a metallic frame, preferably made of steel. It constitutes a frame with a grate type design able to support the valvular structure and to behave as a strong scaffold for the open stenosed aortic orifice.
  • valve leaflets in degenerative aortic stenosis are grossly distorted and calcified, sometimes leaving only a small hole or a small slit in the middle of the orifice, has to be considered an advantage for the implantation of the valve and for its stable positioning without risk of later mobilization.
  • the fibrous and calcified structure of the distorted valve provides a strong base for the frame of the IV and the powerful recoil phenomenon that results from elasticity of the tissues contribute to the fixation of the metallic frame.
  • the height of the fully expanded frame of the illustrated frames 10 is preferably between 10 and 15 mm. Indeed, since the passage from the compressed state to the expanded state results in a shortening of the metallic structure, the structure in its compressed form is a little longer, i.e., preferably about 20 mm length. This does not constitute a drawback for its transcutaneous introduction and its positioning in the aortic orifice.
  • the frame is strong enough to be able to oppose the powerful recoil force of the distended valve and of the aortic annulus 2 a .
  • it does not possess any flexible properties.
  • the frame When the frame has reached its maximal expanded shape under the push of a forcefully inflated balloon, it remains substantially without any decrease in size and without any change of shape.
  • the size of the bars that are the basic elements of the frame is calculated in such a way to provide a substantial rigidity when the frame is fully expanded.
  • the size of the bars and their number are calculated to give both maximal rigidity when expanded and the smallest volume when the metallic frame is its compressed position.
  • the frame is expanded by dilatation to its broadest dimension, i.e., between 20 mm and 25 mm in diameter, so as to be able to fasten to valvular structure on the inside side of its surface.
  • This fastening is performed using the techniques in current use for the making of products such as other prosthetic heart valves or multipolars catheters etc.
  • it is compressed in its minimal size, i.e., 4 or 5 mm, in diameter in view of its introduction in the femoral artery.
  • the frame is expanded again by balloon inflation to its maximal size in the aortic orifice.
  • the frame If the frame is built in an expanded position, it will be compressed, after fastening the valvular structure, by exerting a circular force on its periphery and/or on its total height until obtaining the smallest compressed position. If the frame is built in its compressed position, it will be first dilated, for instance, by inflation of a balloon and then compressed again as described above.
  • the shaft of the balloon catheter on which will be mounted the IV before introduction in the body (see below) possesses preferentially metallic reference marks easily seen on fluoroscopy. One mark will be at level of the upper border of the frame and the other at the level of the lower border. The IV, when mounted on the catheter shaft and crimpled on it, is exactly positioned taking into account these reference marks on the shaft.
  • the frame is visible during fluoroscopy when introduced in the patient's body.
  • the upper border of the frame is placed below the coronary ostia.
  • the implanting process during which the balloon inflation completely obstructs the aortic orifice, as seen below, is performed within a very short time, i.e., around 10 to 15 seconds. This also explains why the frame is clearly and easily seen, without spending time to localize it. More particularly, its upper and lower borders are clearly delineated.
  • FIGS. 4 a and 4 b show an example of a preferred IV 13 of the present invention, respectively in its compressed position, in view of its introduction and positioning in the aortic orifice, and in its expanded and opened (systole) position.
  • FIGS. 5 a and 5 b show the expanded position of this example closed in diastole, respectively in perspective and in a crossed section view along the central axis X′X of the valve prosthesis.
  • the valvular structure 14 is compressed inside the frame 10 when this is in its compressed position (FIG. 4 a ), i.e., it fits into a 4 to 5 mm diameter space.
  • the valvular structure can expand (FIG. 4 b ) and follow the frame expansion produced by the inflated balloon. It will have to be able to reach the size of the inside of the fully deployed frame.
  • the illustrated IV 13 is made of a combination of two main parts
  • a soft and mobile tissue constituting the valvular structure 14 exhibiting a continuous surface truncated between a base 15 and an upper extremity 16 ; the tissue is fastened to the bars 11 of the frame at its base 16 and is able to open in systole and to close in diastole at its extremity 16 , as the blood flows in a pulsatile way from the left ventricle towards the aorta.
  • the tissue has rectilinear struts 17 incorporated in it in plane including the central axis X′X, in order to strengthen it, in particular, in its closed state with a minimal occupation of the space, and to induce a patterned movement between its open and closed state.
  • strengthening struts are described below. They are formed from thicker zones of the tissue or from strips of stiffening material incorporated in the tissue; they can also beglued or soldered on the valvular tissue.
  • These strengthening struts help to prevent the valvular tissue from collapsing back too much and to evert inside the left ventricle through the base of the frame.
  • These reinforcements of the valvular tissue help maintain the folded tissue above the level of the orifice during diastole, prevent too much folding back and risk of inversion of the valvular structure inside the left ventricle. By also preventing too much folding, a decrease of the risk of thrombi formation can also be expected by reducing the number of folds.
  • the truncated shape forming a continuous surface enables to obtain a strong structure and is more efficient for the systolo-diastolic movements of the valvular tissue during heart beats.
  • the truncoidal shape facilitates the closure of the valve structure at the beginning of diastole in facilitating the start of the reverse movement of the valvular tissue towards its base at the time of diastole, i.e., at the time of flow reversal at the very beginning of diastole.
  • the valvular structure 14 thus falls down, folding on itself, thereby collapsing on its base, and therefore closing the aortic orifice.
  • the valvular structure has preferably, as illustrated, an hyperboloid shape, with a curvature on its surface concave towards the aortic wall that will contribute to initiating its closure.
  • the basis of the truncated hyperboloid is fixed on the lower part of a frame and the smallest extremity of the truncated hyperboloid is free in the blood stream, during the respected closing and opening phasis.
  • the base 15 of the truncated tissue is attached on the frame 10 along a line of coupling 18 disposed between the inferior fourth and the third fourth of the frame in the example.
  • the upper extremity 16 with the smaller diameter, overpasses the upper part of the frame by a few millimeters; 6 to 8 mm, for instance. This gives the valvular structure a total height of about 12 to 15 mm.
  • the upper extremity 16 of the truncated tissue i.e., the smaller diameter of the hyperboloidal structure 14 , is about 17 to 18 mm in diameter (producing a 2.3 to 2.5 cm 2 area opening) for a 20 mm diameter base of the truncated structure, or 19 to 20 mm in diameter (producing a 2.8 or a 3 cm 2 area opening) for a 23 mm diameter base.
  • the line of fastening of the base of the truncated tissue on the frame will have to expand from a 12.5 mm perimeter (for a 4 mm external diameter of the compressed IV) to a 63 mm perimeter (for a 20 mm external diameter of the expanded IV), or to a 72 mm perimeter (for a 23 mm external diameter, in case a 23 mm balloon is used).
  • Another advantage of this truncated continuous shape is that it is stronger and has less risk of being destroyed or distorted by the forceful balloon inflation at the time of IV deployment. Also, if the truncated hyperboloidal shape is marked, for instance, with a 16 or 17 mm diameter of the upper extremity as compared to a 20 mm diameter of the base (or 18 to 20 mm for 23 mm), the smaller upper part is compliant during balloon inflation in order to enable the balloon to expand cylindrically to its maximal 20 mm diameter (or 23 mm). This is made possible by using a material with some elastic or compliant properties.
  • the valvular structure of the invention includes advantageously a third part, i.e., the internal cover 19 to be fixed on the internal wall of the frame 10 .
  • This internal cover prevents any passage of blood through the spaces between the bars 11 of the frame in case the implantable valve would be positioned with the fastening line of the valvular structure on the frame not exactly on the remains of the dilated aortic valve, i.e., either above or below, it also strengthens the fastening of the valvular structure 14 to the frame 10 .
  • the internal cover 19 covers the totality of the internal side of the frame 10 (FIG. 6 a ), only the lower part of the frame 10 (FIG. 6 b ), or it can additionally cover partially 3 to 5 mm as shown in the passage of blood from aorta to the coronary ostia FIG. 6 c , the upper part defined above the coupling line 18 of the valvular structure.
  • the internal cover can also be molded to the valvular structure or casted to it which therefore constitutes an integral structure.
  • the valvular structure and the internal cove are therefore strongly locked together with minimum risk of detachment of the valvular structure which is unceasingly in motion during systole and diastole.
  • only the internal cover has to be fastened on the internal surface of the frame which renders the making of the IV easier and makes the complete device stronger and more resistant.
  • the junction of the mobile part of the valvular structure and the fixed part being molded as one piece is stronger and capable to face the increasing movements during the systolo-diastolic displacements without any risk of detachment.
  • the presence of the internal cover makes an additional layer of plastic material that occupies the inside of the frame and increases the final size of the IV. Therefore, in the case in which the internal cover is limited to the inferior part of the frame (that is, below the fastening line of the valvular structure), it does not occupy any additional space inside the frame. Here also, it is more convenient and safer to make the valvular structure and this limited internal cover in one piece.
  • the base of the valvular structure is preferably positioned exactly at the level of the aortic annulus against the remains of distorted stenosed valve pushed apart by the inflated balloon. Therefore, there is no possibility of blood passage through the spaces between the metallic frame bars 11 below the attachment of the valvular structure.
  • the part of the frame below the fastening of the valvular structure (about 3 to 5 mm) is preferably covered by an internal cover which is preferably made with the same tissue as the valvular structure.
  • an internal cover which is preferably made with the same tissue as the valvular structure.
  • the internal cover can also have another function, i.e., it can be used to fasten the valvular structure inside the frame, as described below.
  • the internal cover 19 is extended at its lower end 19 ′ to an external cover 19 ′′ which is rolled up to be applied on the external wall of the stent 10 .
  • the internal and external cover are molded, glued or soldered to the bars of the stent 10 .
  • the coupling process of the valvular structure on the frame is of importance since it has to be very strong without any risk of detachment of the valvular structure from the frame during millions of heart beats with pulsatile blood flow alternatively opening and closing the valvular structure.
  • the valvular structure of the invention folds to a very small size inside the frame in the compressed position of the valve and is expandable up to 20 to 23 mm diameter. Also, the valvular structure can resist the strong force exerted by the maximally inflated balloon that will powerfully squeeze it against the bars of the frame or against the internal cover, this one being squeezed directly against the bars of the frame.
  • the junction zone is also particularly subjected to very strong pressure exerted by the inflated balloon. Furthermore, this junction zone must not tear or break off during expansion of the balloon. At this time, each part of the junction zone is squeezed against the bars but nonetheless follows the expansion of the frame.
  • the junction zone is, for example, a fastening line 20 which follows the design of a “zig-zag” line drawn by the intercrossing bars 11 of the frame on the internal cover 19 .
  • the fastening of the valvular structure to the frame can be made by sewing the internal and/or the external cover to the bars.
  • stitches are preferably numerous and very close to each other, either as separated stitches or as a continuous suture line.
  • the stitches are made directly around the bars 11 .
  • the stitches since the valvular structure is expanded together with the metallic frame, the stitches, if made as a continuous suture line, are also able to expand at the same time.
  • the fastening process can also be made by molding the base of the valvular structure on the frame. At this level, the bars 11 are imbedded in the coupling line of the valvular structure 14 .
  • This mold way also concerns the internal cover 19 , when it goes below the coupling line 14 on the frame over few millimeters, for example, 2 to 4 mm. As mentioned above, this is intended in order to prevent any regurgitation of blood just below the lower part of the valvular structure 14 in case the frame 10 would not be exactly positioned on the aortic annulus but at few millimeters away.
  • the fastening process can further be made by gluing or soldering the valvular structure on the bars with sufficiently powerful biocompatible glues.
  • the same remark can be made concerning the internal cover of the frame below the coupling line of the valvular structure.
  • the valvular structure can also be fastened on the internal cover previously fixed at the total length of the internal surface of the metallic frame.
  • the internal cover constitutes therefore a surface on which any type of valvular structure be more easily sewed, molded or glued. Because it is a structure with a large surface and is not involved in the movements of the valvular tissue during systole and diastole, the internal cover is more easily fastened to the internal surface of the frame.
  • the internal cover 19 is fastened, after introduction (indicated by the arrow B), at the upper and lower extremities of the frame 10 on the upper and lower zig-zag lines of the intercrossing bars 11 .
  • the fastening of the internal cover 19 on the zig-zag lines made by the intercrossing bars 11 of the frame allows an easier passage of blood from the aorta above the IV towards the coronary ostia.
  • the blood can find more space to flow into the coronary ostia by passing through the lowest point of each triangular space made by two intercrossing bars 11 , as indicated by the arrows A 1 (see also FIG. 1 b ).
  • the fastening of the internal cover 19 on the extremities can be reinforced by various points of attachment on various parts of the internal surface of the frame 10 .
  • the internal cover 27 can be fastened by sewing, molding or gluing the bars 11 onto the frame.
  • the IV should preferably have the smallest possible external diameter. Ideally, it should be able to be introduced in the femoral artery through a 14 F (4.5 mm) size arterial introducer which is the size of the arterial introducer commonly used to perform an aortic dilatation. However, a 16 F (5.1 mm) or even a 18 F (5.7 mm) introducer would also be acceptable.
  • an IV should be able to last several tenths of life years without defect, like the mechanical prosthetic valves which are currently implanted by the surgeons. Nevertheless, an implantable valve that would last at least ten years without risk of deterioration would be effective for the treatment of elderly patients.
  • a valvular structure according to the invention is made of a supple and reinforced tissue which has a thickness to be thin enough to occupy as less as possible space in the compressed form of the valve, is pliable, and also strong enough to stand the unceasing movements under the blood pressure changes during heart beats.
  • the valvular structure is capable of moving from its closed position to its open position under the action of the force exerted by the movements of the blood during systole and diastole, without having any significant resistance to blood displacements.
  • the material used for the tissue which exhibits the above mentioned requirements, may be Teflon® or Dacron®, which are quite resistant to folding movements, at least when they are used to repair cardiac defects such as inter-atrial or interventricular defects or when they are used to repair a valve such as the mitral valve which is subjected to high pressure changes and movements during heart beats. Also, a main point is the increasing systolo-diastolic movements of the valvular tissue, particularly at its junction with the rigid part of the IV, and it is therefore necessary to find the most possible resistance material tissue.
  • the valvular structure can also possibly be made with biological tissue such as the pericardium, or with porcine leaflets, which are commonly used in bioprosthetic surgically implanted valves.
  • the valvular prosthesis of the present invention does not induce any significant thrombosis phenomenon during its stay in the blood flow and is biologically neutral.
  • a substance with anti-thrombic properties could be used, such as heparine, ticiopidine, phosphorylcholine, etc. either as a coating material or it can be incorporated into the material used for the implantable valve, in particular, for the valvular structure and/or for the internal cover.
  • the valvular structure of the invention can have several types of designs and shapes. Besides the example illustrated in FIGS. 4 and 5, examples of strengthened valvular structures according to the invention are shown in FIGS. 9 to 11 , respectively in the closed (FIGS. 9 a , 10 a , 11 a ) and in the open state (FIGS. 9 b , 10 b , 11 b ) to form a prosthetic valve according to the present invention. In those figures, the frame line is simplified to clarify the drawings.
  • FIGS. 9 a and 9 b To help initiate and finalize the closure of the valvular structure, four strengthening struts 14 are slightly inclined form the base to the upper part as compared to the central axis X′X of the structure, as shown in FIGS. 9 a and 9 b . Accordingly, a patterned movement of the valvular structure, during the closing and the opening phases, is initiated. This patterned movement is, in the present case, an helicoidal-type one, as suggested in FIGS. 9 b and 10 b by the circular arrow.
  • FIGS. 10 a and 10 b illustrate another embodiment to help the closing of the valvular structure and which also involves an helicoidal movement.
  • lines 22 inclined pleats are formed in the tissue to impart such a movement. As illustrated, these lines have an inclination from the base to the upper part of the tissue 14 .
  • Pleats are formed by folding the tissue or by alternating thinner and thicker portions. The width and the number of those pleats are variable, and depend particularly on the type of material used. According to another example, these pleats 34 are combined with the above described inclined strengthening struts.
  • Another shape of the valvular structure comprises two portions: one portion being flexible but with some rigidity, having a rectangular shape, occupying about one third of the circumference of the valvular structure, and the other portion being more supple, flexible and foldable occupying the rest of the circumference at its base as well as at its upper, free border.
  • this valve is opened, during the ejection of blood, i.e., during systol.
  • FIG. 11 d a front view of the valve is closed, during an intermediate diastole, and in FIG. 11 e the same closed valve during diastole is shown from a side view.
  • the semi-rigid part 24 ′ moves little during systole and during diastole.
  • the foldable part 23 ′ moves away from the rigid part during systole to let the blood flow through the orifice thus made.
  • This orifice due to the diameter of the upper part which is the same as that of the open stent, is large, generally as large as that of the open stent.
  • the foldable part moves back towards the semi-rigid part and presses on it, and thus closes the orifice and prevents any regurgitation of blood.
  • the advantage of such a valve design is to allow a large opening of the upper part of the valvular structure, not only to permit more blood flow at time of systole after the valve has been implanted, but also at the very time of implantation, when the balloon is maximally inflated to expand the valve to imbed it in the valvular annulus.
  • the diameter of the upper part of the valvular structure could be the same size as the balloon, so that there would be no distension of the valvular part of the valve at the time of implantation, and therefore no risk of deterioration of the valvular structure by the inflated balloon.
  • the foldable part of the valve could be reinforced by strenghtening struts to prevent an eversion of the valve towards the left ventricle during diastole.
  • FIGS. 11 a and 11 b Another shape of the valvular structure, as illustrated in FIGS. 11 a and 11 b comprise four portions, alternatively a main portion 23 and a more narrow portion 24 .
  • the main and the narrow portions are facing each other.
  • Each portion has an isosceles trapezoidal shape.
  • the main portions 23 are flexible but with some slight rigidity and the more narrow portions 24 are compliant, more supple and foldable.
  • the two slightly rigid portions 23 maintain the valvular structure closed during diastole by firmly applying on each other in their upper extremities, thus forming a slot-like closure 25 .
  • This particular embodiment needs less foldable tissue than in the previous embodiments and the closure of the valvular structure at the time of early diastole does not have any tendency to collapse towards the aortic annulus.
  • Another design for the valvular structure is a combination of a cylindrical shape followed by a truncated shape.
  • This type of valvular structure is longer that the hyperboloidal type, for instance, 25 or 30 mm long, therefore exceeding out of the upper part of the metallic frame, by 10 to 20 mm.
  • the cylindrical part corresponds to the metallic frame and remains inside it.
  • the truncated conic shape is the upper part of the valvular structure, totally exceeding out of the upper extremity of the metallic frame.
  • the upper extremity of the cylindrical part has the same size as the lower extremity, there is no difference during balloon inflation in the degree of force exerted by the balloon on the lower and on the upper extremity of the valvular structure.
  • rectilinear reinforcing struts are used in this embodiment, to strengthen the valve structure and aid in its shutting without collapsing and inverting inside the left ventricle through the aortic annulus under the force of the diastolic pressure.
  • FIGS. 13 a to 13 l Two different processes for implanting a valve according to the present invention are shown respectively in FIGS. 13 a to 13 l with a unique balloon catheter, as illustrated in FIGS. 12 a and 12 b and in FIGS. 15 a to 15 f , with a two-balloon catheter, as illustrated in FIG. 14.
  • the IV positioning in the aortic orifice and its expansion can be performed with the help of a unique substantially cylindrical balloon catheter 26 in the so-called unique-balloon catheterization technique.
  • the IV 13 is, as illustrated in the perspective view of FIG. 10 a in a compressed form crimpled on the balloon catheter 26 .
  • a central sectional view of the mounted IV 13 on the complete balloon catheter 26 is shown in FIG. 12 b.
  • the shaft 27 f of the balloon dilation catheter 26 is as small as possible, i.e., a 7F (2.2 mm) or a 6 F (1.9 mm) size.
  • the balloon 26 is mounted on the shaft 27 between two rings R.
  • the shaft 27 comprises a lumen 28 (FIG. 12 b ) as large as possible for inflation of the balloon 26 with diluted contrast to allow simple and fast inflation and deflation. It has also another lumen 29 able to accept a stiff guide wire 30 , for example 0.036 to 0.038 inches (0.97 mm), to help position the implantable valve with precision.
  • the balloon 26 has, for example, a 3 to 4 cm length in its cylindrical part and the smallest possible size when completely deflated so that it will be able to be placed inside the folded valve having an outside diameter which ranges between about 4 and 5 mm. Therefore, the folded balloon preferably has at the most a section diameter of about 2.5 to 3 mm.
  • the balloon is therefore made of a very thin plastic material. It is inflated with saline containing a small amount of contrast dye in such a way to remain very fluid and visible when using X-ray.
  • the balloon 26 has to be sufficiently strong to resist the high pressure that it has to withstand to be capable of expanding the folded valvular structure 14 and the compressed frame in the stenosed aortic orifice considering that, although pre-dilated, the aortic orifice still exerts a quite strong resistance to expansion because of the recoil phenomenon.
  • the balloon inflated for expansion of an implantable valve should not burst in any case. Indeed, bursting of the balloon would involve a risk of incomplete valve expansion and wrong positioning. Therefore, the balloon should be very resistant to a very high pressure inflation. Furthermore, the balloon is inflated only up to the nominal pressure indicated by the marker and the pressure is controlled during inflation by using a manometer.
  • Such relatively low pressure should be sufficient since prior to positioning the IV, an efficacious dilatation of the stenosed aortic valve according to the usual technique with a maximally inflated balloon for example 20 mm or 25 mm in size in such a way to soften the distorted valvular tissue and facilitate the enlargement of the opening of the valve at time of IV implantation is performed.
  • the implantation of the aortic valve 20 can be made in two steps, as described as follows.
  • the first step consists in introducing the shaft 27 and balloon catheter 26 along the guide wire previously positioned in the ventricle 4 (FIGS. 13 a - 13 b ).
  • Dilatation is performed at least with a balloon having about 20 mm diameter, but it can be performed with a balloon having about 23 mm diameter so as to increase maximally the aortic orifice opening before implantation of the valve although the implantable valve is about 20 mm in diameter.
  • This preliminary dilatation of the aortic orifice helps in limiting the force required to inflate the balloon used to expand the implantable valve and position it in the aortic orifice, and also in limiting the recoil of the aortic valve that occurs immediately after balloon deflation.
  • the balloon is deflated (FIG. 13 a ) and pulled back on the wire guide 30 left inside the ventricle.
  • the 20 mm diameter valve is forcefully maintained against the valvular remains at the level of the aortic annulus.
  • Preliminary dilatation has another advantage in that it permits an easier expansion of the IV, having a lower pressure balloon inflation which helps prevent damage of the valvular structure of the IV. This also facilitates the accurate positioning of the prosthetic valve.
  • the second step corresponds to the implantation of the valve 13 is shown in FIGS. 13 g to 13 l .
  • the positioning of the IV needs to be precise at a near 2 or 3 mm, since the coronary ostia 6 has to remain absolutely free of any obstruction by the valve 13 (FIGS. 13 k and 13 l ).
  • this is, for example, performed with the help of the image of the sus-valvular angiogram in the same projection fixed on an adjacent TV screen.
  • the expansion and the positioning of the valve prosthesis 13 is performed within a few seconds (15 to 20 among at most) since during the maximal balloon inflation (which has to be maintained only a very few seconds, 3, 4, 5) the aortic orifice is obstructed by the inflated balloon 31 and the cardiac output is zero (FIG. 13 h ).
  • the balloon 26 is immediately deflated within less than 5 or 6 seconds (FIG. 13 j ) and, as soon as the deflation has clearly begun, the closing and opening states of the IV are active whereas the balloon is pulled back briskly in the aorta (FIGS. 13 j to 13 l ).
  • the IV is not maximally expanded by the first inflation, it is possible to replace the balloon inside the IV and to reinflate it so as to reinforce the expansion of the IV.
  • the IV 13 can also be used in aortic regurgitation. This concerns more often younger patients rather than those with aortic stenosis.
  • the contraindication to surgical valve replacement is often not due to the old age of the patients, but stems mainly from particular cases where the general status of the patient it too weak to allow surgery, or because of associated pathological condition.
  • the procedure of the valve implantation remains approximately the same.
  • the balloon inflation inside the IV is chosen accordingly, taking also into account the fact that it is necessary to overdilate the aortic annulus to obtain a recoil phenomenon of the annulus after balloon deflation to help maintain the IV in position without any risk of displacement.
  • the size of the expanded implantable valve is around 25 to 30 mm in diameter, or even bigger, because the aortic annulus is usually enlarged.
  • a preliminary measurement of the annulus will have to be performed on the sus-valvular angiography and by echocardiography to determine the optimal size to choose.
  • the IV can be used in the mitral position, mainly in case of mitral regurgitation, but also in case of mitral stenosis.
  • the IV 20 is only described when used only in cases of contraindication to surgical valve repair or replacement.
  • the procedure is based on the same general principles though the route for the valve positioning is different, using the transseptal route, like the commonly performed mitral dilatation procedure in mitral stenosis.
  • the IV size is quite larger than for the aortic localization (about 30 to 35 mm in diameter when expanded or clearly above in case of a large mitral annulus, a frequent occurrence in mitral insufficiency), to be capable of occupying the mitral area.
  • a preliminary measurement of the mitral annulus is performed to determine the optimal implantable valve size to choose. Since the introduction of the IV is performed through a venous route, almost always through the femoral vein which is quite large and distensable, the bigger the size of the IV in its compressed position is not a drawback even if the diameter size is about 6 or 7 mm. Moreover, the problem of protection of the coronary ostia as encountered in the aortic position does not exist here which therefore makes the procedure easier to be performed.
  • the IV can be used to replace the tricuspid valve in patients with a tricuspid insufficiency.
  • This procedure is simple to perform since the positioning of the IV is made by the venous route, using the shortest way to place in the right position at the level of the tricuspid orifice practically without any danger from clot migration during the procedure.
  • a large implantable valve is used, with a diameter of about 40 mm or even larger because the tricuspid annulus is often markedly dilated in tricuspid insufficiency.
  • the compressed IV and the catheter used can be without inconvenience, quite larger than that for the aortic position because of the venous route used.
  • the IV can be used also as a first step in the treatment of patients who have contraindication to surgery, when they are examined for the first time, but who could improve later on after correction of the initial hemodynamic failure.
  • the IV procedure can be used as a bridge towards surgery for patients in a weak general condition which are expected to improve within the following weeks or months after the IV procedure in such a way that they can be treated by open heart surgery later on.
  • the IV procedure can be used as a bridge towards surgical valve replacement or repair in patients with a profoundly altered cardiac function that can improve secondarily owing to the hemodynamic improvement resulting from the correction of the initial valvular disease by the IV implantation.
  • Another technique for implantation of an aortic valve by transcutaneous catheterization uses a two-balloon catheter.
  • FIG. 14 An example of this technique using the two parts IV with a two-balloon catheter 40 is shown in FIG. 14.
  • Two-balloons 26 and 26 ′ are fixed on a unique catheter shaft 27 , said balloons being separated by a few millimeters.
  • the two balloons are preferably short, i.e., about 2 to 2.5 cm long in their cylindrical part.
  • the first balloon 26 to be used carries a first frame 10 aimed at scaffolding the stenosed aortic orifice after initial dilatation. This first balloon 26 is positioned on the aorta side, above the second balloon 26 ′ which is positioned on the left ventricle side.
  • the second balloon 26 ′ carries the expandable valve 13 which is of the type described above made of a second frame 10 ′ and a valvular structure 14 attached to said frame 10 ′. The difference is that the second frame does not need to be as strong as the first frame and is easier to expand with low balloon pressure inflation which does not risk damaging the valvular structure 14 .
  • the shaft 27 of this successive two-balloon catheter 40 comprises two lumens for successive and separate inflation of each balloon. Indeed, an additional lumen capable of allowing a fast inflation occupies space in the shaft and therefore an enlargement of the shaft is necessary. However, this enlargement of the shaft stops at the level of the first balloon 26 since, further to said first balloon, only one lumen is necessary to inflate the second balloon 26 ′, at the level of the IV which is the biggest part of the device.
  • each set of implantable valve and balloon has a smaller external diameter since each element to be expanded, considered separately, is smaller than in combination. This allows obtaining more easily a final device with an external diameter 14 F.
  • the first balloon is sufficiently strong to avoid bursting even at a very high pressure inflation.
  • This first balloon is mounted in the frame in its deflated position, prior to its introduction by the strong frame which is aimed to scaffold the dilated stenosed aortic valve.
  • the size and shape of said frame is comparable to what has been described previously but said frame is calculated (in particular the material, the number and diameter of its bars are chosen by the person skilled in the art) to make sure that it will resist the recoil of the dilated valve and that it will be securely embedded in the remains of the native aortic valve.
  • the second balloon does not need to be as strong as the first one and, therefore, can be thinner, occupying less space and being easier to expand with a lower pressure for balloon inflation.
  • This second balloon 26 ′ is mounted in the valve itself which, as in the preceding description, comprises a frame to support the valvular structure and said valvular structure.
  • the second frame 10 ′ does not need to be as strong as the first one.
  • This frame can be slightly shorter, 10 mm instead of 12 mm, and its bars can be thinner.
  • This frame can have an external surface which is a bit rough to allow better fixation on the first frame when expanded.
  • the bars may also have some hooks to fasten to the first frame.
  • the valvular structure is attached on said second frame and expanded by relatively low pressure in the second balloon called hereafter the IV balloon. It does not need to be as strong as in the preceding case (IV in one part and unique balloon catheter technique) and, therefore, it occupies less space and has less risk to be damaged at the time of expansion.
  • FIGS. 15 a to 15 f This technique is shown in FIGS. 15 a to 15 f.
  • One of the problems relevant to the IV implantation procedure as described above, with the IV in one part, is the expansion at the same time by the same balloon inflation of both the frame and the valvular structure.
  • the frame is a solid element and the valvular structure is a relative weak one that could be damaged when squeezed by the inflated balloon.
  • the valve implantation can be performed in two immediately successive steps.
  • the first step corresponds to the expansion and the positioning of the first frame with the first balloon 26 wherein inflation is performed at a high pressure.
  • the second step corresponds to the expansion and the positioning of the valvular structure 14 inside the frame 10 ′ using the second balloon 26 ′.
  • This second step follows the first one within a few seconds because, in the time interval between the two steps, there is a total aortic regurgitation towards the left ventricle which is an hemodynamic condition that cannot be maintened for more than a few heart beats, i.e., a few seconds, without inducing a massive pulmonary edema and a drop to zero of the cardiac output.
  • the first frame to be introduced comprises the valvular structure and the second frame being stronger than the first one to scaffold the previously deleted stenosed aortic valve.
  • FIGS. 15 a to 15 f The method is schematically detailed in FIGS. 15 a to 15 f .
  • a previous dilatation of the stenosed aortic valve is performed as an initial step of the procedure to prepare the distorted valve to facilitate the following steps:
  • the total duration of the successive steps is about 20 to 30 seconds. This is feasible if the balloons are inflated and deflated within very a few seconds, 6 to 8, for instance. This is permitted if the lumen of the shaft can be sufficiently large, taking into account the inescapable small diameter size of the shaft. This can also be facilitated by a device producing instantaneously a strong inflation or deflation pressure.

Abstract

The present invention is aimed to provide a valve prothesis (IV) especially used in case of aortic stenosis, which structure is capable of resisting the powerful recoil force and to stand the forceful balloon inflation performed to deploy the valve and to embed it in the aortic annulus. A valve prothesis for implantation in a body channel according to the invention comprises a collapsible valvular structure and an expandable frame on which said valvular structure is mounted. The valvular structure is composed of a valvular tissue compatible with the human body and blood, the valvular tissue being sufficiently supple and resistant to allow said valvular structure to be deformed from a closed state to an opened state. Said valvular tissue forms a continuous surface and is provided with guiding means formed or incorporated within, said guiding means creating stiffened zones which induce said valvular structure to follow a patterned movement in its expansion to its opened state and in its turning back to its closed state. The valvular structure can be extended to an internal cover which is fastened to the lower end of the valvular structure to prevent from regurgitation.

