US20010012673A1 - Mos transistor having self-aligned well bias area and method of fabricating the same - Google Patents

Mos transistor having self-aligned well bias area and method of fabricating the same Download PDF

Info

Publication number
US20010012673A1
US20010012673A1 US09/774,859 US77485901A US2001012673A1 US 20010012673 A1 US20010012673 A1 US 20010012673A1 US 77485901 A US77485901 A US 77485901A US 2001012673 A1 US2001012673 A1 US 2001012673A1
Authority
US
United States
Prior art keywords
semiconductor substrate
trench
gate
mos transistor
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/774,859
Other versions
US6399987B2 (en
Inventor
Kim Gyu-chul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Assigned to SAMSUNG ELECTRONICS, CO., LTD. reassignment SAMSUNG ELECTRONICS, CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, GYU-CHUL
Publication of US20010012673A1 publication Critical patent/US20010012673A1/en
Application granted granted Critical
Publication of US6399987B2 publication Critical patent/US6399987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET

Definitions

  • the present invention relates to a method of fabricating a semiconductor device, and more particularly, to a MOS transistor employed in a memory cell and a method of fabricating the same.
  • a MOS transistor one of the basic components in a semiconductor integrated circuit, is generally formed in an N-type or P-type well.
  • a drain voltage Vdd is applied to the N wells
  • a source voltage Vss is applied to the P wells.
  • a problem such as a “latch-up” phenomenon may occur in NMOS transistors located relatively far away from the well bias contact due to resistance, which increases in proportion to the distance between an NMOS transistor and its contact.
  • the latch-up is a phenomenon that occurs when a MOS transistor is abnormally turned on due to a change in external voltage, electrical noise or ion radiation, thereby abnormally changing the electrical characteristics of the transistor or damaging the transistor.
  • FIG. 1 is a sectional view for illustrating a well bias area region of a typical MOS transistor.
  • two gate patterns each of which includes a gate oxide film 12 , a gate electrode 14 , a capping layer 16 and a gate spacer 18 , are formed on a semiconductor substrate 10 having a P-well of a first conductivity type.
  • N-type impurity regions referred to as source/drain regions 26 are formed around each gate pattern on the semiconductor substrate 10 .
  • Reference numeral 20 denotes an interlayer insulating film, and reference numeral 22 denotes a contact for the source/drain region 26 .
  • Reference numeral 24 denotes a well bias area which is formed by ion-implantation of impurities of the first conductivity type into the semiconductor substrate 10 .
  • Reference numeral 22 denotes a contact to which voltage Vdd for a transistor is applied.
  • Reference numeral 22 ′ serves as both a contact for the application of voltage Vss and a contact for the application of well bias voltage.
  • a first object of the present invention to provide a MOS transistor having a self-aligned well bias area, in which higher integrity can be achieved by reducing the chip area while its electrical characteristics are sustained without causing a latch-up phenomenon.
  • the present invention provides a MOS transistor having a self-aligned well bias area.
  • the MOS transistor includes: a semiconductor substrate on which a well of a first conductivity type is formed; at least two gate patterns, each of which includes a gate oxide film, a gate electrode and a capping layer, which are sequentially stacked on the semiconductor substrate, and a gate spacer, which is formed on the sidewalls of the gate electrode and the capping layer; source/drain regions doped with second conductivity type impurities, the source/drain regions being formed in the surface of the semiconductor substrate adjacent to the gate patterns; a trench formed between the gate patterns by etching the semiconductor substrate in a manner of self-alignment using the gate spacer; a well bias area formed at the side of the lower portion and the bottom of the trench; and a contact filling the trench.
  • the capping layer is preferably an oxide film or a multiple film including an oxide film, and the contact is formed of tungsten (W).
  • Each of the source/drain regions is composed of an LDD region and a high concentration impurity region.
  • the depth of the trench is formed to pass through the source/drain region and come in contact with the first conductivity type well of the semiconductor substrate.
  • the butted contact is connected to the source/drain region at the side of the upper portion of the trench.
  • the present invention provides a method of fabricating a MOS transistor having a self-aligned well bias area.
  • the method includes the following steps.
  • a gate oxide film, a gate electrode and a capping layer are sequentially stacked on a semiconductor substrate with a first conductivity type well.
  • the capping layer and the gate electrode are patterned, and ion-implantation is performed using the gate electrode as an ion-implantation mask, thereby forming LDD region.
  • a gate spacer is formed.
  • Second conductivity type impurities are ion-implanted in the semiconductor substrate using a gate pattern with the gate spacer as an ion-implantation mask, thereby forming a high concentration impurity region.
  • a photoresist pattern is formed on the resultant structure such that the high concentration impurity region between gate patterns is exposed.
  • the semiconductor substrate is etched in a self-aligning manner using the photoresist pattern, thereby forming a trench deep enough to pass through the high concentration impurity region and to come in contact with the first conductivity type well.
  • First conductivity type impurities are ion-implanted in the side of the lower portion and the bottom of the trench, thereby forming a well bias area.
  • the photoresist pattern is removed and the trench is filled with conductive material, thereby forming a contact.
  • the capping layer is preferably formed of an oxide film or a multiple layer including an oxide film to a thickness of 2000-4000 ⁇ , and its contact is formed of tungsten.
  • the above method may further include the step of forming an interlayer insulating film on the entire surface of the semiconductor substrate to cover the gate pattern after forming the high concentration impurity region.
  • a preferred depth of the trench from the surface of the semiconductor substrate is 0.2-0.8 ⁇ m, and the amount of ion-implantation for forming the well bias area is 1E13-1E15 ions/cm 2 .
  • the contact is formed by sufficiently depositing a conductive material on the semiconductor substrate and planarizing the surface of the resultant structure using a chemical mechanical polishing (CMP) process during which the capping layer is used as a polishing stopper.
  • CMP chemical mechanical polishing
  • the contact is formed in the trench so that circuits having a high integration density can be obtained due to reduction of the area occupied by the circuit on a chip, without degradation of the electrical characteristics of the MOS transistors.
  • FIG. 1 is a sectional view illustrating the well bias area region of a typical MOS transistor
