US20010017227A1 - Hybrid vehicle - Google Patents

Hybrid vehicle Download PDF

Info

Publication number
US20010017227A1
US20010017227A1 US09/850,122 US85012201A US2001017227A1 US 20010017227 A1 US20010017227 A1 US 20010017227A1 US 85012201 A US85012201 A US 85012201A US 2001017227 A1 US2001017227 A1 US 2001017227A1
Authority
US
United States
Prior art keywords
engine
torque
motor
value
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/850,122
Inventor
Masahiko Amano
Ryoso Masaki
Taizo Miyazaki
Tomoyuki Hanyu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/850,122 priority Critical patent/US20010017227A1/en
Publication of US20010017227A1 publication Critical patent/US20010017227A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/42Control modes by adaptive correction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0006Digital architecture hierarchy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/102Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts the input or output shaft of the transmission is connected or connectable to two or more differentials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/909Gearing
    • Y10S903/91Orbital, e.g. planetary gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/945Characterized by control of gearing, e.g. control of transmission ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/951Assembly or relative location of components

Definitions

  • the present invention relates to a hybrid vehicle having an engine and a motor, or in particular to a hybrid vehicle in which the fuel consumption can be improved by controlling the operating point of the engine and the battery charging rate according to a target.
  • JP-A-7-135701 discloses a system in which two motors and one planetary gear are used so that the engine driving force is input to the planetary gear, and the motor is controlled to drive the vehicle by the driving force obtained from the output shaft of the planetary gear.
  • Part of the energy of the engine is derived from a generator (which is one of the motors) generating power while the motor coupled to the output shaft of the generator delivers a driving force as an assistance.
  • the engine is always driven efficiently in a high torque area while at the same time providing the shift function.
  • a method of controlling the driving torque of the hybrid vehicle is described in JP-A-8-207601 in which the torque of the generator is calculated and the torque of the motor on the output shaft is corrected by the calculated torque of the generator. According to this method, the vehicle driving torque is not affected greatly by variations in the engine output and therefore the drivability can be improved.
  • JP-A-10-243503 discloses a method in which the motor torque command or the target engine speed is corrected in accordance with the current value of the battery. This method can maintain the normal condition of the battery and therefore can prevent the deterioration of the battery. Also, the battery charging rate can be controlled as scheduled.
  • the method of correcting the output of the motor according to the estimated torque value can control the vehicle drive torque as intended and therefore can improve the drivability. Nevertheless, the change in motor output may cause unexpected charge and discharge of the battery, often leading to the deviation from the optimum schedule for charging the battery, resulting in a deteriorated fuel consumption rate.
  • the engine operating point if deviated from the target, is not corrected, thereby posing the problem that the engine deviates from the optimum operating point and the fuel consumption rate is deteriorated.
  • the object of the invention is to provide a hybrid vehicle n which the efficiency and the fuel consumption can be improved by controlling the engine operating point and the battery charging rate as intended without adversely affecting the drivability.
  • a hybrid vehicle comprising an engine for generating the energy for driving the vehicle, a transmission for transmitting the driving force to the wheels by changing the rotational speed of the engine, at least a motor for changing the wheel driving force, a battery for supplying power to the motor, and a drive control unit for calculating and outputting an operation command value for the engine and the motor based on the drive information including the accelerator angle, wherein the drive control unit includes an engine output correcting mechanism for correcting the operation command value for the engine based on the difference between the engine operation command value and the torque generated by the engine thereby to maintain an optimum engine operating point.
  • the optimum operating point is defined as a point on or near a curve associated with the best fuel consumption rate of the engine including the efficiency of the transmission and the motor.
  • a hybrid vehicle comprising an engine for generating the energy for driving the vehicle, a transmission for transmitting the driving force to the wheels by changing the rotational speed of the engine, at least a motor for changing the wheel driving force, a battery for supplying power to the motor, means for determining a target engine torque, means for calculating the torque generated by the engine, and means for correcting the engine output based on the difference between the target engine torque value and the engine torque value calculated by the engine torque calculation means.
  • a hybrid vehicle comprising an engine for generating the energy for driving the vehicle, transmission for transmitting the driving force to the wheels by changing the rotational speed of the engine, at least a motor for changing the wheel driving force, a battery for supplying power to the motor, means for determining a target engine output value instead of the engine torque, means for calculating the output of the engine, and means for correcting the engine output based on the difference between the target engine output value and the calculated engine output value.
  • a hybrid vehicle comprising an engine for generating the energy for driving the vehicle, a transmission for transmitting the driving force to the wheels by changing the rotational speed of the engine, at least a motor for changing the wheel driving force, a battery for supplying power to the motor, a battery management unit for determining a target current value of the battery, means for detecting the battery current, and means for correcting the engine output based on the difference between a target battery current and a detected battery current value, wherein the battery management unit produces a schedule for the battery charging rate based on the navigation information and determines the target battery current value based on the difference between the detected value of the battery charging rate and the scheduled battery charging rate.
  • the engine output correcting means can correct the output by controlling the throttle opening degree or correcting the target engine output value.
  • an optimum engine operating point can be maintained while producing the target vehicle driving torque and also the battery charging rate can be kept as scheduled for an improved fuel consumption rate.
  • FIG. 1 is a diagram showing an example of a configuration of a driving system of a hybrid vehicle according to this invention.
  • FIG. 2 is a diagram showing a configuration of a drive control unit shown in FIG. 1.
  • FIG. 3 is a diagram showing a configuration of an engine output correcting unit shown in FIG. 2.
  • FIG. 4 is a diagram for explaining the engine operating point.
  • FIG. 5 is a diagram showing a configuration of another example of the hybrid vehicle driving system according to this invention.
  • FIG. 6 is a diagram showing a configuration of the drive control unit shown in FIG. 5.
  • FIG. 7 is a diagram showing another configuration of the drive control unit of the hybrid vehicle driving system according to the invention.
  • FIG. 8 is a diagram showing still another configuration of the drive control unit according to this invention.
  • FIG. 9 is a diagram showing a configuration of the hybrid vehicle of another type according to the invention.
  • FIG. 10 is a diagram showing yet another configuration of the drive control unit according to the invention.
  • FIG. 1 shows a hybrid vehicle in which the tires 3 a , 3 b are rotated by use of the energy of an engine through a drive shaft 2 .
  • This hybrid vehicle including a planetary gear train A4 and a planetary gear train B5 as a differential mechanism each including a sun gear, a planetary gear and a ring gear.
  • the sun gears are driven by a motor A8 and a motor B9 controlled by power converters 10 , 11 , respectively.
  • the battery 12 is used for supplying the energy required by these motors or storing the energy generated in these motors at the time of deceleration braking.
  • Each planetary gear is fastened to the same input shaft, and the driving torque of the engine 1 is divided into two or more planetary gears.
  • the ring gears are coupled to a common output shaft through gears having different gear ratios.
  • the torque output from the two planetary gear trains are combined into a vehicle drive torque ⁇ v.
  • ⁇ v vehicle drive torque
  • the vehicle drive torque ⁇ v and the engine speed ⁇ e can be regulated.
  • the drive control unit 31 calculates and outputs the engine throttle opening degree command value ⁇ t, the speed command value ⁇ ar of the motor A and the torque command value ⁇ br of the motor B using predetermined functions and data according to predetermined processing steps based on the information including the accelerator angle ⁇ a, the vehicle speed ⁇ v, the torque command value ⁇ ar of the motor A and the currents Ia, Ib of the motors A, B.
  • the drive control unit 31 is configured with a microcomputer including a CPU, a RAM, a ROM, input/output control means and various programs stored in the ROM.
  • ⁇ e, ⁇ v, ⁇ a, ⁇ b are the engine speed, the vehicle speed, the rotational speed of the motor A and the rotational speed of the motor B, respectively, and ⁇ e, ⁇ a, ⁇ b, ⁇ v the engine torque, the torque of the motor A, the torque of the motor B and the vehicle drive torque, respectively.
  • Characters Kp, Ka, Kb are constants relating to the gear ratio.
  • Equation (6) contains no engine torque ⁇ e, and therefore even when the engine torque undergoes a change, the vehicle drive torque can be controlled as targeted by controlling the two motors.
  • the drive control unit 31 which is for realizing the aforementioned control operation, calculates and outputs the engine throttle opening command value ⁇ t, the speed command value ⁇ ar of the motor A and the torque command value ⁇ br of the motor B based on the information including the accelerator angle ⁇ a, the vehicle speed ⁇ v, the torque command value ⁇ ar of the motor A and the currents Ia, Ib of the motors A, B.
  • the throttle opening command value ⁇ t is sent to the throttle control unit 13 , the motor A speed command value ⁇ ar to the motor A control unit 14 , and the motor B torque command value ⁇ br to the motor B control unit 15 thereby to actually control the engine and the motors.
  • the motor A control unit 14 based on the difference between the speed command value ⁇ ar and the speed detection value ⁇ a, produces the torque command value ⁇ ar in such a manner as to eliminate the difference by the proportional integral control or the like thereby to control the power converter 10 . Also, the torque command value ⁇ ar involved is sent to the drive control unit 31 .
  • the target drive torque determining unit 21 determines a target drive torque ⁇ vr of the vehicle based on a map predetermined from the accelerator angle ⁇ a and the vehicle speed ⁇ v.
  • the engine output and the change gear ratio are determined based on the target drive torque ⁇ vr and the vehicle speed ⁇ v, and the engine operating point X (the target engine speed ⁇ er, the target torque ⁇ er) is calculated.