Description

  • The present invention relates to a valve prosthesis for implantation in body channels, more particularly but not only to, cardiac valve prosthesis to be implanted by a transcutaneous catheterization technique. [0001]
  • The valve prosthesis can be also applied to other body channels provided with native valves, such as veins or in organs (liver, intestine, urethra, . . .). [0002]
  • The present invention also relates to a method for implanting a valve prosthesis, such as the valve according to the present invention. [0003]
  • Implantable valves, which will be indifferently designated hereafter as “IV”, “valve prosthesis” or “prosthetic valve”, permits the reparation of a valvular defect by a less invasive technique in place of the usual surgical valve implantation which, in the case of valvular heart diseases, requires thoracotomy and extracorporeal circulation. A particular use for the IV concerns patients who cannot be operated on because of an associated disease or because of very old age or also patients who could be operated on but only at a very high risk. [0004]
  • Although the IV of the present invention and the process for implanting said IV can be used in various heart valve diseases, the following description will first concern the aortic orifice in aortic stenosis, more particularly in its degenerative form in elderly patients. [0005]
  • Aortic stenosis is a disease of the aortic valve in the left ventricle of the heart. The aortic valvular orifice is normally capable of opening during systole up to 4 to 6 cm[0006] 2, therefore allowing free ejection of the ventricular blood volume into the aorta. This aortic valvular orifice can become tightly stenosed, and therefore the blood cannot anymore be freely ejected from the left ventricle. In fact, only a reduced amount of blood can be ejected by the left ventricle which has to markedly increase the intra-cavitary pressure to force the stenosed aortic orifice. In such aortic diseases, the patients can have syncope, chest pain, and mainly difficulty in breathing. The evolution of such a disease is disastrous when symptoms of cardiac failure appear, since 50% of the patients die in the year following the first symptoms of the disease.
  • The only commonly available treatment is the replacement of the stenosed aortic valve by a prosthetic valve via surgery: this treatment moreover providing excellent results. If surgery is impossible to perform, i.e., if the patient is deemed inoperable or operable only at a too high surgical risk, an alternative possibility is to dilate the valve with a balloon catheter to enlarge the aortic orifice. Unfortunately, a good result is obtained only in about half of the cases and there is a high restenosis rate, i.e., about 80% after one year. [0007]
  • Aortic stenosis is a very common disease in people above seventy years old and occurs more and more frequently as the subject gets older. As evidenced, the present tendency of the general evolution of the population is becoming older and older. Also, it can be evaluated, as a crude estimation, that about 30 to 50% of the subjects who are older than 80 years and have a tight aortic stenosis, either cannot be operated on for aortic valve replacement with a reasonable surgical risk or even cannot be considered at all for surgery. [0008]
  • It can be estimated that, about 30 to 40 persons out of a million per year, could benefit from an implantable aortic valve positioned by a catheterization technique. Until now, the implantation of a valve prosthesis for the treatment of aortic stenosis is considered unrealistic to perform since it is deemed difficult to superpose another valve such an implantable valve on the distorted stenosed native valve without excising the latter. [0009]
  • From 1985, the technique of aortic valvuloplasty with a balloon catheter has been introduced for the treatment of subjects in whom surgery cannot be performed at all or which could be performed only with a prohibitive surgical risk. Despite the considerable deformation of the stenosed aortic valve, commonly with marked calcification, it is often possible to enlarge significantly the aortic orifice by balloon inflation, a procedure which is considered as low risk. [0010]
  • However, this technique has been abandoned by most physicians because of the very high restenosis rate which occurs in about 80% of the patients within 10 to 12 months. Indeed, immediately after deflation of the balloon, a strong recoil phenomenon often produces a loss of half or even two thirds of the opening area obtained by the inflated balloon. For instance, inflation of a 20 mm diameter balloon in a stenosed aortic orifice of 0.5 cm[0011] 2 area gives, when forcefully and fully inflated, an opening area equal to the cross sectional area of the maximally inflated balloon, i.e., about 3 cm2. However, measurements performed a few minutes after deflation and removal of the balloon have only an area around 1 cm2 to 1.2 cm2. This is due to the considerable recoil of the fibrous tissue of the diseased valve. The drawback in this procedure has also been clearly shown in fresh post mortem specimens.
  • However, it is important to note that whereas the natural normal aortic valve is able to open with an orifice of about 5 to 6 cm[0012] 2 and to accommodate a blood flow of more that 15 l/min. during heavy exercise for instance, an opening area of about 1.5 to 2 cm2 can accept a 6 to 8 l/min blood flow without a significant pressure gradient. Such a flow corresponds to the cardiac output of the elderly subject with limited physical activity.
  • Therefore, an IV would not have to produce a large opening of the aortic orifice since an opening about 2 cm[0013] 2 would be sufficient in most subjects, in particular in elderly subjects, whose cardiac output probably does not reach more than 6 to 8 l/min. during normal physical activity. For instance, the surgically implanted mechanical valves have an opening area which is far from the natural valve opening that ranges from 2 to 2.5 cm2, mainly because of the room taken by the large circular structure supporting the valvular part of the device.
  • The prior art described examples of cardiac valves prosthesis that are aimed at being implanted without surgical intervention by way of catheterization. For instance, U.S. Pat. No. 5,411,552 describes a collapsible valve able to be introduced in the body in a compressed presentation and expanded in the right position by balloon inflation. [0014]
  • Such valves, with a semi-lunar leaflet design, tend to imitate the natural valve. However, this type of design is inherently fragile, and such structures are not strong enough to be used in the case of aortic stenosis because of the strong recoil that will distort this weak structure and because they would not be able to resist the balloon inflation performed to position the implantable valve. Furthermore, this valvular structure is attached to a metallic frame of thin wires that will not be able to be tightly secured against the valve annulus. The metallic frame of this implantable valve is made of thin wires like in stents, which are implanted in vessels after balloon dilatation. Such a light stent structure is too weak to allow the implantable valve to be forcefully embedded into the aortic annulus. Moreover, there is a high risk of massive regurgitation (during the diastolic phase) through the spaces between the frame wires which is another prohibitive risk that would make this implantable valve impossible to use in clinical practice. [0015]
  • Furthermore, an important point in view of the development of the IV is that it is possible to maximally inflate a balloon placed inside the compressed implantable valve to expand it and insert it in the stenosed aortic valve up to about 20 to 23 mm in diameter. At the time of maximum balloon inflation, the balloon is absolutely stiff and cylindrical without any waist. At that moment, the implantable valve is squeezed and crushed between the strong aortic annulus and the rigid balloon with the risk of causing irreversible damage to the valvular structure of the implantable valve. [0016]
  • SUMMARY OF THE INVENTION
  • The invention is aimed to overcome these drawbacks and to implant an IV which will remain reliable for years. [0017]
  • A particular aim of the present invention is to provide an IV, especially aimed at being used in case of aortic stenosis, which structure is capable of resisting the powerful recoil force and to stand the forceful balloon inflation performed to deploy the IV and to embed it in the aortic annulus. [0018]
  • Another aim of the present invention is to provide an efficient prosthesis valve which can be implanted by a catheterization technique, in particular in a stenosed aortic orifice, taking advantage of the strong structure made of the distorted stenosed valve and of the large opening area produced by preliminary balloon inflation, performed as an initial step of the procedure. [0019]
  • A further aim of the present invention is to provide an implantable valve which would not produce any risk of fluid regurgitation. [0020]
  • A further aim of the present invention is to provide a valve prosthesis implantation technique using a two-balloon catheter and a two-frame device. [0021]
  • These aims are achieved according to the present invention which provides a valve prosthesis of the type mentioned in the introductory part and wherein said valve prosthesis comprises a callapsible continuous structure with guiding means providing stiffness and a frame to which said structure is fastened, said frame being strong enough to resist the recoil phenomenon of the fibrous tissue of the diseased valve. [0022]
  • The IV, which is strongly embedded, enables the implantable valve to be maintained in the right position without any risk of further displacement, which would be a catastrophic event. [0023]
  • More precisely, this valvular structure comprises a valvular tissue compatible with the human body and blood, which is supple and resistant to allow said valvular structure to pass from a closed state to an open state to allow a body fluid, more particularly the blood, exerting pressure on said valvular structure, to flow. The valvular tissue forms a continuous surface and is provided with guiding means formed or incorporated within, creating stiffened zones which induce the valvular structure to follow a patterned movement from its open position to its closed state and vice-versa, providing therefore a structure sufficiently rigid to prevent diversion, in particular into the left ventricle and thus preventing any regurgitation of blood into the left ventricle in case of aortic implantation. [0024]
  • Moreover, the guided structure of the IV of the invention allows the tissue of this structure to open and close with the same patterned movement while occupying as little space as possible in the closed state of the valve. Therefore, owing to these guiding means, the valvular structure withstands the unceasing movements under blood pressure changes during the heart beats. [0025]
  • More preferably, the valvular structure has a substantially truncated hyperboloidal shape in its expanded position, with a larger base and a growing closer neck, ending in a smaller extremity forming the upper part of the valvular structure. The valvular structure has a curvature at its surface that is concave towards the aortic wall. Such a shape produces a strong and efficient structure in view of the systolo-diastolic movement of the valvular tissue. Such a valvular structure with its simple and regular shape also lowers the risk of being damaged by forceful balloon inflation at the time of IV deployment. [0026]
  • A trunco-hyperboloidal shape with a small diameter at the upper extremity facilitates the closure of the valve at the beginning of diastole in initiating the starting of the reverse movement of the valvular tissue towards its base. Another advantage of this truncated hyperboloidal shape is that the upper extremity of the valvular structure, because of its smaller diameter, remains at a distance from the coronary ostia during systole as well as during diastole, thus offering an additional security to ensure not to impede at all the passage of blood from the aorta to the coronary ostia. [0027]
  • As another advantageous embodiment of the invention, the guiding means of the valvular structure are inclined strips from the base to the upper extremity of the valvular structure with regard to the central axis of the valvular structure. This inclination initiates and imparts a general helicoidal movement of the valvular structure around said central axis at the time of closure or opening of said structure, such a movement enabling to help initiate and finalize the closure of the valvular structure. In particular, this movement improves the collapse of the valvular structure towards its base at the time of diastole and during the reversal of flow at the very beginning of diastole. During diastole, the valvular structure thus falls down, folding on itself and collapses on its base, therefore closing the aortic orifice. The strips can be pleats, strenghthening struts or thickened zones. [0028]
  • In other embodiments, said guiding means are rectilinear strips from the base to the upper extremity of the valvular structure. In this case, the guiding means can comprise pleats, struts or thickened zones. In a particular embodiment, the stiffened zones then created can be advantageously two main portions, trapezoidal in shape, formed symmetrically one to each other with regard to the central axis of the valvular structure, and two less rigid portions separating said two main portions to lead to a tight closeness in shape of a closed slot at the time of closure of the upper extremities of the main portions of the valvular structure. The thickened zones can be extended up to form the stiffened zones. [0029]
  • More particularly, each of said main slightly rigid portions occupy approximately one third of the circumference of the valvular structure when this latter is in its open position. The slightly rigid portions maintain the valvular structure closed during diastole by firmly applying themselves on each other. The closure of the valvular structure at the time of diastole thus does not have any tendency to collapse too much towards the aortic annulus. [0030]
  • Preferably, the guiding means are a number of pleats formed within the tissue by folding, or formed by recesses or grooves made in the tissue. The shape of the pleats is adapted to achieve a global shape of the desired type for said position. [0031]
  • Alternatively, the guiding means are made of strengthening struts, preferably at least three, incorporated in the tissue in combination or not with said pleats. [0032]
  • The guiding means, and in particular, the strengthening struts, help to prevent the valvular tissue from collapsing back too much and to reverse inside the left ventricle through the base of the frame, preventing the risk of blood regurgitation. [0033]
  • In a preferred prosthetic valve of the invention, said valvular tissue is made of synthetic biocompatible material such as Teflon® or Dacron®, polyethylene, polyamide, or made of biological material such as pericardium, porcine leaflets and the like. These materials are commonly used in cardiac surgery and are quite resistant, particularly to folding movements due to the increasing, systolo-diastolic movements of the valvular tissue and particularly at the junction with the frame of the implantable valve. [0034]
  • The valvular structure is fastened along a substantial portion of an expandable frame, by sewing, by molding or by gluing to exhibit a tightness sufficiently hermetical to prevent any regurgitation of said body fluid between the frame and the valvular structure. [0035]
  • Preferably, an internal cover is coupled or is integral to the valvular structure and placed between said valvular structure and the internal wall of the frame to prevent any passage of the body fluid through said frame. Therefore, there is no regurgitation of blood as it would be the case if there were any space between the valvular structure fastened on the frame and the zone of application of the frame on the aortic annulus. The internal cover makes a sort of “sleeve” at least below the fastening of the valvular structure covering the internal surface of the frame and thus prevents any regurgitation of blood through the frame. [0036]
  • In the present invention, the frame is a substantially cylindrical structure capable of maintaining said body channel open in its expanded state and supporting said collapsible valvular structure. [0037]
  • In a preferred embodiment of the invention, the frame is made of a material which is distinguishable from biological tissue to be easily visible by non invasive imaging techniques. [0038]
  • Preferably, said frame is a stainless metal structure or a foldable plastic material, made of intercrossing, preferably with rounded and smooth linear bars. This frame is strong enough to resist the recoil phenomenon of the fibrous tissue of the diseased valve. The size of the bars and their number are determined to give both the maximal rigidity when said frame is expanded and the smallest volume when the frame is compressed. [0039]
  • More preferably, the frame has projecting curved extremities and presents a concave shape. This is aimed at reinforcing the embedding and the locking of the implantable valve in the distorted aortic orifice. [0040]
  • In a preferred embodiment of the present invention, the IV is made in two parts, a first reinforced frame coupled with a second frame which is made of thinner bars than said first frame and which is embedded inside the second frame. This second frame to which the valvular structure is fastened as described above, is preferably less bulky than the first frame to occupy as little space as possible and to be easily expanded using low pressure balloon inflation. [0041]
  • The present invention also relates to a double balloon catheter to separately position the first frame in the dilated stenosed aortic valve and place the second frame that comprises the valvular structure. This catheter comprises two balloons fixed on a catheter shaft and separated by few centimeters. [0042]
  • The first balloon is of the type sufficiently strong to avoid bursting even at a very high pressure inflation and is aimed at carrying, in its deflated state, a strong frame aimed at scaffolding the previously dilated stenosed aortic valve. The second balloon is aimed at carrying the second frame with the valvular structure. [0043]
  • An advantage of this double balloon catheter is that each balloon has an external diameter which is smaller than known balloons since each element to be expanded is smaller. [0044]
  • Moreover, such a double balloon catheter allows to enlarge the choice for making an efficient valvular structure enabling to overcome the following two contradictory conditions: [0045]
  • 1) having a soft and mobile valvular structure capable of opening and closing freely in the blood stream, without risk of being damaged by balloon inflation; and [0046]
  • 2) needing a very strong structure able to resist the recoil force of the stenosed valve and capable of resisting, without any damage, a strong pressure inflation of the expanding balloon. [0047]
  • Furthermore, the shaft of said double balloon catheter comprises two lumens for successive and separate inflation of each balloon. Of note, an additional lumen capable of allowing a rapid inflation takes additional room in the shaft. [0048]
  • The invention also relates to a method of using a two-balloon catheter with a first frame and second frame to which a valve prosthesis of the type previously described is fastened. [0049]
  • DESCRIPTION OF THE DRAWINGS
  • The invention will now be explained and other advantages and features will appear with reference to the accompanying schematical drawings wherein: [0050]
  • FIGS. 1[0051] a, 1 b and 1 c illustrate, in section views, respectively, the normal aortic valve in systole, in diastole and a stenosed aortic valve;
  • FIGS. 2[0052] a and 2 b illustrate two examples of a metallic frame which are combined to a valvular structure according to the present invention;
  • FIGS. 3[0053] a and 3 b illustrate a frame according to the invention in its expanded position with an opening out of the extremities, respectively, with a cylindrical and a concave shape;
  • FIGS. 4[0054] a and b illustrate an IV of the invention respectively in its compressed position and in its expanded position in an open position as in systole;
  • FIGS. 5[0055] a and 5 b illustrate respectively an IV of the invention in its closed position and a sectional view according to the central axis of such a valvular structure which is closed as in diastole;
  • FIGS. 6[0056] a to 6 b illustrate a sectional view according to the central axis of an IV according to the present invention and showing the internal cover and the external cover of the valvular structure overlapping partially or non overlapping the frame bars;
  • FIG. 7 illustrates the frontal zig-zag fastening line of the valvular tissue on the frame; [0057]
  • FIGS. 8[0058] a and 8 b illustrate, respectively, a perspective view of a valvular structure and an internal cover made all of one piece and a perspective view of the corresponding frame into which they will be inserted and fastened;
  • FIGS. 9[0059] a and 9 b illustrate inclined strengthening struts, an example of a valvular structure according to the invention, respectively in the open position and in the closed position;
  • FIGS. 10[0060] a and 10 b illustrate an example of a valvular structure comprising pleats, respectively in the open and in the closed position;
  • FIGS. 11[0061] a and 11 b illustrate a valvular structure comprising two trapezoidal slightly rigid portions, respectively in the open and in the closed position;
  • FIGS. 11[0062] c to 11 e illustrate a valvular structure comprising a rectangular stiffened zone, respectively in the open, intermediate and closed position;
  • FIGS. 12[0063] a and 12 b illustrate, respectively, a perspective and cross sectional views of an implantable valve in its compressed presentation squeezed on a balloon catheter;
  • FIGS. 13[0064] a to 13 l illustrate views of the successive procedure steps for the IV implantation in a stenosed aortic orifice;
  • FIG. 14 illustrate an implantable valve made in two parts in its compressed presentation squeezed on a two-balloon catheter with a reinforced frame on a first balloon and with the implantable valve on the second balloon; and [0065]
  • FIGS. 15[0066] a to 15 f illustrate the successive steps of the implantation of the implantation valve in two parts with a two-balloon catheter;
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the diastole and systole illustrations of section views of FIGS. 1[0067] a and 1 b, the arrows A indicates the general direction of the blood flow. The semi-lunar leaflets 1 and 2 of a native aortic valve (with only two out of three shown here) are thin, supple and move easily from the completely open position (systole) to the closed position (diastole). The leaflets originate from an aortic annulus 2 a.
  • The [0068] leaflets 1′ and 2′ of a stenosed valve as illustrated in FIG. 1c, are thickened, distorted, calcified and more or less fused, leaving only a small hole or a narrow slit 3, which makes the ejection of blood from the left ventricle cavity 4 into the aorta 5 difficult and limited. FIGS. 1a to 1 c show also the coronary artery ostium 6 a and 6 b and FIG. 1a shows, in particular, the mitral valve 7 of the left ventricle cavity 4.
  • An implantable valve according to the invention essentially comprises a supple valvular structure supported by a strong frame. The positioning of the implantable valve is an important point since the expanded frame has to be positioned exactly at the level of the native [0069] valvular leaflets 1, 2 of the native valve, the structures of which are pushed aside by the inflated balloon.
  • Ideally, the implantable valve is positioned with the fastening line of the valvular structure on the frame exactly on the remains of the crushed stenosed valve to prevent any regurgitation of blood. In practice, it is difficult to position the implantable valve within less than 2 or 3 mm. However, any risk of regurgitation of blood is eliminated with the presence of an internal cover, as will be described below. [0070]
  • The upper limit of the frame should be placed below the opening of the coronary arteries, i.e., the [0071] coronary ostia 6, or at their level so that the frame does not impede free blood flow in the coronary arteries. This point is a delicate part of positioning an IV since the distance between the superior limit of the leaflets of the natural valve and the coronary ostia 6 is only about 5 to 6 mm. However, the ostia are located in the Valsalva sinus 8 which constitutes a hollow that are located a little out of the way. This helps to prevent from impeding the coronary blood flow by the IV.
  • At the time of implantation, the operator evaluates the exact positioning of the coronary ostia by looking at the image produced by a sus-valvular angiogram with contrast injection performed before the implantation procedure. This image will be fixed in the same projection on a satellite TV screen and will permit the evaluation of the level of the origin of the right and left coronary arteries. Possibly, in case the ostia are not clearly seen by sus-valvular angiography, a thin guide wire, as those used in coronary angioplasty, is positioned in each of the coronary arteries to serve as a marker of the coronary ostia. [0072]
  • The lower part of the frame of the IV preferably extends by 2 or 3 mm inside the [0073] left ventricle 4, below the aortic annulus 2 a. However, this part of the frame should not reach the insertion of the septal leaflet of the mitral valve 7, so that it does not interfere with its movements, particularly during diastole.
  • FIGS. 2[0074] a and 2 b show respectively an example of a cylindrical frame 10 comprising intercrossing linear bars 11, with two intersections 1 by bar 11, the bars 11 being soldered or provided from a folded wire to constitute the frame, with for instance a 20 mm, 15 mm or 12 mm height, and an example with only one intersection of bars 11. Preferably, such a frame is expandable from a size of about 4 to 5 millimeters to a size of about 20 to 25 mm in diameter, or even to about 30-35 mm (or more) in particular cases, for instance for the mitral valve. Moreover, said frame, in its fully expanded state, has a height of approximately between 10 and 15 mm and in its fully compressed frame, a height of approximately 20 mm. The number and the size of the bars are adapted to be sufficiently strong and rigid when the frame is fully open in the aortic orifice to resist the strong recoil force exerted by the distorted stenosed aortic orifice after deflation of the balloon used in the catheterization technique which has been previously maximally inflated to enlarge the stenosed valve orifice;
  • The frame may have several configurations according to the number of [0075] bars 11 and intersections. This number, as well as the size and the strength of the bars 11, are calculated taking into account all the requirements described, i.e., a small size in its compressed form, its capacity to be enlarged up to at least 20 mm in diameter and being strong when positioned in the aortic orifice to be able to be forcefully embedded in the remains of the diseased aortic valve and to resist the recoil force of the aortic annulus. The diameter of the bars is choosen, for instance, in the range of 0.1-0.6 mm.
  • A frame particularly advantageous presents, when deployed in its expanded state, an opening out [0076] 12 at both extremities as shown in FIGS. 3a and 3 b, the frame having a linear profile (FIG. 3a) or a concave shape profile (FIG. 3b). This is aimed at reinforcing the embedding of the IV in the aortic orifice. However, the free extremities of the openings 12 are rounded and very smooth to avoid any traumatism of the aorta or of the myocardium.
  • The structure of a preferred frame used in the present invention both maintains the aortic orifice fully open once dilated and produces a support for the valvular structure. The frame is also foldable. When folded by compression, the diameter of said frame is about 4 to 5 millimeters, in view of its transcutaneous introduction. In the femoral artery through an arterial sheath of 14 to 16 F (F means French, a unit usually used in cardiology field) i.e., about 4.5 to 5.1 mm. Also, as described below, when positioned in the aortic orifice, the frame is able to expand under the force of an inflated balloon up to a size of 20 to 23 mm in diameter. [0077]
  • The frame is preferably a metallic frame, preferably made of steel. It constitutes a frame with a grate type design able to support the valvular structure and to behave as a strong scaffold for the open stenosed aortic orifice. [0078]
  • When the frame is fully expanded, its intercrossing bars push against the remains of the native stenosed valve that has been crushed aside against the aortic annulus by the inflated balloon. This produces a penetration and embeds the bars within the remains of the stenosed valve, in particular owing to a concave profile of the frame provided with an opening out, as illustrated in FIG. 3[0079] b. This embedding of the frame on the aortic annulus, or more precisely on the remains of the crushed distorted aortic valve, will be determinant for the strong fixations of the IV in the right position, without any risk of displacement.
  • Moreover, the fact that the valve leaflets in degenerative aortic stenosis are grossly distorted and calcified, sometimes leaving only a small hole or a small slit in the middle of the orifice, has to be considered an advantage for the implantation of the valve and for its stable positioning without risk of later mobilization. The fibrous and calcified structure of the distorted valve provides a strong base for the frame of the IV and the powerful recoil phenomenon that results from elasticity of the tissues contribute to the fixation of the metallic frame. [0080]
  • The height of the fully expanded frame of the illustrated frames [0081] 10 is preferably between 10 and 15 mm. Indeed, since the passage from the compressed state to the expanded state results in a shortening of the metallic structure, the structure in its compressed form is a little longer, i.e., preferably about 20 mm length. This does not constitute a drawback for its transcutaneous introduction and its positioning in the aortic orifice.
  • As mentioned above, the frame is strong enough to be able to oppose the powerful recoil force of the distended valve and of the [0082] aortic annulus 2 a. Preferably it does not possess any flexible properties. When the frame has reached its maximal expanded shape under the push of a forcefully inflated balloon, it remains substantially without any decrease in size and without any change of shape. The size of the bars that are the basic elements of the frame is calculated in such a way to provide a substantial rigidity when the frame is fully expanded. The size of the bars and their number are calculated to give both maximal rigidity when expanded and the smallest volume when the metallic frame is its compressed position.
  • At the time of making the IV, the frame is expanded by dilatation to its broadest dimension, i.e., between 20 mm and 25 mm in diameter, so as to be able to fasten to valvular structure on the inside side of its surface. This fastening is performed using the techniques in current use for the making of products such as other prosthetic heart valves or multipolars catheters etc. Afterwards, it is compressed in its minimal size, i.e., 4 or 5 mm, in diameter in view of its introduction in the femoral artery. At time of the IV positioning, the frame is expanded again by balloon inflation to its maximal size in the aortic orifice. [0083]
  • If the frame is built in an expanded position, it will be compressed, after fastening the valvular structure, by exerting a circular force on its periphery and/or on its total height until obtaining the smallest compressed position. If the frame is built in its compressed position, it will be first dilated, for instance, by inflation of a balloon and then compressed again as described above. [0084]
  • To help localizing the IV, the frame being the only visible component of the valve, the shaft of the balloon catheter on which will be mounted the IV before introduction in the body (see below) possesses preferentially metallic reference marks easily seen on fluoroscopy. One mark will be at level of the upper border of the frame and the other at the level of the lower border. The IV, when mounted on the catheter shaft and crimpled on it, is exactly positioned taking into account these reference marks on the shaft. [0085]
  • Accordingly, the frame is visible during fluoroscopy when introduced in the patient's body. When the frame is positioned at the level of the aortic annulus, the upper border of the frame is placed below the coronary ostia. Furthermore, the implanting process during which the balloon inflation completely obstructs the aortic orifice, as seen below, is performed within a very short time, i.e., around 10 to 15 seconds. This also explains why the frame is clearly and easily seen, without spending time to localize it. More particularly, its upper and lower borders are clearly delineated. [0086]
  • FIGS. 4[0087] a and 4 b show an example of a preferred IV 13 of the present invention, respectively in its compressed position, in view of its introduction and positioning in the aortic orifice, and in its expanded and opened (systole) position. FIGS. 5a and 5 b show the expanded position of this example closed in diastole, respectively in perspective and in a crossed section view along the central axis X′X of the valve prosthesis.
  • The [0088] valvular structure 14 is compressed inside the frame 10 when this is in its compressed position (FIG. 4a), i.e., it fits into a 4 to 5 mm diameter space. On the other hand, the valvular structure can expand (FIG. 4b) and follow the frame expansion produced by the inflated balloon. It will have to be able to reach the size of the inside of the fully deployed frame.
  • The illustrated [0089] IV 13 is made of a combination of two main parts;
  • 1) the expandable but substantially rigid structure made of the [0090] frame 10, a metallic frame in the example; and
  • 2) a soft and mobile tissue constituting the [0091] valvular structure 14 exhibiting a continuous surface truncated between a base 15 and an upper extremity 16; the tissue is fastened to the bars 11 of the frame at its base 16 and is able to open in systole and to close in diastole at its extremity 16, as the blood flows in a pulsatile way from the left ventricle towards the aorta.
  • The tissue has [0092] rectilinear struts 17 incorporated in it in plane including the central axis X′X, in order to strengthen it, in particular, in its closed state with a minimal occupation of the space, and to induce a patterned movement between its open and closed state. Other examples of strengthening struts are described below. They are formed from thicker zones of the tissue or from strips of stiffening material incorporated in the tissue; they can also beglued or soldered on the valvular tissue.
  • These strengthening struts help to prevent the valvular tissue from collapsing back too much and to evert inside the left ventricle through the base of the frame. These reinforcements of the valvular tissue help maintain the folded tissue above the level of the orifice during diastole, prevent too much folding back and risk of inversion of the valvular structure inside the left ventricle. By also preventing too much folding, a decrease of the risk of thrombi formation can also be expected by reducing the number of folds. [0093]
  • The truncated shape forming a continuous surface enables to obtain a strong structure and is more efficient for the systolo-diastolic movements of the valvular tissue during heart beats. The truncoidal shape facilitates the closure of the valve structure at the beginning of diastole in facilitating the start of the reverse movement of the valvular tissue towards its base at the time of diastole, i.e., at the time of flow reversal at the very beginning of diastole. During diastole, the [0094] valvular structure 14 thus falls down, folding on itself, thereby collapsing on its base, and therefore closing the aortic orifice. In fact, the valvular structure has preferably, as illustrated, an hyperboloid shape, with a curvature on its surface concave towards the aortic wall that will contribute to initiating its closure.
  • Moreover, the basis of the truncated hyperboloid is fixed on the lower part of a frame and the smallest extremity of the truncated hyperboloid is free in the blood stream, during the respected closing and opening phasis. [0095]
  • An important advantage of this hyperboloidal shape is that the [0096] upper extremity 16 of the valvular structure 14 can remain at a distance from the coronary ostia during systole as well as during diastole, because of its smaller diameter, thus offering an additional security to make certain that the passage of blood from aorta to the coronary ostia is not impeded.
  • The [0097] base 15 of the truncated tissue is attached on the frame 10 along a line of coupling 18 disposed between the inferior fourth and the third fourth of the frame in the example. The upper extremity 16, with the smaller diameter, overpasses the upper part of the frame by a few millimeters; 6 to 8 mm, for instance. This gives the valvular structure a total height of about 12 to 15 mm.
  • The [0098] upper extremity 16 of the truncated tissue, i.e., the smaller diameter of the hyperboloidal structure 14, is about 17 to 18 mm in diameter (producing a 2.3 to 2.5 cm2 area opening) for a 20 mm diameter base of the truncated structure, or 19 to 20 mm in diameter (producing a 2.8 or a 3 cm2 area opening) for a 23 mm diameter base. An opening area around 2 cm2 or slightly above, gives satisfactory results, particularly in elderly patients who would not reasonably need to exert high cardiac output.
  • For instance, in the present example, the line of fastening of the base of the truncated tissue on the frame will have to expand from a 12.5 mm perimeter (for a 4 mm external diameter of the compressed IV) to a 63 mm perimeter (for a 20 mm external diameter of the expanded IV), or to a 72 mm perimeter (for a 23 mm external diameter, in case a 23 mm balloon is used). [0099]
  • Another advantage of this truncated continuous shape is that it is stronger and has less risk of being destroyed or distorted by the forceful balloon inflation at the time of IV deployment. Also, if the truncated hyperboloidal shape is marked, for instance, with a 16 or 17 mm diameter of the upper extremity as compared to a 20 mm diameter of the base (or 18 to 20 mm for 23 mm), the smaller upper part is compliant during balloon inflation in order to enable the balloon to expand cylindrically to its maximal 20 mm diameter (or 23 mm). This is made possible by using a material with some elastic or compliant properties. [0100]
  • The valvular structure of the invention, as shown in the illustrated example, includes advantageously a third part, i.e., the [0101] internal cover 19 to be fixed on the internal wall of the frame 10. This internal cover prevents any passage of blood through the spaces between the bars 11 of the frame in case the implantable valve would be positioned with the fastening line of the valvular structure on the frame not exactly on the remains of the dilated aortic valve, i.e., either above or below, it also strengthens the fastening of the valvular structure 14 to the frame 10.
  • In the different sectional views of the different examples of IV according to the invention, as illustrated at FIGS. 6[0102] a to 6 c, the internal cover 19 covers the totality of the internal side of the frame 10 (FIG. 6a), only the lower part of the frame 10 (FIG. 6b), or it can additionally cover partially 3 to 5 mm as shown in the passage of blood from aorta to the coronary ostia FIG. 6c, the upper part defined above the coupling line 18 of the valvular structure.
  • For instance, such an extension of the [0103] internal cover 19 above the fastening line 18 of the valvular structure will give another security to avoid any risk of regurgitation through the spaces between the bars 11 in case the IV would be positioned too low with respect to the border of the native aortic valve.
  • The internal cover can also be molded to the valvular structure or casted to it which therefore constitutes an integral structure. The valvular structure and the internal cove are therefore strongly locked together with minimum risk of detachment of the valvular structure which is unceasingly in motion during systole and diastole. In that case, only the internal cover has to be fastened on the internal surface of the frame which renders the making of the IV easier and makes the complete device stronger and more resistant. In particular, the junction of the mobile part of the valvular structure and the fixed part being molded as one piece is stronger and capable to face the increasing movements during the systolo-diastolic displacements without any risk of detachment. [0104]
  • The presence of the internal cover makes an additional layer of plastic material that occupies the inside of the frame and increases the final size of the IV. Therefore, in the case in which the internal cover is limited to the inferior part of the frame (that is, below the fastening line of the valvular structure), it does not occupy any additional space inside the frame. Here also, it is more convenient and safer to make the valvular structure and this limited internal cover in one piece. [0105]
  • In other aspects, to prevent any regulation of blood from the aorta towards the left ventricle during diastole, the base of the valvular structure is preferably positioned exactly at the level of the aortic annulus against the remains of distorted stenosed valve pushed apart by the inflated balloon. Therefore, there is no possibility of blood passage through the spaces between the metallic frame bars [0106] 11 below the attachment of the valvular structure.
  • However, to avoid any risk of leaks, the part of the frame below the fastening of the valvular structure (about 3 to 5 mm) is preferably covered by an internal cover which is preferably made with the same tissue as the valvular structure. Thus, there would be no regurgitation of blood which is a possibility when there is any space between the valvular structure fastened on the metallic frame and the line of application of the frame on the aortic annulus. The internal cover makes a sort of “sleeve” below the fastening of the valvular structure on the internal surface of the frame, covering the spaces between the frame bars of the frame at this level, thus preventing any regurgitation of blood through these spaces. [0107]
  • The internal cover can also have another function, i.e., it can be used to fasten the valvular structure inside the frame, as described below. [0108]
  • At FIG. 6[0109] d, the internal cover 19 is extended at its lower end 19′ to an external cover 19″ which is rolled up to be applied on the external wall of the stent 10. The internal and external cover are molded, glued or soldered to the bars of the stent 10.
  • The coupling process of the valvular structure on the frame is of importance since it has to be very strong without any risk of detachment of the valvular structure from the frame during millions of heart beats with pulsatile blood flow alternatively opening and closing the valvular structure. [0110]
  • The valvular structure of the invention folds to a very small size inside the frame in the compressed position of the valve and is expandable up to 20 to 23 mm diameter. Also, the valvular structure can resist the strong force exerted by the maximally inflated balloon that will powerfully squeeze it against the bars of the frame or against the internal cover, this one being squeezed directly against the bars of the frame. The junction zone is also particularly subjected to very strong pressure exerted by the inflated balloon. Furthermore, this junction zone must not tear or break off during expansion of the balloon. At this time, each part of the junction zone is squeezed against the bars but nonetheless follows the expansion of the frame. [0111]
  • As shown in FIG. 7, the junction zone is, for example, a [0112] fastening line 20 which follows the design of a “zig-zag” line drawn by the intercrossing bars 11 of the frame on the internal cover 19.
  • The fastening of the valvular structure to the frame can be made by sewing the internal and/or the external cover to the bars. To prevent any leakage of blood, stitches are preferably numerous and very close to each other, either as separated stitches or as a continuous suture line. Also, the stitches are made directly around the [0113] bars 11. Furthermore, since the valvular structure is expanded together with the metallic frame, the stitches, if made as a continuous suture line, are also able to expand at the same time.
  • The fastening process can also be made by molding the base of the valvular structure on the frame. At this level, the [0114] bars 11 are imbedded in the coupling line of the valvular structure 14. This mold way also concerns the internal cover 19, when it goes below the coupling line 14 on the frame over few millimeters, for example, 2 to 4 mm. As mentioned above, this is intended in order to prevent any regurgitation of blood just below the lower part of the valvular structure 14 in case the frame 10 would not be exactly positioned on the aortic annulus but at few millimeters away.
  • The fastening process can further be made by gluing or soldering the valvular structure on the bars with sufficiently powerful biocompatible glues. The same remark can be made concerning the internal cover of the frame below the coupling line of the valvular structure. [0115]
  • Also, this allows the coupling line to follow the frame changes from the compressed position to its expanded one. [0116]
  • The valvular structure can also be fastened on the internal cover previously fixed at the total length of the internal surface of the metallic frame. The internal cover constitutes therefore a surface on which any type of valvular structure be more easily sewed, molded or glued. Because it is a structure with a large surface and is not involved in the movements of the valvular tissue during systole and diastole, the internal cover is more easily fastened to the internal surface of the frame. [0117]
  • In the particular embodiment shown in FIG. 8, the [0118] internal cover 19 is fastened, after introduction (indicated by the arrow B), at the upper and lower extremities of the frame 10 on the upper and lower zig-zag lines of the intercrossing bars 11. In fact, the fastening of the internal cover 19 on the zig-zag lines made by the intercrossing bars 11 of the frame allows an easier passage of blood from the aorta above the IV towards the coronary ostia. Indeed, the blood can find more space to flow into the coronary ostia by passing through the lowest point of each triangular space made by two intercrossing bars 11, as indicated by the arrows A1 (see also FIG. 1b).
  • The fastening of the [0119] internal cover 19 on the extremities can be reinforced by various points of attachment on various parts of the internal surface of the frame 10. The internal cover 27 can be fastened by sewing, molding or gluing the bars 11 onto the frame.
  • Fastening the valvular tissue (and the cover tissue below) on the inside of the frame, requires work on the frame in its expanded position to have access to the inside of this cylindric frame, in a preferred embodiment the frame is expanded a first time for fastening the valvular tissue on its bars, then compressed back to a smaller size to be able to be introduced via arterial introducer and finally expanded again by the balloon inflation. [0120]
  • Since it is aimed at being positioned in the heart after having been introduced by a catheterization technique by a transcutaneous route in a peripheral artery, mainly the femoral artery, the IV should preferably have the smallest possible external diameter. Ideally, it should be able to be introduced in the femoral artery through a 14 F (4.5 mm) size arterial introducer which is the size of the arterial introducer commonly used to perform an aortic dilatation. However, a 16 F (5.1 mm) or even a 18 F (5.7 mm) introducer would also be acceptable. [0121]
  • Above this size, the introduction of the IV in the femoral artery should probably be done by a surgical technique. This is still quite acceptable since the surgical procedure would be a very light procedure which could be done by a surgeon with a simple local anaesthesia. It has to be recalled that this technique is used to position big metallic frames, about 24 F in size (7.64 mm in diameter), in the abdominal aorta for the treatment of aneurysms of the abdominal aorta. In that situation, this necessitates surgical repair of the artery after withdrawal of the sheath (M. D. Dake, New Engl. J Med. 1994;331;1729-34). [0122]
  • Ideally, an IV should be able to last several tenths of life years without defect, like the mechanical prosthetic valves which are currently implanted by the surgeons. Nevertheless, an implantable valve that would last at least ten years without risk of deterioration would be effective for the treatment of elderly patients. [0123]
  • A valvular structure according to the invention is made of a supple and reinforced tissue which has a thickness to be thin enough to occupy as less as possible space in the compressed form of the valve, is pliable, and also strong enough to stand the unceasing movements under the blood pressure changes during heart beats. The valvular structure is capable of moving from its closed position to its open position under the action of the force exerted by the movements of the blood during systole and diastole, without having any significant resistance to blood displacements. [0124]
  • The material used for the tissue, which exhibits the above mentioned requirements, may be Teflon® or Dacron®, which are quite resistant to folding movements, at least when they are used to repair cardiac defects such as inter-atrial or interventricular defects or when they are used to repair a valve such as the mitral valve which is subjected to high pressure changes and movements during heart beats. Also, a main point is the increasing systolo-diastolic movements of the valvular tissue, particularly at its junction with the rigid part of the IV, and it is therefore necessary to find the most possible resistance material tissue. [0125]
  • As mentioned previously, the valvular structure can also possibly be made with biological tissue such as the pericardium, or with porcine leaflets, which are commonly used in bioprosthetic surgically implanted valves. [0126]
  • Moreover, the valvular prosthesis of the present invention does not induce any significant thrombosis phenomenon during its stay in the blood flow and is biologically neutral. [0127]
  • To prevent the risk of thrombus formation and of emboli caused by clots, a substance with anti-thrombic properties could be used, such as heparine, ticiopidine, phosphorylcholine, etc. either as a coating material or it can be incorporated into the material used for the implantable valve, in particular, for the valvular structure and/or for the internal cover. [0128]
  • The valvular structure of the invention can have several types of designs and shapes. Besides the example illustrated in FIGS. 4 and 5, examples of strengthened valvular structures according to the invention are shown in FIGS. [0129] 9 to 11, respectively in the closed (FIGS. 9a, 10 a, 11 a) and in the open state (FIGS. 9b, 10 b, 11 b) to form a prosthetic valve according to the present invention. In those figures, the frame line is simplified to clarify the drawings.
  • To help initiate and finalize the closure of the valvular structure, four strengthening [0130] struts 14 are slightly inclined form the base to the upper part as compared to the central axis X′X of the structure, as shown in FIGS. 9a and 9 b. Accordingly, a patterned movement of the valvular structure, during the closing and the opening phases, is initiated. This patterned movement is, in the present case, an helicoidal-type one, as suggested in FIGS. 9b and 10 b by the circular arrow.
  • FIGS. 10[0131] a and 10 b illustrate another embodiment to help the closing of the valvular structure and which also involves an helicoidal movement. Represented by lines 22, inclined pleats are formed in the tissue to impart such a movement. As illustrated, these lines have an inclination from the base to the upper part of the tissue 14. Pleats are formed by folding the tissue or by alternating thinner and thicker portions. The width and the number of those pleats are variable, and depend particularly on the type of material used. According to another example, these pleats 34 are combined with the above described inclined strengthening struts.
  • These reinforcing pleats and/or struts, rectilinear or inclined, have the advantage to impart a reproducible movement and, accordingly, to avoid the valvular structure from closing to a nonstructurized collapse on the frame base. [0132]
  • Another shape of the valvular structure comprises two portions: one portion being flexible but with some rigidity, having a rectangular shape, occupying about one third of the circumference of the valvular structure, and the other portion being more supple, flexible and foldable occupying the rest of the circumference at its base as well as at its upper, free border. According to FIG. 11[0133] c, this valve is opened, during the ejection of blood, i.e., during systol. In FIG. 11d, a front view of the valve is closed, during an intermediate diastole, and in FIG. 11e the same closed valve during diastole is shown from a side view. The semi-rigid part 24′ moves little during systole and during diastole. The foldable part 23′ moves away from the rigid part during systole to let the blood flow through the orifice thus made. This orifice, due to the diameter of the upper part which is the same as that of the open stent, is large, generally as large as that of the open stent. At the time of diastole, due to the reverse of pressure, the foldable part moves back towards the semi-rigid part and presses on it, and thus closes the orifice and prevents any regurgitation of blood.
  • The advantage of such a valve design is to allow a large opening of the upper part of the valvular structure, not only to permit more blood flow at time of systole after the valve has been implanted, but also at the very time of implantation, when the balloon is maximally inflated to expand the valve to imbed it in the valvular annulus. The diameter of the upper part of the valvular structure could be the same size as the balloon, so that there would be no distension of the valvular part of the valve at the time of implantation, and therefore no risk of deterioration of the valvular structure by the inflated balloon. [0134]
  • The foldable part of the valve could be reinforced by strenghtening struts to prevent an eversion of the valve towards the left ventricle during diastole. [0135]
  • Another shape of the valvular structure, as illustrated in FIGS. 11[0136] a and 11 b comprise four portions, alternatively a main portion 23 and a more narrow portion 24. The main and the narrow portions are facing each other. Each portion has an isosceles trapezoidal shape. The main portions 23 are flexible but with some slight rigidity and the more narrow portions 24 are compliant, more supple and foldable. In this type of design, the two slightly rigid portions 23 maintain the valvular structure closed during diastole by firmly applying on each other in their upper extremities, thus forming a slot-like closure 25. This particular embodiment needs less foldable tissue than in the previous embodiments and the closure of the valvular structure at the time of early diastole does not have any tendency to collapse towards the aortic annulus.
  • Another design for the valvular structure is a combination of a cylindrical shape followed by a truncated shape. [0137]
  • This type of valvular structure is longer that the hyperboloidal type, for instance, 25 or 30 mm long, therefore exceeding out of the upper part of the metallic frame, by 10 to 20 mm. The cylindrical part corresponds to the metallic frame and remains inside it. The truncated conic shape is the upper part of the valvular structure, totally exceeding out of the upper extremity of the metallic frame. An advantage of such a design is that the balloon can be inflated only in the cylindrical part of the valvular structure, therefore without risk of stretching the truncated conical part of the upper diameter which is smaller than that of the inflated balloon. [0138]
  • When the upper extremity of the cylindrical part has the same size as the lower extremity, there is no difference during balloon inflation in the degree of force exerted by the balloon on the lower and on the upper extremity of the valvular structure. Preferably, rectilinear reinforcing struts are used in this embodiment, to strengthen the valve structure and aid in its shutting without collapsing and inverting inside the left ventricle through the aortic annulus under the force of the diastolic pressure. [0139]
  • Two different processes for implanting a valve according to the present invention are shown respectively in FIGS. 13[0140] a to 13 l with a unique balloon catheter, as illustrated in FIGS. 12a and 12 b and in FIGS. 15a to 15 f, with a two-balloon catheter, as illustrated in FIG. 14.
  • The IV positioning in the aortic orifice and its expansion can be performed with the help of a unique substantially [0141] cylindrical balloon catheter 26 in the so-called unique-balloon catheterization technique.
  • Preparing for its introduction by transcutaneous route in the femoral artery, the [0142] IV 13 is, as illustrated in the perspective view of FIG. 10a in a compressed form crimpled on the balloon catheter 26. A central sectional view of the mounted IV 13 on the complete balloon catheter 26 is shown in FIG. 12b.
  • The shaft [0143] 27 f of the balloon dilation catheter 26 is as small as possible, i.e., a 7F (2.2 mm) or a 6 F (1.9 mm) size. The balloon 26 is mounted on the shaft 27 between two rings R. Moreover, the shaft 27 comprises a lumen 28 (FIG. 12b) as large as possible for inflation of the balloon 26 with diluted contrast to allow simple and fast inflation and deflation. It has also another lumen 29 able to accept a stiff guide wire 30, for example 0.036 to 0.038 inches (0.97 mm), to help position the implantable valve with precision.
  • The [0144] balloon 26 has, for example, a 3 to 4 cm length in its cylindrical part and the smallest possible size when completely deflated so that it will be able to be placed inside the folded valve having an outside diameter which ranges between about 4 and 5 mm. Therefore, the folded balloon preferably has at the most a section diameter of about 2.5 to 3 mm.
  • The balloon is therefore made of a very thin plastic material. It is inflated with saline containing a small amount of contrast dye in such a way to remain very fluid and visible when using X-ray. [0145]
  • However, the [0146] balloon 26 has to be sufficiently strong to resist the high pressure that it has to withstand to be capable of expanding the folded valvular structure 14 and the compressed frame in the stenosed aortic orifice considering that, although pre-dilated, the aortic orifice still exerts a quite strong resistance to expansion because of the recoil phenomenon.
  • This procedure is shown in FIGS. 13[0147] a to 13 e.
  • In contrast to the technique used when performing the usual aortic dilatation (without valve implantation), i.e., inflating the balloon maximally markedly above the nominal pressure, if possible, up to the bursting point (which occurs always with a longitudinal tear, without deleterious consequence, and with the advantage of both exerting a maximal dilating force and restoring blood ejection instantaneously), the balloon inflated for expansion of an implantable valve should not burst in any case. Indeed, bursting of the balloon would involve a risk of incomplete valve expansion and wrong positioning. Therefore, the balloon should be very resistant to a very high pressure inflation. Furthermore, the balloon is inflated only up to the nominal pressure indicated by the marker and the pressure is controlled during inflation by using a manometer. Such relatively low pressure should be sufficient since prior to positioning the IV, an efficacious dilatation of the stenosed aortic valve according to the usual technique with a maximally inflated balloon for example 20 mm or 25 mm in size in such a way to soften the distorted valvular tissue and facilitate the enlargement of the opening of the valve at time of IV implantation is performed. [0148]
  • The implantation of the [0149] aortic valve 20 can be made in two steps, as described as follows.
  • The first step, as shown in FIGS. 13[0150] a to 13 f, consists in introducing the shaft 27 and balloon catheter 26 along the guide wire previously positioned in the ventricle 4 (FIGS. 13a-13 b). The dilatation of the stenosed aortic valve 1′, 2′ using a regular balloon catheter, according to the commonly performed procedure, i.e., with the guide wire 30 introduced in the ventricle 4 (FIG. 13a) and with maximal inflation of the balloon 26 (FIGS. 13c to 13 d) up to the bursting point. Dilatation is performed at least with a balloon having about 20 mm diameter, but it can be performed with a balloon having about 23 mm diameter so as to increase maximally the aortic orifice opening before implantation of the valve although the implantable valve is about 20 mm in diameter. This preliminary dilatation of the aortic orifice helps in limiting the force required to inflate the balloon used to expand the implantable valve and position it in the aortic orifice, and also in limiting the recoil of the aortic valve that occurs immediately after balloon deflation. The balloon is deflated (FIG. 13a) and pulled back on the wire guide 30 left inside the ventricle.
  • Owing to the marked recoil of the stenosed valve and also of the strong aortic annulus, the 20 mm diameter valve is forcefully maintained against the valvular remains at the level of the aortic annulus. Preliminary dilatation has another advantage in that it permits an easier expansion of the IV, having a lower pressure balloon inflation which helps prevent damage of the valvular structure of the IV. This also facilitates the accurate positioning of the prosthetic valve. [0151]
  • The second step corresponds to the implantation of the [0152] valve 13 is shown in FIGS. 13g to 13 l. The positioning of the IV needs to be precise at a near 2 or 3 mm, since the coronary ostia 6 has to remain absolutely free of any obstruction by the valve 13 (FIGS. 13k and 13 l). As mentioned above, this is, for example, performed with the help of the image of the sus-valvular angiogram in the same projection fixed on an adjacent TV screen. The expansion and the positioning of the valve prosthesis 13 is performed within a few seconds (15 to 20 among at most) since during the maximal balloon inflation (which has to be maintained only a very few seconds, 3, 4, 5) the aortic orifice is obstructed by the inflated balloon 31 and the cardiac output is zero (FIG. 13h). As for the pre-dilatation act itself, the balloon 26 is immediately deflated within less than 5 or 6 seconds (FIG. 13j) and, as soon as the deflation has clearly begun, the closing and opening states of the IV are active whereas the balloon is pulled back briskly in the aorta (FIGS. 13j to 13 l). In case the IV is not maximally expanded by the first inflation, it is possible to replace the balloon inside the IV and to reinflate it so as to reinforce the expansion of the IV.
  • The [0153] IV 13 can also be used in aortic regurgitation. This concerns more often younger patients rather than those with aortic stenosis. The contraindication to surgical valve replacement is often not due to the old age of the patients, but stems mainly from particular cases where the general status of the patient it too weak to allow surgery, or because of associated pathological condition. Apart from the fact that there is no need for a preliminary dilatation, the procedure of the valve implantation remains approximately the same. The balloon inflation inside the IV is chosen accordingly, taking also into account the fact that it is necessary to overdilate the aortic annulus to obtain a recoil phenomenon of the annulus after balloon deflation to help maintain the IV in position without any risk of displacement.
  • However, the size of the expanded implantable valve is around 25 to 30 mm in diameter, or even bigger, because the aortic annulus is usually enlarged. A preliminary measurement of the annulus will have to be performed on the sus-valvular angiography and by echocardiography to determine the optimal size to choose. [0154]
  • The IV can be used in the mitral position, mainly in case of mitral regurgitation, but also in case of mitral stenosis. Here again, the [0155] IV 20 is only described when used only in cases of contraindication to surgical valve repair or replacement. The procedure is based on the same general principles though the route for the valve positioning is different, using the transseptal route, like the commonly performed mitral dilatation procedure in mitral stenosis. The IV size is quite larger than for the aortic localization (about 30 to 35 mm in diameter when expanded or clearly above in case of a large mitral annulus, a frequent occurrence in mitral insufficiency), to be capable of occupying the mitral area. A preliminary measurement of the mitral annulus is performed to determine the optimal implantable valve size to choose. Since the introduction of the IV is performed through a venous route, almost always through the femoral vein which is quite large and distensable, the bigger the size of the IV in its compressed position is not a drawback even if the diameter size is about 6 or 7 mm. Moreover, the problem of protection of the coronary ostia as encountered in the aortic position does not exist here which therefore makes the procedure easier to be performed.
  • Finally, the IV can be used to replace the tricuspid valve in patients with a tricuspid insufficiency. This procedure is simple to perform since the positioning of the IV is made by the venous route, using the shortest way to place in the right position at the level of the tricuspid orifice practically without any danger from clot migration during the procedure. A large implantable valve is used, with a diameter of about 40 mm or even larger because the tricuspid annulus is often markedly dilated in tricuspid insufficiency. Here also, as in the mitral position, the compressed IV and the catheter used can be without inconvenience, quite larger than that for the aortic position because of the venous route used. [0156]
  • Furthermore, it has to be noted that the IV can be used also as a first step in the treatment of patients who have contraindication to surgery, when they are examined for the first time, but who could improve later on after correction of the initial hemodynamic failure. The IV procedure can be used as a bridge towards surgery for patients in a weak general condition which are expected to improve within the following weeks or months after the IV procedure in such a way that they can be treated by open heart surgery later on. In the same vein, the IV procedure can be used as a bridge towards surgical valve replacement or repair in patients with a profoundly altered cardiac function that can improve secondarily owing to the hemodynamic improvement resulting from the correction of the initial valvular disease by the IV implantation. [0157]
  • Another technique for implantation of an aortic valve by transcutaneous catheterization uses a two-balloon catheter. [0158]
  • An example of this technique using the two parts IV with a two-[0159] balloon catheter 40 is shown in FIG. 14.
  • Two-balloons [0160] 26 and 26′ are fixed on a unique catheter shaft 27, said balloons being separated by a few millimeters. The two balloons are preferably short, i.e., about 2 to 2.5 cm long in their cylindrical part. The first balloon 26 to be used, carries a first frame 10 aimed at scaffolding the stenosed aortic orifice after initial dilatation. This first balloon 26 is positioned on the aorta side, above the second balloon 26′ which is positioned on the left ventricle side. The second balloon 26′ carries the expandable valve 13 which is of the type described above made of a second frame 10′ and a valvular structure 14 attached to said frame 10′. The difference is that the second frame does not need to be as strong as the first frame and is easier to expand with low balloon pressure inflation which does not risk damaging the valvular structure 14.
  • This enlarges the choice for making a valvular structure without having to face two contradictory conditions: [0161]
  • 1) having a soft and mobile [0162] valvular structure 14 capable of opening and closing freely in the blood stream without risk of being damaged by a balloon inflation; and
  • (2) needing a reinforced frame strong enough to be capable of resisting without any damage, a strong pressure inflation of the expanding balloon. [0163]
  • The [0164] shaft 27 of this successive two-balloon catheter 40 comprises two lumens for successive and separate inflation of each balloon. Indeed, an additional lumen capable of allowing a fast inflation occupies space in the shaft and therefore an enlargement of the shaft is necessary. However, this enlargement of the shaft stops at the level of the first balloon 26 since, further to said first balloon, only one lumen is necessary to inflate the second balloon 26′, at the level of the IV which is the biggest part of the device.
  • Another advantage of this two part IV with a two-balloon catheter is that each set of implantable valve and balloon has a smaller external diameter since each element to be expanded, considered separately, is smaller than in combination. This allows obtaining more easily a final device with an external diameter [0165] 14F.
  • The first balloon is sufficiently strong to avoid bursting even at a very high pressure inflation. This first balloon is mounted in the frame in its deflated position, prior to its introduction by the strong frame which is aimed to scaffold the dilated stenosed aortic valve. The size and shape of said frame is comparable to what has been described previously but said frame is calculated (in particular the material, the number and diameter of its bars are chosen by the person skilled in the art) to make sure that it will resist the recoil of the dilated valve and that it will be securely embedded in the remains of the native aortic valve. [0166]
  • The second balloon does not need to be as strong as the first one and, therefore, can be thinner, occupying less space and being easier to expand with a lower pressure for balloon inflation. This [0167] second balloon 26′ is mounted in the valve itself which, as in the preceding description, comprises a frame to support the valvular structure and said valvular structure.
  • Also, the [0168] second frame 10′ does not need to be as strong as the first one. This frame can be slightly shorter, 10 mm instead of 12 mm, and its bars can be thinner. This frame can have an external surface which is a bit rough to allow better fixation on the first frame when expanded. The bars may also have some hooks to fasten to the first frame.
  • The valvular structure is attached on said second frame and expanded by relatively low pressure in the second balloon called hereafter the IV balloon. It does not need to be as strong as in the preceding case (IV in one part and unique balloon catheter technique) and, therefore, it occupies less space and has less risk to be damaged at the time of expansion. [0169]
  • This technique is shown in FIGS. 15[0170] a to 15 f.
  • One of the problems relevant to the IV implantation procedure as described above, with the IV in one part, is the expansion at the same time by the same balloon inflation of both the frame and the valvular structure. Indeed, the frame is a solid element and the valvular structure is a relative weak one that could be damaged when squeezed by the inflated balloon. [0171]
  • Therefore, the valve implantation can be performed in two immediately successive steps. The first step (FIGS. 15[0172] a-15 b) corresponds to the expansion and the positioning of the first frame with the first balloon 26 wherein inflation is performed at a high pressure. The second step (FIGS. 15d-15 e) corresponds to the expansion and the positioning of the valvular structure 14 inside the frame 10′ using the second balloon 26′. This second step follows the first one within a few seconds because, in the time interval between the two steps, there is a total aortic regurgitation towards the left ventricle which is an hemodynamic condition that cannot be maintened for more than a few heart beats, i.e., a few seconds, without inducing a massive pulmonary edema and a drop to zero of the cardiac output.
  • In another embodiment, the first frame to be introduced comprises the valvular structure and the second frame being stronger than the first one to scaffold the previously deleted stenosed aortic valve. [0173]
  • The advantage of this two step procedure would be to allow expansion and positioning of the [0174] frame part 10′ of the IV 13 using strong pressure inflation of the balloon 26′ without the risk of damaging the valvular structure 14 which, for its own expansion, would need only light pressure inflation.
  • The method is schematically detailed in FIGS. 15[0175] a to 15 f. A previous dilatation of the stenosed aortic valve is performed as an initial step of the procedure to prepare the distorted valve to facilitate the following steps:
  • 1/ positioning the [0176] double balloon catheter 40 with the first balloon 26 with the frame at the level of the aortic annulus 2 a, the second IV balloon 26′ being inside the left ventricle beyond the aortic annulus 2 a (FIG. 15a);
  • 2/ compression of the stenosed [0177] aortic valve 1′, 2′ with the first balloon 26 having a 20 mm, preferably with a 23 mm diameter, the balloon being inflated maximally up to the bursting point, to prepare the IV insertion (FIG. 15b). Inflation lasts a few seconds (preferably 10 seconds at most) with powerful pressure being used to expand the frame and forcefully embed said frame in the remains of the dilated valve;
  • 3/ an immediate speedy deflation of said [0178] first balloon 26 follows (FIG. 15c); as soon as the balloon 26 is beginning to clearly deflate, the first frame 10 remaining attached to the stenosed valve 1′, 2′, the catheter 40 is withdrawn to position the IV balloon 26′ inside the previously expanded frame 26 (FIG. 15c in which the frame 10′ is partially drawn for clarity purpose);
  • 4/ immediately after being well positioned, the [0179] IV balloon 26′ is promptly inflated, to expand the IV 13 (FIG. 15c); and
  • 5/ when the [0180] IV 13 is blocked inside the first frame 10, the IV balloon 26′ is deflated (FIG. 18f).
  • Finally, the whole device has to be withdrawn to allow hemostasis of the femoral artery puncture hole. [0181]
  • The total duration of the successive steps, particularly the time during which the balloons are inflated, and the time during which the frame is expanded whereas the valve has not yet been positioned and expanded, is about 20 to 30 seconds. This is feasible if the balloons are inflated and deflated within very a few seconds, 6 to 8, for instance. This is permitted if the lumen of the shaft can be sufficiently large, taking into account the inescapable small diameter size of the shaft. This can also be facilitated by a device producing instantaneously a strong inflation or deflation pressure. [0182]

