US20010020987A1 - Position sensing liquid crystal display and method for fabricating the same - Google Patents

Position sensing liquid crystal display and method for fabricating the same Download PDF

Info

Publication number
US20010020987A1
US20010020987A1 US09/855,695 US85569501A US2001020987A1 US 20010020987 A1 US20010020987 A1 US 20010020987A1 US 85569501 A US85569501 A US 85569501A US 2001020987 A1 US2001020987 A1 US 2001020987A1
Authority
US
United States
Prior art keywords
digitizer
liquid crystal
crystal display
substrate
display panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/855,695
Other versions
US6388729B2 (en
Inventor
Young Ahn
Sung Bae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
Ahn Young Soo
Bae Sung Joon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ahn Young Soo, Bae Sung Joon filed Critical Ahn Young Soo
Priority to US09/855,695 priority Critical patent/US6388729B2/en
Publication of US20010020987A1 publication Critical patent/US20010020987A1/en
Application granted granted Critical
Publication of US6388729B2 publication Critical patent/US6388729B2/en
Assigned to LG DISPLAY CO., LTD. reassignment LG DISPLAY CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: LG.PHILIPS LCD CO., LTD.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0444Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single conductive element covering the whole sensing surface, e.g. by sensing the electrical current flowing at the corners
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a position sensing liquid crystal display (PSLCD), and more particularly to a position sensing liquid crystal display and a method for fabricating the same, in which position sensors, such as digitizers, are formed after bonding of upper and lower plates of the liquid crystal display.
  • PSD position sensing liquid crystal display
  • the liquid crystal display at large is provided with an upper plate, a lower plate, and a liquid crystal sealed between the upper plate and the lower plate.
  • the upper plate has a black matrix layer, a common electrode, and color filter layers of R (red), G (green), and B (blue) for displaying colors disposed thereon.
  • the lower plate has data lines and gate lines crossing the other to form a matrix of pixel regions, each having a thin film transistor and a pixel electrode. That is, as shown in FIG. 1, the lower plate 1 is provided with a matrix of thin film transistors, each having a gate electrode gate extended from a scan line, a source electrode S and a drain electrode extended from a data line disposed at fixed intervals.
  • Each of the pixel regions is provided with a pixel electrode 2 a having the drain electrode D of the thin film transistor 2 connected thereto.
  • the upper plate 3 is provided with a matrix form of the black matrix layer 4 for blocking transmission of light for parts excluding the pixel electrodes 2 a on the lower plate 1 .
  • There are R, G, and B color filter layers 5 between the black matrix layer 4 each for displaying a color.
  • a common electrode 6 is formed extended to the color filter layer 5 and the black matrix layer 4 .
  • the aforementioned liquid crystal display has been designed only to display images according to the external driving signals, recently researches are underway in which the liquid crystal display is provided with additional position sensors for efficient use of the display in a notebook computer. That is, if a character or graphic is drawn with a stylus (an electronic pen) on the liquid crystal display equipped with the position sensors, the character or graphic is displayed as drawn.
  • a stylus an electronic pen
  • FIG. 2 illustrates a first example of the related art position sensing liquid crystal display.
  • the first example of the related art position sensing liquid crystal display has a digitizer for sensing a position additionally provided outside of a general liquid crystal display independently, i.e., provided with a liquid crystal display 21 and a digitizer panel 23 .
  • a position sensing layer 23 a hereafter called, “digitizer”
  • a compensating resistor region 25 around the digitizer 23 a for compensating a voltage difference there is a position sensing layer 23 a (hereafter called, “digitizer”), a compensating resistor region 25 around the digitizer 23 a for compensating a voltage difference, and signal applying parts 27 a , 27 b , 27 c , and 27 d at four corners of the compensating resistor region 25 for applying a position sensing signal.
  • the digitizer 23 a has a potential distribution from upper side to lower side thereof.
  • the digitizer 23 a has a potential distribution from right side to left side thereof.
  • a present position of the stylus 29 can be sensed and determined.
  • a voltage of the position of the digitizer 24 a at which the stylus 29 is brought into contact is used.
  • the position sensing of even a finger tip touch can be made, which is displayed in turn on a liquid crystal display.
  • FIG. 3 illustrates a second example of the related art position sensing liquid crystal display.
  • the second PSLCD has a position sensing digitizer provided inside a liquid crystal display panel.
  • the second PSLCD is provided with metal, an insulating film, and a semiconductor layer on a glass for displaying an image, wherein a position sensing layer is embodied using the glass of an image data input electrical device. That is, the second PSLCD is provided with an upper plate 21 a , a lower plate 21 b , and a digitizer 23 a between the upper plate 21 a and the lower plate 21 b .
  • the upper plate 21 a has the black matrix layer (not shown), a color filter layer, and an ITO layer of a common electrode formed thereon.
  • the lower plate 21 b has data lines 31 , gate lines 33 , and pixel electrodes (not shown), and the digitizer 23 a has a compensating resistor region 25 around the digitizer and signal applying parts 27 b and 27 d at four corners of the compensating resistor region 25 (signal applying parts 27 a and 27 c are not shown).
  • the digitizer 23 a when the signal applying parts 27 a , 27 b , 27 c , and 27 d are applied of a position signal, the digitizer 23 a exhibits a potential distribution. Accordingly, when stylus 29 is brought into contact with the display, a voltage at the contact point is sensed, thereby allowing to sense the present position. A finger tip touch on the display can be also sensed.
  • the PSLCD can sense the present position of the stylus 29 by using a capacitive coupling between the digitizer 23 a and the stylus 29 .
  • the aforementioned related art PSLCD has the following problems.
  • the first PSLCD is cumbersome to carry because of the digitizer provided additionally on the outside of the LCD, which makes the LCD thicker and bulkier.
  • the present invention is directed to a position sensing liquid crystal display and a method for fabricating the same that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
  • An object of the present invention is to provide a position sensing liquid crystal display and a method for fabricating the same which can sense an accurate position of the stylus.
  • a liquid crystal display panel has a first substrate having front and rear surfaces, a second substrate having front and rear surfaces, the front surface of the second substrate including a plurality of pixel electrodes and abutting against the rear surface of the first substrate, and a digitizer having intersecting grids fabricated on at least one of the front and rear surfaces of the first and second substrates.
  • the rear surface of the first substrate includes a black matrix layer having intersecting grids at a predetermined interval.
  • the digitizer is fabricated on the front surface of the first substrate, the intersecting grids of the digitizer being substantially aligned with the intersecting grids of the black matrix layer.
  • the intersecting grids of the digitizer may be made of a conductive material, such as metal or Indium Tin Oxide.
  • the intersecting grids of the black matrix layer may be used as the intersecting grids of the digitizer, in which the intersecting grids of the black matrix layer are fabricated with a conductive material.
  • the digitizer may be fabricated on the rear surface of the second substrate, the intersecting grids of the digitizer being substantially aligned with the intersecting grids of the black matrix layer.
  • input signal portions may be fabricated in the vicinity of four corners of the digitizer.
  • the input signal portions provide a position signal, such as an input voltage, to the intersecting grids of the digitizer for detecting a stylus position.
  • the input signal portions may be fabricated substantially in the middle of each side of the digitizer.
  • the liquid crystal display panel with the digitizer there are compensating resistors connected between the input signal portions and the intersecting grids of the digitizer.
  • the compensating resistors formed near the input signal portions preferably have a higher resistivity than the compensating resistors formed farther away from the input signal portions to provide substantially equal potential to the intersecting grids of the digitizer.
  • the compensating resistors include a tree shape of repetitive sequence of layers of primary interconnections between adjacent grids, secondary interconnections between adjacent primary interconnections, and tertiary interconnections between adjacent secondary interconnections.
  • the equipotential line there is at least one equipotential line connected between the input signal portions and the compensating resistors.
  • the equipotential line has a lower resistivity than the compensating resistors.
  • the PSLCD having a digitizer may be used with a controller that controls displayed images of the liquid crystal display panel. Such controller is necessary for using the PSLCD in computing devices and display devices.
  • the PSLCD having a digitizer may be fabricated by providing a first substrate having front and rear surfaces; providing a second substrate having front and rear surfaces, wherein the second substrate has a first display region in the front surface; forming a plurality of pixel electrodes in the first display region of the front surface of the second substrate; securing the front surface of the second substrate to the rear surface of the first substrate; and fabricating intersecting grids of the digitizer on at least one of the front and rear surfaces of the first and second substrates.
  • the sealing material surrounding the first surrounded region substantially prohibits the intrusion of any foreign substance.
  • the second substrate before securing the front surface of the second substrate to the rear surface of the first substrate, provide the second substrate to define a second display region having a second set of pixel electrodes; form pixel electrodes in the second display region of the second substrate; surround the first display region with a sealing material to define a first surrounded region; surround the second display region with the sealing material to define the first surrounded region; surround the first and second surrounded regions with the sealing material.
  • the sealing material surrounding the first and second surrounded regions substantially prohibits the intrusion of a foreign substance.
  • the intersecting grids of the digitizer are fabricated on at least one of the front and rear surfaces of the first and second substrates and in the first display region. Thereafter, the first and second substrates are scribed to separate the first display region from the second display region, each one of the first and second display regions having the digitizer.
  • FIG. 1 illustrates a section of a liquid crystal display
  • FIG. 2 illustrates a first related art position sensing liquid crystal display
  • FIG. 3 illustrates a second related art position sensing liquid crystal display
  • FIG. 4 illustrates a position sensing liquid crystal display in accordance with a preferred embodiment of the present invention
  • FIG. 5 illustrates a plan view of a liquid crystal display
  • FIG. 6 illustrates a partial cut away view of glass substrates having a sealing material bonded thereto
  • FIG. 7 illustrates a partial cut away view of another glass substrate having a sealing material bonded thereto
  • FIG. 8 illustrates a perspective view of a position sensing liquid crystal display in accordance with a first embodiment of the present invention
  • FIG. 9 illustrates a perspective view of a position sensing liquid crystal display in accordance with a second embodiment of the present invention.
  • FIG. 10 illustrates a compensating resistor region used in the present invention
  • FIG. 11 illustrates a perspective view of a position sensing liquid crystal display in accordance with a third embodiment of the present invention.
  • FIG. 12 illustrates a plan view of a position sensing liquid crystal display in accordance with a fourth embodiment of the present invention.
  • FIG. 13 illustrates another embodiment of the compensating resistor region used in the present invention.
  • FIG. 14 illustrates a flow chart showing the steps of a method for fabricating a PSLCD according to the present invention.
  • FIG. 4 illustrates a system of a position sensing liquid crystal display in accordance with a preferred embodiment of the present invention.
  • the position sensing liquid crystal display in accordance with a preferred embodiment of the present invention includes a liquid crystal display panel 21 having a first substrate 21 a (hereinafter called, “an upper plate”) and a second substrate 21 b (hereinafter called, “a lower plate”) bonded together, and a digitizer 23 a formed on a back surface of either the first substrate 21 a or the-second substrate 21 b.
  • a liquid crystal display panel 21 having a first substrate 21 a (hereinafter called, “an upper plate”) and a second substrate 21 b (hereinafter called, “a lower plate”) bonded together, and a digitizer 23 a formed on a back surface of either the first substrate 21 a or the-second substrate 21 b.
  • a plurality of black matrix patterns 71 is preferably formed on the first substrate 21 a , and color filter layers 73 (shaded portion) are formed between the black matrix layer patterns 71 for displaying colors. Then an overcoat layer (not shown) is formed on an entire surface inclusive of the color filter layer 73 . An ITO layer (not shown) for use as a common electrode is formed on the overcoat layer.
  • a matrix of data lines 75 and gate lines 77 are formed on the second substrate 21 b .
  • a thin film transistor (TFT) is formed at every crossing of the data lines 75 and the gate lines 77 .
  • TFT thin film transistor
  • the first substrate 21 a and the second substrate 21 b are bonded with a sealing material. That is, for a simplification of a fabrication process, patterns for a plurality of displays are concurrently formed on a sheet of glass substrate, and the completed glass substrate is cut into display regions, which are bonded with the sealing material according to the following process.
  • FIG. 6 illustrates a partial cut away view of the first glass substrate and the second glass substrate bonded with a sealing material.
  • the sealing material 45 is applied around each liquid crystal sealing region of a display region in one pair of glass substrates 41 , each having an area enough to fabricate a plurality of liquid crystal displays.
  • a peripheral sealing material 45 a having an opening 45 b is applied to surround all the display regions or panels.
  • the opening 45 b is formed having a length sufficient enough to prevent permeation of etchant used during a digitizer formation process and to prevent compression of air between the pair of glass substrate 41 during bonding process. Then each display region is separated.
  • the pair of glass substrates 41 is sufficiently large to fabricate a plurality of liquid crystal display panels.
  • Each display panel separated from the large glass substrates 41 is injected with liquid crystal into the liquid injection region 43 through a liquid injection port 47 provided at a portion of the sealing material, the liquid crystal injection port 47 is sealed, and a polarization plate is bonded at the back of each display, to complete a liquid crystal display.
  • FIG. 7 illustrates a partial cut away view of glass substrates of the present invention having an alternative display panel configuration and having a sealing material applied thereto.
  • the sealing material 85 is applied around each liquid crystal injection region 83 of display regions defined on a glass substrate 81 for the first time.
  • sealing material 85 a is applied for the second time at an outer periphery of the sealing material 85 , spatially spaced from the sealing material 85 .
  • the sealing material is applied twice around the display region, for prevention of unwanted etching of pads (PAD) of the display by etchant used during a digitizer formation process which follows. That is, the sealing material is applied twice around the display region, to protect the pads against HF solution when display regions are separated.
  • PAD unwanted etching of pads
  • an outer sealing material 85 b having an opening 85 c is applied to surround all the display regions.
  • the opening 85 c is formed having a length sufficient enough to prevent permeation of etchant used during a digitizer formation process and to prevent compression of air between the first and second glass substrates 21 a and 21 b during bonding process.
  • a digitizer 23 a is formed on a back side of at least one of the substrates 21 a and 21 b.
  • FIG. 8 illustrates a plan view of a position sensing liquid crystal display in accordance with a first embodiment of the present invention.
  • the PSLCD in accordance with a first embodiment of the present invention includes a liquid crystal panel 21 having a first substrate 21 a and a second substrate 21 b bonded together, a digitizer 23 a having X-axis grids 51 a and Y-axis grids 51 b at a back surface of at least one of the substrates 21 a and 21 b , and signal applying parts 27 a , 27 b , 27 c , and 27 d at four corners of the liquid crystal display panel 21 for applying a position signal to the X-axis grids 51 a and the Y-axis grids 51 b .
  • the digitizer 23 a is directly patterned on the back surface of either the first substrate 21 a or the second substrate 21 b of ITO or metal which has a high resistance. If the X-axis grids 51 a and the Y-axis grids 51 b are formed of a metal, the metal is patterned such that the X-axis grids 51 a and the Y-axis grids 51 b are aligned or matched with the black matrix pattern (see FIG. 5) formed on the first substrate 21 a , for obtaining a high aperture.
  • the same alignment key used in formation of the black matrix pattern on the first substrate 21 a is used in metal patterning.
  • the X-axis grids 51 a and Y-axis grids 51 b are formed of ITO, which is transparent, the X-axis grids 51 a , Y-axis grids 51 b and the black matrix pattern 71 may not need to be matched.
  • the X-axis grids 51 a and the Y-axis grids 51 b form a matrix with either an insulating layer or direct contact between the X-axis grids 51 a and the Y-axis grids 51 b.
  • the compensating resistor region 53 includes equipotential maintaining resistors 53 b and equipotential compensating resistors 53 c .
  • the equipotential maintaining resistors 53 b transmit the position signal provided through the signal applying parts 27 a , 27 b , 27 c , and 27 d to the equipotential compensating resistors 53 c , and the equipotential compensating resistors 53 c compensate voltages such that the position signal received from the equipotential maintaining resistors 53 b has an equal potential on entire surfaces of the X-axis and Y-axis grids.
  • a position can be sensed using a stylus after application of a position signal through the signal applying parts 27 a , 27 b , 27 c , and 27 d preferably at four corners of the liquid crystal display panel 21 .
  • a position of a stylus, or a finger tip can be sensed.
  • the position signal provided through the signal applying parts 27 a , 27 b , 27 c , and 27 d is applied to the X-axis grids 51 a and the Y-axis grids 51 b through the compensating resistor region 53 having the equipotential maintaining resistors 53 b and the equipotential compensating resistors 53 c .
  • the stylus 29 is brought into contact at an arbitrary spot of the digitizer 23 a , a capacitive coupling is formed between the stylus 29 and a pertinent grid.
  • the position of the stylus 29 can be detected.
  • a position signal is applied the same as above, and a leakage current flowing through a capacitive coupling between the finger tip, which is a virtual ground, and a pertinent grid is measured in each of the signal applying parts and calculated again, to sense the position of the finger tip.
  • FIG. 9 illustrates a plan view of a position sensing liquid crystal display in accordance with a second embodiment of the present invention.
  • the position sensing digitizer 23 a is not separately patterned in the X-axis and Y-axis grids, but formed as an integral unit.
  • the position sensing liquid crystal display in accordance with the second embodiment of the present invention includes a liquid crystal display panel 21 having a first substrate 21 a and a second substrate 21 b attached together, a position sensing digitizer 23 a on a back surface of at least one of the substrates 21 a and 21 b of the liquid crystal display panel 21 formed as an integral unit with the liquid crystal display panel 21 , and signal applying parts 27 a , 27 b , 27 c , and 27 d in the near vicinity of four corners of the liquid crystal display panel 21 for applying a signal to the digitizer 23 a .
  • the digitizer 23 a is formed of an ITO layer, which is transparent. Accordingly, when a position signal is selectively applied to the signal applying parts 27 a , 27 b , 27 c , and 27 d , the stylus makes contact with a point on the digitizer 23 a and a capacitive coupling between the stylus and the digitizer 23 a is calculated, and thus a position of the stylus on the digitizer 23 a can be measured.
  • FIG. 10 illustrates a partial plan view of a PSLCD in accordance with the first and second embodiments of the present invention.
  • the PSLCD in accordance with the first and second embodiments of the present invention includes a signal applying part 27 a for applying a voltage, a digitizer 23 a having a plurality of X-axis grids 51 a and Y-axis grids 51 b , and compensating resistor regions 53 for providing equal potential from the signal applying part 27 a to the X-axis and Y-axis grids 51 a and 51 b in the digitizer 23 a by regulating the potential with resistors.
  • the compensating resistor region 53 has node resistors 53 a , equipotential maintaining resistors 53 b , and equipotential compensating resistors 53 c .
  • the equipotential maintaining resistors 53 b are formed at four sides of the digitizer 23 a
  • the equipotential compensating resistors 53 c are connected between the equipotential maintaining resistors 53 b and the X-axis and Y-axis grids 51 a and 51 b in the digitizer 23 a.
  • the node resistor 53 a transmits a position sensing signal provided from the signal applying part 27 a to the equipotential maintaining resistors 53 b .
  • the equipotential compensating resistors 53 c compensate voltages such that the nearest and farthest X-axis, and Y-axis grids 51 a and 51 b from the signal applying part 27 a are at an equal potential. To accomplish this effect, the equipotential compensating resistors 53 c are patterned to have different lengths as shown in FIG. 10.
  • the position sensing signal passes through the signal applying part 27 a , the node resistor 53 a , the equipotential maintaining resistor 53 , and the equipotential compensating resistor 53 c , and finally applied to the X-axis and Y-axis grids 51 a and 51 b .
  • a longer equilibrium compensating resistor provides a greater voltage drop between two points.
  • FIG. 11 illustrates a perspective view of a position sensing liquid crystal display in accordance with a third embodiment of the present invention.
  • the signal applying parts 27 a , 27 b , 27 c , and 27 d for applying a position signal for detecting a position are disposed substantially in the middle of each side of the digitizer 23 a.
  • the PSLCD in accordance with the third embodiment of the present invention includes a liquid crystal display panel 21 having a first substrate 21 a affixed to a second substrate 21 b , a digitizer 23 a having X-axis and Y-axis grids 51 a and 51 b on a back surface of at least one of the substrates 21 a and 21 b , and signal applying parts 27 a , 27 b , 27 c , and 27 d at middle of sides of the liquid crystal display panel 21 for applying a position signal to the X-axis and Y-axis grids 51 a and 51 b .
  • the X-axis and Y-axis grids 51 a and 51 b are preferably formed of ITO or metal.
  • the compensating resistor region 53 includes equipotential maintaining resistors 53 b and equipotential compensating resistors 53 c .
  • the equipotential maintaining resistors 53 b transmit the position signal provided through the signal applying parts 27 a , 27 b , 27 c , and 27 d to the equipotential compensating resistors 53 c , and the equipotential compensating resistors 53 c compensate voltages such that the position signal received from the equipotential maintaining resistors 53 b has an equal potential on entire surfaces of the X-axis and Y-axis grids.
  • the signal applying parts 27 a , 27 b , 27 c , and 27 d are positioned preferably in the middle of the four sides of the digitizer 23 a to minimize the separation distance from the signal applying parts 27 a , 27 b , 27 c , and 27 d to the nearest and the farthest grids (X-axis and Y-axis grids).
  • FIG. 12 illustrates a perspective view of a position sensing liquid crystal display in accordance with a fourth embodiment of the present invention.
  • the PSLCD includes a liquid crystal display panel 21 having a first substrate 21 a and a second substrate 21 b bonded together, a digitizer 23 a on a back surface of at least one of the substrates 21 a and 21 b , and signal applying parts 27 a , 27 b , 27 c , and 27 d in the middle of the sides of the liquid crystal display panel 21 .
  • the digitizer 23 a is preferably formed as an integral part of at least one of the substrates 21 a and 21 b as opposed to a separate unit.
  • FIG. 13 illustrates an alternative embodiment of the compensating resistor region in the third and fourth embodiments of the present invention.
  • another embodiment of the compensating resistor region includes a tree shape of repetitive sequence of layers of primary interconnections 130 between adjacent grids(Y-axis or X-axis grids), secondary interconnections 133 between adjacent primary interconnections 130 , and tertiary interconnections 135 between adjacent secondary interconnections 133 .
  • lengths of the equipotential compensating resistors 130 , 133 , and 135 can be patterned the same all over the regions of the digitizer so that the position signal provided through the signal applying part 27 a ( 27 b , 27 c , and 27 d are not shown) is linearly equipotential.
  • the X-axis grids 51 a and the Y-axis grids 51 b in the digitizer 23 a form a matrix with either an insulating layer or with direct contact between the X-axis grids 51 a and the Y-axis grids 51 b .
  • a method for fabricating a PSLCD of the present invention will be explained with reference to the flow chart shown in FIG. 14.
  • the method for fabricating a PSLCD of the present invention starts with forming a first and a second substrate (S 101 ) and bonding the first and second substrates together (S 102 ). Then a highly resistant ITO (or metal) pattern is formed on a back surface of at least one of the first and second substrates, for use as a digitizer (S 103 ). A low resistance metal pattern is formed around the highly resistant pattern for use as compensating resistors (S 104 ). The joined first and second substrates are scribed (S 105 ).
  • Liquid crystal is then injected through a liquid injection port (S 106 ), and then the liquid injection port is sealed (S 107 ).
  • a polarizer and a protection films are attached (S 108 ) to complete a fabrication process of a PSLCD.
  • the present invention is applicable to displays in which two substrates are bonded together, such as TFT, IPS mode LCD, STN mode LCD, and the like.
  • the PSLCD and the method for fabricating the same of the present invention have the following advantages.
  • the formation of the digitizer grid pattern using the same alignment key used in patterning the upper and lower plates allows an exact alignment of patterns of the substrate and the digitizer, thus improving an aperture ratio and dispensing with the requirement for a position correction due to a misalignment.
  • the digitizer can be formed adaptive to a size of the LCD panel.
  • the shorter distance from the finger tip to the position sensing digitizer can improve a position sensing sensitivity because a magnitude of a signal flowing through the finger, a virtual ground, becomes greater when a fixed magnitude of a position sensing signal is applied.
  • the formation of the compensating resistors which compensates an equipotential of the digitizer in tree-shaped repetitive layers allows an accurate sensing of a position as an accurate equipotential can be provided from the signal applying part to the grids of the digitizer.
  • the patterning of the digitizer on the front surface of the first substrate or the rear surface of the second substrate after bonding the first and second substrates prevents damage of the black matrix layer formed on the rear surface of the first or upper substrate.
  • the double application of sealing material around the liquid crystal injection region and display region in separation of every display region can protect pads of the display exposed outside of the display region.

Abstract

A position sensing liquid crystal display includes a liquid crystal display panel having a first substrate and a second substrate bonded together, and a position sensing digitizer formed as an integral unit on a first or rear surface of at least one of the substrates, whereby minimizing a display panel thickness and allowing an accurate position sensing.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a position sensing liquid crystal display (PSLCD), and more particularly to a position sensing liquid crystal display and a method for fabricating the same, in which position sensors, such as digitizers, are formed after bonding of upper and lower plates of the liquid crystal display. [0002]
  • 2. Discussion of the Related Art [0003]
  • In general, the liquid crystal display at large is provided with an upper plate, a lower plate, and a liquid crystal sealed between the upper plate and the lower plate. The upper plate has a black matrix layer, a common electrode, and color filter layers of R (red), G (green), and B (blue) for displaying colors disposed thereon. The lower plate has data lines and gate lines crossing the other to form a matrix of pixel regions, each having a thin film transistor and a pixel electrode. That is, as shown in FIG. 1, the [0004] lower plate 1 is provided with a matrix of thin film transistors, each having a gate electrode gate extended from a scan line, a source electrode S and a drain electrode extended from a data line disposed at fixed intervals. Each of the pixel regions is provided with a pixel electrode 2 a having the drain electrode D of the thin film transistor 2 connected thereto. The upper plate 3 is provided with a matrix form of the black matrix layer 4 for blocking transmission of light for parts excluding the pixel electrodes 2 a on the lower plate 1. There are R, G, and B color filter layers 5 between the black matrix layer 4, each for displaying a color. A common electrode 6 is formed extended to the color filter layer 5 and the black matrix layer 4. Upon selective application of driving signals to the scanning lines and the data lines from external driving circuits, the liquid crystal display displays an image. Though the aforementioned liquid crystal display has been designed only to display images according to the external driving signals, recently researches are underway in which the liquid crystal display is provided with additional position sensors for efficient use of the display in a notebook computer. That is, if a character or graphic is drawn with a stylus (an electronic pen) on the liquid crystal display equipped with the position sensors, the character or graphic is displayed as drawn.
  • A related art position sensing liquid crystal display will be explained with reference to the attached drawings. FIG. 2 illustrates a first example of the related art position sensing liquid crystal display. [0005]
  • Referring to FIG. 2, the first example of the related art position sensing liquid crystal display has a digitizer for sensing a position additionally provided outside of a general liquid crystal display independently, i.e., provided with a [0006] liquid crystal display 21 and a digitizer panel 23. There is a position sensing layer 23 a (hereafter called, “digitizer”), a compensating resistor region 25 around the digitizer 23 a for compensating a voltage difference, and signal applying parts 27 a, 27 b, 27 c, and 27 d at four corners of the compensating resistor region 25 for applying a position sensing signal. In the aforementioned position sensing liquid crystal display, when the signal applying parts 27 a and 27 b are applied at a position signal and the signal applying parts 27 c and 27 d are grounded, the digitizer 23 a has a potential distribution from upper side to lower side thereof. When the signal applying parts 27 a and 27 c are applied at a position signal and the signal applying parts 27 b and 27 d are grounded, the digitizer 23 a has a potential distribution from right side to left side thereof. Thus, when a stylus 29 is brought into contact with a point on the digitizer 23 a after selective application of a position sensing signal to the signal applying parts 27 a, 27 b, 27 c, and 27 d, a present position of the stylus 29 can be sensed and determined. In the sensing of the position, a voltage of the position of the digitizer 24 a at which the stylus 29 is brought into contact is used. The position sensing of even a finger tip touch can be made, which is displayed in turn on a liquid crystal display.
  • FIG. 3 illustrates a second example of the related art position sensing liquid crystal display. The second PSLCD has a position sensing digitizer provided inside a liquid crystal display panel. As explained in connection with FIG. 1, the second PSLCD is provided with metal, an insulating film, and a semiconductor layer on a glass for displaying an image, wherein a position sensing layer is embodied using the glass of an image data input electrical device. That is, the second PSLCD is provided with an [0007] upper plate 21 a, a lower plate 21 b, and a digitizer 23 a between the upper plate 21 a and the lower plate 21 b. As explained, the upper plate 21 a has the black matrix layer (not shown), a color filter layer, and an ITO layer of a common electrode formed thereon. The lower plate 21 b has data lines 31, gate lines 33, and pixel electrodes (not shown), and the digitizer 23 a has a compensating resistor region 25 around the digitizer and signal applying parts 27 b and 27 d at four corners of the compensating resistor region 25 ( signal applying parts 27 a and 27 c are not shown).
  • In the second PSLCD, when the [0008] signal applying parts 27 a, 27 b, 27 c, and 27 d are applied of a position signal, the digitizer 23 a exhibits a potential distribution. Accordingly, when stylus 29 is brought into contact with the display, a voltage at the contact point is sensed, thereby allowing to sense the present position. A finger tip touch on the display can be also sensed. Thus, upon a stylus 29 is brought into contact with a position sensing digitizer 23 a after selective application of position signal through signal applying parts 27 a, 27 b, 27 c, and 27 d, the PSLCD can sense the present position of the stylus 29 by using a capacitive coupling between the digitizer 23 a and the stylus 29.
  • However, the aforementioned related art PSLCD has the following problems. First, the first PSLCD is cumbersome to carry because of the digitizer provided additionally on the outside of the LCD, which makes the LCD thicker and bulkier. [0009]
  • Second, in the case of the second PSLCD, the severe signal interference and the non-uniform potential distribution of a position sensing layer caused by capacitive coupling between the position sensing layer in the digitizer and the common electrode disposed on opposite sides of an insulating film impedes accurate position sensing and degrades the picture quality. [0010]
  • Third, in a case of the first conventional PSLCD, the inaccurate voltage compensation caused by the misaligned digitizer with respect to the panel causes an inaccurate position sensing. [0011]
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention is directed to a position sensing liquid crystal display and a method for fabricating the same that substantially obviates one or more of the problems due to limitations and disadvantages of the related art. [0012]
  • An object of the present invention is to provide a position sensing liquid crystal display and a method for fabricating the same which can sense an accurate position of the stylus. [0013]
  • Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings. [0014]
  • To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, a liquid crystal display panel has a first substrate having front and rear surfaces, a second substrate having front and rear surfaces, the front surface of the second substrate including a plurality of pixel electrodes and abutting against the rear surface of the first substrate, and a digitizer having intersecting grids fabricated on at least one of the front and rear surfaces of the first and second substrates. [0015]
  • According to one aspect of the present invention, the rear surface of the first substrate includes a black matrix layer having intersecting grids at a predetermined interval. Preferably, the digitizer is fabricated on the front surface of the first substrate, the intersecting grids of the digitizer being substantially aligned with the intersecting grids of the black matrix layer. The intersecting grids of the digitizer may be made of a conductive material, such as metal or Indium Tin Oxide. Instead of providing a digitizer separate from the black matrix, the intersecting grids of the black matrix layer may be used as the intersecting grids of the digitizer, in which the intersecting grids of the black matrix layer are fabricated with a conductive material. [0016]
  • In another aspect of the present invention, the digitizer may be fabricated on the rear surface of the second substrate, the intersecting grids of the digitizer being substantially aligned with the intersecting grids of the black matrix layer. [0017]
  • In another aspect of the present invention, input signal portions may be fabricated in the vicinity of four corners of the digitizer. The input signal portions provide a position signal, such as an input voltage, to the intersecting grids of the digitizer for detecting a stylus position. Alternatively, the input signal portions may be fabricated substantially in the middle of each side of the digitizer. [0018]
  • In the liquid crystal display panel with the digitizer according to the present invention, there are compensating resistors connected between the input signal portions and the intersecting grids of the digitizer. The compensating resistors formed near the input signal portions preferably have a higher resistivity than the compensating resistors formed farther away from the input signal portions to provide substantially equal potential to the intersecting grids of the digitizer. The compensating resistors include a tree shape of repetitive sequence of layers of primary interconnections between adjacent grids, secondary interconnections between adjacent primary interconnections, and tertiary interconnections between adjacent secondary interconnections. [0019]
  • In addition, there is at least one equipotential line connected between the input signal portions and the compensating resistors. Preferably, the equipotential line has a lower resistivity than the compensating resistors. [0020]
  • The PSLCD having a digitizer may be used with a controller that controls displayed images of the liquid crystal display panel. Such controller is necessary for using the PSLCD in computing devices and display devices. [0021]
  • The PSLCD having a digitizer may be fabricated by providing a first substrate having front and rear surfaces; providing a second substrate having front and rear surfaces, wherein the second substrate has a first display region in the front surface; forming a plurality of pixel electrodes in the first display region of the front surface of the second substrate; securing the front surface of the second substrate to the rear surface of the first substrate; and fabricating intersecting grids of the digitizer on at least one of the front and rear surfaces of the first and second substrates. [0022]
  • Before securing the front surface of the second substrate to the rear surface of the first substrate, it is preferable to surround the first display region with a sealing material to define a first surrounded region, and surround the first surrounded region with the sealing material. Therefore, when the first and second substrates are secured together, the sealing material surrounding the first surrounded region substantially prohibits the intrusion of any foreign substance. [0023]
  • In an alternative method, it is preferable to fabricate multiple display regions on one substrate. To accomplish this task, before securing the front surface of the second substrate to the rear surface of the first substrate, provide the second substrate to define a second display region having a second set of pixel electrodes; form pixel electrodes in the second display region of the second substrate; surround the first display region with a sealing material to define a first surrounded region; surround the second display region with the sealing material to define the first surrounded region; surround the first and second surrounded regions with the sealing material. When the first and second substrates are secured together, the sealing material surrounding the first and second surrounded regions substantially prohibits the intrusion of a foreign substance. [0024]
  • In the above processes, the intersecting grids of the digitizer are fabricated on at least one of the front and rear surfaces of the first and second substrates and in the first display region. Thereafter, the first and second substrates are scribed to separate the first display region from the second display region, each one of the first and second display regions having the digitizer. [0025]
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. [0026]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. [0027]
  • FIG. 1 illustrates a section of a liquid crystal display; [0028]
  • FIG. 2 illustrates a first related art position sensing liquid crystal display; [0029]
  • FIG. 3 illustrates a second related art position sensing liquid crystal display; [0030]
  • FIG. 4 illustrates a position sensing liquid crystal display in accordance with a preferred embodiment of the present invention; [0031]
  • FIG. 5 illustrates a plan view of a liquid crystal display; [0032]
  • FIG. 6 illustrates a partial cut away view of glass substrates having a sealing material bonded thereto; [0033]
  • FIG. 7 illustrates a partial cut away view of another glass substrate having a sealing material bonded thereto; [0034]
  • FIG. 8 illustrates a perspective view of a position sensing liquid crystal display in accordance with a first embodiment of the present invention; [0035]
  • FIG. 9 illustrates a perspective view of a position sensing liquid crystal display in accordance with a second embodiment of the present invention; [0036]
  • FIG. 10 illustrates a compensating resistor region used in the present invention; [0037]
  • FIG. 11 illustrates a perspective view of a position sensing liquid crystal display in accordance with a third embodiment of the present invention; [0038]
  • FIG. 12 illustrates a plan view of a position sensing liquid crystal display in accordance with a fourth embodiment of the present invention; [0039]
  • FIG. 13 illustrates another embodiment of the compensating resistor region used in the present invention; and [0040]
  • FIG. 14 illustrates a flow chart showing the steps of a method for fabricating a PSLCD according to the present invention. [0041]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. In the present invention, a unitary digitizer is provided at a back side of a liquid crystal display panel. FIG. 4 illustrates a system of a position sensing liquid crystal display in accordance with a preferred embodiment of the present invention. [0042]
  • Referring to FIG. 4, the position sensing liquid crystal display in accordance with a preferred embodiment of the present invention includes a liquid [0043] crystal display panel 21 having a first substrate 21 a (hereinafter called, “an upper plate”) and a second substrate 21 b (hereinafter called, “a lower plate”) bonded together, and a digitizer 23 a formed on a back surface of either the first substrate 21 a or the-second substrate 21 b.
  • Referring to FIG. 5, in the position sensing liquid crystal display in accordance with a preferred embodiment of the present invention, a plurality of [0044] black matrix patterns 71 is preferably formed on the first substrate 21 a, and color filter layers 73 (shaded portion) are formed between the black matrix layer patterns 71 for displaying colors. Then an overcoat layer (not shown) is formed on an entire surface inclusive of the color filter layer 73. An ITO layer (not shown) for use as a common electrode is formed on the overcoat layer.
  • A matrix of [0045] data lines 75 and gate lines 77 are formed on the second substrate 21 b. A thin film transistor (TFT) is formed at every crossing of the data lines 75 and the gate lines 77. After formation of required patterns on the first substrate 21 a and the second substrate 21 b, respectively, the first substrate 21 a and the second substrate 21 b are bonded with a sealing material. That is, for a simplification of a fabrication process, patterns for a plurality of displays are concurrently formed on a sheet of glass substrate, and the completed glass substrate is cut into display regions, which are bonded with the sealing material according to the following process.
  • FIG. 6 illustrates a partial cut away view of the first glass substrate and the second glass substrate bonded with a sealing material. In FIG. 6, there are multiple LCD panels formed on the substrate, each panel individually surrounded by a sealing material. Referring to FIG. 6, the sealing [0046] material 45 is applied around each liquid crystal sealing region of a display region in one pair of glass substrates 41, each having an area enough to fabricate a plurality of liquid crystal displays. A peripheral sealing material 45 a having an opening 45 b is applied to surround all the display regions or panels. The opening 45 b is formed having a length sufficient enough to prevent permeation of etchant used during a digitizer formation process and to prevent compression of air between the pair of glass substrate 41 during bonding process. Then each display region is separated. The pair of glass substrates 41 is sufficiently large to fabricate a plurality of liquid crystal display panels. Each display panel separated from the large glass substrates 41 is injected with liquid crystal into the liquid injection region 43 through a liquid injection port 47 provided at a portion of the sealing material, the liquid crystal injection port 47 is sealed, and a polarization plate is bonded at the back of each display, to complete a liquid crystal display.
  • FIG. 7 illustrates a partial cut away view of glass substrates of the present invention having an alternative display panel configuration and having a sealing material applied thereto. Referring to FIG. 7, the sealing [0047] material 85 is applied around each liquid crystal injection region 83 of display regions defined on a glass substrate 81 for the first time. Then sealing material 85 a is applied for the second time at an outer periphery of the sealing material 85, spatially spaced from the sealing material 85. The sealing material is applied twice around the display region, for prevention of unwanted etching of pads (PAD) of the display by etchant used during a digitizer formation process which follows. That is, the sealing material is applied twice around the display region, to protect the pads against HF solution when display regions are separated. Then an outer sealing material 85 b having an opening 85 c is applied to surround all the display regions. The opening 85 c is formed having a length sufficient enough to prevent permeation of etchant used during a digitizer formation process and to prevent compression of air between the first and second glass substrates 21 a and 21 b during bonding process. After applying the sealing materials twice around each display region and bonding the first substrate 21 a and the second substrate 21 b, a digitizer 23 a is formed on a back side of at least one of the substrates 21 a and 21 b.
  • The aforementioned PSLCD of the present invention will be explained in more detail. FIG. 8 illustrates a plan view of a position sensing liquid crystal display in accordance with a first embodiment of the present invention. Referring to FIG. 8, the PSLCD in accordance with a first embodiment of the present invention includes a [0048] liquid crystal panel 21 having a first substrate 21 a and a second substrate 21 b bonded together, a digitizer 23 a having X-axis grids 51 a and Y-axis grids 51 b at a back surface of at least one of the substrates 21 a and 21 b, and signal applying parts 27 a, 27 b, 27 c, and 27 d at four corners of the liquid crystal display panel 21 for applying a position signal to the X-axis grids 51 a and the Y-axis grids 51 b. The digitizer 23 a is directly patterned on the back surface of either the first substrate 21 a or the second substrate 21 b of ITO or metal which has a high resistance. If the X-axis grids 51 a and the Y-axis grids 51 b are formed of a metal, the metal is patterned such that the X-axis grids 51 a and the Y-axis grids 51 b are aligned or matched with the black matrix pattern (see FIG. 5) formed on the first substrate 21 a, for obtaining a high aperture.
  • In order to make the black matrix pattern and the metal pattern, the same alignment key used in formation of the black matrix pattern on the [0049] first substrate 21 a is used in metal patterning. Alternatively, if the X-axis grids 51 a and Y-axis grids 51 b are formed of ITO, which is transparent, the X-axis grids 51 a, Y-axis grids 51 b and the black matrix pattern 71 may not need to be matched. The X-axis grids 51 a and the Y-axis grids 51 b form a matrix with either an insulating layer or direct contact between the X-axis grids 51 a and the Y-axis grids 51 b.
  • There is a compensating [0050] resistor region 53 between the signal applying parts 27 a, 27 b, 27 c, and 27 d and the digitizer 23 a for transferring the position signal from the signal applying parts 27 a, 27 b, 27 c, and 27 d to the X-axis grids 51 a and the Y-axis grids 51 b. The compensating resistor region 53 includes equipotential maintaining resistors 53 b and equipotential compensating resistors 53 c. The equipotential maintaining resistors 53 b transmit the position signal provided through the signal applying parts 27 a, 27 b, 27 c, and 27 d to the equipotential compensating resistors 53 c, and the equipotential compensating resistors 53 c compensate voltages such that the position signal received from the equipotential maintaining resistors 53 b has an equal potential on entire surfaces of the X-axis and Y-axis grids.
  • In the aforementioned first embodiment of the present invention, a position can be sensed using a stylus after application of a position signal through the [0051] signal applying parts 27 a, 27 b, 27 c, and 27 d preferably at four corners of the liquid crystal display panel 21. In this instance, a position of a stylus, or a finger tip, can be sensed. First, position sensing in a case of a stylus touch will be explained.
  • Referring to FIG. 8, the position signal provided through the [0052] signal applying parts 27 a, 27 b, 27 c, and 27 d is applied to the X-axis grids 51 a and the Y-axis grids 51 b through the compensating resistor region 53 having the equipotential maintaining resistors 53 b and the equipotential compensating resistors 53 c. When the stylus 29 is brought into contact at an arbitrary spot of the digitizer 23 a, a capacitive coupling is formed between the stylus 29 and a pertinent grid. Upon measuring and calculating the capacitive coupling, the position of the stylus 29 can be detected. If not a stylus touch, but a finger tip touch, is to be detected, a position signal is applied the same as above, and a leakage current flowing through a capacitive coupling between the finger tip, which is a virtual ground, and a pertinent grid is measured in each of the signal applying parts and calculated again, to sense the position of the finger tip.
  • FIG. 9 illustrates a plan view of a position sensing liquid crystal display in accordance with a second embodiment of the present invention. In the second embodiment, the [0053] position sensing digitizer 23 a is not separately patterned in the X-axis and Y-axis grids, but formed as an integral unit.
  • Referring to FIG. 9, the position sensing liquid crystal display in accordance with the second embodiment of the present invention includes a liquid [0054] crystal display panel 21 having a first substrate 21 a and a second substrate 21 b attached together, a position sensing digitizer 23 a on a back surface of at least one of the substrates 21 a and 21 b of the liquid crystal display panel 21 formed as an integral unit with the liquid crystal display panel 21, and signal applying parts 27 a, 27 b, 27 c, and 27 d in the near vicinity of four corners of the liquid crystal display panel 21 for applying a signal to the digitizer 23 a. There are equipotential maintaining resistors 53 b and equipotential compensating resistors 53 c provided between the signal applying parts 27 a, 27 b, 27 c, and 27 d and the digitizer 23 a.
  • Preferably, the [0055] digitizer 23 a is formed of an ITO layer, which is transparent. Accordingly, when a position signal is selectively applied to the signal applying parts 27 a, 27 b, 27 c, and 27 d, the stylus makes contact with a point on the digitizer 23 a and a capacitive coupling between the stylus and the digitizer 23 a is calculated, and thus a position of the stylus on the digitizer 23 a can be measured.
  • FIG. 10 illustrates a partial plan view of a PSLCD in accordance with the first and second embodiments of the present invention. Referring to FIG. 10, the PSLCD in accordance with the first and second embodiments of the present invention includes a [0056] signal applying part 27 a for applying a voltage, a digitizer 23 a having a plurality of X-axis grids 51 a and Y-axis grids 51 b, and compensating resistor regions 53 for providing equal potential from the signal applying part 27 a to the X-axis and Y- axis grids 51 a and 51 b in the digitizer 23 a by regulating the potential with resistors. The compensating resistor region 53 has node resistors 53 a, equipotential maintaining resistors 53 b, and equipotential compensating resistors 53 c. The equipotential maintaining resistors 53 b are formed at four sides of the digitizer 23 a, and the equipotential compensating resistors 53 c are connected between the equipotential maintaining resistors 53 b and the X-axis and Y- axis grids 51 a and 51 b in the digitizer 23 a.
  • The [0057] node resistor 53 a transmits a position sensing signal provided from the signal applying part 27 a to the equipotential maintaining resistors 53 b. The equipotential compensating resistors 53 c compensate voltages such that the nearest and farthest X-axis, and Y- axis grids 51 a and 51 b from the signal applying part 27 a are at an equal potential. To accomplish this effect, the equipotential compensating resistors 53 c are patterned to have different lengths as shown in FIG. 10. The position sensing signal passes through the signal applying part 27 a, the node resistor 53 a, the equipotential maintaining resistor 53, and the equipotential compensating resistor 53 c, and finally applied to the X-axis and Y- axis grids 51 a and 51 b. A longer equilibrium compensating resistor provides a greater voltage drop between two points.
  • FIG. 11 illustrates a perspective view of a position sensing liquid crystal display in accordance with a third embodiment of the present invention. In the third embodiment, the [0058] signal applying parts 27 a, 27 b, 27 c, and 27 d for applying a position signal for detecting a position are disposed substantially in the middle of each side of the digitizer 23 a.
  • Referring to FIG. 11, the PSLCD in accordance with the third embodiment of the present invention includes a liquid [0059] crystal display panel 21 having a first substrate 21 a affixed to a second substrate 21 b, a digitizer 23 a having X-axis and Y- axis grids 51 a and 51 b on a back surface of at least one of the substrates 21 a and 21 b, and signal applying parts 27 a, 27 b, 27 c, and 27 d at middle of sides of the liquid crystal display panel 21 for applying a position signal to the X-axis and Y- axis grids 51 a and 51 b. The X-axis and Y- axis grids 51 a and 51 b are preferably formed of ITO or metal.
  • Moreover, there is a compensating [0060] resistor region 53 between the signal applying parts 27 a, 27 b, 27 c, and 27 d and the X-axis and Y- axis grids 51 a and 51 b. The compensating resistor region 53 includes equipotential maintaining resistors 53 b and equipotential compensating resistors 53 c. The equipotential maintaining resistors 53 b transmit the position signal provided through the signal applying parts 27 a, 27 b, 27 c, and 27 d to the equipotential compensating resistors 53 c, and the equipotential compensating resistors 53 c compensate voltages such that the position signal received from the equipotential maintaining resistors 53 b has an equal potential on entire surfaces of the X-axis and Y-axis grids. In the third embodiment of the present invention, the signal applying parts 27 a, 27 b, 27 c, and 27 d are positioned preferably in the middle of the four sides of the digitizer 23 a to minimize the separation distance from the signal applying parts 27 a, 27 b, 27 c, and 27 d to the nearest and the farthest grids (X-axis and Y-axis grids).
  • FIG. 12 illustrates a perspective view of a position sensing liquid crystal display in accordance with a fourth embodiment of the present invention. Referring to FIG. 12, the PSLCD includes a liquid [0061] crystal display panel 21 having a first substrate 21 a and a second substrate 21 b bonded together, a digitizer 23 a on a back surface of at least one of the substrates 21 a and 21 b, and signal applying parts 27 a, 27 b, 27 c, and 27 d in the middle of the sides of the liquid crystal display panel 21. The digitizer 23 a is preferably formed as an integral part of at least one of the substrates 21 a and 21 b as opposed to a separate unit. There is a compensating resistor region between the signal applying parts 27 a, 27 b, 27 c, and 27 d and the digitizer 23 a for compensating voltages such that the position signal provided from the signal applying parts 27 a, 27 b, 27 c, and 27 d is substantially at an equal potential all over the digitizer 23 a. The operation of the fourth embodiment PSLCD of the present invention is omitted as the operation is the same with the first embodiment of the present invention.
  • FIG. 13 illustrates an alternative embodiment of the compensating resistor region in the third and fourth embodiments of the present invention. Referring to FIG. 13, another embodiment of the compensating resistor region includes a tree shape of repetitive sequence of layers of [0062] primary interconnections 130 between adjacent grids(Y-axis or X-axis grids), secondary interconnections 133 between adjacent primary interconnections 130, and tertiary interconnections 135 between adjacent secondary interconnections 133. According to this, lengths of the equipotential compensating resistors 130, 133, and 135 can be patterned the same all over the regions of the digitizer so that the position signal provided through the signal applying part 27 a (27 b, 27 c, and 27 d are not shown) is linearly equipotential. The X-axis grids 51 a and the Y-axis grids 51 b in the digitizer 23 a form a matrix with either an insulating layer or with direct contact between the X-axis grids 51 a and the Y-axis grids 51 b. Thus, by forming the equipotential compensating resistors in the hierarchical or tree shape with repetitive sequential layers of primary, secondary, tertiary, interconnections, lengths of passes of a position signal applied from the signal applying part 27 a to respective grids can be patterned the same, hence achieving substantially the same potential in X-axis and Y-axis grids.
  • A method for fabricating a PSLCD of the present invention will be explained with reference to the flow chart shown in FIG. 14. Referring to FIG. 14, the method for fabricating a PSLCD of the present invention starts with forming a first and a second substrate (S[0063] 101) and bonding the first and second substrates together (S102). Then a highly resistant ITO (or metal) pattern is formed on a back surface of at least one of the first and second substrates, for use as a digitizer (S103). A low resistance metal pattern is formed around the highly resistant pattern for use as compensating resistors (S104). The joined first and second substrates are scribed (S105). Liquid crystal is then injected through a liquid injection port (S106), and then the liquid injection port is sealed (S107). A polarizer and a protection films are attached (S108) to complete a fabrication process of a PSLCD.
  • For reference, the present invention is applicable to displays in which two substrates are bonded together, such as TFT, IPS mode LCD, STN mode LCD, and the like. [0064]
  • As described above, the PSLCD and the method for fabricating the same of the present invention have the following advantages. First, because the digitizer is directly formed on one of the upper or lower plates, a separate digitizer glass is dispensed with, thus minimizing thickness and weight of a PSLCD. [0065]
  • Second, the formation of the digitizer grid pattern using the same alignment key used in patterning the upper and lower plates allows an exact alignment of patterns of the substrate and the digitizer, thus improving an aperture ratio and dispensing with the requirement for a position correction due to a misalignment. [0066]
  • Third, the formation of a digitizer on a back surface of either the upper or lower plate in place of the inside of the LCD panel, which provides greater spaces between various layers in the LCD panel and the digitizer and minimizes parasitic capacitances between the various layers and the digitizer, allows an accurate position sensing. [0067]
  • Fourth, the digitizer can be formed adaptive to a size of the LCD panel. [0068]
  • Fifth, the shorter distance from the finger tip to the position sensing digitizer can improve a position sensing sensitivity because a magnitude of a signal flowing through the finger, a virtual ground, becomes greater when a fixed magnitude of a position sensing signal is applied. [0069]
  • Sixth, the formation of the compensating resistors which compensates an equipotential of the digitizer in tree-shaped repetitive layers allows an accurate sensing of a position as an accurate equipotential can be provided from the signal applying part to the grids of the digitizer. [0070]
  • Seventh, the patterning of the digitizer on the front surface of the first substrate or the rear surface of the second substrate after bonding the first and second substrates prevents damage of the black matrix layer formed on the rear surface of the first or upper substrate. [0071]
  • Eighth, the double application of sealing material around the liquid crystal injection region and display region in separation of every display region can protect pads of the display exposed outside of the display region. [0072]
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the position sensing liquid crystal display and method for fabricating the same of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. [0073]

Claims (36)

What is claimed is:
1. A liquid crystal display panel, comprising:
a first substrate having front and rear surfaces;
a second substrate having front and rear surfaces, the front surface of the second substrate including a plurality of pixel electrodes and abutting against the rear surface of the first substrate; and
a digitizer having intersecting grids fabricated on at least one of the front and rear surfaces of the first and second substrates.
2. A liquid crystal display panel of
claim 1
, wherein the rear surface of the first substrate includes a black matrix layer having intersecting grids at a predetermined interval.
3. A liquid crystal display panel of
claim 2
, wherein the digitizer is fabricated on the front surface of the first substrate, the intersecting grids of the digitizer being substantially aligned with the intersecting grids of the black matrix layer.
4. A liquid crystal display panel of
claim 3
, wherein the intersecting grids of the digitizer are made of a conductive material.
5. A liquid crystal display panel of
claim 4
, wherein the conductive material is one of metal and Indium Tin Oxide.
6. A liquid crystal display panel of
claim 2
, wherein the intersecting grids of the black matrix layer are the intersecting grids of the digitizer, wherein the intersecting grids of the black matrix layer are fabricated with a conductive material.
7. A liquid crystal display panel of
claim 2
, wherein the digitizer is fabricated on the rear surface of the second substrate, the intersecting grids of the digitizer being substantially aligned with the intersecting grids of the black matrix layer.
8. A liquid crystal display panel of
claim 1
, further including input signal portions fabricated in the vicinity of four corners of the digitizer, the input signal portions providing a position signal to the intersecting grids of the digitizer for detecting a stylus position.
9. A liquid crystal display panel of
claim 1
, further including input signal portions fabricated substantially in the middle of each side of the digitizer, the input signal portions providing a position signal to the intersecting grids of the digitizer for detecting a stylus position.
10. A liquid crystal display panel of
claim 8
, further including compensating resistors connected between the input signal portions and the intersecting grids of the digitizer, wherein the compensating resistors formed near the input signal portions have a higher resistivity than the compensating resistors formed farther away from the input signal portions to provide substantially equal potential to the intersecting grids of the digitizer.
11. A liquid crystal display panel of
claim 9
, further including compensating resistors connected between the input signal portions and the intersecting grids of the digitizer, wherein the compensating resistors formed near the input signal portions have a higher resistivity than the compensating resistors formed farther away from the input signal portions to provide substantially equal potential to the intersecting grids of the digitizer.
12. A liquid crystal display panel of
claim 10
, further including at least one equipotential line connected between the input signal portions and the compensating resistors, wherein the equipotential line has a lower resistivity than the compensating resistors.
13. A liquid crystal display panel of
claim 11
, further including at least one equipotential line connected between the input signal portions and the compensating resistors, wherein the equipotential line has a lower resistivity than the compensating resistors.
14. A liquid crystal display panel of
claim 9
, wherein the compensating resistors include a tree shape of repetitive sequence of layers of:
primary interconnections between adjacent grids,
secondary interconnections between adjacent primary interconnections, and
tertiary interconnections between adjacent secondary interconnections.
15. A display device using a liquid crystal display panel, comprising:
a controller that controls displayed images of the liquid crystal display panel;
a first substrate having front and rear surfaces;
a second substrate having front and rear surfaces, the front surface of the second substrate including a plurality of pixel electrodes and abutting against the rear surface of the first substrate; and
a digitizer having intersecting grids fabricated on at least one of the front and rear surfaces of the first and second substrates.
16. A display device of
claim 15
, wherein the rear surface of the first substrate includes a black matrix layer having intersecting grids at a predetermined interval.
17. A display device of
claim 16
, wherein the digitizer is fabricated on the front surface of the first substrate, the intersecting grids of the digitizer being substantially aligned with the intersecting grids of the black matrix layer.
18. A liquid crystal display panel of
claim 17
, wherein the intersecting grids of the digitizer are made of a conductive material.
19. A liquid crystal display panel of
claim 18
, wherein the conductive material is one of metal and Indium Tin Oxide.
20. A liquid crystal display panel of
claim 16
, wherein the intersecting grids of the black matrix layer are the intersecting grids of the digitizer, wherein the intersecting grids of the black matrix layer are fabricated with a conductive material.
21. A liquid crystal display panel of
claim 16
, wherein the digitizer is fabricated on the rear surface of the second substrate, the intersecting grids of the digitizer being substantially aligned with the intersecting grids of the black matrix layer.
22. A liquid crystal display panel of
claim 15
, further including input signal portions fabricated in the vicinity of four corners of the digitizer, the input signal portions providing a position signal to the intersecting grids of the digitizer for detecting a stylus position.
23. A liquid crystal display panel of
claim 15
, further including input signal portions fabricated substantially in the middle of each side of the digitizer, the input signal portions providing a position signal to the intersecting grids of the digitizer for detecting a stylus position.
24. A liquid crystal display panel of
claim 22
, further including compensating resistors connected between the input signal portions and the intersecting grids of the digitizer, wherein the compensating resistors formed near the input signal portions have higher resistivity and the compensating resistors formed farther away from the input signal portions to provide substantially equal potential to the intersecting grids of the digitizer.
25. A liquid crystal display panel of
claim 23
, further including compensating resistors connected between the input signal portions and the intersecting grids of the digitizer, wherein the compensating resistors formed near the input signal portions have higher resistivity and the compensating resistors formed farther away from the input signal portions to provide substantially equal potential to the intersecting grids of the digitizer.
26. A liquid crystal display panel of
claim 24
, further including at least one equipotential line connected between the input signal portions and the compensating resistors, wherein the equipotential line has lower resistivity than the compensating resistors.
27. A liquid crystal display panel of
claim 25
, further including at least one equipotential line connected between the input signal portions and the compensating resistors, wherein the equipotential line has lower resistivity than the compensating resistors.
28. A method for fabricating a liquid crystal display panel having a digitizer, comprising the steps of:
providing a first substrate having front and rear surfaces;
providing a second substrate having front and rear surfaces, wherein the second substrate has a first display region in the front surface;
forming a plurality of pixel electrodes in the first display region of the front surface of the second substrate;
securing the front surface of the second substrate to the rear surface of the first substrate; and
fabricating intersecting grids of the digitizer on at least one of the front and rear surfaces of the first and second substrates.
29. A method of
claim 28
, wherein before securing the front surface of the second substrate to the rear surface of the first substrate,
surrounding the first display region with a sealing material to define a first surrounded region; and
surrounding the first surrounded region with the sealing material, wherein when the first and second substrates are secured together, the sealing material surrounding the first surrounded region substantially prohibits the intrusion of a foreign substance.
30. A method of
claim 28
, wherein before securing the front surface of the second substrate to the rear surface of the first substrate,
providing the second substrate to define a second display region;
forming pixel electrodes in the second display region of the second substrate;
surrounding the first display region with a sealing material to define a first surrounded region;
surrounding the second display region with the sealing material to define the first surrounded region;
surrounding the first and second surrounded regions with the sealing material, wherein when the first and second substrates are secured together, the sealing material surrounding the first and second surrounded regions substantially prohibits the intrusion of a foreign substance.
31. A method of
claim 29
, wherein the intersecting grids of the digitizer are fabricated on at least one of the front and rear surfaces of the first and second substrates and in the first display region.
32. A method of
claim 30
, wherein the intersecting grids of the digitizer are fabricated on at least one of the front and rear surfaces of the first and second substrates and in the first display region and the intersecting grids of a second digitizer is fabricated in the second display region.
33. A method of
claim 32
, wherein the first and second substrates are scribed to separate the first display region from the second display region, each one of the first and second display regions having the digitizer.
34. A method of
claim 28
, wherein the digitizer is formed of a conductive material.
35. A method of
claim 34
, wherein the digitizer is formed one of Indium Tin Oxide and metal.
36. A liquid crystal display panel formed by the method of
claim 28
.
US09/855,695 1997-10-31 2001-05-16 Position sensing liquid crystal display and method for fabricating the same Expired - Lifetime US6388729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/855,695 US6388729B2 (en) 1997-10-31 2001-05-16 Position sensing liquid crystal display and method for fabricating the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR57476 1997-10-31
KR1019970057476A KR100293435B1 (en) 1997-10-31 1997-10-31 Position sensable liquid crystal and moethod for fabricating the same
KR1997-57476 1997-10-31
US09/183,638 US6285417B1 (en) 1997-10-31 1998-10-30 Position sensing liquid crystal display and method for fabricating the same
US09/855,695 US6388729B2 (en) 1997-10-31 2001-05-16 Position sensing liquid crystal display and method for fabricating the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/183,638 Continuation US6285417B1 (en) 1997-10-31 1998-10-30 Position sensing liquid crystal display and method for fabricating the same

Publications (2)

Publication Number Publication Date
US20010020987A1 true US20010020987A1 (en) 2001-09-13
US6388729B2 US6388729B2 (en) 2002-05-14

Family

ID=19523967

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/183,638 Expired - Lifetime US6285417B1 (en) 1997-10-31 1998-10-30 Position sensing liquid crystal display and method for fabricating the same
US09/855,695 Expired - Lifetime US6388729B2 (en) 1997-10-31 2001-05-16 Position sensing liquid crystal display and method for fabricating the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/183,638 Expired - Lifetime US6285417B1 (en) 1997-10-31 1998-10-30 Position sensing liquid crystal display and method for fabricating the same

Country Status (2)

Country Link
US (2) US6285417B1 (en)
KR (1) KR100293435B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060270073A1 (en) * 2005-05-31 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device, evaluation method of semiconductor device, and semiconductor device
EP1837742A2 (en) 2006-03-22 2007-09-26 Wacom Co., Ltd. Display device, sensor panel, position-detecting device position-inputting device and computer system.
WO2007146780A2 (en) 2006-06-09 2007-12-21 Apple Inc. Touch screen liquid crystal display
WO2007146783A2 (en) 2006-06-09 2007-12-21 Apple Inc. Touch screen liquid crystal display
US20080062147A1 (en) * 2006-06-09 2008-03-13 Hotelling Steve P Touch screen liquid crystal display
US20090065781A1 (en) * 2007-09-07 2009-03-12 Innolux Display Corp. Touch substrate and electro-wetting display device having touch control function
EP2090967A1 (en) * 2008-02-18 2009-08-19 TPK Touch Solutions Inc. Capacitive touch panel
KR101128543B1 (en) 2006-06-09 2012-03-23 애플 인크. Touch screen liquid crystal display
JP2013045100A (en) * 2011-08-19 2013-03-04 Samsung Electro-Mechanics Co Ltd Color filter substrate provided with touch sensor and method for manufacturing the same
US8416209B2 (en) 2004-05-06 2013-04-09 Apple Inc. Multipoint touchscreen
US8432371B2 (en) 2006-06-09 2013-04-30 Apple Inc. Touch screen liquid crystal display
US8493330B2 (en) 2007-01-03 2013-07-23 Apple Inc. Individual channel phase delay scheme
US8743300B2 (en) 2010-12-22 2014-06-03 Apple Inc. Integrated touch screens
US20140218302A1 (en) * 2013-02-01 2014-08-07 MiSeat, Inc. Touch and tap operable work surface
US9395857B2 (en) 2007-12-24 2016-07-19 Tpk Holding Co., Ltd. Capacitive touch panel
US9710095B2 (en) 2007-01-05 2017-07-18 Apple Inc. Touch screen stack-ups

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798464B2 (en) * 2001-05-11 2004-09-28 International Business Machines Corporation Liquid crystal display
KR100813004B1 (en) * 2001-08-21 2008-03-14 엘지.필립스 엘시디 주식회사 Seal Pattern for Cell Cutting Process of Liquid Crystal Display Device
KR100809938B1 (en) * 2001-12-06 2008-03-06 엘지.필립스 엘시디 주식회사 manufacturing method of a liquid crystal display device
WO2004036295A1 (en) * 2002-10-18 2004-04-29 Samsung Electronics Co., Ltd. Apparatus of assembling display panels and method of manufacturing display device using assembling apparatus
JP4126610B2 (en) * 2002-12-26 2008-07-30 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display
US7012655B2 (en) * 2003-03-28 2006-03-14 Lg.Philips Lcd Co., Ltd. Liquid crystal display device with digitizer
KR100970958B1 (en) * 2003-11-04 2010-07-20 삼성전자주식회사 Liquid Crystal Display Device Having A Faculty Of Touch Screen
US8416174B2 (en) * 2003-12-08 2013-04-09 Canon Kabushiki Kaisha Display apparatus
US7385594B2 (en) * 2004-02-19 2008-06-10 Au Optronics Corporation Position encoded sensing device and a method thereof
JP4221336B2 (en) * 2004-06-14 2009-02-12 Nec液晶テクノロジー株式会社 Manufacturing method of liquid crystal display device
JP4389780B2 (en) 2004-12-27 2009-12-24 セイコーエプソン株式会社 Method for manufacturing liquid crystal device, liquid crystal device, and electronic apparatus
US7924269B2 (en) * 2005-01-04 2011-04-12 Tpo Displays Corp. Display devices and methods forming the same
JP2007048279A (en) * 2005-07-21 2007-02-22 Toppoly Optoelectronics Corp Process of integrating digitizer input device in display
JP5397979B2 (en) * 2008-09-10 2014-01-22 株式会社ジャパンディスプレイ Resistive film type input device, display device with input function, and electronic device
KR101987275B1 (en) * 2018-07-27 2019-06-11 엘지이노텍 주식회사 Touch window

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250495A (en) 1979-11-16 1981-02-10 The Singer Company Touch sensitive control panel and a method of manufacture thereof
US4525032A (en) * 1982-07-27 1985-06-25 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Liquid crystal reusable signature comparison
US4723836A (en) * 1983-10-26 1988-02-09 Sharp Kabushiki Kaisha Handwritten character input device
CH661990A5 (en) 1984-09-26 1987-08-31 Rdi Limited Partnership Assembly formed by a transparent keyboard of the touch-sensitive actuation type, and by a liquid crystal display cell arranged under the keyboard
JP2604867B2 (en) * 1990-01-11 1997-04-30 松下電器産業株式会社 Reflective liquid crystal display device
GB9105518D0 (en) 1991-03-15 1991-05-01 Eden I P Ltd Writing surfaces and keyboardless computers
JPH0519233A (en) 1991-07-15 1993-01-29 Fujitsu Ltd Liquid crystal display device
JP2825396B2 (en) 1992-06-19 1998-11-18 株式会社東芝 Current source circuit
JPH06158189A (en) * 1992-11-26 1994-06-07 Hitachi Ltd Method for heating and dissolving metal and device therefor
US6476798B1 (en) 1994-08-22 2002-11-05 International Game Technology Reduced noise touch screen apparatus and method
JP2626595B2 (en) * 1994-11-17 1997-07-02 日本電気株式会社 Active matrix type liquid crystal display integrated tablet and driving method thereof
JPH0962443A (en) * 1995-08-25 1997-03-07 Sanyo Electric Co Ltd Input and output integrated display device
US5847690A (en) * 1995-10-24 1998-12-08 Lucent Technologies Inc. Integrated liquid crystal display and digitizer having a black matrix layer adapted for sensing screen touch location
KR100218697B1 (en) 1996-09-23 1999-09-01 구자홍 Liquid crystal display elements
US5995172A (en) * 1997-01-02 1999-11-30 Nec Corporation Tablet integrated liquid crystal display apparatus with less parallax
US5880717A (en) * 1997-03-14 1999-03-09 Tritech Microelectronics International, Ltd. Automatic cursor motion control for a touchpad mouse

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928618B2 (en) 2004-05-06 2015-01-06 Apple Inc. Multipoint touchscreen
US8605051B2 (en) 2004-05-06 2013-12-10 Apple Inc. Multipoint touchscreen
US11604547B2 (en) 2004-05-06 2023-03-14 Apple Inc. Multipoint touchscreen
US10908729B2 (en) 2004-05-06 2021-02-02 Apple Inc. Multipoint touchscreen
US8416209B2 (en) 2004-05-06 2013-04-09 Apple Inc. Multipoint touchscreen
US9454277B2 (en) 2004-05-06 2016-09-27 Apple Inc. Multipoint touchscreen
US8982087B2 (en) 2004-05-06 2015-03-17 Apple Inc. Multipoint touchscreen
US9035907B2 (en) 2004-05-06 2015-05-19 Apple Inc. Multipoint touchscreen
US10331259B2 (en) 2004-05-06 2019-06-25 Apple Inc. Multipoint touchscreen
US8872785B2 (en) 2004-05-06 2014-10-28 Apple Inc. Multipoint touchscreen
US7550382B2 (en) * 2005-05-31 2009-06-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device, evaluation method of semiconductor device, and semiconductor device
US20060270073A1 (en) * 2005-05-31 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device, evaluation method of semiconductor device, and semiconductor device
US8115278B2 (en) 2005-05-31 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device, evaluation method of semiconductor device, and semiconductor device
US20090250758A1 (en) * 2005-05-31 2009-10-08 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device, evaluation method of semiconductor device, and semiconductor device
EP1837742A2 (en) 2006-03-22 2007-09-26 Wacom Co., Ltd. Display device, sensor panel, position-detecting device position-inputting device and computer system.
EP1837742A3 (en) * 2006-03-22 2012-03-21 Wacom Co., Ltd. Display device, sensor panel, position-detecting device position-inputting device and computer system.
US8552989B2 (en) 2006-06-09 2013-10-08 Apple Inc. Integrated display and touch screen
WO2007146780A3 (en) * 2006-06-09 2008-09-12 Apple Inc Touch screen liquid crystal display
US11886651B2 (en) 2006-06-09 2024-01-30 Apple Inc. Touch screen liquid crystal display
EP2330491A3 (en) * 2006-06-09 2011-08-31 Apple Inc. Touch screen liquid crystal display
GB2451210B (en) * 2006-06-09 2010-09-22 Apple Inc Touch screen liquid crystal display
WO2007146780A2 (en) 2006-06-09 2007-12-21 Apple Inc. Touch screen liquid crystal display
KR101128543B1 (en) 2006-06-09 2012-03-23 애플 인크. Touch screen liquid crystal display
US8243027B2 (en) 2006-06-09 2012-08-14 Apple Inc. Touch screen liquid crystal display
US8259078B2 (en) 2006-06-09 2012-09-04 Apple Inc. Touch screen liquid crystal display
US11175762B2 (en) 2006-06-09 2021-11-16 Apple Inc. Touch screen liquid crystal display
US10976846B2 (en) 2006-06-09 2021-04-13 Apple Inc. Touch screen liquid crystal display
US8432371B2 (en) 2006-06-09 2013-04-30 Apple Inc. Touch screen liquid crystal display
US8451244B2 (en) 2006-06-09 2013-05-28 Apple Inc. Segmented Vcom
WO2007146783A2 (en) 2006-06-09 2007-12-21 Apple Inc. Touch screen liquid crystal display
AU2008101177B4 (en) * 2006-06-09 2009-07-09 Apple Inc. Touch screen liquid crystal display
GB2455179A (en) * 2006-06-09 2009-06-03 Apple Inc Touch screen liquid crystal display
US8654083B2 (en) 2006-06-09 2014-02-18 Apple Inc. Touch screen liquid crystal display
US20080062147A1 (en) * 2006-06-09 2008-03-13 Hotelling Steve P Touch screen liquid crystal display
US10191576B2 (en) 2006-06-09 2019-01-29 Apple Inc. Touch screen liquid crystal display
EP3264240A1 (en) * 2006-06-09 2018-01-03 Apple Inc. Touch screen liquid crystal display
US9575610B2 (en) 2006-06-09 2017-02-21 Apple Inc. Touch screen liquid crystal display
US20080062148A1 (en) * 2006-06-09 2008-03-13 Hotelling Steve P Touch screen liquid crystal display
GB2451210A (en) * 2006-06-09 2009-01-21 Apple Inc Touch screen liquid crystal display
GB2455179B (en) * 2006-06-09 2011-01-12 Apple Inc Touch screen liquid crystal display
US9268429B2 (en) 2006-06-09 2016-02-23 Apple Inc. Integrated display and touch screen
WO2007146783A3 (en) * 2006-06-09 2008-09-04 Apple Inc Touch screen liquid crystal display
US9244561B2 (en) 2006-06-09 2016-01-26 Apple Inc. Touch screen liquid crystal display
US8493330B2 (en) 2007-01-03 2013-07-23 Apple Inc. Individual channel phase delay scheme
US9710095B2 (en) 2007-01-05 2017-07-18 Apple Inc. Touch screen stack-ups
US10521065B2 (en) 2007-01-05 2019-12-31 Apple Inc. Touch screen stack-ups
US20090065781A1 (en) * 2007-09-07 2009-03-12 Innolux Display Corp. Touch substrate and electro-wetting display device having touch control function
US7872693B2 (en) * 2007-09-07 2011-01-18 Chimel Innolux Corporation Touch substrate and electro-wetting display device having touch control function
US9395857B2 (en) 2007-12-24 2016-07-19 Tpk Holding Co., Ltd. Capacitive touch panel
US8665226B2 (en) 2008-02-18 2014-03-04 Tpk Touch Solutions Inc. Capacitive touch panel
US20090207151A1 (en) * 2008-02-18 2009-08-20 Tpk Touch Solutions Inc. Capacitive Touch Panel
EP2090967A1 (en) * 2008-02-18 2009-08-19 TPK Touch Solutions Inc. Capacitive touch panel
US9727193B2 (en) * 2010-12-22 2017-08-08 Apple Inc. Integrated touch screens
US8743300B2 (en) 2010-12-22 2014-06-03 Apple Inc. Integrated touch screens
US10409434B2 (en) * 2010-12-22 2019-09-10 Apple Inc. Integrated touch screens
US9025090B2 (en) 2010-12-22 2015-05-05 Apple Inc. Integrated touch screens
US9146414B2 (en) 2010-12-22 2015-09-29 Apple Inc. Integrated touch screens
US20150370378A1 (en) * 2010-12-22 2015-12-24 Apple Inc. Integrated touch screens
US8804056B2 (en) 2010-12-22 2014-08-12 Apple Inc. Integrated touch screens
JP2013045100A (en) * 2011-08-19 2013-03-04 Samsung Electro-Mechanics Co Ltd Color filter substrate provided with touch sensor and method for manufacturing the same
US20140218302A1 (en) * 2013-02-01 2014-08-07 MiSeat, Inc. Touch and tap operable work surface

Also Published As

Publication number Publication date
KR100293435B1 (en) 2001-08-07
US6285417B1 (en) 2001-09-04
US6388729B2 (en) 2002-05-14
KR19990035643A (en) 1999-05-15

Similar Documents

Publication Publication Date Title
US6388729B2 (en) Position sensing liquid crystal display and method for fabricating the same
US9007329B2 (en) Liquid crystal display device including touch panel
US5995172A (en) Tablet integrated liquid crystal display apparatus with less parallax
US10126585B2 (en) Liquid crystal display device
KR101675844B1 (en) Liquid Crystal Display Panel Associated with Touch Panel and Method for Manufacturing the Same
CN101673001B (en) Liquid crystal display device
JP3526418B2 (en) Display cell, apparatus and method for determining contact position
KR950004378B1 (en) Lcd cell and manufacturing method of situation sensing
JP5719133B2 (en) Liquid crystal display
US7050047B2 (en) Signal line of touch panel display device and method of forming the same
US11947760B2 (en) Display device with position input function
US20110187669A1 (en) Liquid crystal display device and manufacting method thereof
KR20110137988A (en) Touch sensible display device
KR0180326B1 (en) Liquid crystal display device
KR20120014497A (en) Liquid crystal display including touch sensor layer and method thereof
US6750927B2 (en) Liquid crystal display with electric graphic input panel
WO2008047497A1 (en) Display panel and display device
US20170262131A1 (en) Position inputting device and display device with position inputting function
JP2000066222A (en) Active matrix liquid crystal display device
KR20040001324A (en) Position sensitive liquid crystal display device
KR101859469B1 (en) Display device and manufacturing method thereof
KR20040095941A (en) Liquid display device having touch screen
US20230126425A1 (en) Active matrix substrate and display device
KR100539582B1 (en) Touch panel and method for fabricating the same
US10795516B2 (en) Display device

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: LG DISPLAY CO., LTD., KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:LG.PHILIPS LCD CO., LTD.;REEL/FRAME:021754/0230

Effective date: 20080304

Owner name: LG DISPLAY CO., LTD.,KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:LG.PHILIPS LCD CO., LTD.;REEL/FRAME:021754/0230

Effective date: 20080304

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12