  • the operating point is determined in such a manner as to enable the engine to operate in an area as efficient as possible.
  • the engine control unit 23 determines the throttle opening command value ⁇ to in accordance with the target engine speed ⁇ er and the target torque ⁇ er determined in the overall control unit 22 .
  • the correction value ⁇ t determined in the engine output correction unit 27 is added to ⁇ to to obtain ⁇ t, and a command is issued to the throttle control unit 13 .
  • the motor A control unit 24 calculates the speed command value ⁇ ar determined in equation (5) based on the target engine speed ⁇ er determined in the overall control unit 22 and the actual measurement ⁇ v of the vehicle speed and issues a speed command to the motor A control unit 14 .
  • the motor B control unit 25 calculates the torque command value ⁇ br of the motor B by substituting ⁇ ar into ⁇ a of equation (6) based on the target drive torque ⁇ vr of the vehicle and the torque command value ⁇ ar of the motor A8 sent from the overall control unit 22 , and issues a command to the motor B control unit 15 .
  • the engine torque estimation unit 41 determines an estimated engine torque ⁇ e by the following method from the armature currents Ia, Ib of the motors A8, B9.
  • the input torque ⁇ ai of the motor A8 is calculated based on the following equation from the armature current Ia of the motor A8.
  • is the magnetic fluxes interlinking the armature
  • Pn the number of poles
  • Ja is the inertia of the motor A8, and d ⁇ a/dt the change rate of the rotational speed.
  • the change rate of the rotational speed can be calculated from the difference of the rotational speed ⁇ a or the like. A simple method of this calculation is to ignore the term of the change rate of the rotational speed and regard the input torque as an output torque.
  • the engine output correction unit 42 calculates the throttle opening correction value ⁇ t in accordance with the difference between the target engine torque ⁇ er and the estimated engine torque ⁇ e.
  • the correction value is determined in such a manner as to increase the throttle opening in the case where the estimated torque is smaller, and to decrease the throttle opening in the case where the estimated torque is larger. By doing so, the engine output can be controlled so that the engine torque approaches the target torque.
  • FIG. 3 shows an example configuration for the proportional integral control. By setting the gains Kp and Ki appropriately, the control operation can be performed to eliminate the difference between the target torque and the estimated torque rapidly.
  • the effect of correcting the engine output will be explained with reference to FIG. 4.
  • the overall control unit 22 has determined a target operating point of the engine at point X on the best fuel consumption curve including the transmission efficiency and the motor efficiency based on a given target drive torque ⁇ vr and the vehicle speed ⁇ v.
  • the engine control unit 23 controls the throttle valve to attain the operating point at point X.
  • the target output may fail to be achieved.
  • the actual torque may deviate to point Y.
  • the engine speed ⁇ e which can be controlled accurately by controlling the speed of the motor A, is assumed not to develop any deviation.
  • the control method described above is intended to secure the required drive torque from the motor regardless of the engine torque, and therefore the engine output deviation from the target leads to an unexpected discharge or charge of the battery power.
  • the engine output runs short and therefore the motor output increases correspondingly, resulting in the battery being discharged.
  • a protracted situation of this battery discharge will cause the battery charging rate to deviate from the target value and therefore the need arises for an unexpected charging operation, thereby leading to an overall deterioration of the efficiency.
  • the present invention is intended for a control operation in which the target engine operating point is set at or in the vicinity of point X (optimum operating point) on the total best fuel consumption rate curve including the efficiency of the transmission and the motor.
  • point X optimum operating point
  • the use of this method can correct this engine torque deviation and restore the operating point at or in the vicinity of point X.
  • the engine operates at the optimum operating point and the battery charging rate undergoes no unexpected change, thereby preventing the deterioration of the fuel consumption rate.
  • the output torque is calculated from the armature current of the motor.
  • an estimated engine torque value ⁇ e can be determined by substituting the torque command values ⁇ ar, ⁇ br directly into ⁇ a, ⁇ b in equation (3). In such a case, the estimation is possible using a simple method without using the motor current at the sacrifice of the likelihood of an estimation error being developed.
  • a similar effect is attained also by attaching a torque detector to the engine output shaft and using the output of the torque detector as an estimated torque value. In such a case, the detection accuracy is improved as compared with the estimation based on the motor torque.
  • the battery management unit 43 first produces a schedule for the battery charging rate based on the navigation information. In the case where a mountainous road and an ascending slope are in the way ahead, the battery charging rate is set to a larger value to provide a sufficient torque assistance by the motor. In the case where a descending road ahead is forecast, on the contrary, the battery charging rate is set to a smaller value to provide a sufficient regenerative braking. Also, in the case where an urban area is nearing and a low-speed run on the motor is expected, the battery charging rate is increased.
  • the battery charging rate schedule thus prepared is compared with the current battery charging rate, and based on the difference, a target power value Pcr to be charged to (or discharged from) the battery is determined.
  • the target value Icr of the charge (or discharge) current for the battery is calculated.
  • the target battery current value Icr is calculated by solving the quadratic equation (9), for example.
  • the overall control unit 22 determines the engine output and the change gear ratio based on the target drive torque ⁇ vr, the vehicle speed ⁇ v and the target battery power Pcr, and calculates the engine operating point (target engine speed ⁇ er, the target engine torque ⁇ er).
  • the target battery power value Pcr is positive (charging)
  • the target engine output value is the sum of the output for driving the vehicle and the output for charging the battery.
  • the target value Pcr is negative (discharge)
  • the target engine output is decreased correspondingly.
  • the battery charging rate can be managed as targeted.
  • the target output is not always produced.
  • the engine output decreases and the discharge increases correspondingly.
  • the loss occurring in the motor may change depending on the prevailing conditions. As a result, it may be that the target battery current cannot be secured, often making it impossible to manage the battery charging rate to the target value. In such a case, the correction is carried out by the engine output correction unit 44 as described below.
  • the throttle opening correction value ⁇ t is calculated based on the difference between the target battery current value Icr and the detected current value Ic.
  • the throttle valve opening is increased to increasing the charging rate, while in the case where the detected value is larger, the throttle opening value is reduced.
  • the engine operating point is corrected from point Y to point X, for example, in FIG. 4 thereby making it possible to control the battery current toward the target value.
  • the proportional integral control similar to that shown in FIG. 3 can be used. By doing so, the engine output, even if it deviates from the target value, can be corrected so that the battery current attains the target value.
  • the engine output correction unit 45 outputs the battery power correction value ⁇ Pcr but not the throttle opening correction value ⁇ t based on the difference between the target battery current value Icr and the detected battery current value Ic, and adds the battery power correction value ⁇ Pcr to the target battery power value Pcr output from the battery management unit.
  • the target battery power value is corrected upward. By doing so, the target engine output value is corrected and therefore the engine output is indirectly corrected, thereby making it possible to control the battery current as targeted.
  • FIG. 8 an example configuration with the cases of FIGS. 2 and 7 combined is shown in FIG. 8.
  • the engine output correction unit 42 outputs the throttle opening correction value ⁇ t based on the estimated engine torque value
  • the engine output correction unit 45 outputs the battery power correction value ⁇ Pcr based on the detected battery current value.
  • the foregoing description concerns the case in which the schedule for battery charging rate is prepared by the battery management unit 43 using the navigation information.
  • the present invention is applicable, however, also to the case where the charging rate is managed simply by setting the upper and lower limits thereof without using the navigation information. In such a case, too, the battery charge and discharge can be controlled to the target by correcting the engine output while always securing the vehicle driving force.
  • FIG. 9 shows a hybrid vehicle comprising an engine 1 , a transmission 17 , a motor 16 for changing the drive torque, and a power converter 11 and a battery 12 for driving the motor.
  • the drive control unit 30 outputs the engine throttle opening command value ⁇ t, the change gear ratio command value r, the motor torque command value ⁇ r based on the information including the accelerator angle ⁇ a and the vehicle speed ⁇ v.
  • the throttle opening command value ⁇ t is sent to the throttle control unit 13 , the change gear ratio command r to the transmission control unit 19 , and the motor torque command ⁇ r to the motor control unit 15 .
  • the configuration of the drive control unit 34 will be explained with reference to FIG. 10.
  • the target torque determining unit 21 , the overall control unit 22 , the engine control unit 23 and the battery management unit 43 are similar to the corresponding parts shown in FIG. 6.
  • the transmission control unit 27 calculates the change gear ratio command value r from the target engine speed ⁇ er determined by the overall control unit 22 and the actual measurement ⁇ v of the vehicle speed, and issues a command to the transmission control unit 19 .
  • the motor control unit 26 calculates the torque required of the motor for assistance, from the target drive torque ⁇ vr of the vehicle and the target engine torque ⁇ er, and outputs a motor torque command ⁇ r.
  • the engine output correction unit 44 operates similarly to the case of FIG. 6 and calculates the throttle opening correction value ⁇ t based on the difference between the target battery current value Icr and the detected battery current value Ic output from the battery management unit 43 .
  • the throttle opening value is increased to increase the charging rate, while in the case where the detected value is larger, the throttle opening is decreased.
  • the battery current can be controlled to approach the target value.
  • the engine output is corrected while maintaining a target vehicle driving force, thereby making it possible to control the engine operating point and the battery charging rate to the target, thereby improving the fuel consumption rate of the vehicle as a whole.

