US20010016597A1 - Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents - Google Patents

Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents Download PDF

Info

Publication number
US20010016597A1
US20010016597A1 US09/795,982 US79598201A US2001016597A1 US 20010016597 A1 US20010016597 A1 US 20010016597A1 US 79598201 A US79598201 A US 79598201A US 2001016597 A1 US2001016597 A1 US 2001016597A1
Authority
US
United States
Prior art keywords
thienyl
compound
dihydroxy
cyclopentyl
hydroxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/795,982
Other versions
US6310087B2 (en
Inventor
Robert Burk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allergan Inc
Original Assignee
Allergan Sales LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27538472&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20010016597(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US07/948,056 external-priority patent/US5352708A/en
Priority claimed from US08/605,567 external-priority patent/US5688819A/en
Priority claimed from US08/726,921 external-priority patent/US5834498A/en
Priority to US09/795,982 priority Critical patent/US6310087B2/en
Application filed by Allergan Sales LLC filed Critical Allergan Sales LLC
Publication of US20010016597A1 publication Critical patent/US20010016597A1/en
Priority to US10/021,485 priority patent/US6602900B2/en
Publication of US6310087B2 publication Critical patent/US6310087B2/en
Application granted granted Critical
Assigned to ALLERGAN, INC. reassignment ALLERGAN, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALERGAN SALES, LLC (FORMERLY IN THE NAME OF VISION PHARMACEUTICALS L.P., ALLERGAN- WITH WACO OR DUPONT ADDRESS
Priority to US10/621,195 priority patent/US20040044045A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/557Eicosanoids, e.g. leukotrienes or prostaglandins
    • A61K31/559Eicosanoids, e.g. leukotrienes or prostaglandins having heterocyclic rings containing hetero atoms other than oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/557Eicosanoids, e.g. leukotrienes or prostaglandins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/557Eicosanoids, e.g. leukotrienes or prostaglandins
    • A61K31/5575Eicosanoids, e.g. leukotrienes or prostaglandins having a cyclopentane, e.g. prostaglandin E2, prostaglandin F2-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/557Eicosanoids, e.g. leukotrienes or prostaglandins
    • A61K31/558Eicosanoids, e.g. leukotrienes or prostaglandins having heterocyclic rings containing oxygen as the only ring hetero atom, e.g. thromboxanes
    • A61K31/5585Eicosanoids, e.g. leukotrienes or prostaglandins having heterocyclic rings containing oxygen as the only ring hetero atom, e.g. thromboxanes having five-membered rings containing oxygen as the only ring hetero atom, e.g. prostacyclin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/42Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups or hydroxy groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/32Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C235/34Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C247/00Compounds containing azido groups
    • C07C247/02Compounds containing azido groups with azido groups bound to acyclic carbon atoms of a carbon skeleton
    • C07C247/08Compounds containing azido groups with azido groups bound to acyclic carbon atoms of a carbon skeleton being unsaturated
    • C07C247/10Compounds containing azido groups with azido groups bound to acyclic carbon atoms of a carbon skeleton being unsaturated and containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/36Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/21Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C405/00Compounds containing a five-membered ring having two side-chains in ortho position to each other, and having oxygen atoms directly attached to the ring in ortho position to one of the side-chains, one side-chain containing, not directly attached to the ring, a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, and the other side-chain having oxygen atoms attached in gamma-position to the ring, e.g. prostaglandins ; Analogues or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated

Definitions

  • the present invention relates to cyclopentane heptanoic acid, 2 heteroarylalkenyl derivatives which may be substituted in the 1-position with hydroxyl, alkyloxy, amino and amido groups, e.g. 1—OH cyclopentane heptanoic acid, 2 heteroarylalkenyl derivatives.
  • These compounds are potent ocular hypotensives and are particularly suited for the management of glaucoma.
  • Ocular hypotensive agents are useful in the treatment of a number of various ocular hypertensive conditions, such as post-surgical and post-laser trabeculectomy ocular hypertensive episodes, glaucoma, and as presurgical adjuncts.
  • Secondary glaucoma is caused by any interference with the flow of aqueous humor from the posterior chamber into the anterior chamber and subsequently, into the canal of Schlemm.
  • Inflammatory disease of the anterior segment may prevent aqueous escape by causing complete posterior synechia in iris bombe, and may plug the drainage channel with exudates.
  • Other common causes are intraocular tumors, enlarged cataracts, central retinal vein occlusion, trauma to the eye, operative procedures and intraocular hemorrhage.
  • glaucoma occurs in about 2% of all persons over the age of 40 and may be asymptotic for years before progressing to rapid loss of vision.
  • topical b-adrenoreceptor antagonists have traditionally been the drugs of choice for treating glaucoma.
  • Eicosanoids and their derivatives have been reported to possess ocular hypotensive activity, and have been recommended for use in glaucoma management.
  • Eicosanoids and derivatives include numerous biologically important compounds such as prostaglandins and their derivatives.
  • Prostaglandins can be described as derivatives of prostanoic acid which have the following structural formula:
  • prostaglandins are known, depending on the structure and substituents carried on the alicyclic ring of the prostanoic acid skeleton. Further classification is based on the number of unsaturated bonds in the side chain indicated by numerical subscripts after the generic type of prostaglandin [e.g. prostaglandin E 1 (PGE 1 ), prostaglandin E 2 (PGE 2 )], and on the configuration of the substituents on the alicyclic ring indicated by ⁇ or ⁇ [e.g. prostaglandin F 2° (PGF 2 ⁇ )].
  • PGE 1 prostaglandin E 1
  • PGE 2 prostaglandin E 2
  • ⁇ or ⁇ e.g. prostaglandin F 2° (PGF 2 ⁇ )
  • Prostaglandins were earlier regarded as potent ocular hypertensives, however, evidence accumulated in the last decade shows that some prostaglandins are highly effective ocular hypotensive agents, and are ideally suited for the long-term medical management of glaucoma (see, for example, Bito, L. Z. Biological Protection with Prostaglandins , Cohen, M. M., ed., Boca Raton, Fla., CRC Press Inc., 1985, pp. 231-252; and Bito, L. Z., Applied Pharmacology in the Medical Treatment of Glaucomas Drance, S. M. and Neufeld, A. H.
  • Such prostaglandins include PGF 2 ⁇ , PGF 1 ⁇ , PGE 2 , and certain lipid-soluble esters, such as C 1 to C 2 alkyl esters, e.g. 1-isopropyl ester, of such compounds.
  • prostaglandins appear to be devoid of significant intraocular side effects
  • ocular surface (conjunctival) hyperemia and foreign-body sensation have been consistently associated with the topical ocular use of such compounds, in particular PGF 2 ⁇ and its prodrugs, e.g., its 1-isopropyl ester, in humans.
  • the clinical potentials of prostaglandins in the management of conditions associated with increased ocular pressure, e.g. glaucoma are greatly limited by these side effects.
  • 11,15- 9,15 and 9,11-diesters of prostaglandins for example 11,15-dipivaloyl PGF 2 ⁇ are known to have ocular hypotensive activity. See the co-pending patent applications U.S. Ser. No. 385,645 (filed Jul. 7, 1989, now U.S. Pat. No. 4,994,274), Ser. No. 584,370 (filed Sep. 18, 1990, now U.S. Pat. No. 5,028,624) and Ser. No. 585,284 (filed Sep. 18, 1990, now U.S. Pat. No. 5,034,413). The disclosures of all of these patent applications are hereby expressly incorporated by reference.
  • the present invention concerns a method of treating ocular hypertension which comprises administering to a mammal having ocular hypertension a therapeutically effective amount of a compound of formula I
  • the hatched segments represent a bonds
  • the solid triangle represents a ⁇ bond
  • the wavy segment represents ⁇ or ⁇ bond
  • dashed lines represent a double bond or a single bond
  • R is a substituted heteroaryl radical
  • R 1 is hydrogen or a lower alkyl radical having up to six carbon atoms
  • X is selected from the group consisting of —OR 1 and —N(R 1 ) 2
  • Y is ⁇ O or represents 2 hydrogen radicals.
  • the present invention relates to an ophthalmic solution comprising a therapeutically effective amount of a compound of formula (I), wherein the symbols have the above meanings, or a pharmaceutically acceptable salt thereof, in admixture with a non-toxic, ophthalmically acceptable liquid vehicle, packaged in a container suitable for metered application.
  • the substituents on the heteroaryl radical may be selected from the group consisting of lower alkyl, e.g C 1 to C 6 alkyl; halogen, e.g. fluoro, chloro and bromo; trifluoromethyl (CF 3 ); COR 1 , e.g. COCH 3 ; COCF 3 ; SO 2 NR 1 , e.g. SO 2 NH 2 ; NO 2 ; CN; etc.
  • the present invention relates to a pharmaceutical product, comprising
  • FIG. 1 is a schematic of the chemical synthesis of certain 1-carboxylic acid compounds of the invention specifically disclosed as Example 4(a)-(v) below.
  • FIG. 3 is a schematic of the chemical synthesis of certain 1-amido compounds of the invention specifically disclosed as Examples 8(p)-(q), below.
  • FIG. 4 is a schematic of the chemical synthesis of certain ⁇ -substituted thienyl 1-carboxylic acid compounds.
  • FIG. 5 is a schematic of the chemical synthesis of ⁇ -substituted furanyl-1-carboxylic acid compounds specifically disclosed as Example 15.
  • the present invention relates to the use of nonacidic cyclopentane heptan(ene)oic acid, 2-heteroaryl alkenyl derivatives as therapeutic agents, e.g. as ocular hypotensives.
  • the compounds used in accordance with the present invention are encompassed by the following structural formula I:
  • a preferred group of the compounds of the present invention includes compounds that have the following structural formula II:
  • Z is selected from the group consisting of O and S
  • A is selected from the group consisting of N, —CH, and C
  • R 2 is selected from the group consisting of hydrogen, halogen, and lower alkyl having from 1 to 6 carbon atoms
  • R 3 and R 4 are selected from the group consisting of hydrogen, halogen, lower alkyl having from 1 to 6 carbon atoms, or, together with
  • R 3 and R 4 forms a condensed aryl ring.
  • X is —N(R 1 ) 2
  • Y is ⁇ O.
  • At least one of R 2 , R 3 or R 4 are independently selected from the group consisting of chloro, bromo and lower alkyl.
  • at least one of R 2 , R 3 or R 4 is chloro or bromo, and more preferably at least one of R 2 , R 3 or R 4 is bromo or at least two of R 2 , R 3 or R 4 are chloro.
  • at least one of R 2 , R 3 or R 4 is ethyl, propyl, or butyl.
  • Another preferred group includes compounds having the formula III:
  • R 5 is hydrogen or methyl
  • the above compounds of the present invention may be prepared by methods that are known in the art or according to the working examples below.
  • the compounds, below, are especially preferred representative of the compounds of the present invention.
  • a pharmaceutically acceptable salt is any salt which retains the activity of the parent compound and does not impart any deleterious or undesirable effect on the subject to whom it is administered and in the context in which it is administered.
  • salts formed with inorganic ions such as sodium, potassium, calcium, magnesium and zinc.
  • compositions may be prepared by combining a therapeutically effective amount of at least one compound according to the present invention, or a pharmaceutically acceptable acid addition salt thereof, as an active ingredient, with conventional ophthalmically acceptable pharmaceutical excipients, and by preparation of unit dosage forms suitable for topical ocular use.
  • the therapeutically efficient amount typically is between about 0.0001 and about 5% (w/v), preferably about 0.001 to about 1.0%, (w/v) in liquid formulations.
  • solutions are prepared using a physiological saline solution as a major vehicle.
  • the pH of such ophthalmic solutions should preferably be maintained between 6.5 and 7.2 with an appropriate buffer system.
  • the formulations may also contain conventional, pharmaceutically acceptable preservatives, stabilizers and surfactants.
  • Preferred preservatives that may be used in the pharmaceutical compositions of the present invention include, but are not limited to, benzalkonium chloride, chlorobutanol, thimerosal, phenylmercuric acetate and phenylmercuric nitrate.
  • a preferred surfactant is, for example, Tween 80.
  • various preferred vehicles may be used in the ophthalmic preparations of the present invention. These vehicles include, but are not limited to, polyvinyl alcohol, povidone, hydroxypropyl methyl cellulose, poloxamers, carboxymethyl cellulose, hydroxyethyl cellulose and purified water.
  • Tonicity adjustors may be added as needed or convenient. They include, but are not limited to, salts, particularly sodium chloride, potassium chloride, mannitol and glycerin, or any other suitable ophthalmically acceptable tonicity adjustor.
  • buffers include acetate buffers, citrate buffers, phosphate buffers and borate buffers. Acids or bases may be used to adjust the pH of these formulations as needed.
  • an ophthalmically acceptable antioxidant for use in the present invention includes, but is not limited to, sodium metabisulfite, sodium thiosulfate, acetylcysteine, butylated hydroxyanisole and butylated hydroxytoluene.
  • excipient components which may be included in the ophthalmic preparations are chelating agents.
  • the preferred chelating agent is edentate disodium, although other chelating agents may also be used in place or in conjunction with it.
  • the actual dose of the active compounds of the present invention depends on the specific compound, and on the condition to be treated; the selection of the appropriate dose is well within the knowledge of the skilled artisan.
  • the ophthalmic formulations of the present invention are conveniently packaged in forms suitable for metered application, such as in containers equipped with a dropper, to facilitate the application to the eye.
  • Containers suitable for dropwise application are usually made of suitable inert, non-toxic plastic material, and generally contain between about 0.5 and about 15 ml solution.
  • Step 3 Preparation of 7-[3 ⁇ ,5 ⁇ -Dihydroxy-2-(3 ⁇ -hydroxy-5-(3-(2-methyl)thienyl-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • Lactone 11 (170 mg, 0.315 mmol) was dissolved in CH 2 Cl 2 (1.0 mL) and cooled to ⁇ 70° C. Dibal-H(0.47 mL of a 1.0 M solution in CH 2 Cl 2 , 0.47 mmol) was added. After 2 h the reaction was quenched with MeOH, allowed to warm to room temperature, and extracted with CH 2 Cl 2 . The organic portion was dried (Na 2 SO 4 ), filtered and concentrated in vacuo to give the lactol as a clear, viscous oil.
  • Step 2 Preparation of 7-[3 ⁇ ,5 ⁇ -Dihydroxy-2-(3-hydroxy-5-(3-furanyl)pentyl)cyclopentyl] -5Z-heptenoic acid 15.
  • EP 3 receptors In addition to stimulating the FP receptor associated with the cat iris, several examples also stimulated the EP 3 receptor. Compounds with agonist activity at EP 3 receptors may also be used for treating gastric or duodenal ulcer by virtue of their cytoprotective and anti-secretory properties. They may also be used as adjunctive therapy in combination with aspirin-like drugs and steroids to limit gastrointestinal side effects. EP 3 agonists stimulate uterine smooth muscle and may be used to terminate pregnancy in human females. EP 3 agonists are also useful in the cervical ripening process and could be used for inducing labor.
  • FP VASC FP vascular endothelium in the rabbit jugular vein preparation. Since such agents would be vasodilators they have potential in hypertension and any disease where tissue blood perfusion is compromised. Such indications include, but are not limited to, systemic hypertension, angina, stroke, retinal vascular diseases, claudication, Raynauds disease, diabetes, and pulmonary hypertension.
  • the effects of the compounds of this invention on intraocular pressure are also provided in the following tables.
  • the compounds were prepared at the said concentrations in a vehicle comprising 0.1% polysorbate 80 and 10 mM TRIS base. Dogs were treated by administering 25 ⁇ l to the ocular surface, the contralateral eye received vehicle as a control. Intraocular pressure was measured by applanation pneumatonometry. Dog intraocular pressure was measured immediately before drug administration and at 6 hours thereafter.
  • the compounds of the invention may also be useful in the treatment of various pathophysiological diseases including acute myocardial infarction, vascular thrombosis, hypertension, pulmonary hypertension, ischemic heart disease, congestive heat failure, and angina pectoris, in which case the compounds may be administered by any means that effect vasodilation and thereby relieve the symptoms of the disease.
  • administration may be by oral, transdermal, parenterial, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, or buccal routes.
  • the compounds of the invention may be used alone, or in combination with other of the known vasodilator drugs.
  • the compounds of the invention may be formulated into an ointment containing about 0.10 to 10% of the active ingredient in a suitable base of, for example, white petrolatum, mineral oil and petrolatum and lanolin alcohol.
  • suitable bases will be readily apparent to those skilled in the art.
  • the pharmaceutical preparations of the present invention are manufactured in a manner which is itself known, for example, by means of conventional dissolving or suspending the compounds, which are all either water soluble or suspendable.
  • the pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer such as glycerol or sorbitol.
  • the push-fit capsules can contain the active compounds in liquid form that may be mixed with fillers such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers.
  • the active compounds are preferably dissolved or suspended in suitable liquids, such as in buffered salt solution.
  • stabilizers may be added.
  • the pharmaceutical preparations may contain suitable excipients to facilitate the processing of the active compounds into preparations that can be used pharmaceutically.
  • suitable excipients to facilitate the processing of the active compounds into preparations that can be used pharmaceutically.
  • pharmaceutical preparations for oral use can be obtained by adhering the solution of the active compounds to a solid support, optionally grinding the resulting mixture and processing the mixture of granules, after adding suitable auxiliaries, if desired or necessary, to obtain tablets or dragee cores.
  • Suitable excipients are, in particular, fillers such as sugars, for examnple lactose or sucrose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, as well as inders such as starch, paste using for example, maize starch, wheat starch, rich starch, potato starch, gelatin, tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone.
  • fillers such as sugars, for examnple lactose or sucrose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, as well as inders such as starch, paste using for example, maize starch, wheat starch, rich starch, potato starch, gelatin, tragacanth, methyl cellulose,
  • disintegrating agents may be added such as the above-mentioned starches and also carboxymethyl-starch, crosslinked polyvinyl pyrrolidone, agar, or algenic acid or a salt thereof, such as sodium alginate.
  • Auxiliaries are, above all, flow-regulating agents and lubricants, for example, silica, talc, stearic acid or salts thereof, such as magnesium stearate or calcium stearate, and/or polyethylene glycol.
  • Dragee cores are provided with suitable coatings which if desired, are resistant to gastric juices.
  • concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, polyethylene glycol and/or titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures.
  • suitable cellulose preparations such as acetylcellulose phthalate or hydroxypropylmethyl-cellulose phthalate, are used.
  • Dye stuffs or pigments may be added to the tablets or dragee coatings, for example, for identification or in order to characterize combinations of active compound doses.
  • Suitable formulations for intravenous or parenteral administration include aqueous solutions of the active compounds.
  • suspensions of the active compounds as oily injection suspensions may be administered.
  • Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, soribitol, and/or dextran.
  • the suspension may also contain stabilizers.

Abstract

The invention relates to the use of derivatives of F-type prostaglandins as ocular hypotensives. The PGF derivatives used in accordance with the invention are represented by the following formula I:
Figure US20010016597A1-20010823-C00001
wherein wavy line attachments indicate either the alpha (α) or beta (β) configuration; dashed bonds represent a double bond, or a single bond, R is a substituted heteroaryl radical, R1 is hydrogen or a lower alkyl radical having up to six carbon atoms, X is selected from the group consisting of —OR1 and —N(R1)2, Y is ═O or represents 2 hydrogen radicals. Certain of the compounds represented by Formula I comprise another aspect of the present invention.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This patent application is a continuation of U.S. Ser. No. 09/185,403 which was filed on Nov. 3, 1998, which is a continuation-in-part of U.S. Ser. No. 08/726,921, which was filed on Oct. 7, 1996, now U.S. Pat. No. 5,834,498,which is continuation-in-part of U.S. Ser. No. 08/605,567 filed on Feb. 22, 1996, now U.S. Pat. No. 5,688,819; which is a continuation-in-part of U.S. Ser. No. 08/371,339 which was filed on Jan. 11, 1995, now U.S. Pat. No. 5,607,978; which is a continuation of U.S. Ser. No. 08/154,244 which was filed Nov. 18, 1993, now abandoned; which is a divisional of U.S. Ser. No. 07/948,056 filed Sep. 21, 1992, now U.S. Pat. No. 5,352,708. [0001]
  • FIELD OF THE INVENTION
  • The present invention relates to cyclopentane heptanoic acid, 2 heteroarylalkenyl derivatives which may be substituted in the 1-position with hydroxyl, alkyloxy, amino and amido groups, e.g. 1—OH cyclopentane heptanoic acid, 2 heteroarylalkenyl derivatives. These compounds are potent ocular hypotensives and are particularly suited for the management of glaucoma. [0002]
  • BACKGROUND OF THE INVENTION Description of Related Art
  • Ocular hypotensive agents are useful in the treatment of a number of various ocular hypertensive conditions, such as post-surgical and post-laser trabeculectomy ocular hypertensive episodes, glaucoma, and as presurgical adjuncts. [0003]
  • Glaucoma is a disease of the eye characterized by increased intraocular pressure. On the basis of its etiology, glaucoma has been classified as primary or secondary. For example, primary glaucoma in adults (congenital glaucoma) may be either open-angle or acute or chronic angle-closure. Secondary glaucoma results from pre-existing ocular diseases such as uveitis, intraocular tumor or an enlarged cataract. [0004]
  • The underlying causes of primary glaucoma are not yet known. The increased intraocular tension is due to the obstruction of aqueous humor outflow. In chronic open-angle glaucoma, the anterior chamber and its anatomic structures appear normal, but drainage of the aqueous humor is impeded. In acute or chronic angle-closure glaucoma, the anterior chamber is shallow, the filtration angle is narrowed, and the iris may obstruct the trabecular meshwork at the entrance of the canal of Schlemm. Dilation of the pupil may push the root of the iris forward against the angle, and may produce pupilary block and thus precipitate an acute attack. Eyes with narrow anterior chamber angles are predisposed to acute angle-closure glaucoma attacks of various degrees of severity. [0005]
  • Secondary glaucoma is caused by any interference with the flow of aqueous humor from the posterior chamber into the anterior chamber and subsequently, into the canal of Schlemm. Inflammatory disease of the anterior segment may prevent aqueous escape by causing complete posterior synechia in iris bombe, and may plug the drainage channel with exudates. Other common causes are intraocular tumors, enlarged cataracts, central retinal vein occlusion, trauma to the eye, operative procedures and intraocular hemorrhage. [0006]
  • Considering all types together, glaucoma occurs in about 2% of all persons over the age of 40 and may be asymptotic for years before progressing to rapid loss of vision. In cases where surgery is not indicated, topical b-adrenoreceptor antagonists have traditionally been the drugs of choice for treating glaucoma. [0007]
  • Certain eicosanoids and their derivatives have been reported to possess ocular hypotensive activity, and have been recommended for use in glaucoma management. Eicosanoids and derivatives include numerous biologically important compounds such as prostaglandins and their derivatives. Prostaglandins can be described as derivatives of prostanoic acid which have the following structural formula: [0008]
    Figure US20010016597A1-20010823-C00002
  • Various types of prostaglandins are known, depending on the structure and substituents carried on the alicyclic ring of the prostanoic acid skeleton. Further classification is based on the number of unsaturated bonds in the side chain indicated by numerical subscripts after the generic type of prostaglandin [e.g. prostaglandin E[0009] 1 (PGE1), prostaglandin E2 (PGE2)], and on the configuration of the substituents on the alicyclic ring indicated by α or β [e.g. prostaglandin F(PGF)].
  • Prostaglandins were earlier regarded as potent ocular hypertensives, however, evidence accumulated in the last decade shows that some prostaglandins are highly effective ocular hypotensive agents, and are ideally suited for the long-term medical management of glaucoma (see, for example, Bito, L. Z. [0010] Biological Protection with Prostaglandins, Cohen, M. M., ed., Boca Raton, Fla., CRC Press Inc., 1985, pp. 231-252; and Bito, L. Z., Applied Pharmacology in the Medical Treatment of Glaucomas Drance, S. M. and Neufeld, A. H. eds., New York, Grune & Stratton, 1984, pp. 477-505. Such prostaglandins include PGF, PGF, PGE2, and certain lipid-soluble esters, such as C1 to C2 alkyl esters, e.g. 1-isopropyl ester, of such compounds.
  • Although the precise mechanism is not yet known experimental results indicate that the prostaglandin-induced reduction in intraocular pressure results from increased uveoscleral outflow [Nilsson et.al., [0011] Invest. Ophthalmol. Vis. Sci. (suppl), 284 (1987)].
  • The isopropyl ester of PGF[0012] has been shown to have significantly greater hypotensive potency than the parent compound, presumably as a result of its more effective penetration through the cornea. In 1987, this compound was described as “the most potent ocular hypotensive agent ever reported” [see, for example, Bito, L. Z., Arch. Ophthalmol. 105, 1036 (1987), and Siebold et.al., Prodrug 5 3 (1989)].
  • Whereas prostaglandins appear to be devoid of significant intraocular side effects, ocular surface (conjunctival) hyperemia and foreign-body sensation have been consistently associated with the topical ocular use of such compounds, in particular PGF[0013] and its prodrugs, e.g., its 1-isopropyl ester, in humans. The clinical potentials of prostaglandins in the management of conditions associated with increased ocular pressure, e.g. glaucoma are greatly limited by these side effects.
  • In a series of co-pending United States patent applications assigned to Allergan, Inc. prostaglandin esters with increased ocular hypotensive activity accompanied with no or substantially reduced side-effects are disclosed. The co-pending U.S. Ser. No. 596,430 (filed Oct. 10, 1990), relates to certain 11-acyl-prostaglandins, such as 11-pivaloyl, 11-acetyl, 11-isobutyryl, 11-valeryl, and 11-isovaleryl PGF[0014] . Intraocular pressure reducing 15-acyl prostaglandins are disclosed in the co-pending application U.S. Ser. No. 175,476 (filed Dec. 29, 1993). Similarly, 11,15- 9,15 and 9,11-diesters of prostaglandins, for example 11,15-dipivaloyl PGF are known to have ocular hypotensive activity. See the co-pending patent applications U.S. Ser. No. 385,645 (filed Jul. 7, 1989, now U.S. Pat. No. 4,994,274), Ser. No. 584,370 (filed Sep. 18, 1990, now U.S. Pat. No. 5,028,624) and Ser. No. 585,284 (filed Sep. 18, 1990, now U.S. Pat. No. 5,034,413). The disclosures of all of these patent applications are hereby expressly incorporated by reference.
  • SUMMARY OF THE INVENTION
  • The present invention concerns a method of treating ocular hypertension which comprises administering to a mammal having ocular hypertension a therapeutically effective amount of a compound of formula I [0015]
    Figure US20010016597A1-20010823-C00003
  • wherein the hatched segments represent a bonds, the solid triangle represents a β bond, the wavy segment represents α or β bond, dashed lines represent a double bond or a single bond, R is a substituted heteroaryl radical, R[0016] 1 is hydrogen or a lower alkyl radical having up to six carbon atoms, X is selected from the group consisting of —OR1 and —N(R1)2, Y is ═O or represents 2 hydrogen radicals. In a further aspect, the present invention relates to an ophthalmic solution comprising a therapeutically effective amount of a compound of formula (I), wherein the symbols have the above meanings, or a pharmaceutically acceptable salt thereof, in admixture with a non-toxic, ophthalmically acceptable liquid vehicle, packaged in a container suitable for metered application. In particular, the substituents on the heteroaryl radical may be selected from the group consisting of lower alkyl, e.g C1 to C6 alkyl; halogen, e.g. fluoro, chloro and bromo; trifluoromethyl (CF3); COR1, e.g. COCH3; COCF3; SO2NR1, e.g. SO2NH2; NO2; CN; etc.
  • In a still further aspect, the present invention relates to a pharmaceutical product, comprising [0017]
  • a container adapted to dispense its contents in a metered form; and [0018]
  • an ophthalmic solution therein, as hereinabove defined. [0019]
  • Finally, certain of the compounds represented by the above formula, disclosed below and utilized in the method of the present invention are novel and unobvious. [0020]
  • BRIEF DESCRIPTION OF THE DRAWING FIGURES
  • FIG. 1 is a schematic of the chemical synthesis of certain 1-carboxylic acid compounds of the invention specifically disclosed as Example 4(a)-(v) below. [0021]
  • FIG. 2 is a schematic of the chemical synthesis of certain δ-substituted thienyl 1-carboxylic acid compound of the invention specifically disclosed as Examples 6 and 6(a), below. [0022]
  • FIG. 3 is a schematic of the chemical synthesis of certain 1-amido compounds of the invention specifically disclosed as Examples 8(p)-(q), below. [0023]
  • FIG. 4 is a schematic of the chemical synthesis of certain δ-substituted thienyl 1-carboxylic acid compounds. [0024]
  • FIG. 5 is a schematic of the chemical synthesis of δ-substituted furanyl-1-carboxylic acid compounds specifically disclosed as Example 15. [0025]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to the use of nonacidic cyclopentane heptan(ene)oic acid, 2-heteroaryl alkenyl derivatives as therapeutic agents, e.g. as ocular hypotensives. The compounds used in accordance with the present invention are encompassed by the following structural formula I: [0026]
    Figure US20010016597A1-20010823-C00004
  • wherein the substituents and symbols are as hereinabove defined. The dotted lines on bonds between [0027] carbons 5 and 6 (C-5) and carbons 13 and 14 (C-13) indicate a single or double bond. If two solid lines are used at C-5, or C-13, it indicates a specific configuration for that double bond. Hatched lines used at position C-8, C-9 and C-11 indicate the α configuration. A triangle at position C-12 represents β orientation
  • A preferred group of the compounds of the present invention includes compounds that have the following structural formula II: [0028]
    Figure US20010016597A1-20010823-C00005
  • wherein Z is selected from the group consisting of O and S, A is selected from the group consisting of N, —CH, and C, R[0029] 2 is selected from the group consisting of hydrogen, halogen, and lower alkyl having from 1 to 6 carbon atoms, R3 and R4 are selected from the group consisting of hydrogen, halogen, lower alkyl having from 1 to 6 carbon atoms, or, together with
    Figure US20010016597A1-20010823-C00006
  • R[0030] 3 and R4 forms a condensed aryl ring. Preferably, when X is —N(R1)2, Y is ═O.
  • More preferably, at least one of R[0031] 2, R3 or R4 are independently selected from the group consisting of chloro, bromo and lower alkyl. In one aspect of the invention, at least one of R2, R3 or R4 is chloro or bromo, and more preferably at least one of R2, R3 or R4 is bromo or at least two of R2, R3 or R4 are chloro. In another aspect of this invention, at least one of R2, R3 or R4 is ethyl, propyl, or butyl.
  • Another preferred group includes compounds having the formula III: [0032]
    Figure US20010016597A1-20010823-C00007
  • In the above formulae, the substituents and symbols are as hereinabove defined and R[0033] 5 is hydrogen or methyl.
  • The above compounds of the present invention may be prepared by methods that are known in the art or according to the working examples below. The compounds, below, are especially preferred representative of the compounds of the present invention. [0034]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-(2-methyl)-thienyl-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid [0035]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(4-(2-methyl)-thienyl-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid [0036]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(5-methyl)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid. [0037]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-(2-chloro)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid. [0038]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(4-bromo)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid. [0039]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(5-bromo)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid. [0040]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-(2,5-dichloro)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid. [0041]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(3-chloro)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid. [0042]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-benzothienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid. [0043]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-benzofuranyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid [0044]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(3-furanyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid. [0045]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-furanyl)-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid. [0046]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-thiazolyl)-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid. [0047]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid. [0048]
  • 7-[3α,5α-Dihydroxy-2-(3β-hydroxy-5-(2-thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid. [0049]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid. [0050]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-(2,5-dichloro)thienyl-1E-pentenyl)cyclopentyl]-5Z-heptenamide. [0051]
  • 7-[3α,5α-Dihydroxy-2-(3β-hydroxy-5-(3-thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid. [0052]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-thienyl)-1E-pentyl)cyclopentyl] -5Z-heptenoic acid. [0053]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid. [0054]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenamide. [0055]
  • 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenamide. [0056]
  • A pharmaceutically acceptable salt is any salt which retains the activity of the parent compound and does not impart any deleterious or undesirable effect on the subject to whom it is administered and in the context in which it is administered. Of particular interest are salts formed with inorganic ions, such as sodium, potassium, calcium, magnesium and zinc. [0057]
  • Pharmaceutical compositions may be prepared by combining a therapeutically effective amount of at least one compound according to the present invention, or a pharmaceutically acceptable acid addition salt thereof, as an active ingredient, with conventional ophthalmically acceptable pharmaceutical excipients, and by preparation of unit dosage forms suitable for topical ocular use. The therapeutically efficient amount typically is between about 0.0001 and about 5% (w/v), preferably about 0.001 to about 1.0%, (w/v) in liquid formulations. [0058]
  • For ophthalmic application, preferably solutions are prepared using a physiological saline solution as a major vehicle. The pH of such ophthalmic solutions should preferably be maintained between 6.5 and 7.2 with an appropriate buffer system. The formulations may also contain conventional, pharmaceutically acceptable preservatives, stabilizers and surfactants. [0059]
  • Preferred preservatives that may be used in the pharmaceutical compositions of the present invention include, but are not limited to, benzalkonium chloride, chlorobutanol, thimerosal, phenylmercuric acetate and phenylmercuric nitrate. A preferred surfactant is, for example, Tween 80. Likewise, various preferred vehicles may be used in the ophthalmic preparations of the present invention. These vehicles include, but are not limited to, polyvinyl alcohol, povidone, hydroxypropyl methyl cellulose, poloxamers, carboxymethyl cellulose, hydroxyethyl cellulose and purified water. [0060]
  • Tonicity adjustors may be added as needed or convenient. They include, but are not limited to, salts, particularly sodium chloride, potassium chloride, mannitol and glycerin, or any other suitable ophthalmically acceptable tonicity adjustor. [0061]
  • Various buffers and means for adjusting pH may be used so long as the resulting preparation is ophthalmically acceptable. Accordingly, buffers include acetate buffers, citrate buffers, phosphate buffers and borate buffers. Acids or bases may be used to adjust the pH of these formulations as needed. [0062]
  • In a similar vein, an ophthalmically acceptable antioxidant for use in the present invention includes, but is not limited to, sodium metabisulfite, sodium thiosulfate, acetylcysteine, butylated hydroxyanisole and butylated hydroxytoluene. [0063]
  • Other excipient components which may be included in the ophthalmic preparations are chelating agents. The preferred chelating agent is edentate disodium, although other chelating agents may also be used in place or in conjunction with it. [0064]
  • The ingredients are usually used in the following amounts: [0065]
    Ingredient Amount (% w/v)
    active ingredient about 0.001-5
    preservative 0-0.10
    vehicle 0-40
    tonicity adjustor 1-10
    buffer 0.01-10
    pH adjustor q.s. pH 4.5-7.5
    antioxidant as needed
    surfactant as needed
    purified water as needed to make 100%
  • The actual dose of the active compounds of the present invention depends on the specific compound, and on the condition to be treated; the selection of the appropriate dose is well within the knowledge of the skilled artisan. [0066]
  • The ophthalmic formulations of the present invention are conveniently packaged in forms suitable for metered application, such as in containers equipped with a dropper, to facilitate the application to the eye. Containers suitable for dropwise application are usually made of suitable inert, non-toxic plastic material, and generally contain between about 0.5 and about 15 ml solution. [0067]
  • The invention is further illustrated by the following non-limiting Examples, which are summarized in the reaction schemes of FIGS. 1 through 4, wherein the compounds are identified by the same designator in both the Examples and the Figures. [0068]
  • Compound 4a 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-(2-methyl)thienyl-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid
  • Step 1: Preparation of Enone 2a [0069]
  • To a suspension of sodium hydride (36 mg, 1.50 mmol) in THF (4.5 mL) cooled to 0° C. was added dimethyl 4-(3-(2-methyl) thienyl)-2-oxo-butylphosphonate(414 mg, 1.50 mmol) in THF (3.0 mL). After 0.25 h a solution of the aldehyde 1 (438 mg, 1.00 mmol) in THF (3.0 mL) was added and the reaction was allowed to slowly warm to 23° C. over a period of 8 h. The reaction solution was quenched with saturated aqueous NH[0070] 4Cl and extracted w/EtOAc. The aqueous phase was made slightly acidic before extraction with EtOAc. The combined organics were washed with brine, dried (MgSO4), filtered and concentrated in vacuo. Flash column chromatography (silica gel, 2:1 hex/EtOAc) gave 544 mg (93%) of the enone 2a.
  • Step 2: Preparation of alcohol 3a [0071]
  • Sodium tetrahydriodoborate (35 mg, 0.93 mmol) was added to a solution of the enone 2a (544 mg, 0.93 mmol) in MeOH(4.5 mL) at 0° C. After 2 h the solvent was removed in vacuo and the residue was stirred with 1N NaOH/EtOAc. The organic portion was separated, dried (MgSO[0072] 4), filtered and concentrated in vacuo. The 3a -alcohol was separated by flash column chromatography or HPLC (silica gel, 3:1 Hex/EtOAc).
  • Step 3: Preparation of 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-(2-methyl)thienyl-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid. [0073]
  • A solution of alcohol 3a and pyridinium p-toluene sulfonate (116 mg, 0.462 mmol) in MeOH(4.5mL) was heated at 40° C. for 4 h. The solvent was removed in vacuo and the residue was diluted with EtOAc followed by washing with 1N HCl, saturated aqueous NaHCO[0074] 3 and brine. The organic portion was dried (MgSO4), filtered and concentrated in vacuo.
  • The residue was diluted with THF (0.78 mL) and lithium hydroxide (0.39 mL of a 0.5N solution in H[0075] 2O, 0.194 mmol) was added. After 16 h the reaction was acidified with IN HCl and extracted with EtOAc. The organic portion was washed with brine, dried (MgSO4), and concentrated in vacuo to give 37.6 mg of the free acid 4a.
  • The title compound was identified by the following NMR spectrum. [0076]
  • [0077] 1H NMR (300 MH2, CDCl3) δ12.1(brs, 1H), 6.98 (d, J=5.1 Hz), 6.81(d, J=5.1 Hz, 1H), 5.30-5.64(m, 4H), 4.92(brs, 3H), 4.07-4.17 (m, 2H), 3.89-3.93(m, 1H), 2.55-2.59 (m,2H), 2.35(δ,3H), 2.07-2.33(m,10H), 1.42-1.86(m,4H).
  • By methods described for compound 4a, steps 1 through 3, the following compounds were prepared. (The compounds below are also identified by their NMR spectra.) [0078]
  • Compound 4b 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(5-methyl)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dinethyl 4-(2-(5-methyl)thienyl)-2-oxo-butylphosphonate afforded 26 mg of free acid 4b. [0079]
  • [0080] 1H NMR (300 MH2, CDCl3) δ 12.1(brs, 1H), 6.56 (d,J=3.4 Hz, 1H), 6.54(d, J=3.4 Hz, 1H), 5.34-5.64(m, 4H), 4.70(brs, 3H), 4.13-4.20 (m, 2H), 3.91-3.93(m, 1H), 2.82 (t, J=7.7 Hz, 2H), 2.42(δ,3H), 2.05-2.38(m,11H), 1.44-1.96(m,5H).
  • Compound 4c 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-(5-methyl)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimeithyl 4-(3-(2-methyl)thienyl)-2-oxo-butyl phosphonate afforded 25 mg of free acid 4c. [0081]
  • [0082] 1H NMR (300 MH2, CDCl3) δ 12.0(brs, 1H), 6.67 (s, 1H), 6.60(s, 1H), 5.34-5.62,(m, 4H), 4.42(brs, 3H), 4.10-4.17 (m, 2H), 3.89-3.93(m, 1H), 2.57-2.60(m, 2H), 2.44(δ,3H), 2.09-2.36(m, 8H), 1.44-1.87(m,6H).
  • Compound 4d 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-(2-chloro)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimethyl 4-(3-(2-chloro)thienyl)-2-oxo-butylphosphonate afforded 25 mg of free acid 4d. [0083]
  • [0084] 1H NMR (300 MH2, CDCl3) δ 12.0(brs, 1H), 6.99 (d, J=5.7H2), 6.78(d, J=5.7 Hz,1H), 5.29-5.60(m, 4H), 4.02-4.11 (m, 2H), 3.84-3.87(m, 1H), 3.37(brs, 3H), 2.56-2.63(m, 2H), 2.01-2.32(m, 8H), 1.38-1.83(m,7H).
  • Compound 4e 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(4-bromo)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimethyl 4-(2-(4-bromo)thienyl)-2-oxo-butylphosphonate afforded 10 mg of free acid 4e. [0085]
  • [0086] 1H NMR (300 MH2, CDCl3) δ 12.01(brs, 1H), 6.95 (s, 1H), 6.65(s, 1H), 5.24-5.53(m, 4H), 3.99-4.08 (m, 2H), 3.76-3.80(m, 1H), 2.70-2.79(m, 2H), 2.44(s,3H), 2.09-2.36(m, 8H), 1.44-1.87(m,6H).
  • Compound 4f 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(5-bromo)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimnethyl 4-(2-(5-bromo)thienyl)-2-oxo-butylphosphonate afforded 50 mg of free acid 4f. [0087]
  • [0088] 1H NMR (300 MH2, CDCl3) δ 12.0(brs, 1H), 6.80 (d, J=3.6 Hz, 1H), 6.51(d, J=3.9 Hz, 1H), 5.33-5.55(m, 4H), 4.05-4.12(m, 2H), 3.82-3.88(m, 1H), 2.75-2.81 (m, 2H), 1.38-2.28 (m,14H).
  • Compound 4g 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-(2,5-dichloro)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimethyl 4-(3-(2,5-dichloro)thienyl)-2-oxo-butylphosphonate afforded 18 mg of free acid 4g. [0089]
  • [0090] 1H NMR (300 MHz, CDCl3) δ 12.01(brs, 1H), 6.64 (s, 1H), 5.27-5.56(m, 4H), 4.05-4.15(m, 2H), 3.85-3.92(m, 1H),1.42-2.31(m,18H).
  • Compound 4h 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(3-chloro)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimethyl 4-(2-(3-chloro)thienyl)-2-oxo-butylphosphonate afforded 10 mg of free acid 4h. [0091]
  • [0092] 1H NMR (300 MHz, CDCl3) δ 12.0(brs, 1H), 7.13 (d, J=5.4 Hz, 1H), 6.75(d, J=5.4: Hz, 1H), 5.19-5.46(m, 4H), 3.96-3.98(m, 2H), 3.69-3.76(m, 1H), 2.72-2.75(m, 2H), 1.35-2.28(m, 17H).
  • Compound 4i 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-benzothienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimethyl 4-(2-benzothienyl)-2-oxo-butylphosphonate afforded 22 mg of free acid. 4i. [0093]
  • [0094] 1H NMR (300 MHz, CDCl3) δ 11.8(brs, 1H), 7.73(d, J=7.7 Hz, 1H), 7.63(d, J=6.9 Hz, 1H), 7.23-7.31(m, 2H), 7.00(s, 1H), 5.31-5.65(m, 4H), 4.86(brs, 3H), 4.16-4.22 (m, 2H), 3.89-3.93(m, 1H), 2.96 (t, J=7.6 Hz, 2H)1.86-2.35(m, 10H), 1.44-1.78(m, 4H).
  • Compound 4j 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-benzofuranyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimethyl 4-(2-benzofuranyl)-2-oxo-butylphosphonate afforded 30.5 mg of free acid 4j. [0095]
  • [0096] 1H NMR (300 MHz, CDCl3) δ 12.1(brs, 1H), 7.37-7.47 (m, 2H), 7.15-7.19(m, 2H), 6.38(s, 1H),5.30-5.66 (m, 4H), 5.04 (brs, 3H), 4.10-4.20(m, 2H), 3.86-3.94(m, 1H), 2.84(t, J=7.6 Hz, 2H)1.90-2.33(m, 10H), 1.38-1.78(m,4H).
  • Compound 4k 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(3-furanyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimethyl 4-(3-furanyl)-2-oxo-butylphosphonate afforded 10.1 mg of free acid 4k. [0097]
  • [0098] 1H NMR (300 MH2, CDCl3) δ 12.0(brs, 1H), 7.35 (d, J=1.7 Hz, 1H), 7.23(s, 1H) 6.28 (d, J=1.7 Hz, 1H), 5.34-5.64(m, 4H), 4.15-4.20(m, 2H), 3.90-3.94 (m, 1H) 3.70 (brs, 3H), 2.09-2.52 (m, 12H), 1.40-1.88 (m, 4H).
  • Compound 4l 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-furanyl)-1E-pentenyl)cyclopentyl] -5Z-]heptenoic acid.
  • According to the procedures described above for 4a, the use of dinmethyl 4-(2-furanyl)-2-oxo-butylphosphonate afforded 33.3 mg of free acid 4l. [0099]
  • [0100] 1H NMR (300 MHz, CDCl3) δ 11.8(brs, 1H), 7.29(s, 1H), (d, J=3.0 Hz 1H), 6.26(dd, J=3.0, 1.8 Hz, 1H), 5.99 (d, J=1.8 Hz, 1H) 5.34-5.64 (m, 4H), 4.82 (brs, 3H), 4.11-4.17 (m, 2H), 3.89-3.93 (m, 1H), 2.69 (t, J=8.4 Hz, 2H), 2.05-2.34 (m, 10H), 1.40-1.94(m, 4H).
  • Compound 4m 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-thiazolyl)-1E-pentenyl)cycopentyl] -5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimethyl 4-(2-thiazolyl)-2-oxo-butylphosphonate afforded 32.2 mg of free acid 4m. [0101]
  • [0102] 1H NMR (300 MHz, CD3OD) δ 7.47 (d, J=3.3 Hz, 1H), 7.23(d, J=3.3 Hz, 1H), 3.86-3.93 (m,2H), 3.60-3.65 (m, 1H), 2.88-2.95 (m, 2H), 1.75-2.20 (m, 10H), 1.22-1.44(m, 4H).
  • Compound 4n 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimethyl 4-(2-thienyl)-2-oxo-butylphosphonate afforded 15.0 mg of free acid 4n. [0103]
  • [0104] 1H NMR (300 MHz, CDCl3) δ 11.9(brs, 1H), 7.11, (d, J=5.1 Hz, 1H), 6.92(dd, J=5.1, 3.3 Hz, 1H), 6.00 (d, J=3.3 Hz, 1H) 5.32-5.64 (m,4H), 4.15-4.19(m, 2H), 3.93-3.97 (m, 1H), 3.61 (brs, 3H), 2.89-2.95 (m, 2H), 2.09-2.35 (m, 8H), 1.46-1.98(m, 6H).
  • Compound 4o 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-thienyl)-1E-pentenyl)cycopentyl] -5Z-heptenoic acid.
  • The 3β-isomer of 3n was isolated from the reaction mixture obtained in [0105] step 2 during preparation of 4n and subjected to step 3 to afford 14.3 mg of free acid 4o.
  • [0106] 1H NMR (300 MHz, CDCl3) δ 11.5(brs, 1H), 7.11, (d, J=5.1 Hz 1H), 6.92(dd, J=5.1, 3.3 Hz, 1H), 6.81 (d, J=3.3 Hz, 1H) 5.36-5.64 (m, 4H), 4.62 (brs, 3H), 4.17-4.21 (m, 2H), 3.95-3.98 (m, 1H), 2.90-2.96 (m, 2H), 2.08-2.34 (m, 8H), 1.40-1.98(m, 6H).
  • Compound 4p 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimethyl 4-(3-thienyl)-2-oxo-butylphosphonate afforded 9.6 mg of free acid 4p. While this compound is not a substituted heteroaryl derivative within the scope of general Formula I, above, it represents another aspect of this invention in view of its excellent ability to lower intraocular pressure as showvn below. [0107]
  • [0108] 1H NMR (300 MHz, CDCl3) δ 12.0(brs, 1H), 7.23-7.27(m, 1H), 6.94-6.95 (m, 2H), 5.36-5.65 (m, 4H), 4.10-4.17 (m, 2H), 3.94 (brs, 3H), 3.90-3.94 m, 1H), 2.68-2.74 (m, 2H), 2.00-2.35 (m, 8H), 1.44-1.96(m, 6H).
  • Compound 4q 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid.
  • The 3β-isomer of 3p was isolated from the reaction mixture obtained in [0109] step 2 during preparation of 4p and subjected to step 3 to afford 36.2 mg of free acid 4q.
  • [0110] 1H NMR (300 MHz, CDCl3) δ 11.9(brs, 1H), 7.23-7.27(m, 1H), 6.94-6.95 (m, 2H), 5.32-5.65 (m, 4H), 4.72 (brs, 3H), 4.12-4.19 (m, 2H), 3.93-3.97 (m, 1H), 2.69-2.76 (m, 2H), 2.07-2.33(m, 8H), 1.39-1.90 (m, 6H).
  • Compound 4r 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(5-ethyl)thienyl-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimethyl 4-(2(5-ethyl)thienyl)2-oxo-butylphosphonate will result in the free acid 4r. [0111]
  • Compound 4s 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(5-butyl)thienyl-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimethyl 4-(2-(5-butyl)thienyl)2-oxo-butylphosphonate will result in the free acid 4s. [0112]
  • Compound 4t 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(5-propyl)thienyl-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimethyl 4-(2-(5-propyl)thienyl)2-oxo-butylphosphonate will result in the free acid 4t. [0113]
  • Compound 4u 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(5-methoxy)thienyl-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • According to the procedures described above for 4a, the use of dimethyl 4-(2-(5-methoxy)thienyl)2-oxo-butylphosphonate will result in the free acid 4u. [0114]
  • Compound 4v 7-[3α,5α-Dihydroxy-2-(3β-hydroxy-5-(2-thiazolyl)-1E-pentenyl)cyclopentyl] -5Z-hLeptenoic acid.
  • The 3β isomer of 3m was isolated from the reaction mixture obtained in [0115] Step 2 during preparation of 4m and subjected to Step 3 to afford the free acid 4v.
  • Compound 4w 7-[3α,5α-Dihydroxy-2-(3-hydroxy-5-(2-(3-chloro)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid. Compound 6 7-[3α,5α-Dihydroxy-2-(3α-methoxy-5-(3-thienyl)-1E-pentenyl)cyclopentyl] -5Z-hieptenoic acid.
  • Alcohol (400 mg, 0.694 mmol) obtained in [0116] step 2 of preparation of 4p was treated with silver triflate (803 mg, 3.12 mmol), 2,6-di-t-butyl-pyridine (0.89 mL, 3.98 mmol) and iodomethane (0.21 mL, 3.4 mmol) in CH2Cl2 (11 mL) at 0° C. After 12 h the reaction mixture was filtered through celite, concentrated in vacuo and purified by flash column chromatography to give the 3α-methoxy product 5. Further subjection of 5 to the procedures described above in step 3 of preparation of 4a provided 41.2 mg of free acid 6.
  • [0117] 1H NMR (300 MHz, CDCl3) δ 11.6(brs, 1H), 7.24-7.28(m, 2H), 6.93 (d, J=3.3 Hz, 1.H), 5.34-5.60 (m,4H), 4.90 (brs, 3H), 4.20-4.23 (m,1H), 3.99-4.02(m, 1H), 3.54-3.64 (m, 1H), 3.30 (s, 3H), 2.69 (t, J=7.3 Hz, 2), 2.07-2.42 (m, 9H), 1.50-2.01 (m, 5H).
  • Compound 6a 7-[3α,5α-Dihydroxy-2-(3-hydroxy-5-(2-(3-chloro)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
  • The racemate of the alcohol prepared according to [0118] step 2 of preparation 4h is treated according to the procedures described above for 6 and results in the free acid 6a.
  • Conmpound 8p 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenamide.
  • The 3α-alcohol 3p, isolated from [0119] step 2 during preparation of 4p, was deprotected with pyridinium p-toluenesulfonate in MeOH at 45° C. for 4 h and after the usual work-up gave triol 7p.
  • A mixture of 7p and ammonium chloride in liquid ammonia was heated to 55° C. for 48 h in a sealed tube. The tube was recooled to −70° C., vented, and then allowed to warm to room temperature on its own accord. The residue was dissolved in 1:1 EtOAc/H[0120] 2O. The organic portion was separated, dried (MgSO4), filtered and concentrated in vacuo. Flash column chromatography (silica gel, 9:1 CH2Cl2/MeOH) gave 10.9 mg of the title compound 8p.
  • [0121] 1H NMR (300 MHz, CDCl3) δ 7.24-7.27(m, 1H), 6.95-6.96 (m, 2H), 5.76 (brs, 1H), 5.34-5.63 (m, 4H), 4.08-4.19 (m, 21H), 3.94-3.98(m, 1H), 2.95 (brs, 3H), 2.69-2.76 (m, 2H), 2.05-2.39 (m, 8H), 1.48-1.96 (m, 6H).
  • Compound 8q 7-[3α,5α-Dihydroxy-2-(3β-hydroxy-5-(3-thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenamide.
  • According to the procedures described for preparation of 8p the 3β-alcohol 3g was converted to the title compound 8q. [0122]
  • [0123] 1H NMR (300 MHz, CDCl3) δ 7.24-7.27 (m, 1H) 6.95-6.97 (m, 2H), 5.72( brs, 2H), 5.34-5.66 (m, 4H), 4.08-4.19 (m, 2H), 3.95-3.99 (m, 1H), 3.04 (brs, 1H), 2.70-2.84 (m, 4H), 2.08-2.36 (m, 9H), 1.42-1.89 (m, 5H).
  • Compound 8r 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-(2,5-dichloro)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenarnide.
  • According to the procedures described for preparation of 8p the alcohol 3r was converted to the title compound 8r. [0124]
  • [0125] 1H NMR (300 MHz, CDCl3) δ 6.64 (s, 1H), 5.26-5.68 (m, 6H), 4.07-4.10 (m, 1H), 3.97-4.03 (m,1H), 3.83-3.86 (m, 1H), 2.50-2.56 (m, 2H), 1.96-2.30(m, 11H), 1.39-1.80(m, 6H).
  • Compound 13 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-thienyl)pentyl)cyclopentyl]-5Z-heptenoic acid.
  • Step 1: Preparation of Alcohol [0126]
  • To a suspension of sodium hydride 271 mg (11.30 mmol) in THF (21 mL) cooled to 0° C. was added a solution of dimethyl 4-(3-thienyl)-2-oxo-butylphosphonate (2.96 g, 11.30 mnmol) in THF (10 mL). After stirring for 0.5 h a solution of aldehyde 9 (2.80 g, 10.28 mmol) in THF (10 mL) was added dropwise. The reaction was allowed to warm to room temperature and stirried for a total of 12 h before quenching with saturated aqueous NH[0127] 4Cl. The mixture was extracted with EtOAc and the organic portion was washed with saturated aqueous NaHCO3, brine, dried (MgSO4), filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 1:1 hex/EtoAc) to afford 3.98, (95%) of enone.
  • Immediately, a solution of the enone (3.98 g, 9.75 mmol) in MeOH (22 mL) was cooled to 0° C. and sodium tetrahydridoborate (369 mg, 9.75 mmol) was added. After 2 h the reaction was quenched with saturated aqueous NH[0128] 4Cl and extracted with EtOAc. The organic portion was washed with brine, dried (MgSO4) filtered and concentrated in vacuo. Purification by HPLC (Waters Partisil-10, 1:1 hex/EtOAc) afforded 1.30 g (33%) of the α-alcchol 10.
  • [0129] 1H NMR (300 MHz, CDCl3) δ 7.97 (d, J=7.2 Hz, 2H), 7.21-7.57, (m, 4H), 6.88 (d, J=4.1 Hz, 2H), 5.54-5.70 (m, 2H), 5.23 (q, J=6.1 Hz, 1H), 5.04 (t, J=6.5 Hz, 1H), 4.10 (q, J=7.1 Hz 1H), 2.45-2.89 (m, 7H), 2.18-2.26 (m, 2H), 1.76-1.84 (m, 2H).
  • Step 2: Preparation of Bis-[0130] Silyl ether 11
  • Potassium carbonate (523 mg, 3.78 mmol) was added to a solution of benzoate 10 (1.3 g, 3.15 mmol) in MeOH(6.5 mL). After 16 h the reaction solvent was removed in vacuo and the residue was dissolved in EtOAc/saturated aqueous NH[0131] 4Cl. The organic portion was washed with brine, dried (MgSO4), filtered and concentrated in vacuo.
  • The residue was dissolved in THF (6.5 mL) and triphenylphosphine rhodium chloride (400 mg) was added. The solution was degassed and purged under an atmosphere of hydrogen gas at 40-45 psi. After 16 h the reaction was concentrated in vacuo, and the residue purified by flash column chromatography (silica gel, 3:1 hex/EtOAc) to afford the apparent saturated diol after evaporation of the solvents. [0132]
  • The apparent diol was dissolved in CH[0133] 2Cl2 (6.5 mL) and 2,6-lutidine (2.0 mL, 16.5 mmol) was added followed by t-butyldimethylsilyl triflate (3.0 mL, 13.2 mmol). The reaction was quenched with saturated aqueous NaHCO3 and washed with brine, dried (MgSO4), filtered and concentrated in vacuo. Flash column chromatography (9:1 hex/EtOAc) gave 1.29 g (94%) of the bis-TBDMS ether 11.
  • Compound 11
  • [0134] 1H NMR (300 MHz, CDCl3) δ 7.22-7.25 (m, 1H), 7.22-7.23 (m, 2H), 4.92-4.98 (m, 1H), 3.90-3.94 (m, 1H), 3.64-3.70 (m, 1H), 2.45-2.82 (m, 5H), 1.95-2.16 (m, 2H), 1.71-1.77 (m, 3H), 1.05-1.51 (m, 4H), 0.88 (s, 9H), 0.85 (s, 9H), 0.03 (s, 9H), 0.02 (s, 3H).
  • Step 3: Preparation of [0135] ester 12
  • Lactone 11 (170 mg, 0.315 mmol) was dissolved in CH[0136] 2Cl2 (1.0 mL) and cooled to −70° C. Dibal-H(0.47 mL of a 1.0 M solution in CH2Cl2, 0.47 mmol) was added. After 2 h the reaction was quenched with MeOH, allowed to warm to room temperature, and extracted with CH2Cl2. The organic portion was dried (Na2SO4), filtered and concentrated in vacuo to give the lactol as a clear, viscous oil.
  • To a suspension of (4-carboxybutyl)triphenylphosphonium bromide (558 mg, 1.26 mmol) in THF (2.5 mL) was added potassium bis (trimethylsilyl)amide(503 mg, 2.52 mmol) at 0° C. After 0.5 h the solution was cooled to −70° C. and a solution of the lactol in THF (2.5 mL) was added. The reaction was allowed to warm to room temperature on its own accord, quenched with saturated aqueous NH[0137] 4Cl, and extracted with EtOAc. The organic portion was washed with saturated aqueous NaHCO3, brine, dried (MgSO4), filtered and concentrated in vacuo. The residue was diluted with Et2O and excess diazomethane in Et2O was added until the reaction solution persisted yellow. Evaporation of the solvent gave 140 mg (70%) of ester 12.
  • [0138] 1H NMR (300 MHz, CDCl3) δ 7.22-7.24 (m, 1H), 6.90-6.92 (m, 2H), 5.28-5.52 (m, 2H), 4.02-4.06 (m, 1H), 3.95-3.96 (m, 1H), 3.63-3.67 (m, 1H), 3.63 (s, 3H), 2.52-2.70 (m, 2H), 2.00-2.32 (m, 5H), 1.20-1.84 (m, 14H), 0.88 (s, 9H), 0.86 (s, 9H), 0.108-0.055 (m, 12H), (d, J=7.2 Hz, 2H), 7.21-7.57, (m, 4H), 6.88 (d,J=4.1 Hz, 2H), 5.54-5.70 (m, 2H), 5.23 (q, J=6.1 Hz, 1H), 5.04 (+, J=6.5 Hz, 1H), 4.10 (q, J−7.1 Hz 1H), 2.45-2.89 (m, 7H), 2.18-2.26 (m, 2H), 1.76-1.84 (m, 2H).
  • Step 4: Preparation [0139] carboxylic acid 13
  • To a solution of bis-TBDMS ether 12 (25 mg, 0.040 mmol) in THF (0.24 mL) was added Bu[0140] 4NF (0.12 mL of a 1.0M solution in THF, 0.12 mmol). After 16 h the reaction was concentrated in vacuo and purified by flash column chromatography (silica gel, 3:1 hex/EtOAc) to yield 13.0 mg (79%) of the triol.
  • Lithium hydroxide (0.15 mL of a 0.5N solution in H[0141] 2O, 0.073 mmol) was added to a solution of the ester (13.0 mg, 0.0316 mmol) in THF (0.3 mL). After 16 h the reaction was acidified with 1N HCl and extracted with EtOAc. The organic portion was dried (MgSO4), filtered and concentrated in vacuo to give 7.0 mg (56%) of free acid 13.
  • [0142] 1H NMR (300 MHz, CDCl3) δ 12.0 (brs, 1H), 7.19-7.22 (m, 1H), 6.90-6.92 (m, 2H), 5.31-5.48 (m, 2H), 4.10 (+, J=3.9 Hz, 1H), 3.86-3.88 (m, 1H), 3.59-3.65 (m, 1H), 2.65-2.82 (m, 2H), 1.20-2.30 (m, 21H).
  • Compound 15 7-[3α,5α-Dihydroxy-2-(3-hydroxy-5-(3-furanyl)pentyl) cyclopentyl]-5Z-heptenoic acid 15.
  • Step 1: Preparation of [0143] ketone 14.
  • A mixture of the enone (137 mg, 0.245 mmol) obtained in [0144] step 2 of preparation of 4k above, Aliquat 336 (34 μL, 0.074 mmol), sodium dithionite (384.7 mg, 2.21 mmol) and sodium bicarbonate (371.3 mg, 4.42 mmol) in benzene: H2O (1:1, 6.0 mL) was heated to 75° C. for 1.5 h. The reaction mixture was allowed to cool to room temperature, was diluted with EtoAc, and was washed with H2O and brine. The organic portion was dried (MgSO4), filtered and the filtrate was concentrated in vacuo. Purification by flash column chromatography (silica gel, 4:1 hex/EtOAc) gave 113.3 mg (83%) of the ketone 14.
  • Step 2: Preparation of 7-[3α,5α-Dihydroxy-2-(3-hydroxy-5-(3-furanyl)pentyl)cyclopentyl] -5Z-[0145] heptenoic acid 15.
  • Sodium tetrahydridoborate (14.2 mg, 0.375 mmol) was added to a solution of the ketone (210 mg, 0.375 mmol) in MeOH (3.0 mL) cooled to 0° C. After 30 minutes the reaction was quenched with saturated aqueous ammonium chloride and allowed to warm to room temperature. The mixture was extracted with Et[0146] 2O and the organic portion was dried (MgSO4), filtered and concentrated in vacuo.
  • The residue was diluted with MeOH (3.0 mL) and pyridinium p-toluene sulfonate (141 mg, 0.562 mmol) was added. After heating to 45° C. for 16 h the reaction was concentrated in vacuo, diluted with EtOAc and washed with 1 N HCl, saturated aqueous sodium bicarbonate, brine, dried (MgSO[0147] 4), filtered and concentrated in vacuo. Flash column chromatography (silica gel, 2:1 hex/EtOAc) followed by 100% EtOAc) gave 123 mg (83%) of a mixture of alcohols which were homogenous by TLC.
  • The mixture of alcohols (52.3 mg, 0.132 mmol) was diluted with THF (1.0 mL) and lithium hydroxide (0.53 mL of a 0.5 N solution in H[0148] 2O, 0.265 mmol) was added. After 16 h the reaction was acidified with 1 N HCl and extracted with EtOAc. The organic portion was washed with brine, dried (MgSO4) filtered and concentrated in vacuo to afford 44.6 mg (89%) of free acid 15.
  • [0149] 1H NMR (300 MHz, CDCl3) δ 7.34 (d, J=1.8 Hz, 1H), 7.23 (s, 1H), 6.2 (d, J=1.8 Hz, 1H), 5.30-5.52 (m, 2H), 4.81 (brs, 3H) 4.16 (brs, 1H), 3.95 (brs, 1H), 3.61-3.72 (m, 1H), 2.10-2.64 (m, 7H), 2.17 (s, 3H), 1.34-1.91 (m, 10H).
  • Certain of the above compounds were tested for activity in the various in vitro assays described below and the results are reported in Tables 1 through 4, below. [0150]
  • Activity at different prostanoid receptors was measured in vitro in isolated smooth muscle preparations. FP-activity was measured as contraction of the isolated feline iris sphincter. EP[0151] 1-activity was measured as contraction of the longitudinal smooth muscle of the isolated guinea pig ileum. EP3-activity was measured as inhibition of the twitch response induced by electrical field stimulation in the isolated guinea pig was deferens and as contraction of the longitudinal smooth muscle of the isolated chick ileum. Activity was also measured as relaxation of smooth muscle of isolated rabbit jugular vein a preparation which appears to contain a unique PGF-sensitive receptor provisionally termed FPVASC. TP-vasoconstrictor activity was measured as contraction of rings of the isolated rat thoracic aorta. Effects on platelets from healthy human donors were measured by incubating platelet-rich plasma with the compounds described herein. Inhibition of aggregation was determined by the ability of the compounds described herein to inhibit platelet aggregation in platelet-rich plasma induced by 20 μM ADP.
  • In addition to stimulating the FP receptor associated with the cat iris, several examples also stimulated the EP[0152] 3 receptor. Compounds with agonist activity at EP3 receptors may also be used for treating gastric or duodenal ulcer by virtue of their cytoprotective and anti-secretory properties. They may also be used as adjunctive therapy in combination with aspirin-like drugs and steroids to limit gastrointestinal side effects. EP3 agonists stimulate uterine smooth muscle and may be used to terminate pregnancy in human females. EP3 agonists are also useful in the cervical ripening process and could be used for inducing labor.
  • Other potential therapeutic applications are in osteoporosis, constipation, renal disorders, sexual dysfunction, baldness, diabetes, cancer and in disorder of immune regulation. [0153]
  • Many examples also have pronounced activity at the FP receptor, provisionally termed FP[0154] VASC associated with the vascular endothelium in the rabbit jugular vein preparation. Since such agents would be vasodilators they have potential in hypertension and any disease where tissue blood perfusion is compromised. Such indications include, but are not limited to, systemic hypertension, angina, stroke, retinal vascular diseases, claudication, Raynauds disease, diabetes, and pulmonary hypertension.
  • The effects of the compounds of this invention on intraocular pressure are also provided in the following tables. The compounds were prepared at the said concentrations in a vehicle comprising 0.1[0155] % polysorbate 80 and 10 mM TRIS base. Dogs were treated by administering 25 μl to the ocular surface, the contralateral eye received vehicle as a control. Intraocular pressure was measured by applanation pneumatonometry. Dog intraocular pressure was measured immediately before drug administration and at 6 hours thereafter.
  • Compound 4g was examined and showed a pronounced ocular hypeotensive effect in dogs. [0156]
    EC50 (nM) Platelets Dog IOP Hyp/
    AGN-# FP EP1 EP3 FPVASC TP aggreg inhib (1 day) Miosis
    Figure US20010016597A1-20010823-C00008
    4.2 >104 43p.a. 1230 20 4010 NA NA 0.1%/−2.8 0.38/pinpt
    Figure US20010016597A1-20010823-C00009
    82 >104 >1041820 31 >104 0.1%/−4.2 0.79/pinpt
    Figure US20010016597A1-20010823-C00010
    0.8 2000 400 178 9.2 2460 NA NA 0.1%/−6.0 0.6/pinpoint
    Figure US20010016597A1-20010823-C00011
    3.5 >104 >1045000 3.6 >104
    Figure US20010016597A1-20010823-C00012
    30 58
    Figure US20010016597A1-20010823-C00013
    170 0.1%/−3.3 0.72*/pin
    Figure US20010016597A1-20010823-C00014
    0.8 >104pa 189pa 1060 2.1 ˜104 NA NA 0.1%/−2.1 0.83/pinpt
    Figure US20010016597A1-20010823-C00015
    10 >104 105pa 2400 545 4740 NA NA
    Figure US20010016597A1-20010823-C00016
    19 >104 83 2510 5400 0.1%/−3.6 0.01%/−2.5 0.38/pinpoint 0.83/mild
    Figure US20010016597A1-20010823-C00017
    137 >5882
    Figure US20010016597A1-20010823-C00018
    9 >104 44 1150 >7692 ˜104 0.1%/−4.3 0.01%/−1.7 0.67/pinpojt 0.54/mild
    Figure US20010016597A1-20010823-C00019
    12 >104 355 3470 >833 3980
    Figure US20010016597A1-20010823-C00020
    190 9000pa >68966 0.1%/0 0.01%/−1.2 0.13/0 0.17/0
    Figure US20010016597A1-20010823-C00021
    291 ˜104 2664
    Figure US20010016597A1-20010823-C00022
    4 >104 1000pa 6170 47 2450 0.1%/−3.3 1.13/pinpoint
    Figure US20010016597A1-20010823-C00023
    7 >104 341 pa 8710 >7692 >104
    Figure US20010016597A1-20010823-C00024
    3 >104 305 pa 2040 >7143 ˜104 0.1%/−4.5 0.01%/−2.9 1.38/pinpt 0.42/pinpt
    Figure US20010016597A1-20010823-C00025
    0.8 >104 50 pa 2190 16 371
    Figure US20010016597A1-20010823-C00026
    0.49 >104 >104pa >104 7.7 2300 0.1%/−5.6 0.5/pinpt
    Figure US20010016597A1-20010823-C00027
    4 >104 36pa 7410 8.5 5080 0.1%/−4.8 1.0/pinpoint
    Figure US20010016597A1-20010823-C00028
    503 1003 0.1%/−3.2 0.6/pinpoint
    Figure US20010016597A1-20010823-C00029
    4230 28325
    Figure US20010016597A1-20010823-C00030
    13 >104>104 =104pa 122 3530
    Figure US20010016597A1-20010823-C00031
    33 21 >104
    Figure US20010016597A1-20010823-C00032
    202
    Figure US20010016597A1-20010823-C00033
    2940
    Figure US20010016597A1-20010823-C00034
    53
    Figure US20010016597A1-20010823-C00035
    0.70 NA 82 >104 0.1%/−5.8 1.2/pinpoint
  • The compounds of the invention may also be useful in the treatment of various pathophysiological diseases including acute myocardial infarction, vascular thrombosis, hypertension, pulmonary hypertension, ischemic heart disease, congestive heat failure, and angina pectoris, in which case the compounds may be administered by any means that effect vasodilation and thereby relieve the symptoms of the disease. For example, administration may be by oral, transdermal, parenterial, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, or buccal routes. [0157]
  • The compounds of the invention may be used alone, or in combination with other of the known vasodilator drugs. [0158]
  • The compounds of the invention may be formulated into an ointment containing about 0.10 to 10% of the active ingredient in a suitable base of, for example, white petrolatum, mineral oil and petrolatum and lanolin alcohol. Other suitable bases will be readily apparent to those skilled in the art. [0159]
  • The pharmaceutical preparations of the present invention are manufactured in a manner which is itself known, for example, by means of conventional dissolving or suspending the compounds, which are all either water soluble or suspendable. For administration in the treatment of the other mentioned pathophysiological disorders. The pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer such as glycerol or sorbitol. The push-fit capsules can contain the active compounds in liquid form that may be mixed with fillers such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds are preferably dissolved or suspended in suitable liquids, such as in buffered salt solution. In addition, stabilizers may be added. [0160]
  • In addition to being provided in a liquid form, for example in gelatin capsule or other suitable vehicle, the pharmaceutical preparations may contain suitable excipients to facilitate the processing of the active compounds into preparations that can be used pharmaceutically. Thus, pharmaceutical preparations for oral use can be obtained by adhering the solution of the active compounds to a solid support, optionally grinding the resulting mixture and processing the mixture of granules, after adding suitable auxiliaries, if desired or necessary, to obtain tablets or dragee cores. [0161]
  • Suitable excipients are, in particular, fillers such as sugars, for examnple lactose or sucrose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, as well as inders such as starch, paste using for example, maize starch, wheat starch, rich starch, potato starch, gelatin, tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone. If desired, disintegrating agents may be added such as the above-mentioned starches and also carboxymethyl-starch, crosslinked polyvinyl pyrrolidone, agar, or algenic acid or a salt thereof, such as sodium alginate. Auxiliaries are, above all, flow-regulating agents and lubricants, for example, silica, talc, stearic acid or salts thereof, such as magnesium stearate or calcium stearate, and/or polyethylene glycol. Dragee cores are provided with suitable coatings which if desired, are resistant to gastric juices. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, polyethylene glycol and/or titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures. In order to produce coatings resistant to gastric juices, solutions of suitable cellulose preparations such as acetylcellulose phthalate or hydroxypropylmethyl-cellulose phthalate, are used. Dye stuffs or pigments may be added to the tablets or dragee coatings, for example, for identification or in order to characterize combinations of active compound doses. [0162]
  • Suitable formulations for intravenous or parenteral administration include aqueous solutions of the active compounds. In addition, suspensions of the active compounds as oily injection suspensions may be administered. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, soribitol, and/or dextran. Optionally, the suspension may also contain stabilizers. [0163]
  • The foregoing description details specific methods and compositions that can be employed to practice the present invention, and represents the best mode contemplated. However, it is apparent for one of ordinary skill in the art that further compounds with the desired pharmacological properties can be prepared in an analogous manner, and that the disclosed compounds can also be obtained from different starting compounds via different chemical reactions. Similarly, different pharmaceutical compositions may be prepared and used with substantially the same result. Thus, however detailed the foregoing may appear in text, it should not be construed as limiting the overall scope hereof; rather, the ambit of the present invention is to be governed only by the lawful construction of the appended claims. [0164]

Claims (26)

1. A method of treating a pathophysiological disease selected from the group consisting of acute myocardial infarction, vascular thrombosis, hypertension, pulmonary hypertension, ischemic heart disease, congestive heart failure, and angina pectoris which comprises administering to a mammal having said disease a therapeutically effective amount of a compound represented by formula I:
Figure US20010016597A1-20010823-C00036
wherein the hatched segments represent α bonds, the solid triangle represents a β bond, wavy line attachments indicate either the alpha (α) or beta (β) configuration; dashed bonds represent a double bond or a single bond, R is a substituted hetero aryl radical, R1 is hydrogen or a lower alkyl radical having up to six carbon atoms, X is selected from the group consisting of —OR1 and —N(R1)2, Y is ═O or represents 2 hydrogen radicals.
2. The method of
claim 1
wherein the substituent on the heteroaryl radical is selected from the group consisting of lower alkyl, halogen, trifluoromethyl (CF3), COR1, COCF3, SO2NR1, SO2NH2, NO2 and CN.
3. The method of
claim 2
wherein said compound is represented by formula II:
Figure US20010016597A1-20010823-C00037
wherein Z is selected from the group consisting of O and S, A is selected from the group consisting of N, —CH, and C, R2 is selected from the group consisting of hydrogen, halogen and lower alkyl having from 1 to 6 carbon atoms, R3 and R4 are selected from the group consisting of hydrogen, halogen, lower alkyl having from 1 to 6 carbon atoms, or, together with,
Figure US20010016597A1-20010823-C00038
R3 and R4 forms a condensed aryl ring.
4. The method of
claim 3
wherein said compound represented by formula III:
Figure US20010016597A1-20010823-C00039
wherein R5 is hydrogen or methyl.
5. The method of
claim 4
wherein X is —OH or —NH2.
6. The method of
claim 4
wherein Y is ═O and X is —OH.
7. The method of
claim 4
wherein Y is ═O and X is —NH2.
8. The method of
claim 4
wherein Z is S.
9. The method of
claim 8
wherein at least one of R2, R3 and R4 are selected from the group consisting of halogen, lower alkyl having from 1 to 4 carbon atoms and lower alkoxy having from 1 to 4 carbon atoms.
10. The method of
claim 8
wherein at least one of R2, R3 and R4 is selected from the group consisting of chloro and bromo.
11. The method of
claim 8
wherein at least one of R2, R3 and R4 are chloro.
12. The method of
claim 11
wherein at least two of R2, R3 and R4 are chloro.
13. The method of
claim 4
wherein Y is ═O, X is —OH or —NH2 and Z is S.
14. The method of
claim 13
wherein at least one of R2, R3 and R4 is selected from the group consisting of chloro and bromo.
15. The method of
claim 13
wherein at least one of R2, R3 and R4 are bromo or at least two of R2, R3 and R4 are chloro.
16. The method of
claim 15
wherein said compound is 7-[3α,5α -Dihydroxy-2-(3α-hydroxy-5-(2-(4-bromo)thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid.
17. The method of
claim 15
wherein said compound is 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(3-(2, 5-dichloro)thienyl-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
18. The method of
claim 15
wherein said compound is 7-[3α,5α -Dihydroxy-2-(3α-hydroxy-5-(2-(5-bromo)thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid.
19. The method of
claim 15
wherein said compound is 7-[3α,5α -Dihydroxy-2-(3α-hydroxy-5-(2-(3-chloro)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenoic acid.
20. The method of
claim 15
wherein said compound is 7-[3α,5α -Dihydroxy-2-(3α-hydroxy-5-(3-(2-chloro)thienyl-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid.
21. The method of
claim 15
wherein said compound is 7-[3α,5α -Dihydroxy-2-(3α-hydroxy-5-(3-(2,5-dichloro)thienyl)-1E-pentenyl)cyclopentyl]-5Z-heptenamide.
22. The method of
claim 13
wherein at least one of R2, R3 and R4 is a lower alkyl radical having from 1 to 4 carbon atoms.
23. The method of
claim 22
wherein at least one of R2, R3 and R4 are ethyl, propyl or butyl.
24. The method of
claim 23
wherein said compound is 7-[3α,5α -Dihydroxy-2-(3α-hydroxy-5-(2-(5 ethyl)thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid.
25. The method of
claim 23
wherein said compound is 7-[3α,5α -Dihydroxy-2-(3α-hydroxy-5-(2-(5-propyl)thienyl)-1E-pentenyl)cyclopentyl] -5Z-heptenoic acid.
26. The method of
claim 24
wherein said compound is 7-[3α,5α-Dihydroxy-2-(3α-hydroxy-5-(2-(5-butyl)thienyl-1E-pentenyl)cyclopentyl]-5Z- heptenoic acid.
US09/795,982 1992-09-21 2001-02-28 Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents Expired - Lifetime US6310087B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/795,982 US6310087B2 (en) 1992-09-21 2001-02-28 Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US10/021,485 US6602900B2 (en) 1992-09-21 2001-10-29 Cyclopentane heptan(ENE)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US10/621,195 US20040044045A1 (en) 1992-09-21 2003-07-15 Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US07/948,056 US5352708A (en) 1992-09-21 1992-09-21 Non-acidic cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US15424493A 1993-11-18 1993-11-18
US08/371,339 US5607978A (en) 1992-09-21 1995-01-11 Non-acidic cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US08/605,567 US5688819A (en) 1992-09-21 1996-02-22 Cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US08/726,921 US5834498A (en) 1992-09-21 1996-10-07 Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US09/185,403 US5972991A (en) 1992-09-21 1998-11-03 Cyclopentane heptan(ene) oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US09/295,003 US6037364A (en) 1992-09-21 1999-04-20 Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US09/523,880 US6204287B1 (en) 1992-09-21 2000-03-13 Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US09/795,982 US6310087B2 (en) 1992-09-21 2001-02-28 Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/523,880 Continuation US6204287B1 (en) 1992-09-21 2000-03-13 Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/021,485 Continuation-In-Part US6602900B2 (en) 1992-09-21 2001-10-29 Cyclopentane heptan(ENE)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US10/021,485 Continuation US6602900B2 (en) 1992-09-21 2001-10-29 Cyclopentane heptan(ENE)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents

Publications (2)

Publication Number Publication Date
US20010016597A1 true US20010016597A1 (en) 2001-08-23
US6310087B2 US6310087B2 (en) 2001-10-30

Family

ID=27538472

Family Applications (8)

Application Number Title Priority Date Filing Date
US09/185,403 Expired - Lifetime US5972991A (en) 1992-09-21 1998-11-03 Cyclopentane heptan(ene) oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US09/295,003 Expired - Lifetime US6037364A (en) 1992-09-21 1999-04-20 Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US09/519,834 Expired - Fee Related US6403649B1 (en) 1992-09-21 2000-03-06 Non-acidic cyclopentane heptanoic acid,2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US09/523,880 Expired - Lifetime US6204287B1 (en) 1992-09-21 2000-03-13 Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US09/795,982 Expired - Lifetime US6310087B2 (en) 1992-09-21 2001-02-28 Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US10/282,726 Abandoned US20030114528A1 (en) 1992-09-21 2002-10-28 Non-acidic cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US12/339,494 Expired - Fee Related US8017655B2 (en) 1992-09-21 2008-12-19 Non-acidic cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US13/205,220 Abandoned US20110294893A1 (en) 1992-09-21 2011-08-08 Non-acidic cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US09/185,403 Expired - Lifetime US5972991A (en) 1992-09-21 1998-11-03 Cyclopentane heptan(ene) oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US09/295,003 Expired - Lifetime US6037364A (en) 1992-09-21 1999-04-20 Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US09/519,834 Expired - Fee Related US6403649B1 (en) 1992-09-21 2000-03-06 Non-acidic cyclopentane heptanoic acid,2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US09/523,880 Expired - Lifetime US6204287B1 (en) 1992-09-21 2000-03-13 Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/282,726 Abandoned US20030114528A1 (en) 1992-09-21 2002-10-28 Non-acidic cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US12/339,494 Expired - Fee Related US8017655B2 (en) 1992-09-21 2008-12-19 Non-acidic cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US13/205,220 Abandoned US20110294893A1 (en) 1992-09-21 2011-08-08 Non-acidic cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents

Country Status (1)

Country Link
US (8) US5972991A (en)

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972991A (en) * 1992-09-21 1999-10-26 Allergan Cyclopentane heptan(ene) oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US6602900B2 (en) * 1992-09-21 2003-08-05 Allergan, Inc. Cyclopentane heptan(ENE)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US20060280774A1 (en) * 1995-06-02 2006-12-14 Allergan, Inc. Compositions and methods for treating glaucoma
US5869079A (en) * 1995-06-02 1999-02-09 Oculex Pharmaceuticals, Inc. Formulation for controlled release of drugs by combining hydrophilic and hydrophobic agents
KR20010108316A (en) 1999-03-05 2001-12-07 데이비드 엠 모이어 C16 unsaturated fp-selective prostaglandins analogs
US6894175B1 (en) * 1999-08-04 2005-05-17 The Procter & Gamble Company 2-Decarboxy-2-phosphinico prostaglandin derivatives and methods for their preparation and use
US20020146439A1 (en) * 2000-03-31 2002-10-10 Delong Mitchell Anthony Compositions and methods for treating hair loss using oximyl and hydroxylamino prostaglandins
US20020037914A1 (en) * 2000-03-31 2002-03-28 Delong Mitchell Anthony Compositions and methods for treating hair loss using C16-C20 aromatic tetrahydro prostaglandins
US20020172693A1 (en) * 2000-03-31 2002-11-21 Delong Michell Anthony Compositions and methods for treating hair loss using non-naturally occurring prostaglandins
US20020013294A1 (en) * 2000-03-31 2002-01-31 Delong Mitchell Anthony Cosmetic and pharmaceutical compositions and methods using 2-decarboxy-2-phosphinico derivatives
US6726918B1 (en) 2000-07-05 2004-04-27 Oculex Pharmaceuticals, Inc. Methods for treating inflammation-mediated conditions of the eye
PE20020146A1 (en) * 2000-07-13 2002-03-31 Upjohn Co OPHTHALMIC FORMULATION INCLUDING A CYCLOOXYGENASE-2 (COX-2) INHIBITOR
AU3649502A (en) 2000-11-29 2002-06-11 Oculex Pharm Inc Methods for reducing or preventing transplant rejection in the eye and intraocular implants for use therefor
US6531504B2 (en) * 2001-05-17 2003-03-11 Allergan, Inc. Prostanoic acid derivatives as agents for lowering intraocular pressure
US8758733B2 (en) 2002-02-04 2014-06-24 Allergan, Inc. Topical treatment for chemotherapy induced eyelash loss or hypotrichosis using prostamide F2 alpha agonists
US7351404B2 (en) 2002-02-04 2008-04-01 Allergan, Inc. Method of enhancing hair growth
US9216183B2 (en) 2002-02-04 2015-12-22 Allergan, Inc. Topical treatment for chemotherapy induced eyelash loss or hypotrichosis using prostamide F2 alpha agonists
US20040058313A1 (en) * 2002-04-24 2004-03-25 Abreu Marcio Marc Compositions, targets, methods and devices for the therapy of ocular and periocular disorders
US20050048099A1 (en) 2003-01-09 2005-03-03 Allergan, Inc. Ocular implant made by a double extrusion process
US7179820B2 (en) * 2003-06-06 2007-02-20 Allergan, Inc. Piperidinyl prostaglandin E analogs
US20050250737A1 (en) * 2003-11-12 2005-11-10 Allergan, Inc. Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US20060141049A1 (en) * 2003-11-12 2006-06-29 Allergan, Inc. Triamcinolone compositions for intravitreal administration to treat ocular conditions
US20070224278A1 (en) 2003-11-12 2007-09-27 Lyons Robert T Low immunogenicity corticosteroid compositions
US20050101582A1 (en) 2003-11-12 2005-05-12 Allergan, Inc. Compositions and methods for treating a posterior segment of an eye
AU2005209201B2 (en) 2004-01-20 2010-06-03 Allergan, Inc. Compositions for localized therapy of the eye, comprising preferably triamcinolone acetonide and hyaluronic acid
US20060182781A1 (en) * 2004-04-30 2006-08-17 Allergan, Inc. Methods for treating ocular conditions with cyclic lipid contraining microparticles
US7993634B2 (en) 2004-04-30 2011-08-09 Allergan, Inc. Oil-in-oil emulsified polymeric implants containing a hypotensive lipid and related methods
US20050244458A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Sustained release intraocular implants and methods for treating ocular neuropathies
US8425929B2 (en) * 2004-04-30 2013-04-23 Allergan, Inc. Sustained release intraocular implants and methods for preventing retinal dysfunction
US20050244463A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Sustained release intraocular implants and methods for treating ocular vasculopathies
US8147865B2 (en) * 2004-04-30 2012-04-03 Allergan, Inc. Steroid-containing sustained release intraocular implants and related methods
US20050244466A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Photodynamic therapy in conjunction with intraocular implants
US20050244462A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Devices and methods for treating a mammalian eye
US20050244472A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Intraocular drug delivery systems containing excipients with reduced toxicity and related methods
US7589057B2 (en) 2004-04-30 2009-09-15 Allergan, Inc. Oil-in-water method for making alpha-2 agonist polymeric drug delivery systems
BRPI0510485A (en) 2004-04-30 2007-11-13 Allergan Inc biodegradable intravitreal tyrosine kinase inhibitor implants
US8673341B2 (en) * 2004-04-30 2014-03-18 Allergan, Inc. Intraocular pressure reduction with intracameral bimatoprost implants
US9498457B2 (en) 2004-04-30 2016-11-22 Allergan, Inc. Hypotensive prostamide-containing biodegradable intraocular implants and related implants
US20050244461A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Controlled release drug delivery systems and methods for treatment of an eye
US8455656B2 (en) 2004-04-30 2013-06-04 Allergan, Inc. Kinase inhibitors
US20050244471A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Estradiol derivative and estratopone containing sustained release intraocular implants and related methods
US8722097B2 (en) * 2004-04-30 2014-05-13 Allergan, Inc. Oil-in-water method for making polymeric implants containing a hypotensive lipid
US20070059336A1 (en) * 2004-04-30 2007-03-15 Allergan, Inc. Anti-angiogenic sustained release intraocular implants and related methods
US7799336B2 (en) 2004-04-30 2010-09-21 Allergan, Inc. Hypotensive lipid-containing biodegradable intraocular implants and related methods
US8591885B2 (en) * 2004-04-30 2013-11-26 Allergan, Inc. Carbonic anhydrase inhibitor sustained release intraocular drug delivery systems
US20050244478A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Anti-excititoxic sustained release intraocular implants and related methods
US7771742B2 (en) 2004-04-30 2010-08-10 Allergan, Inc. Sustained release intraocular implants containing tyrosine kinase inhibitors and related methods
US8119154B2 (en) 2004-04-30 2012-02-21 Allergan, Inc. Sustained release intraocular implants and related methods
US20050244469A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Extended therapeutic effect ocular implant treatments
JP2008505978A (en) * 2004-07-12 2008-02-28 アラーガン、インコーポレイテッド Ophthalmic composition and eye disease treatment method
US7183310B2 (en) * 2004-08-10 2007-02-27 Allergan, Inc. Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US7101904B2 (en) * 2004-08-10 2006-09-05 Allergan, Inc. Cyclopentane heptan(ENE)OIC acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US7906552B2 (en) 2004-08-10 2011-03-15 Allergan, Inc. Cyclopentane heptan(ENE)OIC acid, 2-heteroarylalkenyl derivatives as therapeutic agents
GB0501192D0 (en) * 2005-01-20 2005-03-02 Resolution Chemicals Ltd Stable prostaglandin-containing compositions
US7851504B2 (en) 2005-03-16 2010-12-14 Allergan, Inc. Enhanced bimatoprost ophthalmic solution
WO2010102078A1 (en) 2009-03-04 2010-09-10 Allergan, Inc. Enhanced bimatoprost ophthalmic solution
US20070178138A1 (en) * 2006-02-01 2007-08-02 Allergan, Inc. Biodegradable non-opthalmic implants and related methods
US7666912B2 (en) 2006-03-23 2010-02-23 Massachusetts Eye And Ear Infirmary Compositions and methods for reducing body fat
US8802128B2 (en) 2006-06-23 2014-08-12 Allergan, Inc. Steroid-containing sustained release intraocular implants and related methods
US20070298073A1 (en) * 2006-06-23 2007-12-27 Allergan, Inc. Steroid-containing sustained release intraocular implants and related methods
US8969415B2 (en) 2006-12-01 2015-03-03 Allergan, Inc. Intraocular drug delivery systems
US8455513B2 (en) 2007-01-10 2013-06-04 Aerie Pharmaceuticals, Inc. 6-aminoisoquinoline compounds
JP5313125B2 (en) 2007-02-28 2013-10-09 旭化成ファーマ株式会社 Sulfonamide derivatives
US7911053B2 (en) * 2007-04-19 2011-03-22 Marvell World Trade Ltd. Semiconductor packaging with internal wiring bus
US8450344B2 (en) 2008-07-25 2013-05-28 Aerie Pharmaceuticals, Inc. Beta- and gamma-amino-isoquinoline amide compounds and substituted benzamide compounds
US8623918B2 (en) * 2008-10-29 2014-01-07 Novaer Holdings, Inc. Amino acid salts of prostaglandins
US8722739B2 (en) 2008-10-29 2014-05-13 Novaer Holdings, Inc. Amino acid salts of prostaglandins
WO2010096123A2 (en) 2008-10-29 2010-08-26 Aerie Pharmaceuticals, Inc. Amino acid salts of prostaglandins
US20100204335A1 (en) * 2008-12-01 2010-08-12 Allergan, Inc. Kit and composition for eyelash growth
US20110293549A1 (en) 2009-02-03 2011-12-01 Athena Cosmetics, Inc. Composition, method and kit for enhancing hair
ES2672624T3 (en) 2009-05-01 2018-06-15 Aerie Pharmaceuticals, Inc. Dual mechanism inhibitors for the treatment of diseases
US9149484B2 (en) 2009-11-09 2015-10-06 Allergan, Inc. Compositions and methods for stimulating hair growth
PL2498783T3 (en) 2009-11-09 2019-04-30 Allergan Inc Compositions and methods for stimulating hair growth
US9522153B2 (en) 2009-12-22 2016-12-20 Allergan, Inc. Compositions and methods for lowering intraocular pressure
ES2613698T3 (en) * 2010-01-11 2017-05-25 Inotek Pharmaceuticals Corporation Combination, kit and method of intraocular pressure reduction
JP2013523739A (en) 2010-03-26 2013-06-17 イノテック ファーマシューティカルズ コーポレイション Method for reducing intraocular pressure in humans using N6-cyclopentyladenosine (CPA), CPA derivatives or prodrugs thereof
US20120129789A1 (en) 2010-11-18 2012-05-24 Steven Yoelin Compositions and methods for hair growth
EP2648676A4 (en) 2010-12-06 2016-05-04 Follica Inc Methods for treating baldness and promoting hair growth
EP2982373B1 (en) 2011-01-19 2018-06-13 Topokine Therapeutics, Inc. Methods and compostions for reducing body fat
US8859616B2 (en) * 2011-01-21 2014-10-14 Allergan, Inc. Compounds and methods for enhancing hair growth
KR101935068B1 (en) 2011-02-14 2019-01-03 알러간, 인코포레이티드 Ester derivatives of bimatoprost compositions and methods
US8783451B2 (en) 2011-02-18 2014-07-22 Allergan, Inc. Unit dose breakable vial with integrated brush applicator
US20120251613A1 (en) * 2011-03-29 2012-10-04 Agila Specialities Pvt. Ltd. Method for treating vitiligo with a prostaglandin analogue
EP3967297A1 (en) 2011-04-29 2022-03-16 Allergan, Inc. Sustained release latanoprost implant
US8426471B1 (en) 2011-12-19 2013-04-23 Topokine Therapeutics, Inc. Methods and compositions for reducing body fat and adipocytes
KR20140128974A (en) 2012-01-26 2014-11-06 이노텍 파마슈티컬스 코포레이션 Anhydrous polymorphs of ((2r,3s,4r,5r)-5-(6-(cyclopentylamino)-9h-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl) methyl nitrate and processes of preparation thereof
US20150164765A1 (en) 2012-05-17 2015-06-18 Steven G. Yoelin Compositions and methods for hair growth
DK2911623T3 (en) 2012-10-26 2019-10-28 Forsight Vision5 Inc Ophthalmic system for long-term release of drug into the eye
CN104936595A (en) 2012-11-21 2015-09-23 托普凯恩制药公司 Methods and compositions for locally increasing body fat
US20140234389A1 (en) 2013-02-15 2014-08-21 Allergan, Inc. Sustained drug delivery implant
JP2016515520A (en) 2013-03-15 2016-05-30 アエリエ・ファーマシューティカルズ・インコーポレーテッド Combination therapy
EA201591433A1 (en) 2013-03-15 2015-12-30 Инотек Фармасьютикалс Корпорейшн OPHTHALMIC COMPOSITIONS
RU2015146211A (en) 2013-04-01 2017-05-19 Аллерган, Инк. MICROSPHERIC MEDICINAL DELIVERY SYSTEM FOR SLOW-IN-ORGANIC DISCHARGE
NO2753788T3 (en) 2013-05-10 2018-06-16
US9820993B2 (en) 2013-05-15 2017-11-21 Topokine Therapeutics, Inc. Methods and compositions for topical delivery of prostaglandins to subcutaneous fat
TR201802759T4 (en) 2013-10-31 2018-03-21 Allergan Inc Prostamide-containing intraocular implants and methods of use.
US10188661B2 (en) 2014-06-27 2019-01-29 Topokine Therapeutics, Inc. Topical dosage regimen
US20160296532A1 (en) 2015-04-13 2016-10-13 Forsight Vision5, Inc. Ocular Insert Composition of a Semi-Crystalline or Crystalline Pharmaceutically Active Agent
JP2018534018A (en) 2015-09-27 2018-11-22 フォリカ, インコーポレーテッドFollica, Inc. Needle insertion device and drug applicator
US9643927B1 (en) 2015-11-17 2017-05-09 Aerie Pharmaceuticals, Inc. Process for the preparation of kinase inhibitors and intermediates thereof
WO2018045091A1 (en) 2016-08-31 2018-03-08 Aerie Pharmaceuticals, Inc. Ophthalmic compositions
SG11201908179UA (en) 2017-03-31 2019-10-30 Aerie Pharmaceuticals Inc Aryl cyclopropyl-amino-isoquinolinyl amide compounds
US10575562B2 (en) 2017-06-30 2020-03-03 Rai Strategic Holdings, Inc. Smoking article for identifying an attribute of an aerosol-generating element for adaptive power output and an associated method
US10667554B2 (en) 2017-09-18 2020-06-02 Rai Strategic Holdings, Inc. Smoking articles
US20190274354A1 (en) 2018-03-09 2019-09-12 Rai Strategic Holdings, Inc. Electronically heated heat-not-burn smoking article
US10798969B2 (en) 2018-03-16 2020-10-13 R. J. Reynolds Tobacco Company Smoking article with heat transfer component
US11382356B2 (en) 2018-03-20 2022-07-12 Rai Strategic Holdings, Inc. Aerosol delivery device with indexing movement
US11191298B2 (en) 2018-06-22 2021-12-07 Rai Strategic Holdings, Inc. Aerosol source member having combined susceptor and aerosol precursor material
US11723399B2 (en) 2018-07-13 2023-08-15 R.J. Reynolds Tobacco Company Smoking article with detachable cartridge
US10939707B2 (en) 2018-08-23 2021-03-09 Rai Strategic Holdings, Inc. Aerosol delivery device with segmented electrical heater
US11265974B2 (en) 2018-08-27 2022-03-01 Rai Strategic Holdings, Inc. Aerosol delivery device with integrated thermal conductor
AU2019337703B2 (en) 2018-09-14 2023-02-02 Aerie Pharmaceuticals, Inc. Aryl cyclopropyl-amino-isoquinolinyl amide compounds
US11247005B2 (en) 2018-09-26 2022-02-15 Rai Strategic Holdings, Inc. Aerosol delivery device with conductive inserts
US20200154785A1 (en) 2018-11-20 2020-05-21 R.J. Reynolds Tobacco Company Overwrap material containing aerosol former for aerosol source member
US20200237018A1 (en) 2019-01-29 2020-07-30 Rai Strategic Holdings, Inc. Susceptor arrangement for induction-heated aerosol delivery device
US20210015173A1 (en) 2019-07-18 2021-01-21 R.J. Reynolds Tobacco Company Aerosol delivery device with consumable cartridge
US20210015172A1 (en) 2019-07-19 2021-01-21 R.J. Reynolds Tobacco Company Aerosol delivery device with clamshell holder for cartridge
US11330838B2 (en) 2019-07-19 2022-05-17 R. J. Reynolds Tobacco Company Holder for aerosol delivery device with detachable cartridge
US11395510B2 (en) 2019-07-19 2022-07-26 R.J. Reynolds Tobacco Company Aerosol delivery device with rotatable enclosure for cartridge
US20210015177A1 (en) 2019-07-19 2021-01-21 R.J. Reynolds Tobacco Company Aerosol delivery device with separable heat source and substrate
US20210015175A1 (en) 2019-07-19 2021-01-21 R.J. Reynolds Tobacco Company Aerosol delivery device with sliding sleeve
US10993944B2 (en) 2019-08-07 2021-05-04 Aneira Pharma, Inc. Methods and compositions for the treatment of hair loss
US20210204593A1 (en) 2020-01-02 2021-07-08 R.J. Reynolds Tobacco Company Smoking article with downstream flavor addition
US11607511B2 (en) 2020-01-08 2023-03-21 Nicoventures Trading Limited Inductively-heated substrate tablet for aerosol delivery device
US11457665B2 (en) 2020-01-16 2022-10-04 Nicoventures Trading Limited Susceptor arrangement for an inductively-heated aerosol delivery device
US11439185B2 (en) 2020-04-29 2022-09-13 R. J. Reynolds Tobacco Company Aerosol delivery device with sliding and transversely rotating locking mechanism
US11589616B2 (en) 2020-04-29 2023-02-28 R.J. Reynolds Tobacco Company Aerosol delivery device with sliding and axially rotating locking mechanism
US20210345667A1 (en) 2020-05-08 2021-11-11 R. J. Reynolds Tobacco Company Aerosol delivery device
US11533946B2 (en) 2020-06-22 2022-12-27 R. J. Reynolds Tobacco Co. Systems and methods for determining a characteristic of a smoking article
US20220000178A1 (en) 2020-07-01 2022-01-06 Nicoventures Trading Limited 3d-printed substrate for aerosol delivery device
US11856986B2 (en) 2020-10-19 2024-01-02 Rai Strategic Holdings, Inc. Customizable panel for aerosol delivery device
US20220312849A1 (en) 2021-04-02 2022-10-06 R. J. Reynolds Tobacco Company Aerosol delivery device with integrated lighter
US11825872B2 (en) 2021-04-02 2023-11-28 R.J. Reynolds Tobacco Company Aerosol delivery device with protective sleeve
US20220312846A1 (en) 2021-04-02 2022-10-06 R. J. Reynolds Tobacco Company Aerosol delivery device consumable unit
US20220312848A1 (en) 2021-04-02 2022-10-06 R. J. Reynolds Tobacco Company Aerosol delivery device with integrated inductive heater
US20230105080A1 (en) 2021-10-01 2023-04-06 Rai Strategic Holdings, Inc. Absorbent containing mouthpiece for aerosol delivery device
US20230107943A1 (en) 2021-10-01 2023-04-06 Rai Strategic Holdings, Inc. Mouthpiece for aerosol delivery device
KR102485499B1 (en) 2022-07-15 2023-01-09 오가노이드사이언스 주식회사 Composition for treating or preventing kidney disease

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO143741C (en) * 1972-07-13 1981-04-08 Pfizer ANALOGY PROCEDURE FOR THE PREPARATION OF PHYSIOLOGICALLY ACTIVE PROSTAGLAND CONNECTIONS OF THE E AND F SERIES
GB1402035A (en) 1972-12-07 1975-08-06 Ici Ltd Cyclopentane derivatives
US4183870A (en) 1974-01-26 1980-01-15 May & Baker Limited Cyclopentane derivatives
NL7605381A (en) 1975-05-26 1976-11-30 Schering Ag METHOD FOR PREPARING PROSTANE DERIVES AND METHOD FOR PREPARING A MEDICINAL PRODUCT WITH PROSTAGLANDIN ACTION.
US4128577A (en) * 1975-12-29 1978-12-05 The Upjohn Company 15-Methyl- and 16-phenoxy-PGF2 α, amides
US4055602A (en) 1976-01-08 1977-10-25 The Upjohn Company 2-Decarboxy-2-hydroxy-methyl-5-oxa-17-phenyl-18,19,20-trinor-PGF-analogs
IL51877A (en) 1976-06-01 1981-09-13 Carlo Erba Sa -nor-16-benzyl or phenoxy-13,14-dehydro-prostaglandins and process for their preparation
DE2715838A1 (en) 1977-04-05 1978-10-19 Schering Ag NEW PROSTANE DERIVATIVES AND PROCESS FOR THEIR PRODUCTION
US4097489A (en) 1977-06-17 1978-06-27 The Upjohn Company 9-Deoxy-9α,6-nitrilo or 6,9α-imino-PGF compounds
US4131738A (en) 1977-07-05 1978-12-26 The Upjohn Company 6-Hydroxy-PGE1 compounds
US4163758A (en) 1977-09-09 1979-08-07 Sagami Chemical Research Center 2-Nitroethylcyclopentane compounds and process for preparing the same
US4128713A (en) 1977-12-15 1978-12-05 The Upjohn Company 6,7-Didehydro-PGI1 compounds
US4171331A (en) 1978-06-05 1979-10-16 Miles Laboratories, Inc. 1 And 2-substituted analogues of certain prostaglandins
DE2950027A1 (en) 1979-12-10 1981-06-11 Schering Ag Berlin Und Bergkamen, 1000 Berlin 9-CHLORINE PROSTAGLAND DERIVATIVES, METHOD FOR THE PRODUCTION AND USE AS A MEDICINAL PRODUCT
CH656877A5 (en) * 1981-11-27 1986-07-31 Erba Farmitalia OPTICALLY ACTIVE OR RACEMIC PROSTAGLAND DERIVATIVES.
US4599353A (en) 1982-05-03 1986-07-08 The Trustees Of Columbia University In The City Of New York Use of eicosanoids and their derivatives for treatment of ocular hypertension and glaucoma
EP0102230B1 (en) 1982-08-24 1987-04-29 Teijin Limited Novel 6-nitroprostaglandin derivatives, process for production thereof, and use thereof
JPS61126069A (en) * 1984-11-21 1986-06-13 Res Dev Corp Of Japan Prostaglandin derivative
US4824857A (en) 1986-05-16 1989-04-25 Yasumasa Goh Use of prostaglandin D2 -active substances
US5296504A (en) * 1988-09-06 1994-03-22 Kabi Pharmacia Prostaglandin derivatives for the treatment of glaucoma or ocular hypertension
US5321128A (en) * 1988-09-06 1994-06-14 Kabi Pharmacia Ab Prostaglandin derivatives for the treatment of glaucoma or ocular hypertension
DE68929563D1 (en) * 1988-09-06 2009-03-05 Pfizer Health Ab Prostaglandin derivatives for the treatment of glaucoma and ocular hypertension
DE3923797A1 (en) 1989-07-14 1991-01-24 Schering Ag 9-FLUOR-PROSTAGLANDIN DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR PHARMACEUTICAL USE
US4994274A (en) 1989-07-27 1991-02-19 Allergan, Inc. Intraocular pressure reducing 11,15-diacyl prostaglandins and method of using
US5034413A (en) 1989-07-27 1991-07-23 Allergan, Inc. Intraocular pressure reducing 9,11-diacyl prostaglandins
TW224942B (en) 1990-04-04 1994-06-11 Adka Ueno Kk
US5270049A (en) 1990-11-09 1993-12-14 Allergan, Inc. 2-decarboxyl-2-aminoalkyl-prostaglandins as ocular hypotensives
US5414016A (en) 1991-03-12 1995-05-09 Schering Aktiengesellschaft New leukotriene-B4 derivatives, process for their production and their use as pharmaceutical agents
US5352708A (en) * 1992-09-21 1994-10-04 Allergan, Inc. Non-acidic cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US5688819A (en) * 1992-09-21 1997-11-18 Allergan Cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US5834498A (en) * 1992-09-21 1998-11-10 Allergan Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US5972991A (en) * 1992-09-21 1999-10-26 Allergan Cyclopentane heptan(ene) oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
AU665287B2 (en) * 1992-12-21 1995-12-21 Alcon Laboratories, Inc. Prostaglandin combinations in glaucoma therapy
US5510383A (en) 1993-08-03 1996-04-23 Alcon Laboratories, Inc. Use of cloprostenol, fluprostenol and their salts and esters to treat glaucoma and ocular hypertension
US5545665A (en) 1993-12-28 1996-08-13 Allergan Cyclopentane(ene) heptenoic or heptanoic acids and derivatives thereof useful as therapeutic agents

Also Published As

Publication number Publication date
US20110294893A1 (en) 2011-12-01
US6204287B1 (en) 2001-03-20
US5972991A (en) 1999-10-26
US6310087B2 (en) 2001-10-30
US20030114528A1 (en) 2003-06-19
US20090227672A1 (en) 2009-09-10
US8017655B2 (en) 2011-09-13
US6037364A (en) 2000-03-14
US6403649B1 (en) 2002-06-11

Similar Documents

Publication Publication Date Title
US6310087B2 (en) Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US5834498A (en) Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US6680337B2 (en) Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US6248773B1 (en) Cyclopentane heptan(ene)oic acid, 2-heteroarylalk(en)yl derivatives as therapeutic agents
US6602900B2 (en) Cyclopentane heptan(ENE)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
EP0825980B1 (en) Cyclopentane heptan(ene)oic acid, 2-heteroarylakenyl derivatives as therapeutic agents for the treatment of ocular hypertension
US6303658B1 (en) Cyclopentane heptenoic or heptanoic acids and derivatives thereof useful as therapeutic agents
EP0585380B1 (en) Ocular hypotensive 2-decarboxyl-2-acylthioalkyl prostaglandin derivatives
US6258844B1 (en) Cyclopentane (ene) oic acid, 2-alkenyl derivatives as therapeutic agents
US6380251B1 (en) Cyclopentane heptan(ene)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents
US6248783B1 (en) Cyclopentane 1-hydroxy alkyl or alkenyl-2-one or 2-hydroxy derivatives as therapeutic agents
US20070219256A1 (en) Cyclopentane heptan(ene)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
AS Assignment

Owner name: ALLERGAN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALERGAN SALES, LLC (FORMERLY IN THE NAME OF VISION PHARMACEUTICALS L.P.;ALLERGAN- WITH WACO OR DUPONT ADDRESS;REEL/FRAME:013933/0496

Effective date: 20030404

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12