  • FIG. 2 is a sectional view illustrating the well bias area region of a MOS transistor according to the present invention.
  • FIGS. 3 through 8 are sectional views illustrating a step-by-step method of fabricating a MOS transistor having a self-aligned well bias area according to the present invention.
  • a MOS transistor having a self-aligned well bias area includes: a semiconductor substrate 100 on which a well of a first conductivity type is formed; at least two gate patterns 110 , each of which includes a gate oxide film 102 , a gate electrode 104 and a capping layer 106 sequentially stacked on the semiconductor substrate 100 , and a gate spacer 108 formed on the sidewalls of the gate electrode 104 and the capping layer 106 ; source/drain regions 115 doped with second conductivity type impurities formed near the gate patterns 110 and between which a channel area below each gate pattern 110 is interposed; a trench 113 formed between the gate patterns 110 by etching the semiconductor substrate 100 in a self-aligning manner using the gate spacer 108 ; a well bias area 114 formed around the lower portion of the trench 113 ; and a butted contact 116 ′ filling the self-aligned trench 113 .
  • Each of the source/drain regions 115 is composed of an LDD area 111 and a high concentration impurity region 112 .
  • the capping layer 106 may be formed of an oxide film or a multiple layer including an oxide film.
  • the butted contact 116 ′ may be formed of a conductive material such as tungsten.
  • the well bias area 114 is preferably formed so that the concentration of the first conductivity type impurities is 1E18-1E20 ions/cm 3 .
  • the butted contact 116 ′ formed between the two gate patterns 110 is connected to the source/drain regions 115 at the upper side portion of the trench 113 and to the well bias area 114 at the lower side and bottom portion of the trench 113 .
  • FIGS. 3 through 8 are sectional views for explaining a method of fabricating a MOS transistor having a self-aligned well bias area according to the present invention.
  • a gate oxide film 102 , a gate electrode 104 formed of polysilicon, and a capping layer 106 formed of an oxide film or a multiple layer including an oxide film are sequentially stacked on a semiconductor substrate 100 having a well of the first conductivity type, such as a P-type.
  • the gate electrode 104 and the capping layer 106 are deposited to a preferred thickness of 2,000-4,000 ⁇ .
  • a photoresist film (not shown) is deposited on the capping layer 106 , and a photolithographic process is performed, thereby patterning the underlying capping layer 106 and the polysilicon gate electrode 104 .
  • impurities of the second conductivity type such as N-type impurities are ion-implanted in the semiconductor substrate 100 at 5E13-1E15 ions/cm 2 using the patterned capping layer 106 and the gate electrode 104 as an ion-implantation mask.
  • the semiconductor substrate 100 is heat-treated, thereby forming LDD regions 111 on the surface of the semiconductor substrate 100 .
  • an insulating film such as a nitride film for a gate spacer is deposited on the entire surface of the semiconductor substrate 100 to a thickness of 1,000-3000 ⁇ .
  • an anisotropic dry etching process is performed on the insulating film, thereby forming a gate spacer 108 on the sidewalls of the capping layer 106 and the gate electrode 104 .
  • Second conductivity type impurities are ion-implanted in the semiconductor substrate 100 at a high concentration of 3E15 ions/cm 2 or above using the gate pattern 110 as an ion-implantation mask.
  • the semiconductor substrate 100 is heat-treated to form a high concentration impurity region 112 , thereby forming source/drain regions 115 composed of the LDD region 111 and the high concentration impurity region 112 .
  • the gate oxide film 102 is etched on the semiconductor substrate 100 and a photoresist pattern 117 is formed.
  • the photoresist pattern 117 is formed so that the portion between the two gate patterns 110 is exposed.
  • a part of the semiconductor substrate 100 is etched using the photoresist pattern 117 in a self-aligning manner, thereby forming a trench 113 .
  • the trench 113 is positioned to pass through the source/drain region 115 and come in contact with the first conductivity type well formed on the semiconductor substrate 100 . Accordingly, the depth of a trench may vary with the type of semiconductor device employing a corresponding MOS transistor.
  • a preferred trench depth of a MOS transistor for a static random access memory (SRAM) is about 0.2-0.8 ⁇ m from the surface of the semiconductor substrate 100 .
  • an interlayer insulating film may additionally be formed on the entire surface of the semiconductor substrate 100 before forming the photoresist pattern 117 in another embodiment. In this manner, the gate electrode 104 can be protected against potential damage while the trench 113 is being etched.
  • the interlayer insulating film is preferably formed of a single film or multiple film including an oxide film or a nitride film.
  • the formation process of the photoresist pattern 117 does not require high precision as self-aligned etching is performed by using the exposed capping layer 106 and gate spacer 108 , making a slight misalignment a non-crucial factor.
  • First conductivity type impurities are ion-implanted in the semiconductor substrate 100 with the photoresist pattern 117 at about 1E13-1E15 ions/cm 2 , thereby forming a well bias area 114 . Thereafter, heat treatment is applied to stabilize the ion-planted impurities. A preferred concentration of the first conductivity type impurities in the well bias area 114 is maintained at 1E18-1E20 ions/cm 3 upon completion of the heat treatment.
  • the photoresist pattern 117 is removed from the semiconductor substrate 100 after completing the formation of the well bias area 114 . Subsequently, a conductive material such as a tungsten (W) layer is deposited so as to be thick enough to fill the trench 113 and cover the entire surface of the semiconductor substrate 100 .
  • a conductive material such as a tungsten (W) layer is deposited so as to be thick enough to fill the trench 113 and cover the entire surface of the semiconductor substrate 100 .
  • the entire surface of the semiconductor substrate 100 with the tungsten layer 116 is planarized by a chemical mechanical polishing (CMP) process, thereby forming source/drain contacts 116 and a butted contact 116 ′.
  • CMP chemical mechanical polishing
  • the capping layer 106 of the gate pattern 110 serves as a polishing stopper during the CMP process. Accordingly, the butted contact 116 ′ for application of a well bias voltage is formed between the two gate patterns 110 , and the source/drain contacts 116 made of tungsten are formed at the outer sides of the gate patterns 110 .
  • misalignment is prevented since a well bias contact area is formed in a self-aligning manner. Also, since well bias is applied using a trench in the same area, bias can be efficiently applied to a well area without causing a latch-up phenomenon. Lastly, high semiconductor integration can be advantageously achieved since the contact well area can be enlarged by adjusting the trench depth for forming the well bias contact.

Abstract

A MOS transistor having a self-aligned well bias area and a method of fabricating the same provide for efficient application of well bias in a highly integrated semiconductor substrate without causing latch-up. The well bias area is formed at a trench, which is formed by etching a semiconductor substrate in a manner of self-alignment, so that well bias can be efficiently applied to the MOS transistor achieving reduction of the area of a chip without degradation of electrical characteristics.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a method of fabricating a semiconductor device, and more particularly, to a MOS transistor employed in a memory cell and a method of fabricating the same. [0002]
  • 2. Description of the Related Art [0003]
  • A MOS transistor, one of the basic components in a semiconductor integrated circuit, is generally formed in an N-type or P-type well. Here, with the exception of special cases, a drain voltage Vdd is applied to the N wells, and a source voltage Vss is applied to the P wells. When a plurality of NMOS transistors are included in a single P well, only a single common contact is formed for applying well bias to the plurality of NMOS transistors, in order to reduce the chip area, instead of forming a plurality of contacts for individual NMOS transistors. When a single, common contact-type bias contact is used, a problem such as a “latch-up” phenomenon may occur in NMOS transistors located relatively far away from the well bias contact due to resistance, which increases in proportion to the distance between an NMOS transistor and its contact. The latch-up is a phenomenon that occurs when a MOS transistor is abnormally turned on due to a change in external voltage, electrical noise or ion radiation, thereby abnormally changing the electrical characteristics of the transistor or damaging the transistor. [0004]
  • Individual formation of well bias contacts for each of a plurality of NMOS transistors is preferred to prevent the latch-up phenomenon, but this tends to increase the size of a chip. Achieving good electrical characteristics conflicts with reducing the size of a chip, and it is not desirable to sacrifice either aspect. For a compromise between improvement of electrical characteristics and reduction of a chip size, a method of forming a well bias contact for every pair of two transistors has been proposed. [0005]
  • FIG. 1 is a sectional view for illustrating a well bias area region of a typical MOS transistor. Referring to FIG. 1, two gate patterns, each of which includes a [0006] gate oxide film 12, a gate electrode 14, a capping layer 16 and a gate spacer 18, are formed on a semiconductor substrate 10 having a P-well of a first conductivity type. N-type impurity regions referred to as source/drain regions 26, of a second conductivity type are formed around each gate pattern on the semiconductor substrate 10. Reference numeral 20 denotes an interlayer insulating film, and reference numeral 22 denotes a contact for the source/drain region 26. Reference numeral 24 denotes a well bias area which is formed by ion-implantation of impurities of the first conductivity type into the semiconductor substrate 10.
  • [0007] Reference numeral 22 denotes a contact to which voltage Vdd for a transistor is applied. Reference numeral 22′ serves as both a contact for the application of voltage Vss and a contact for the application of well bias voltage.
  • There is a limitation as to how much the area of a contact for applying well bias to typical NMOS transistors in a semiconductor substrate can be reduced, since the reduction may deteriorate the electrical characteristics of a MOS transistor. Accordingly, there is a limitation in improving the integrity of a semiconductor device by reducing the contact area for a MOS transistor. [0008]
  • SUMMARY OF THE INVENTION
  • To address the above limitations, it is a first object of the present invention to provide a MOS transistor having a self-aligned well bias area, in which higher integrity can be achieved by reducing the chip area while its electrical characteristics are sustained without causing a latch-up phenomenon. [0009]
  • It is a second object of the present invention to provide a method of fabricating the MOS transistor having a self-aligned well bias area. [0010]
  • To achieve the first object of the invention, the present invention provides a MOS transistor having a self-aligned well bias area. The MOS transistor includes: a semiconductor substrate on which a well of a first conductivity type is formed; at least two gate patterns, each of which includes a gate oxide film, a gate electrode and a capping layer, which are sequentially stacked on the semiconductor substrate, and a gate spacer, which is formed on the sidewalls of the gate electrode and the capping layer; source/drain regions doped with second conductivity type impurities, the source/drain regions being formed in the surface of the semiconductor substrate adjacent to the gate patterns; a trench formed between the gate patterns by etching the semiconductor substrate in a manner of self-alignment using the gate spacer; a well bias area formed at the side of the lower portion and the bottom of the trench; and a contact filling the trench. [0011]
  • The capping layer is preferably an oxide film or a multiple film including an oxide film, and the contact is formed of tungsten (W). [0012]
  • Each of the source/drain regions is composed of an LDD region and a high concentration impurity region. The depth of the trench is formed to pass through the source/drain region and come in contact with the first conductivity type well of the semiconductor substrate. The butted contact is connected to the source/drain region at the side of the upper portion of the trench. [0013]
  • To achieve the second object of the invention, the present invention provides a method of fabricating a MOS transistor having a self-aligned well bias area. The method includes the following steps. A gate oxide film, a gate electrode and a capping layer are sequentially stacked on a semiconductor substrate with a first conductivity type well. Thereafter, the capping layer and the gate electrode are patterned, and ion-implantation is performed using the gate electrode as an ion-implantation mask, thereby forming LDD region. Subsequently, a gate spacer is formed. Second conductivity type impurities are ion-implanted in the semiconductor substrate using a gate pattern with the gate spacer as an ion-implantation mask, thereby forming a high concentration impurity region. A photoresist pattern is formed on the resultant structure such that the high concentration impurity region between gate patterns is exposed. Next, the semiconductor substrate is etched in a self-aligning manner using the photoresist pattern, thereby forming a trench deep enough to pass through the high concentration impurity region and to come in contact with the first conductivity type well. First conductivity type impurities are ion-implanted in the side of the lower portion and the bottom of the trench, thereby forming a well bias area. Finally, the photoresist pattern is removed and the trench is filled with conductive material, thereby forming a contact. [0014]
  • The capping layer is preferably formed of an oxide film or a multiple layer including an oxide film to a thickness of 2000-4000 Å, and its contact is formed of tungsten. [0015]
  • The above method may further include the step of forming an interlayer insulating film on the entire surface of the semiconductor substrate to cover the gate pattern after forming the high concentration impurity region. [0016]
  • A preferred depth of the trench from the surface of the semiconductor substrate is 0.2-0.8 μm, and the amount of ion-implantation for forming the well bias area is 1E13-1E15 ions/cm[0017] 2.
  • The contact is formed by sufficiently depositing a conductive material on the semiconductor substrate and planarizing the surface of the resultant structure using a chemical mechanical polishing (CMP) process during which the capping layer is used as a polishing stopper. [0018]
  • According to the present invention, the contact is formed in the trench so that circuits having a high integration density can be obtained due to reduction of the area occupied by the circuit on a chip, without degradation of the electrical characteristics of the MOS transistors. [0019]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above objects and advantages of the present invention will become more apparent by describing in detail preferred embodiments thereof with reference to the attached drawings in which: [0020]
  • FIG. 1 is a sectional view illustrating the well bias area region of a typical MOS transistor; [0021]
  • FIG. 2 is a sectional view illustrating the well bias area region of a MOS transistor according to the present invention; and [0022]
  • FIGS. 3 through 8 are sectional views illustrating a step-by-step method of fabricating a MOS transistor having a self-aligned well bias area according to the present invention. [0023]
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. [0024]
  • MOS Transistor Having a Self-Aligned Well Bias Area [0025]
  • Referring to FIG. 2, a MOS transistor having a self-aligned well bias area includes: a [0026] semiconductor substrate 100 on which a well of a first conductivity type is formed; at least two gate patterns 110, each of which includes a gate oxide film 102, a gate electrode 104 and a capping layer 106 sequentially stacked on the semiconductor substrate 100, and a gate spacer 108 formed on the sidewalls of the gate electrode 104 and the capping layer 106; source/drain regions 115 doped with second conductivity type impurities formed near the gate patterns 110 and between which a channel area below each gate pattern 110 is interposed; a trench 113 formed between the gate patterns 110 by etching the semiconductor substrate 100 in a self-aligning manner using the gate spacer 108; a well bias area 114 formed around the lower portion of the trench 113; and a butted contact 116′ filling the self-aligned trench 113.
  • Each of the source/[0027] drain regions 115 is composed of an LDD area 111 and a high concentration impurity region 112. The capping layer 106 may be formed of an oxide film or a multiple layer including an oxide film. The butted contact 116′ may be formed of a conductive material such as tungsten. The well bias area 114 is preferably formed so that the concentration of the first conductivity type impurities is 1E18-1E20 ions/cm3.
  • The butted [0028] contact 116′ formed between the two gate patterns 110 is connected to the source/drain regions 115 at the upper side portion of the trench 113 and to the well bias area 114 at the lower side and bottom portion of the trench 113.
  • Accordingly, a wider area to which well bias is applied can be obtained in a limited small area, thereby preventing problems such as latch-up phenomenon, even in the case of increased integration, where the size of the well bias area is reduced and the chip size is decreased. [0029]
  • Method of Fabricating a MOS transistor Having Self-Aligned Well Bias Area [0030]
  • FIGS. 3 through 8 are sectional views for explaining a method of fabricating a MOS transistor having a self-aligned well bias area according to the present invention. [0031]
  • Referring to FIG. 3, a [0032] gate oxide film 102, a gate electrode 104 formed of polysilicon, and a capping layer 106 formed of an oxide film or a multiple layer including an oxide film are sequentially stacked on a semiconductor substrate 100 having a well of the first conductivity type, such as a P-type. The gate electrode 104 and the capping layer 106 are deposited to a preferred thickness of 2,000-4,000 Å.
  • Referring to FIG. 4, a photoresist film (not shown) is deposited on the [0033] capping layer 106, and a photolithographic process is performed, thereby patterning the underlying capping layer 106 and the polysilicon gate electrode 104. Thereafter, impurities of the second conductivity type such as N-type impurities are ion-implanted in the semiconductor substrate 100 at 5E13-1E15 ions/cm2 using the patterned capping layer 106 and the gate electrode 104 as an ion-implantation mask. After ion-implantation, the semiconductor substrate 100 is heat-treated, thereby forming LDD regions 111 on the surface of the semiconductor substrate 100.
  • Referring to FIG. 5, an insulating film such as a nitride film for a gate spacer is deposited on the entire surface of the [0034] semiconductor substrate 100 to a thickness of 1,000-3000 Å. Next, an anisotropic dry etching process is performed on the insulating film, thereby forming a gate spacer 108 on the sidewalls of the capping layer 106 and the gate electrode 104. Second conductivity type impurities are ion-implanted in the semiconductor substrate 100 at a high concentration of 3E15 ions/cm2 or above using the gate pattern 110 as an ion-implantation mask. After the ion-implantation, the semiconductor substrate 100 is heat-treated to form a high concentration impurity region 112, thereby forming source/drain regions 115 composed of the LDD region 111 and the high concentration impurity region 112.
  • Referring to FIG. 6, the [0035] gate oxide film 102 is etched on the semiconductor substrate 100 and a photoresist pattern 117 is formed. The photoresist pattern 117 is formed so that the portion between the two gate patterns 110 is exposed. Thereafter, a part of the semiconductor substrate 100 is etched using the photoresist pattern 117 in a self-aligning manner, thereby forming a trench 113. The trench 113 is positioned to pass through the source/drain region 115 and come in contact with the first conductivity type well formed on the semiconductor substrate 100. Accordingly, the depth of a trench may vary with the type of semiconductor device employing a corresponding MOS transistor. A preferred trench depth of a MOS transistor for a static random access memory (SRAM) is about 0.2-0.8 μm from the surface of the semiconductor substrate 100.
  • Alternatively, an interlayer insulating film (not shown) may additionally be formed on the entire surface of the [0036] semiconductor substrate 100 before forming the photoresist pattern 117 in another embodiment. In this manner, the gate electrode 104 can be protected against potential damage while the trench 113 is being etched. Like the capping layer 106, the interlayer insulating film is preferably formed of a single film or multiple film including an oxide film or a nitride film.
  • The formation process of the [0037] photoresist pattern 117 does not require high precision as self-aligned etching is performed by using the exposed capping layer 106 and gate spacer 108, making a slight misalignment a non-crucial factor.
  • First conductivity type impurities are ion-implanted in the [0038] semiconductor substrate 100 with the photoresist pattern 117 at about 1E13-1E15 ions/cm2, thereby forming a well bias area 114. Thereafter, heat treatment is applied to stabilize the ion-planted impurities. A preferred concentration of the first conductivity type impurities in the well bias area 114 is maintained at 1E18-1E20 ions/cm3 upon completion of the heat treatment.
  • Referring to FIG. 7, the [0039] photoresist pattern 117 is removed from the semiconductor substrate 100 after completing the formation of the well bias area 114. Subsequently, a conductive material such as a tungsten (W) layer is deposited so as to be thick enough to fill the trench 113 and cover the entire surface of the semiconductor substrate 100.
  • Referring to FIG. 8, the entire surface of the [0040] semiconductor substrate 100 with the tungsten layer 116 is planarized by a chemical mechanical polishing (CMP) process, thereby forming source/drain contacts 116 and a butted contact 116′. The capping layer 106 of the gate pattern 110 serves as a polishing stopper during the CMP process. Accordingly, the butted contact 116′ for application of a well bias voltage is formed between the two gate patterns 110, and the source/drain contacts 116 made of tungsten are formed at the outer sides of the gate patterns 110.
  • According to the present invention, misalignment is prevented since a well bias contact area is formed in a self-aligning manner. Also, since well bias is applied using a trench in the same area, bias can be efficiently applied to a well area without causing a latch-up phenomenon. Lastly, high semiconductor integration can be advantageously achieved since the contact well area can be enlarged by adjusting the trench depth for forming the well bias contact. [0041]
  • The present invention is not restricted to the particular embodiment described above, and it will be apparent to one of ordinary skill in the art that modifications of the described embodiment may be made without departing from the spirit and scope of the invention. [0042]

Claims (15)

What is claimed is:
1. A MOS transistor having a self-aligned well bias region, the MOS transistor comprising:
a semiconductor substrate on which a well of a first conductivity type is formed;
at least two gate patterns, each of which includes a gate oxide film, a gate electrode and a capping layer which are sequentially stacked on the semiconductor substrate, and a gate spacer formed on the sidewalls of the gate electrode and the capping layer;
source/drain regions doped with second conductivity type impurities, the source/drain regions formed in the surface of the semiconductor substrate adjacent to the gate patterns;
a trench formed between the gate patterns by etching the semiconductor substrate in a manner of self-alignment using the gate spacer;
a well bias area formed at the side of the lower portion and the bottom of the trench; and
a contact filling the self-aligned trench.
2. The MOS transistor of
claim 1
, wherein the capping layer comprises one of an oxide film and a multiple film including an oxide film.
3. The MOS transistor of
claim 1
, wherein each of the source/drain regions is composed of an LDD region and a high concentration impurity region.
4. The MOS transistor of
claim 1
, wherein the trench is formed to a depth so as to pass through the source/drain region and come in contact with the first conductivity type well of the semiconductor substrate.
5. The MOS transistor of
claim 1
, wherein the well bias area is doped with first conductivity type impurities at a concentration of 1E18-1E20 ions/cm3.
6. The MOS transistor of
claim 1
, wherein the butted contact is connected to the source/drain region at the side of the upper portion of the trench.
7. The MOS transistor of
claim 1
, wherein the butted contact is formed of tungsten (W).
8. A method of fabricating a MOS transistor having a self-aligned well bias region, the method comprising the steps of:
sequentially stacking a gate oxide film, a gate electrode and a capping layer on a semiconductor substrate having a first conductivity type well;
patterning the capping layer and the gate electrode;
ion-implanting a low concentration of impurities of a second conductivity type in the semiconductor substrate using the patterned gate electrode as an ion-implantation mask, thereby forming an LDD region;
depositing an insulating film for a spacer on the entire surface of the semiconductor substrate with the LDD region and anisotropically etching the resultant structure, thereby forming a gate spacer;
implanting second conductivity type impurities in the semiconductor substrate using a gate pattern with the gate spacer as an ion-implantation mask, thereby forming a high concentration impurity region;
forming a photoresist pattern on the resultant structure such that the high concentration impurity region between gate patterns is exposed;
etching the semiconductor substrate in a self-aligning manner using the capping layer and the gate spacer, thereby forming a trench;
ion-implanting first conductivity type impurities in a side of the lower portion and the bottom of the trench, thereby forming a well bias area; and
removing the photoresist pattern and filling the trench with a conductive material, thereby forming a contact.
9. The method of
claim 8
, wherein the capping layer comprises one of an oxide film and a multiple layer including an oxide film to a thickness of 2000-4000 Å.
10. The method of
claim 8
, further comprising the step of forming an interlayer insulating film on the entire surface of the semiconductor substrate to cover the gate pattern, after forming the high concentration impurity region.
11. The method of
claim 8
, wherein the trench is formed to a depth so as to pass through the high concentration impurity region and come in contact with the first conductivity type well.
12. The method of
claim 8
, wherein the depth of the trench from the surface of the semiconductor substrate is 0.2-0.8 μm.
13. The method of
claim 8
, wherein the conductive material filling the trench is tungsten.
14. The method of
claim 8
, wherein the contact is formed by depositing a conductive material on the entire surface of the semiconductor substrate, from which the photoresist pattern is removed, and planarizing the surface of the resultant structure using a chemical mechanical polishing (CMP) process.
15. The method of
claim 14
, wherein the capping layer is used as a polishing stopper during the chemical mechanical polishing process.
US09/774,859 2000-01-31 2001-01-31 MOS transistor having self-aligned well bias area Expired - Fee Related US6399987B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020000004677A KR20010077099A (en) 2000-01-31 2000-01-31 MOS Transistor having a self aligned well bias structure and method for fabricating the same
KR00-4677 2000-01-31

Publications (2)

Publication Number Publication Date
US20010012673A1 true US20010012673A1 (en) 2001-08-09
US6399987B2 US6399987B2 (en) 2002-06-04

Family

ID=19643085

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/774,859 Expired - Fee Related US6399987B2 (en) 2000-01-31 2001-01-31 MOS transistor having self-aligned well bias area

Country Status (3)

Country Link
US (1) US6399987B2 (en)
JP (1) JP2001217320A (en)
KR (1) KR20010077099A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166667A1 (en) * 2003-02-22 2004-08-26 Ju-Bum Lee Method for manufacturing a semiconductor device
US20050258862A1 (en) * 2004-05-19 2005-11-24 Irfan Rahim Apparatus and methods for adjusting performance of programmable logic devices
US20050280437A1 (en) * 2004-05-19 2005-12-22 David Lewis Apparatus and methods for adjusting performance of integrated circuits
US20060121353A1 (en) * 2004-12-03 2006-06-08 Jang Soon K Lead-acid battery for automobiles
US20060119382A1 (en) * 2004-12-07 2006-06-08 Shumarayev Sergey Y Apparatus and methods for adjusting performance characteristics of programmable logic devices
US20070205824A1 (en) * 2006-03-06 2007-09-06 Srinivas Perisetty Adjustable transistor body bias circuitry
US20070205801A1 (en) * 2006-03-06 2007-09-06 Srinivas Perisetty Latch-up prevention circuitry for integrated circuits with transistor body biasing
US20070205802A1 (en) * 2006-03-06 2007-09-06 Srinivas Perisetty Adjustable transistor body bias generation circuitry with latch-up prevention
US20080054333A1 (en) * 2006-08-29 2008-03-06 Sung Jin Kim Semiconductor Device and Manufacturing Method Thereof
CN110010605A (en) * 2018-01-04 2019-07-12 中芯国际集成电路制造(上海)有限公司 Memory and its working method and forming method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454125B1 (en) * 2001-12-18 2004-10-26 삼성전자주식회사 Semiconductor device and method of fabricating the same
JP4748951B2 (en) * 2004-06-01 2011-08-17 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
GB0508407D0 (en) * 2005-04-26 2005-06-01 Ami Semiconductor Belgium Bvba Alignment of trench for MOS
KR100685578B1 (en) * 2005-04-26 2007-02-22 주식회사 하이닉스반도체 Semiconductor device
US8138540B2 (en) * 2005-10-24 2012-03-20 Macronix International Co., Ltd. Trench type non-volatile memory having three storage locations in one memory cell
US7898014B2 (en) * 2006-03-30 2011-03-01 International Business Machines Corporation Semiconductor device structures with self-aligned doped regions and methods for forming such semiconductor device structures
US20080048186A1 (en) * 2006-03-30 2008-02-28 International Business Machines Corporation Design Structures Incorporating Semiconductor Device Structures with Self-Aligned Doped Regions
KR100841337B1 (en) * 2007-01-12 2008-06-26 삼성전자주식회사 Semiconductor device and method of forming the same
KR100818111B1 (en) * 2007-03-15 2008-03-31 주식회사 하이닉스반도체 Semiconductor device and manufacturing method therof
US8236661B2 (en) * 2009-09-28 2012-08-07 International Business Machines Corporation Self-aligned well implant for improving short channel effects control, parasitic capacitance, and junction leakage
US8860223B1 (en) * 2010-07-15 2014-10-14 Micron Technology, Inc. Resistive random access memory
US9614078B1 (en) * 2015-10-22 2017-04-04 Vanguard International Semiconductor Corporation Metal-oxide field effect transistor having an oxide region within a lightly doped drain region

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3065164B2 (en) * 1992-03-18 2000-07-12 富士通株式会社 Semiconductor device and manufacturing method thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166667A1 (en) * 2003-02-22 2004-08-26 Ju-Bum Lee Method for manufacturing a semiconductor device
US7049225B2 (en) * 2003-02-22 2006-05-23 Sumsung Electronics Co., Ltd. Method for manufacturing vias between conductive patterns utilizing etching mask patterns formed on the conductive patterns
US20060183319A1 (en) * 2003-02-22 2006-08-17 Ju-Bum Lee Method for manufacturing a semiconductor device
US7335589B2 (en) 2003-02-22 2008-02-26 Samsung Electronics Co., Ltd. Method of forming contact via through multiple layers of dielectric material
US20050258862A1 (en) * 2004-05-19 2005-11-24 Irfan Rahim Apparatus and methods for adjusting performance of programmable logic devices
US20050280437A1 (en) * 2004-05-19 2005-12-22 David Lewis Apparatus and methods for adjusting performance of integrated circuits
US7129745B2 (en) 2004-05-19 2006-10-31 Altera Corporation Apparatus and methods for adjusting performance of integrated circuits
US7348827B2 (en) 2004-05-19 2008-03-25 Altera Corporation Apparatus and methods for adjusting performance of programmable logic devices
US20060121353A1 (en) * 2004-12-03 2006-06-08 Jang Soon K Lead-acid battery for automobiles
US20060119382A1 (en) * 2004-12-07 2006-06-08 Shumarayev Sergey Y Apparatus and methods for adjusting performance characteristics of programmable logic devices
US20070205802A1 (en) * 2006-03-06 2007-09-06 Srinivas Perisetty Adjustable transistor body bias generation circuitry with latch-up prevention
US7330049B2 (en) 2006-03-06 2008-02-12 Altera Corporation Adjustable transistor body bias generation circuitry with latch-up prevention
US20070205801A1 (en) * 2006-03-06 2007-09-06 Srinivas Perisetty Latch-up prevention circuitry for integrated circuits with transistor body biasing
US20070205824A1 (en) * 2006-03-06 2007-09-06 Srinivas Perisetty Adjustable transistor body bias circuitry
US7355437B2 (en) 2006-03-06 2008-04-08 Altera Corporation Latch-up prevention circuitry for integrated circuits with transistor body biasing
US20080094100A1 (en) * 2006-03-06 2008-04-24 Altera Corporation Adjustable transistor body bias generation circuitry with latch-up prevention
US7495471B2 (en) 2006-03-06 2009-02-24 Altera Corporation Adjustable transistor body bias circuitry
US7501849B2 (en) 2006-03-06 2009-03-10 Altera Corporation Latch-up prevention circuitry for integrated circuits with transistor body biasing
US7514953B2 (en) 2006-03-06 2009-04-07 Altera Corporation Adjustable transistor body bias generation circuitry with latch-up prevention
US7592832B2 (en) 2006-03-06 2009-09-22 Altera Corporation Adjustable transistor body bias circuitry
US20080054333A1 (en) * 2006-08-29 2008-03-06 Sung Jin Kim Semiconductor Device and Manufacturing Method Thereof
US7763930B2 (en) * 2006-08-29 2010-07-27 Dongbu Hitek Co., Ltd. Semiconductor device and manufacturing method thereof
CN110010605A (en) * 2018-01-04 2019-07-12 中芯国际集成电路制造(上海)有限公司 Memory and its working method and forming method

Also Published As

Publication number Publication date
KR20010077099A (en) 2001-08-17
US6399987B2 (en) 2002-06-04
JP2001217320A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
US6399987B2 (en) MOS transistor having self-aligned well bias area
US7586147B2 (en) Butted source contact and well strap
US6998319B2 (en) Method of manufacturing semiconductor device capable of suppressing impurity concentration reduction in doped channel region arising from formation of gate insulating film
US6391726B1 (en) Method of fabricating integrated circuitry
US7518198B2 (en) Transistor and method for manufacturing the same
US5930616A (en) Methods of forming a field effect transistor and method of forming CMOS circuitry
JPH10214894A (en) Semiconductor device and its manufacture
US20080315319A1 (en) Semiconductor device and manufacturing method of the semiconductor device
US20040175919A1 (en) Borderless contact structure and method of forming the same
GB2315159A (en) Semiconductor device
US7015552B2 (en) Dual work function semiconductor structure with borderless contact and method of fabricating the same
KR20020079792A (en) Maskless process for self-aligned contacts
US7388264B2 (en) Semiconductor device having LDD-type source/drain regions and fabrication method thereof
US20010018243A1 (en) Method for fabricating a semiconductor device
KR100443082B1 (en) Method of manufacturing the transistor in semiconductor device
US6727168B2 (en) Method of forming local interconnects
US7202180B2 (en) Methods of forming semiconductor devices using an etch stop layer
US6380596B1 (en) Method of forming a local interconnect, method of fabricating integrated circuitry comprising an sram cell having a local interconnect and having circuitry peripheral to the sram cell, and method of forming contact plugs
US20040188773A1 (en) Semiconductor device having bit-line contacts, and method of manufacturing the same
KR100642649B1 (en) Semiconductor device applying well bias and method offabricating the same
KR100305880B1 (en) Manufacturing method of transistor
KR20000038331A (en) Fabrication method of semiconductor memory device
KR19990031222A (en) Contact Forming Method of Semiconductor Device
KR20010063744A (en) Method of fabricating a MOS transistor
KR20000003492A (en) Method of fabricating large integrated semiconductor memory device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS, CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, GYU-CHUL;REEL/FRAME:011800/0986

Effective date: 20010127

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140604