Abstract

A hybrid vehicle is disclosed, in which the drive torque is controlled according to a target, and the engine operating point and the battery charging rate are controlled thereby as targeted to improve the fuel consumption rate of the hybrid vehicle as a whole An engine torque estimating unit estimates the engine torque based on the motor current, and an engine output correction unit.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a hybrid vehicle having an engine and a motor, or in particular to a hybrid vehicle in which the fuel consumption can be improved by controlling the operating point of the engine and the battery charging rate according to a target. [0001]
  • One system intended to reduce engine fuel consumption is a hybrid vehicle utilizing the driving force of the motor. Various types of such a system have been proposed and include the series type and the parallel type. For example, JP-A-7-135701 discloses a system in which two motors and one planetary gear are used so that the engine driving force is input to the planetary gear, and the motor is controlled to drive the vehicle by the driving force obtained from the output shaft of the planetary gear. Part of the energy of the engine is derived from a generator (which is one of the motors) generating power while the motor coupled to the output shaft of the generator delivers a driving force as an assistance. Thus, the engine is always driven efficiently in a high torque area while at the same time providing the shift function. [0002]
  • A method of controlling the driving torque of the hybrid vehicle is described in JP-A-8-207601 in which the torque of the generator is calculated and the torque of the motor on the output shaft is corrected by the calculated torque of the generator. According to this method, the vehicle driving torque is not affected greatly by variations in the engine output and therefore the drivability can be improved. [0003]
  • In order to suppress the change in the charging condition of the battery connected to the generator or the motor, on the other hand, JP-A-10-243503 discloses a method in which the motor torque command or the target engine speed is corrected in accordance with the current value of the battery. This method can maintain the normal condition of the battery and therefore can prevent the deterioration of the battery. Also, the battery charging rate can be controlled as scheduled. [0004]
  • Of all the methods described above, the method of correcting the output of the motor according to the estimated torque value can control the vehicle drive torque as intended and therefore can improve the drivability. Nevertheless, the change in motor output may cause unexpected charge and discharge of the battery, often leading to the deviation from the optimum schedule for charging the battery, resulting in a deteriorated fuel consumption rate. [0005]
  • According to the method of correcting the motor output or the target engine speed in accordance with the battery current or the like, on the other hand, the battery deterioration can be prevented and the optimum schedule can be followed. However, the required driving output cannot be produced often adversely affecting the drivability. [0006]
  • In any of the methods described above, the engine operating point, if deviated from the target, is not corrected, thereby posing the problem that the engine deviates from the optimum operating point and the fuel consumption rate is deteriorated. [0007]
  • SUMMARY OF THE INVENTION
  • The object of the invention is to provide a hybrid vehicle n which the efficiency and the fuel consumption can be improved by controlling the engine operating point and the battery charging rate as intended without adversely affecting the drivability. [0008]
  • In order to achieve the aforementioned object, according to the invention, there is provided a hybrid vehicle comprising an engine for generating the energy for driving the vehicle, a transmission for transmitting the driving force to the wheels by changing the rotational speed of the engine, at least a motor for changing the wheel driving force, a battery for supplying power to the motor, and a drive control unit for calculating and outputting an operation command value for the engine and the motor based on the drive information including the accelerator angle, wherein the drive control unit includes an engine output correcting mechanism for correcting the operation command value for the engine based on the difference between the engine operation command value and the torque generated by the engine thereby to maintain an optimum engine operating point. [0009]
  • The optimum operating point is defined as a point on or near a curve associated with the best fuel consumption rate of the engine including the efficiency of the transmission and the motor. [0010]
  • According to another aspect of the invention, there is provided a hybrid vehicle comprising an engine for generating the energy for driving the vehicle, a transmission for transmitting the driving force to the wheels by changing the rotational speed of the engine, at least a motor for changing the wheel driving force, a battery for supplying power to the motor, means for determining a target engine torque, means for calculating the torque generated by the engine, and means for correcting the engine output based on the difference between the target engine torque value and the engine torque value calculated by the engine torque calculation means. [0011]
  • According to still another aspect of the invention, there is provided a hybrid vehicle comprising an engine for generating the energy for driving the vehicle, transmission for transmitting the driving force to the wheels by changing the rotational speed of the engine, at least a motor for changing the wheel driving force, a battery for supplying power to the motor, means for determining a target engine output value instead of the engine torque, means for calculating the output of the engine, and means for correcting the engine output based on the difference between the target engine output value and the calculated engine output value. [0012]
  • According to yet another aspect of the invention, there is provided a hybrid vehicle comprising an engine for generating the energy for driving the vehicle, a transmission for transmitting the driving force to the wheels by changing the rotational speed of the engine, at least a motor for changing the wheel driving force, a battery for supplying power to the motor, a battery management unit for determining a target current value of the battery, means for detecting the battery current, and means for correcting the engine output based on the difference between a target battery current and a detected battery current value, wherein the battery management unit produces a schedule for the battery charging rate based on the navigation information and determines the target battery current value based on the difference between the detected value of the battery charging rate and the scheduled battery charging rate. [0013]
  • The engine output correcting means can correct the output by controlling the throttle opening degree or correcting the target engine output value. [0014]
  • According to this invention, an optimum engine operating point can be maintained while producing the target vehicle driving torque and also the battery charging rate can be kept as scheduled for an improved fuel consumption rate. [0015]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram showing an example of a configuration of a driving system of a hybrid vehicle according to this invention. [0016]
  • FIG. 2 is a diagram showing a configuration of a drive control unit shown in FIG. 1. [0017]
  • FIG. 3 is a diagram showing a configuration of an engine output correcting unit shown in FIG. 2. [0018]
  • FIG. 4 is a diagram for explaining the engine operating point. [0019]
  • FIG. 5 is a diagram showing a configuration of another example of the hybrid vehicle driving system according to this invention. [0020]
  • FIG. 6 is a diagram showing a configuration of the drive control unit shown in FIG. 5. [0021]
  • FIG. 7 is a diagram showing another configuration of the drive control unit of the hybrid vehicle driving system according to the invention. [0022]
  • FIG. 8 is a diagram showing still another configuration of the drive control unit according to this invention. [0023]
  • FIG. 9 is a diagram showing a configuration of the hybrid vehicle of another type according to the invention. [0024]
  • FIG. 10 is a diagram showing yet another configuration of the drive control unit according to the invention. [0025]
  • DESCRIPTION OF THE EMBODIMENTS
  • FIG. 1 shows a hybrid vehicle in which the [0026] tires 3 a, 3 b are rotated by use of the energy of an engine through a drive shaft 2. This hybrid vehicle including a planetary gear train A4 and a planetary gear train B5 as a differential mechanism each including a sun gear, a planetary gear and a ring gear. The sun gears are driven by a motor A8 and a motor B9 controlled by power converters 10, 11, respectively. The battery 12 is used for supplying the energy required by these motors or storing the energy generated in these motors at the time of deceleration braking. Each planetary gear is fastened to the same input shaft, and the driving torque of the engine 1 is divided into two or more planetary gears. The ring gears, on the other hand, are coupled to a common output shaft through gears having different gear ratios. The torque output from the two planetary gear trains are combined into a vehicle drive torque τv. As a result, it is possible to secure an acceleration or deceleration of the vehicle as intended by the driver. By controlling the torque τa, τb and the speeds ωa, ωb of the motors A8, B9 for driving the sun gears, on the other hand, the vehicle drive torque τv and the engine speed ωe can be regulated. The drive control unit 31 calculates and outputs the engine throttle opening degree command value θt, the speed command value ωar of the motor A and the torque command value τbr of the motor B using predetermined functions and data according to predetermined processing steps based on the information including the accelerator angle θa, the vehicle speed ωv, the torque command value τar of the motor A and the currents Ia, Ib of the motors A, B. The drive control unit 31 is configured with a microcomputer including a CPU, a RAM, a ROM, input/output control means and various programs stored in the ROM.
  • A specific method of controlling the motors A8, B9 is described below. In the system shown in FIG. 1, equations (1) to (4) below hold. [0027]
  • ωe=Kpωa+Kaωv  (1)
  • ωe=Kpωb+Kbωv  (2)
  • τe=(τa+τb)/Kp  (3)
  • τv=(Kaτa+Kbτb)/Kp  (4)
  • where ωe, ωv, ωa, ωb are the engine speed, the vehicle speed, the rotational speed of the motor A and the rotational speed of the motor B, respectively, and τe, τa, τb, τv the engine torque, the torque of the motor A, the torque of the motor B and the vehicle drive torque, respectively. Characters Kp, Ka, Kb are constants relating to the gear ratio. [0028]
  • Using this relation, the following equation (5) is obtained from equation (1). [0029]
  • ωar=(ωer−Kaωv)  (5)
  • where ωer is the target engine speed, ωv the detected vehicle speed and ωar the rotational speed setting of the motor A. [0030]
  • By controlling the rotational speed of the motor A based on this equation, the engine can be driven at the desired operating point and the desired change gear ratio is obtained. [0031]
  • Also, let τvr be the target vehicle drive torque, and τa be the output torque of the motor A, and from equation (4), the following relation holds. [0032]
  • τbr=(Kpτvr−Kaτa)/Kb  (6)
  • Assuming that τbr determined from equation (6) is a torque setting of the motor A, the desired vehicle drive torque can be obtained. [0033]
  • By controlling the motors according to equations (5) and (6), the engine speed can be controlled to the desired change gear ratio or the target vehicle drive torque can be generated. Equation (6) contains no engine torque τ e, and therefore even when the engine torque undergoes a change, the vehicle drive torque can be controlled as targeted by controlling the two motors. [0034]
  • The [0035] drive control unit 31, which is for realizing the aforementioned control operation, calculates and outputs the engine throttle opening command value θt, the speed command value ωar of the motor A and the torque command value τbr of the motor B based on the information including the accelerator angle θa, the vehicle speed ωv, the torque command value τar of the motor A and the currents Ia, Ib of the motors A, B. The throttle opening command value θt is sent to the throttle control unit 13, the motor A speed command value ωar to the motor A control unit 14, and the motor B torque command value τbr to the motor B control unit 15 thereby to actually control the engine and the motors.
  • The motor [0036] A control unit 14, based on the difference between the speed command value ωar and the speed detection value ωa, produces the torque command value τar in such a manner as to eliminate the difference by the proportional integral control or the like thereby to control the power converter 10. Also, the torque command value τar involved is sent to the drive control unit 31.
  • Now, the configuration of the [0037] drive control unit 31 will be explained with reference to FIG. 2.
  • First, the target drive [0038] torque determining unit 21 determines a target drive torque τvr of the vehicle based on a map predetermined from the accelerator angle θa and the vehicle speed ωv.
  • In the [0039] overall control unit 22, the engine output and the change gear ratio are determined based on the target drive torque τvr and the vehicle speed ωv, and the engine operating point X (the target engine speed ωer, the target torque τer) is calculated. In the process, the operating point is determined in such a manner as to enable the engine to operate in an area as efficient as possible.
  • The [0040] engine control unit 23 determines the throttle opening command value θto in accordance with the target engine speed ωer and the target torque τer determined in the overall control unit 22. The correction value Δθt determined in the engine output correction unit 27 is added to θto to obtain θt, and a command is issued to the throttle control unit 13.
  • The motor [0041] A control unit 24 calculates the speed command value ωar determined in equation (5) based on the target engine speed ωer determined in the overall control unit 22 and the actual measurement ωv of the vehicle speed and issues a speed command to the motor A control unit 14.
  • The motor [0042] B control unit 25 calculates the torque command value τbr of the motor B by substituting τar into τa of equation (6) based on the target drive torque τvr of the vehicle and the torque command value τar of the motor A8 sent from the overall control unit 22, and issues a command to the motor B control unit 15.
  • The engine [0043] torque estimation unit 41 determines an estimated engine torque τe by the following method from the armature currents Ia, Ib of the motors A8, B9.
  • First, the input torque τai of the motor A8 is calculated based on the following equation from the armature current Ia of the motor A8. [0044]
  • τai =PnθIq+Pn(Ld−Lq)IdIq   (7)
  • where θ is the magnetic fluxes interlinking the armature, Pn the number of poles, Id, Iq the Ia components along d and q axes, respectively, and Ld, Lq inductances of the armature winding along d and q axes, respectively. [0045]
  • Then, the output torque τa is calculated from the relation of equation (8) [0046]
  • τa=τai−Ja(dωa/dt)  (8)
  • where Ja is the inertia of the motor A8, and dωa/dt the change rate of the rotational speed. The change rate of the rotational speed can be calculated from the difference of the rotational speed ωa or the like. A simple method of this calculation is to ignore the term of the change rate of the rotational speed and regard the input torque as an output torque. [0047]
  • This is also the case with the motor B, for which the output torque τb is calculated from the armature current Ib. The motor output torque τa and τb thus calculated are substituted into equation (3) thereby to determine the estimated engine torque τe. [0048]
  • The engine [0049] output correction unit 42 calculates the throttle opening correction value Δθt in accordance with the difference between the target engine torque τer and the estimated engine torque τe. The correction value is determined in such a manner as to increase the throttle opening in the case where the estimated torque is smaller, and to decrease the throttle opening in the case where the estimated torque is larger. By doing so, the engine output can be controlled so that the engine torque approaches the target torque.
  • FIG. 3 shows an example configuration for the proportional integral control. By setting the gains Kp and Ki appropriately, the control operation can be performed to eliminate the difference between the target torque and the estimated torque rapidly. [0050]
  • Now, the effect of correcting the engine output will be explained with reference to FIG. 4. Assume that the [0051] overall control unit 22 has determined a target operating point of the engine at point X on the best fuel consumption curve including the transmission efficiency and the motor efficiency based on a given target drive torque τvr and the vehicle speed ωv. The engine control unit 23 controls the throttle valve to attain the operating point at point X. In view of the fact that the engine characteristics change with the atmospheric pressure or the like, however, the target output may fail to be achieved. For example, the actual torque may deviate to point Y. By the way, the engine speed ωe, which can be controlled accurately by controlling the speed of the motor A, is assumed not to develop any deviation.
  • Once the actual operating point deviates from the target operating point in this way, the optimum operating point is missed, and therefore the fuel consumption rate may deteriorate. Also, the control method described above is intended to secure the required drive torque from the motor regardless of the engine torque, and therefore the engine output deviation from the target leads to an unexpected discharge or charge of the battery power. In the case of FIG. 4, for example, the engine output runs short and therefore the motor output increases correspondingly, resulting in the battery being discharged. A protracted situation of this battery discharge will cause the battery charging rate to deviate from the target value and therefore the need arises for an unexpected charging operation, thereby leading to an overall deterioration of the efficiency. [0052]
  • The present invention is intended for a control operation in which the target engine operating point is set at or in the vicinity of point X (optimum operating point) on the total best fuel consumption rate curve including the efficiency of the transmission and the motor. The use of this method can correct this engine torque deviation and restore the operating point at or in the vicinity of point X. Thus, the engine operates at the optimum operating point and the battery charging rate undergoes no unexpected change, thereby preventing the deterioration of the fuel consumption rate. [0053]
  • In the aforementioned example, the output torque is calculated from the armature current of the motor. As an alternative, an estimated engine torque value τe can be determined by substituting the torque command values τar, τbr directly into τa, τb in equation (3). In such a case, the estimation is possible using a simple method without using the motor current at the sacrifice of the likelihood of an estimation error being developed. [0054]
  • A similar effect is attained also by attaching a torque detector to the engine output shaft and using the output of the torque detector as an estimated torque value. In such a case, the detection accuracy is improved as compared with the estimation based on the motor torque. [0055]
  • Also, instead of correcting the output based on the deviation from the target engine torque value as in the aforementioned case, a similar effect can be obtained by a method of detecting the deviation from the target engine output. The engine output is determined as the product of the engine torque and the engine speed. In FIG. 2, therefore, this method can be accomplished by adding the engine speed information. [0056]
  • Now, another example configuration of the drive control unit will be explained with reference to FIGS. 5 and 6. In this example, the distance to be covered up to the destination constituting the navigation information, the current Ic flowing in the [0057] battery 12 and the battery charging rate SOC are input to the drive control unit 32.
  • The [0058] battery management unit 43 first produces a schedule for the battery charging rate based on the navigation information. In the case where a mountainous road and an ascending slope are in the way ahead, the battery charging rate is set to a larger value to provide a sufficient torque assistance by the motor. In the case where a descending road ahead is forecast, on the contrary, the battery charging rate is set to a smaller value to provide a sufficient regenerative braking. Also, in the case where an urban area is nearing and a low-speed run on the motor is expected, the battery charging rate is increased.
  • Then, the battery charging rate schedule thus prepared is compared with the current battery charging rate, and based on the difference, a target power value Pcr to be charged to (or discharged from) the battery is determined. At the same time, the target value Icr of the charge (or discharge) current for the battery is calculated. The target battery current value Icr is calculated by solving the quadratic equation (9), for example. [0059]
  • Pcr=IcVo+Ic2R  (9)
  • where vo is the electromotive force of the battery, and R the internal resistance of the battery. As for the signs attached to Pcr and Icr, the plus sign is defined as indicating the charging and the minus sign as indicating the discharge. [0060]
  • The [0061] overall control unit 22 determines the engine output and the change gear ratio based on the target drive torque τvr, the vehicle speed ωv and the target battery power Pcr, and calculates the engine operating point (target engine speed ωer, the target engine torque τer). In the case where the target battery power value Pcr is positive (charging), the target engine output value is the sum of the output for driving the vehicle and the output for charging the battery. In the case where the target value Pcr is negative (discharge), on the other hand, the target engine output is decreased correspondingly.
  • As described above, by correcting the target engine output value as required for the charge or discharge of the battery, the battery charging rate can be managed as targeted. In view of the aforementioned fact that the engine characteristics are subjected to various changes, however, the target output is not always produced. In the case where the target X is missed and the point Y is reached instead, as shown in FIG. 4, for example, the engine output decreases and the discharge increases correspondingly. Also, the loss occurring in the motor may change depending on the prevailing conditions. As a result, it may be that the target battery current cannot be secured, often making it impossible to manage the battery charging rate to the target value. In such a case, the correction is carried out by the engine [0062] output correction unit 44 as described below.
  • In the engine [0063] output correction unit 44, the throttle opening correction value Δθt is calculated based on the difference between the target battery current value Icr and the detected current value Ic. In the case where the detected value is smaller, the throttle valve opening is increased to increasing the charging rate, while in the case where the detected value is larger, the throttle opening value is reduced. As a result, the engine operating point is corrected from point Y to point X, for example, in FIG. 4 thereby making it possible to control the battery current toward the target value. As a configuration of the control system, the proportional integral control similar to that shown in FIG. 3 can be used. By doing so, the engine output, even if it deviates from the target value, can be corrected so that the battery current attains the target value.
  • Now, another configuration example of the [0064] drive control unit 32 will be explained with reference to FIG. 7. In this example, the engine output correction unit 45 outputs the battery power correction value θPcr but not the throttle opening correction value Δθt based on the difference between the target battery current value Icr and the detected battery current value Ic, and adds the battery power correction value ΔPcr to the target battery power value Pcr output from the battery management unit. In the case where the detected battery current value is smaller than the target battery current value, the target battery power value is corrected upward. By doing so, the target engine output value is corrected and therefore the engine output is indirectly corrected, thereby making it possible to control the battery current as targeted.
  • Further, an example configuration with the cases of FIGS. 2 and 7 combined is shown in FIG. 8. In this case, the engine [0065] output correction unit 42 outputs the throttle opening correction value Δθt based on the estimated engine torque value, and the engine output correction unit 45 outputs the battery power correction value ΔPcr based on the detected battery current value. With this configuration, the engine is always kept at the optimum operating point, while at the same time controlling the battery current to the target value.
  • The foregoing description concerns the case in which the schedule for battery charging rate is prepared by the [0066] battery management unit 43 using the navigation information. The present invention is applicable, however, also to the case where the charging rate is managed simply by setting the upper and lower limits thereof without using the navigation information. In such a case, too, the battery charge and discharge can be controlled to the target by correcting the engine output while always securing the vehicle driving force.
  • Now, an explanation will be given of the case in which the invention is applied to an ordinary hybrid vehicle other than shown in FIG. 1. [0067]
  • FIG. 9 shows a hybrid vehicle comprising an [0068] engine 1, a transmission 17, a motor 16 for changing the drive torque, and a power converter 11 and a battery 12 for driving the motor. The drive control unit 30 outputs the engine throttle opening command value θt, the change gear ratio command value r, the motor torque command value τr based on the information including the accelerator angle θa and the vehicle speed ωv. The throttle opening command value θt is sent to the throttle control unit 13, the change gear ratio command r to the transmission control unit 19, and the motor torque command τr to the motor control unit 15.
  • The configuration of the [0069] drive control unit 34 will be explained with reference to FIG. 10. The target torque determining unit 21, the overall control unit 22, the engine control unit 23 and the battery management unit 43 are similar to the corresponding parts shown in FIG. 6. The transmission control unit 27 calculates the change gear ratio command value r from the target engine speed ωer determined by the overall control unit 22 and the actual measurement ωv of the vehicle speed, and issues a command to the transmission control unit 19. The motor control unit 26 calculates the torque required of the motor for assistance, from the target drive torque τvr of the vehicle and the target engine torque τer, and outputs a motor torque command τr.
  • The engine [0070] output correction unit 44 operates similarly to the case of FIG. 6 and calculates the throttle opening correction value Δθt based on the difference between the target battery current value Icr and the detected battery current value Ic output from the battery management unit 43. In the case where the detected value is smaller, the throttle opening value is increased to increase the charging rate, while in the case where the detected value is larger, the throttle opening is decreased. As a result, the battery current can be controlled to approach the target value.
  • There is also a method for correcting the battery current which may be different from the target value in response to a command from the motor. This method, however, employed is at the risk of failing to achieve the target drive torque of the vehicle. In this method, if the motor is controlled to produce the target drive torque and the battery current is corrected on the engine side, the battery charging rate can be managed while at the same time producing a target drive torque. [0071]
  • It will thus be understood from the foregoing description that according to this invention, the engine output is corrected while maintaining a target vehicle driving force, thereby making it possible to control the engine operating point and the battery charging rate to the target, thereby improving the fuel consumption rate of the vehicle as a whole. [0072]

Claims (5)

What is claimed is:
1. A hybrid vehicle comprising:
an engine for generating the energy for driving the vehicle;
a transmission for changing the engine speed and transmitting the driving force to the wheels;
at least a motor for increasing/decreasing the wheel driving force;
a battery for supplying power to said motor; and
a drive control unit for calculating and outputting an operation command for said engine and said motor based on the operation information including the accelerator angle;
wherein said drive control unit includes an engine output correction mechanism for correcting the operation command value for said engine and maintaining an optimum operating point of said engine.
2. A hybrid vehicle comprising:
an engine for generating the energy for driving the vehicle;
a transmission for changing the engine speed and transmitting the driving force to the wheels;
a motor for increasing/decreasing the wheel driving force;
a battery for supplying power to said motor;
means for determining a target torque value of said engine;
means for calculating the engine torque generated by said engine; and
means for correcting the output of said engine based on the difference between the target value of the engine torque and the engine torque calculated by said engine torque calculation means.
3. A hybrid vehicle according to
claim 1
,
wherein the torque generated by said engine is calculated based on the detected torque value of said motor or a toque command value.
4. A hybrid vehicle according to
claim 2
,
wherein said torque generated by said engine is calculated based on the detected torque value of said motor or a torque command value.
5. A hybrid vehicle comprising:
an engine for generating the energy for driving the vehicle;
a transmission for changing the engine speed and transmitting the driving force to the wheels;
a motor for increasing/decreasing the wheel driving force;
means for determining a target output value of said engine;
means for calculating the output generated by said engine; and
means for correcting the output of said engine based on the difference between the target engine output value and the engine output value calculated by said engine output calculation means, thereby maintaining an optimum operating point of said engine.
US09/850,122 1999-04-27 2001-05-08 Hybrid vehicle Abandoned US20010017227A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/850,122 US20010017227A1 (en) 1999-04-27 2001-05-08 Hybrid vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP12013999A JP3395708B2 (en) 1999-04-27 1999-04-27 Hybrid vehicle
JP11-120139 1999-04-27
US09/525,022 US6470983B1 (en) 1999-04-27 2000-03-14 Hybrid vehicle
US09/850,122 US20010017227A1 (en) 1999-04-27 2001-05-08 Hybrid vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/525,022 Division US6470983B1 (en) 1999-04-27 2000-03-14 Hybrid vehicle

Publications (1)

Publication Number Publication Date
US20010017227A1 true US20010017227A1 (en) 2001-08-30

Family

ID=14778942

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/525,022 Expired - Fee Related US6470983B1 (en) 1999-04-27 2000-03-14 Hybrid vehicle
US09/850,122 Abandoned US20010017227A1 (en) 1999-04-27 2001-05-08 Hybrid vehicle

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/525,022 Expired - Fee Related US6470983B1 (en) 1999-04-27 2000-03-14 Hybrid vehicle

Country Status (2)

Country Link
US (2) US6470983B1 (en)
JP (1) JP3395708B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564109B1 (en) * 1999-11-26 2003-05-13 General Electric Company Methods and systems for compensation of measurement error
FR2834249A1 (en) * 2001-12-27 2003-07-04 Renault Equipment for controlling the operating point of propulsion unit with infinitely variable transmission, comprises supervisor which assists the control unit to produce operating point commands
US20030173126A1 (en) * 2002-03-15 2003-09-18 Gosselin Robert Michael Process, apparatus, media and signals for controlling operating conditions of a hybrid electric vehicle to optimize operating characteristics of the vehicle
US6629027B2 (en) * 2001-10-11 2003-09-30 Nissan Motor Co., Ltd. Control device and control method for hybrid vehicle
US20040116228A1 (en) * 2001-04-17 2004-06-17 Thompson Robert W Drive configuration for a skid steered vehicle
US20040162182A1 (en) * 2003-02-14 2004-08-19 Nissan Motor Co., Ltd. Control apparatus and method for hybrid vehicle
FR2851515A1 (en) * 2003-02-26 2004-08-27 Peugeot Citroen Automobiles Sa Power transmission device regulating system for hybrid vehicle, has electrical regulating module to impose torque values on each machine where reference values are set in module based on which module regulates torque values
FR2855101A1 (en) * 2003-05-23 2004-11-26 Renault Sa Vehicle drive train controlling method, involves separating intermediate control signals in drive control torque signals and thermal engine control torque signal by adjusting drive load level, wheel torque, and thermal engine speed
US6827165B2 (en) * 2003-02-11 2004-12-07 General Motors Corporation Electro-mechanical powertrain with a fuel cell transmission
WO2004106097A2 (en) * 2003-05-23 2004-12-09 Renault S.A.S. Method and device for controlling a powertrain comprising a continuously variable transmission
US6909200B2 (en) 2002-02-28 2005-06-21 Azure Dynamics Inc. Methods of supplying energy to an energy bus in a hybrid electric vehicle, and apparatuses, media and signals for the same
WO2006032818A1 (en) * 2004-09-24 2006-03-30 Peugeot Citroen Automobiles Sa Control method for a transmission device between a heat engine shaft and an axle shaft of a vehicle
US20060162972A1 (en) * 2003-07-22 2006-07-27 Takeshi Hoshiba Power output apparatus for hybrid vehicle
WO2007057192A1 (en) * 2005-11-18 2007-05-24 Bayerische Motoren Werke Aktiengesellschaft Method for determining a driving torque correction factor for compensating cooperating driving torques of different drive devices
US7292932B1 (en) 2006-11-13 2007-11-06 Ford Global Technologies, Llc System and method for controlling speed of an engine
EP1894761A1 (en) * 2006-08-31 2008-03-05 Volkswagen Aktiengesellschaft Method for contolling the power train of a motor vehicle
US20080059022A1 (en) * 2006-09-05 2008-03-06 Nissan Motor Co., Ltd. Vehicle control apparatus
US20100198439A1 (en) * 2009-01-30 2010-08-05 Empire Technology Development Llc Hybrid vehicle driving system, hybrid vehicle, and driving method
US8636612B2 (en) * 2012-02-08 2014-01-28 Remy Technologies, L.L.C. Center adapter assembly
US9399461B2 (en) 2012-05-07 2016-07-26 Ford Global Technologies, Llc Opportunistic charging of hybrid vehicle battery
CN111497823A (en) * 2019-01-30 2020-08-07 郑州宇通客车股份有限公司 Hybrid vehicle control mode switching coordination control method and vehicle

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6554088B2 (en) * 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
JP2000257462A (en) * 1999-03-09 2000-09-19 Honda Motor Co Ltd Engine controller for hybrid vehicle
JP3395708B2 (en) * 1999-04-27 2003-04-14 株式会社日立製作所 Hybrid vehicle
JP3566151B2 (en) * 1999-10-04 2004-09-15 本田技研工業株式会社 Motor control device for hybrid vehicle
JP3736268B2 (en) * 2000-03-21 2006-01-18 日産自動車株式会社 Control device for hybrid vehicle
JP3969623B2 (en) * 2000-06-30 2007-09-05 本田技研工業株式会社 Engine drive power generator
JP3815220B2 (en) * 2000-12-27 2006-08-30 アイシン・エィ・ダブリュ株式会社 Hybrid vehicle and control method thereof
JP3624841B2 (en) * 2001-03-06 2005-03-02 日産自動車株式会社 Vehicle control device
US6487477B1 (en) * 2001-05-09 2002-11-26 Ford Global Technologies, Inc. Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management
DE10128758A1 (en) * 2001-06-13 2002-12-19 Bosch Gmbh Robert Control system for hybrid vehicle regulates proportion of driving power performed by electric motor whereby state of charge of battery does not fall below minimum level ensuring basic functions
US6581705B2 (en) * 2001-06-29 2003-06-24 Ford Global Technologies, Llc Method for starting an engine in a parallel hybrid electric vehicle
JP3641244B2 (en) * 2002-03-13 2005-04-20 日産自動車株式会社 Shift control device for hybrid transmission
US7731614B2 (en) * 2002-04-29 2010-06-08 Caterpillar Inc. Method and apparatus for an electric drive differential system
JP3586697B2 (en) 2002-11-26 2004-11-10 日産自動車株式会社 Control device for hybrid transmission
US7268454B2 (en) * 2003-01-17 2007-09-11 Magnetic Torque International, Ltd. Power generating systems
FR2851856B1 (en) * 2003-02-27 2006-03-03 Peugeot Citroen Automobiles Sa CONTROL OF AN ELECTRIC MACHINE OF A SERIES HYBRID VEHICLE
US6831429B2 (en) * 2003-03-10 2004-12-14 Visteon Global Technologies, Inc. Prediction of available torque and power from battery-powered traction motor
DE10318738A1 (en) * 2003-04-25 2004-11-11 Daimlerchrysler Ag Control of an electric motor
FR2855105B1 (en) * 2003-05-23 2005-07-22 Renault Sa METHOD AND APPARATUS FOR CONTROLLING A DRIVE MODE POWERTRAIN WITH SEPARATE MECHANICAL AND ELECTRICAL CONTROLS
FR2855106B1 (en) * 2003-05-23 2005-07-22 Renault Sa METHOD AND DEVICE FOR CONTROLLING A MOTOR PUMP IN "RETRO" MODE WITH SEPARATE MECHANICAL AND ELECTRICAL CONTROLS
JP4262750B2 (en) * 2003-05-23 2009-05-13 ルノー・エス・アー・エス Power system control method and apparatus having separate mechanical and electrical control
FR2855108B1 (en) * 2003-05-23 2005-07-22 Renault Sa METHOD AND DEVICE FOR CONTROLLING A SPEED-RUNNING MOTOR PUSH GROUP WITH SEPARATE MECHANICAL AND ELECTRICAL CONTROLS
JP3926774B2 (en) * 2003-07-04 2007-06-06 本田技研工業株式会社 Control device for hybrid vehicle
JP4127142B2 (en) * 2003-08-08 2008-07-30 アイシン・エィ・ダブリュ株式会社 Control device for hybrid vehicle
US7143851B2 (en) * 2003-09-10 2006-12-05 Ford Global Technologies, Llc Method for controlling a wheel drive system of a hybrid vehicle
JP3912399B2 (en) * 2003-09-29 2007-05-09 日産自動車株式会社 Vehicle drive device
US20050103542A1 (en) * 2003-11-18 2005-05-19 Grabbe Wallace W. Gas-electric hybrid drive system with a planetary gear
US7368886B2 (en) * 2004-05-14 2008-05-06 General Motors Corporation Method of testing motor torque integrity in a hybrid electric vehicle
JP4291235B2 (en) * 2004-08-20 2009-07-08 株式会社日立製作所 Vehicle power supply
CN100402335C (en) * 2004-11-16 2008-07-16 丰田自动车株式会社 Hybrid power automobile and its control method
JP4167667B2 (en) * 2005-03-24 2008-10-15 ヤマハ発動機株式会社 Hybrid motorcycle
DE102005018437A1 (en) * 2005-04-21 2006-10-26 Robert Bosch Gmbh Method for operating a vehicle drive and apparatus for carrying out the method
DE102005047940A1 (en) * 2005-10-06 2007-04-12 Volkswagen Ag Torque controlling method for e.g. passenger car, involves impressing combustion engine torque in one phase for specific time by electromotive torque so that resulted entire drive torque corresponds to desired torque
US7659698B2 (en) * 2006-10-02 2010-02-09 Ford Global Technologies, Llc System and method for controlling a state of charge of an energy storage system
US7669676B2 (en) * 2006-10-24 2010-03-02 Larry D. Miller Trust Hybrid propulsion system and method for its operation
KR100862473B1 (en) 2006-12-11 2008-10-08 현대자동차주식회사 System and method for control battery charge of HEV
BRPI0621033A2 (en) * 2006-12-27 2011-11-29 Mitsubishi Electric Corp drive control device for an electric drive vehicle
US7604076B2 (en) * 2007-02-19 2009-10-20 Chrysler Group Llc System and method for reducing throttling losses during regenerative braking
US7849944B2 (en) * 2007-06-12 2010-12-14 Ut-Battelle, Llc Self-learning control system for plug-in hybrid vehicles
FR2918335B1 (en) * 2007-07-06 2009-11-27 Renault Sas DEVICE FOR ESTIMATING PHYSICAL SIZES FOR INFINITELY VARIABLE TRANSMISSION.
JP4450027B2 (en) * 2007-07-18 2010-04-14 トヨタ自動車株式会社 Vehicle control apparatus and control method
CN101214797B (en) * 2007-12-29 2010-08-11 奇瑞汽车有限公司 Mixed power automobile battery charging and discharging current limitation protecting method
US8005587B2 (en) * 2008-01-25 2011-08-23 Ford Motor Company Method and system for controlling a motive power system of an automotive vehicle
FR2929573B1 (en) * 2008-04-07 2010-08-27 Renault Sas DEVICE AND METHOD FOR CONTROLLING AN INFINITELY VARIABLE TRANSMISSION IN PURELY ELECTRIC MODE.
JP4992810B2 (en) * 2008-04-17 2012-08-08 トヨタ自動車株式会社 Hybrid vehicle and control method thereof
US8063609B2 (en) * 2008-07-24 2011-11-22 General Electric Company Method and system for extending life of a vehicle energy storage device
US8212532B2 (en) 2008-07-24 2012-07-03 General Electric Company Method and system for control of a vehicle energy storage device
DE102008050737A1 (en) * 2008-10-08 2010-04-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for operating a drive train
US8942919B2 (en) * 2010-10-27 2015-01-27 Honda Motor Co., Ltd. BEV routing system and method
US9043060B2 (en) * 2010-12-31 2015-05-26 Cummins Inc. Methods, systems, and apparatuses for driveline load management
JP5476327B2 (en) * 2011-03-09 2014-04-23 株式会社日立製作所 Diesel vehicle drive system control system
JP2015051692A (en) * 2013-09-06 2015-03-19 トヨタ自動車株式会社 Hybrid vehicle and hybrid vehicle control method
JP6354713B2 (en) * 2015-09-04 2018-07-11 トヨタ自動車株式会社 Hybrid car
JP6939707B2 (en) * 2018-05-30 2021-09-22 トヨタ自動車株式会社 Vehicle system

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL49201A (en) 1976-03-12 1980-02-29 Scientific Res Foundation Vehicle drive system including a flywheel and selectable coupling means
US4305254A (en) 1980-02-20 1981-12-15 Daihatsu Motor Co., Ltd. Control apparatus and method for engine/electric hybrid vehicle
DE69007902T2 (en) 1989-01-31 1994-11-10 Mitsubishi Motors Corp OUTPUT POWER CONTROL FOR COMBUSTION ENGINE.
JPH05229351A (en) 1992-02-19 1993-09-07 Aisin Aw Co Ltd Motor-driven device for vehicle
US5343970A (en) * 1992-09-21 1994-09-06 Severinsky Alex J Hybrid electric vehicle
US5264764A (en) * 1992-12-21 1993-11-23 Ford Motor Company Method for controlling the operation of a range extender for a hybrid electric vehicle
JP3291871B2 (en) 1993-11-10 2002-06-17 株式会社エクォス・リサーチ Hybrid vehicle
JPH0886232A (en) 1994-07-20 1996-04-02 Nippon Soken Inc Engine control device
JP3050054B2 (en) * 1994-09-01 2000-06-05 トヨタ自動車株式会社 Power generation control method
JP3336777B2 (en) * 1994-10-25 2002-10-21 株式会社エクォス・リサーチ Hybrid vehicle and hybrid vehicle control method
JP3344848B2 (en) 1994-11-04 2002-11-18 アイシン・エィ・ダブリュ株式会社 Launching device
JP3050073B2 (en) * 1994-12-22 2000-06-05 トヨタ自動車株式会社 Power generation control device for hybrid electric vehicles
JP2796698B2 (en) 1995-02-02 1998-09-10 株式会社エクォス・リサーチ Hybrid vehicle
JPH08237810A (en) 1995-02-27 1996-09-13 Aqueous Res:Kk Hybrid vehicle
JP3087884B2 (en) * 1995-04-28 2000-09-11 本田技研工業株式会社 Hybrid vehicle power generation control device
US6116363A (en) * 1995-05-31 2000-09-12 Frank Transportation Technology, Llc Fuel consumption control for charge depletion hybrid electric vehicles
JP3414059B2 (en) 1995-07-19 2003-06-09 アイシン・エィ・ダブリュ株式会社 Vehicle drive system
DE19546554C1 (en) 1995-12-13 1997-02-27 Daimler Benz Ag Procedure and device for controlling IC engine torque
DE69621759T2 (en) * 1995-12-27 2003-02-06 Denso Corp Power supply control device for a hybrid vehicle
US5864770A (en) 1996-03-14 1999-01-26 Ziph; Benjamin Speed and power control of an engine by modulation of the load torque
DE19709417A1 (en) 1996-03-14 1997-10-30 Luk Getriebe Systeme Gmbh Control apparatus for torque transmitting system and automated transmission of motor vehicle
JP3622338B2 (en) 1996-05-28 2005-02-23 トヨタ自動車株式会社 Vehicle shift control device
JP3371691B2 (en) * 1996-06-25 2003-01-27 日産自動車株式会社 Hybrid vehicle power generation control device
JP3211702B2 (en) 1997-02-25 2001-09-25 株式会社デンソー Hybrid vehicle control device
US6018694A (en) * 1996-07-30 2000-01-25 Denso Corporation Controller for hybrid vehicle
CA2182630C (en) * 1996-08-02 2003-02-11 Piotr Drozdz A control system for a hybrid vehicle
JP3436090B2 (en) 1997-02-14 2003-08-11 トヨタ自動車株式会社 Electric drive vehicle
JP3578597B2 (en) 1997-06-30 2004-10-20 株式会社日立ユニシアオートモティブ Control device for direct injection spark ignition type internal combustion engine
DE69834588T2 (en) 1997-09-15 2006-09-07 Honda Giken Kogyo K.K. Device for controlling a hybrid vehicle
JP3096446B2 (en) 1997-09-17 2000-10-10 本田技研工業株式会社 Control device for hybrid vehicle
JP3257486B2 (en) 1997-11-12 2002-02-18 トヨタ自動車株式会社 Power output device and internal combustion engine control device
US6019698A (en) 1997-12-01 2000-02-01 Daimlerchysler Corporation Automated manual transmission shift sequence controller
JP3341659B2 (en) * 1997-12-05 2002-11-05 日産自動車株式会社 Hybrid vehicle control device
JP3489475B2 (en) * 1998-03-20 2004-01-19 日産自動車株式会社 Driving force control device
JPH11336582A (en) 1998-05-26 1999-12-07 Honda Motor Co Ltd Control device for hybrid vehicle
JP3451935B2 (en) * 1998-06-03 2003-09-29 日産自動車株式会社 Driving force control device for hybrid vehicle
US6203468B1 (en) 1998-11-18 2001-03-20 Fuji Jukogyo Kabushiki Kaisha Control device for hybrid vehicle and method thereof
JP3073975B1 (en) * 1999-02-03 2000-08-07 本田技研工業株式会社 Control device for hybrid vehicle
JP2000297670A (en) 1999-04-13 2000-10-24 Fuji Heavy Ind Ltd Controller for hybrid vehicle
JP3395708B2 (en) * 1999-04-27 2003-04-14 株式会社日立製作所 Hybrid vehicle
JP3654048B2 (en) * 1999-05-20 2005-06-02 日産自動車株式会社 Drive control apparatus for hybrid vehicle
JP2001037008A (en) 1999-07-21 2001-02-09 Nissan Motor Co Ltd Controller for hybrid vehicle
US6242873B1 (en) * 2000-01-31 2001-06-05 Azure Dynamics Inc. Method and apparatus for adaptive hybrid vehicle control
US6230496B1 (en) * 2000-06-20 2001-05-15 Lockheed Martin Control Systems Energy management system for hybrid electric vehicles

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564109B1 (en) * 1999-11-26 2003-05-13 General Electric Company Methods and systems for compensation of measurement error
US20040116228A1 (en) * 2001-04-17 2004-06-17 Thompson Robert W Drive configuration for a skid steered vehicle
US7074151B2 (en) * 2001-04-17 2006-07-11 Qinetiq Limited Drive configuration for a skid steered vehicle
US6629027B2 (en) * 2001-10-11 2003-09-30 Nissan Motor Co., Ltd. Control device and control method for hybrid vehicle
FR2834249A1 (en) * 2001-12-27 2003-07-04 Renault Equipment for controlling the operating point of propulsion unit with infinitely variable transmission, comprises supervisor which assists the control unit to produce operating point commands
US6909200B2 (en) 2002-02-28 2005-06-21 Azure Dynamics Inc. Methods of supplying energy to an energy bus in a hybrid electric vehicle, and apparatuses, media and signals for the same
US6879054B2 (en) 2002-03-15 2005-04-12 Azure Dynamics Inc. Process, apparatus, media and signals for controlling operating conditions of a hybrid electric vehicle to optimize operating characteristics of the vehicle
US20030173126A1 (en) * 2002-03-15 2003-09-18 Gosselin Robert Michael Process, apparatus, media and signals for controlling operating conditions of a hybrid electric vehicle to optimize operating characteristics of the vehicle
WO2003078190A2 (en) * 2002-03-15 2003-09-25 Azure Dynamics Inc. Process, apparatus, media and signals for controlling operating conditions of a hybrid electric vehicle to optimize operating characteristics of the vehicle
WO2003078190A3 (en) * 2002-03-15 2004-03-25 Azure Dynamics Inc Process, apparatus, media and signals for controlling operating conditions of a hybrid electric vehicle to optimize operating characteristics of the vehicle
US6827165B2 (en) * 2003-02-11 2004-12-07 General Motors Corporation Electro-mechanical powertrain with a fuel cell transmission
EP1447255A3 (en) * 2003-02-14 2005-02-02 Nissan Motor Co., Ltd. Control apparatus and method for hybrid vehicle
US20040162182A1 (en) * 2003-02-14 2004-08-19 Nissan Motor Co., Ltd. Control apparatus and method for hybrid vehicle
US7101308B2 (en) 2003-02-14 2006-09-05 Nissan Motor Co., Ltd. Control apparatus and method for hybrid vehicle
EP1452383A1 (en) * 2003-02-26 2004-09-01 Peugeot Citroen Automobiles S.A. Regulation system for an automobile transmission
FR2851515A1 (en) * 2003-02-26 2004-08-27 Peugeot Citroen Automobiles Sa Power transmission device regulating system for hybrid vehicle, has electrical regulating module to impose torque values on each machine where reference values are set in module based on which module regulates torque values
WO2004106097A2 (en) * 2003-05-23 2004-12-09 Renault S.A.S. Method and device for controlling a powertrain comprising a continuously variable transmission
WO2004106097A3 (en) * 2003-05-23 2005-02-24 Renault Sa Method and device for controlling a powertrain comprising a continuously variable transmission
FR2855101A1 (en) * 2003-05-23 2004-11-26 Renault Sa Vehicle drive train controlling method, involves separating intermediate control signals in drive control torque signals and thermal engine control torque signal by adjusting drive load level, wheel torque, and thermal engine speed
US7832510B2 (en) * 2003-07-22 2010-11-16 Toyota Jidosha Kabushiki Kaisha Power output apparatus for hybrid vehicle
US20060162972A1 (en) * 2003-07-22 2006-07-27 Takeshi Hoshiba Power output apparatus for hybrid vehicle
FR2875745A1 (en) * 2004-09-24 2006-03-31 Peugeot Citroen Automobiles Sa CONTROL METHOD FOR A TRANSMISSION DEVICE BETWEEN A SHAFT OF A HEAT ENGINE AND A WHEEL SHAFT OF A VEHICLE
WO2006032818A1 (en) * 2004-09-24 2006-03-30 Peugeot Citroen Automobiles Sa Control method for a transmission device between a heat engine shaft and an axle shaft of a vehicle
US20080064551A1 (en) * 2004-09-24 2008-03-13 Peugeot Citroen Automobiles Sa Control Method For A Transmission Device Between A Heat Engine Shaft And An Axle Shaft Of A Vehicle
WO2007057192A1 (en) * 2005-11-18 2007-05-24 Bayerische Motoren Werke Aktiengesellschaft Method for determining a driving torque correction factor for compensating cooperating driving torques of different drive devices
US7507181B2 (en) 2005-11-18 2009-03-24 Bayerische Motoren Werke Aktiengesellschaft Method for determining a driving torque correction factor for compensating cooperating driving torques of different drive devices
US7862469B2 (en) 2006-08-31 2011-01-04 Volkswagen Ag Method for controlling a drivetrain of a motor vehicle
EP1894761A1 (en) * 2006-08-31 2008-03-05 Volkswagen Aktiengesellschaft Method for contolling the power train of a motor vehicle
US20080058153A1 (en) * 2006-08-31 2008-03-06 Volkswagen Ag Method for controlling a drivetrain of a motor vehicle
US20080059022A1 (en) * 2006-09-05 2008-03-06 Nissan Motor Co., Ltd. Vehicle control apparatus
US8924055B2 (en) * 2006-09-05 2014-12-30 Nissan Motor Co., Ltd. Vehicle control apparatus
US7292932B1 (en) 2006-11-13 2007-11-06 Ford Global Technologies, Llc System and method for controlling speed of an engine
US20100198439A1 (en) * 2009-01-30 2010-08-05 Empire Technology Development Llc Hybrid vehicle driving system, hybrid vehicle, and driving method
US9227504B2 (en) * 2009-01-30 2016-01-05 Empire Technology Development Llc Hybrid vehicle driving system, hybrid vehicle, and driving method
US8636612B2 (en) * 2012-02-08 2014-01-28 Remy Technologies, L.L.C. Center adapter assembly
US9399461B2 (en) 2012-05-07 2016-07-26 Ford Global Technologies, Llc Opportunistic charging of hybrid vehicle battery
US10155511B2 (en) 2012-05-07 2018-12-18 Ford Global Technologies, Llc Opportunistic charging of hybrid vehicle battery
CN111497823A (en) * 2019-01-30 2020-08-07 郑州宇通客车股份有限公司 Hybrid vehicle control mode switching coordination control method and vehicle

Also Published As

Publication number Publication date
JP2000310131A (en) 2000-11-07
US6470983B1 (en) 2002-10-29
JP3395708B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
US6470983B1 (en) Hybrid vehicle
US9714024B2 (en) Method and apparatus for controlling hybrid electric vehicle
US6507127B1 (en) Hybrid vehicle
US5903061A (en) Control system for vehicular drive unit
US6687581B2 (en) Control device and control method for hybrid vehicle
US6654672B2 (en) Control apparatus and control method for hybrid vehicle
JP2796698B2 (en) Hybrid vehicle
US8983701B2 (en) Drive control apparatus for providing drive control to a hybrid electric vehicle, and hybrid electric vehicle
US7117071B2 (en) Hybrid vehicle drive control apparatus, and control method of hybrid vehicle drive apparatus and program thereof
US8280570B2 (en) Power controller for hybrid vehicle
US7694763B2 (en) Vehicle and its control method
US10279798B2 (en) Hybrid vehicle and control method of hybrid vehicle
US9114803B2 (en) Drive control apparatus for providing drive control to a hybrid electric vehicle, and hybrid electric vehicle
US10543829B2 (en) Hybrid vehicle including electronic control unit configured to correct base driving force using correction driving force
US9499041B2 (en) Hybrid vehicle and control method thereof
JP2000236602A (en) Driving force controller for vehicle
US11208112B2 (en) Drive force control system for vehicle
US10279794B2 (en) Hybrid vehicle
US20020112901A1 (en) Hybrid vehicle
US10597026B2 (en) Hybrid vehicle and control method therefor
JP2003070102A (en) Controller for hybrid vehicle
JP2005120907A (en) Shift control device for hybrid vehicle
US11767039B2 (en) Hybrid vehicle
JPH1118210A (en) Controller of hybrid system vehicle
JP3692796B2 (en) Hybrid vehicle

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION