US20010016495A1 - Conversion of international mobile station identity (imsi) number - Google Patents

Conversion of international mobile station identity (imsi) number Download PDF

Info

Publication number
US20010016495A1
US20010016495A1 US09/283,143 US28314399A US2001016495A1 US 20010016495 A1 US20010016495 A1 US 20010016495A1 US 28314399 A US28314399 A US 28314399A US 2001016495 A1 US2001016495 A1 US 2001016495A1
Authority
US
United States
Prior art keywords
format
imsi
mobile station
base station
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/283,143
Other versions
US6445929B2 (en
Inventor
Vishal S. Chandnani
Anita R. Garvert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
WSOU Investments LLC
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Priority to US09/283,143 priority Critical patent/US6445929B2/en
Assigned to LUCENT TECHNOLOGIES, INC. reassignment LUCENT TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANDNANI, VISHAL S., GARVERT, ANITA R.
Priority to BR0007118-8A priority patent/BR0007118A/en
Priority to CA002302022A priority patent/CA2302022A1/en
Priority to AU22613/00A priority patent/AU2261300A/en
Priority to EP00302572A priority patent/EP1041844A3/en
Priority to KR1020000016398A priority patent/KR100699642B1/en
Priority to CN00105339A priority patent/CN1273494A/en
Priority to JP2000101550A priority patent/JP2000341766A/en
Publication of US20010016495A1 publication Critical patent/US20010016495A1/en
Application granted granted Critical
Publication of US6445929B2 publication Critical patent/US6445929B2/en
Priority to JP2007015994A priority patent/JP2007124709A/en
Assigned to CREDIT SUISSE AG reassignment CREDIT SUISSE AG SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALCATEL-LUCENT USA INC.
Assigned to ALCATEL-LUCENT USA INC. reassignment ALCATEL-LUCENT USA INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CREDIT SUISSE AG
Assigned to OMEGA CREDIT OPPORTUNITIES MASTER FUND, LP reassignment OMEGA CREDIT OPPORTUNITIES MASTER FUND, LP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WSOU INVESTMENTS, LLC
Assigned to WSOU INVESTMENTS, LLC reassignment WSOU INVESTMENTS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALCATEL LUCENT
Adjusted expiration legal-status Critical
Assigned to WSOU INVESTMENTS, LLC reassignment WSOU INVESTMENTS, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: OCO OPPORTUNITIES MASTER FUND, L.P. (F/K/A OMEGA CREDIT OPPORTUNITIES MASTER FUND LP
Assigned to OT WSOU TERRIER HOLDINGS, LLC reassignment OT WSOU TERRIER HOLDINGS, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WSOU INVESTMENTS, LLC
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/02Inter-networking arrangements

Definitions

  • the present invention relates generally to telecommunications systems and more particularly to wireless communication systems and the conversion of an International Mobile Station Identity (IMSI) number from one format to another format to allow global roaming capability within a code division multiple access (CDMA) cellular communications system.
  • IMSI International Mobile Station Identity
  • CDMA code division multiple access
  • CDMA wireless telephones hereinafter referred to as mobile stations (MS), register with a Mobile Switching Center (MSC) via a base station (BS) by transmitting an encoded associated identification number known as the International Mobile Station Identity (IMSI) number to the serving BS.
  • MSC Mobile Switching Center
  • BS base station
  • IMSI International Mobile Station Identity
  • the IMSI number consists of up to fifteen numerical characters (0-9).
  • An IMSI consists of a three digit mobile country code (MCC) and a variable length national mobile station identity (NMSI).
  • MCC mobile country code
  • NMSI variable length national mobile station identity
  • the NMSI consists of two variable length parts: the mobile network code (MNC) and the mobile station identification number (MSIN).
  • MNC mobile network code
  • MSIN mobile station identification number
  • a Class 0 IMSI is fifteen digits in length.
  • a Class 1 IMSI is less than fifteen digits in length.
  • variable length MNC and MSIN are set by the FCC to three digits and nine digits respectively. This results in IMSI numbers having a length of fifteen digits.
  • a country may set the length of the MNC to be either one, two or three digits and the length of the MSIN to be between one and eleven digits.
  • the length of the MNC plus the length of the MSIN must be no more than twelve digits.
  • An IMSI number is stored in CDMA wireless telephones as three parameters: MCC, IMSI — 11 — 12, and IMSI_S. These IMSI parameters are transmitted from the mobile station to the base station. Additional information that may be transmitted from the mobile station to the base station along with the IMSI number may include an IMSI length indicator, the IMSI Class and the IMSI Type, as described further below. To ensure compatibility between a mobile station and a base station from different manufacturers, the procedures and protocol for the format and transmission of messages from an MS to a BS have been standardized.
  • the IMSI number is transmitted in a format compliant with TIA/EIA/IS-95, and includes the three parameters MCC, IMSI — 11 — 12, and IMSI_S.
  • FIG. 1 is a block diagram of a conventional mobile network illustrating a mobile station (MS) 14 communicating with a mobile switching center (MSC) 10 .
  • MS mobile station
  • MSC mobile switching center
  • CDMA code division multiple access
  • System configuration and operation of a code division multiple access (CDMA) cellular communications system is well known to those skilled in the art. Accordingly, detailed information concerning CDMA system configuration and operation is not provided. However, technical information concerning this topic may be obtained by referring to a number of available documents. For example, for a description of the use of CDMA techniques in a multiple access communications system, reference is made to U.S. Pat. No.
  • the heart of a typical wireless telecommunications system is the Mobile Switching Center that is connected to a plurality of base stations that are dispersed throughout the geographic area serviced by the system.
  • the geographic area serviced by a wireless telecommunications system is partitioned into a number of spatially distinct areas called “cells.”
  • Each MSC is responsible for, among other things, establishing and maintaining calls between mobile stations and between a mobile station and a wireline terminal, which is connected to the system via the local and/or long-distance networks.
  • the mobile station transmits the stored IMSI number to the serving MSC 10 via a base station (BS) 20 .
  • the IMSI number is transmitted over a radio channel 22 in a format compliant with TIA/EIA/IS-95 and detected by antenna 21 of BS 20 .
  • Base station 20 transmits at least a portion of the IMSI number to the serving MSC 10 , such as for example via communication line 24 .
  • the procedures and protocol for communication between the base station 20 and the MSC 10 have also been standardized. For an identification of industry standards relating to these communications, reference is made to TIA/EIA/IS634-A, “MSC-BS Interface for Public Wireless Communication Systems.”
  • the format for messages between base station 20 and MSC 10 is a variable octet field.
  • the serving MSC 10 transmits a Mobile Application Part (MAP) based signal, such as a location update signal, to a home location register (HLR) 12 via a signaling link 26 .
  • MAP Mobile Application Part
  • HLR home location register
  • Such a signal informs the HLR 12 of the network address associated with the MSC 10 currently serving the MS 14 and also requests requisite subscriber information for providing mobile service to the roaming MS 14 .
  • the HLR 12 updates its database to store the network address representing the serving MSC 10 and also copies the requesting subscriber information to a visitor location register (VLR) 30 associated with the serving MSC 10 .
  • VLR visitor location register
  • the network address representing the serving MSC 10 stored in the HLR 12 is later utilized by the mobile network to reroute any incoming call intended for the mobile station 14 to the serving MSC 10 . Accordingly, whenever a telecommunications subscriber dials a telephone number for the mobile station 14 , the HLR 12 is queried by the mobile network to determine the current location of the MS 14 . Utilizing the stored network address in HLR 12 representing the serving MSC 10 , the HLR 12 requests a roaming number from the serving MSC 10 in response to the receipt of the query signal. The roaming number provided by the serving MSC 10 is then used by the telecommunications network to route the incoming signal towards the serving MSC 10 . The serving MSC 10 then pages the mobile station 14 and accordingly establishes a speech connection with the mobile station 14 , if available.
  • MSC 10 will hand-off the communication to MSC 31 and base station 32 .
  • ANSI/TIA/EIA Standard 41 Cellular Radiotelecommunications Intersystem Operations.
  • the format for messages between two MSCs, such as for example MSC 10 and MSC 31 for FIG. 1, as specified by ANSI/TIA/EIA-41 is an 8-octet structure as illustrated in FIG. 2, wherein each of locations A-H represents one bit in each of the eight rows.
  • some manufacturers utilize proprietary interfaces between an MSC and BS that utilize the ANSI/TIA/EIA-41 format.
  • a wireless communication system can support increased IMSI number functionality, i.e., all types of IMSIs in both Class 0 and Class 1, by utilizing more of the information included in the IMSI number, such as for example the MCC and/or IMSI — 11 — 12.
  • IMSI number is received at the BS 20 from the MS 14 in a format that complies with TIA/EIA/IS-95, there exists an incompatibility from a network signaling standpoint since MSC 10 requires the IMSI number in a different format, i.e., a format that complies with ANSI/TIA/EIA-41.
  • the present invention provides a unique method and apparatus for allowing a wireless communication system to offer increased IMSI number functionality and corresponding global roaming capability by converting an identification number received from a particular mobile station in the wireless communication system in a first format to a second format which allows for use of more information included in the identification number.
  • a variable length IMSI number in TIA/EIA/IS-95 format is received at a base station in encoded form.
  • the base station decodes the parameters included in the IMSI number into their original decimal values, and, if all parameters have not been sent in accordance with the IMSI type, will add the proper values for the unsent parameters.
  • the MCC, IMSI_S, and IMSI — 11 — 12 parameters of the IMSI number are then stored in a 15-digit IMSI array. The contents of each location of the 15-digit array are associated with a specific location in an 8-octet structure which is required by ANSI/TIA/EIA-41.
  • the value in each location of the array is converted to Binary Coded Decimal (BCD) format and mapped to its associated location in the 8-octet structure.
  • BCD Binary Coded Decimal
  • the IMSI number will then be in a format compliant with ANSI/TIA/EIA-41, thus allowing a service provider to offer increased IMSI functionality to its customers and allow the IMSI number to be used as a national mobile station identifier which will result in global roaming capability for CDMA telephones.
  • FIG. 1 is a block diagram of a conventional mobile network illustrating a mobile station communicating with a mobile switching center for registering;
  • FIG. 2 illustrates the 8-octet format required for messages being transmitted from one mobile switching center to another mobile switching center in accordance with ANSI/TIA/EIA-41;
  • FIG. 3 illustrates in block diagram form a mobile network capable of mapping an IMSI address from TIA/EIA/IS-95 format to ANSI/TIA/EIA-41 format in accordance with the present invention
  • FIG. 4 illustrates in flow chart form a method for mapping an IMSI address from TIA/EIA/IS-95 format to ANSI/TIA/EIA-41 format in accordance with the present invention
  • FIGS. 5A and 5B illustrate examples of the 15-digit array used in accordance with the present invention
  • FIG. 6 illustrates the location mapping of the 15-digit array to an 8-octet structure for a Class 0 IMSI
  • FIG. 7 illustrates the 8-octet structure after a specific Class 0 IMSI number has been mapped to it
  • FIGS. 8A, 8B and 8 C illustrate examples of the 15-digit array used in accordance with the present invention with an exemplary Class 1 IMSI;
  • FIG. 9 illustrates the location mapping of the 15-digit array to an 8-octet structure for a Class 1 IMSI
  • FIGS. 10A and 10B illustrate the 8-octet structure after the exemplary Class 1 IMSI number has been mapped to it;
  • FIGS. 11A, 11B and 11 C illustrate examples of the 15-digit array used in accordance with the present invention with a second exemplary Class 1 IMSI;
  • FIGS. 12A and 12B illustrate the 8-octet structure after the second exemplary Class 1 IMSI number has been mapped to it.
  • FIGS. 3 - 12 The present invention will be described as set forth in the embodiments illustrated in FIGS. 3 - 12 . Other embodiments may be utilized and structural, logical or programming changes may be made without departing from the spirit or scope of the present invention. Like items are referred to by like reference numerals throughout the description.
  • a service provider of a wireless communication system can offer increased IMSI functionality to their customers by converting the IMSI number received by a base station from a mobile station in TIA/EIA/IS-95 format to ANSI/TIA/EIA-41 format for sending from the base station to a mobile switching center.
  • FIG. 3 is a block diagram of a mobile network capable of increased IMSI functionality in accordance with the present invention.
  • the mobile station 14 Whenever the mobile station 14 turns on its unit for the first time or roams into a new MSC coverage area, the mobile station transmits the stored IMSI number to the serving MSC 10 via a base station (BS) 20 .
  • the IMSI number is transmitted in a format compliant with TIA/EIA/IS-95, and consists of up to 15 numerical characters consisting of three parameters: IMSI_S, IMSI — 11 — 12, and the MCC as previously described.
  • the IMSI number is transmitted over a radio channel 22 and detected by antenna 21 of BS 20 .
  • BS 20 includes a controller 40 adapted to convert the IMSI number sent from MS 14 to BS 20 in TIA/EIA/IS-95 format to an IMSI number in an 8-octet format as required by ANSI/TIA/EIA-41 by utilizing memory 42 .
  • Controller 40 can include a microprocessor, and can be used for other functions within base station 20 as well.
  • Memory 42 can be any type of memory as is known in the art, and can be for example a 15-digit array.
  • the converted IMSI number can then be sent from base station 20 to MSC 10 for processing similarly as described with respect to FIG. 1 in a format compliant with ANSI/TIA/EIA-41, thus allowing a service provider to offer increased IMSI functionality to its customers.
  • MS 14 sends BS 20 up to a 15 digit IMSI number in the following format: Parameter Name Digit Nos. Mobile Country Code MCC 13-15 IMSI Digits 11 and 12 IMSI_11_12 11-12 IMSI Digits 1 through 10 IMSI_S 1-10
  • MS 14 may also send BS 20 the following IMSI address parameters: Parameter Name IMSI length indicator IMSI_ADDR_NUM IMSI Class IMSI_CLASS IMSI Type IMSI_CLASS_X_TYPE Reserved Information RESERVED
  • the MCC is a three-digit number that specifies the country of origin of the subscriber.
  • the specific country code for each country is specified in the International Telecommunication Union document ITU-T recommendation E.212, “Identification Plan for Land Mobile Stations.”
  • the IMSI — 11 — 12 (IMSI digits 11 and 12) are used to represent the 11 th and 12 th digits of the IMSI number.
  • the IMSI_S (IMSI digits 1 through 10) is used to represent the least significant ten digits of the IMSI number.
  • the IMSI_ADDR_NUM is an indicator from which the IMSI length can be calculated. For Class 0 IMSIs, the IMSI is fifteen digits in length. The IMSI_ADDR_NUM will be 0. For Class 1 IMSIs, the IMSI number will be less than fifteen digits in length.
  • the IMSI length can be calculated as follows:
  • NMSI_LENGTH IMSI_ADDR_NUM+4
  • IMSI_LENGTH NMSI_LENGTH+3
  • the IMSI_CLASS and IMSI_CLASS_X_TYPE represent the class and type of the IMSI number based on the length of the IMSI number.
  • the IMSI_CLASS represents the class of the IMSI based on the length of the IMSI number as previously described.
  • the IMSI type provides an indication of the transmitted and omitted parameters between the MS 14 and BS 20 .
  • the MSC 10 is allowed to specify and broadcast the most likely matched IMSI — 11 — 12 and MCC parameters. If the IMSI — 11 — 12 and/or MCC of MS 14 match that being broadcast by MSC 10 , the matching parameter may be omitted from the transmission and the IMSI type is modified to indicate parameter omission.
  • Type 1 IMSI there are four types: Type 0, Type 1, Type 2 and Type 3.
  • Type 0 only the IMSI_S parameter is included in the transmission.
  • Type 1 only the IMSI_S and IMSI — 11 — 12 parameters are included in the transmission.
  • Type 2 only the IMSI_S and MCC parameters are included in the transmission.
  • Type 3 the IMSI_S, IMSI — 11 — 12, and MCC are all included in the transmission.
  • Type 0 and Type 1 IMSI there are two types: Type 0 and Type 1.
  • a Type 0 includes the IMSI_S and IMSI — 11 — 12 parameters.
  • a Type 1 includes the IMSI_S, IMSI — 11 — 12, and MCC parameters.
  • FIG. 4 illustrates a method for mapping an IMSI number in TIA/EIA/IS-95 format as described above to an IMSI number in an 8-octet format as required by ANSI/TIA/EIA-41 according to the present invention.
  • the mobile station 14 sends the base station 20 the following Class 0 IMSI number, i.e., an IMSI number having 15 digits:
  • the base station 20 will receive the IMSI number which is sent by the mobile station 14 in encoded form in accordance with TIA/EIA/IS-95. It should be understood that the IMSI number may include all parameters or only a portion of the parameters depending upon the IMSI_CLASS_X_TYPE as previously described. For example, if the IMSI number above is a Type 0, only the IMSI_S will be included in the IMSI number, and base station 20 will provide the proper values for the MCC and IMSI — 11 — 12 parameters.
  • an array in memory 42 such as for example a 15-digit array, is initialized with all zeroes.
  • the array elements i.e., each location in the array, are numbered from 0 to 14, right to left. Thus, memory array 42 would be as illustrated in FIG. 5A.
  • the decoded original decimal value for IMSI_S is stored in memory 42 in element numbers 0-9.
  • the value of IMSI — 11 — 12 is entered into the array 42 in element numbers 10 and 11 .
  • the MCC is entered into array 42 at the elements corresponding to the values of the NMSI_LENGTH+2, NMSI_LENGTH+1, and NMSI_LENGTH respectively.
  • the MCC of 310 would be entered into element numbers 14, 13 and 12 of array 42 respectively, resulting in memory array 42 appearing as illustrated in FIG. 5B.
  • step 180 the digit in each location of memory array 42 is converted from decimal form to its equivalent four bit Binary Coded Decimal (BCD) format.
  • BCD Binary Coded Decimal
  • the digit 2 in BCD is 0010
  • digit 5 is 0101
  • digit 9 is 1001, etc.
  • Each element number of memory array 42 is associated with a specific column and row of the 8-octet array structure defined by the requirements of ANSI/TIA/EIA-41 as illustrated in FIG. 6.
  • element numbers 0, 2, 4, 6, 8, 10, 12 and 14 from memory array 42 are associated with column 2 of the 8-octet array structure, rows 8-1 respectively.
  • Element numbers 1, 3, 5, 7, 9, 11, and 13 of array 42 are associated with column 1 of the 8-octet array structure, rows 7-1 respectively, and row 8 of column 1 is occupied by a filler as specified by ANSI/TIA/EIA-41, i.e., the BCD number 1111.
  • step 190 the converted decimal number from each element number of memory array 42 or a filler is mapped and inserted into its associated location of the 8-octet array structure.
  • the IMSI number 310002029551212 from above when inserted into the 8-octet array structure would be as illustrated in FIG. 7.
  • the IMSI number is in a format compliant with ANSI/TIA/EIA-41.
  • the 8-octet array structure can be stored in BS 20 and then sent to MSC 10 , or alternatively can be sent from BS 20 directly to MSC 10 .
  • MS 14 sends BS 20 a Class 1 IMSI number, i.e., an IMSI with a length less than 15 digits, such as for example an IMSI of 123456789.
  • the IMSI length is nine digits.
  • the base station 20 will receive the IMSI number which is sent by the mobile station 14 in encoded form in accordance with TIA/EIA/IS-95. It should be understood that the IMSI number may include all parameters or only a portion of the parameters depending upon the IMSI_CLASS_X_TYPE as previously described.
  • the base station 20 decodes the IMSI address parameters. In a Class 1 IMSI, the MCC is the first three digits. Thus, in this example, the MCC is 123.
  • an array in memory 42 such as for example a 15-digit array, is initialized with all zeroes.
  • the array elements, i.e., each location in the array, are numbered from 0 to 14, right to left.
  • memory array 42 would be as illustrated in FIG. 5A.
  • step 140 the IMSI_S is entered into array 42 in element numbers 0-9. Thus, array 42 would appear as illustrated in FIG. 8A.
  • step 150 the value for IMSI — 11 — 12 is entered in element numbers 10 and 11 of array 42 , resulting in array 42 appearing as illustrated in FIG. 8B. It should be noted that the array 42 in FIG. 8B has not changed in appearance from that of FIG. 8A since the values in element numbers 10 and 11 of array 42 in FIG. 8A have been replaced with identical values, i.e., 0,0, in FIG. 8B.
  • NMSI-LENGTH 6.
  • step 170 the MCC is entered in array 42 at the elements corresponding to the values of the NMSI_LENGTH+2, NMSI_LENGTH+1, and NMSI_LENGTH respectively.
  • the MCC of 123 would be entered in the 8 th (NMSI_LENGTH+2), 7 th (NMSI_LENGTH+1) and 6 th (NMSI_LENGTH) elements, resulting in array 42 appearing as illustrated in FIG. 8C.
  • step 180 the digit in each location of memory array 42 is converted from decimal form to its equivalent four bit Binary Coded Decimal (BCD) number as previously described.
  • BCD Binary Coded Decimal
  • column 1, rows 1 through 8 are respectively associated with the element numbers of array 42 specified by the values of NMSI_LENGTH+1, NMSI_LENGTH ⁇ 1, NMSI_LENGTH ⁇ 3, NMSI_LENGTH ⁇ 5, NMSI_LENGTH ⁇ 7, NMSI_LENGTH ⁇ 9, NMSI_LENGTH ⁇ 11, and a filler.
  • Column 2 of the 8-octet array structure, rows 1-8, are associated with the element numbers of array 42 specified by the values of NMSI_LENGTH+2, NMSI_LENGTH, NMSI_LENGTH ⁇ 2, NMSI_LENGTH ⁇ 4, NMSI_LENGTH ⁇ 6, NMSI_LENGTH ⁇ 8, NMSI_LENGTH ⁇ 10, NMSI_LENGTH ⁇ 12 respectively. If the value as determined above results in a number less than zero, a filler is associated with that location in the 8 -octet array.
  • NMSI_LENGTH 9
  • the locations whose associated value is less than zero i.e., NMSI_LENGTH ⁇ 10, MSI_LENGTH ⁇ 11, and NMSI_LENGTH ⁇ 12
  • a filler i.e., BCD number 1111.
  • each row of the 8-octet structure would be associated with an element location of array 42 as illustrated in FIG. 10A.
  • step 190 the BCD number converted from the decimal number from each location of memory array 42 or the filler is mapped and inserted into its associated location of the 8-octet array structure.
  • the IMSI number 123456789 from above would be inserted into the 8-octet array structure as illustrated in FIG. 10B.
  • the IMSI number is in a format compliant with ANSI/TIA/EIA-41.
  • the 8-octet array structure can be stored in BS 20 and then sent to MSC 10 , or alternatively can be sent from BS 20 directly to MSC 10 .
  • FIGS. 11 and 12 illustrate array 42 and an 8-octet array structure for a second example of a Class 1 IMSI number.
  • MS 14 sends BS 20 a Class 1 IMSI number with a length of thirteen digits as follows: 2345123456789.
  • the array 42 When the IMSI_S value is entered into array 42 (step 140 of FIG. 4), the array 42 would appear as illustrated in FIG. 11A.
  • the IMSI — 11 — 12 value is entered into element numbers 10 and 11 of array 42 (step 150 of FIG. 4), the array 42 would appear as illustrated in FIG. 11B.
  • the NMSI_LENGTH in this example is equal to 10 (IMSI_LENGTH (13) ⁇ 3).
  • the MCC will be entered into elements 12, 11, and 10 of array 42 (step 170 of FIG. 4), resulting in array 42 as illustrated in FIG. 11C.
  • each row of the 8-octet structure would be associated with an element location of array 42 as illustrated in FIG. 12A.
  • the 8-octet structure will be as illustrated in FIG. 12B.
  • an IMSI number received by a base station 20 in TIA/EIA/IS-95 format can be converted to ANSI/TIA/EIA-41 format, regardless of the length of the IMSI number, for sending to MSC 10 , thus allowing for compatibility between the mobile station, base station and neighboring mobile switching centers.
  • a wireless communication system can offer increased IMSI number functionality, i.e., support all types for both Class 0 and Class 1 IMSIs, and thus allow for global roaming capability.

Abstract

A unique method and apparatus for allowing a wireless communication system to offer increased IMSI number functionality and corresponding global roaming capability by converting an identification number received from a particular mobile station in the wireless communication system in a first format to a second format which allows for use of more information included in the identification number is disclosed. A variable length IMSI number in TIA/EIA/IS-95 format is received at a base station in encoded form. The base station decodes the parameters included in the IMSI number into their original decimal values, and, if all parameters have not been sent in accordance with the IMSI type, will add the proper values for the unsent parameters. The MCC, IMSI_S, and IMSI_11_12 parameters of the IMSI number are then stored in a 15-digit IMSI array. The contents of each location of the 15-digit array are associated with a specific location in an 8-octet structure which is required by ANSI/TIA/EIA-41. The value in each location of the array is converted to Binary Coded Decimal (BCD) format and mapped to its associated location in the 8-octet structure. The IMSI number will then be in a format compliant with ANSI/TIA/EIA-41, thus allowing a service provider to offer increased IMSI functionality to its customers and allow the IMSI number to be used as a national mobile station identifier.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates generally to telecommunications systems and more particularly to wireless communication systems and the conversion of an International Mobile Station Identity (IMSI) number from one format to another format to allow global roaming capability within a code division multiple access (CDMA) cellular communications system. [0002]
  • 2. Description of the Related Art [0003]
  • CDMA wireless telephones, hereinafter referred to as mobile stations (MS), register with a Mobile Switching Center (MSC) via a base station (BS) by transmitting an encoded associated identification number known as the International Mobile Station Identity (IMSI) number to the serving BS. [0004]
  • The IMSI number consists of up to fifteen numerical characters (0-9). An IMSI consists of a three digit mobile country code (MCC) and a variable length national mobile station identity (NMSI). The NMSI consists of two variable length parts: the mobile network code (MNC) and the mobile station identification number (MSIN). A [0005] Class 0 IMSI is fifteen digits in length. A Class 1 IMSI is less than fifteen digits in length.
  • In the United States the variable length MNC and MSIN are set by the FCC to three digits and nine digits respectively. This results in IMSI numbers having a length of fifteen digits. A country may set the length of the MNC to be either one, two or three digits and the length of the MSIN to be between one and eleven digits. The length of the MNC plus the length of the MSIN must be no more than twelve digits. [0006]
  • An IMSI number is stored in CDMA wireless telephones as three parameters: MCC, IMSI[0007] 1112, and IMSI_S. These IMSI parameters are transmitted from the mobile station to the base station. Additional information that may be transmitted from the mobile station to the base station along with the IMSI number may include an IMSI length indicator, the IMSI Class and the IMSI Type, as described further below. To ensure compatibility between a mobile station and a base station from different manufacturers, the procedures and protocol for the format and transmission of messages from an MS to a BS have been standardized. For an identification of industry standards relating to CDMA cellular communications systems, reference is made to TIA/EIA Standard IS-95, entitled “Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System.” Accordingly, the IMSI number is transmitted in a format compliant with TIA/EIA/IS-95, and includes the three parameters MCC, IMSI1112, and IMSI_S.
  • FIG. 1 is a block diagram of a conventional mobile network illustrating a mobile station (MS) [0008] 14 communicating with a mobile switching center (MSC) 10. System configuration and operation of a code division multiple access (CDMA) cellular communications system is well known to those skilled in the art. Accordingly, detailed information concerning CDMA system configuration and operation is not provided. However, technical information concerning this topic may be obtained by referring to a number of available documents. For example, for a description of the use of CDMA techniques in a multiple access communications system, reference is made to U.S. Pat. No. 4,901,307, entitled “Spread Spectrum Multiple Access Communication System Using Satellite or Terrestrial Repeaters.” Furthermore, for a description of the generation of signal waveforms for use in a CDMA communications system, reference is made to U.S. Pat. No. 5,103,459, entitled “System and Method for Generating Signal Waveforms in a CDMA Cellular System” and U.S. Pat. No. 5,883,888, entitled “Seamless Soft Handoff in a CDMA Cellular Communications System.” The disclosures of the foregoing references are expressly incorporated by reference herein.
  • The heart of a typical wireless telecommunications system is the Mobile Switching Center that is connected to a plurality of base stations that are dispersed throughout the geographic area serviced by the system. The geographic area serviced by a wireless telecommunications system is partitioned into a number of spatially distinct areas called “cells.” Each MSC is responsible for, among other things, establishing and maintaining calls between mobile stations and between a mobile station and a wireline terminal, which is connected to the system via the local and/or long-distance networks. Referring to FIG. 1, whenever the [0009] mobile station 14 activates or roams into a MSC coverage area, i.e., the “cell” for which the MSC is responsible, the mobile station transmits the stored IMSI number to the serving MSC 10 via a base station (BS) 20. The IMSI number is transmitted over a radio channel 22 in a format compliant with TIA/EIA/IS-95 and detected by antenna 21 of BS 20.
  • [0010] Base station 20, in turn, transmits at least a portion of the IMSI number to the serving MSC 10, such as for example via communication line 24. The procedures and protocol for communication between the base station 20 and the MSC 10 have also been standardized. For an identification of industry standards relating to these communications, reference is made to TIA/EIA/IS634-A, “MSC-BS Interface for Public Wireless Communication Systems.” The format for messages between base station 20 and MSC 10 is a variable octet field.
  • In order to provide mobile service to the newly registered MS [0011] 14, the serving MSC 10 transmits a Mobile Application Part (MAP) based signal, such as a location update signal, to a home location register (HLR) 12 via a signaling link 26. Such a signal informs the HLR 12 of the network address associated with the MSC 10 currently serving the MS 14 and also requests requisite subscriber information for providing mobile service to the roaming MS 14. The HLR 12 updates its database to store the network address representing the serving MSC 10 and also copies the requesting subscriber information to a visitor location register (VLR) 30 associated with the serving MSC 10. The network address representing the serving MSC 10 stored in the HLR 12 is later utilized by the mobile network to reroute any incoming call intended for the mobile station 14 to the serving MSC 10. Accordingly, whenever a telecommunications subscriber dials a telephone number for the mobile station 14, the HLR 12 is queried by the mobile network to determine the current location of the MS 14. Utilizing the stored network address in HLR 12 representing the serving MSC 10, the HLR 12 requests a roaming number from the serving MSC 10 in response to the receipt of the query signal. The roaming number provided by the serving MSC 10 is then used by the telecommunications network to route the incoming signal towards the serving MSC 10. The serving MSC 10 then pages the mobile station 14 and accordingly establishes a speech connection with the mobile station 14, if available.
  • If [0012] MS 14 roams out of MSC 10 coverage area and into MSC 31 coverage area, MSC 10 will hand-off the communication to MSC 31 and base station 32. To ensure compatibility between two MSCs, the procedures and protocol for the format and transmission of messages have been standardized. For an identification of industry standards relating to these communications, reference is made to ANSI/TIA/EIA Standard 41, “Cellular Radiotelecommunications Intersystem Operations.” The format for messages between two MSCs, such as for example MSC 10 and MSC 31 for FIG. 1, as specified by ANSI/TIA/EIA-41 is an 8-octet structure as illustrated in FIG. 2, wherein each of locations A-H represents one bit in each of the eight rows. Additionally, some manufacturers utilize proprietary interfaces between an MSC and BS that utilize the ANSI/TIA/EIA-41 format.
  • There are some shortcomings, however, with conventional mobile systems used in the United States. Currently, only a portion of the information included in the IMSI number, specifically the IMSI_S parameter, is sent from the BS to the MSC. As such, information included in the MCC and [0013] IMSI 1112 parameters is not utilized. A wireless communication system that utilizes only the IMSI_S parameter cannot support increased IMSI number functionality, since use of only the IMSI_S parameter allows the system to support only one IMSI class and type, i.e., a Class 0, Type 0 IMSI. Consequently, a CDMA telephone with an IMSI number that has a different class or type than Class 0, Type 0, will be unusable in the United States.
  • By complying with the requirements of ANSI/TIA/EIA-41, a wireless communication system can support increased IMSI number functionality, i.e., all types of IMSIs in both [0014] Class 0 and Class 1, by utilizing more of the information included in the IMSI number, such as for example the MCC and/or IMSI 1112. However, since the IMSI number is received at the BS 20 from the MS 14 in a format that complies with TIA/EIA/IS-95, there exists an incompatibility from a network signaling standpoint since MSC 10 requires the IMSI number in a different format, i.e., a format that complies with ANSI/TIA/EIA-41. If the proper format is not used, a system will be unable to offer global roaming capability since only a portion of the IMSI number can be used, which will result in a loss of customers and corresponding sales. Therefore, it is necessary to convert the IMSI number received from the MS to a format compatible with ANSI/TIA/EIA-41.
  • Thus, there exists a need for a method and apparatus for converting an IMSI number in TIA/EIA/IS-95 format to an IMSI number in ANSI/TIA/EIA-41 format to support increased IMSI number functionality. [0015]
  • SUMMARY OF THE INVENTION
  • The present invention provides a unique method and apparatus for allowing a wireless communication system to offer increased IMSI number functionality and corresponding global roaming capability by converting an identification number received from a particular mobile station in the wireless communication system in a first format to a second format which allows for use of more information included in the identification number. [0016]
  • For example, a variable length IMSI number in TIA/EIA/IS-95 format is received at a base station in encoded form. The base station decodes the parameters included in the IMSI number into their original decimal values, and, if all parameters have not been sent in accordance with the IMSI type, will add the proper values for the unsent parameters. The MCC, IMSI_S, and [0017] IMSI 1112 parameters of the IMSI number are then stored in a 15-digit IMSI array. The contents of each location of the 15-digit array are associated with a specific location in an 8-octet structure which is required by ANSI/TIA/EIA-41. The value in each location of the array is converted to Binary Coded Decimal (BCD) format and mapped to its associated location in the 8-octet structure. The IMSI number will then be in a format compliant with ANSI/TIA/EIA-41, thus allowing a service provider to offer increased IMSI functionality to its customers and allow the IMSI number to be used as a national mobile station identifier which will result in global roaming capability for CDMA telephones.
  • These and other advantages and features of the invention will become apparent from the following detailed description of the invention which is provided in connection with the accompanying drawings. [0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a conventional mobile network illustrating a mobile station communicating with a mobile switching center for registering; [0019]
  • FIG. 2 illustrates the 8-octet format required for messages being transmitted from one mobile switching center to another mobile switching center in accordance with ANSI/TIA/EIA-41; [0020]
  • FIG. 3 illustrates in block diagram form a mobile network capable of mapping an IMSI address from TIA/EIA/IS-95 format to ANSI/TIA/EIA-41 format in accordance with the present invention; [0021]
  • FIG. 4 illustrates in flow chart form a method for mapping an IMSI address from TIA/EIA/IS-95 format to ANSI/TIA/EIA-41 format in accordance with the present invention; [0022]
  • FIGS. 5A and 5B illustrate examples of the 15-digit array used in accordance with the present invention; [0023]
  • FIG. 6 illustrates the location mapping of the 15-digit array to an 8-octet structure for a [0024] Class 0 IMSI;
  • FIG. 7 illustrates the 8-octet structure after a [0025] specific Class 0 IMSI number has been mapped to it;
  • FIGS. 8A, 8B and [0026] 8C illustrate examples of the 15-digit array used in accordance with the present invention with an exemplary Class 1 IMSI;
  • FIG. 9 illustrates the location mapping of the 15-digit array to an 8-octet structure for a [0027] Class 1 IMSI;
  • FIGS. 10A and 10B illustrate the 8-octet structure after the [0028] exemplary Class 1 IMSI number has been mapped to it;
  • FIGS. 11A, 11B and [0029] 11C illustrate examples of the 15-digit array used in accordance with the present invention with a second exemplary Class 1 IMSI; and
  • FIGS. 12A and 12B illustrate the 8-octet structure after the second [0030] exemplary Class 1 IMSI number has been mapped to it.
  • DETAILED DESCRIPTION
  • The present invention will be described as set forth in the embodiments illustrated in FIGS. [0031] 3-12. Other embodiments may be utilized and structural, logical or programming changes may be made without departing from the spirit or scope of the present invention. Like items are referred to by like reference numerals throughout the description.
  • In accordance with the present invention, a service provider of a wireless communication system can offer increased IMSI functionality to their customers by converting the IMSI number received by a base station from a mobile station in TIA/EIA/IS-95 format to ANSI/TIA/EIA-41 format for sending from the base station to a mobile switching center. [0032]
  • FIG. 3 is a block diagram of a mobile network capable of increased IMSI functionality in accordance with the present invention. Whenever the [0033] mobile station 14 turns on its unit for the first time or roams into a new MSC coverage area, the mobile station transmits the stored IMSI number to the serving MSC 10 via a base station (BS) 20. The IMSI number is transmitted in a format compliant with TIA/EIA/IS-95, and consists of up to 15 numerical characters consisting of three parameters: IMSI_S, IMSI 1112, and the MCC as previously described. The IMSI number is transmitted over a radio channel 22 and detected by antenna 21 of BS 20.
  • In accordance with the present invention, [0034] BS 20 includes a controller 40 adapted to convert the IMSI number sent from MS 14 to BS 20 in TIA/EIA/IS-95 format to an IMSI number in an 8-octet format as required by ANSI/TIA/EIA-41 by utilizing memory 42. Controller 40 can include a microprocessor, and can be used for other functions within base station 20 as well. Memory 42 can be any type of memory as is known in the art, and can be for example a 15-digit array. The converted IMSI number can then be sent from base station 20 to MSC 10 for processing similarly as described with respect to FIG. 1 in a format compliant with ANSI/TIA/EIA-41, thus allowing a service provider to offer increased IMSI functionality to its customers.
  • In accordance with TIA/EIA/IS-95, [0035] MS 14 sends BS 20 up to a 15 digit IMSI number in the following format:
    Parameter Name Digit Nos.
    Mobile Country Code MCC 13-15
    IMSI Digits 11 and 12 IMSI_11_12 11-12
    IMSI Digits 1 through 10 IMSI_S  1-10
  • [0036] MS 14 may also send BS 20 the following IMSI address parameters:
    Parameter Name
    IMSI length indicator IMSI_ADDR_NUM
    IMSI Class IMSI_CLASS
    IMSI Type IMSI_CLASS_X_TYPE
    Reserved Information RESERVED
  • The MCC is a three-digit number that specifies the country of origin of the subscriber. The specific country code for each country is specified in the International Telecommunication Union document ITU-T recommendation E.212, “Identification Plan for Land Mobile Stations.” The [0037] IMSI 1112 (IMSI digits 11 and 12) are used to represent the 11 th and 12th digits of the IMSI number. The IMSI_S (IMSI digits 1 through 10) is used to represent the least significant ten digits of the IMSI number. The IMSI_ADDR_NUM is an indicator from which the IMSI length can be calculated. For Class 0 IMSIs, the IMSI is fifteen digits in length. The IMSI_ADDR_NUM will be 0. For Class 1 IMSIs, the IMSI number will be less than fifteen digits in length. The IMSI length can be calculated as follows:
  • NMSI_LENGTH=IMSI_ADDR_NUM+4
  • IMSI_LENGTH=NMSI_LENGTH+3
  • Therefore, the IMSI_LENGTH=[0038] IMSI_ADDR_NUM+7.
  • The IMSI_CLASS and IMSI_CLASS_X_TYPE represent the class and type of the IMSI number based on the length of the IMSI number. The IMSI_CLASS represents the class of the IMSI based on the length of the IMSI number as previously described. For any given IMSI, the IMSI type provides an indication of the transmitted and omitted parameters between the [0039] MS 14 and BS 20. The MSC 10 is allowed to specify and broadcast the most likely matched IMSI 1112 and MCC parameters. If the IMSI 1112 and/or MCC of MS 14 match that being broadcast by MSC 10, the matching parameter may be omitted from the transmission and the IMSI type is modified to indicate parameter omission. By reducing the number of parameters that must be transmitted, the transmission efficiency is increased. For example, for a Class 0 IMSI, there are four types: Type 0, Type 1, Type 2 and Type 3. For Type 0, only the IMSI_S parameter is included in the transmission. For Type 1, only the IMSI_S and IMSI 1112 parameters are included in the transmission. For Type 2, only the IMSI_S and MCC parameters are included in the transmission. For Type 3, the IMSI_S, IMSI 1112, and MCC are all included in the transmission. For a Class 1 IMSI, there are two types: Type 0 and Type 1. A Type 0 includes the IMSI_S and IMSI 1112 parameters. A Type 1 includes the IMSI_S, IMSI 1112, and MCC parameters.
  • FIG. 4 illustrates a method for mapping an IMSI number in TIA/EIA/IS-95 format as described above to an IMSI number in an 8-octet format as required by ANSI/TIA/EIA-41 according to the present invention. [0040]
  • Suppose for example, the [0041] mobile station 14 sends the base station 20 the following Class 0 IMSI number, i.e., an IMSI number having 15 digits:
  • MCC=310; IMSI 1112=00; IMSI_S=2029551212
  • In [0042] step 110, the base station 20 will receive the IMSI number which is sent by the mobile station 14 in encoded form in accordance with TIA/EIA/IS-95. It should be understood that the IMSI number may include all parameters or only a portion of the parameters depending upon the IMSI_CLASS_X_TYPE as previously described. For example, if the IMSI number above is a Type 0, only the IMSI_S will be included in the IMSI number, and base station 20 will provide the proper values for the MCC and IMSI 1112 parameters.
  • In [0043] step 120, the base station 20 decodes the IMSI address parameters to obtain the original decimal values, i.e., MCC=310; IMSI 1112=00; and IMSI_S=2029551212.
  • In [0044] step 130, an array in memory 42, such as for example a 15-digit array, is initialized with all zeroes. The array elements, i.e., each location in the array, are numbered from 0 to 14, right to left. Thus, memory array 42 would be as illustrated in FIG. 5A. In step 140, the decoded original decimal value for IMSI_S is stored in memory 42 in element numbers 0-9. In step 150, the value of IMSI 1112 is entered into the array 42 in element numbers 10 and 11. In step 160, a value for the NMSI_LENGTH is calculated, where NMSI_LENGTH= IMSI_LENGTH−3. Thus, in the above example, NMSI_LENGTH=15−3=12. In step 170, the MCC is entered into array 42 at the elements corresponding to the values of the NMSI_LENGTH+2, NMSI_LENGTH+1, and NMSI_LENGTH respectively. Thus, in the above example the MCC of 310 would be entered into element numbers 14, 13 and 12 of array 42 respectively, resulting in memory array 42 appearing as illustrated in FIG. 5B.
  • In [0045] step 180, the digit in each location of memory array 42 is converted from decimal form to its equivalent four bit Binary Coded Decimal (BCD) format. Thus, for example, the digit 2 in BCD is 0010, digit 5 is 0101, digit 9 is 1001, etc. Each element number of memory array 42 is associated with a specific column and row of the 8-octet array structure defined by the requirements of ANSI/TIA/EIA-41 as illustrated in FIG. 6. Thus, as shown in FIG. 6, element numbers 0, 2, 4, 6, 8, 10, 12 and 14 from memory array 42 are associated with column 2 of the 8-octet array structure, rows 8-1 respectively. Element numbers 1, 3, 5, 7, 9, 11, and 13 of array 42 are associated with column 1 of the 8-octet array structure, rows 7-1 respectively, and row 8 of column 1 is occupied by a filler as specified by ANSI/TIA/EIA-41, i.e., the BCD number 1111.
  • Referring back to FIG. 4, in [0046] step 190, the converted decimal number from each element number of memory array 42 or a filler is mapped and inserted into its associated location of the 8-octet array structure. For example, the IMSI number 310002029551212 from above when inserted into the 8-octet array structure would be as illustrated in FIG. 7. Once the values have been inserted into the 8-octet array structure as shown in FIG. 7, the IMSI number is in a format compliant with ANSI/TIA/EIA-41. The 8-octet array structure can be stored in BS 20 and then sent to MSC 10, or alternatively can be sent from BS 20 directly to MSC 10.
  • Now suppose [0047] MS 14 sends BS 20 a Class 1 IMSI number, i.e., an IMSI with a length less than 15 digits, such as for example an IMSI of 123456789. Thus, the IMSI length is nine digits.
  • In [0048] step 110, the base station 20 will receive the IMSI number which is sent by the mobile station 14 in encoded form in accordance with TIA/EIA/IS-95. It should be understood that the IMSI number may include all parameters or only a portion of the parameters depending upon the IMSI_CLASS_X_TYPE as previously described. In step 120, the base station 20 decodes the IMSI address parameters. In a Class 1 IMSI, the MCC is the first three digits. Thus, in this example, the MCC is 123. When an IMSI has fewer than twelve digits, digits with a value equal to zero are added to the most significant side to obtain a total of twelve digits and the IMSI 1112 is equal to the 11th and 12th digits from the end of the resulting number. Thus, in the example above, since the IMSI has less than twelve digits, zeroes are added to the most significant side to obtain the following number: 000123456789. The 11th and 12th digits from the end are 0 and 0 respectively, thus IMSI 1112=00. The IMSI_S is the first ten digits from the end, thus in this example IMSI_S=0123456789.
  • In [0049] step 130, an array in memory 42, such as for example a 15-digit array, is initialized with all zeroes. The array elements, i.e., each location in the array, are numbered from 0 to 14, right to left. Thus, memory array 42 would be as illustrated in FIG. 5A.
  • In [0050] step 140, the IMSI_S is entered into array 42 in element numbers 0-9. Thus, array 42 would appear as illustrated in FIG. 8A. In step 150, the value for IMSI 1112 is entered in element numbers 10 and 11 of array 42, resulting in array 42 appearing as illustrated in FIG. 8B. It should be noted that the array 42 in FIG. 8B has not changed in appearance from that of FIG. 8A since the values in element numbers 10 and 11 of array 42 in FIG. 8A have been replaced with identical values, i.e., 0,0, in FIG. 8B.
  • In [0051] step 160, a value for NMSI_LENGTH is calculated, where NMSI_LENGTH=IMSI_LENGTH−3. Thus, in the example above, the NMSI-LENGTH= 6. In step 170, the MCC is entered in array 42 at the elements corresponding to the values of the NMSI_LENGTH+2, NMSI_LENGTH+1, and NMSI_LENGTH respectively. Thus, in the above example, the MCC of 123 would be entered in the 8th (NMSI_LENGTH+2), 7th (NMSI_LENGTH+1) and 6th (NMSI_LENGTH) elements, resulting in array 42 appearing as illustrated in FIG. 8C. It should be noted that the array 42 in FIG. 8C has not changed in appearance from that of FIG. 8B since the values in element numbers 8, 7, and 6 of array 42 in FIG. 8B have been replaced with identical values, i.e., 1, 2, 3 respectively, in FIG. 8C.
  • In [0052] step 180, the digit in each location of memory array 42 is converted from decimal form to its equivalent four bit Binary Coded Decimal (BCD) number as previously described. Each location number of memory array 42 is associated with a specific column and row of the 8-octet array structure defined by the requirements of ANSI/TIA/EIA-41 as illustrated in FIG. 9. Thus, as shown in FIG. 9, column 1, rows 1 through 8, are respectively associated with the element numbers of array 42 specified by the values of NMSI_LENGTH+1, NMSI_LENGTH−1, NMSI_LENGTH−3, NMSI_LENGTH−5, NMSI_LENGTH−7, NMSI_LENGTH−9, NMSI_LENGTH−11, and a filler. Column 2 of the 8-octet array structure, rows 1-8, are associated with the element numbers of array 42 specified by the values of NMSI_LENGTH+2, NMSI_LENGTH, NMSI_LENGTH−2, NMSI_LENGTH−4, NMSI_LENGTH−6, NMSI_LENGTH−8, NMSI_LENGTH−10, NMSI_LENGTH−12 respectively. If the value as determined above results in a number less than zero, a filler is associated with that location in the 8 -octet array. For example, if the NMSI_LENGTH=9, the locations whose associated value is less than zero, i.e., NMSI_LENGTH−10, MSI_LENGTH−11, and NMSI_LENGTH−12, would be associated with a filler, i.e., BCD number 1111. Thus, in the above example in which the NMSI_LENGTH=6, each row of the 8-octet structure would be associated with an element location of array 42 as illustrated in FIG. 10A.
  • Referring back to FIG. 4, in [0053] step 190 the BCD number converted from the decimal number from each location of memory array 42 or the filler is mapped and inserted into its associated location of the 8-octet array structure. For example, the IMSI number 123456789 from above would be inserted into the 8-octet array structure as illustrated in FIG. 10B. Once the values have been inserted into the 8-octet array structure as shown in FIG. 10B, the IMSI number is in a format compliant with ANSI/TIA/EIA-41. The 8-octet array structure can be stored in BS 20 and then sent to MSC 10, or alternatively can be sent from BS 20 directly to MSC 10.
  • FIGS. 11 and 12 illustrate [0054] array 42 and an 8-octet array structure for a second example of a Class 1 IMSI number. Suppose for example MS 14 sends BS 20 a Class 1 IMSI number with a length of thirteen digits as follows: 2345123456789. Thus, MCC=234, IMSI 1112=34 and IMSI_S=5123456789.
  • When the IMSI_S value is entered into array [0055] 42 (step 140 of FIG. 4), the array 42 would appear as illustrated in FIG. 11A. When the IMSI 1112 value is entered into element numbers 10 and 11 of array 42 (step 150 of FIG. 4), the array 42 would appear as illustrated in FIG. 11B. The NMSI_LENGTH in this example is equal to 10 (IMSI_LENGTH (13)−3). Thus, the MCC will be entered into elements 12, 11, and 10 of array 42 (step 170 of FIG. 4), resulting in array 42 as illustrated in FIG. 11C.
  • Thus, in the above example in which the NMSI_LENGTH=10, each row of the 8-octet structure would be associated with an element location of [0056] array 42 as illustrated in FIG. 12A. After each digit has been converted to BCD format (step 180 of FIG. 4) and inserted into the 8-octet structure (step 190 of FIG. 4) in its associated location as illustrated in FIG. 12A, the 8-octet structure will be as illustrated in FIG. 12B.
  • Thus, in accordance with the present invention, an IMSI number received by a [0057] base station 20 in TIA/EIA/IS-95 format can be converted to ANSI/TIA/EIA-41 format, regardless of the length of the IMSI number, for sending to MSC 10, thus allowing for compatibility between the mobile station, base station and neighboring mobile switching centers. Since values for all three parameters of the IMSI number, i.e., the IMSI_S, IMSI 1112, and MCC, are included in the ANSI/TIA/EIA-41 format, a wireless communication system can offer increased IMSI number functionality, i.e., support all types for both Class 0 and Class 1 IMSIs, and thus allow for global roaming capability.
  • While the present invention has been described with respect to the conversion of an IMSI number from TIA/EIA/IS-95 format to ANSI/TIA/EIA-41 format, it is to be understood that the conversion from ANSI/TIA/EIA-41 format to TIA/EIA/IS-95 format may also be accomplished by simply reversing the steps. Thus for example, when an IMSI number is received in ANSI/TIA/EIA-41 format such as illustrated in FIG. 7, each BCD number is converted to its decimal equivalent and mapped to an associated position in [0058] memory array 42. The IMSI number can then be read from memory array 42, encoded in TIA/EIA/IS-95 format, stored in BS 20 and sent to MS 14 or sent directly to MS 14 without storing in BS 20.
  • Reference has been made to embodiments in describing the invention. However, additions, deletions, substitutions, or other modifications which would fall within the scope of the invention defined in the claims may be implemented by those skilled in the art and familiar with the disclosure of the invention without departing from the spirit or scope of the invention. Also, although the invention is preferably implemented in software, it may be implemented in hardware, software, or any combination of the two. All are deemed equivalent with respect to the operation of the invention. Accordingly, the invention is not to be considered as limited by the foregoing description, but is only limited by the scope of the appended claims. [0059]

Claims (46)

What is claimed as new and desired to be protected by Letters Patent of the United States is:
1. A method for providing increased functionality of an identification number associated with a particular mobile station in a wireless communication system by converting said identification number from a first format to a second format, said method comprising:
receiving said identification number in said first format at a base station, said first format comprising a plurality of parameters, each of said plurality of parameters comprising one or more decimal digits;
storing each of said one or more decimal digits of each of said plurality of parameters of said identification number in a respective location of a memory in said base station;
associating each of said respective locations of said memory with a respective position of an array comprising said second format;
determining an equivalent BCD number for each of said one or more decimal digits of each of said plurality of parameters of said identification number; and
inserting each of said equivalent BCD numbers in a respective position of said array in said second format that is associated with said respective location of said memory.
2. The method according to
claim 1
, wherein said identification number comprises an international mobile station identity number associated with said particular mobile station.
3. The method according to
claim 2
, wherein said parameters of said international mobile station identity number includes at least an IMSI_S parameter.
4. The method according to
claim 3
, wherein said international mobile station identity number is received in an encoded form, and said method further comprises:
decoding said encoded international mobile station identity number.
5. The method according to
claim 4
, wherein said decoding step further comprises:
determining a value of said IMSI_S parameter,
determining a value of an MCC parameter associated with said particular mobile station; and
determining a value of an IMSI1112 parameter associated with said particular mobile station.
6. The method according to
claim 5
, wherein said memory is an array with a plurality of element locations.
7. The method according to
claim 6
, wherein said storing step further comprises:
storing said IMSI_S value into a first set of said plurality of element locations in said array.
8. The method according to
claim 7
, further comprising:
storing said IMSI1112 value into a second set of said plurality of element locations in said array.
9. The method according to
claim 8
, further comprising:
determining a length of a national mobile station identity number included in said international mobile station identity number.
10. The method according to
claim 9
, further comprising:
storing said MCC value into a third set of said plurality of element locations in said array, said third set of element locations starting with an element location corresponding to a value of said length of said national mobile station identity number.
11. The method according to
claim 2
, wherein said first format is compliant with TIA/EIA/IS-95.
12. The method according to
claim 11
, wherein said second format is compliant with ANSI/TIA/EIA-41.
13. The method according to
claim 2
, further comprising the step of:
sending said international mobile station identity number in said second format from said base station to a mobile switching center.
14. The method according to
claim 13
, further comprising the step of:
storing said international mobile station identity number in said second format in said base station.
15. A method for providing increased functionality of an identification number associated with a particular mobile station in a wireless communication system by converting said identification number from a first format to a second format, said method comprising the steps of:
receiving said identification number at a base station, said first format comprising a plurality of parameters, each of said plurality of parameters comprising one or more numbers in BCD format, each of said one or more numbers in BCD format located in a respective one of a plurality of positions of an array comprising said first format;
converting each of said plurality of numbers in BCD format to an equivalent decimal number;
associating each of said plurality of positions of said array with a respective one of a plurality of locations in a memory;
storing each of said decimal numbers in a respective one of said plurality of locations of said memory that is associated with each of said plurality of positions of said array; and
reading each of said stored decimal numbers from said memory in a predetermined sequence to construct said second format.
16. The method according to
claim 15
, wherein said identification number comprises an international mobile station identity number associated with said particular mobile station.
17. The method according to
claim 16
, wherein said array is an 8-octet array.
18. The method according to
claim 16
, wherein said memory is an array with a plurality of element locations.
19. The method according to
claim 16
, wherein said first format is compliant with ANSI/TIA/EIA-41.
20. The method according to
claim 19
, wherein said second format is compliant with TIA/EIA/IS-95.
21. The method according to
claim 16
, further comprising the step of:
sending said international mobile station identity number in said second format from said base station to said particular mobile station.
22. The method according to
claim 21
, further comprising the step of:
storing said international mobile station identity number in said second format in said base station.
23. A base station for use in a wireless communication system, said base station adapted to provide increased functionality of an identification number associated with a mobile station, said base station comprising:
an antenna for receiving a signal from said mobile station, said signal representing at least said identification number associated with said mobile station, said identification number comprising a plurality of parameters, each of said plurality of parameters comprising one or more decimal digits;
a memory; and
a controller connected to said memory, said controller adapted to:
store each of said one or more decimal digits of each of said plurality of parameters or said identification number in a respective location of said memory;
associate each of said respective locations of said memory with a respective position of an array;
determine an equivalent BCD number for each of said one or more decimal digits of each of said plurality of parameters of said identification number; and
insert each of said equivalent BCD numbers in a respective position of said array that is associated with said respective location of said memory.
24. The base station according to
claim 23
, wherein said identification number comprises an international mobile station identity number associated with said mobile station.
25. The base station according to
claim 24
, wherein said international mobile station identity number includes at least IMSI_S parameter.
26. The base station according to
claim 25
, wherein said international mobile station identity number is sent from said mobile station in an encoded form, and said controller is further adapted to decode said international mobile station identity number.
27. The base station according to
claim 25
, wherein said controller is further adapted to determine a value of said IMSI_S parameter, a value for an MCC parameter associated with said mobile station, and a value for an IMSI1112 parameter associated with said mobile station.
28. The base station according to
claim 27
, wherein said memory is an array with a plurality of element locations.
29. The base station according to
claim 28
, wherein said array has fifteen element locations.
30. The base station according to
claim 28
, wherein said controller is further adapted to store said IMSI_S value into a first set of said plurality of element locations in said array.
31. The base station according to
claim 30
, wherein said controller is further adapted to store said IMSI1112 value into a second set of said plurality of element locations in said array.
32. The base station according to
claim 31
, wherein said controller is further adapted to determine a length of a national mobile station identity number included in said international mobile station identity number.
33. The base station according to
claim 32
, wherein said controller is further adapted to store said MCC value into a third set of said plurality of element locations in said array, said third set of element locations starting with an element location corresponding to a value of said length of said national mobile station identity number.
34. The base station according to
claim 23
, wherein said controller includes a microprocessor.
35. The base station according to
claim 23
, wherein said international mobile station identity number is in TIA/EIA/IS-95 format.
36. The base station according to
claim 35
, wherein said array is an 8-octet array in ANSI/TIA/EIA-41 format.
37. The base station according to
claim 23
, wherein said base station is adapted to send said international mobile station identity number in said array format to a mobile switching center.
38. The base station according to
claim 37
, wherein said base station is further adapted to store said international mobile station identity number in said array format.
39. A base station for use in a wireless communication system, said base station adapted to provide increased functionality of an identification number associated with a mobile station, said base station comprising:
a controller, said controller adapted to receive an identification number associated with a particular mobile station in a first format, said first format comprising a plurality of parameters, each of said plurality of parameters comprising one or more numbers in BCD format, each of said one or more numbers in BCD format located in a respective one of a plurality of positions of an array; and
a memory connected to said controller, said memory comprising a plurality of locations, each one of said plurality of locations in said memory being associated with a respective one of said plurality of positions of said array,
wherein said controller is further adapted to convert each of said one or more numbers in BCD format to an equivalent decimal number, store each of said decimal numbers in said location of said memory associated with said respective one of said plurality of positions of said array, and output said stored decimal numbers in a predetermined sequence to construct a second format for said identification number.
40. The base station according to
claim 39
, wherein said identification number is an international mobile station identity number.
41. The base station according to
claim 39
, wherein said memory is an array with a plurality of element locations.
42. The base station according to
claim 41
, wherein said array has fifteen element locations.
43. The base station according to
claim 39
, wherein said controller includes a microprocessor.
44. The base station according to
claim 39
, wherein said first format is compliant with ANSI/TIA/EIA-41.
45. The base station according to
claim 44
, wherein said second format is compliant with TIA/EIA/IS-95.
46. The base station according to
claim 39
, wherein said controller is further adapted to store said output decimal numbers.
US09/283,143 1999-04-01 1999-04-01 Conversion of international mobile station identity (IMSI) number Expired - Lifetime US6445929B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US09/283,143 US6445929B2 (en) 1999-04-01 1999-04-01 Conversion of international mobile station identity (IMSI) number
BR0007118-8A BR0007118A (en) 1999-04-01 2000-03-22 Conversion of the identity number of the international mobile station
CA002302022A CA2302022A1 (en) 1999-04-01 2000-03-22 Conversion of international mobile station identity (imsi) number
AU22613/00A AU2261300A (en) 1999-04-01 2000-03-27 Conversion of international mobile station identity (IMSI) number
EP00302572A EP1041844A3 (en) 1999-04-01 2000-03-28 Conversion of international mobile station identity (IMSI) number
KR1020000016398A KR100699642B1 (en) 1999-04-01 2000-03-30 Conversion of international mobile station identityimsi number
CN00105339A CN1273494A (en) 1999-04-01 2000-03-31 Changing of identification number of international moving transceiver
JP2000101550A JP2000341766A (en) 1999-04-01 2000-04-03 Communication method for providing function for extending identification number related to specific mobile station in radio communication system
JP2007015994A JP2007124709A (en) 1999-04-01 2007-01-26 Communication method for offering extension functionality of identification number associated with particular mobile station in wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/283,143 US6445929B2 (en) 1999-04-01 1999-04-01 Conversion of international mobile station identity (IMSI) number

Publications (2)

Publication Number Publication Date
US20010016495A1 true US20010016495A1 (en) 2001-08-23
US6445929B2 US6445929B2 (en) 2002-09-03

Family

ID=23084715

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/283,143 Expired - Lifetime US6445929B2 (en) 1999-04-01 1999-04-01 Conversion of international mobile station identity (IMSI) number

Country Status (8)

Country Link
US (1) US6445929B2 (en)
EP (1) EP1041844A3 (en)
JP (2) JP2000341766A (en)
KR (1) KR100699642B1 (en)
CN (1) CN1273494A (en)
AU (1) AU2261300A (en)
BR (1) BR0007118A (en)
CA (1) CA2302022A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020087759A1 (en) * 2000-10-13 2002-07-04 Akihiko Toyoshima System, method and apparatus for embedded firmware code update
US20020112014A1 (en) * 2000-08-15 2002-08-15 Simon Bennett Method and apparatus for a network independent short message delivery system
US6684073B1 (en) * 1999-08-23 2004-01-27 Swisscom Mobile Ag Signalling method and conversion device for telecommunications networks
US20040236849A1 (en) * 2003-05-19 2004-11-25 Rotem Cooper Network operator identification for CDMA communication networks
KR100671143B1 (en) 2005-08-09 2007-01-17 (주) 엘지텔레콤 Mobile equipment identifier adopted apparatus in mobile communication network and method thereof
US20080186903A1 (en) * 2007-02-02 2008-08-07 Telefonaktiebolaget L M Ericsson (Publ) Derivation of User Equipment Identifiers
KR101033556B1 (en) * 2003-07-10 2011-05-11 엘지전자 주식회사 IMSI, and method for identifying mobile-network using the same in mobile communication system
US20120015677A1 (en) * 2000-10-27 2012-01-19 Cellemetry, Llc Method and System for Efficiently Routing Messages
US20130171988A1 (en) * 2012-01-04 2013-07-04 Alcatel-Lucent Canada Inc. Imsi mcc-mnc best matching searching
US20130244638A1 (en) * 2005-08-20 2013-09-19 Brightpoint, Inc. System and Method for Processing MEID Data

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI110299B (en) 2000-03-31 2002-12-31 Sonera Oyj Changing a subscriber's first identifier to a second identifier
KR100366487B1 (en) * 2000-11-16 2003-01-09 주식회사 케이티프리텔 A roaming service system for gsm service subscribers in a cdma service area, a location registration method, and a receiing/sending method
US7532901B1 (en) * 2001-03-16 2009-05-12 Radeum, Inc. Methods and apparatus to detect location and orientation in an inductive system
US6819918B2 (en) * 2001-04-03 2004-11-16 Lucent Technologies Inc. IMSI conversion method
TW536871B (en) * 2002-01-31 2003-06-11 Elan Microelectronics Corp Wireless communication coding method for representing digital data with variable length signal
US7383042B2 (en) * 2003-04-17 2008-06-03 Hewlett-Packard Development Company, L.P. Interoperable voice and data wireless network
US20040220941A1 (en) * 2003-04-30 2004-11-04 Nielson Mark R. Sorting variable length keys in a database
US7127235B2 (en) * 2003-04-30 2006-10-24 Hewlett-Packard Development Company, L.P. Multiple protocol database
US7212817B2 (en) * 2003-04-30 2007-05-01 Hewlett-Packard Development Company, L.P. Partitioning a database keyed with variable length keys
KR100976474B1 (en) 2003-07-10 2010-08-18 엘지전자 주식회사 method for identifying mobile-network in mobile communication system
KR101024910B1 (en) * 2003-12-06 2011-03-31 엘지전자 주식회사 IMSI, and method for identifying mobile-network using the same in mobile communication network
KR101024911B1 (en) * 2003-12-06 2011-03-31 엘지전자 주식회사 method for transmitting and extracting code to identify mobile-network in mobile communication system
CN100438684C (en) * 2004-08-23 2008-11-26 华为技术有限公司 Method for obtaining and processing mobile network code
WO2006078222A1 (en) * 2005-01-19 2006-07-27 Singapore Telecommunications Limited System for routing wireless communications
JP4522920B2 (en) * 2005-07-26 2010-08-11 日本電信電話株式会社 Wireless network
US7630711B2 (en) 2006-01-05 2009-12-08 Qualcomm Incorporated Method and system for mapping provisioning information of different communications networks
US9253629B2 (en) * 2006-06-28 2016-02-02 Alcatel Lucent Method of handling mobile station identifiers
JP4558747B2 (en) * 2007-02-07 2010-10-06 日本電信電話株式会社 LINK ID ALLOCATION METHOD, RADIO COMMUNICATION SYSTEM, RADIO BASE STATION, AND RADIO BASE STATION CONTROL DEVICE
US9525997B2 (en) 2013-11-25 2016-12-20 At&T Intellectual Property I, L.P. Method and apparatus for managing international mobile subscriber identity
GB2570015B (en) * 2018-06-29 2020-03-11 Txtnation Holdings Ltd Improved gateway system and method
GB2581266B (en) * 2018-06-29 2021-08-25 Txtnation Holdings Ltd Improved gateway system and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901307A (en) 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US5103459B1 (en) 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
FI88989C (en) 1991-10-03 1993-07-26 Nokia Telecommunications Oy Telecommunication system and method for adapting the numbering tractures of two telecommunication systems
JPH05337344A (en) * 1992-06-09 1993-12-21 Daicel Chem Ind Ltd Polycyanoaryl ether permselective membrane
US5699408A (en) 1995-08-07 1997-12-16 Motorola, Inc. International mobile station identification method and signaling system for cellular radiotelephones and systems
US5862481A (en) * 1996-04-08 1999-01-19 Northern Telecom Limited Inter-technology roaming proxy
US5867788A (en) 1996-06-03 1999-02-02 Ericsson Inc. Coverting a routing address within a telecommunications network
WO1998002011A1 (en) 1996-07-10 1998-01-15 American Pcs Communications, Llc A gateway unit
US5883888A (en) 1996-12-03 1999-03-16 Telefonaktiebolaget Lm Ericsson Seamless soft handoff in a CDMA cellular communications system
US6029065A (en) * 1997-05-05 2000-02-22 Nokia Mobile Phones, Ltd. Remote feature code programming for mobile stations

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6684073B1 (en) * 1999-08-23 2004-01-27 Swisscom Mobile Ag Signalling method and conversion device for telecommunications networks
US20020112014A1 (en) * 2000-08-15 2002-08-15 Simon Bennett Method and apparatus for a network independent short message delivery system
US7209950B2 (en) * 2000-08-15 2007-04-24 Zonamovil.Com, Inc. Method and apparatus for a network independent short message delivery system
US20020087759A1 (en) * 2000-10-13 2002-07-04 Akihiko Toyoshima System, method and apparatus for embedded firmware code update
US7890947B2 (en) * 2000-10-13 2011-02-15 Sony Corporation System, method and apparatus for embedded firmware code update
US20110087830A1 (en) * 2000-10-13 2011-04-14 Akihiko Toyoshima System, method and apparatus for embedded firmware code update
US20120015677A1 (en) * 2000-10-27 2012-01-19 Cellemetry, Llc Method and System for Efficiently Routing Messages
US8543146B2 (en) * 2000-10-27 2013-09-24 Cellemetry, Llc Method and system for efficiently routing messages
US20040236849A1 (en) * 2003-05-19 2004-11-25 Rotem Cooper Network operator identification for CDMA communication networks
KR101033556B1 (en) * 2003-07-10 2011-05-11 엘지전자 주식회사 IMSI, and method for identifying mobile-network using the same in mobile communication system
KR100671143B1 (en) 2005-08-09 2007-01-17 (주) 엘지텔레콤 Mobile equipment identifier adopted apparatus in mobile communication network and method thereof
US20130244638A1 (en) * 2005-08-20 2013-09-19 Brightpoint, Inc. System and Method for Processing MEID Data
US9648442B2 (en) * 2005-08-20 2017-05-09 Brightpoint, Inc. System and method for processing MEID data
US20080186903A1 (en) * 2007-02-02 2008-08-07 Telefonaktiebolaget L M Ericsson (Publ) Derivation of User Equipment Identifiers
US8619665B2 (en) * 2007-02-02 2013-12-31 Telefonaktiebolaget L M Ericsson (Publ) Derivation of user equipment identifiers
US20130171988A1 (en) * 2012-01-04 2013-07-04 Alcatel-Lucent Canada Inc. Imsi mcc-mnc best matching searching

Also Published As

Publication number Publication date
CA2302022A1 (en) 2000-10-01
US6445929B2 (en) 2002-09-03
KR20000071513A (en) 2000-11-25
JP2000341766A (en) 2000-12-08
KR100699642B1 (en) 2007-03-23
AU2261300A (en) 2000-10-05
JP2007124709A (en) 2007-05-17
EP1041844A3 (en) 2000-12-13
CN1273494A (en) 2000-11-15
BR0007118A (en) 2001-08-07
EP1041844A2 (en) 2000-10-04

Similar Documents

Publication Publication Date Title
US6445929B2 (en) Conversion of international mobile station identity (IMSI) number
US6185426B1 (en) System, method, and apparatus for delivery of location information about caller
US6600917B1 (en) Telecommunications network broadcasting of service capabilities
US6505050B1 (en) Method and apparatus for suppressing route request messages for wireless gateway applications
US6917813B2 (en) Provision of short message services
US8130789B2 (en) Connecting transactional messages for GSM mobile operators over two disparate networks
US5467381A (en) Method and system for restructuring a call signal frame in a cellular mobile telephone system having directory and routing number
US6094578A (en) Gateway unit
US6044263A (en) Method for providing a location independent dialing procedure within a mobile telecommunications network
US6731943B1 (en) System for efficient mobile subscriber station paging in cellular mobile telecommunication networks
CA2328223A1 (en) International automatic roaming service method
WO1998002011A1 (en) A gateway unit
US20070135124A1 (en) Method and system of multiple wireless HPLMN
US6735439B2 (en) Pseudo-global title translation for international roaming of ANSI-41 subscribers
KR100976474B1 (en) method for identifying mobile-network in mobile communication system
US7212817B2 (en) Partitioning a database keyed with variable length keys
KR20040106980A (en) Method of registering gsm subscriber in cdma networks
US6782254B1 (en) Handling of forward-to numbers across regional and political boundaries
KR20000043734A (en) Method for interworking network between satellite communication network and radio communication network
KR20000043738A (en) Method for linking supplementary services between satellite communication network and wireless communication network

Legal Events

Date Code Title Description
AS Assignment

Owner name: LUCENT TECHNOLOGIES, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHANDNANI, VISHAL S.;GARVERT, ANITA R.;REEL/FRAME:010075/0961;SIGNING DATES FROM 19990518 TO 19990519

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: CREDIT SUISSE AG, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:ALCATEL-LUCENT USA INC.;REEL/FRAME:030510/0627

Effective date: 20130130

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: ALCATEL-LUCENT USA INC., NEW JERSEY

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG;REEL/FRAME:033949/0531

Effective date: 20140819

AS Assignment

Owner name: OMEGA CREDIT OPPORTUNITIES MASTER FUND, LP, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:WSOU INVESTMENTS, LLC;REEL/FRAME:043966/0574

Effective date: 20170822

Owner name: OMEGA CREDIT OPPORTUNITIES MASTER FUND, LP, NEW YO

Free format text: SECURITY INTEREST;ASSIGNOR:WSOU INVESTMENTS, LLC;REEL/FRAME:043966/0574

Effective date: 20170822

AS Assignment

Owner name: WSOU INVESTMENTS, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALCATEL LUCENT;REEL/FRAME:044000/0053

Effective date: 20170722

AS Assignment

Owner name: WSOU INVESTMENTS, LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:OCO OPPORTUNITIES MASTER FUND, L.P. (F/K/A OMEGA CREDIT OPPORTUNITIES MASTER FUND LP;REEL/FRAME:049246/0405

Effective date: 20190516

AS Assignment

Owner name: OT WSOU TERRIER HOLDINGS, LLC, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:WSOU INVESTMENTS, LLC;REEL/FRAME:056990/0081

Effective date: 20210528