Claims (32)

1. A valve prosthesis for implantation is a body channel, the prosthesis comprising a collapsible valvular structure (14), and an expandable frame (10, 10′) on which said valvular structure (14) is mounted, said valvular structure (14) being composed of a valvular tissue compatible with the human body and blood, the valvular tissue being sufficiently supple and resistant to allow said valvular structure (14) to pass from a closed state to an open state to allow a body fluid exerting pressure on the valvular structure (14) to flow, wherein said valvular tissue forms a continuous surface and is provided with guiding means formed or incorporated within, said guiding means creating stiffened zones which induce said valvular structure (14) to follow a patterned movement in its expansion to said open state and closed state, providing therefore a structure sufficiently rigid to prevent eversion.
2. The prosthetic valve according to
claim 1
, wherein an internal cover (19) is coupled to the valvular structure (14) and placed between said valvular structure (14) and the internal wall of the structure of the frame (10) to prevent any passage of the body fluid through said structure.
3. A prosthetic valve according to
claim 2
, wherein the internal cover is extended in its lower end by an external cover rolled upon the external wall of the structure of the frame.
4. A prosthetic valve according to
claim 2
or
3
, wherein both the valvular structure (14) and the cover (19) are one piece.
5. A prosthetic valve according to
claim 2
or
3
, wherein the valvular structure and/or the cover are coated with or are made of an anti-thrombic substance.
6. A prosthetic valve according to
claim 2
, wherein the internal cover (14) covers the full length of the internal surface of the frame (10) or only a part of said internal surface.
7. A prosthetic valve according to
claim 1
, wherein said valvular structure (14) has a substantially truncated hyperboloidal shape in its open state.
8. A prosthetic valve according to
claim 1
, wherein said guiding means comprise strips inclined from the base (15) to the upper extremity (16) of the valvular structure (14) when compared to the central symmetry axis (XX′) of the valvular structure (14), the curvature of said guiding means being concave towards said upper extremity (16) to impart an helicoidal movement to the valvular structure (14) when compared to the central axis (XX′) of the valvular structure (14).
9. A prosthetic valve according to
claim 8
, wherein said guiding means comprise inclined pleats extending from the base (15) of the valvular structure (14) to the upper extremity (16) of said valvular structure (14).
10. A prosthetic valve according to
claim 8
, wherein said guiding means comprise at least 3, strengthening struts (17, 21), forming from thickened zones or incorporated strips of stiffening material.
11. A prosthetic valve according to
claim 7
, wherein the strips are soldered or glued on the valvular tissue.
12. A prosthetic valve according to anyone of
claims 1
to
7
, wherein said guiding means are rectilinear (17) in plane including the central axis (X′X) from the basis (15) to the upper extremity (16) of the valvular structure (14).
13. A prosthetic valve according to
claim 12
, wherein said guiding means comprise pleats extending from the base (15) of the valvular structure (14) to the upper extremity (16) of said valvular structure (14).
14. A prosthetic valve according to
claim 12
, wherein said guiding means comprise at least 3 strengthening struts (17, 21), formed from thickened zones or incorporated strips of stiffening material.
15. A prosthetic valve according to
claim 1
, wherein said stiffened zones are main parts (23) of trapezoidal shape, preferably two main parts formed symmetrically with regard to the central axis (XX′) of the valvular structure (14), separated by less rigid parts (24), and in that said guiding means are of a rectilinear type.
16. A prosthetic valve according to
claim 15
, wherein each of said main parts (23) occupies approximately one third of the circumference of the upper part of the valvular structure (14) when this latter is in its open position.
17. A prosthetic valve according to
claim 15
, wherein the main parts (23) are thickened zones and the other parts (24) are thinner zones.
18. A prosthetic valve according to
claim 1
, wherein stiffened zones are a continuous of rectangular shape, completed by a flexible and foldable part to constitute the volumbar structure.
19. A prosthetic valve according to
claim 1
, wherein said valvular tissue is made of synthetic biocompatible material such as polyethylene or polyamide, or made of biological material as pericardium or porcine leaflets.
20. A prosthetic valve according to
claim 1
, wherein said valvular structure (14) is fastened to the frame (10) by sewing, by molding, soldering or by gluing, to prevent regurgitation of said body fluid between the frame (10) and the valvular structure (14).
21. A prosthetic valve according to
claim 1
, wherein said frame (10) is expandable from a size on the order of 4 to 5 millimeters to a size of 20 to 35 mm in diameter.
22. A prosthetic valve according to
claim 1
, wherein said frame (10), in its fully expanded form, has a height of approximately between 10 and 15 mm and in its fully compressed frame, a height of approximately 20 mm.
23. A prosthetic valve according to
claim 1
, wherein said frame (10) is made in material which is distinguishable from biological tissue by non invasive imaging techniques.
24. A prosthetic valve according to
claim 1
, wherein said frame (10) is a foldable plastic or stainless metal structure made of intercrossing, linear bars, preferably rounded and smooth.
25. A prosthetic valve according to
claim 23
, wherein the size and the number of the bars are determined to give both the maximal rigidity when said frame (10) is in its expanded state and the smallest volume when the frame (10) is in its compressed state.
26. A prosthetic valve according to
claim 1
, wherein the frame (10) has a concave shape comprising projecting curved bars at the extremities (12).
27. A prosthetic valve according to
claim 1
, wherein a first frame (10) is coupled with another frame (10′) which has bars of size substantially lower than said first frame (10) and which is embedded inside this latter, along a common shaft (27), the first frame being compressed with a first balloon catheter (26) and the second frame (26′) being a part of a prosthetic valve (13) according to
claim 1
, each frame squeezed on each of the two balloons in order to constitute a sequential double balloon catheter (40).
28. A double balloon catheter according to
claim 27
, to separately position a first frame to be introduced in the previously dilated stenosed aortic valve and place a second frame that comprises the valvular structure, this catheter comprising two balloons fixed on a catheter shaft and separated by a few millimeters, the first balloon to be introduced being sufficiently strong to avoid bursting even at a very high inflation pressure and aimed at carrying, in its deflated state, a strong frame aimed at scaffolding the previously dilated stenosed aortic valve, the second balloon being aimed at carrying the second frame with the valvular structure.
29. A double balloon catheter according to
claim 27
, to separately position a first frame to be introduced in the previously dilated stenosed aortic valve that comprise the valvular structure and place a second frame, this catheter comprising two balloons fixed on a catheter shaft and separated by a few millimeters, the first balloon being aimed at carrying the second frame with the valvular structure, a strong frame aimed at scaffolding the previously dilated stenosed aortic valve, the second balloon to be introduced being sufficiently strong to avoid bursting even at a very high inflation pressure and aimed at carrying, in its deflated state.
30. A double balloon catheter according to
claim 27
, having a shaft comprising two lumens for successive and separate inflation of each balloon and an additional lumen for passage of a guide wire.
31. A method of using a two-balloon catheter with a first frame and second frame to which a valve prosthesis according to
claim 1
is fastened, wherein a valve implantation is performed comprising two immediately successive steps of:
1/ expanding and positioning a first frame by inflating a first balloon (25) at a high inflation pressure,
2/ expanding and positioning a valvular structure (14) inside the frame (10′) using a second balloon (26′), wherein step (2) occurs within a few seconds after step 1 and wherein a total aortic regurgitation towards the left ventricle takes place in the time interval between the two steps as an hemodynamic condition that cannot be faced for more than a few heart beats, and wherein an expansion and positioning of the frame part (10′) of the IV (13) is allowed using a strong pressure inflation of the balloon (26′) without risking damaging the valvular structure (14) which needs only a light pressure inflation for its own expansion
32. A method according to
claim 31
, wherein a previous dilatation of the stenosed aortic valve is performed as an initial step of the procedure to prepare the distorted valve to facilitate the following steps:
1/ positioning the double balloon catheter (40) with the first balloon (26) with the frame at the level of the aortic annulus (2 a), the second IV balloon (26′) being inside the left ventricle beyond the aortic annulus (2 a);
2/ compressing the stenosed aortic valve (1′, 2′) with the first balloon (26), the balloon being inflated maximally up to the bursting point, to prepare the IV insertion, inflation lasting a few seconds with a powerful pressure to expand the frame and forcefully embed said frame in the remains of the dilated valve, pushing away remains of the previously dilated stenosed natural valve;
3/ deflating immediate said first balloon (26) and; the first frame (10) remaining attached to the stenosed valve (1′, 2′), the catheter (40) is pulled back to position the IV balloon (26′) inside the previously expanded frame (26);
4/ immediately after being well positioned, the IV balloon (26′) is promptly inflated, to expand the IV 13;
5/ when the IV 13 is blocked inside the first frame (10), the IV balloon (26′) is deflated.
US09/795,802 1996-12-31 2001-02-28 Valve prosthesis for implantation in body channels Abandoned US20010007956A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/795,802 US20010007956A1 (en) 1996-12-31 2001-02-28 Valve prosthesis for implantation in body channels

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP96402929A EP0850607A1 (en) 1996-12-31 1996-12-31 Valve prosthesis for implantation in body channels
EP96402929.2 1996-12-31
US34582499A 1999-06-30 1999-06-30
US09/795,802 US20010007956A1 (en) 1996-12-31 2001-02-28 Valve prosthesis for implantation in body channels

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP1997/007337 Division WO1998029057A1 (en) 1996-12-31 1997-12-31 Valve prosthesis for implantation in body channels
US09345824 Division 1999-06-30

Publications (1)

Publication Number Publication Date
US20010007956A1 true US20010007956A1 (en) 2001-07-12

Family

ID=8225366

Family Applications (13)

Application Number Title Priority Date Filing Date
US09/795,803 Abandoned US20010010017A1 (en) 1996-12-31 2001-02-28 Alve prosthesis for implantation in body channels
US09/795,802 Abandoned US20010007956A1 (en) 1996-12-31 2001-02-28 Valve prosthesis for implantation in body channels
US10/139,741 Expired - Lifetime US6908481B2 (en) 1996-12-31 2002-05-02 Value prosthesis for implantation in body channels
US10/202,458 Expired - Fee Related US7846203B2 (en) 1996-12-31 2002-07-23 Implanting a stent valve prosthesis at the native aortic valve
US11/110,402 Abandoned US20090132032A9 (en) 1996-12-31 2005-04-20 Valve prosthesis for implantation in body channels
US11/139,356 Expired - Lifetime US7585321B2 (en) 1996-12-31 2005-05-27 Methods of implanting a prosthetic heart valve within a native heart valve
US11/692,890 Expired - Lifetime US8591575B2 (en) 1996-12-31 2007-03-28 Method of dilating a stenotic aortic valve and implanting a prosthetic valve
US11/942,690 Expired - Fee Related US7846204B2 (en) 1996-12-31 2007-11-19 Aortic valve prosthesis having natural tissue and an internal cover
US12/915,538 Expired - Fee Related US8002825B2 (en) 1996-12-31 2010-10-29 Implantable prosthetic valve for treating aortic stenosis
US12/953,977 Expired - Fee Related US8057540B2 (en) 1996-12-31 2010-11-24 Method of treating aortic stenosis using an implantable prosthetic valve
US13/278,813 Expired - Fee Related US9486312B2 (en) 1996-12-31 2011-10-21 Method of manufacturing a prosthetic valve
US14/089,332 Expired - Fee Related US9095432B2 (en) 1996-12-31 2013-11-25 Collapsible prosthetic valve having an internal cover
US14/805,179 Expired - Fee Related US9629714B2 (en) 1996-12-31 2015-07-21 Collapsible prosthetic valve

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/795,803 Abandoned US20010010017A1 (en) 1996-12-31 2001-02-28 Alve prosthesis for implantation in body channels

Family Applications After (11)

Application Number Title Priority Date Filing Date
US10/139,741 Expired - Lifetime US6908481B2 (en) 1996-12-31 2002-05-02 Value prosthesis for implantation in body channels
US10/202,458 Expired - Fee Related US7846203B2 (en) 1996-12-31 2002-07-23 Implanting a stent valve prosthesis at the native aortic valve
US11/110,402 Abandoned US20090132032A9 (en) 1996-12-31 2005-04-20 Valve prosthesis for implantation in body channels
US11/139,356 Expired - Lifetime US7585321B2 (en) 1996-12-31 2005-05-27 Methods of implanting a prosthetic heart valve within a native heart valve
US11/692,890 Expired - Lifetime US8591575B2 (en) 1996-12-31 2007-03-28 Method of dilating a stenotic aortic valve and implanting a prosthetic valve
US11/942,690 Expired - Fee Related US7846204B2 (en) 1996-12-31 2007-11-19 Aortic valve prosthesis having natural tissue and an internal cover
US12/915,538 Expired - Fee Related US8002825B2 (en) 1996-12-31 2010-10-29 Implantable prosthetic valve for treating aortic stenosis
US12/953,977 Expired - Fee Related US8057540B2 (en) 1996-12-31 2010-11-24 Method of treating aortic stenosis using an implantable prosthetic valve
US13/278,813 Expired - Fee Related US9486312B2 (en) 1996-12-31 2011-10-21 Method of manufacturing a prosthetic valve
US14/089,332 Expired - Fee Related US9095432B2 (en) 1996-12-31 2013-11-25 Collapsible prosthetic valve having an internal cover
US14/805,179 Expired - Fee Related US9629714B2 (en) 1996-12-31 2015-07-21 Collapsible prosthetic valve

Country Status (7)

Country Link
US (13) US20010010017A1 (en)
EP (8) EP0850607A1 (en)
AU (1) AU5764998A (en)
CA (1) CA2276527A1 (en)
DE (1) DE69740189D1 (en)
ES (6) ES2385890T3 (en)
WO (1) WO1998029057A1 (en)

Cited By (303)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US20030109924A1 (en) * 1996-12-31 2003-06-12 Alain Cribier Implanting a valve prosthesis in body channels
US20030187500A1 (en) * 2000-10-09 2003-10-02 Josef Jansen Conduit cardiac-valve prosthesis and a method for the production thereof
US20040049262A1 (en) * 2000-01-31 2004-03-11 Obermiller Joseph F. Stent valves and uses of same
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US20040092858A1 (en) * 2002-08-28 2004-05-13 Heart Leaflet Technologies, Inc. Leaflet valve
US20040093075A1 (en) * 2000-12-15 2004-05-13 Titus Kuehne Stent with valve and method of use thereof
US20040106989A1 (en) * 2002-07-03 2004-06-03 Wilson Robert F. Leaflet reinforcement for regurgitant valves
US20040167619A1 (en) * 2003-02-26 2004-08-26 Cook Incorporated Prosthesis adapted for placement under external imaging
US20040210307A1 (en) * 2003-04-18 2004-10-21 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
US20040225353A1 (en) * 2003-05-05 2004-11-11 Rex Medical Percutaneous aortic valve
US6830585B1 (en) 2003-01-14 2004-12-14 3F Therapeutics, Inc. Percutaneously deliverable heart valve and methods of implantation
US6875231B2 (en) 2002-09-11 2005-04-05 3F Therapeutics, Inc. Percutaneously deliverable heart valve
US20050075731A1 (en) * 2003-10-06 2005-04-07 Jason Artof Minimally invasive valve replacement system
WO2005065594A1 (en) * 2003-12-19 2005-07-21 Boston Scientific Limited Venous valve apparatus, system, and method
US20050192665A1 (en) * 2001-10-11 2005-09-01 Benjamin Spenser Implantable prosthetic valve
US20050197695A1 (en) * 2004-03-03 2005-09-08 Sorin Biomedica Cardio S.R.L. Minimally-invasive cardiac-valve prosthesis
US20050261669A1 (en) * 1998-04-30 2005-11-24 Medtronic, Inc. Intracardiovascular access (ICVA™) system
US20050273160A1 (en) * 2004-04-23 2005-12-08 Lashinski Randall T Pulmonary vein valve implant
US20060004442A1 (en) * 2004-06-30 2006-01-05 Benjamin Spenser Paravalvular leak detection, sealing, and prevention
US20060020333A1 (en) * 2004-05-05 2006-01-26 Lashinski Randall T Method of in situ formation of translumenally deployable heart valve support
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US20060259137A1 (en) * 2003-10-06 2006-11-16 Jason Artof Minimally invasive valve replacement system
US20060259136A1 (en) * 2005-05-13 2006-11-16 Corevalve Sa Heart valve prosthesis and methods of manufacture and use
US20070005131A1 (en) * 2005-06-13 2007-01-04 Taylor David M Heart valve delivery system
US20070088431A1 (en) * 2005-10-18 2007-04-19 Henry Bourang Heart valve delivery system with valve catheter
US7252682B2 (en) 2001-07-04 2007-08-07 Corevalve, S.A. Kit enabling a prosthetic valve to be placed in a body enabling a prosthetic valve to be put into place in a duct in the body
US20070198097A1 (en) * 2003-12-23 2007-08-23 Laboratoires Perouse Kit For Implanting In A Duct
WO2007142935A1 (en) 2006-05-30 2007-12-13 Cook Incorporated Artificial valve prosthesis
US20080065011A1 (en) * 2006-09-08 2008-03-13 Philippe Marchand Integrated heart valve delivery system
WO2008051554A2 (en) * 2006-10-24 2008-05-02 Beth Israel Deaconess Medical Center Percutaneous aortic valve assembly
US7374571B2 (en) 2001-03-23 2008-05-20 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
US20080200978A1 (en) * 2005-05-26 2008-08-21 Texas Heart Institute Surgical System and Method For Attaching a Prosthetic Vessel to a Hollow Structure
US20080269878A1 (en) * 2003-03-18 2008-10-30 Edwards Lifesciences Corporation Minimally-invasive heart valve with cusp positioners
US20090043382A1 (en) * 2005-10-26 2009-02-12 Cardiosolutions, Inc. Mitral Spacer
US20090048668A1 (en) * 2008-06-13 2009-02-19 Cardiosolutions, Inc. System and Method for Implanting a Heart Implant
US20090112309A1 (en) * 2005-07-21 2009-04-30 The Florida International University Board Of Trustees Collapsible Heart Valve with Polymer Leaflets
WO2009053497A1 (en) * 2007-10-25 2009-04-30 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
US20090132033A1 (en) * 2007-11-15 2009-05-21 Cardiosolutions, Inc. Implant Delivery System and Method
US20090131849A1 (en) * 2007-11-15 2009-05-21 Cardiosolutions, Inc. Heart regurgitation method and apparatus
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US20090240264A1 (en) * 2008-03-18 2009-09-24 Yosi Tuval Medical suturing device and method for use thereof
US20090240326A1 (en) * 2005-10-26 2009-09-24 Cardiosolutions Implant Delivery and Deployment System and Method
US20090264820A1 (en) * 2008-04-16 2009-10-22 Abiomed, Inc. Method and apparatus for implanting an endoluminal prosthesis such as a prosthetic valve
US7708775B2 (en) * 2005-05-24 2010-05-04 Edwards Lifesciences Corporation Methods for rapid deployment of prosthetic heart valves
US7740655B2 (en) 2006-04-06 2010-06-22 Medtronic Vascular, Inc. Reinforced surgical conduit for implantation of a stented valve therein
WO2010070633A1 (en) * 2008-12-15 2010-06-24 Assis Medical Ltd. Device, system and method for sizing of tissue openings
US7758606B2 (en) 2000-06-30 2010-07-20 Medtronic, Inc. Intravascular filter with debris entrapment mechanism
US7846199B2 (en) 2007-11-19 2010-12-07 Cook Incorporated Remodelable prosthetic valve
US7857845B2 (en) 2005-02-10 2010-12-28 Sorin Biomedica Cardio S.R.L. Cardiac-valve prosthesis
US7871436B2 (en) 2007-02-16 2011-01-18 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US7935144B2 (en) 2006-10-19 2011-05-03 Direct Flow Medical, Inc. Profile reduction of valve implant
US7951197B2 (en) 2005-04-08 2011-05-31 Medtronic, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
US7972378B2 (en) 2008-01-24 2011-07-05 Medtronic, Inc. Stents for prosthetic heart valves
US7972377B2 (en) 2001-12-27 2011-07-05 Medtronic, Inc. Bioprosthetic heart valve
US7981153B2 (en) 2002-12-20 2011-07-19 Medtronic, Inc. Biologically implantable prosthesis methods of using
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US7993392B2 (en) 2006-12-19 2011-08-09 Sorin Biomedica Cardio S.R.L. Instrument and method for in situ deployment of cardiac valve prostheses
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8052750B2 (en) 2006-09-19 2011-11-08 Medtronic Ventor Technologies Ltd Valve prosthesis fixation techniques using sandwiching
US8057539B2 (en) 2006-12-19 2011-11-15 Sorin Biomedica Cardio S.R.L. System for in situ positioning of cardiac valve prostheses without occluding blood flow
US20110295361A1 (en) * 2008-02-29 2011-12-01 The Florida International University Board Of Trustees Catheter Deliverable Artificial Multi-Leaflet Heart Valve Prosthesis and Intravascular Delivery System for a Catheter Deliverable Heart Valve Prosthesis
US8070801B2 (en) 2001-06-29 2011-12-06 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US8092525B2 (en) 2005-10-26 2012-01-10 Cardiosolutions, Inc. Heart valve implant
US8114154B2 (en) 2007-09-07 2012-02-14 Sorin Biomedica Cardio S.R.L. Fluid-filled delivery system for in situ deployment of cardiac valve prostheses
US8133213B2 (en) 2006-10-19 2012-03-13 Direct Flow Medical, Inc. Catheter guidance through a calcified aortic valve
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8157852B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US8211169B2 (en) 2005-05-27 2012-07-03 Medtronic, Inc. Gasket with collar for prosthetic heart valves and methods for using them
EP2471492A1 (en) * 2004-10-02 2012-07-04 Endoheart AG Implantable heart valve
US8216299B2 (en) 2004-04-01 2012-07-10 Cook Medical Technologies Llc Method to retract a body vessel wall with remodelable material
US8231670B2 (en) 2003-12-23 2012-07-31 Sadra Medical, Inc. Repositionable heart valve and method
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US8246678B2 (en) 2003-12-23 2012-08-21 Sadra Medicl, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8252052B2 (en) 2003-12-23 2012-08-28 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8312825B2 (en) 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8328868B2 (en) 2004-11-05 2012-12-11 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
US8337545B2 (en) 2004-02-09 2012-12-25 Cook Medical Technologies Llc Woven implantable device
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8353953B2 (en) 2009-05-13 2013-01-15 Sorin Biomedica Cardio, S.R.L. Device for the in situ delivery of heart valves
US8403982B2 (en) 2009-05-13 2013-03-26 Sorin Group Italia S.R.L. Device for the in situ delivery of heart valves
US8430927B2 (en) 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US8449606B2 (en) 2005-10-26 2013-05-28 Cardiosolutions, Inc. Balloon mitral spacer
US8506620B2 (en) 2005-09-26 2013-08-13 Medtronic, Inc. Prosthetic cardiac and venous valves
US8512397B2 (en) 2009-04-27 2013-08-20 Sorin Group Italia S.R.L. Prosthetic vascular conduit
US8535380B2 (en) 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
US8562672B2 (en) 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
US20130282110A1 (en) * 2012-04-19 2013-10-24 Caisson Interventional, LLC Valve replacement systems and methods
US8568477B2 (en) 2005-06-07 2013-10-29 Direct Flow Medical, Inc. Stentless aortic valve replacement with high radial strength
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8591460B2 (en) 2008-06-13 2013-11-26 Cardiosolutions, Inc. Steerable catheter and dilator and system and method for implanting a heart implant
US8591570B2 (en) 2004-09-07 2013-11-26 Medtronic, Inc. Prosthetic heart valve for replacing previously implanted heart valve
US20130325103A1 (en) * 2011-02-18 2013-12-05 National Cancer Center Abdominal cavity-vein shunt stent
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US8603161B2 (en) 2003-10-08 2013-12-10 Medtronic, Inc. Attachment device and methods of using the same
US20130331864A1 (en) * 2012-06-12 2013-12-12 Medtronic, Inc. Method and Device for Percutaneous Valve Annuloplasty
US8613765B2 (en) 2008-02-28 2013-12-24 Medtronic, Inc. Prosthetic heart valve systems
US8623076B2 (en) 2003-12-23 2014-01-07 Sadra Medical, Inc. Low profile heart valve and delivery system
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
US8628566B2 (en) 2008-01-24 2014-01-14 Medtronic, Inc. Stents for prosthetic heart valves
US20140039613A1 (en) * 2005-02-18 2014-02-06 The Cleveland Clinic Foundation Methods for replacing a cardiac valve
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US8668733B2 (en) 2004-06-16 2014-03-11 Sadra Medical, Inc. Everting heart valve
US8685084B2 (en) 2011-12-29 2014-04-01 Sorin Group Italia S.R.L. Prosthetic vascular conduit and assembly method
US8696743B2 (en) 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US8709042B2 (en) 2004-09-21 2014-04-29 Stout Medical Group, LP Expandable support device and method of use
US8721713B2 (en) 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
US8728155B2 (en) 2011-03-21 2014-05-20 Cephea Valve Technologies, Inc. Disk-based valve apparatus and method for the treatment of valve dysfunction
US20140155990A1 (en) * 2012-05-30 2014-06-05 Neovasc Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
US8747459B2 (en) 2006-12-06 2014-06-10 Medtronic Corevalve Llc System and method for transapical delivery of an annulus anchored self-expanding valve
US8771302B2 (en) 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8778017B2 (en) 2005-10-26 2014-07-15 Cardiosolutions, Inc. Safety for mitral valve implant
US8784478B2 (en) 2006-10-16 2014-07-22 Medtronic Corevalve, Inc. Transapical delivery system with ventruculo-arterial overlfow bypass
US8808369B2 (en) 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
US8808367B2 (en) 2007-09-07 2014-08-19 Sorin Group Italia S.R.L. Prosthetic valve delivery system including retrograde/antegrade approach
US8821569B2 (en) 2006-04-29 2014-09-02 Medtronic, Inc. Multiple component prosthetic heart valve assemblies and methods for delivering them
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US8834563B2 (en) 2008-12-23 2014-09-16 Sorin Group Italia S.R.L. Expandable prosthetic valve having anchoring appendages
US8840663B2 (en) * 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US8840661B2 (en) 2008-05-16 2014-09-23 Sorin Group Italia S.R.L. Atraumatic prosthetic heart valve prosthesis
US8858620B2 (en) 2003-12-23 2014-10-14 Sadra Medical Inc. Methods and apparatus for endovascularly replacing a heart valve
US8870948B1 (en) 2013-07-17 2014-10-28 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
WO2014203171A1 (en) * 2013-06-17 2014-12-24 Heldman Alan Prosthetic heart valve with linking element and methods for implanting same
US8951280B2 (en) 2000-11-09 2015-02-10 Medtronic, Inc. Cardiac valve procedure methods and devices
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
US8998976B2 (en) 2011-07-12 2015-04-07 Boston Scientific Scimed, Inc. Coupling system for medical devices
US8998981B2 (en) 2008-09-15 2015-04-07 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US9011521B2 (en) 2003-12-23 2015-04-21 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US9050112B2 (en) 2011-08-23 2015-06-09 Flexmedex, LLC Tissue removal device and method
US9078781B2 (en) 2006-01-11 2015-07-14 Medtronic, Inc. Sterile cover for compressible stents used in percutaneous device delivery systems
US9089422B2 (en) 2008-01-24 2015-07-28 Medtronic, Inc. Markers for prosthetic heart valves
US20150216657A1 (en) * 2007-09-28 2015-08-06 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US9125741B2 (en) 2010-09-10 2015-09-08 Edwards Lifesciences Corporation Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves
US9149358B2 (en) 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
US9161836B2 (en) 2011-02-14 2015-10-20 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
US9168105B2 (en) 2009-05-13 2015-10-27 Sorin Group Italia S.R.L. Device for surgical interventions
US20150351902A1 (en) * 2004-07-10 2015-12-10 Colibri Heart Valve Llc Percutaneously implantable replacement heart valve device and method of making same
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US9232998B2 (en) 2013-03-15 2016-01-12 Cardiosolutions Inc. Trans-apical implant systems, implants and methods
US9237886B2 (en) 2007-04-20 2016-01-19 Medtronic, Inc. Implant for treatment of a heart valve, in particular a mitral valve, material including such an implant, and material for insertion thereof
US9241790B2 (en) 2010-05-05 2016-01-26 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US9248017B2 (en) 2010-05-21 2016-02-02 Sorin Group Italia S.R.L. Support device for valve prostheses and corresponding kit
US9289297B2 (en) 2013-03-15 2016-03-22 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
US9289289B2 (en) 2011-02-14 2016-03-22 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9308360B2 (en) 2007-08-23 2016-04-12 Direct Flow Medical, Inc. Translumenally implantable heart valve with formed in place support
USD755384S1 (en) 2014-03-05 2016-05-03 Edwards Lifesciences Cardiaq Llc Stent
US9333073B2 (en) 2009-04-15 2016-05-10 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery method
US20160143730A1 (en) * 2013-06-14 2016-05-26 Arash Kheradvar Transcatheter mitral valve
US9364354B2 (en) 2000-03-27 2016-06-14 Neovasc Medical Ltd Methods for treating abnormal growths in the body using a flow reducing implant
US9370421B2 (en) 2011-12-03 2016-06-21 Boston Scientific Scimed, Inc. Medical device handle
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
EP3045147A1 (en) * 2007-08-21 2016-07-20 Symetis Sa A replacement valve
US9415225B2 (en) 2005-04-25 2016-08-16 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US9421094B2 (en) 2013-10-23 2016-08-23 Caisson Interventional, LLC Methods and systems for heart valve therapy
US9433514B2 (en) 2005-11-10 2016-09-06 Edwards Lifesciences Cardiaq Llc Method of securing a prosthesis
US9439757B2 (en) 2014-12-09 2016-09-13 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US9445897B2 (en) 2012-05-01 2016-09-20 Direct Flow Medical, Inc. Prosthetic implant delivery device with introducer catheter
US9456896B2 (en) 2008-09-29 2016-10-04 Edwards Lifesciences Cardiaq Llc Body cavity prosthesis
US9480560B2 (en) 2009-09-29 2016-11-01 Edwards Lifesciences Cardiaq Llc Method of securing an intralumenal frame assembly
US20160317300A1 (en) * 2013-05-03 2016-11-03 Cormatrix Cardiovascular, Inc. Prosthetic Tissue Valves
US20160317294A1 (en) * 2013-05-03 2016-11-03 Cormatrix Cardiovascular, Inc. Prosthetic Tissue Valves
US20160317292A1 (en) * 2013-05-03 2016-11-03 Cormatrix Cardiovascular, Inc. Prosthetic Tissue Valves
US9504563B2 (en) 2010-09-10 2016-11-29 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US9539088B2 (en) 2001-09-07 2017-01-10 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US9545305B2 (en) 2013-06-14 2017-01-17 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9566152B2 (en) 2012-04-19 2017-02-14 Caisson Interventional, LLC Heart valve assembly and methods
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US9579194B2 (en) 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US9592118B2 (en) 2011-01-28 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US9597183B2 (en) 2008-10-01 2017-03-21 Edwards Lifesciences Cardiaq Llc Delivery system for vascular implant
US9603708B2 (en) 2010-05-19 2017-03-28 Dfm, Llc Low crossing profile delivery catheter for cardiovascular prosthetic implant
US9610158B2 (en) 2002-01-04 2017-04-04 Colibri Heart Valve Llc Percutaneously implantable replacement heart valve device and method of making same
US9610163B2 (en) 2011-01-28 2017-04-04 Middle Peak Medical, Inc. Coaptation enhancement implant, system, and method
US9629718B2 (en) 2013-05-03 2017-04-25 Medtronic, Inc. Valve delivery tool
US20170156863A1 (en) * 2015-12-03 2017-06-08 Medtronic Vascular, Inc. Venous valve prostheses
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US20170189175A1 (en) * 2014-05-07 2017-07-06 Baylor College Of Medicine Artificial, flexible valves and methods of fabricating and serially expanding the same
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9744059B2 (en) 2003-11-19 2017-08-29 Neovasc Medical Ltd. Vascular implant
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9770339B2 (en) 2005-07-14 2017-09-26 Stout Medical Group, L.P. Expandable support device and method of use
US9775704B2 (en) 2004-04-23 2017-10-03 Medtronic3F Therapeutics, Inc. Implantable valve prosthesis
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US20170296262A1 (en) * 2016-04-13 2017-10-19 Biosense Webster (Israel) Ltd. Pulmonary-vein cork device with ablation guiding trench
US20170325938A1 (en) 2016-05-16 2017-11-16 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US9839515B2 (en) 2005-12-22 2017-12-12 Symetis, SA Stent-valves for valve replacement and associated methods and systems for surgery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
US9918833B2 (en) 2010-09-01 2018-03-20 Medtronic Vascular Galway Prosthetic valve support structure
US9949827B2 (en) 2009-09-29 2018-04-24 Edwards Lifesciences Cardiaq Llc Replacement heart valves, delivery devices and methods
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
US10004599B2 (en) 2014-02-21 2018-06-26 Edwards Lifesciences Cardiaq Llc Prosthesis, delivery device and methods of use
US10010414B2 (en) 2014-06-06 2018-07-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
US10058313B2 (en) 2011-05-24 2018-08-28 Sorin Group Italia S.R.L. Transapical valve replacement
JP2018138225A (en) * 2007-09-26 2018-09-06 セント ジュード メディカル インコーポレイテッド Collapsible prosthetic heart valve
US10070968B2 (en) 2010-08-24 2018-09-11 Flexmedex, LLC Support device and method for use
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
EP3388028A1 (en) * 2003-12-23 2018-10-17 Boston Scientific Scimed, Inc. Repositionable heart valve
US10123874B2 (en) 2017-03-13 2018-11-13 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10143552B2 (en) 2015-05-14 2018-12-04 Cephea Valve Technologies, Inc. Replacement mitral valves
US20180368976A1 (en) * 2001-08-03 2018-12-27 Jenavalve Technology, Inc. Devices useful for implantation at a heart valve
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
US10172708B2 (en) 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US10179044B2 (en) 2014-05-19 2019-01-15 Edwards Lifesciences Cardiaq Llc Replacement mitral valve
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US10201417B2 (en) 2015-02-03 2019-02-12 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10201418B2 (en) 2010-09-10 2019-02-12 Symetis, SA Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US10213298B2 (en) 2004-03-11 2019-02-26 Percutaneous Cardiovascular Solutions Pty Ltd Percutaneous heart valve prosthesis
US10251635B2 (en) 2014-06-24 2019-04-09 Middle Peak Medical, Inc. Systems and methods for anchoring an implant
US10258464B2 (en) 2012-03-22 2019-04-16 Symetis Sa Transcatheter stent-valves
US10258465B2 (en) 2003-12-23 2019-04-16 Boston Scientific Scimed Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US10265166B2 (en) 2015-12-30 2019-04-23 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10278805B2 (en) 2000-08-18 2019-05-07 Atritech, Inc. Expandable implant devices for filtering blood flow from atrial appendages
US10285819B2 (en) 2008-11-12 2019-05-14 Stout Medical Group, L.P. Fixation device and method
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10350066B2 (en) 2015-08-28 2019-07-16 Edwards Lifesciences Cardiaq Llc Steerable delivery system for replacement mitral valve and methods of use
US10350062B2 (en) 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
US10350065B2 (en) 2006-07-28 2019-07-16 Edwards Lifesciences Cardiaq Llc Percutaneous valve prosthesis and system and method for implanting the same
US10368990B2 (en) 2017-01-23 2019-08-06 Cephea Valve Technologies, Inc. Replacement mitral valves
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10449043B2 (en) 2015-01-16 2019-10-22 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US10449039B2 (en) 2015-03-19 2019-10-22 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10470881B2 (en) 2015-05-14 2019-11-12 Cephea Valve Technologies, Inc. Replacement mitral valves
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10485660B2 (en) 2010-06-21 2019-11-26 Edwards Lifesciences Cardiaq Llc Replacement heart valve
US10500048B2 (en) 2014-06-18 2019-12-10 Polares Medical Inc. Mitral valve implants for the treatment of valvular regurgitation
US10555809B2 (en) 2012-06-19 2020-02-11 Boston Scientific Scimed, Inc. Replacement heart valve
US10575951B2 (en) 2015-08-26 2020-03-03 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement mitral valve
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
US10583000B2 (en) 2013-03-14 2020-03-10 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
US10639143B2 (en) 2016-08-26 2020-05-05 Edwards Lifesciences Corporation Multi-portion replacement heart valve prosthesis
US10646340B2 (en) 2016-08-19 2020-05-12 Edwards Lifesciences Corporation Steerable delivery system for replacement mitral valve
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10758348B2 (en) 2016-11-02 2020-09-01 Edwards Lifesciences Corporation Supra and sub-annular mitral valve delivery system
US10758289B2 (en) 2006-05-01 2020-09-01 Stout Medical Group, L.P. Expandable support device and method of use
CN111685915A (en) * 2013-03-13 2020-09-22 爱德华兹生命科学卡迪尔克有限责任公司 Articulating commissure valve stents and methods
US10813757B2 (en) 2017-07-06 2020-10-27 Edwards Lifesciences Corporation Steerable rail delivery system
US10828154B2 (en) 2017-06-08 2020-11-10 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
US10849746B2 (en) 2015-05-14 2020-12-01 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US20200383780A1 (en) * 2019-06-07 2020-12-10 Medtronic, Inc. Balloon expandable transcatheter valve deployment devices and methods
EP3753535A1 (en) * 2014-11-05 2020-12-23 Medtronic Vascular Inc. Transcatheter valve prosthesis having an external skirt for sealing and preventing paravalvular leakage
US10898325B2 (en) 2017-08-01 2021-01-26 Boston Scientific Scimed, Inc. Medical implant locking mechanism
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
US10940014B2 (en) 2008-11-12 2021-03-09 Stout Medical Group, L.P. Fixation device and method
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11051934B2 (en) 2018-02-28 2021-07-06 Edwards Lifesciences Corporation Prosthetic mitral valve with improved anchors and seal
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11076955B2 (en) * 2003-10-02 2021-08-03 Edwards Lifesciences Corporation Implantable prosthetic heart valve
US11076952B2 (en) 2013-06-14 2021-08-03 The Regents Of The University Of California Collapsible atrioventricular valve prosthesis
US11147668B2 (en) 2018-02-07 2021-10-19 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US11191641B2 (en) 2018-01-19 2021-12-07 Boston Scientific Scimed, Inc. Inductance mode deployment sensors for transcatheter valve system
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US11207176B2 (en) 2012-03-22 2021-12-28 Boston Scientific Scimed, Inc. Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage
US11229517B2 (en) 2018-05-15 2022-01-25 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
US11241312B2 (en) 2018-12-10 2022-02-08 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11246625B2 (en) 2018-01-19 2022-02-15 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
CN114096205A (en) * 2019-05-20 2022-02-25 V-波有限责任公司 System and method for creating room shunt tubes
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US11285002B2 (en) 2003-12-23 2022-03-29 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a heart valve
US11304802B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US11406495B2 (en) 2013-02-11 2022-08-09 Cook Medical Technologies Llc Expandable support frame and medical device
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
US11439732B2 (en) 2018-02-26 2022-09-13 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11504231B2 (en) 2018-05-23 2022-11-22 Corcym S.R.L. Cardiac valve prosthesis
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US11684474B2 (en) 2018-01-25 2023-06-27 Edwards Lifesciences Corporation Delivery system for aided replacement valve recapture and repositioning post-deployment
US11723783B2 (en) 2019-01-23 2023-08-15 Neovasc Medical Ltd. Covered flow modifying apparatus
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US11771544B2 (en) 2011-05-05 2023-10-03 Symetis Sa Method and apparatus for compressing/loading stent-valves
US11951007B2 (en) 2020-04-13 2024-04-09 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves

Families Citing this family (847)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK124690D0 (en) * 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
US8036741B2 (en) 1996-04-30 2011-10-11 Medtronic, Inc. Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure
NL1004827C2 (en) * 1996-12-18 1998-06-19 Surgical Innovations Vof Device for regulating blood circulation.
US7722667B1 (en) * 1998-04-20 2010-05-25 St. Jude Medical, Inc. Two piece bioprosthetic heart valve with matching outer frame and inner valve
US7452371B2 (en) 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
WO1999062431A1 (en) 1998-06-02 1999-12-09 Cook Incorporated Multiple-sided intraluminal medical device
US7118600B2 (en) * 1998-08-31 2006-10-10 Wilson-Cook Medical, Inc. Prosthesis having a sleeve valve
US6254564B1 (en) 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
US6270527B1 (en) * 1998-10-16 2001-08-07 Sulzer Carbomedics Inc. Elastic valve with partially exposed stent
FR2788217A1 (en) 1999-01-12 2000-07-13 Brice Letac PROSTHETIC VALVE IMPLANTABLE BY CATHETERISM, OR SURGICAL
DK1154738T3 (en) * 1999-01-27 2010-07-26 Medtronic Inc Cardiac arrest devices
US6896690B1 (en) 2000-01-27 2005-05-24 Viacor, Inc. Cardiac valve procedure methods and devices
US6425916B1 (en) * 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
DE69942954D1 (en) * 1999-09-10 2010-12-30 Cook Inc ENDOVASCULAR TREATMENT OF CHRONIC VENOUS INSUFFICIENCY
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US6729332B1 (en) 1999-10-22 2004-05-04 3M Innovative Properties Company Retention assembly with compression element and method of use
US20070043435A1 (en) * 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US8458879B2 (en) 2001-07-03 2013-06-11 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Method of fabricating an implantable medical device
US7195641B2 (en) * 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US6458153B1 (en) * 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
NL1014095C2 (en) * 2000-01-17 2001-07-18 Cornelis Hendrikus Anna Witten Implant valve for implantation into a blood vessel.
AU2012244361B2 (en) * 2000-01-31 2013-08-29 Cook Biotech Incorporated Stent valves and uses of same
EP1900343B1 (en) * 2000-01-31 2015-10-21 Cook Biotech Incorporated Stent valves
DE60127530T2 (en) 2000-02-03 2007-12-13 Cook Inc., Bloomington IMPLANTABLE VASCULAR DEVICE
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
DE10010073B4 (en) 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
JP4383707B2 (en) * 2000-03-03 2009-12-16 パトリシア・イー・ソープ Spherical valve and stent for treating vascular reflux
US6869444B2 (en) 2000-05-22 2005-03-22 Shlomo Gabbay Low invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve
US8366769B2 (en) 2000-06-01 2013-02-05 Edwards Lifesciences Corporation Low-profile, pivotable heart valve sewing ring
US6695878B2 (en) * 2000-06-26 2004-02-24 Rex Medical, L.P. Vascular device for valve leaflet apposition
AU2001271667A1 (en) * 2000-06-30 2002-01-14 Viacor Incorporated Method and apparatus for performing a procedure on a cardiac valve
US6409758B2 (en) * 2000-07-27 2002-06-25 Edwards Lifesciences Corporation Heart valve holder for constricting the valve commissures and methods of use
AU2001287144A1 (en) 2000-09-07 2002-03-22 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
WO2002022054A1 (en) * 2000-09-12 2002-03-21 Gabbay S Valvular prosthesis and method of using same
US7510572B2 (en) * 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US8956407B2 (en) * 2000-09-20 2015-02-17 Mvrx, Inc. Methods for reshaping a heart valve annulus using a tensioning implant
US20080091264A1 (en) 2002-11-26 2008-04-17 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US20090287179A1 (en) 2003-10-01 2009-11-19 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US6893459B1 (en) 2000-09-20 2005-05-17 Ample Medical, Inc. Heart valve annulus device and method of using same
US7381220B2 (en) * 2000-09-20 2008-06-03 Ample Medical, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US7691144B2 (en) 2003-10-01 2010-04-06 Mvrx, Inc. Devices, systems, and methods for reshaping a heart valve annulus
ATE346571T1 (en) * 2000-09-21 2006-12-15 St Jude Medical VALVE PROSTHESIS WITH LEAF ELEMENTS MADE OF REINFORCED PLASTIC
US6602286B1 (en) 2000-10-26 2003-08-05 Ernst Peter Strecker Implantable valve system
US6953332B1 (en) 2000-11-28 2005-10-11 St. Jude Medical, Inc. Mandrel for use in forming valved prostheses having polymer leaflets by dip coating
US6699274B2 (en) * 2001-01-22 2004-03-02 Scimed Life Systems, Inc. Stent delivery system and method of manufacturing same
US8038708B2 (en) 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
FR2828091B1 (en) * 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US20030050648A1 (en) 2001-09-11 2003-03-13 Spiration, Inc. Removable lung reduction devices, systems, and methods
US6562069B2 (en) 2001-09-19 2003-05-13 St. Jude Medical, Inc. Polymer leaflet designs for medical devices
US6592594B2 (en) 2001-10-25 2003-07-15 Spiration, Inc. Bronchial obstruction device deployment system and method
US6929637B2 (en) 2002-02-21 2005-08-16 Spiration, Inc. Device and method for intra-bronchial provision of a therapeutic agent
US20030154988A1 (en) * 2002-02-21 2003-08-21 Spiration, Inc. Intra-bronchial device that provides a medicant intra-bronchially to the patient
US20030216769A1 (en) 2002-05-17 2003-11-20 Dillard David H. Removable anchored lung volume reduction devices and methods
US20030181922A1 (en) 2002-03-20 2003-09-25 Spiration, Inc. Removable anchored lung volume reduction devices and methods
US6752828B2 (en) 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
US20030195385A1 (en) * 2002-04-16 2003-10-16 Spiration, Inc. Removable anchored lung volume reduction devices and methods
US20030212412A1 (en) * 2002-05-09 2003-11-13 Spiration, Inc. Intra-bronchial obstructing device that permits mucus transport
US7485141B2 (en) 2002-05-10 2009-02-03 Cordis Corporation Method of placing a tubular membrane on a structural frame
US7270675B2 (en) 2002-05-10 2007-09-18 Cordis Corporation Method of forming a tubular membrane on a structural frame
US7351256B2 (en) 2002-05-10 2008-04-01 Cordis Corporation Frame based unidirectional flow prosthetic implant
JP2005525169A (en) 2002-05-10 2005-08-25 コーディス・コーポレイション Method of making a medical device having a thin wall tubular membrane on a structural frame
US7828839B2 (en) 2002-05-16 2010-11-09 Cook Incorporated Flexible barb for anchoring a prosthesis
US7578843B2 (en) 2002-07-16 2009-08-25 Medtronic, Inc. Heart valve prosthesis
EP1534180A4 (en) * 2002-08-08 2007-04-04 Neovasc Medical Ltd Geometric flow regulator
AU2003272682C1 (en) 2002-09-20 2009-07-16 Nellix, Inc. Stent-graft with positioning anchor
CO5500017A1 (en) * 2002-09-23 2005-03-31 3F Therapeutics Inc MITRAL PROTESTIC VALVE
US20060188331A1 (en) * 2002-09-28 2006-08-24 Moore Orel R Extended life road system and method
AU2003277118A1 (en) * 2002-10-01 2004-04-23 Ample Medical, Inc. Devices for retaining native heart valve leaflet
JP2006501033A (en) * 2002-10-01 2006-01-12 アンプル メディカル, インコーポレイテッド Device, system and method for reshaping a heart valve annulus
WO2004037128A1 (en) 2002-10-24 2004-05-06 Boston Scientific Limited Venous valve apparatus and method
US7766973B2 (en) * 2005-01-19 2010-08-03 Gi Dynamics, Inc. Eversion resistant sleeves
US6945957B2 (en) 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US7393339B2 (en) * 2003-02-21 2008-07-01 C. R. Bard, Inc. Multi-lumen catheter with separate distal tips
US20050084593A1 (en) * 2003-02-21 2005-04-21 Calvert Frederic R.Jr. Reduced fat and carbohydrate cultured dairy product and process for manufacturing such cultured dairy product
CH696185A5 (en) * 2003-03-21 2007-02-15 Afksendiyos Kalangos Intraparietal reinforcement for aortic valve and reinforced valve has rod inserted in biological tissue or organic prosthesis with strut fixed to one end
US7100616B2 (en) 2003-04-08 2006-09-05 Spiration, Inc. Bronchoscopic lung volume reduction method
WO2004093745A1 (en) * 2003-04-23 2004-11-04 Cook Incorporated Devices kits, and methods for placing multiple intraluminal medical devices in a body vessel
AU2004233848B2 (en) 2003-04-24 2010-03-04 Cook Medical Technologies Llc Artificial valve prosthesis with improved flow dynamics
US7625399B2 (en) 2003-04-24 2009-12-01 Cook Incorporated Intralumenally-implantable frames
US10667823B2 (en) 2003-05-19 2020-06-02 Evalve, Inc. Fixation devices, systems and methods for engaging tissue
US8512403B2 (en) * 2003-05-20 2013-08-20 The Cleveland Clinic Foundation Annuloplasty ring with wing members for repair of a cardiac valve
US7201772B2 (en) * 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
US7429269B2 (en) 2003-07-08 2008-09-30 Ventor Technologies Ltd. Aortic prosthetic devices
US7153324B2 (en) * 2003-07-31 2006-12-26 Cook Incorporated Prosthetic valve devices and methods of making such devices
US7533671B2 (en) 2003-08-08 2009-05-19 Spiration, Inc. Bronchoscopic repair of air leaks in a lung
US7160322B2 (en) 2003-08-13 2007-01-09 Shlomo Gabbay Implantable cardiac prosthesis for mitigating prolapse of a heart valve
US7186265B2 (en) * 2003-12-10 2007-03-06 Medtronic, Inc. Prosthetic cardiac valves and systems and methods for implanting thereof
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US7261732B2 (en) 2003-12-22 2007-08-28 Henri Justino Stent mounted valve
US7824443B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US20050137064A1 (en) * 2003-12-23 2005-06-23 Stephen Nothnagle Hand weights with finger support
EP2926767B2 (en) 2003-12-23 2023-03-08 Boston Scientific Scimed, Inc. Repositionable heart valve
US20050137696A1 (en) * 2003-12-23 2005-06-23 Sadra Medical Apparatus and methods for protecting against embolization during endovascular heart valve replacement
US7748389B2 (en) * 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7824442B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US20050137691A1 (en) * 2003-12-23 2005-06-23 Sadra Medical Two piece heart valve and anchor
US7871435B2 (en) 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
WO2005076973A2 (en) 2004-02-05 2005-08-25 Children's Medical Center Corporation Transcatheter delivery of a replacement heart valve
CN101683291A (en) 2004-02-27 2010-03-31 奥尔特克斯公司 Prosthetic heart valve delivery systems and methods
WO2005087139A1 (en) * 2004-03-15 2005-09-22 Baker Medical Research Institute Treating valve failure
US20050228494A1 (en) * 2004-03-29 2005-10-13 Salvador Marquez Controlled separation heart valve frame
WO2005096993A1 (en) * 2004-03-31 2005-10-20 Med Institute, Inc. Endoluminal graft with a prosthetic valve
WO2005107646A1 (en) * 2004-05-06 2005-11-17 Cook Incorporated Delivery system that facilitates visual inspection of an intraluminal medical device
US20060122693A1 (en) * 2004-05-10 2006-06-08 Youssef Biadillah Stent valve and method of manufacturing same
US20060122686A1 (en) * 2004-05-10 2006-06-08 Ran Gilad Stent and method of manufacturing same
US20060122692A1 (en) * 2004-05-10 2006-06-08 Ran Gilad Stent valve and method of using same
US7462191B2 (en) 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
WO2006002492A1 (en) * 2004-07-06 2006-01-12 Baker Medical Research Institute Treating valvular insufficiency
US8048145B2 (en) 2004-07-22 2011-11-01 Endologix, Inc. Graft systems having filling structures supported by scaffolds and methods for their use
EP1786367B1 (en) * 2004-08-27 2013-04-03 Cook Medical Technologies LLC Placement of multiple intraluminal medical devices within a body vessel
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US7704277B2 (en) 2004-09-14 2010-04-27 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
US6951571B1 (en) 2004-09-30 2005-10-04 Rohit Srivastava Valve implanting device
US7331010B2 (en) * 2004-10-29 2008-02-12 International Business Machines Corporation System, method and storage medium for providing fault detection and correction in a memory subsystem
CA2588140C (en) * 2004-11-19 2013-10-01 Medtronic Inc. Method and apparatus for treatment of cardiac valves
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US20060173490A1 (en) 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Filter system and method
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8574257B2 (en) * 2005-02-10 2013-11-05 Edwards Lifesciences Corporation System, device, and method for providing access in a cardiovascular environment
US7867274B2 (en) * 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7331991B2 (en) 2005-02-25 2008-02-19 California Institute Of Technology Implantable small percutaneous valve and methods of delivery
US20060195186A1 (en) * 2005-02-28 2006-08-31 Drews Michael J Connectors for two piece heart valves and methods for implanting such heart valves
CZ2007547A3 (en) 2005-03-01 2007-10-24 Andrieu@Raymond IIntraparietal reinforcement device for biological prosthesis of heart and reinforced aortic valve biological prosthesis per se
US8608797B2 (en) 2005-03-17 2013-12-17 Valtech Cardio Ltd. Mitral valve treatment techniques
US10219902B2 (en) 2005-03-25 2019-03-05 Mvrx, Inc. Devices, systems, and methods for reshaping a heart valve anulus, including the use of a bridge implant having an adjustable bridge stop
FR2883721B1 (en) 2005-04-05 2007-06-22 Perouse Soc Par Actions Simpli NECESSARY TO BE IMPLANTED IN A BLOOD CIRCULATION CONDUIT, AND ASSOCIATED TUBULAR ENDOPROTHESIS
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20060259128A1 (en) * 2005-04-18 2006-11-16 Cook Incorporated Method for implanting prosthetic valves
US20060259135A1 (en) * 2005-04-20 2006-11-16 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
US7833268B2 (en) * 2005-04-29 2010-11-16 Delgado Iii Reynolds M Method and apparatus for implanting an aortic valve prosthesis
AU2006251938B2 (en) 2005-05-27 2011-09-29 Hlt, Inc. Stentless support structure
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US20060287668A1 (en) * 2005-06-16 2006-12-21 Fawzi Natalie V Apparatus and methods for intravascular embolic protection
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
AU2006269419A1 (en) 2005-07-07 2007-01-18 Nellix, Inc. Systems and methods for endovascular aneurysm treatment
US7682391B2 (en) * 2005-07-13 2010-03-23 Edwards Lifesciences Corporation Methods of implanting a prosthetic mitral heart valve having a contoured sewing ring
US8790396B2 (en) * 2005-07-27 2014-07-29 Medtronic 3F Therapeutics, Inc. Methods and systems for cardiac valve delivery
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
US20080188928A1 (en) * 2005-09-16 2008-08-07 Amr Salahieh Medical device delivery sheath
US7569071B2 (en) 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
DE102005051849B4 (en) 2005-10-28 2010-01-21 JenaValve Technology Inc., Wilmington Device for implantation and attachment of heart valve prostheses
DE102005052628B4 (en) 2005-11-04 2014-06-05 Jenavalve Technology Inc. Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter
US7917213B2 (en) 2005-11-04 2011-03-29 Kenergy, Inc. MRI compatible implanted electronic medical lead
US8764820B2 (en) 2005-11-16 2014-07-01 Edwards Lifesciences Corporation Transapical heart valve delivery system and method
US20070150041A1 (en) * 2005-12-22 2007-06-28 Nellix, Inc. Methods and systems for aneurysm treatment using filling structures
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US20080275550A1 (en) * 2006-02-24 2008-11-06 Arash Kheradvar Implantable small percutaneous valve and methods of delivery
US7780724B2 (en) * 2006-02-24 2010-08-24 California Institute Of Technology Monolithic in situ forming valve system
US8147541B2 (en) 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8403981B2 (en) 2006-02-27 2013-03-26 CardiacMC, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
WO2007106755A1 (en) * 2006-03-10 2007-09-20 Arbor Surgical Technologies, Inc. Valve introducers and methods for making and using them
US7691151B2 (en) * 2006-03-31 2010-04-06 Spiration, Inc. Articulable Anchor
US7524331B2 (en) * 2006-04-06 2009-04-28 Medtronic Vascular, Inc. Catheter delivered valve having a barrier to provide an enhanced seal
JP5061181B2 (en) * 2006-04-07 2012-10-31 ピナンブラ、インク System and method for occluding an aneurysm
US20070239269A1 (en) * 2006-04-07 2007-10-11 Medtronic Vascular, Inc. Stented Valve Having Dull Struts
US20070239254A1 (en) * 2006-04-07 2007-10-11 Chris Chia System for percutaneous delivery and removal of a prosthetic valve
US7727276B2 (en) * 2006-04-14 2010-06-01 Machiraju Venkat R System and method for heart valve replacement
US20070244545A1 (en) * 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Prosthetic Conduit With Radiopaque Symmetry Indicators
US20070244544A1 (en) * 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Seal for Enhanced Stented Valve Fixation
US20070244546A1 (en) * 2006-04-18 2007-10-18 Medtronic Vascular, Inc. Stent Foundation for Placement of a Stented Valve
WO2007127433A2 (en) * 2006-04-28 2007-11-08 Medtronic, Inc. Method and apparatus for cardiac valve replacement
EP1849440A1 (en) * 2006-04-28 2007-10-31 Younes Boudjemline Vascular stents with varying diameter
US8021161B2 (en) * 2006-05-01 2011-09-20 Edwards Lifesciences Corporation Simulated heart valve root for training and testing
JP2009536074A (en) 2006-05-05 2009-10-08 チルドレンズ・メディカル・センター・コーポレイション Transcatheter heart valve
US8585594B2 (en) 2006-05-24 2013-11-19 Phoenix Biomedical, Inc. Methods of assessing inner surfaces of body lumens or organs
US8092517B2 (en) * 2006-05-25 2012-01-10 Deep Vein Medical, Inc. Device for regulating blood flow
US7811316B2 (en) 2006-05-25 2010-10-12 Deep Vein Medical, Inc. Device for regulating blood flow
EP2032080B1 (en) 2006-06-01 2017-05-03 Edwards Lifesciences Corporation Prosthetic insert for improving heart valve function
US8376865B2 (en) 2006-06-20 2013-02-19 Cardiacmd, Inc. Torque shaft and torque shaft drive
CA2657442A1 (en) 2006-06-20 2007-12-27 Aortx, Inc. Prosthetic heart valves, support structures and systems and methods for implanting the same
CA2657446A1 (en) 2006-06-21 2007-12-27 Aortx, Inc. Prosthetic valve implantation systems
RU2325873C2 (en) * 2006-07-20 2008-06-10 Александр Васильевич Самков Artificial cardiac valve cusp and methods of its producing
US9585743B2 (en) 2006-07-31 2017-03-07 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US9408607B2 (en) 2009-07-02 2016-08-09 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
WO2008016578A2 (en) 2006-07-31 2008-02-07 Cartledge Richard G Sealable endovascular implants and methods for their use
US20080082165A1 (en) * 2006-09-28 2008-04-03 Heart Leaflet Technologies, Inc. Delivery Tool For Percutaneous Delivery Of A Prosthesis
US8029556B2 (en) 2006-10-04 2011-10-04 Edwards Lifesciences Corporation Method and apparatus for reshaping a ventricle
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US9974653B2 (en) 2006-12-05 2018-05-22 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US20080221666A1 (en) * 2006-12-15 2008-09-11 Cardiomind, Inc. Stent systems
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
WO2008091493A1 (en) 2007-01-08 2008-07-31 California Institute Of Technology In-situ formation of a valve
EP2109417B1 (en) * 2007-02-05 2013-11-06 Boston Scientific Limited Percutaneous valve and delivery system
AU2008216670B2 (en) * 2007-02-15 2013-10-17 Medtronic, Inc. Multi-layered stents and methods of implanting
US20080208327A1 (en) * 2007-02-27 2008-08-28 Rowe Stanton J Method and apparatus for replacing a prosthetic valve
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US9138315B2 (en) 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
WO2008138584A1 (en) 2007-05-15 2008-11-20 Jenavalve Technology Inc. Handle for manipulating a catheter tip, catheter system and medical insertion system for inserting a self-expandable heart valve stent
US8011277B2 (en) 2007-05-10 2011-09-06 Wagic, Inc. Hand tool with multiple bit storage and a method for using the same
FR2916959B1 (en) 2007-06-08 2009-09-04 Perouse Soc Par Actions Simpli NECESSARY TO BE IMPLANTED IN A BLOOD CIRCULATION CONDUIT
US7815677B2 (en) 2007-07-09 2010-10-19 Leman Cardiovascular Sa Reinforcement device for a biological valve and reinforced biological valve
US8663318B2 (en) 2007-07-23 2014-03-04 Hocor Cardiovascular Technologies Llc Method and apparatus for percutaneous aortic valve replacement
US8663319B2 (en) 2007-07-23 2014-03-04 Hocor Cardiovascular Technologies Llc Methods and apparatus for percutaneous aortic valve replacement
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
JP5419875B2 (en) 2007-08-24 2014-02-19 セント ジュード メディカル インコーポレイテッド Artificial aortic heart valve
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
US8784481B2 (en) 2007-09-28 2014-07-22 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US20090138079A1 (en) * 2007-10-10 2009-05-28 Vector Technologies Ltd. Prosthetic heart valve for transfemoral delivery
JP5570993B2 (en) 2007-10-12 2014-08-13 スピレーション インコーポレイテッド Valve loader methods, systems, and apparatus
US8043301B2 (en) 2007-10-12 2011-10-25 Spiration, Inc. Valve loader method, system, and apparatus
US7981151B2 (en) * 2007-10-15 2011-07-19 Edwards Lifesciences Corporation Transcatheter heart valve with micro-anchors
US20090105810A1 (en) 2007-10-17 2009-04-23 Hancock Jaffe Laboratories Biological valve for venous valve insufficiency
US8715337B2 (en) 2007-11-09 2014-05-06 Cook Medical Technologies Llc Aortic valve stent graft
ES2781686T3 (en) 2007-12-14 2020-09-04 Edwards Lifesciences Corp Leaflet Junction Frame for a Prosthetic Valve
US8876897B2 (en) * 2007-12-20 2014-11-04 Arash Kheradvar Implantable prosthetic valves and methods relating to same
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8925429B2 (en) 2008-01-17 2015-01-06 Wagic, Inc. Radial foldout tool
US7946203B2 (en) 2008-01-17 2011-05-24 Wagic, Inc. Tool handle for holding multiple tools of different sizes during use
USD708036S1 (en) 2008-01-17 2014-07-01 Wagic, Inc. Biaxial foldout tool
US8468916B2 (en) 2008-01-17 2013-06-25 Wagic, Inc. Biaxial foldout tool with multiple tools on a side and a rotational stop
US8499667B2 (en) 2008-01-17 2013-08-06 WAGIC, Inc Tool holder
US8033200B2 (en) 2008-01-17 2011-10-11 Wagic, Inc. Universal ratcheting tool
US20090287290A1 (en) * 2008-01-24 2009-11-19 Medtronic, Inc. Delivery Systems and Methods of Implantation for Prosthetic Heart Valves
US20100145435A1 (en) * 2008-02-21 2010-06-10 Valerian Voinov Implantable prosthetic valve stent
US8465540B2 (en) 2008-02-26 2013-06-18 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9168130B2 (en) 2008-02-26 2015-10-27 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8317858B2 (en) 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9241792B2 (en) 2008-02-29 2016-01-26 Edwards Lifesciences Corporation Two-step heart valve implantation
US8460368B2 (en) 2008-02-29 2013-06-11 Edwards Lifesciences Corporation Expandable member for deploying a prosthetic device
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
BRPI0911351B8 (en) * 2008-04-23 2021-06-22 Medtronic Inc stent frame for a prosthetic heart valve, and heart valve prosthesis
DK3967274T3 (en) * 2008-04-23 2022-10-03 Medtronic Inc HEART VALVE DEVICES WITH STENT
JP5663471B2 (en) 2008-04-25 2015-02-04 ネリックス・インコーポレーテッド Stent / graft delivery system
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US9061119B2 (en) 2008-05-09 2015-06-23 Edwards Lifesciences Corporation Low profile delivery system for transcatheter heart valve
US8668668B2 (en) 2008-05-14 2014-03-11 Onset Medical Corporation Expandable iliac sheath and method of use
US8728153B2 (en) 2008-05-14 2014-05-20 Onset Medical Corporation Expandable transapical sheath and method of use
JP2011522615A (en) 2008-06-04 2011-08-04 ネリックス・インコーポレーテッド Sealing device and method of use
EP4119097A1 (en) 2008-06-06 2023-01-18 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
JP5379852B2 (en) 2008-07-15 2013-12-25 セント ジュード メディカル インコーポレイテッド Collapsible and re-expandable prosthetic heart valve cuff design and complementary technology application
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
EP2344074B1 (en) * 2008-09-19 2019-03-27 Edwards Lifesciences Corporation Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation
US8287591B2 (en) * 2008-09-19 2012-10-16 Edwards Lifesciences Corporation Transformable annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation
US9314335B2 (en) 2008-09-19 2016-04-19 Edwards Lifesciences Corporation Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation
US8690936B2 (en) 2008-10-10 2014-04-08 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device into a body
US8449625B2 (en) * 2009-10-27 2013-05-28 Edwards Lifesciences Corporation Methods of measuring heart valve annuluses for valve replacement
CN102438546B (en) 2008-11-21 2015-07-15 经皮心血管解决方案公司 Heart valve prosthesis
EP2370138B1 (en) 2008-11-25 2020-12-30 Edwards Lifesciences Corporation Apparatus for in situ expansion of prosthetic device
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
EP2379008B1 (en) 2008-12-22 2021-02-17 Valtech Cardio, Ltd. Adjustable annuloplasty devices
US8911494B2 (en) 2009-05-04 2014-12-16 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
US20100210899A1 (en) * 2009-01-21 2010-08-19 Tendyne Medical, Inc. Method for percutaneous lateral access to the left ventricle for treatment of mitral insufficiency by papillary muscle alignment
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US20100217382A1 (en) * 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
EP2400924B1 (en) 2009-02-27 2017-06-28 St. Jude Medical, Inc. Prosthetic heart valve
US20110015476A1 (en) * 2009-03-04 2011-01-20 Jeff Franco Devices and Methods for Treating Cardiomyopathy
US8021420B2 (en) * 2009-03-12 2011-09-20 Medtronic Vascular, Inc. Prosthetic valve delivery system
US9078751B2 (en) * 2009-03-17 2015-07-14 Mitrassist Medical Ltd. Heart valve prosthesis with collapsible valve and method of delivery thereof
CN101919753A (en) * 2009-03-30 2010-12-22 卡迪万蒂奇医药公司 The nothing of prosthetic aortic valve or mitral valve is sewed up implantation method and device
US9980818B2 (en) 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
US8500801B2 (en) 2009-04-21 2013-08-06 Medtronic, Inc. Stents for prosthetic heart valves and methods of making same
US9011524B2 (en) * 2009-04-24 2015-04-21 Medtronic, Inc. Prosthetic heart valves and methods of attaching same
AU2010241596B2 (en) * 2009-04-29 2013-10-24 The Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
US10772717B2 (en) 2009-05-01 2020-09-15 Endologix, Inc. Percutaneous method and device to treat dissections
US9579103B2 (en) 2009-05-01 2017-02-28 Endologix, Inc. Percutaneous method and device to treat dissections
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US8468667B2 (en) 2009-05-15 2013-06-25 Jenavalve Technology, Inc. Device for compressing a stent
US8348998B2 (en) 2009-06-26 2013-01-08 Edwards Lifesciences Corporation Unitary quick connect prosthetic heart valve and deployment system and methods
US8439970B2 (en) 2009-07-14 2013-05-14 Edwards Lifesciences Corporation Transapical delivery system for heart valves
EP3572117B1 (en) 2009-07-14 2020-12-09 Edwards Lifesciences Corporation Transapical delivery system for heart valves
US8845722B2 (en) * 2009-08-03 2014-09-30 Shlomo Gabbay Heart valve prosthesis and method of implantation thereof
US9120208B2 (en) 2009-10-05 2015-09-01 WAGIC, Inc Handled ratcheting tool with a flip out handle
US8621963B2 (en) 2009-10-05 2014-01-07 Wagic, Inc. Dual purpose flip-out and T handle
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
CA2778944C (en) 2009-11-02 2019-08-20 Symetis Sa Aortic bioprosthesis and systems for delivery thereof
WO2011067770A1 (en) 2009-12-02 2011-06-09 Valtech Cardio, Ltd. Delivery tool for implantation of spool assembly coupled to a helical anchor
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
EP2509538B1 (en) 2009-12-08 2017-09-20 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
US20110276078A1 (en) 2009-12-30 2011-11-10 Nellix, Inc. Filling structure for a graft system and methods of use
US9504562B2 (en) 2010-01-12 2016-11-29 Valve Medical Ltd. Self-assembling modular percutaneous valve and methods of folding, assembly and delivery
AU2011223708A1 (en) 2010-03-01 2012-09-27 Colibri Heart Valve Llc Percutaneously deliverable heart valve and methods associated therewith
WO2011109813A2 (en) 2010-03-05 2011-09-09 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
US8795354B2 (en) 2010-03-05 2014-08-05 Edwards Lifesciences Corporation Low-profile heart valve and delivery system
US20110224785A1 (en) * 2010-03-10 2011-09-15 Hacohen Gil Prosthetic mitral valve with tissue anchors
NZ602066A (en) 2010-03-23 2013-09-27 Edwards Lifesciences Corp Methods of conditioning sheet bioprosthetic tissue
WO2011120050A1 (en) * 2010-03-26 2011-09-29 Thubrikar Aortic Valve, Inc. Valve component, frame component and prosthetic valve device including the same for implantation in a body lumen
US20110257721A1 (en) * 2010-04-15 2011-10-20 Medtronic, Inc. Prosthetic Heart Valves and Delivery Methods
US8568474B2 (en) * 2010-04-26 2013-10-29 Medtronic, Inc. Transcatheter prosthetic heart valve post-dilatation remodeling devices and methods
AU2011250971B2 (en) 2010-05-10 2015-05-07 Hlt, Inc. Stentless support structure
EP2568924B1 (en) 2010-05-10 2021-01-13 Edwards Lifesciences Corporation Prosthetic heart valve
US9554901B2 (en) 2010-05-12 2017-01-31 Edwards Lifesciences Corporation Low gradient prosthetic heart valve
US10856978B2 (en) 2010-05-20 2020-12-08 Jenavalve Technology, Inc. Catheter system
US11278406B2 (en) 2010-05-20 2022-03-22 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US9795476B2 (en) 2010-06-17 2017-10-24 St. Jude Medical, Llc Collapsible heart valve with angled frame
CN103153384B (en) 2010-06-28 2016-03-09 科利柏心脏瓣膜有限责任公司 For the device of device in the delivery of vascular of chamber
US9326852B2 (en) 2010-07-08 2016-05-03 Benjamin Spenser Method for implanting prosthetic valve
US8408214B2 (en) 2010-07-08 2013-04-02 Benjamin Spenser Method for implanting prosthetic valve
CN103189015B (en) 2010-07-09 2016-07-06 海莱夫简易股份公司 Transcatheter atrioventricular valves (A V valves) prosthese
US8657872B2 (en) 2010-07-19 2014-02-25 Jacques Seguin Cardiac valve repair system and methods of use
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
WO2012012761A2 (en) 2010-07-23 2012-01-26 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
EP2600798B1 (en) * 2010-08-03 2015-10-28 Cook Medical Technologies LLC Two valve caval stent for functional replacement of incompetent tricuspid valve
US9039759B2 (en) 2010-08-24 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Repositioning of prosthetic heart valve and deployment
EP2608741A2 (en) 2010-08-24 2013-07-03 St. Jude Medical, Inc. Staged deployment devices and methods for transcatheter heart valve delivery systems
DE102010035543A1 (en) 2010-08-26 2012-03-01 Acandis Gmbh & Co. Kg Medical device and system with such a device
US10105224B2 (en) 2010-09-01 2018-10-23 Mvalve Technologies Ltd. Cardiac valve support structure
EP2611391B1 (en) 2010-09-01 2017-11-22 Mvalve Technologies Ltd. Cardiac valve support structure
US9370418B2 (en) 2010-09-10 2016-06-21 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
AU2011302640B2 (en) 2010-09-17 2014-11-06 St. Jude Medical, Cardiology Division, Inc. Staged deployment devices and methods for transcatheter heart valve delivery
USD648854S1 (en) 2010-09-20 2011-11-15 St. Jude Medical, Inc. Commissure points
USD660967S1 (en) 2010-09-20 2012-05-29 St. Jude Medical, Inc. Surgical stent
USD653341S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical stent
USD684692S1 (en) 2010-09-20 2013-06-18 St. Jude Medical, Inc. Forked ends
USD653342S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Stent connections
USD652926S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Forked end
USD654170S1 (en) 2010-09-20 2012-02-14 St. Jude Medical, Inc. Stent connections
USD653343S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical cuff
USD652927S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Surgical stent
JP2013540484A (en) 2010-09-20 2013-11-07 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Valve leaflet mounting device in foldable artificial valve
USD660433S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Surgical stent assembly
USD654169S1 (en) 2010-09-20 2012-02-14 St. Jude Medical Inc. Forked ends
USD660432S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Commissure point
US9579193B2 (en) 2010-09-23 2017-02-28 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
US10321998B2 (en) 2010-09-23 2019-06-18 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
CN115192259A (en) 2010-10-05 2022-10-18 爱德华兹生命科学公司 Artificial heart valve
US8568475B2 (en) 2010-10-05 2013-10-29 Edwards Lifesciences Corporation Spiraled commissure attachment for prosthetic valve
US20120116496A1 (en) 2010-11-05 2012-05-10 Chuter Timothy A Stent structures for use with valve replacements
US9005279B2 (en) 2010-11-12 2015-04-14 Shlomo Gabbay Beating heart buttress and implantation method to prevent prolapse of a heart valve
WO2012068298A1 (en) 2010-11-17 2012-05-24 Endologix, Inc. Devices and methods to treat vascular dissections
US9226824B2 (en) 2010-11-30 2016-01-05 Edwards Lifesciences Corporation Surgical stabilizer and closure system
SG191008A1 (en) 2010-12-14 2013-07-31 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
WO2012087842A1 (en) 2010-12-23 2012-06-28 The Foundry, Llc System for mitral valve repair and replacement
US8801768B2 (en) 2011-01-21 2014-08-12 Endologix, Inc. Graft systems having semi-permeable filling structures and methods for their use
US9717593B2 (en) 2011-02-01 2017-08-01 St. Jude Medical, Cardiology Division, Inc. Leaflet suturing to commissure points for prosthetic heart valve
US8932343B2 (en) 2011-02-01 2015-01-13 St. Jude Medical, Cardiology Division, Inc. Blunt ended stent for prosthetic heart valve
EP2484309B1 (en) 2011-02-02 2019-04-10 Shlomo Gabbay Heart valve prosthesis
US20120209375A1 (en) * 2011-02-11 2012-08-16 Gilbert Madrid Stability device for use with percutaneous delivery systems
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US9055937B2 (en) 2011-04-01 2015-06-16 Edwards Lifesciences Corporation Apical puncture access and closure system
US9415195B2 (en) 2011-04-06 2016-08-16 Engologix, Inc. Method and system for treating aneurysms
US9381082B2 (en) 2011-04-22 2016-07-05 Edwards Lifesciences Corporation Devices, systems and methods for accurate positioning of a prosthetic valve
US8795241B2 (en) 2011-05-13 2014-08-05 Spiration, Inc. Deployment catheter
US8945209B2 (en) 2011-05-20 2015-02-03 Edwards Lifesciences Corporation Encapsulated heart valve
US10500038B1 (en) 2011-05-20 2019-12-10 Tel Hashomer Medical Research Infrastructure And Services Ltd. Prosthetic mitral valve, and methods and devices for deploying the prosthetic mitral valve
US9289282B2 (en) 2011-05-31 2016-03-22 Edwards Lifesciences Corporation System and method for treating valve insufficiency or vessel dilatation
US10245049B2 (en) * 2011-06-08 2019-04-02 Cvdevices, Llc Thrombus removal systems and devices and methods of using the same
JP5872692B2 (en) 2011-06-21 2016-03-01 トゥエルヴ, インコーポレイテッド Artificial therapy device
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US8795357B2 (en) 2011-07-15 2014-08-05 Edwards Lifesciences Corporation Perivalvular sealing for transcatheter heart valve
WO2013016056A2 (en) * 2011-07-25 2013-01-31 Acclarent, Inc. Devices and methods for transnasal dilation and irrigation of the sinuses
US9119716B2 (en) 2011-07-27 2015-09-01 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
WO2013016094A2 (en) * 2011-07-28 2013-01-31 Acclarent, Inc. Improved device and method for dilating an airway stenosis
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
WO2013021375A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Percutaneous mitral valve replacement and sealing
CA3040390C (en) 2011-08-11 2022-03-15 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US9060860B2 (en) 2011-08-18 2015-06-23 St. Jude Medical, Cardiology Division, Inc. Devices and methods for transcatheter heart valve delivery
WO2013036742A1 (en) * 2011-09-09 2013-03-14 Emory University Systems, devices and methods for repair of heart valve lesions
US8945177B2 (en) 2011-09-13 2015-02-03 Abbott Cardiovascular Systems Inc. Gripper pusher mechanism for tissue apposition systems
US9011468B2 (en) 2011-09-13 2015-04-21 Abbott Cardiovascular Systems Inc. Independent gripper
US9549817B2 (en) 2011-09-22 2017-01-24 Transmural Systems Llc Devices, systems and methods for repairing lumenal systems
CA3090422C (en) 2011-10-19 2023-08-01 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
AU2012325809B2 (en) 2011-10-19 2016-01-21 Twelve, Inc. Devices, systems and methods for heart valve replacement
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
CN104159543B (en) 2011-10-21 2016-10-12 耶拿阀门科技公司 For expansible heart valve bracket is introduced conduit system in the patient
WO2013067194A2 (en) * 2011-11-01 2013-05-10 Stinis Curtiss T Aortic valve positioning systems, devices, and methods
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP3656434B1 (en) 2011-11-08 2021-10-20 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9131926B2 (en) 2011-11-10 2015-09-15 Boston Scientific Scimed, Inc. Direct connect flush system
US8940014B2 (en) 2011-11-15 2015-01-27 Boston Scientific Scimed, Inc. Bond between components of a medical device
US9480558B2 (en) 2011-12-05 2016-11-01 Medtronic, Inc. Transcatheter valve having reduced seam exposure
CA3082787C (en) 2011-12-06 2021-03-09 Aortic Innovations Llc Device for endovascular aortic repair and method of using the same
CA2857997C (en) 2011-12-09 2021-01-05 Edwards Lifesciences Corporation Prosthetic heart valve having improved commissure supports
US8652145B2 (en) 2011-12-14 2014-02-18 Edwards Lifesciences Corporation System and method for crimping a prosthetic valve
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
US9510945B2 (en) 2011-12-20 2016-12-06 Boston Scientific Scimed Inc. Medical device handle
US9078747B2 (en) 2011-12-21 2015-07-14 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a heart valve
JP6179949B2 (en) * 2012-01-30 2017-08-16 川澄化学工業株式会社 Biliary stent
CA3095260C (en) 2012-01-31 2023-09-19 Mitral Valve Technologies Sarl Mitral valve docking devices, systems and methods
EP2809272B1 (en) * 2012-02-01 2017-01-04 Hlt, Inc. Invertible tissue valve
EP3424469A1 (en) 2012-02-22 2019-01-09 Syntheon TAVR, LLC Actively controllable stent, stent graft and heart valve
EP2819617A4 (en) 2012-02-28 2015-11-25 Mvalve Technologies Ltd Cardiac valve support structure
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
WO2013134214A1 (en) * 2012-03-05 2013-09-12 The Trustees Of The University Of Pennsylvania Superabsorbent coated stents for vascular reduction and for anchoring valve replacements
ES2535295T3 (en) 2012-03-23 2015-05-08 Sorin Group Italia S.R.L. Folding valve prosthesis
WO2013150512A1 (en) 2012-04-05 2013-10-10 Mvalve Technologies Ltd. Cardiac valve support structure
US9193058B2 (en) 2012-05-15 2015-11-24 Wagic, Inc. Adjustable tool handle for holding a tool during use
US10723014B2 (en) * 2012-05-15 2020-07-28 Wagic, Inc. Tool holder for holding multiple tools of different sizes
US9387579B2 (en) 2012-05-15 2016-07-12 Wagic, Inc. Adjustable tool handle for holding a tool during use
JP6227632B2 (en) 2012-05-16 2017-11-08 イェーナヴァルヴ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Catheter delivery system for introducing expandable heart substitute valve and medical device for treatment of heart valve defects
EP2852354B1 (en) 2012-05-20 2020-05-13 Tel Hashomer Medical Research Infrastructure And Services Ltd. Prosthetic mitral valve
US9289292B2 (en) 2012-06-28 2016-03-22 St. Jude Medical, Cardiology Division, Inc. Valve cuff support
US9554902B2 (en) 2012-06-28 2017-01-31 St. Jude Medical, Cardiology Division, Inc. Leaflet in configuration for function in various shapes and sizes
US9241791B2 (en) 2012-06-29 2016-01-26 St. Jude Medical, Cardiology Division, Inc. Valve assembly for crimp profile
US20140005776A1 (en) 2012-06-29 2014-01-02 St. Jude Medical, Cardiology Division, Inc. Leaflet attachment for function in various shapes and sizes
US9615920B2 (en) 2012-06-29 2017-04-11 St. Jude Medical, Cardiology Divisions, Inc. Commissure attachment feature for prosthetic heart valve
US9808342B2 (en) 2012-07-03 2017-11-07 St. Jude Medical, Cardiology Division, Inc. Balloon sizing device and method of positioning a prosthetic heart valve
US10004597B2 (en) 2012-07-03 2018-06-26 St. Jude Medical, Cardiology Division, Inc. Stent and implantable valve incorporating same
US9283072B2 (en) * 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US10376360B2 (en) 2012-07-27 2019-08-13 W. L. Gore & Associates, Inc. Multi-frame prosthetic valve apparatus and methods
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
WO2014021905A1 (en) 2012-07-30 2014-02-06 Tendyne Holdings, Inc. Improved delivery systems and methods for transcatheter prosthetic valves
EP2695586B1 (en) 2012-08-10 2019-05-08 Sorin Group Italia S.r.l. A valve prosthesis and kit
US9510946B2 (en) 2012-09-06 2016-12-06 Edwards Lifesciences Corporation Heart valve sealing devices
WO2014052818A1 (en) 2012-09-29 2014-04-03 Mitralign, Inc. Plication lock delivery system and method of use thereof
US9801721B2 (en) 2012-10-12 2017-10-31 St. Jude Medical, Cardiology Division, Inc. Sizing device and method of positioning a prosthetic heart valve
US10524909B2 (en) 2012-10-12 2020-01-07 St. Jude Medical, Cardiology Division, Inc. Retaining cage to permit resheathing of a tavi aortic-first transapical system
WO2014064694A2 (en) 2012-10-23 2014-05-01 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
US8628571B1 (en) 2012-11-13 2014-01-14 Mitraltech Ltd. Percutaneously-deliverable mechanical valve
ES2931210T3 (en) 2012-11-21 2022-12-27 Edwards Lifesciences Corp Retention Mechanisms for Prosthetic Heart Valves
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
US9737398B2 (en) 2012-12-19 2017-08-22 W. L. Gore & Associates, Inc. Prosthetic valves, frames and leaflets and methods thereof
US10966820B2 (en) 2012-12-19 2021-04-06 W. L. Gore & Associates, Inc. Geometric control of bending character in prosthetic heart valve leaflets
US9968443B2 (en) 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US9144492B2 (en) 2012-12-19 2015-09-29 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves, preformed valve
US10039638B2 (en) 2012-12-19 2018-08-07 W. L. Gore & Associates, Inc. Geometric prosthetic heart valves
US10321986B2 (en) 2012-12-19 2019-06-18 W. L. Gore & Associates, Inc. Multi-frame prosthetic heart valve
US10543085B2 (en) 2012-12-31 2020-01-28 Edwards Lifesciences Corporation One-piece heart valve stents adapted for post-implant expansion
WO2014105760A1 (en) 2012-12-31 2014-07-03 Edwards Lifesciences Corporation Post-implant expandable surgical heart valve configurations
US9132007B2 (en) 2013-01-10 2015-09-15 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage components for a transcatheter valve prosthesis
EP2948103B1 (en) 2013-01-24 2022-12-07 Cardiovalve Ltd Ventricularly-anchored prosthetic valves
US9314163B2 (en) 2013-01-29 2016-04-19 St. Jude Medical, Cardiology Division, Inc. Tissue sensing device for sutureless valve selection
US9655719B2 (en) 2013-01-29 2017-05-23 St. Jude Medical, Cardiology Division, Inc. Surgical heart valve flexible stent frame stiffener
US9186238B2 (en) 2013-01-29 2015-11-17 St. Jude Medical, Cardiology Division, Inc. Aortic great vessel protection
US9675451B2 (en) 2013-02-01 2017-06-13 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US10413401B2 (en) 2013-02-01 2019-09-17 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US9439763B2 (en) 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US9168129B2 (en) 2013-02-12 2015-10-27 Edwards Lifesciences Corporation Artificial heart valve with scalloped frame design
EP2961351B1 (en) 2013-02-26 2018-11-28 Mitralign, Inc. Devices for percutaneous tricuspid valve repair
EP3427696A1 (en) * 2013-03-01 2019-01-16 Cormatrix Cardiovascular, Inc. Anchored cardiovascular valve
US9844435B2 (en) 2013-03-01 2017-12-19 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve replacement
US9901470B2 (en) 2013-03-01 2018-02-27 St. Jude Medical, Cardiology Division, Inc. Methods of repositioning a transcatheter heart valve after full deployment
US9480563B2 (en) 2013-03-08 2016-11-01 St. Jude Medical, Cardiology Division, Inc. Valve holder with leaflet protection
US9398951B2 (en) 2013-03-12 2016-07-26 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US9339274B2 (en) 2013-03-12 2016-05-17 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US10314698B2 (en) 2013-03-12 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Thermally-activated biocompatible foam occlusion device for self-expanding heart valves
WO2014143126A1 (en) 2013-03-12 2014-09-18 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US10271949B2 (en) 2013-03-12 2019-04-30 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US9636222B2 (en) 2013-03-12 2017-05-02 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak protection
US9326856B2 (en) 2013-03-14 2016-05-03 St. Jude Medical, Cardiology Division, Inc. Cuff configurations for prosthetic heart valve
CN105263443B (en) 2013-03-14 2017-11-14 心肺医疗股份有限公司 Sutureless valve prosthesis delivery apparatus and its application method
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US9131982B2 (en) 2013-03-14 2015-09-15 St. Jude Medical, Cardiology Division, Inc. Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations
US10201638B2 (en) 2013-03-14 2019-02-12 Endologix, Inc. Systems and methods for forming materials in situ within a medical device
USD723276S1 (en) 2013-03-15 2015-03-03 Wagic, Inc. Post lock tool holder for L-shaped wrenches
US11007058B2 (en) 2013-03-15 2021-05-18 Edwards Lifesciences Corporation Valved aortic conduits
US9724195B2 (en) 2013-03-15 2017-08-08 Mitralign, Inc. Translation catheters and systems
CA3060245A1 (en) 2013-03-15 2014-09-18 Hlt, Inc. Low-profile prosthetic valve structure
US9193062B2 (en) 2013-03-15 2015-11-24 Wagic, Inc. Post lock tool holder for L-shaped wrenches
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US10149757B2 (en) 2013-03-15 2018-12-11 Edwards Lifesciences Corporation System and method for transaortic delivery of a prosthetic heart valve
WO2014145811A1 (en) 2013-03-15 2014-09-18 Edwards Lifesciences Corporation Valved aortic conduits
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
AU2014250845B2 (en) 2013-04-12 2017-05-04 Don Michael International, Llc Apparatus and procedure for trapping embolic debris
CN105377192A (en) 2013-05-09 2016-03-02 米塔埃瑟斯医疗有限公司 Heart valve assistive prosthesis
US10111747B2 (en) 2013-05-20 2018-10-30 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
TR201816620T4 (en) 2013-05-20 2018-11-21 Edwards Lifesciences Corp Heart valve prosthesis delivery device.
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US9468527B2 (en) 2013-06-12 2016-10-18 Edwards Lifesciences Corporation Cardiac implant with integrated suture fasteners
US10321991B2 (en) 2013-06-19 2019-06-18 St. Jude Medical, Cardiology Division, Inc. Collapsible valve having paravalvular leak protection
ES2937726T3 (en) * 2013-06-20 2023-03-30 Constantinos Anagnostopoulos Intra-aortic balloon apparatus and assistive devices to improve flow, counterpulsation, and hemodynamics
CN105658178B (en) 2013-06-25 2018-05-08 坦迪尼控股股份有限公司 Feature is complied with thrombus management and structure for prosthetic heart valve
US9668856B2 (en) 2013-06-26 2017-06-06 St. Jude Medical, Cardiology Division, Inc. Puckering seal for reduced paravalvular leakage
WO2014210299A1 (en) 2013-06-27 2014-12-31 Bridges Charles R Device, system, and method for implanting a prosthetic heart valve
US9724083B2 (en) 2013-07-26 2017-08-08 Edwards Lifesciences Cardiaq Llc Systems and methods for sealing openings in an anatomical wall
CA2919379C (en) 2013-08-01 2021-03-30 Tendyne Holdings, Inc. Epicardial anchor devices and methods
EP2835112B1 (en) 2013-08-08 2021-01-27 Sorin Group Italia S.r.l. Heart valve prosthesis
CN105682610B (en) 2013-08-12 2017-11-03 米特拉尔维尔福科技有限责任公司 Apparatus and method for being implanted into replacement heart valve
WO2015023862A2 (en) 2013-08-14 2015-02-19 Mitral Valve Technologies Sa Replacement heart valve apparatus and methods
US9919137B2 (en) 2013-08-28 2018-03-20 Edwards Lifesciences Corporation Integrated balloon catheter inflation system
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
USD730520S1 (en) 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
USD730521S1 (en) 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
US9867611B2 (en) 2013-09-05 2018-01-16 St. Jude Medical, Cardiology Division, Inc. Anchoring studs for transcatheter valve implantation
US10195028B2 (en) 2013-09-10 2019-02-05 Edwards Lifesciences Corporation Magnetic retaining mechanisms for prosthetic valves
EP3043745B1 (en) 2013-09-12 2020-10-21 St. Jude Medical, Cardiology Division, Inc. Stent designs for prosthetic heart valves
CN105263445B (en) 2013-09-20 2018-09-18 爱德华兹生命科学公司 Heart valve with increased effective orifice area
US9839511B2 (en) 2013-10-05 2017-12-12 Sino Medical Sciences Technology Inc. Device and method for mitral valve regurgitation treatment
US9393111B2 (en) 2014-01-15 2016-07-19 Sino Medical Sciences Technology Inc. Device and method for mitral valve regurgitation treatment
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US10646333B2 (en) 2013-10-24 2020-05-12 Medtronic, Inc. Two-piece valve prosthesis with anchor stent and valve component
JP6554094B2 (en) 2013-10-28 2019-07-31 テンダイン ホールディングス,インコーポレイテッド Prosthetic heart valve and system and method for delivering an artificial heart valve
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US9700409B2 (en) 2013-11-06 2017-07-11 St. Jude Medical, Cardiology Division, Inc. Reduced profile prosthetic heart valve
US9913715B2 (en) 2013-11-06 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
EP2870946B1 (en) 2013-11-06 2018-10-31 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
US20150122687A1 (en) 2013-11-06 2015-05-07 Edwards Lifesciences Corporation Bioprosthetic heart valves having adaptive seals to minimize paravalvular leakage
EP3848004A1 (en) 2013-11-11 2021-07-14 Edwards Lifesciences CardiAQ LLC Valve stent frame
US9549818B2 (en) 2013-11-12 2017-01-24 St. Jude Medical, Cardiology Division, Inc. Pneumatically power-assisted tavi delivery system
EP3071149B1 (en) 2013-11-19 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Sealing structures for paravalvular leak protection
US9622863B2 (en) 2013-11-22 2017-04-18 Edwards Lifesciences Corporation Aortic insufficiency repair device and method
US10314693B2 (en) 2013-11-27 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Cuff stitching reinforcement
WO2015092554A2 (en) * 2013-12-03 2015-06-25 Mark Lynn Jenson Transcatheter mitral valve replacement apparatus
US10098734B2 (en) 2013-12-05 2018-10-16 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US9901444B2 (en) 2013-12-17 2018-02-27 Edwards Lifesciences Corporation Inverted valve structure
US9597185B2 (en) 2013-12-19 2017-03-21 St. Jude Medical, Cardiology Division, Inc. Leaflet-cuff attachments for prosthetic heart valve
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US9820852B2 (en) 2014-01-24 2017-11-21 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (PVL) reduction—active channel filling cuff designs
US9956384B2 (en) 2014-01-24 2018-05-01 Cook Medical Technologies Llc Articulating balloon catheter and method for using the same
US20150209141A1 (en) 2014-01-24 2015-07-30 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (pvl) reduction-passive channel filling cuff designs
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US10292711B2 (en) 2014-02-07 2019-05-21 St. Jude Medical, Cardiology Division, Inc. Mitral valve treatment device having left atrial appendage closure
EP2904967A1 (en) 2014-02-07 2015-08-12 St. Jude Medical, Cardiology Division, Inc. System and method for assessing dimensions and eccentricity of valve annulus for trans-catheter valve implantation
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
US9072604B1 (en) * 2014-02-11 2015-07-07 Gilberto Melnick Modular transcatheter heart valve and implantation method
WO2015126712A1 (en) 2014-02-18 2015-08-27 St. Jude Medical, Cardiology Division, Inc. Bowed runners for paravalvular leak protection
PL3107500T3 (en) 2014-02-18 2022-01-31 Edwards Lifesciences Corporation Flexible commissure frame
CA3205860A1 (en) 2014-02-20 2015-08-27 Mitral Valve Technologies Sarl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
CR20160366A (en) 2014-02-21 2016-11-15 Mitral Valve Tecnhnologies Sarl DEVICES, SYSTEMS AND METHODS OF SUPPLY OF PROSTHETIC MITRAL VALVE AND ANCHORAGE DEVICE
US10064719B2 (en) * 2014-03-11 2018-09-04 Highlife Sas Transcatheter valve prosthesis
CA2937566C (en) 2014-03-10 2023-09-05 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
EP2918247A1 (en) 2014-03-11 2015-09-16 Epygon Sasu A prosthetic valve and a delivery device
ES2711663T3 (en) * 2014-03-18 2019-05-06 Nvt Ag Cardiac valve implant
EP2921140A1 (en) 2014-03-18 2015-09-23 St. Jude Medical, Cardiology Division, Inc. Percutaneous valve anchoring for a prosthetic aortic valve
AU2015231788B2 (en) 2014-03-18 2019-05-16 St. Jude Medical, Cardiology Division, Inc. Mitral valve replacement toggle cell securement
US9610157B2 (en) 2014-03-21 2017-04-04 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation
CA2941398C (en) 2014-03-26 2018-05-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve stent frames
US20170014115A1 (en) 2014-03-27 2017-01-19 Transmural Systems Llc Devices and methods for closure of transvascular or transcameral access ports
US10143551B2 (en) 2014-03-31 2018-12-04 St. Jude Medical, Cardiology Division, Inc. Paravalvular sealing via extended cuff mechanisms
US9549816B2 (en) 2014-04-03 2017-01-24 Edwards Lifesciences Corporation Method for manufacturing high durability heart valve
PL2929860T3 (en) * 2014-04-07 2018-01-31 Nvt Ag Device for implantation in the heart of a mammal
US10226332B2 (en) 2014-04-14 2019-03-12 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation in prosthetic heart valves
US10154904B2 (en) 2014-04-28 2018-12-18 Edwards Lifesciences Corporation Intravascular introducer devices
US9585752B2 (en) 2014-04-30 2017-03-07 Edwards Lifesciences Corporation Holder and deployment system for surgical heart valves
US10195025B2 (en) 2014-05-12 2019-02-05 Edwards Lifesciences Corporation Prosthetic heart valve
WO2015173609A1 (en) 2014-05-14 2015-11-19 Sorin Group Italia S.R.L. Implant device and implantation kit
EP3142604B1 (en) 2014-05-16 2024-01-10 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve with paravalvular leak sealing ring
EP3142608A4 (en) * 2014-05-16 2018-02-21 Benichou, Netanel Replacement heart valve
EP3142605A1 (en) 2014-05-16 2017-03-22 St. Jude Medical, Cardiology Division, Inc. Stent assembly for use in prosthetic heart valves
ES2795358T3 (en) 2014-05-16 2020-11-23 St Jude Medical Cardiology Div Inc Subannular sealing for paravalvular leak protection
EP3145450B1 (en) 2014-05-22 2019-07-17 St. Jude Medical, Cardiology Division, Inc. Stents with anchoring sections
US9687345B2 (en) 2014-05-29 2017-06-27 Edwards Lifesciences Cardiaq Llc Prosthesis, delivery device and methods of use
EP2954875B1 (en) 2014-06-10 2017-11-15 St. Jude Medical, Cardiology Division, Inc. Stent cell bridge for cuff attachment
USD867594S1 (en) 2015-06-19 2019-11-19 Edwards Lifesciences Corporation Prosthetic heart valve
CA2914094C (en) 2014-06-20 2021-01-05 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
CA2955242A1 (en) 2014-07-08 2016-01-14 Avinger, Inc. High speed chronic total occlusion crossing devices
US10195026B2 (en) 2014-07-22 2019-02-05 Edwards Lifesciences Corporation Mitral valve anchoring
EP3174502B1 (en) 2014-07-30 2022-04-06 Cardiovalve Ltd Apparatus for implantation of an articulatable prosthetic valve
EP2979664B1 (en) 2014-08-01 2019-01-09 Alvimedica Tibbi Ürünler Sanayi Ve Dis Ticaret A.S Aortic valve prosthesis, particularly suitable for transcatheter implantation
WO2016028581A1 (en) 2014-08-18 2016-02-25 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart devices having diagnostic capabilities
EP3182930B1 (en) 2014-08-18 2020-09-23 St. Jude Medical, Cardiology Division, Inc. Sensors for prosthetic heart devices
JP6445683B2 (en) 2014-08-18 2018-12-26 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Frame with integral suture cuff for a prosthetic valve
EP3182932B1 (en) 2014-08-18 2019-05-15 St. Jude Medical, Cardiology Division, Inc. Annuloplasty ring with sensor
US10058424B2 (en) 2014-08-21 2018-08-28 Edwards Lifesciences Corporation Dual-flange prosthetic valve frame
US10016272B2 (en) 2014-09-12 2018-07-10 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US10195030B2 (en) 2014-10-14 2019-02-05 Valtech Cardio, Ltd. Leaflet-restraining techniques
FR3027212A1 (en) 2014-10-16 2016-04-22 Seguin Jacques INTERVALVULAR IMPLANT FOR MITRAL VALVE
US20160144156A1 (en) 2014-11-20 2016-05-26 Edwards Lifesciences Corporation Inflatable device with etched modifications
CR20170245A (en) 2014-12-05 2017-09-14 Edwards Lifesciences Corp DIRIGIBLE CATETER WITH TRACTION CABLE
US10188392B2 (en) 2014-12-19 2019-01-29 Abbott Cardiovascular Systems, Inc. Grasping for tissue repair
JP6826035B2 (en) 2015-01-07 2021-02-03 テンダイン ホールディングス,インコーポレイテッド Artificial mitral valve, and devices and methods for its delivery
AU2016215197B2 (en) 2015-02-05 2020-01-02 Tendyne Holdings Inc. Expandable epicardial pads and devices and methods for their delivery
EP3253333B1 (en) 2015-02-05 2024-04-03 Cardiovalve Ltd Prosthetic valve with axially-sliding frames
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
US10231834B2 (en) 2015-02-09 2019-03-19 Edwards Lifesciences Corporation Low profile transseptal catheter and implant system for minimally invasive valve procedure
US10039637B2 (en) 2015-02-11 2018-08-07 Edwards Lifesciences Corporation Heart valve docking devices and implanting methods
US20160235525A1 (en) 2015-02-12 2016-08-18 Medtronic, Inc. Integrated valve assembly and method of delivering and deploying an integrated valve assembly
US20160256269A1 (en) 2015-03-05 2016-09-08 Mitralign, Inc. Devices for treating paravalvular leakage and methods use thereof
FR3033494B1 (en) 2015-03-10 2017-03-24 Carmat TISSUE STENT AND METHOD FOR PRODUCING THE SAME
WO2016144391A1 (en) 2015-03-11 2016-09-15 Mvrx, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US10314699B2 (en) 2015-03-13 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Recapturable valve-graft combination and related methods
EP3273912A1 (en) 2015-03-23 2018-01-31 St. Jude Medical, Cardiology Division, Inc. Heart valve repair
WO2016154172A2 (en) 2015-03-24 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
US9962260B2 (en) 2015-03-24 2018-05-08 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
CN107438418B (en) 2015-03-24 2022-04-05 捷锐士股份有限公司 Airway stent
US10524912B2 (en) 2015-04-02 2020-01-07 Abbott Cardiovascular Systems, Inc. Tissue fixation devices and methods
EP3280359A1 (en) 2015-04-07 2018-02-14 St. Jude Medical, Cardiology Division, Inc. System and method for intraprocedural assessment of geometry and compliance of valve annulus for trans-catheter valve implantation
US10327896B2 (en) 2015-04-10 2019-06-25 Edwards Lifesciences Corporation Expandable sheath with elastomeric cross sectional portions
US10792471B2 (en) 2015-04-10 2020-10-06 Edwards Lifesciences Corporation Expandable sheath
US10064718B2 (en) 2015-04-16 2018-09-04 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
EP4070763A1 (en) 2015-04-16 2022-10-12 Tendyne Holdings, Inc. Apparatus for retrieval of transcathter prosthetic valves
US10010417B2 (en) 2015-04-16 2018-07-03 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
US10441416B2 (en) 2015-04-21 2019-10-15 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
US10232564B2 (en) 2015-04-29 2019-03-19 Edwards Lifesciences Corporation Laminated sealing member for prosthetic heart valve
CN114515173A (en) 2015-04-30 2022-05-20 瓦尔泰克卡迪欧有限公司 Valvuloplasty techniques
EP3288472B1 (en) 2015-04-30 2022-04-20 Septulus Ab Tissue cutting device and system
US10376363B2 (en) 2015-04-30 2019-08-13 Edwards Lifesciences Cardiaq Llc Replacement mitral valve, delivery system for replacement mitral valve and methods of use
US9629720B2 (en) 2015-05-04 2017-04-25 Jacques Seguin Apparatus and methods for treating cardiac valve regurgitation
EP3307207A1 (en) 2015-06-12 2018-04-18 St. Jude Medical, Cardiology Division, Inc. Heart valve repair and replacement
WO2016209970A1 (en) 2015-06-22 2016-12-29 Edwards Lifescience Cardiaq Llc Actively controllable heart valve implant and methods of controlling same
US10092400B2 (en) 2015-06-23 2018-10-09 Edwards Lifesciences Cardiaq Llc Systems and methods for anchoring and sealing a prosthetic heart valve
CR20170597A (en) 2015-07-02 2018-04-20 Edwards Lifesciences Corp INTEGRATED HYBRID HEART VALVES
WO2017004369A1 (en) 2015-07-02 2017-01-05 Edwards Lifesciences Corporation Hybrid heart valves adapted for post-implant expansion
US20170007397A1 (en) * 2015-07-09 2017-01-12 David Rizik Method and apparatus for practice of tavr employing an expandable mesh-like catheter
US9974650B2 (en) 2015-07-14 2018-05-22 Edwards Lifesciences Corporation Prosthetic heart valve
JP6600068B2 (en) 2015-07-16 2019-10-30 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Non-sutured prosthetic heart valve
DE102015111783A1 (en) 2015-07-21 2017-01-26 Biotronik Ag Catheter system for localization and implantation of a body part replacement
EP3334380B1 (en) 2015-08-12 2022-03-16 St. Jude Medical, Cardiology Division, Inc. Collapsible heart valve including stents with tapered struts
US10179046B2 (en) 2015-08-14 2019-01-15 Edwards Lifesciences Corporation Gripping and pushing device for medical instrument
US11026788B2 (en) 2015-08-20 2021-06-08 Edwards Lifesciences Corporation Loader and retriever for transcatheter heart valve, and methods of crimping transcatheter heart valve
US10238490B2 (en) 2015-08-21 2019-03-26 Twelve, Inc. Implant heart valve devices, mitral valve repair devices and associated systems and methods
US10117744B2 (en) 2015-08-26 2018-11-06 Edwards Lifesciences Cardiaq Llc Replacement heart valves and methods of delivery
US10034747B2 (en) 2015-08-27 2018-07-31 Medtronic Vascular, Inc. Prosthetic valve system having a docking component and a prosthetic valve component
US20170056215A1 (en) 2015-09-01 2017-03-02 Medtronic, Inc. Stent assemblies including passages to provide blood flow to coronary arteries and methods of delivering and deploying such stent assemblies
CA2995855C (en) 2015-09-02 2024-01-30 Edwards Lifesciences Corporation Spacer for securing a transcatheter valve to a bioprosthetic cardiac structure
US10779940B2 (en) 2015-09-03 2020-09-22 Boston Scientific Scimed, Inc. Medical device handle
US10588744B2 (en) 2015-09-04 2020-03-17 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
US10080653B2 (en) 2015-09-10 2018-09-25 Edwards Lifesciences Corporation Limited expansion heart valve
WO2017049003A1 (en) 2015-09-15 2017-03-23 Nasser Rafiee Devices and methods for effectuating percutaneous glenn and fontan procedures
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US10314703B2 (en) 2015-09-21 2019-06-11 Edwards Lifesciences Corporation Cylindrical implant and balloon
US10350067B2 (en) 2015-10-26 2019-07-16 Edwards Lifesciences Corporation Implant delivery capsule
WO2017079234A1 (en) 2015-11-02 2017-05-11 Edwards Lifesciences Corporation Devices and methods for reducing cardiac valve regurgitation
US11259920B2 (en) 2015-11-03 2022-03-01 Edwards Lifesciences Corporation Adapter for prosthesis delivery device and methods of use
US10470876B2 (en) 2015-11-10 2019-11-12 Edwards Lifesciences Corporation Transcatheter heart valve for replacing natural mitral valve
US10376364B2 (en) 2015-11-10 2019-08-13 Edwards Lifesciences Corporation Implant delivery capsule
US10321996B2 (en) 2015-11-11 2019-06-18 Edwards Lifesciences Corporation Prosthetic valve delivery apparatus having clutch mechanism
US10265169B2 (en) 2015-11-23 2019-04-23 Edwards Lifesciences Corporation Apparatus for controlled heart valve delivery
US11033387B2 (en) 2015-11-23 2021-06-15 Edwards Lifesciences Corporation Methods for controlled heart valve delivery
US10583007B2 (en) 2015-12-02 2020-03-10 Edwards Lifesciences Corporation Suture deployment of prosthetic heart valve
AU2016362474B2 (en) 2015-12-03 2021-04-22 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
US10357351B2 (en) 2015-12-04 2019-07-23 Edwards Lifesciences Corporation Storage assembly for prosthetic valve
CN113143539A (en) 2015-12-10 2021-07-23 姆维亚克斯股份有限公司 System for reshaping a heart valve annulus
AU2016380259B2 (en) 2015-12-28 2020-10-22 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
WO2017117370A2 (en) 2015-12-30 2017-07-06 Mitralign, Inc. System and method for reducing tricuspid regurgitation
US11833034B2 (en) 2016-01-13 2023-12-05 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
WO2017121803A1 (en) * 2016-01-14 2017-07-20 Cardiatis S.A. Implantable prosthesis for thoracic aortic disease involving aortic valve dysfunction
US10363130B2 (en) 2016-02-05 2019-07-30 Edwards Lifesciences Corporation Devices and systems for docking a heart valve
US10179043B2 (en) 2016-02-12 2019-01-15 Edwards Lifesciences Corporation Prosthetic heart valve having multi-level sealing member
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10779941B2 (en) 2016-03-08 2020-09-22 Edwards Lifesciences Corporation Delivery cylinder for prosthetic implant
US10667904B2 (en) 2016-03-08 2020-06-02 Edwards Lifesciences Corporation Valve implant with integrated sensor and transmitter
WO2017160823A1 (en) 2016-03-14 2017-09-21 Medtronic Vascular Inc. Stented prosthetic heart valve having a wrap and delivery devices
US11219746B2 (en) 2016-03-21 2022-01-11 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799677B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799676B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10517722B2 (en) 2016-03-24 2019-12-31 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
US10405974B2 (en) 2016-04-26 2019-09-10 Boston Scientific Scimed, Inc. Replacement heart valve with improved stitching
USD815744S1 (en) 2016-04-28 2018-04-17 Edwards Lifesciences Cardiaq Llc Valve frame for a delivery system
CN116172753A (en) 2016-04-29 2023-05-30 美敦力瓦斯科尔勒公司 Prosthetic heart valve devices having tethered anchors and associated systems and methods
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
USD802764S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
USD802765S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
EP3454785B1 (en) 2016-05-13 2021-11-17 St. Jude Medical, Cardiology Division, Inc. Heart valve with stent having varying cell densities
US10245136B2 (en) 2016-05-13 2019-04-02 Boston Scientific Scimed Inc. Containment vessel with implant sheathing guide
USD802766S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
US10456245B2 (en) 2016-05-16 2019-10-29 Edwards Lifesciences Corporation System and method for applying material to a stent
WO2017201196A1 (en) 2016-05-17 2017-11-23 Boston Scientific Scimed, Inc. Replacement heart valve implant with inflow stitching
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
EP3468480B1 (en) 2016-06-13 2023-01-11 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
US10588745B2 (en) 2016-06-20 2020-03-17 Medtronic Vascular, Inc. Modular valve prosthesis, delivery system, and method of delivering and deploying a modular valve prosthesis
EP3478224B1 (en) 2016-06-30 2022-11-02 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus for delivery of same
GB201611910D0 (en) 2016-07-08 2016-08-24 Valtech Cardio Ltd Adjustable annuloplasty device with alternating peaks and troughs
US10828150B2 (en) 2016-07-08 2020-11-10 Edwards Lifesciences Corporation Docking station for heart valve prosthesis
US10856981B2 (en) 2016-07-08 2020-12-08 Edwards Lifesciences Corporation Expandable sheath and methods of using the same
EP3484411A1 (en) 2016-07-12 2019-05-22 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US11096781B2 (en) 2016-08-01 2021-08-24 Edwards Lifesciences Corporation Prosthetic heart valve
US20190231525A1 (en) 2016-08-01 2019-08-01 Mitraltech Ltd. Minimally-invasive delivery systems
WO2018029680A1 (en) 2016-08-10 2018-02-15 Mitraltech Ltd. Prosthetic valve with concentric frames
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
CR20190069A (en) 2016-08-26 2019-05-14 Edwards Lifesciences Corp Heart valve docking coils and systems
US10722359B2 (en) 2016-08-26 2020-07-28 Edwards Lifesciences Corporation Heart valve docking devices and systems
EP3503846B1 (en) 2016-08-26 2021-12-01 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
US11365903B2 (en) * 2016-09-12 2022-06-21 Yonghua Wang Inflatable non-imaging solar concentrator
EP3512466B1 (en) 2016-09-15 2020-07-29 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
US10357361B2 (en) 2016-09-15 2019-07-23 Edwards Lifesciences Corporation Heart valve pinch devices and delivery systems
US10575944B2 (en) 2016-09-22 2020-03-03 Edwards Lifesciences Corporation Prosthetic heart valve with reduced stitching
EP3531977A1 (en) 2016-10-28 2019-09-04 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
US10492907B2 (en) 2016-11-07 2019-12-03 Medtronic Vascular, Inc. Valve delivery system
US10463484B2 (en) 2016-11-17 2019-11-05 Edwards Lifesciences Corporation Prosthetic heart valve having leaflet inflow below frame
US10973631B2 (en) 2016-11-17 2021-04-13 Edwards Lifesciences Corporation Crimping accessory device for a prosthetic valve
EP3547964A1 (en) 2016-12-02 2019-10-09 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with transverse wheel actuation
US10758352B2 (en) 2016-12-02 2020-09-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with two modes of actuation
US10603165B2 (en) 2016-12-06 2020-03-31 Edwards Lifesciences Corporation Mechanically expanding heart valve and delivery apparatus therefor
HRP20230241T1 (en) 2016-12-16 2023-04-14 Edwards Lifesciences Corporation Deployment systems and tools for delivering an anchoring device for a prosthetic valve
USD846122S1 (en) 2016-12-16 2019-04-16 Edwards Lifesciences Corporation Heart valve sizer
US10813749B2 (en) 2016-12-20 2020-10-27 Edwards Lifesciences Corporation Docking device made with 3D woven fabric
EP3558165B1 (en) 2016-12-20 2021-04-28 Edwards Lifesciences Corporation Systems and mechanisms for deploying a docking device for a replacement heart valve
US20190358033A1 (en) 2017-01-11 2019-11-28 Mitrassist Medical Ltd. Heart valve prosthesis
US11185406B2 (en) 2017-01-23 2021-11-30 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11654023B2 (en) 2017-01-23 2023-05-23 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11013600B2 (en) 2017-01-23 2021-05-25 Edwards Lifesciences Corporation Covered prosthetic heart valve
US10561495B2 (en) 2017-01-24 2020-02-18 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
USD867595S1 (en) 2017-02-01 2019-11-19 Edwards Lifesciences Corporation Stent
CN109310497B (en) * 2017-02-07 2022-02-01 上海甲悦医疗器械有限公司 Device for treating tricuspid regurgitation
WO2018156948A1 (en) 2017-02-23 2018-08-30 Boston Scientific Scimed, Inc. Medical drain device
WO2018160790A1 (en) 2017-03-03 2018-09-07 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve design
US10463485B2 (en) 2017-04-06 2019-11-05 Edwards Lifesciences Corporation Prosthetic valve holders with automatic deploying mechanisms
LT3558169T (en) 2017-04-18 2022-02-10 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US11224511B2 (en) 2017-04-18 2022-01-18 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10973634B2 (en) 2017-04-26 2021-04-13 Edwards Lifesciences Corporation Delivery apparatus for a prosthetic heart valve
EP3614969B1 (en) 2017-04-28 2023-05-03 Edwards Lifesciences Corporation Prosthetic heart valve with collapsible holder
US10959846B2 (en) 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US10842619B2 (en) 2017-05-12 2020-11-24 Edwards Lifesciences Corporation Prosthetic heart valve docking assembly
USD875935S1 (en) 2017-05-15 2020-02-18 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
USD889653S1 (en) 2017-05-15 2020-07-07 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
USD875250S1 (en) 2017-05-15 2020-02-11 St. Jude Medical, Cardiology Division, Inc. Stent having tapered aortic struts
EP3624739A1 (en) 2017-05-15 2020-03-25 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with wheel actuation
US11135056B2 (en) 2017-05-15 2021-10-05 Edwards Lifesciences Corporation Devices and methods of commissure formation for prosthetic heart valve
EP3630013A4 (en) 2017-05-22 2020-06-17 Edwards Lifesciences Corporation Valve anchor and installation method
US20210401571A9 (en) 2017-05-31 2021-12-30 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
EP3634315A4 (en) 2017-05-31 2020-04-22 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10869759B2 (en) 2017-06-05 2020-12-22 Edwards Lifesciences Corporation Mechanically expandable heart valve
US11026785B2 (en) 2017-06-05 2021-06-08 Edwards Lifesciences Corporation Mechanically expandable heart valve
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
US10639152B2 (en) 2017-06-21 2020-05-05 Edwards Lifesciences Corporation Expandable sheath and methods of using the same
EP3641700A4 (en) 2017-06-21 2020-08-05 Edwards Lifesciences Corporation Dual-wireform limited expansion heart valves
AU2018291171B2 (en) 2017-06-30 2023-11-30 Edwards Lifesciences Corporation Lock and release mechanisms for trans-catheter implantable devices
JP7277389B2 (en) 2017-06-30 2023-05-18 エドワーズ ライフサイエンシーズ コーポレイション Docking station for transcatheter valves
CN107280806B (en) * 2017-06-30 2023-06-23 中国人民解放军第二军医大学 Urethra urine controller
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10857334B2 (en) 2017-07-12 2020-12-08 Edwards Lifesciences Corporation Reduced operation force inflator
WO2019014473A1 (en) 2017-07-13 2019-01-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US10918473B2 (en) 2017-07-18 2021-02-16 Edwards Lifesciences Corporation Transcatheter heart valve storage container and crimping mechanism
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
KR102617878B1 (en) 2017-08-11 2023-12-22 에드워즈 라이프사이언시스 코포레이션 Sealing elements for artificial heart valves
US11083575B2 (en) 2017-08-14 2021-08-10 Edwards Lifesciences Corporation Heart valve frame design with non-uniform struts
US10932903B2 (en) 2017-08-15 2021-03-02 Edwards Lifesciences Corporation Skirt assembly for implantable prosthetic valve
US10898319B2 (en) 2017-08-17 2021-01-26 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
EP3668451A1 (en) 2017-08-17 2020-06-24 Incubar LLC Prosthetic vascular valve and methods associated therewith
US10973628B2 (en) 2017-08-18 2021-04-13 Edwards Lifesciences Corporation Pericardial sealing member for prosthetic heart valve
USD890333S1 (en) 2017-08-21 2020-07-14 Edwards Lifesciences Corporation Heart valve docking coil
US10722353B2 (en) 2017-08-21 2020-07-28 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10806573B2 (en) 2017-08-22 2020-10-20 Edwards Lifesciences Corporation Gear drive mechanism for heart valve delivery apparatus
IL254099B (en) 2017-08-22 2021-02-28 Geonovation Medical Tech Ltd Foldable one-way valve prosthesis
WO2019046099A1 (en) 2017-08-28 2019-03-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US11051939B2 (en) 2017-08-31 2021-07-06 Edwards Lifesciences Corporation Active introducer sheath system
US10973629B2 (en) 2017-09-06 2021-04-13 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11147667B2 (en) 2017-09-08 2021-10-19 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
WO2019051476A1 (en) 2017-09-11 2019-03-14 Incubar, LLC Conduit vascular implant sealing device for reducing endoleak
CA3071133C (en) 2017-09-12 2023-02-28 W.L. Gore & Associates, Inc. Leaflet frame attachment for prosthetic valves
WO2019067220A1 (en) 2017-09-27 2019-04-04 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
CA3072814C (en) 2017-09-27 2023-01-03 W.L. Gore & Associates, Inc. Prosthetic valve with expandable frame and associated systems and methods
CA3078699C (en) 2017-10-13 2023-10-10 W.L. Gore & Associates, Inc. Telescoping prosthetic valve and delivery system
CN115177404A (en) 2017-10-18 2022-10-14 爱德华兹生命科学公司 Catheter assembly
US9895226B1 (en) 2017-10-19 2018-02-20 Mitral Tech Ltd. Techniques for use with prosthetic valve leaflets
US11207499B2 (en) 2017-10-20 2021-12-28 Edwards Lifesciences Corporation Steerable catheter
US11382751B2 (en) 2017-10-24 2022-07-12 St. Jude Medical, Cardiology Division, Inc. Self-expandable filler for mitigating paravalvular leak
WO2019089135A1 (en) 2017-10-31 2019-05-09 W. L. Gore & Associates, Inc. Transcatheter deployment systems and associated methods
AU2018362081B2 (en) 2017-10-31 2021-05-06 Edwards Lifesciences Corporation Prosthetic heart valve
WO2019089136A1 (en) 2017-10-31 2019-05-09 W. L. Gore & Associates, Inc. Medical valve and leaflet promoting tissue ingrowth
US11154397B2 (en) 2017-10-31 2021-10-26 W. L. Gore & Associates, Inc. Jacket for surgical heart valve
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
JP2021503341A (en) * 2017-11-16 2021-02-12 ザ チルドレンズ メディカル センター コーポレーション Geometrically compatible heart valve replacement device
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
GB201720803D0 (en) 2017-12-13 2018-01-24 Mitraltech Ltd Prosthetic Valve and delivery tool therefor
CN110013356B (en) 2018-01-07 2023-08-01 苏州杰成医疗科技有限公司 Heart valve prosthesis delivery system
GB201800399D0 (en) 2018-01-10 2018-02-21 Mitraltech Ltd Temperature-control during crimping of an implant
US11337805B2 (en) 2018-01-23 2022-05-24 Edwards Lifesciences Corporation Prosthetic valve holders, systems, and methods
CN111655200B (en) 2018-01-24 2023-07-14 爱德华兹生命科学创新(以色列)有限公司 Contraction of annuloplasty structures
WO2019145941A1 (en) 2018-01-26 2019-08-01 Valtech Cardio, Ltd. Techniques for facilitating heart valve tethering and chord replacement
WO2019173393A1 (en) 2018-03-05 2019-09-12 Edwards Lifesciences Corporation Optical tissue measurement
US11813413B2 (en) 2018-03-27 2023-11-14 St. Jude Medical, Cardiology Division, Inc. Radiopaque outer cuff for transcatheter valve
EP3556323B1 (en) 2018-04-18 2023-07-19 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve
US11318011B2 (en) 2018-04-27 2022-05-03 Edwards Lifesciences Corporation Mechanically expandable heart valve with leaflet clamps
US11844914B2 (en) 2018-06-05 2023-12-19 Edwards Lifesciences Corporation Removable volume indicator for syringe
USD944398S1 (en) 2018-06-13 2022-02-22 Edwards Lifesciences Corporation Expanded heart valve stent
USD908874S1 (en) 2018-07-11 2021-01-26 Edwards Lifesciences Corporation Collapsible heart valve sizer
CA3106104A1 (en) 2018-07-12 2020-01-16 Valtech Cardio, Ltd. Annuloplasty systems and locking tools therefor
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
US10779946B2 (en) 2018-09-17 2020-09-22 Cardiovalve Ltd. Leaflet-testing apparatus
EP3852679A1 (en) 2018-09-20 2021-07-28 St. Jude Medical, Cardiology Division, Inc. Attachment of leaflets to prosthetic heart valve
JP2022504241A (en) 2018-10-05 2022-01-13 シファメド・ホールディングス・エルエルシー Artificial heart valve device, system, and method
US11364117B2 (en) 2018-10-15 2022-06-21 St. Jude Medical, Cardiology Division, Inc. Braid connections for prosthetic heart valves
SG11202103871RA (en) 2018-10-19 2021-05-28 Edwards Lifesciences Corp Prosthetic heart valve having non-cylindrical frame
US11779728B2 (en) 2018-11-01 2023-10-10 Edwards Lifesciences Corporation Introducer sheath with expandable introducer
USD926322S1 (en) 2018-11-07 2021-07-27 W. L. Gore & Associates, Inc. Heart valve cover
CN109394288B (en) * 2018-11-26 2021-12-03 辽宁垠艺生物科技股份有限公司 Binding-up, inward turning and outer covering method
EP3893804A1 (en) 2018-12-10 2021-10-20 St. Jude Medical, Cardiology Division, Inc. Prosthetic tricuspid valve replacement design
US11547557B2 (en) 2018-12-13 2023-01-10 Abbott Laboratories Stabilized fabric material for medical devices
AU2019395259A1 (en) 2018-12-13 2021-06-10 Abbott Laboratories Fabric material for medical devices
US11273030B2 (en) 2018-12-26 2022-03-15 St. Jude Medical, Cardiology Division, Inc. Elevated outer cuff for reducing paravalvular leakage and increasing stent fatigue life
EP3920849A1 (en) 2019-02-04 2021-12-15 Medtronic, Inc. Balloon expandable frame for transcatheter implantation of a cardiac valve prosthesis
US11278402B2 (en) 2019-02-21 2022-03-22 Medtronic, Inc. Prosthesis for transcatheter delivery having an infolding longitudinal segment for a smaller radially compressed profile
JP2022521350A (en) 2019-02-25 2022-04-06 エドワーズ ライフサイエンシーズ コーポレイション Devices and methods for repairing valve closure failure
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
US11471282B2 (en) 2019-03-19 2022-10-18 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
EP3946161A2 (en) 2019-03-26 2022-02-09 Edwards Lifesciences Corporation Prosthetic heart valve
EP3962417A4 (en) * 2019-05-02 2023-01-18 University of Maryland, Baltimore Valve translocation device and method for the treatment of functional valve regurgitation
US11867111B2 (en) 2019-05-09 2024-01-09 Cummins Emission Solutions Inc. Valve arrangement for split-flow close-coupled catalyst
WO2020236520A1 (en) 2019-05-17 2020-11-26 Medtronic, Inc. Supra annular tapered balloon expandable stent for transcatheter implantation of a cardiac valve prosthesis
US11534303B2 (en) 2020-04-09 2022-12-27 Evalve, Inc. Devices and systems for accessing and repairing a heart valve
EP3998993A1 (en) 2019-07-15 2022-05-25 Evalve, Inc. Proximal element actuator fixation and release mechanisms
US11660189B2 (en) 2019-07-15 2023-05-30 Evalve, Inc. Wide clip with nondeformable wings
EP4003230A1 (en) 2019-07-31 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Alternate stent caf design for tavr
WO2021050637A1 (en) 2019-09-13 2021-03-18 Edwards Lifesciences Corporation Adaptable devices and systems for docking in circulatory system and methods thereof
US11583397B2 (en) 2019-09-24 2023-02-21 Medtronic, Inc. Prosthesis with anti-paravalvular leakage component including a one-way valve
EP4033970A1 (en) 2019-09-26 2022-08-03 Evalve, Inc. Systems for intra-procedural cardiac pressure monitoring
US11878133B2 (en) 2019-10-08 2024-01-23 Medtronic, Inc. Methods of preparing balloon expandable catheters for cardiac and vascular interventions
WO2021072209A1 (en) 2019-10-11 2021-04-15 Evalve, Inc. Repair clip for variable tissue thickness
EP4048204A1 (en) 2019-10-24 2022-08-31 Abbott Laboratories Sheet material for medical devices
CN114786621A (en) 2019-10-29 2022-07-22 爱德华兹生命科学创新(以色列)有限公司 Annuloplasty and tissue anchoring techniques
EP4054491B1 (en) 2019-11-08 2023-12-20 Evalve, Inc. Medical device delivery system with locking system
WO2021097124A1 (en) 2019-11-14 2021-05-20 Evalve, Inc. Catheter assembly with coaptation aid and methods for valve repair
US11701229B2 (en) 2019-11-14 2023-07-18 Evalve, Inc. Kit with coaptation aid and fixation system and methods for valve repair
US11648110B2 (en) 2019-12-05 2023-05-16 Tendyne Holdings, Inc. Braided anchor for mitral valve
CN114025710A (en) 2019-12-06 2022-02-08 爱德华兹生命科学公司 Flexure sensor for measuring real-time valve diameter during a procedure
CN114641263A (en) 2019-12-16 2022-06-17 爱德华兹生命科学公司 Valve holder assembly with suture looping protection
US11382741B2 (en) 2019-12-18 2022-07-12 St. Jude Medical, Cardiology Division, Inc. Devices and methods for surgical valve expansion
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11931253B2 (en) * 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
EP4120962A1 (en) 2020-03-19 2023-01-25 Edwards Lifesciences Corporation Devices and systems for docking a heart valve
EP4146123A1 (en) 2020-05-05 2023-03-15 Edwards Lifesciences Corporation Delivery systems and delivery assemblies for prosthetic heart valves, methods of making and using the same
US11707355B2 (en) 2020-05-28 2023-07-25 Medtronic, Inc. Modular heart valve prosthesis
WO2021251974A1 (en) 2020-06-11 2021-12-16 Abbott Laboratories Fabric material for medical devices
US11938022B2 (en) 2020-06-26 2024-03-26 Highlife Sas Transcatheter valve prosthesis and method for implanting the same
CN113907917A (en) 2020-07-10 2022-01-11 爱德华兹生命科学公司 Leaflet and skirt attachment configuration to a frame of a prosthetic valve
CN216676029U (en) 2020-07-15 2022-06-07 爱德华兹生命科学公司 Prosthetic valve and commissure adjustment assembly
WO2022016066A1 (en) 2020-07-17 2022-01-20 Edwards Lifesciences Corporation Commissure assemblies formed from tabs of asymmetric leaflets
CN116456936A (en) * 2020-08-14 2023-07-18 卡迪奥之旅创新有限责任公司 Method of delivering a percutaneous bivalve replacement device to a patient and device therefor
US11678980B2 (en) 2020-08-19 2023-06-20 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
CA3199943A1 (en) 2020-08-24 2022-03-03 Edwards Lifesciences Corporation Balloon cover for a delivery apparatus for an expandable prosthetic heart valve
WO2022046834A1 (en) 2020-08-25 2022-03-03 Edwards Lifesciences Corporation Medical balloon sensing assembly
JP2023540067A (en) 2020-08-31 2023-09-21 エドワーズ ライフサイエンシーズ コーポレイション Systems and methods for crimping and device preparation
JP2023545268A (en) 2020-10-06 2023-10-27 エドワーズ ライフサイエンシーズ コーポレイション Protective cover for artificial valves
EP4231966A1 (en) 2020-10-20 2023-08-30 Edwards Lifesciences Corporation Sound and vibration sensors for estimating prosthetic valve diameter during expansion
CA3199434A1 (en) 2020-10-28 2022-05-05 Edwards Lifesciences Corporation Systems and methods for estimating outer diameters of prosthetic valves
CA3199682A1 (en) 2020-11-10 2022-05-19 Edwards Lifesciences Corporation Docking station for a transcatheter heart valve
WO2022159809A1 (en) 2021-01-25 2022-07-28 Edwards Lifesciences Corporation Mechanically expandable heart valves with several types of interconnected struts
CA3208499A1 (en) 2021-01-26 2022-08-04 Edwards Lifesciences Corporation 3-d shaped skirts for prosthetic heart valves
US20220265423A1 (en) 2021-02-24 2022-08-25 St. Jude Medical, Cardiology Division, Inc. Leaflet Attachment To Prosthetic Heart Valve
WO2022260979A1 (en) 2021-06-07 2022-12-15 Edwards Lifesciences Corporation Leaflets and leaflet separators for prosthetic valves
CA3230362A1 (en) * 2021-09-17 2023-03-23 Edwards Lifesciences Corporation Devices and systems for docking a heart valve
WO2024050043A1 (en) 2022-09-02 2024-03-07 Edwards Lifesciences Corporation Prosthetic valves with non-uniform valvular structures

Family Cites Families (282)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3143742A (en) * 1963-03-19 1964-08-11 Surgitool Inc Prosthetic sutureless heart valve
GB1127325A (en) 1965-08-23 1968-09-18 Henry Berry Improved instrument for inserting artificial heart valves
US3587115A (en) 1966-05-04 1971-06-28 Donald P Shiley Prosthetic sutureless heart valves and implant tools therefor
US3472230A (en) 1966-12-19 1969-10-14 Fogarty T J Umbrella catheter
US3548417A (en) * 1967-09-05 1970-12-22 Ronnie G Kischer Heart valve having a flexible wall which rotates between open and closed positions
GB1268484A (en) 1968-06-28 1972-03-29 Brian John Bellhouse Improvements relating to non-return valves particularly as prosthetics
US3671979A (en) 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3714671A (en) 1970-11-30 1973-02-06 Cutter Lab Tissue-type heart valve with a graft support ring or stent
US3755823A (en) 1971-04-23 1973-09-04 Hancock Laboratories Inc Flexible stent for heart valve
GB1402255A (en) 1971-09-24 1975-08-06 Smiths Industries Ltd Medical or surgical devices of the kind having an inflatable balloon
US3997923A (en) * 1975-04-28 1976-12-21 St. Jude Medical, Inc. Heart valve prosthesis and suturing assembly and method of implanting a heart valve prosthesis in a heart
US4035849A (en) 1975-11-17 1977-07-19 William W. Angell Heart valve stent and process for preparing a stented heart valve prosthesis
CA1069652A (en) 1976-01-09 1980-01-15 Alain F. Carpentier Supported bioprosthetic heart valve with compliant orifice ring
US4056854A (en) 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
US4297749A (en) 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
DE2834203C3 (en) * 1978-08-04 1981-04-02 Hehl, Karl, 7298 Loßburg Feed hopper of a spraying machine
US4222126A (en) 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
US4265694A (en) 1978-12-14 1981-05-05 The United States Of America As Represented By The Department Of Health, Education And Welfare Method of making unitized three leaflet heart valve
US4574803A (en) 1979-01-19 1986-03-11 Karl Storz Tissue cutter
GB2056023B (en) 1979-08-06 1983-08-10 Ross D N Bodnar E Stent for a cardiac valve
US4327736A (en) 1979-11-20 1982-05-04 Kanji Inoue Balloon catheter
US4373216A (en) 1980-10-27 1983-02-15 Hemex, Inc. Heart valves having edge-guided occluders
US4339831A (en) 1981-03-27 1982-07-20 Medtronic, Inc. Dynamic annulus heart valve and reconstruction ring
US4470157A (en) 1981-04-27 1984-09-11 Love Jack W Tricuspid prosthetic tissue heart valve
US4345340A (en) 1981-05-07 1982-08-24 Vascor, Inc. Stent for mitral/tricuspid heart valve
US4406022A (en) 1981-11-16 1983-09-27 Kathryn Roy Prosthetic valve means for cardiovascular surgery
SE445884B (en) 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US4484579A (en) * 1982-07-19 1984-11-27 University Of Pittsburgh Commissurotomy catheter apparatus and method
IT1212547B (en) 1982-08-09 1989-11-30 Iorio Domenico INSTRUMENT FOR SURGICAL USE INTENDED TO MAKE INTERVENTIONS FOR THE IMPLANTATION OF BIOPROTESIS IN HUMAN ORGANS EASIER AND SAFER
US4680031A (en) * 1982-11-29 1987-07-14 Tascon Medical Technology Corporation Heart valve prosthesis
GB8300636D0 (en) 1983-01-11 1983-02-09 Black M M Heart valve replacements
US4535483A (en) 1983-01-17 1985-08-20 Hemex, Inc. Suture rings for heart valves
AR229309A1 (en) * 1983-04-20 1983-07-15 Barone Hector Daniel MOUNT FOR CARDIAC VALVES
US4612011A (en) 1983-07-22 1986-09-16 Hans Kautzky Central occluder semi-biological heart valve
IT1159433B (en) 1983-07-25 1987-02-25 Sorin Biomedica Spa PROCEDURE AND EQUIPMENT FOR THE MANUFACTURE OF VALVE FLAPS FOR CARDIAC VALVE PROSTHESIS AND CARDIAC VALVE PROSTHESIS PROVIDED WITH SUCH FLAPS
US4585705A (en) 1983-11-09 1986-04-29 Dow Corning Corporation Hard organopolysiloxane release coating
GB2159242A (en) * 1983-12-08 1985-11-27 Endre Bodnar Improved bioprosthetic valve
US4787899A (en) 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
US4629459A (en) * 1983-12-28 1986-12-16 Shiley Inc. Alternate stent covering for tissue valves
US4627436A (en) 1984-03-01 1986-12-09 Innoventions Biomedical Inc. Angioplasty catheter and method for use thereof
IT1208326B (en) 1984-03-16 1989-06-12 Sorin Biomedica Spa CARDIAC VALVE PROSTHESIS PROVIDED WITH VALVES OF ORGANIC FABRIC
US4592340A (en) 1984-05-02 1986-06-03 Boyles Paul W Artificial catheter means
US4883458A (en) 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
US5007896A (en) 1988-12-19 1991-04-16 Surgical Systems & Instruments, Inc. Rotary-catheter for atherectomy
US4979939A (en) 1984-05-14 1990-12-25 Surgical Systems & Instruments, Inc. Atherectomy system with a guide wire
DE3426300A1 (en) 1984-07-17 1986-01-30 Doguhan Dr.med. 6000 Frankfurt Baykut TWO-WAY VALVE AND ITS USE AS A HEART VALVE PROSTHESIS
GB8424582D0 (en) 1984-09-28 1984-11-07 Univ Glasgow Heart valve prosthesis
DE3442088A1 (en) 1984-11-17 1986-05-28 Beiersdorf Ag, 2000 Hamburg HEART VALVE PROSTHESIS
SU1271508A1 (en) 1984-11-29 1986-11-23 Горьковский государственный медицинский институт им.С.М.Кирова Artificial heart valve
US4759758A (en) 1984-12-07 1988-07-26 Shlomo Gabbay Prosthetic heart valve
DE3530262A1 (en) * 1985-08-22 1987-02-26 Siemens Ag CIRCUIT ARRANGEMENT FOR TESTING A PASSIVE BUS NETWORK SYSTEM (CSMA / CD ACCESS METHOD)
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (en) 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
SU1371700A1 (en) 1986-02-21 1988-02-07 МВТУ им.Н.Э.Баумана Prosthesis of heart valve
CH672247A5 (en) * 1986-03-06 1989-11-15 Mo Vysshee Tekhnicheskoe Uchil
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
SE453258B (en) 1986-04-21 1988-01-25 Medinvent Sa ELASTIC, SELF-EXPANDING PROTEST AND PROCEDURE FOR ITS MANUFACTURING
US4790843A (en) * 1986-06-16 1988-12-13 Baxter Travenol Laboratories, Inc. Prosthetic heart valve assembly
US4777951A (en) 1986-09-19 1988-10-18 Mansfield Scientific, Inc. Procedure and catheter instrument for treating patients for aortic stenosis
US4762128A (en) 1986-12-09 1988-08-09 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
SU1457921A1 (en) 1987-03-10 1989-02-15 Харьковский научно-исследовательский институт общей и неотложной хирургии Self-fixing prosthesis of blood vessel
US4878495A (en) 1987-05-15 1989-11-07 Joseph Grayzel Valvuloplasty device with satellite expansion means
US4796629A (en) 1987-06-03 1989-01-10 Joseph Grayzel Stiffened dilation balloon catheter device
US4829990A (en) 1987-06-25 1989-05-16 Thueroff Joachim Implantable hydraulic penile erector
US4851001A (en) 1987-09-17 1989-07-25 Taheri Syde A Prosthetic valve for a blood vein and an associated method of implantation of the valve
US5159937A (en) * 1987-09-30 1992-11-03 Advanced Cardiovascular Systems, Inc. Steerable dilatation catheter
US5266073A (en) 1987-12-08 1993-11-30 Wall W Henry Angioplasty stent
US5368608A (en) * 1988-04-01 1994-11-29 University Of Michigan, The Board Of Regents Calcification-resistant materials and methods of making same through use of multivalent cations
US4909252A (en) * 1988-05-26 1990-03-20 The Regents Of The Univ. Of California Perfusion balloon catheter
US5032128A (en) 1988-07-07 1991-07-16 Medtronic, Inc. Heart valve prosthesis
DE8815082U1 (en) 1988-11-29 1989-05-18 Biotronik Mess- Und Therapiegeraete Gmbh & Co Ingenieurbuero Berlin, 1000 Berlin, De
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4966604A (en) 1989-01-23 1990-10-30 Interventional Technologies Inc. Expandable atherectomy cutter with flexibly bowed blades
US4994077A (en) 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
WO1990014804A1 (en) 1989-05-31 1990-12-13 Baxter International Inc. Biological valvular prosthesis
US5609626A (en) 1989-05-31 1997-03-11 Baxter International Inc. Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts
US5047041A (en) 1989-08-22 1991-09-10 Samuels Peter B Surgical apparatus for the excision of vein valves in situ
US4986830A (en) 1989-09-22 1991-01-22 Schneider (U.S.A.) Inc. Valvuloplasty catheter with balloon which remains stable during inflation
US5108370A (en) 1989-10-03 1992-04-28 Paul Walinsky Perfusion balloon catheter
US5089015A (en) 1989-11-28 1992-02-18 Promedica International Method for implanting unstented xenografts and allografts
US5591185A (en) 1989-12-14 1997-01-07 Corneal Contouring Development L.L.C. Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping
US5674192A (en) * 1990-12-28 1997-10-07 Boston Scientific Corporation Drug delivery
US5141494A (en) * 1990-02-15 1992-08-25 Danforth Biomedical, Inc. Variable wire diameter angioplasty dilatation balloon catheter
US5037434A (en) 1990-04-11 1991-08-06 Carbomedics, Inc. Bioprosthetic heart valve with elastic commissures
US5059177A (en) 1990-04-19 1991-10-22 Cordis Corporation Triple lumen balloon catheter
US5085635A (en) 1990-05-18 1992-02-04 Cragg Andrew H Valved-tip angiographic catheter
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
GB9012716D0 (en) * 1990-06-07 1990-08-01 Frater Robert W M Mitral heart valve replacements
US5152771A (en) 1990-12-31 1992-10-06 The Board Of Supervisors Of Louisiana State University Valve cutter for arterial by-pass surgery
US5489298A (en) * 1991-01-24 1996-02-06 Autogenics Rapid assembly concentric mating stent, tissue heart valve with enhanced clamping and tissue exposure
US5282847A (en) 1991-02-28 1994-02-01 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
JPH05184611A (en) 1991-03-19 1993-07-27 Kenji Kusuhara Valvular annulation retaining member and its attaching method
US5295958A (en) 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
US5167628A (en) 1991-05-02 1992-12-01 Boyles Paul W Aortic balloon catheter assembly for indirect infusion of the coronary arteries
US5397351A (en) 1991-05-13 1995-03-14 Pavcnik; Dusan Prosthetic valve for percutaneous insertion
US5370685A (en) * 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
US5558644A (en) * 1991-07-16 1996-09-24 Heartport, Inc. Retrograde delivery catheter and method for inducing cardioplegic arrest
US5769812A (en) 1991-07-16 1998-06-23 Heartport, Inc. System for cardiac procedures
US5584803A (en) * 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US5232446A (en) 1991-10-30 1993-08-03 Scimed Life Systems, Inc. Multi-sinus perfusion balloon dilatation catheter
US5192297A (en) 1991-12-31 1993-03-09 Medtronic, Inc. Apparatus and method for placement and implantation of a stent
US5756476A (en) 1992-01-14 1998-05-26 The United States Of America As Represented By The Department Of Health And Human Services Inhibition of cell proliferation using antisense oligonucleotides
US5163953A (en) 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5332402A (en) * 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
EP0664689A4 (en) * 1992-10-13 1997-02-26 Boston Scient Corp Stents for body lumens exhibiting peristaltic.
DE4327825C2 (en) * 1992-11-24 1996-10-02 Mannesmann Ag Throttle check element
US6283127B1 (en) 1992-12-03 2001-09-04 Wesley D. Sterman Devices and methods for intracardiac procedures
US6346074B1 (en) * 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
GB9312666D0 (en) 1993-06-18 1993-08-04 Vesely Ivan Bioprostetic heart valve
CA2125258C (en) 1993-08-05 1998-12-22 Dinah B Quiachon Multicapsule intraluminal grafting system and method
US5411522A (en) 1993-08-25 1995-05-02 Linvatec Corporation Unitary anchor for soft tissue fixation
US5545209A (en) 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
US5480424A (en) 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
US6245040B1 (en) 1994-01-14 2001-06-12 Cordis Corporation Perfusion balloon brace and method of use
US6102845A (en) * 1994-02-07 2000-08-15 Baxter International Inc. Ventricular assist device with minimal blood contacting surfaces
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
WO1995028899A1 (en) 1994-04-22 1995-11-02 Medtronic, Inc. Stented bioprosthetic heart valve
CA2188563C (en) 1994-04-29 2005-08-02 Andrew W. Buirge Stent with collagen
US5728068A (en) 1994-06-14 1998-03-17 Cordis Corporation Multi-purpose balloon catheter
US5554185A (en) 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
US5761417A (en) * 1994-09-08 1998-06-02 International Business Machines Corporation Video data streamer having scheduler for scheduling read request for individual data buffers associated with output ports of communication node to one storage node
US5599305A (en) 1994-10-24 1997-02-04 Cardiovascular Concepts, Inc. Large-diameter introducer sheath having hemostasis valve and removable steering mechanism
CA2134997C (en) 1994-11-03 2009-06-02 Ian M. Penn Stent
US5639274A (en) 1995-06-02 1997-06-17 Fischell; Robert E. Integrated catheter system for balloon angioplasty and stent delivery
US5571175A (en) 1995-06-07 1996-11-05 St. Jude Medical, Inc. Suture guard for prosthetic heart valve
US5728152A (en) 1995-06-07 1998-03-17 St. Jude Medical, Inc. Bioresorbable heart valve support
US5716417A (en) * 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
AU6280396A (en) * 1995-06-20 1997-01-22 Efstathios A. Agathos Human valve replacement with marine mammal valve
DE19532846A1 (en) 1995-09-06 1997-03-13 Georg Dr Berg Valve for use in heart
US5824037A (en) * 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US5591195A (en) * 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
DE19546692C2 (en) 1995-12-14 2002-11-07 Hans-Reiner Figulla Self-expanding heart valve prosthesis for implantation in the human body via a catheter system
FR2742994B1 (en) 1995-12-28 1998-04-03 Sgro Jean-Claude INTRACORPOREAL LIGHT SURGICAL TREATMENT ASSEMBLY
US5855602A (en) 1996-09-09 1999-01-05 Shelhigh, Inc. Heart valve prosthesis
US5716370A (en) * 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
EP0808614B1 (en) 1996-05-23 2003-02-26 Samsung Electronics Co., Ltd. Flexible self-expandable stent and method for making the same
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US6217585B1 (en) 1996-08-16 2001-04-17 Converge Medical, Inc. Mechanical stent and graft delivery system
JP3968444B2 (en) 1996-08-23 2007-08-29 ボストン サイエンティフィック サイムド,インコーポレイテッド Stent delivery mechanism with stent fixation device
US5968068A (en) 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
US5749890A (en) 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
NL1004827C2 (en) 1996-12-18 1998-06-19 Surgical Innovations Vof Device for regulating blood circulation.
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6074419A (en) * 1996-12-31 2000-06-13 St. Jude Medical, Inc. Indicia for prosthetic device
GB9701479D0 (en) 1997-01-24 1997-03-12 Aortech Europ Ltd Heart valve
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US6206917B1 (en) 1997-05-02 2001-03-27 St. Jude Medical, Inc. Differential treatment of prosthetic devices
US6245102B1 (en) 1997-05-07 2001-06-12 Iowa-India Investments Company Ltd. Stent, stent graft and stent valve
US5855597A (en) 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US6056722A (en) 1997-09-18 2000-05-02 Iowa-India Investments Company Limited Of Douglas Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and methods of use
US5984959A (en) 1997-09-19 1999-11-16 United States Surgical Heart valve replacement tools and procedures
US5925063A (en) 1997-09-26 1999-07-20 Khosravi; Farhad Coiled sheet valve, filter or occlusive device and methods of use
US6530952B2 (en) 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
DE69841333D1 (en) 1997-12-29 2010-01-07 Cleveland Clinic Foundation SYSTEM FOR THE MINIMAL INVASIVE INTRODUCTION OF A HEARTLAP BIOPROTHESIS
EP0935978A1 (en) 1998-02-16 1999-08-18 Medicorp S.A. Angioplasty and stent delivery catheter
US6174327B1 (en) 1998-02-27 2001-01-16 Scimed Life Systems, Inc. Stent deployment apparatus and method
EP0943300A1 (en) 1998-03-17 1999-09-22 Medicorp S.A. Reversible action endoprosthesis delivery device.
US5980570A (en) 1998-03-27 1999-11-09 Sulzer Carbomedics Inc. System and method for implanting an expandable medical device into a body
US6527979B2 (en) 1999-08-27 2003-03-04 Corazon Technologies, Inc. Catheter systems and methods for their use in the treatment of calcified vascular occlusions
US6545799B1 (en) * 1998-09-02 2003-04-08 Corning Incorporated Method and apparatus for optical system link control
US6334873B1 (en) 1998-09-28 2002-01-01 Autogenics Heart valve having tissue retention with anchors and an outer sheath
DE19857887B4 (en) 1998-12-15 2005-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring support for a heart valve prosthesis
FR2788217A1 (en) 1999-01-12 2000-07-13 Brice Letac PROSTHETIC VALVE IMPLANTABLE BY CATHETERISM, OR SURGICAL
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
DE19907646A1 (en) 1999-02-23 2000-08-24 Georg Berg Valve for blood vessels uses flap holders and counterpart holders on stent to latch together in place and all channeled for guide wire.
US6210408B1 (en) 1999-02-24 2001-04-03 Scimed Life Systems, Inc. Guide wire system for RF recanalization of vascular blockages
US6231602B1 (en) 1999-04-16 2001-05-15 Edwards Lifesciences Corporation Aortic annuloplasty ring
EP1057460A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Replacement valve assembly and method of implanting same
US6299637B1 (en) 1999-08-20 2001-10-09 Samuel M. Shaolian Transluminally implantable venous valve
US6685724B1 (en) 1999-08-24 2004-02-03 The Penn State Research Foundation Laparoscopic surgical instrument and method
IT1307268B1 (en) 1999-09-30 2001-10-30 Sorin Biomedica Cardio Spa DEVICE FOR HEART VALVE REPAIR OR REPLACEMENT.
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
FR2800984B1 (en) 1999-11-17 2001-12-14 Jacques Seguin DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY
FR2815844B1 (en) 2000-10-31 2003-01-17 Jacques Seguin TUBULAR SUPPORT FOR THE PERCUTANEOUS POSITIONING OF A REPLACEMENT HEART VALVE
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
DE19955490A1 (en) 1999-11-18 2001-06-13 Thermamed Gmbh Medical heating device
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
ES2307590T3 (en) 2000-01-27 2008-12-01 3F Therapeutics, Inc HEART VALVE PROTESICA.
DK1255510T5 (en) 2000-01-31 2009-12-21 Cook Biotech Inc Stent Valve Klapper
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
DE10010073B4 (en) 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
WO2002001998A2 (en) 2000-05-16 2002-01-10 Taut, Inc. Penetrating tip for trocar assembly
US6419695B1 (en) 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
US6869444B2 (en) 2000-05-22 2005-03-22 Shlomo Gabbay Low invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve
AU2001271667A1 (en) 2000-06-30 2002-01-14 Viacor Incorporated Method and apparatus for performing a procedure on a cardiac valve
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
WO2002022054A1 (en) 2000-09-12 2002-03-21 Gabbay S Valvular prosthesis and method of using same
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
US6613063B1 (en) 2000-10-03 2003-09-02 Daniel Hunsberger Trocar assembly
DE10049813C1 (en) 2000-10-09 2002-04-18 Universitaetsklinikum Freiburg Instrument for the local removal of built-up matter at an aortic valve, in a human or animal heart, is a hollow catheter with a cutting unit at the far end within a closure cap for minimum invasion
DE10049814B4 (en) 2000-10-09 2006-10-19 Universitätsklinikum Freiburg Device for supporting surgical procedures within a vessel, in particular for minimally invasive explantation and implantation of heart valves
DE10049812B4 (en) 2000-10-09 2004-06-03 Universitätsklinikum Freiburg Device for filtering out macroscopic particles from the bloodstream during local removal of an aortic valve on the human or animal heart
DE10049815B4 (en) 2000-10-09 2005-10-13 Universitätsklinikum Freiburg Device for local ablation of an aortic valve on the human or animal heart
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
AU2571802A (en) 2000-11-21 2002-06-03 Rex Medical Lp Percutaneous aortic valve
US6494909B2 (en) 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
JP4076857B2 (en) 2000-12-15 2008-04-16 アンギオメット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー メディツィンテヒニク コマンデイトゲゼルシャフト Stent with valve and method of use
US6468660B2 (en) 2000-12-29 2002-10-22 St. Jude Medical, Inc. Biocompatible adhesives
US6488704B1 (en) 2001-05-07 2002-12-03 Biomed Solutions, Llc Implantable particle measuring apparatus
US7374571B2 (en) 2001-03-23 2008-05-20 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6936067B2 (en) 2001-05-17 2005-08-30 St. Jude Medical Inc. Prosthetic heart valve with slit stent
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US6740105B2 (en) 2001-11-23 2004-05-25 Mind Guard Ltd. Expandable delivery appliance particularly for delivering intravascular devices
US7182779B2 (en) 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US7887573B2 (en) 2002-02-22 2011-02-15 Boston Scientific Scimed, Inc. Method and apparatus for deployment of an endoluminal device
US6830586B2 (en) 2002-02-28 2004-12-14 3F Therapeutics, Inc. Stentless atrioventricular heart valve fabricated from a singular flat membrane
US7141064B2 (en) 2002-05-08 2006-11-28 Edwards Lifesciences Corporation Compressed tissue for heart valve leaflets
US8348963B2 (en) 2002-07-03 2013-01-08 Hlt, Inc. Leaflet reinforcement for regurgitant valves
US6878162B2 (en) 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
US7137184B2 (en) 2002-09-20 2006-11-21 Edwards Lifesciences Corporation Continuous heart valve support frame and method of manufacture
US7381210B2 (en) 2003-03-14 2008-06-03 Edwards Lifesciences Corporation Mitral valve repair system and method for use
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
AU2004233848B2 (en) 2003-04-24 2010-03-04 Cook Medical Technologies Llc Artificial valve prosthesis with improved flow dynamics
EP1635736A2 (en) 2003-06-05 2006-03-22 FlowMedica, Inc. Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens
ATE442107T1 (en) 2003-07-21 2009-09-15 Univ Pennsylvania PERCUTANE HEART VALVE
US7160322B2 (en) 2003-08-13 2007-01-09 Shlomo Gabbay Implantable cardiac prosthesis for mitigating prolapse of a heart valve
US20050075725A1 (en) 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
US20060259137A1 (en) 2003-10-06 2006-11-16 Jason Artof Minimally invasive valve replacement system
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
WO2005076973A2 (en) 2004-02-05 2005-08-25 Children's Medical Center Corporation Transcatheter delivery of a replacement heart valve
CN101683291A (en) 2004-02-27 2010-03-31 奥尔特克斯公司 Prosthetic heart valve delivery systems and methods
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
JP2007535342A (en) 2004-03-11 2007-12-06 パーキュテイニアス カルディオバスキュラー ソリューションズ ピー・ティー・ワイ リミテッド Percutaneous prosthetic heart valve
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
EP1753374A4 (en) 2004-04-23 2010-02-10 3F Therapeutics Inc Implantable prosthetic valve
US20050288766A1 (en) 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US7462191B2 (en) 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
US7276078B2 (en) 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
US20060052867A1 (en) 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
US7704277B2 (en) 2004-09-14 2010-04-27 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
US7579381B2 (en) 2005-03-25 2009-08-25 Edwards Lifesciences Corporation Treatment of bioprosthetic tissues to mitigate post implantation calcification
US8062359B2 (en) 2005-04-06 2011-11-22 Edwards Lifesciences Corporation Highly flexible heart valve connecting band
US20060259135A1 (en) 2005-04-20 2006-11-16 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
SE531468C2 (en) 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US20080058856A1 (en) 2005-06-28 2008-03-06 Venkatesh Ramaiah Non-occluding dilation device
JP2007011557A (en) 2005-06-29 2007-01-18 Nissan Motor Co Ltd Traffic jam detection system, onboard information terminal, information center, and method for detecting traffic jam
US8790396B2 (en) 2005-07-27 2014-07-29 Medtronic 3F Therapeutics, Inc. Methods and systems for cardiac valve delivery
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US7785366B2 (en) 2005-10-26 2010-08-31 Maurer Christopher W Mitral spacer
US8449606B2 (en) 2005-10-26 2013-05-28 Cardiosolutions, Inc. Balloon mitral spacer
US8778017B2 (en) 2005-10-26 2014-07-15 Cardiosolutions, Inc. Safety for mitral valve implant
US8764820B2 (en) 2005-11-16 2014-07-01 Edwards Lifesciences Corporation Transapical heart valve delivery system and method
US8147541B2 (en) 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8932348B2 (en) 2006-05-18 2015-01-13 Edwards Lifesciences Corporation Device and method for improving heart valve function
CA2878598C (en) 2006-09-08 2018-05-01 Edwards Lifesciences Corporation Integrated heart valve delivery system
US8348996B2 (en) 2006-09-19 2013-01-08 Medtronic Ventor Technologies Ltd. Valve prosthesis implantation techniques
US8029556B2 (en) 2006-10-04 2011-10-04 Edwards Lifesciences Corporation Method and apparatus for reshaping a ventricle
EP2077718B2 (en) 2006-10-27 2022-03-09 Edwards Lifesciences Corporation Biological tissue for surgical implantation
US7655034B2 (en) 2006-11-14 2010-02-02 Medtronic Vascular, Inc. Stent-graft with anchoring pins
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
US9510943B2 (en) 2007-01-19 2016-12-06 Medtronic, Inc. Stented heart valve devices and methods for atrioventricular valve replacement
US20080294247A1 (en) 2007-05-25 2008-11-27 Medical Entrepreneurs Ii, Inc. Prosthetic Heart Valve
US9572660B2 (en) 2007-06-04 2017-02-21 St. Jude Medical, Inc. Prosthetic heart valves
JP5419875B2 (en) 2007-08-24 2014-02-19 セント ジュード メディカル インコーポレイテッド Artificial aortic heart valve
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
ES2781686T3 (en) 2007-12-14 2020-09-04 Edwards Lifesciences Corp Leaflet Junction Frame for a Prosthetic Valve
US8357387B2 (en) 2007-12-21 2013-01-22 Edwards Lifesciences Corporation Capping bioprosthetic tissue to reduce calcification
US20090171456A1 (en) 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
WO2009094188A2 (en) 2008-01-24 2009-07-30 Medtronic, Inc. Stents for prosthetic heart valves
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
JP2009252172A (en) 2008-04-10 2009-10-29 Fujitsu Component Ltd Remote operation system
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US9061119B2 (en) 2008-05-09 2015-06-23 Edwards Lifesciences Corporation Low profile delivery system for transcatheter heart valve
EP4119097A1 (en) 2008-06-06 2023-01-18 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
JP5379852B2 (en) 2008-07-15 2013-12-25 セント ジュード メディカル インコーポレイテッド Collapsible and re-expandable prosthetic heart valve cuff design and complementary technology application
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US20100262233A1 (en) 2009-04-12 2010-10-14 Texas Tech University System Mitral Valve Coaptation Plate For Mitral Valve Regurgitation
WO2010121076A2 (en) 2009-04-15 2010-10-21 Cardiaq Valve Technologies, Inc. Vascular implant and delivery system
US8439970B2 (en) 2009-07-14 2013-05-14 Edwards Lifesciences Corporation Transapical delivery system for heart valves
CN115192259A (en) 2010-10-05 2022-10-18 爱德华兹生命科学公司 Artificial heart valve
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation

Cited By (788)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030109924A1 (en) * 1996-12-31 2003-06-12 Alain Cribier Implanting a valve prosthesis in body channels
US20050251251A1 (en) * 1996-12-31 2005-11-10 Alain Cribier Valve prosthesis for implantation in body channels
US8002825B2 (en) 1996-12-31 2011-08-23 Edwards Lifesciences Pvt, Inc. Implantable prosthetic valve for treating aortic stenosis
US7846204B2 (en) 1996-12-31 2010-12-07 Edwards Lifesciences Pvt, Inc. Aortic valve prosthesis having natural tissue and an internal cover
US7846203B2 (en) 1996-12-31 2010-12-07 Edwards Lifesciences Pvt, Inc. Implanting a stent valve prosthesis at the native aortic valve
US8057540B2 (en) 1996-12-31 2011-11-15 Edwards Lifesciences Pvt, Inc. Method of treating aortic stenosis using an implantable prosthetic valve
US20080077236A1 (en) * 1996-12-31 2008-03-27 Brice Letac Valve prosthesis for implantation in body channels
US20110087322A1 (en) * 1996-12-31 2011-04-14 Edwards Lifesciences Pvt, Inc. Method of Treating Aortic Stenosis Using an Implantable Prosthetic Valve
US20050261669A1 (en) * 1998-04-30 2005-11-24 Medtronic, Inc. Intracardiovascular access (ICVA™) system
US10485976B2 (en) 1998-04-30 2019-11-26 Medtronic, Inc. Intracardiovascular access (ICVA™) system
US8801779B2 (en) 1999-11-17 2014-08-12 Medtronic Corevalve, Llc Prosthetic valve for transluminal delivery
US9060856B2 (en) 1999-11-17 2015-06-23 Medtronic Corevalve Llc Transcatheter heart valves
US10219901B2 (en) 1999-11-17 2019-03-05 Medtronic CV Luxembourg S.a.r.l. Prosthetic valve for transluminal delivery
US8721708B2 (en) 1999-11-17 2014-05-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US7329278B2 (en) 1999-11-17 2008-02-12 Corevalve, Inc. Prosthetic valve for transluminal delivery
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8603159B2 (en) 1999-11-17 2013-12-10 Medtronic Corevalve, Llc Prosthetic valve for transluminal delivery
US8876896B2 (en) 1999-11-17 2014-11-04 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US9962258B2 (en) 1999-11-17 2018-05-08 Medtronic CV Luxembourg S.a.r.l. Transcatheter heart valves
USRE45865E1 (en) 1999-11-17 2016-01-26 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US9066799B2 (en) 1999-11-17 2015-06-30 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8986329B2 (en) 1999-11-17 2015-03-24 Medtronic Corevalve Llc Methods for transluminal delivery of prosthetic valves
US8998979B2 (en) 1999-11-17 2015-04-07 Medtronic Corevalve Llc Transcatheter heart valves
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US7892281B2 (en) 1999-11-17 2011-02-22 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US9949831B2 (en) 2000-01-19 2018-04-24 Medtronics, Inc. Image-guided heart valve placement
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US20050096736A1 (en) * 2000-01-31 2005-05-05 Osse Francisco J. Percutaneous heart valve devices
US8906083B2 (en) 2000-01-31 2014-12-09 Cook Biotech Incorporated Stent valves and uses of same
US20040049262A1 (en) * 2000-01-31 2004-03-11 Obermiller Joseph F. Stent valves and uses of same
US11497503B2 (en) 2000-03-27 2022-11-15 Neovasc Medical Ltd. Methods for treating abnormal growths in the body using a flow reducing implant
US9364354B2 (en) 2000-03-27 2016-06-14 Neovasc Medical Ltd Methods for treating abnormal growths in the body using a flow reducing implant
US10542994B2 (en) 2000-03-27 2020-01-28 Neovasc Medical Ltd. Methods for treating abnormal growths in the body using a flow reducing implant
US8092518B2 (en) 2000-04-06 2012-01-10 Edwards Lifesciences Corporation Methods of implanting two-part heart valves
US20080188929A1 (en) * 2000-04-06 2008-08-07 Stefan Schreck Methods of implanting two-part heart valves
US7381218B2 (en) 2000-04-06 2008-06-03 Edwards Lifesciences Corporation System and method for implanting a two-part prosthetic heart valve
US6767362B2 (en) 2000-04-06 2004-07-27 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US7758606B2 (en) 2000-06-30 2010-07-20 Medtronic, Inc. Intravascular filter with debris entrapment mechanism
US8777980B2 (en) 2000-06-30 2014-07-15 Medtronic, Inc. Intravascular filter with debris entrapment mechanism
US8092487B2 (en) 2000-06-30 2012-01-10 Medtronic, Inc. Intravascular filter with debris entrapment mechanism
US10278805B2 (en) 2000-08-18 2019-05-07 Atritech, Inc. Expandable implant devices for filtering blood flow from atrial appendages
US20030187500A1 (en) * 2000-10-09 2003-10-02 Josef Jansen Conduit cardiac-valve prosthesis and a method for the production thereof
US8951280B2 (en) 2000-11-09 2015-02-10 Medtronic, Inc. Cardiac valve procedure methods and devices
US9138313B2 (en) 2000-11-21 2015-09-22 Rex Medical, L.P. Percutaneous aortic valve
US20110004300A1 (en) * 2000-11-21 2011-01-06 Mcguckin James F Jr Percutaneous aortic valve
US8167935B2 (en) 2000-11-21 2012-05-01 Rex Medical, L.P. Percutaneous aortic valve
US20040093075A1 (en) * 2000-12-15 2004-05-13 Titus Kuehne Stent with valve and method of use thereof
US7947072B2 (en) 2001-03-23 2011-05-24 Edwards Lifesciences Corporation Two-part expandable heart valve
US20060173537A1 (en) * 2001-03-23 2006-08-03 Jibin Yang Rolled minimally invasive heart valves
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US20110137409A1 (en) * 2001-03-23 2011-06-09 Edwards Lifesciences Corporation Prosthetic heart valve having flared outflow section
US7374571B2 (en) 2001-03-23 2008-05-20 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
US20070255398A1 (en) * 2001-03-23 2007-11-01 Jibin Yang Two-part expandable heart valve
US7276084B2 (en) 2001-03-23 2007-10-02 Edwards Lifesciences Corporation Rolled minimally invasive heart valves
US8206438B2 (en) 2001-03-23 2012-06-26 Edwards Lifesciences Corporation Prosthetic heart valve having flared outflow section
US8771302B2 (en) 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8070801B2 (en) 2001-06-29 2011-12-06 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8956402B2 (en) 2001-06-29 2015-02-17 Medtronic, Inc. Apparatus for replacing a cardiac valve
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
US7780726B2 (en) 2001-07-04 2010-08-24 Medtronic, Inc. Assembly for placing a prosthetic valve in a duct in the body
US8628570B2 (en) 2001-07-04 2014-01-14 Medtronic Corevalve Llc Assembly for placing a prosthetic valve in a duct in the body
US7252682B2 (en) 2001-07-04 2007-08-07 Corevalve, S.A. Kit enabling a prosthetic valve to be placed in a body enabling a prosthetic valve to be put into place in a duct in the body
US9149357B2 (en) 2001-07-04 2015-10-06 Medtronic CV Luxembourg S.a.r.l. Heart valve assemblies
US8002826B2 (en) 2001-07-04 2011-08-23 Medtronic Corevalve Llc Assembly for placing a prosthetic valve in a duct in the body
US11007052B2 (en) * 2001-08-03 2021-05-18 Jenavalve Technology, Inc. Devices useful for implantation at a heart valve
US20180368976A1 (en) * 2001-08-03 2018-12-27 Jenavalve Technology, Inc. Devices useful for implantation at a heart valve
US9539088B2 (en) 2001-09-07 2017-01-10 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US10342657B2 (en) 2001-09-07 2019-07-09 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US8740975B2 (en) 2001-09-13 2014-06-03 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US20090254177A1 (en) * 2001-09-13 2009-10-08 Edwards Lifesciences Corporation Method and Apparatuses for Deploying Minimally-Invasive Heart Valves
EP3260085A1 (en) * 2001-10-11 2017-12-27 Edwards Lifesciences PVT, Inc. System for replacing a deficient native heart valve
US20050192665A1 (en) * 2001-10-11 2005-09-01 Benjamin Spenser Implantable prosthetic valve
US7803184B2 (en) 2001-11-14 2010-09-28 Rex Medical, L.P. Percutaneous aortic valve
US7972377B2 (en) 2001-12-27 2011-07-05 Medtronic, Inc. Bioprosthetic heart valve
US9610158B2 (en) 2002-01-04 2017-04-04 Colibri Heart Valve Llc Percutaneously implantable replacement heart valve device and method of making same
US8858619B2 (en) 2002-04-23 2014-10-14 Medtronic, Inc. System and method for implanting a replacement valve
US8721713B2 (en) 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
US20040106989A1 (en) * 2002-07-03 2004-06-03 Wilson Robert F. Leaflet reinforcement for regurgitant valves
US8348963B2 (en) 2002-07-03 2013-01-08 Hlt, Inc. Leaflet reinforcement for regurgitant valves
US8349003B2 (en) 2002-07-16 2013-01-08 Medtronic, Inc. Suture locking assembly and method of use
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US20040092989A1 (en) * 2002-08-28 2004-05-13 Heart Leaflet Technologies, Inc Delivery device for leaflet valve
US20040127979A1 (en) * 2002-08-28 2004-07-01 Heart Leaflet Technologies, Inc Method of treating diseased valve
US7335218B2 (en) 2002-08-28 2008-02-26 Heart Leaflet Technologies, Inc. Delivery device for leaflet valve
US20040092858A1 (en) * 2002-08-28 2004-05-13 Heart Leaflet Technologies, Inc. Leaflet valve
US7217287B2 (en) 2002-08-28 2007-05-15 Heart Leaflet Technologies, Inc. Method of treating diseased valve
US8163008B2 (en) 2002-08-28 2012-04-24 Heart Leaflet Technologies, Inc. Leaflet valve
US20050165477A1 (en) * 2002-09-11 2005-07-28 3F Therapeutics, Inc., A California Corporation Percutaneously deliverable heart valve
US6875231B2 (en) 2002-09-11 2005-04-05 3F Therapeutics, Inc. Percutaneously deliverable heart valve
US7981153B2 (en) 2002-12-20 2011-07-19 Medtronic, Inc. Biologically implantable prosthesis methods of using
US9333078B2 (en) 2002-12-20 2016-05-10 Medtronic, Inc. Heart valve assemblies
US10595991B2 (en) 2002-12-20 2020-03-24 Medtronic, Inc. Heart valve assemblies
US8025695B2 (en) 2002-12-20 2011-09-27 Medtronic, Inc. Biologically implantable heart valve system
US8623080B2 (en) 2002-12-20 2014-01-07 Medtronic, Inc. Biologically implantable prosthesis and methods of using the same
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US8460373B2 (en) 2002-12-20 2013-06-11 Medtronic, Inc. Method for implanting a heart valve within an annulus of a patient
US6830585B1 (en) 2003-01-14 2004-12-14 3F Therapeutics, Inc. Percutaneously deliverable heart valve and methods of implantation
US9895227B2 (en) 2003-02-26 2018-02-20 Cook Medical Technologies Llc Prosthesis adapted for placement under external imaging
US20040167619A1 (en) * 2003-02-26 2004-08-26 Cook Incorporated Prosthesis adapted for placement under external imaging
US8157810B2 (en) * 2003-02-26 2012-04-17 Cook Medical Technologies Llc Prosthesis adapted for placement under external imaging
US8778018B2 (en) * 2003-03-18 2014-07-15 Mario M. Iobbi Method of implanting a minimally-invasive heart valve with cusp positioners
US10159567B2 (en) 2003-03-18 2018-12-25 Edwards Lifesciences Corporation Prosthetic heart valve with cusp positioners
US9320598B2 (en) * 2003-03-18 2016-04-26 Edwards Lifesciences Corporation Method of implanting a self-expandable prosthetic heart valve
US11234815B2 (en) 2003-03-18 2022-02-01 Edwards Lifesciences Corporation Minimally-invasive heart valve with cusp positioners
US20130096671A1 (en) * 2003-03-18 2013-04-18 Edwards Lifesciences Corporation Method of implanting a self-expandable prosthetic heart valve
US20080269878A1 (en) * 2003-03-18 2008-10-30 Edwards Lifesciences Corporation Minimally-invasive heart valve with cusp positioners
US20160184094A1 (en) * 2003-03-18 2016-06-30 Edwards Lifesciences Corporation Minimally-invasive heart valve with cusp positioners
US20220151772A1 (en) * 2003-03-18 2022-05-19 Edwards Lifesciences Corporation Minimally-invasive heart valve with cusp positioners
US9504567B2 (en) 2003-03-18 2016-11-29 Edwards Lifesciences Corporation Minimally-invasive prosthetic heart valve method
US10299925B2 (en) 2003-03-18 2019-05-28 Edwards Lifesciences Corporation Collapsible prosthetic heart valves
US9724193B2 (en) 2003-03-18 2017-08-08 Edwards Lifesciences Corporation Self-expandable heart valve with stabilizers
US9675455B2 (en) * 2003-03-18 2017-06-13 Edwards Lifesciences Corporation Method of positioning a minimally-invasive heart valve with cusp positioners
US20040210307A1 (en) * 2003-04-18 2004-10-21 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
US7175656B2 (en) 2003-04-18 2007-02-13 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
US20070168024A1 (en) * 2003-04-18 2007-07-19 Alexander Khairkhahan Percutaneous Transcatheter Heart Valve
US6974476B2 (en) * 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
US7445632B2 (en) 2003-05-05 2008-11-04 Rex Medical, L.P Percutaneous aortic valve
US20060009841A1 (en) * 2003-05-05 2006-01-12 Rex Medical Percutaneous aortic valve
US20040225353A1 (en) * 2003-05-05 2004-11-11 Rex Medical Percutaneous aortic valve
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US8747463B2 (en) 2003-08-22 2014-06-10 Medtronic, Inc. Methods of using a prosthesis fixturing device
US11076955B2 (en) * 2003-10-02 2021-08-03 Edwards Lifesciences Corporation Implantable prosthetic heart valve
US20050075729A1 (en) * 2003-10-06 2005-04-07 Nguyen Tuoc Tan Minimally invasive valve replacement system
US7101396B2 (en) 2003-10-06 2006-09-05 3F Therapeutics, Inc. Minimally invasive valve replacement system
US20050075720A1 (en) * 2003-10-06 2005-04-07 Nguyen Tuoc Tan Minimally invasive valve replacement system
US20050075728A1 (en) * 2003-10-06 2005-04-07 Nguyen Tuoc Tan Minimally invasive valve replacement system
US9579194B2 (en) 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US20050075717A1 (en) * 2003-10-06 2005-04-07 Nguyen Tuoc Tan Minimally invasive valve replacement system
US20050075731A1 (en) * 2003-10-06 2005-04-07 Jason Artof Minimally invasive valve replacement system
US7044966B2 (en) 2003-10-06 2006-05-16 3F Therapeutics, Inc. Minimally invasive valve replacement system
US20050075730A1 (en) * 2003-10-06 2005-04-07 Myers Keith E. Minimally invasive valve replacement system
US20050075718A1 (en) * 2003-10-06 2005-04-07 Nguyen Tuoc Tan Minimally invasive valve replacement system
US20050075713A1 (en) * 2003-10-06 2005-04-07 Brian Biancucci Minimally invasive valve replacement system
US20060259137A1 (en) * 2003-10-06 2006-11-16 Jason Artof Minimally invasive valve replacement system
US20050096738A1 (en) * 2003-10-06 2005-05-05 Cali Douglas S. Minimally invasive valve replacement system
US8603161B2 (en) 2003-10-08 2013-12-10 Medtronic, Inc. Attachment device and methods of using the same
US9744059B2 (en) 2003-11-19 2017-08-29 Neovasc Medical Ltd. Vascular implant
US11564818B2 (en) 2003-11-19 2023-01-31 Neovase Medical Ltd. Vascular implant
WO2005065594A1 (en) * 2003-12-19 2005-07-21 Boston Scientific Limited Venous valve apparatus, system, and method
US8128681B2 (en) * 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US10869764B2 (en) 2003-12-19 2020-12-22 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8721717B2 (en) 2003-12-19 2014-05-13 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8623078B2 (en) 2003-12-23 2014-01-07 Sadra Medical, Inc. Replacement valve and anchor
US11285002B2 (en) 2003-12-23 2022-03-29 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8840662B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve and method
US10357359B2 (en) 2003-12-23 2019-07-23 Boston Scientific Scimed Inc Methods and apparatus for endovascularly replacing a patient's heart valve
EP3388028A1 (en) * 2003-12-23 2018-10-17 Boston Scientific Scimed, Inc. Repositionable heart valve
US10413412B2 (en) 2003-12-23 2019-09-17 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a heart valve
US10413409B2 (en) 2003-12-23 2019-09-17 Boston Scientific Scimed, Inc. Systems and methods for delivering a medical implant
US10426608B2 (en) 2003-12-23 2019-10-01 Boston Scientific Scimed, Inc. Repositionable heart valve
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US9320599B2 (en) 2003-12-23 2016-04-26 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8858620B2 (en) 2003-12-23 2014-10-14 Sadra Medical Inc. Methods and apparatus for endovascularly replacing a heart valve
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US9585750B2 (en) 2003-12-23 2017-03-07 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US9585749B2 (en) 2003-12-23 2017-03-07 Boston Scientific Scimed, Inc. Replacement heart valve assembly
US20070198097A1 (en) * 2003-12-23 2007-08-23 Laboratoires Perouse Kit For Implanting In A Duct
US9308085B2 (en) 2003-12-23 2016-04-12 Boston Scientific Scimed, Inc. Repositionable heart valve and method
US10925724B2 (en) 2003-12-23 2021-02-23 Boston Scientific Scimed, Inc. Replacement valve and anchor
US10206774B2 (en) 2003-12-23 2019-02-19 Boston Scientific Scimed Inc. Low profile heart valve and delivery system
US9532872B2 (en) 2003-12-23 2017-01-03 Boston Scientific Scimed, Inc. Systems and methods for delivering a medical implant
US8231670B2 (en) 2003-12-23 2012-07-31 Sadra Medical, Inc. Repositionable heart valve and method
US11185408B2 (en) 2003-12-23 2021-11-30 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8246675B2 (en) * 2003-12-23 2012-08-21 Laboratoires Perouse Kit for implanting in a duct
US8246678B2 (en) 2003-12-23 2012-08-21 Sadra Medicl, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8252052B2 (en) 2003-12-23 2012-08-28 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8894703B2 (en) 2003-12-23 2014-11-25 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US9358110B2 (en) 2003-12-23 2016-06-07 Boston Scientific Scimed, Inc. Medical devices and delivery systems for delivering medical devices
US10716663B2 (en) 2003-12-23 2020-07-21 Boston Scientific Scimed, Inc. Methods and apparatus for performing valvuloplasty
US11696825B2 (en) 2003-12-23 2023-07-11 Boston Scientific Scimed, Inc. Replacement valve and anchor
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8840663B2 (en) * 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US8623076B2 (en) 2003-12-23 2014-01-07 Sadra Medical, Inc. Low profile heart valve and delivery system
US10478289B2 (en) 2003-12-23 2019-11-19 Boston Scientific Scimed, Inc. Replacement valve and anchor
US9358106B2 (en) 2003-12-23 2016-06-07 Boston Scientific Scimed Inc. Methods and apparatus for performing valvuloplasty
US10258465B2 (en) 2003-12-23 2019-04-16 Boston Scientific Scimed Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US9861476B2 (en) 2003-12-23 2018-01-09 Boston Scientific Scimed Inc. Leaflet engagement elements and methods for use thereof
US9393113B2 (en) 2003-12-23 2016-07-19 Boston Scientific Scimed Inc. Retrievable heart valve anchor and method
US10335273B2 (en) 2003-12-23 2019-07-02 Boston Scientific Scimed Inc. Leaflet engagement elements and methods for use thereof
US10314695B2 (en) 2003-12-23 2019-06-11 Boston Scientific Scimed Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US9872768B2 (en) 2003-12-23 2018-01-23 Boston Scientific Scimed, Inc. Medical devices and delivery systems for delivering medical devices
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US9956075B2 (en) 2003-12-23 2018-05-01 Boston Scientific Scimed Inc. Methods and apparatus for endovascularly replacing a heart valve
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US9011521B2 (en) 2003-12-23 2015-04-21 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US9277991B2 (en) 2003-12-23 2016-03-08 Boston Scientific Scimed, Inc. Low profile heart valve and delivery system
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US9066798B2 (en) 2004-02-09 2015-06-30 Cook Medical Technologies Llc Woven implantable device
US8337545B2 (en) 2004-02-09 2012-12-25 Cook Medical Technologies Llc Woven implantable device
US20080255662A1 (en) * 2004-03-03 2008-10-16 Sorin Biomedica Cardio S.R.L. Minimally-invasive cardiac-valve prosthesis
US8109996B2 (en) 2004-03-03 2012-02-07 Sorin Biomedica Cardio, S.R.L. Minimally-invasive cardiac-valve prosthesis
US9867695B2 (en) 2004-03-03 2018-01-16 Sorin Group Italia S.R.L. Minimally-invasive cardiac-valve prosthesis
US8535373B2 (en) 2004-03-03 2013-09-17 Sorin Group Italia S.R.L. Minimally-invasive cardiac-valve prosthesis
US20050197695A1 (en) * 2004-03-03 2005-09-08 Sorin Biomedica Cardio S.R.L. Minimally-invasive cardiac-valve prosthesis
US10213298B2 (en) 2004-03-11 2019-02-26 Percutaneous Cardiovascular Solutions Pty Ltd Percutaneous heart valve prosthesis
US11213390B2 (en) 2004-03-11 2022-01-04 Percutaneous Cardiovascular Solutions Pty Ltd Method of implanting a heart valve prosthesis
US11622856B2 (en) 2004-03-11 2023-04-11 Percutaneous Cardiovascular Solutions Pty Ltd Percutaneous heart valve prosthesis
US10993806B2 (en) 2004-03-11 2021-05-04 Percutaneous Cardiovascular Solutions Pty Ltd Percutaneous heart valve prosthesis
US11744705B2 (en) 2004-03-11 2023-09-05 Percutaneous Cardiovascular Solutions Pty Ltd Method of implanting a heart valve prosthesis
US8216299B2 (en) 2004-04-01 2012-07-10 Cook Medical Technologies Llc Method to retract a body vessel wall with remodelable material
US20050273160A1 (en) * 2004-04-23 2005-12-08 Lashinski Randall T Pulmonary vein valve implant
US9775704B2 (en) 2004-04-23 2017-10-03 Medtronic3F Therapeutics, Inc. Implantable valve prosthesis
US7534259B2 (en) 2004-05-05 2009-05-19 Direct Flow Medical, Inc. Nonstented heart valves with formed in situ support
US10449040B2 (en) * 2004-05-05 2019-10-22 Speyside Medical, LLC Method of treating a patient using a retrievable transcatheter prosthetic heart valve
US7435257B2 (en) 2004-05-05 2008-10-14 Direct Flow Medical, Inc. Methods of cardiac valve replacement using nonstented prosthetic valve
US20060020334A1 (en) * 2004-05-05 2006-01-26 Lashinski Randall T Methods of cardiac valve replacement using nonstented prosthetic valve
US20090082857A1 (en) * 2004-05-05 2009-03-26 Direct Flow Medical, Inc. Unstented heart valve with formed in place support structure
US9510941B2 (en) 2004-05-05 2016-12-06 Direct Flow Medical, Inc. Method of treating a patient using a retrievable transcatheter prosthetic heart valve
US20060025854A1 (en) * 2004-05-05 2006-02-02 Lashinski Randall T Translumenally implantable heart valve with formed in place support
US8377118B2 (en) 2004-05-05 2013-02-19 Direct Flow Medical, Inc. Unstented heart valve with formed in place support structure
US7556645B2 (en) 2004-05-05 2009-07-07 Direct Flow Medical, Inc. Translumenally implantable heart valve with formed in place support
US20060020327A1 (en) * 2004-05-05 2006-01-26 Lashinski Randall T Nonstented heart valves with formed in situ support
US8308796B2 (en) 2004-05-05 2012-11-13 Direct Flow Medical, Inc. Method of in situ formation of translumenally deployable heart valve support
US20060020333A1 (en) * 2004-05-05 2006-01-26 Lashinski Randall T Method of in situ formation of translumenally deployable heart valve support
US20060025855A1 (en) * 2004-05-05 2006-02-02 Lashinski Randall T Translumenally implantable heart valve with multiple chamber formed in place support
US7658762B2 (en) 2004-05-05 2010-02-09 Direct Flow Medical, Inc. Nonstented temporary valve for cardiovascular therapy
US8012201B2 (en) 2004-05-05 2011-09-06 Direct Flow Medical, Inc. Translumenally implantable heart valve with multiple chamber formed in place support
US7445630B2 (en) * 2004-05-05 2008-11-04 Direct Flow Medical, Inc. Method of in situ formation of translumenally deployable heart valve support
US7320704B2 (en) 2004-05-05 2008-01-22 Direct Flow Medical, Inc. Nonstented temporary valve for cardiovascular therapy
US9744035B2 (en) 2004-06-16 2017-08-29 Boston Scientific Scimed, Inc. Everting heart valve
US8992608B2 (en) 2004-06-16 2015-03-31 Sadra Medical, Inc. Everting heart valve
US8668733B2 (en) 2004-06-16 2014-03-11 Sadra Medical, Inc. Everting heart valve
US11484405B2 (en) 2004-06-16 2022-11-01 Boston Scientific Scimed, Inc. Everting heart valve
US7628805B2 (en) 2004-06-30 2009-12-08 Edwards Lifesciences Pvt, Inc. Paravalvular leak detection, sealing and prevention
US7276078B2 (en) 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
US20060004442A1 (en) * 2004-06-30 2006-01-05 Benjamin Spenser Paravalvular leak detection, sealing, and prevention
US20150351902A1 (en) * 2004-07-10 2015-12-10 Colibri Heart Valve Llc Percutaneously implantable replacement heart valve device and method of making same
EP3466373A1 (en) * 2004-09-07 2019-04-10 Medtronic Inc. Replacement prosthetic heart valve system
US8591570B2 (en) 2004-09-07 2013-11-26 Medtronic, Inc. Prosthetic heart valve for replacing previously implanted heart valve
US9259329B2 (en) 2004-09-21 2016-02-16 Stout Medical Group, L.P. Expandable support device and method of use
US11051954B2 (en) 2004-09-21 2021-07-06 Stout Medical Group, L.P. Expandable support device and method of use
US9314349B2 (en) 2004-09-21 2016-04-19 Stout Medical Group, L.P. Expandable support device and method of use
US8709042B2 (en) 2004-09-21 2014-04-29 Stout Medical Group, LP Expandable support device and method of use
US11304803B2 (en) 2004-10-02 2022-04-19 Edwards Lifesciences Cardiaq Llc Method for replacement of heart valve
US20140107773A1 (en) * 2004-10-02 2014-04-17 Endoheart Ag Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
EP2471492A1 (en) * 2004-10-02 2012-07-04 Endoheart AG Implantable heart valve
US11058536B2 (en) 2004-10-02 2021-07-13 Edwards Lifesciences Cardiaq Llc Method for replacement of heart valve
US20160361159A1 (en) * 2004-10-02 2016-12-15 Edwards Lifesciences Cardiaq Llc Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US8617236B2 (en) 2004-11-05 2013-12-31 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
US8328868B2 (en) 2004-11-05 2012-12-11 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
US10531952B2 (en) 2004-11-05 2020-01-14 Boston Scientific Scimed, Inc. Medical devices and delivery systems for delivering medical devices
US8562672B2 (en) 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
US9498329B2 (en) 2004-11-19 2016-11-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US8920492B2 (en) 2005-02-10 2014-12-30 Sorin Group Italia S.R.L. Cardiac valve prosthesis
US7857845B2 (en) 2005-02-10 2010-12-28 Sorin Biomedica Cardio S.R.L. Cardiac-valve prosthesis
US8539662B2 (en) 2005-02-10 2013-09-24 Sorin Group Italia S.R.L. Cardiac-valve prosthesis
EP2319458A1 (en) 2005-02-10 2011-05-11 Sorin Biomedica Cardio S.r.l. Cardiac-valve prosthesis
US8540768B2 (en) 2005-02-10 2013-09-24 Sorin Group Italia S.R.L. Cardiac valve prosthesis
US9486313B2 (en) 2005-02-10 2016-11-08 Sorin Group Italia S.R.L. Cardiac valve prosthesis
US9895223B2 (en) 2005-02-10 2018-02-20 Sorin Group Italia S.R.L. Cardiac valve prosthesis
US20140039613A1 (en) * 2005-02-18 2014-02-06 The Cleveland Clinic Foundation Methods for replacing a cardiac valve
US10583001B2 (en) * 2005-02-18 2020-03-10 The Cleveland Clinic Foundation Methods for replacing a cardiac valve
US7951197B2 (en) 2005-04-08 2011-05-31 Medtronic, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US8500802B2 (en) 2005-04-08 2013-08-06 Medtronic, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US10549101B2 (en) 2005-04-25 2020-02-04 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US9415225B2 (en) 2005-04-25 2016-08-16 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US9649495B2 (en) 2005-04-25 2017-05-16 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US20060265056A1 (en) * 2005-05-13 2006-11-23 Corevalve, Inc. Heart valve prosthesis and methods of manufacture and use
US11284997B2 (en) 2005-05-13 2022-03-29 Medtronic CV Luxembourg S.a.r.l Heart valve prosthesis and methods of manufacture and use
US10478291B2 (en) 2005-05-13 2019-11-19 Medtronic CV Luxembourg S.a.r.l Heart valve prosthesis and methods of manufacture and use
USD732666S1 (en) 2005-05-13 2015-06-23 Medtronic Corevalve, Inc. Heart valve prosthesis
US8226710B2 (en) 2005-05-13 2012-07-24 Medtronic Corevalve, Inc. Heart valve prosthesis and methods of manufacture and use
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US9504564B2 (en) 2005-05-13 2016-11-29 Medtronic Corevalve Llc Heart valve prosthesis and methods of manufacture and use
USD812226S1 (en) 2005-05-13 2018-03-06 Medtronic Corevalve Llc Heart valve prosthesis
US20060259136A1 (en) * 2005-05-13 2006-11-16 Corevalve Sa Heart valve prosthesis and methods of manufacture and use
US9060857B2 (en) 2005-05-13 2015-06-23 Medtronic Corevalve Llc Heart valve prosthesis and methods of manufacture and use
EP2335649A3 (en) * 2005-05-13 2011-11-09 Medtronic Corevalve LLC Heart valve prothesis
US7708775B2 (en) * 2005-05-24 2010-05-04 Edwards Lifesciences Corporation Methods for rapid deployment of prosthetic heart valves
US8911493B2 (en) 2005-05-24 2014-12-16 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valves
US9554903B2 (en) 2005-05-24 2017-01-31 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
US10456251B2 (en) 2005-05-24 2019-10-29 Edwards Lifesciences Corporation Surgical methods of replacing prosthetic heart valves
US8500798B2 (en) 2005-05-24 2013-08-06 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
US10130468B2 (en) 2005-05-24 2018-11-20 Edwards Lifesciences Corporation Replacement prosthetic heart valves
US11284998B2 (en) 2005-05-24 2022-03-29 Edwards Lifesciences Corporation Surgical methods of replacing prosthetic heart valves
US20080200978A1 (en) * 2005-05-26 2008-08-21 Texas Heart Institute Surgical System and Method For Attaching a Prosthetic Vessel to a Hollow Structure
US8211169B2 (en) 2005-05-27 2012-07-03 Medtronic, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US8568477B2 (en) 2005-06-07 2013-10-29 Direct Flow Medical, Inc. Stentless aortic valve replacement with high radial strength
US20070005131A1 (en) * 2005-06-13 2007-01-04 Taylor David M Heart valve delivery system
US20110054596A1 (en) * 2005-06-13 2011-03-03 Edwards Lifesciences Corporation Method of Delivering a Prosthetic Heart Valve
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US8382826B2 (en) 2005-06-13 2013-02-26 Edwards Lifesciences Corporation Method of delivering a prosthetic heart valve
US9770339B2 (en) 2005-07-14 2017-09-26 Stout Medical Group, L.P. Expandable support device and method of use
US20090112309A1 (en) * 2005-07-21 2009-04-30 The Florida International University Board Of Trustees Collapsible Heart Valve with Polymer Leaflets
US8506620B2 (en) 2005-09-26 2013-08-13 Medtronic, Inc. Prosthetic cardiac and venous valves
US9839514B2 (en) 2005-10-18 2017-12-12 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US10624739B2 (en) 2005-10-18 2020-04-21 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US9539092B2 (en) 2005-10-18 2017-01-10 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US20070088431A1 (en) * 2005-10-18 2007-04-19 Henry Bourang Heart valve delivery system with valve catheter
US8092525B2 (en) 2005-10-26 2012-01-10 Cardiosolutions, Inc. Heart valve implant
US9232999B2 (en) 2005-10-26 2016-01-12 Cardiosolutions Inc. Mitral spacer
US20100324668A1 (en) * 2005-10-26 2010-12-23 Cardiosolutions, Inc. Mitral Spacer
US7785366B2 (en) 2005-10-26 2010-08-31 Maurer Christopher W Mitral spacer
US8778017B2 (en) 2005-10-26 2014-07-15 Cardiosolutions, Inc. Safety for mitral valve implant
US8888844B2 (en) 2005-10-26 2014-11-18 Cardiosolutions, Inc. Heart valve implant
US20090240326A1 (en) * 2005-10-26 2009-09-24 Cardiosolutions Implant Delivery and Deployment System and Method
US8449606B2 (en) 2005-10-26 2013-05-28 Cardiosolutions, Inc. Balloon mitral spacer
US20090043382A1 (en) * 2005-10-26 2009-02-12 Cardiosolutions, Inc. Mitral Spacer
US8486136B2 (en) 2005-10-26 2013-07-16 Cardiosolutions, Inc. Mitral spacer
US8216302B2 (en) 2005-10-26 2012-07-10 Cardiosolutions, Inc. Implant delivery and deployment system and method
US8506623B2 (en) 2005-10-26 2013-08-13 Cardiosolutions, Inc. Implant delivery and deployment system and method
US8894705B2 (en) 2005-10-26 2014-11-25 Cardiosolutions, Inc. Balloon mitral spacer
US9517129B2 (en) 2005-10-26 2016-12-13 Cardio Solutions, Inc. Implant delivery and deployment system and method
US9433514B2 (en) 2005-11-10 2016-09-06 Edwards Lifesciences Cardiaq Llc Method of securing a prosthesis
US9974669B2 (en) 2005-11-10 2018-05-22 Edwards Lifesciences Cardiaq Llc Percutaneous heart valve
US10456277B2 (en) 2005-11-10 2019-10-29 Edwards Lifesciences Cardiaq Llc Percutaneous heart valve
US9486336B2 (en) 2005-11-10 2016-11-08 Edwards Lifesciences Cardiaq Llc Prosthesis having a plurality of distal and proximal prongs
US10299922B2 (en) 2005-12-22 2019-05-28 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9839515B2 (en) 2005-12-22 2017-12-12 Symetis, SA Stent-valves for valve replacement and associated methods and systems for surgery
US10265167B2 (en) 2005-12-22 2019-04-23 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US10314701B2 (en) 2005-12-22 2019-06-11 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9078781B2 (en) 2006-01-11 2015-07-14 Medtronic, Inc. Sterile cover for compressible stents used in percutaneous device delivery systems
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
US9331328B2 (en) 2006-03-28 2016-05-03 Medtronic, Inc. Prosthetic cardiac valve from pericardium material and methods of making same
US10058421B2 (en) 2006-03-28 2018-08-28 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US7740655B2 (en) 2006-04-06 2010-06-22 Medtronic Vascular, Inc. Reinforced surgical conduit for implantation of a stented valve therein
US8821569B2 (en) 2006-04-29 2014-09-02 Medtronic, Inc. Multiple component prosthetic heart valve assemblies and methods for delivering them
US10758289B2 (en) 2006-05-01 2020-09-01 Stout Medical Group, L.P. Expandable support device and method of use
US11141208B2 (en) 2006-05-01 2021-10-12 Stout Medical Group, L.P. Expandable support device and method of use
US10813677B2 (en) 2006-05-01 2020-10-27 Stout Medical Group, L.P. Expandable support device and method of use
WO2007142935A1 (en) 2006-05-30 2007-12-13 Cook Incorporated Artificial valve prosthesis
US8038710B2 (en) 2006-05-30 2011-10-18 Cook Medical Technologies Llc Artificial valve prosthesis
EP2020958B1 (en) * 2006-05-30 2012-05-30 Cook Medical Technologies LLC Artificial valve prosthesis
US20070288087A1 (en) * 2006-05-30 2007-12-13 Cook Incorporated Artificial valve prosthesis
US11141265B2 (en) 2006-07-28 2021-10-12 Edwards Lifesciences Cardiaq Llc Percutaneous valve prosthesis and system and method for implanting the same
US10350065B2 (en) 2006-07-28 2019-07-16 Edwards Lifesciences Cardiaq Llc Percutaneous valve prosthesis and system and method for implanting the same
US11510779B2 (en) 2006-09-08 2022-11-29 Edwards Lifesciences Corporation Introducer device for medical procedures
US11382743B2 (en) 2006-09-08 2022-07-12 Edwards Lifesciences Corporation Delivery apparatus for prosthetic heart valve
US11589986B2 (en) 2006-09-08 2023-02-28 Edwards Lifesciences Corporation Delivery apparatus for prosthetic heart valve
US20080065011A1 (en) * 2006-09-08 2008-03-13 Philippe Marchand Integrated heart valve delivery system
US11717405B2 (en) 2006-09-08 2023-08-08 Edwards Lifesciences Corporation Delivery apparatus for prosthetic heart valve
US11123185B2 (en) 2006-09-08 2021-09-21 Edwards Lifesciences Corporation Delivery apparatus for prosthetic heart valve
US11129715B2 (en) 2006-09-08 2021-09-28 Edwards Lifesciences Corporation Introducer device for medical procedures
US10278815B2 (en) 2006-09-08 2019-05-07 Edwards Lifesciences Corporation Integrated heart valve delivery system
US8568472B2 (en) 2006-09-08 2013-10-29 Edwards Lifesciences Corporation Integrated heart valve delivery system
US10179048B2 (en) 2006-09-08 2019-01-15 Edwards Lifesciences Corporation Integrated heart valve delivery system
US11883285B2 (en) 2006-09-08 2024-01-30 Edwards Lifesciences Corporation Introducer device for medical procedures
US9138312B2 (en) 2006-09-19 2015-09-22 Medtronic Ventor Technologies Ltd. Valve prostheses
US11304802B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US11304801B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8052750B2 (en) 2006-09-19 2011-11-08 Medtronic Ventor Technologies Ltd Valve prosthesis fixation techniques using sandwiching
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US9387071B2 (en) 2006-09-19 2016-07-12 Medtronic, Inc. Sinus-engaging valve fixation member
US8771346B2 (en) 2006-09-19 2014-07-08 Medtronic Ventor Technologies Ltd. Valve prosthetic fixation techniques using sandwiching
US8876894B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Leaflet-sensitive valve fixation member
US8771345B2 (en) 2006-09-19 2014-07-08 Medtronic Ventor Technologies Ltd. Valve prosthesis fixation techniques using sandwiching
US8876895B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Valve fixation member having engagement arms
US8747460B2 (en) 2006-09-19 2014-06-10 Medtronic Ventor Technologies Ltd. Methods for implanting a valve prothesis
US9642704B2 (en) 2006-09-19 2017-05-09 Medtronic Ventor Technologies Ltd. Catheter for implanting a valve prosthesis
US9827097B2 (en) 2006-09-19 2017-11-28 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US10004601B2 (en) 2006-09-19 2018-06-26 Medtronic Ventor Technologies Ltd. Valve prosthesis fixation techniques using sandwiching
US8348995B2 (en) 2006-09-19 2013-01-08 Medtronic Ventor Technologies, Ltd. Axial-force fixation member for valve
US8348996B2 (en) 2006-09-19 2013-01-08 Medtronic Ventor Technologies Ltd. Valve prosthesis implantation techniques
US10195033B2 (en) 2006-09-19 2019-02-05 Medtronic Ventor Technologies Ltd. Valve prosthesis fixation techniques using sandwiching
US8414643B2 (en) 2006-09-19 2013-04-09 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US9301834B2 (en) 2006-09-19 2016-04-05 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US9913714B2 (en) 2006-09-19 2018-03-13 Medtronic, Inc. Sinus-engaging valve fixation member
US10543077B2 (en) 2006-09-19 2020-01-28 Medtronic, Inc. Sinus-engaging valve fixation member
US8784478B2 (en) 2006-10-16 2014-07-22 Medtronic Corevalve, Inc. Transapical delivery system with ventruculo-arterial overlfow bypass
US9572661B2 (en) 2006-10-19 2017-02-21 Direct Flow Medical, Inc. Profile reduction of valve implant
US8556881B2 (en) 2006-10-19 2013-10-15 Direct Flow Medical, Inc. Catheter guidance through a calcified aortic valve
US8133213B2 (en) 2006-10-19 2012-03-13 Direct Flow Medical, Inc. Catheter guidance through a calcified aortic valve
US20190321608A1 (en) * 2006-10-19 2019-10-24 Dfm, Llc Catheter guidance through a calcified aortic valve
US7935144B2 (en) 2006-10-19 2011-05-03 Direct Flow Medical, Inc. Profile reduction of valve implant
WO2008051554A2 (en) * 2006-10-24 2008-05-02 Beth Israel Deaconess Medical Center Percutaneous aortic valve assembly
US20090248143A1 (en) * 2006-10-24 2009-10-01 Beth Israel Deaconess Medical Center Percutaneous aortic valve assembly
WO2008051554A3 (en) * 2006-10-24 2008-09-04 Beth Israel Hospital Percutaneous aortic valve assembly
US9295550B2 (en) 2006-12-06 2016-03-29 Medtronic CV Luxembourg S.a.r.l. Methods for delivering a self-expanding valve
US8747459B2 (en) 2006-12-06 2014-06-10 Medtronic Corevalve Llc System and method for transapical delivery of an annulus anchored self-expanding valve
US7993392B2 (en) 2006-12-19 2011-08-09 Sorin Biomedica Cardio S.R.L. Instrument and method for in situ deployment of cardiac valve prostheses
US8470024B2 (en) 2006-12-19 2013-06-25 Sorin Group Italia S.R.L. Device for in situ positioning of cardiac valve prosthesis
US8070799B2 (en) 2006-12-19 2011-12-06 Sorin Biomedica Cardio S.R.L. Instrument and method for in situ deployment of cardiac valve prostheses
US9056008B2 (en) 2006-12-19 2015-06-16 Sorin Group Italia S.R.L. Instrument and method for in situ development of cardiac valve prostheses
US8057539B2 (en) 2006-12-19 2011-11-15 Sorin Biomedica Cardio S.R.L. System for in situ positioning of cardiac valve prostheses without occluding blood flow
US11896482B2 (en) 2007-02-12 2024-02-13 Boston Scientific Medical Device Limited Stent-valves for valve replacement and associated methods and systems for surgery
US9504568B2 (en) 2007-02-16 2016-11-29 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US7871436B2 (en) 2007-02-16 2011-01-18 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US9585754B2 (en) 2007-04-20 2017-03-07 Medtronic, Inc. Implant for treatment of a heart valve, in particular a mitral valve, material including such an implant, and material for insertion thereof
US9237886B2 (en) 2007-04-20 2016-01-19 Medtronic, Inc. Implant for treatment of a heart valve, in particular a mitral valve, material including such an implant, and material for insertion thereof
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
US9393112B2 (en) 2007-08-20 2016-07-19 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
US10188516B2 (en) 2007-08-20 2019-01-29 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
EP3081194A3 (en) * 2007-08-21 2016-12-07 Symetis SA A replacement valve
EP3045147A1 (en) * 2007-08-21 2016-07-20 Symetis Sa A replacement valve
US10716662B2 (en) 2007-08-21 2020-07-21 Boston Scientific Limited Stent-valves for valve replacement and associated methods and systems for surgery
US9308360B2 (en) 2007-08-23 2016-04-12 Direct Flow Medical, Inc. Translumenally implantable heart valve with formed in place support
US10130463B2 (en) 2007-08-23 2018-11-20 Dfm, Llc Translumenally implantable heart valve with formed in place support
US8808367B2 (en) 2007-09-07 2014-08-19 Sorin Group Italia S.R.L. Prosthetic valve delivery system including retrograde/antegrade approach
US8486137B2 (en) 2007-09-07 2013-07-16 Sorin Group Italia S.R.L. Streamlined, apical delivery system for in situ deployment of cardiac valve prostheses
US8475521B2 (en) 2007-09-07 2013-07-02 Sorin Group Italia S.R.L. Streamlined delivery system for in situ deployment of cardiac valve prostheses
US8114154B2 (en) 2007-09-07 2012-02-14 Sorin Biomedica Cardio S.R.L. Fluid-filled delivery system for in situ deployment of cardiac valve prostheses
US11903823B2 (en) 2007-09-26 2024-02-20 St. Jude Medical, Llc Collapsible prosthetic heart valves
US10292813B2 (en) 2007-09-26 2019-05-21 St. Jude Medical, Llc Collapsible prosthetic heart valves
JP2018138225A (en) * 2007-09-26 2018-09-06 セント ジュード メディカル インコーポレイテッド Collapsible prosthetic heart valve
US11007053B2 (en) 2007-09-26 2021-05-18 St. Jude Medical, Llc Collapsible prosthetic heart valves
US20150216657A1 (en) * 2007-09-28 2015-08-06 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US10426604B2 (en) * 2007-09-28 2019-10-01 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US9820851B2 (en) 2007-09-28 2017-11-21 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US11382740B2 (en) 2007-09-28 2022-07-12 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US11660187B2 (en) 2007-09-28 2023-05-30 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US11534294B2 (en) 2007-09-28 2022-12-27 St. Jude Medical, Llc Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US10966823B2 (en) 2007-10-12 2021-04-06 Sorin Group Italia S.R.L. Expandable valve prosthesis with sealing mechanism
US11452598B2 (en) 2007-10-25 2022-09-27 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
US9839513B2 (en) 2007-10-25 2017-12-12 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
EP2679198A1 (en) * 2007-10-25 2014-01-01 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
WO2009053497A1 (en) * 2007-10-25 2009-04-30 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
US10219897B2 (en) 2007-10-25 2019-03-05 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
US8647381B2 (en) 2007-10-25 2014-02-11 Symetis Sa Stents, valved-stents, and methods and systems for delivery thereof
US10709557B2 (en) 2007-10-25 2020-07-14 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
US8597347B2 (en) 2007-11-15 2013-12-03 Cardiosolutions, Inc. Heart regurgitation method and apparatus
US8852270B2 (en) 2007-11-15 2014-10-07 Cardiosolutions, Inc. Implant delivery system and method
US9770330B2 (en) 2007-11-15 2017-09-26 Cardiosolutions, Inc. Implant delivery system and method
US20090131849A1 (en) * 2007-11-15 2009-05-21 Cardiosolutions, Inc. Heart regurgitation method and apparatus
US20090132033A1 (en) * 2007-11-15 2009-05-21 Cardiosolutions, Inc. Implant Delivery System and Method
US7846199B2 (en) 2007-11-19 2010-12-07 Cook Incorporated Remodelable prosthetic valve
US8685077B2 (en) 2008-01-24 2014-04-01 Medtronics, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8157852B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9333100B2 (en) 2008-01-24 2016-05-10 Medtronic, Inc. Stents for prosthetic heart valves
US10646335B2 (en) 2008-01-24 2020-05-12 Medtronic, Inc. Stents for prosthetic heart valves
US10639182B2 (en) 2008-01-24 2020-05-05 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8673000B2 (en) 2008-01-24 2014-03-18 Medtronic, Inc. Stents for prosthetic heart valves
US10758343B2 (en) 2008-01-24 2020-09-01 Medtronic, Inc. Stent for prosthetic heart valves
US7972378B2 (en) 2008-01-24 2011-07-05 Medtronic, Inc. Stents for prosthetic heart valves
US9339382B2 (en) 2008-01-24 2016-05-17 Medtronic, Inc. Stents for prosthetic heart valves
US11284999B2 (en) 2008-01-24 2022-03-29 Medtronic, Inc. Stents for prosthetic heart valves
US9149358B2 (en) 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US11083573B2 (en) 2008-01-24 2021-08-10 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US11259919B2 (en) 2008-01-24 2022-03-01 Medtronic, Inc. Stents for prosthetic heart valves
US11786367B2 (en) 2008-01-24 2023-10-17 Medtronic, Inc. Stents for prosthetic heart valves
US9925079B2 (en) 2008-01-24 2018-03-27 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8157853B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8628566B2 (en) 2008-01-24 2014-01-14 Medtronic, Inc. Stents for prosthetic heart valves
US10820993B2 (en) 2008-01-24 2020-11-03 Medtronic, Inc. Stents for prosthetic heart valves
US10016274B2 (en) 2008-01-24 2018-07-10 Medtronic, Inc. Stent for prosthetic heart valves
US9089422B2 (en) 2008-01-24 2015-07-28 Medtronic, Inc. Markers for prosthetic heart valves
US11607311B2 (en) 2008-01-24 2023-03-21 Medtronic, Inc. Stents for prosthetic heart valves
US11154398B2 (en) 2008-02-26 2021-10-26 JenaValve Technology. Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8613765B2 (en) 2008-02-28 2013-12-24 Medtronic, Inc. Prosthetic heart valve systems
US8961593B2 (en) 2008-02-28 2015-02-24 Medtronic, Inc. Prosthetic heart valve systems
US9011525B2 (en) * 2008-02-29 2015-04-21 The Florida International University Board Of Trustees Catheter deliverable artificial multi-leaflet heart valve prosthesis and intravascular delivery system for a catheter deliverable heart valve prosthesis
US20110295361A1 (en) * 2008-02-29 2011-12-01 The Florida International University Board Of Trustees Catheter Deliverable Artificial Multi-Leaflet Heart Valve Prosthesis and Intravascular Delivery System for a Catheter Deliverable Heart Valve Prosthesis
US11278408B2 (en) 2008-03-18 2022-03-22 Medtronic Venter Technologies, Ltd. Valve suturing and implantation procedures
US20090240264A1 (en) * 2008-03-18 2009-09-24 Yosi Tuval Medical suturing device and method for use thereof
US10856979B2 (en) 2008-03-18 2020-12-08 Medtronic Ventor Technologies Ltd. Valve suturing and implantation procedures
US11602430B2 (en) 2008-03-18 2023-03-14 Medtronic Ventor Technologies Ltd. Valve suturing and implantation procedures
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8696689B2 (en) 2008-03-18 2014-04-15 Medtronic Ventor Technologies Ltd. Medical suturing device and method for use thereof
US9592120B2 (en) 2008-03-18 2017-03-14 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8430927B2 (en) 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US10245142B2 (en) 2008-04-08 2019-04-02 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
WO2009129002A1 (en) * 2008-04-16 2009-10-22 Abiomed, Inc. Method and apparatus for implanting an endoluminal prosthesis such as a prosthetic valve
US20090264820A1 (en) * 2008-04-16 2009-10-22 Abiomed, Inc. Method and apparatus for implanting an endoluminal prosthesis such as a prosthetic valve
US8511244B2 (en) 2008-04-23 2013-08-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US8312825B2 (en) 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US8696743B2 (en) 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US8840661B2 (en) 2008-05-16 2014-09-23 Sorin Group Italia S.R.L. Atraumatic prosthetic heart valve prosthesis
US20090048668A1 (en) * 2008-06-13 2009-02-19 Cardiosolutions, Inc. System and Method for Implanting a Heart Implant
US8591460B2 (en) 2008-06-13 2013-11-26 Cardiosolutions, Inc. Steerable catheter and dilator and system and method for implanting a heart implant
US9259317B2 (en) 2008-06-13 2016-02-16 Cardiosolutions, Inc. System and method for implanting a heart implant
US9943407B2 (en) 2008-09-15 2018-04-17 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US10806570B2 (en) 2008-09-15 2020-10-20 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US11026786B2 (en) 2008-09-15 2021-06-08 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8998981B2 (en) 2008-09-15 2015-04-07 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
US11166815B2 (en) 2008-09-17 2021-11-09 Medtronic CV Luxembourg S.a.r.l Delivery system for deployment of medical devices
US10321997B2 (en) 2008-09-17 2019-06-18 Medtronic CV Luxembourg S.a.r.l. Delivery system for deployment of medical devices
US9532873B2 (en) 2008-09-17 2017-01-03 Medtronic CV Luxembourg S.a.r.l. Methods for deployment of medical devices
US11819404B2 (en) 2008-09-29 2023-11-21 Edwards Lifesciences Cardiaq Llc Heart valve
US10149756B2 (en) 2008-09-29 2018-12-11 Edwards Lifesciences Cardiaq Llc Heart valve
US10646334B2 (en) 2008-09-29 2020-05-12 Edwards Lifesciences Cardiaq Llc Heart valve
US11589983B2 (en) 2008-09-29 2023-02-28 Edwards Lifesciences Cardiaq Llc Heart valve
US9456896B2 (en) 2008-09-29 2016-10-04 Edwards Lifesciences Cardiaq Llc Body cavity prosthesis
US9597183B2 (en) 2008-10-01 2017-03-21 Edwards Lifesciences Cardiaq Llc Delivery system for vascular implant
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
US10285820B2 (en) 2008-11-12 2019-05-14 Stout Medical Group, L.P. Fixation device and method
US10292828B2 (en) 2008-11-12 2019-05-21 Stout Medical Group, L.P. Fixation device and method
US10940014B2 (en) 2008-11-12 2021-03-09 Stout Medical Group, L.P. Fixation device and method
US10285819B2 (en) 2008-11-12 2019-05-14 Stout Medical Group, L.P. Fixation device and method
US20110245859A1 (en) * 2008-12-15 2011-10-06 Assis Medical Ltd. Device, system and method for sizing of tissue openings
WO2010070633A1 (en) * 2008-12-15 2010-06-24 Assis Medical Ltd. Device, system and method for sizing of tissue openings
US9005139B2 (en) * 2008-12-15 2015-04-14 Assis Medical Ltd. Device, system and method for sizing of tissue openings
US10098733B2 (en) 2008-12-23 2018-10-16 Sorin Group Italia S.R.L. Expandable prosthetic valve having anchoring appendages
US8834563B2 (en) 2008-12-23 2014-09-16 Sorin Group Italia S.R.L. Expandable prosthetic valve having anchoring appendages
US9339380B2 (en) 2009-04-15 2016-05-17 Edwards Lifesciences Cardiaq Llc Vascular implant
US9333074B2 (en) 2009-04-15 2016-05-10 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US9585747B2 (en) 2009-04-15 2017-03-07 Edwards Lifesciences Cardiaq Llc Vascular implant
US9339378B2 (en) 2009-04-15 2016-05-17 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US10441412B2 (en) 2009-04-15 2019-10-15 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US9339379B2 (en) 2009-04-15 2016-05-17 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US9333073B2 (en) 2009-04-15 2016-05-10 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery method
US11376119B2 (en) 2009-04-15 2022-07-05 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US8512397B2 (en) 2009-04-27 2013-08-20 Sorin Group Italia S.R.L. Prosthetic vascular conduit
US9168105B2 (en) 2009-05-13 2015-10-27 Sorin Group Italia S.R.L. Device for surgical interventions
US8353953B2 (en) 2009-05-13 2013-01-15 Sorin Biomedica Cardio, S.R.L. Device for the in situ delivery of heart valves
US8403982B2 (en) 2009-05-13 2013-03-26 Sorin Group Italia S.R.L. Device for the in situ delivery of heart valves
US10524901B2 (en) 2009-09-29 2020-01-07 Edwards Lifesciences Cardiaq Llc Replacement heart valve
US9730790B2 (en) 2009-09-29 2017-08-15 Edwards Lifesciences Cardiaq Llc Replacement valve and method
US9949827B2 (en) 2009-09-29 2018-04-24 Edwards Lifesciences Cardiaq Llc Replacement heart valves, delivery devices and methods
US9480560B2 (en) 2009-09-29 2016-11-01 Edwards Lifesciences Cardiaq Llc Method of securing an intralumenal frame assembly
US10166097B2 (en) 2009-09-29 2019-01-01 Edwards Lifesciences Cardiaq Llc Replacement heart valve and method
US8808369B2 (en) 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US9925044B2 (en) 2010-04-01 2018-03-27 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US11833041B2 (en) 2010-04-01 2023-12-05 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US10716665B2 (en) 2010-04-01 2020-07-21 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US11554010B2 (en) 2010-04-01 2023-01-17 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US9248014B2 (en) 2010-05-05 2016-02-02 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US11432924B2 (en) 2010-05-05 2022-09-06 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US10449042B2 (en) 2010-05-05 2019-10-22 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US9241790B2 (en) 2010-05-05 2016-01-26 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US11419720B2 (en) 2010-05-05 2022-08-23 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US9770329B2 (en) 2010-05-05 2017-09-26 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US8535380B2 (en) 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
US10478299B2 (en) 2010-05-19 2019-11-19 Dfm, Llc Low crossing profile delivery catheter for cardiovascular prosthetic implant
US9603708B2 (en) 2010-05-19 2017-03-28 Dfm, Llc Low crossing profile delivery catheter for cardiovascular prosthetic implant
US9248017B2 (en) 2010-05-21 2016-02-02 Sorin Group Italia S.R.L. Support device for valve prostheses and corresponding kit
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US11452597B2 (en) 2010-06-21 2022-09-27 Edwards Lifesciences Cardiaq Llc Replacement heart valve
US10485660B2 (en) 2010-06-21 2019-11-26 Edwards Lifesciences Cardiaq Llc Replacement heart valve
US10639146B2 (en) 2010-06-21 2020-05-05 Edwards Lifesciences Cardiaq Llc Replacement heart valve
US10070968B2 (en) 2010-08-24 2018-09-11 Flexmedex, LLC Support device and method for use
US11786368B2 (en) 2010-09-01 2023-10-17 Medtronic Vascular Galway Prosthetic valve support structure
US10835376B2 (en) 2010-09-01 2020-11-17 Medtronic Vascular Galway Prosthetic valve support structure
US9918833B2 (en) 2010-09-01 2018-03-20 Medtronic Vascular Galway Prosthetic valve support structure
US11775613B2 (en) 2010-09-10 2023-10-03 Edwards Lifesciences Corporation Methods of safely expanding prosthetic heart valves
US9968450B2 (en) 2010-09-10 2018-05-15 Edwards Lifesciences Corporation Methods for ensuring safe and rapid deployment of prosthetic heart valves
US10869760B2 (en) 2010-09-10 2020-12-22 Symetis Sa Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US9125741B2 (en) 2010-09-10 2015-09-08 Edwards Lifesciences Corporation Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves
US10722358B2 (en) 2010-09-10 2020-07-28 Edwards Lifesciences Corporation Systems for rapidly deployable surgical heart valves
US10039641B2 (en) 2010-09-10 2018-08-07 Edwards Lifesciences Corporation Methods of rapidly deployable surgical heart valves
US10548728B2 (en) 2010-09-10 2020-02-04 Edwards Lifesciences Corporation Safety systems for expansion of prosthetic heart valves
US9504563B2 (en) 2010-09-10 2016-11-29 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
US11471279B2 (en) 2010-09-10 2022-10-18 Edwards Lifesciences Corporation Systems for rapidly deployable surgical heart valves
US11197757B2 (en) 2010-09-10 2021-12-14 Edwards Lifesciences Corporation Methods of safely expanding prosthetic heart valves
US10201418B2 (en) 2010-09-10 2019-02-12 Symetis, SA Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US10610362B2 (en) 2010-09-23 2020-04-07 Edwards Lifesciences Cardiaq Llc Replacement heart valves, delivery devices and methods
US10881510B2 (en) 2010-09-23 2021-01-05 Edwards Lifesciences Cardiaq Llc Replacement heart valves, delivery devices and methods
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
US11648119B2 (en) 2011-01-28 2023-05-16 Polares Medical Inc. Coaptation enhancement implant, system, and method
US11648120B2 (en) 2011-01-28 2023-05-16 Polares Medical Inc. Coaptation enhancement implant, system, and method
US10470883B2 (en) 2011-01-28 2019-11-12 Polares Medical Inc. Coaptation enhancement implant, system, and method
US11678986B2 (en) 2011-01-28 2023-06-20 Polares Medical Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US9610163B2 (en) 2011-01-28 2017-04-04 Middle Peak Medical, Inc. Coaptation enhancement implant, system, and method
US9592118B2 (en) 2011-01-28 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US11419722B2 (en) 2011-01-28 2022-08-23 Polares Medical Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US11413145B2 (en) 2011-01-28 2022-08-16 Polares Medical Inc. Coaptation enhancement implant, system, and method
US11426279B2 (en) 2011-01-28 2022-08-30 Polares Medical Inc. Coaptation enhancement implant, system, and method
US10512542B2 (en) 2011-01-28 2019-12-24 Polares Medical Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US9289289B2 (en) 2011-02-14 2016-03-22 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
US9161836B2 (en) 2011-02-14 2015-10-20 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
US20130325103A1 (en) * 2011-02-18 2013-12-05 National Cancer Center Abdominal cavity-vein shunt stent
US9393133B2 (en) * 2011-02-18 2016-07-19 Piolax Medical Devices, Inc. Abdominal cavity-vein shunt stent
US11903825B2 (en) 2011-02-23 2024-02-20 Edwards Lifesciences Cardiaq Llc Replacement heart valve and method
US10779938B2 (en) 2011-02-23 2020-09-22 Edwards Lifesciences Cardiaq Llc Replacement heart valve and method
US8728155B2 (en) 2011-03-21 2014-05-20 Cephea Valve Technologies, Inc. Disk-based valve apparatus and method for the treatment of valve dysfunction
US11931252B2 (en) 2011-03-21 2024-03-19 Cephea Valve Technologies, Inc. Disk-based valve apparatus and method for the treatment of valve dysfunction
US10456255B2 (en) 2011-03-21 2019-10-29 Cephea Valve Technologies, Inc. Disk-based valve apparatus and method for the treatment of valve dysfunction
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9713529B2 (en) 2011-04-28 2017-07-25 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US11771544B2 (en) 2011-05-05 2023-10-03 Symetis Sa Method and apparatus for compressing/loading stent-valves
US10058313B2 (en) 2011-05-24 2018-08-28 Sorin Group Italia S.R.L. Transapical valve replacement
US8998976B2 (en) 2011-07-12 2015-04-07 Boston Scientific Scimed, Inc. Coupling system for medical devices
US9050112B2 (en) 2011-08-23 2015-06-09 Flexmedex, LLC Tissue removal device and method
US10537422B2 (en) 2011-11-23 2020-01-21 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US11413139B2 (en) 2011-11-23 2022-08-16 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9370421B2 (en) 2011-12-03 2016-06-21 Boston Scientific Scimed, Inc. Medical device handle
US8685084B2 (en) 2011-12-29 2014-04-01 Sorin Group Italia S.R.L. Prosthetic vascular conduit and assembly method
US9138314B2 (en) 2011-12-29 2015-09-22 Sorin Group Italia S.R.L. Prosthetic vascular conduit and assembly method
US10172708B2 (en) 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
US11497602B2 (en) 2012-02-14 2022-11-15 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US10363133B2 (en) 2012-02-14 2019-07-30 Neovac Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US10898321B2 (en) 2012-03-22 2021-01-26 Symetis Sa Transcatheter stent-valves
US11207176B2 (en) 2012-03-22 2021-12-28 Boston Scientific Scimed, Inc. Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage
US10258464B2 (en) 2012-03-22 2019-04-16 Symetis Sa Transcatheter stent-valves
US10080656B2 (en) 2012-04-19 2018-09-25 Caisson Interventional Llc Heart valve assembly systems and methods
US10285810B2 (en) 2012-04-19 2019-05-14 Caisson Interventional, LLC Valve replacement systems and methods
US10660750B2 (en) 2012-04-19 2020-05-26 Caisson Interventional, LLC Heart valve assembly systems and methods
US9427315B2 (en) * 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US9566152B2 (en) 2012-04-19 2017-02-14 Caisson Interventional, LLC Heart valve assembly and methods
US11051935B2 (en) 2012-04-19 2021-07-06 Caisson Interventional, LLC Valve replacement systems and methods
US9427316B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US20130282110A1 (en) * 2012-04-19 2013-10-24 Caisson Interventional, LLC Valve replacement systems and methods
US9445897B2 (en) 2012-05-01 2016-09-20 Direct Flow Medical, Inc. Prosthetic implant delivery device with introducer catheter
US10016275B2 (en) 2012-05-30 2018-07-10 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US11389294B2 (en) 2012-05-30 2022-07-19 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US10314705B2 (en) 2012-05-30 2019-06-11 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9345573B2 (en) * 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US20140155990A1 (en) * 2012-05-30 2014-06-05 Neovasc Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US11617650B2 (en) 2012-05-30 2023-04-04 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US10940001B2 (en) 2012-05-30 2021-03-09 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US20130331864A1 (en) * 2012-06-12 2013-12-12 Medtronic, Inc. Method and Device for Percutaneous Valve Annuloplasty
WO2013188077A1 (en) * 2012-06-12 2013-12-19 Medtronic Inc. Method and device for percutaneous valve annuloplasty
US9526610B2 (en) * 2012-06-12 2016-12-27 Medtronic, Inc. Method and device for percutaneous valve annuloplasty
US10716669B2 (en) * 2012-06-12 2020-07-21 Medtronic, Inc. Method and device for percutaneous valve annuloplasty
US20170128211A1 (en) * 2012-06-12 2017-05-11 Medtronic, Inc. Method and device for percutaneous valve annuloplasty
US11382739B2 (en) 2012-06-19 2022-07-12 Boston Scientific Scimed, Inc. Replacement heart valve
US10555809B2 (en) 2012-06-19 2020-02-11 Boston Scientific Scimed, Inc. Replacement heart valve
US11406495B2 (en) 2013-02-11 2022-08-09 Cook Medical Technologies Llc Expandable support frame and medical device
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
CN111685915A (en) * 2013-03-13 2020-09-22 爱德华兹生命科学卡迪尔克有限责任公司 Articulating commissure valve stents and methods
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US10583000B2 (en) 2013-03-14 2020-03-10 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US11324591B2 (en) 2013-03-14 2022-05-10 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US10716664B2 (en) 2013-03-14 2020-07-21 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9833316B2 (en) 2013-03-15 2017-12-05 Cardiosolutions, Inc. Trans-apical implant systems, implants and methods
US9232998B2 (en) 2013-03-15 2016-01-12 Cardiosolutions Inc. Trans-apical implant systems, implants and methods
US9289297B2 (en) 2013-03-15 2016-03-22 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
US11389291B2 (en) 2013-04-04 2022-07-19 Neovase Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US10383728B2 (en) 2013-04-04 2019-08-20 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US20160317294A1 (en) * 2013-05-03 2016-11-03 Cormatrix Cardiovascular, Inc. Prosthetic Tissue Valves
US20160317300A1 (en) * 2013-05-03 2016-11-03 Cormatrix Cardiovascular, Inc. Prosthetic Tissue Valves
US10188513B2 (en) * 2013-05-03 2019-01-29 Cormatrix Cardiovascular, Inc. Prosthetic tissue valves
US20160317292A1 (en) * 2013-05-03 2016-11-03 Cormatrix Cardiovascular, Inc. Prosthetic Tissue Valves
US11793637B2 (en) 2013-05-03 2023-10-24 Medtronic, Inc. Valve delivery tool
US10188509B2 (en) * 2013-05-03 2019-01-29 Cormatrix Cardiovascular, Inc. Prosthetic tissue valves
US10568739B2 (en) 2013-05-03 2020-02-25 Medtronic, Inc. Valve delivery tool
US9629718B2 (en) 2013-05-03 2017-04-25 Medtronic, Inc. Valve delivery tool
US11076952B2 (en) 2013-06-14 2021-08-03 The Regents Of The University Of California Collapsible atrioventricular valve prosthesis
US20160143730A1 (en) * 2013-06-14 2016-05-26 Arash Kheradvar Transcatheter mitral valve
US9980812B2 (en) 2013-06-14 2018-05-29 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
US9545305B2 (en) 2013-06-14 2017-01-17 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
US9968445B2 (en) * 2013-06-14 2018-05-15 The Regents Of The University Of California Transcatheter mitral valve
WO2014203171A1 (en) * 2013-06-17 2014-12-24 Heldman Alan Prosthetic heart valve with linking element and methods for implanting same
US9445894B2 (en) 2013-06-17 2016-09-20 Alan W. HELDMAN Prosthetic heart valve with linking element and methods for implanting same
US10624742B2 (en) 2013-07-17 2020-04-21 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US10154906B2 (en) 2013-07-17 2018-12-18 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US9561103B2 (en) * 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US9554899B2 (en) 2013-07-17 2017-01-31 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US8870948B1 (en) 2013-07-17 2014-10-28 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US10149761B2 (en) 2013-07-17 2018-12-11 Cephea Valve Technlologies, Inc. System and method for cardiac valve repair and replacement
US20150025623A1 (en) * 2013-07-17 2015-01-22 Juan F. Granada System and method for cardiac valve repair and replacement
US11510780B2 (en) 2013-07-17 2022-11-29 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US9421094B2 (en) 2013-10-23 2016-08-23 Caisson Interventional, LLC Methods and systems for heart valve therapy
US10117741B2 (en) 2013-10-23 2018-11-06 Caisson Interventional, LLC Methods and systems for heart valve therapy
US10736736B2 (en) 2013-10-23 2020-08-11 Caisson Interventional, LLC Methods and systems for heart valve therapy
US11833035B2 (en) 2013-10-23 2023-12-05 Caisson Interventional Llc Methods and systems for heart valve therapy
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
US11497606B2 (en) 2013-10-25 2022-11-15 Polares Medical Inc. Systems and methods for transcatheter treatment of valve regurgitation
US11000372B2 (en) 2013-10-25 2021-05-11 Polares Medical Inc. Systems and methods for transcatheter treatment of valve regurgitation
US11633279B2 (en) 2014-02-21 2023-04-25 Edwards Lifesciences Cardiaq Llc Prosthesis, delivery device and methods of use
US10952849B2 (en) 2014-02-21 2021-03-23 Edwards Lifesciences Cardiaq Llc Prosthesis, delivery device and methods of use
US10004599B2 (en) 2014-02-21 2018-06-26 Edwards Lifesciences Cardiaq Llc Prosthesis, delivery device and methods of use
USD755384S1 (en) 2014-03-05 2016-05-03 Edwards Lifesciences Cardiaq Llc Stent
US11571300B2 (en) 2014-05-07 2023-02-07 Baylor College Of Medicine Serially expanding an artificial heart valve within a pediatric patient
US20170189175A1 (en) * 2014-05-07 2017-07-06 Baylor College Of Medicine Artificial, flexible valves and methods of fabricating and serially expanding the same
US11464632B2 (en) 2014-05-07 2022-10-11 Baylor College Of Medicine Transcatheter and serially-expandable artificial heart valve
US11045313B2 (en) 2014-05-19 2021-06-29 Edwards Lifesciences Cardiaq Llc Replacement mitral valve
US10179044B2 (en) 2014-05-19 2019-01-15 Edwards Lifesciences Cardiaq Llc Replacement mitral valve
US10687939B2 (en) 2014-06-06 2020-06-23 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
US11684471B2 (en) 2014-06-06 2023-06-27 Edwards Lifesciences Corporation Prosthetic valve for replacing a native mitral or tricuspid valve
US10010414B2 (en) 2014-06-06 2018-07-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
US10835375B2 (en) 2014-06-12 2020-11-17 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
US10500048B2 (en) 2014-06-18 2019-12-10 Polares Medical Inc. Mitral valve implants for the treatment of valvular regurgitation
US11622759B2 (en) 2014-06-24 2023-04-11 Polares Medical Inc. Systems and methods for anchoring an implant
US10251635B2 (en) 2014-06-24 2019-04-09 Middle Peak Medical, Inc. Systems and methods for anchoring an implant
US11439506B2 (en) 2014-10-23 2022-09-13 Caisson Interventional Llc Systems and methods for heart valve therapy
US10603167B2 (en) 2014-10-23 2020-03-31 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750606B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
EP3753535A1 (en) * 2014-11-05 2020-12-23 Medtronic Vascular Inc. Transcatheter valve prosthesis having an external skirt for sealing and preventing paravalvular leakage
US11717407B2 (en) 2014-11-05 2023-08-08 Medtronic Vascular, Inc. Transcatheter valve prosthesis having an external skirt for sealing and preventing paravalvular leakage
EP4059477A1 (en) * 2014-11-05 2022-09-21 Medtronic Vascular Inc. Transcatheter valve prosthesis having an external skirt for sealing and preventing paravalvular leakage
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
US11147665B2 (en) 2014-12-09 2021-10-19 Cepha Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10433953B2 (en) 2014-12-09 2019-10-08 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10548721B2 (en) 2014-12-09 2020-02-04 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US9439757B2 (en) 2014-12-09 2016-09-13 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US9492273B2 (en) 2014-12-09 2016-11-15 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10869755B2 (en) 2014-12-09 2020-12-22 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10449043B2 (en) 2015-01-16 2019-10-22 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US10201417B2 (en) 2015-02-03 2019-02-12 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US11065113B2 (en) 2015-03-13 2021-07-20 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US11497600B2 (en) 2015-03-19 2022-11-15 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10449039B2 (en) 2015-03-19 2019-10-22 Caisson Interventional, LLC Systems and methods for heart valve therapy
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11786373B2 (en) 2015-05-14 2023-10-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US10470881B2 (en) 2015-05-14 2019-11-12 Cephea Valve Technologies, Inc. Replacement mitral valves
US10143552B2 (en) 2015-05-14 2018-12-04 Cephea Valve Technologies, Inc. Replacement mitral valves
US10555808B2 (en) 2015-05-14 2020-02-11 Cephea Valve Technologies, Inc. Replacement mitral valves
US10849746B2 (en) 2015-05-14 2020-12-01 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US11617646B2 (en) 2015-05-14 2023-04-04 Cephea Valve Technologies, Inc. Replacement mitral valves
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US11730595B2 (en) 2015-07-02 2023-08-22 Boston Scientific Scimed, Inc. Adjustable nosecone
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10856973B2 (en) 2015-08-12 2020-12-08 Boston Scientific Scimed, Inc. Replacement heart valve implant
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10575951B2 (en) 2015-08-26 2020-03-03 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement mitral valve
US11278405B2 (en) 2015-08-26 2022-03-22 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement valve
US10350066B2 (en) 2015-08-28 2019-07-16 Edwards Lifesciences Cardiaq Llc Steerable delivery system for replacement mitral valve and methods of use
US11253364B2 (en) 2015-08-28 2022-02-22 Edwards Lifesciences Cardiaq Llc Steerable delivery system for replacement mitral valve and methods of use
US10376365B2 (en) 2015-11-06 2019-08-13 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US11160656B2 (en) 2015-11-06 2021-11-02 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10143554B2 (en) * 2015-12-03 2018-12-04 Medtronic Vascular, Inc. Venous valve prostheses
US20170156863A1 (en) * 2015-12-03 2017-06-08 Medtronic Vascular, Inc. Venous valve prostheses
US10973640B2 (en) 2015-12-03 2021-04-13 Medtronic Vascular, Inc. Venous valve prostheses
US11684476B2 (en) 2015-12-03 2023-06-27 Medtronic Vascular, Inc. Venous valve prostheses
US10939998B2 (en) 2015-12-30 2021-03-09 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10265166B2 (en) 2015-12-30 2019-04-23 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US20170296262A1 (en) * 2016-04-13 2017-10-19 Biosense Webster (Israel) Ltd. Pulmonary-vein cork device with ablation guiding trench
CN107280760A (en) * 2016-04-13 2017-10-24 韦伯斯特生物官能(以色列)有限公司 Pulmonary vein plug device with ablation guiding groove
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
US11382742B2 (en) 2016-05-13 2022-07-12 Boston Scientific Scimed, Inc. Medical device handle
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US20170325938A1 (en) 2016-05-16 2017-11-16 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US10709552B2 (en) 2016-05-16 2020-07-14 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US11224507B2 (en) 2016-07-21 2022-01-18 Edwards Lifesciences Corporation Replacement heart valve prosthesis
US10350062B2 (en) 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
US10646340B2 (en) 2016-08-19 2020-05-12 Edwards Lifesciences Corporation Steerable delivery system for replacement mitral valve
US11931258B2 (en) 2016-08-19 2024-03-19 Edwards Lifesciences Corporation Steerable delivery system for replacement mitral valve and methods of use
US10639143B2 (en) 2016-08-26 2020-05-05 Edwards Lifesciences Corporation Multi-portion replacement heart valve prosthesis
US11504229B2 (en) 2016-08-26 2022-11-22 Edwards Lifesciences Corporation Multi-portion replacement heart valve prosthesis
US11510778B2 (en) 2016-11-02 2022-11-29 Edwards Lifesciences Corporation Supra and sub-annular mitral valve delivery system
US10758348B2 (en) 2016-11-02 2020-09-01 Edwards Lifesciences Corporation Supra and sub-annular mitral valve delivery system
US11090158B2 (en) 2017-01-23 2021-08-17 Cephea Valve Technologies, Inc. Replacement mitral valves
US11058535B2 (en) 2017-01-23 2021-07-13 Cephea Valve Technologies, Inc. Replacement mitral valves
US10568737B2 (en) 2017-01-23 2020-02-25 Cephea Valve Technologies, Inc. Replacement mitral valves
US10368990B2 (en) 2017-01-23 2019-08-06 Cephea Valve Technologies, Inc. Replacement mitral valves
US11633278B2 (en) 2017-01-23 2023-04-25 Cephea Valve Technologies, Inc. Replacement mitral valves
US10828153B2 (en) 2017-01-23 2020-11-10 Cephea Valve Technologies, Inc. Replacement mitral valves
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US10123874B2 (en) 2017-03-13 2018-11-13 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US11672659B2 (en) 2017-03-13 2023-06-13 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US11534302B2 (en) 2017-03-13 2022-12-27 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US11298229B2 (en) 2017-03-13 2022-04-12 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10702386B2 (en) 2017-03-13 2020-07-07 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10828154B2 (en) 2017-06-08 2020-11-10 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
US11883287B2 (en) 2017-07-06 2024-01-30 Edwards Lifesciences Corporation Steerable rail delivery system
US10813757B2 (en) 2017-07-06 2020-10-27 Edwards Lifesciences Corporation Steerable rail delivery system
US11123186B2 (en) 2017-07-06 2021-09-21 Edwards Lifesciences Corporation Steerable delivery system and components
US10898325B2 (en) 2017-08-01 2021-01-26 Boston Scientific Scimed, Inc. Medical implant locking mechanism
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11246625B2 (en) 2018-01-19 2022-02-15 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
US11191641B2 (en) 2018-01-19 2021-12-07 Boston Scientific Scimed, Inc. Inductance mode deployment sensors for transcatheter valve system
US11684474B2 (en) 2018-01-25 2023-06-27 Edwards Lifesciences Corporation Delivery system for aided replacement valve recapture and repositioning post-deployment
US11147668B2 (en) 2018-02-07 2021-10-19 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
US11439732B2 (en) 2018-02-26 2022-09-13 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11051934B2 (en) 2018-02-28 2021-07-06 Edwards Lifesciences Corporation Prosthetic mitral valve with improved anchors and seal
US11229517B2 (en) 2018-05-15 2022-01-25 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11504231B2 (en) 2018-05-23 2022-11-22 Corcym S.R.L. Cardiac valve prosthesis
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
US11241312B2 (en) 2018-12-10 2022-02-08 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11723783B2 (en) 2019-01-23 2023-08-15 Neovasc Medical Ltd. Covered flow modifying apparatus
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
CN114096205A (en) * 2019-05-20 2022-02-25 V-波有限责任公司 System and method for creating room shunt tubes
US20200383780A1 (en) * 2019-06-07 2020-12-10 Medtronic, Inc. Balloon expandable transcatheter valve deployment devices and methods
US11622857B2 (en) * 2019-06-07 2023-04-11 Medtronic, Inc. Balloon expandable transcatheter valve deployment devices and methods
US11951007B2 (en) 2020-04-13 2024-04-09 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US11951001B2 (en) 2020-07-08 2024-04-09 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grapsing intralumenal tissue and methods of delivery
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation

Also Published As

Publication number Publication date
US20050251251A1 (en) 2005-11-10
EP1621162B1 (en) 2012-05-30
EP2260798A2 (en) 2010-12-15
EP2260797A3 (en) 2011-01-19
ES2365880T5 (en) 2017-07-07
EP2260798A3 (en) 2011-01-26
US20120083839A1 (en) 2012-04-05
AU5764998A (en) 1998-07-31
EP0967939A1 (en) 2000-01-05
US9629714B2 (en) 2017-04-25
ES2425320T3 (en) 2013-10-14
EP2260797A2 (en) 2010-12-15
US9095432B2 (en) 2015-08-04
US7585321B2 (en) 2009-09-08
US20110087322A1 (en) 2011-04-14
EP0850607A1 (en) 1998-07-01
US20110040375A1 (en) 2011-02-17
EP1621162A3 (en) 2006-06-14
US20050203616A1 (en) 2005-09-15
EP2000115A2 (en) 2008-12-10
US20090132032A9 (en) 2009-05-21
ES2385890T3 (en) 2012-08-02
ES2406086T3 (en) 2013-06-05
US20030014104A1 (en) 2003-01-16
US20150320552A1 (en) 2015-11-12
ES2365880T3 (en) 2011-10-11
EP2000115A3 (en) 2009-12-23
US7846204B2 (en) 2010-12-07
EP2263609B1 (en) 2016-01-13
US8591575B2 (en) 2013-11-26
US8057540B2 (en) 2011-11-15
EP2000115B2 (en) 2017-01-25
WO1998029057A1 (en) 1998-07-09
US20080077236A1 (en) 2008-03-27
US7846203B2 (en) 2010-12-07
US20030109924A1 (en) 2003-06-12
US6908481B2 (en) 2005-06-21
EP1621162A2 (en) 2006-02-01
EP2260796A2 (en) 2010-12-15
US20140081392A1 (en) 2014-03-20
EP2263609A3 (en) 2011-01-19
DE69740189D1 (en) 2011-06-16
EP2000115B8 (en) 2011-09-28
ES2404141T3 (en) 2013-05-24
EP2000115B1 (en) 2011-05-04
ES2564058T3 (en) 2016-03-17
EP2260796B1 (en) 2013-02-20
US9486312B2 (en) 2016-11-08
US8002825B2 (en) 2011-08-23
US20010010017A1 (en) 2001-07-26
EP2260798B1 (en) 2013-06-05
US20080009940A1 (en) 2008-01-10
EP2260796A3 (en) 2011-01-19
EP2263609A2 (en) 2010-12-22
CA2276527A1 (en) 1998-07-09
EP2260797B1 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
US9629714B2 (en) Collapsible prosthetic valve
US6875231B2 (en) Percutaneously deliverable heart valve

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION