US20010029892A1 - Vertical plasma enhanced process apparatus & method - Google Patents

Vertical plasma enhanced process apparatus & method Download PDF

Info

Publication number
US20010029892A1
US20010029892A1 US09/228,840 US22884099A US2001029892A1 US 20010029892 A1 US20010029892 A1 US 20010029892A1 US 22884099 A US22884099 A US 22884099A US 2001029892 A1 US2001029892 A1 US 2001029892A1
Authority
US
United States
Prior art keywords
chamber
wafers
wafer boat
wafer
boat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/228,840
Other versions
US6321680B2 (en
Inventor
Robert C. Cook
Daniel L. Brors
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/909,461 external-priority patent/US6352593B1/en
Priority to US09/228,840 priority Critical patent/US6321680B2/en
Application filed by Individual filed Critical Individual
Priority to US09/229,975 priority patent/US6352594B2/en
Assigned to TORREX EQUIPMENT CORPORATION reassignment TORREX EQUIPMENT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRORS, DANIEL L., COOK, ROBERT C.
Priority to US09/396,588 priority patent/US6287635B1/en
Priority to US09/396,590 priority patent/US6506691B2/en
Priority to US09/954,705 priority patent/US6780464B2/en
Publication of US20010029892A1 publication Critical patent/US20010029892A1/en
Application granted granted Critical
Publication of US6321680B2 publication Critical patent/US6321680B2/en
Priority to US10/216,079 priority patent/US20030049372A1/en
Assigned to IDANTA PARTNERS, LTD., AS COLLATERAL AGENT ON BEHALF OF THE SECURED PARTIES reassignment IDANTA PARTNERS, LTD., AS COLLATERAL AGENT ON BEHALF OF THE SECURED PARTIES SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TORREX EQUIPMENT CORPORATION
Assigned to TORREX EQUIPMENT CORPORATION reassignment TORREX EQUIPMENT CORPORATION TERMINATION OF PATENT SECURITY INTEREST Assignors: IDANTA PARTNERS LTD., AS COLLATERAL AGENT ON BEHALF OF THE SECURED PARTIES
Priority to US10/918,498 priority patent/US20050013937A1/en
Assigned to APPLIED MATERIALS, INC. reassignment APPLIED MATERIALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TORREX EQUIPMENT CORPORATION
Priority to US10/966,245 priority patent/US20050188923A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a batch of workpieces

Definitions

  • FIG. 2 is a prior art chamber with a stationary wafer
  • FIG. 3 illustrates a preferred embodiment of the present invention
  • FIG. 8 is a further enlargement of section D of FIG. 7, clarifying the detail of the rotating RF connection;
  • FIG. 9 is an enlargement of section E of FIG. 7, showing the upper portion of the bottom RF shaft;
  • FIG. 12 is an enlargened view of section G of FIG. 10 showing further detail of the wafer boat;
  • FIG. 3 of the drawing a preferred embodiment 22 of the PECVD chamber system of the present invention is shown.
  • An enclosure 24 has an upper chamber 26 and a lower chamber 28 .
  • the upper chamber has an optional radiant top heater 30 , and optional side heaters 32 , for use when the process requires temperatures above room temperature.
  • a bottom heater (not shown) can also be attached, for example to plate 34 as described in U.S. patent application Ser. No. 08/909,461 entitled Mini-Batch Process Chamber, the contents of which are included herein by reference.
  • FIG. 4 is a top cross section of the upper chamber 26 , showing six side heater assemblies 32 .
  • wafers 50 are rotated while gases enter the chamber 26 via a gas injection manifold 52 and are exhausted on the other side via an exhaust manifold 54 .
  • FIG. 5 is a vertically cross sectioned view of the upper chamber 26 showing further detail of the tunable gas injection manifold 52 and the opposing tunable exhaust manifold 54 with the rotating wafer boat 36 in between.
  • This O-ring 112 also aligns the bottom RF shaft 68 to be parallel to the metal tube 104 and at the same time provides a small gap of about 0.05′′ in between which prevents electrical contact and acts as a “dark space” which precludes the occurrence of a glow discharge or plasma within the gap.
  • the rods 170 are threaded into the boat bottom plate 178 and metal band 180 surrounds the bottom RF plate 152 with insulating disks 158 and 160 holding the band slightly away from the bottom RF plate 152 to form a dark space gap 182 .
  • Outer metal band 184 provides further structural support.
  • the RF energy is transmitted up from the bottom RF plate 152 via threaded rod 186 which contacts the RF plates 166 via nuts 188 .
  • insulating tubes 190 surround the threaded rod 186 .
  • the insulating tubes 190 are in turn surrounded by conductive tubes 192 which connect to ground potential via conductive shield disks 194 and conductive spacers 174 and 176 and the threaded rod 170 .
  • Insulating plates 202 are positioned on top of RF plates 166 to prevent the occurrence of plasma above the RF plates 166 .
  • grounded lift plates 204 rest upon the insulating plates 202 .
  • the lift plates 204 function to lift the wafer during robotic loading and unloading as further described later herein.
  • the uppermost insulating plate 202 has a grounded conductive disk 206 resting on top of it.
  • an insulating disk 208 Positioned above the grounded conductive disk 206 is an insulating disk 208 which has holes 210 drilled through it near the periphery to capture the top end of RF threaded rod 186 and the nuts 188 . Before the nuts 188 are threaded onto the RF rod 186 .
  • the mechanisms 242 may be motorized or effected with constant upward force via the combination of the force of the bellows counteracted by the force of a downward pulling constant force spring.
  • FIG. 20 shows apparatus in Section I referenced to FIG. 3, including the vertical motion mechanism 242 . More detail on the mechanism is provided in U.S. patent application Ser. No. 08/909,461.

Abstract

A plasma enhanced chemical vapor deposition (PECVD) system having an upper chamber for performing a plasma enhanced process, and a lower chamber having an access port for loading and unloading wafers to and from a wafer boat. The system includes apparatus for moving the wafer boat from the upper chamber to the lower chamber. The wafer boat includes susceptors for suspending wafers horizontally, spaced apart in a vertical stack. An RF plate is positioned in the boat above each wafer for generating an enhanced plasma. An RF connection is provided which allows RF energy to be transmitted to the RF plates while the wafer boat is rotated. Apparatus for automatic wafer loading and unloading is provided, including apparatus for lifting each wafer from its supporting susceptor and a robotic arm for unloading and loading the wafers.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates generally to methods and apparatus for plasma enhanced chemical vapor deposition (PECVD) on wafers and plasma enhanced etching of wafers, and more particularly to a method and apparatus for transmitting RF energy to create a localized glow discharge over surfaces of wafers stacked vertically on a rotating wafer boat, and apparatus for robotically inserting and removing the wafers. [0002]
  • 2. Brief Description of the Prior Art [0003]
  • There are a large number of plasma enhanced processes that are performed inside of enclosed chambers wherein the pressure, temperature, composition of gases and application of radio frequency (RF) power are controlled to (a) produce the desired thin film deposition of various materials onto substrates such as semiconductor wafers, flat panel displays and others, and (b) to remove various materials from such substrates via etching. For convenience, the term “wafer” as used in the following description of the prior art and in the disclosure of the present invention will be used with the understanding that the invention also applies to the manufacture of flat panel displays and other types of substrates or devices wherein plasma enhanced processes are employed. For example, silicon nitride is typically deposited via plasma enhanced chemical vapor deposition (PECVD) on top of metal layers on a semiconductor wafer. A main feature of PECVD processes is that they can be carried out at low substrate temperatures as described by S. Wolf and R. N. Tauber, “Silicon Processing for the VLSI Era”, [0004] Volume 1—Process Technology, Lattice Press, 1986, pp. 171-174. FIG. 1 shows a chamber 10 having a rotating susceptor 12 capable of holding a plurality of substrates. RF energy is applied to an upper electrode 14 to create an electric field causing a plasma (glow discharge) creating free electrons within the plasma region 16. The electrons gain sufficient energy from the electric field so that when they collide with gas molecules, gas-phase dissociation and ionization of the reactant gases (e.g. silane and nitrogen) occurs. The energetic species are then adsorbed on the film surface.
  • FIG. 2 shows another prior art device including a single [0005] wafer PECVD chamber 18 wherein a wafer 20 is held stationary. There are a variety of single wafer PECVD chamber designs available in the marketplace. There are also a variety of commercially available multiple wafer chambers as described above wherein the wafers are all supported by a susceptor in a single horizontal plane.
  • The single wafer and horizontal multiple wafer PECVD chamber designs discussed above are problematic for numerous reasons. First, such single wafer designs suffer from relatively low throughput as only one wafer at a time can be processed. Further, the multiple wafer horizontal designs pose extreme difficulties in connection with the incorporation of automatic robotic wafer loading and unloading. Also, horizontal multiple wafer designs can process only a limited number of wafers before the chamber becomes so large in area as to become very difficult to maintain the necessary plasma uniformity and necessary gas flow control. [0006]
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide a PECVD chamber that can process multiple wafers in a uniform enhanced plasma environment. [0007]
  • It is a further object of the present invention to provide a PECVD chamber having facility for automatic robotic loading and unloading of wafers. [0008]
  • It is a still further object of the present invention to provide a PECVD chamber system including apparatus for transmitting RF energy to a rotating wafer boat having wafers held horizontally in a vertically spaced array, causing a glow discharge, and thereby enhanced plasma over a surface of each wafer. [0009]
  • Briefly, a preferred embodiment of the present invention includes a plasma enhanced chemical vapor deposition (PECVD) system having an upper chamber for performing a plasma enhanced process, and a lower chamber having an access port for loading and unloading wafers to and from a wafer boat. The system includes apparatus for moving the wafer boat from the upper chamber to the lower chamber. The wafer boat includes susceptors for suspending wafers horizontally, spaced apart in a vertical stack. An RF plate is positioned in the boat above each wafer for generating an enhanced plasma. A novel RF connection is provided, allowing the RF energy to be transmitted to the RF plates while the wafer boats are rotated. In addition, apparatus for automatic wafer loading and unloading is provided, including apparatus for lifting each wafer from its supporting susceptor, and a robotic arm for unloading and loading the wafers.[0010]
  • IN THE DRAWING
  • FIG. 1 shows a prior art rotating susceptor chamber; [0011]
  • FIG. 2 is a prior art chamber with a stationary wafer; [0012]
  • FIG. 3 illustrates a preferred embodiment of the present invention; [0013]
  • FIG. 4 is a top cross-sectional view of the upper chamber of the reactor of FIG. 3; [0014]
  • FIG. 5 shows a vertical cross-sectional view of the upper chamber; [0015]
  • FIG. 6 shows an alternate construction of an upper chamber constructed in the form of a bell jar; [0016]
  • FIG. 7 is an enlargened section C from FIG. 3 showing detail of the rotating RF input assembly; [0017]
  • FIG. 8 is a further enlargement of section D of FIG. 7, clarifying the detail of the rotating RF connection; [0018]
  • FIG. 9 is an enlargement of section E of FIG. 7, showing the upper portion of the bottom RF shaft; [0019]
  • FIG. 10 shows further detail of the wafer boat; [0020]
  • FIG. 11 is an enlargened view of section F of FIG. 10; [0021]
  • FIG. 12 is an enlargened view of section G of FIG. 10 showing further detail of the wafer boat; [0022]
  • FIG. 13 is an enlargened view of section H of FIG. 10 showing the upper right hand portion of the boat; [0023]
  • FIG. 14 is an enlargened view of section G of FIG. 12, except showing a modified construction; [0024]
  • FIG. 15 shows the wafer boat in contact with the moveable plate; [0025]
  • FIG. 16 shows details of lifting wafers off of their susceptors for an embodiment wherein RF energy is applied to plates above the wafers; [0026]
  • FIG. 17 shows details of lifting wafers off of their susceptors for an embodiment wherein RF energy is applied to the susceptors; [0027]
  • FIG. 18 shows the boat in the fully down position; [0028]
  • FIG. 19 shows a top view of the boat showing a wafer being loaded on pins using a robotic arm; and [0029]
  • FIG. 20 is an enlargened view of section I of FIG. 3 showing further detail of the vertical motion mechanism.[0030]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring now to FIG. 3 of the drawing a [0031] preferred embodiment 22 of the PECVD chamber system of the present invention is shown. An enclosure 24 has an upper chamber 26 and a lower chamber 28. The upper chamber has an optional radiant top heater 30, and optional side heaters 32, for use when the process requires temperatures above room temperature. A bottom heater (not shown) can also be attached, for example to plate 34 as described in U.S. patent application Ser. No. 08/909,461 entitled Mini-Batch Process Chamber, the contents of which are included herein by reference.
  • The [0032] wafer boat 36 includes susceptors for holding wafers horizontally, in a stacked, spaced apart array. The boat 36 includes a RF plate positioned above each wafer, for causing a glow discharge creating an enhanced plasma above each wafer. The wafer boat, in cooperation with other chamber system 22 apparatus, includes apparatus for automatically lifting each wafer from its susceptor for loading and unloading by a robotic arm when the boat is lowered into the lower chamber 28. The boat 36 is supported on a rotatable shaft structure 38, rotated by a rotation mechanism 40. The RF energy is transmitted to the RF plate by way of a transmission line through the shaft structure. (RF refers to all types of RF power, including dual frequency RF and pulsed RF.) The transmission line is coupled to an RF connector 42 by way of a rotating contact joint 44. The rotating contact 44 allows the RF energy to be transmitted while the boat 36 is rotated, a novel feature providing more uniform processing over a wafer surface. The vertical motion of the shaft 38 and boat 36 is accompanied by a lift mechanism 46. Further details of the rotation mechanism 40 and lift mechanism 46 are included in U.S. pat Ser. No. 08/090,461. A seal plate 48 prevents reactant gases from the upper chamber from passing into the lower chamber 28 during processing, and thereby minimizing unwanted deposition of material in the lower chamber. In order to assure minimal transfer of reactant gas from the upper chamber 26 to the lower chamber 28, an inert gas at a low level positive pressure is injected into the lower chamber 28. This operation, and the associated apparatus details of the movement of plate 48 when the boat is lowered into the lower chamber 28 are fully explained in U.S. patent application Ser. No. 08/909,461. The details of construction and operation of the present invention including the boat 36, the rotating contact 44, and the automatic loading and unloading mechanism will all be fully explained in the following text of the specification in reference to the various figures of the drawing.
  • FIG. 4 is a top cross section of the [0033] upper chamber 26, showing six side heater assemblies 32. In operation, wafers 50 are rotated while gases enter the chamber 26 via a gas injection manifold 52 and are exhausted on the other side via an exhaust manifold 54. FIG. 5 is a vertically cross sectioned view of the upper chamber 26 showing further detail of the tunable gas injection manifold 52 and the opposing tunable exhaust manifold 54 with the rotating wafer boat 36 in between.
  • FIG. 6 shows an [0034] alternate construction 56 for the upper chamber 26 of FIG. 3, where the upper portion is a simple bell jar 58 made of suitable material such as quartz or silicon carbide. Gas injection is accomplished via inlet tubes 60 and exhausted via exhaust tubes 62. Optional radiant heaters or resistive heating elements can be arranged about the upper chamber 56 for processes above room temperature.
  • FIG. 7 shows the rotating [0035] RF input assembly 44 where the RF energy is introduced via connector 64 to a stationary bottom RF disk 66. The RF is coupled to a lower RF shaft 68 via a metal thrust bearing 70. The RF is then in turn connected to an upper RF shaft 72 via a threaded rod 74. FIG. 8 is a section D blow up of the RF input assembly 44 showing an RF connector 64 which makes contact to a threaded rod 76 which in turn is threaded into the stationary bottom RF disk 78. To avoid electrical contact with the lift carriage 80. the threaded rod 76 is surrounded by an insulating tube 82 made from suitable insulating material such as ceramic or plastic. To keep the stationary bottom RF disk 78 from contacting the lift carriage 80, an insulating disk 84 supports the bottom of RF disk 78 and an insulating tube 86 electrically isolates the sidewalls of RF disk 78. The RF energy passes through a metal thrust bearing 88 first via bottom race 90, then through the rotating balls 92 and finally to the upper race 94 which is in contact with bottom RF shaft 68. The bottom RF shaft 68 is secured via insulating clamp ring 96 and bolts 98 to the bottom bellows disk 100 which has bellows 102 welded to its upper surface. A metal tube 104 which is a ground potential surrounds the bottom RF shaft 68 and is held in place via tube clamp 106 made from insulating material such as Delrin. To prevent electrical contact to the bottom RF shaft 68, the bottom of metal tube 104 is isolated via insulating ring 108. O-ring 110 in conjunction with metal washer 112 forms the vacuum seal between the metal tube 104 and the bottom bellows disk 100. O-ring 112 forms the internal vacuum seal between the bottom RF shaft 68 and the metal tube 104. This O-ring 112 also aligns the bottom RF shaft 68 to be parallel to the metal tube 104 and at the same time provides a small gap of about 0.05″ in between which prevents electrical contact and acts as a “dark space” which precludes the occurrence of a glow discharge or plasma within the gap.
  • FIG. 9, section E of FIG. 7. shows the upper portion of [0036] bottom RF shaft 68. An O-ring 114 further maintains the parallelism and the dark space gap between the bottom RF shaft 68 and the metal tube 104. The upper RF shaft 72 is connected to the lower RF shaft 68 via wazzu threaded rod 74. The space between the upper RF shaft 72 and the metal tube 104 is filled with insulating material to prevent the occurrence of a plasma. The insulating material is in the form of three concentric standard size quartz tubes 116. The upper end of bellows 118 is welded to an upper bellows disk 120 and vacuum sealed to an outer rotation tube 122 via O-ring 124. When the lift carriage 80 (FIG. 7) is in the up position, two or three rods 126 (only one shown for clarity) engage into holes 128 drilled into upper bellows disk 120 so that the rotational force is transmitted via the rods 126 to prevent contortion of the bellows 118. Pulley 128 is affixed to the outer rotation tube 122 and drive belt 130 goes to a pulley on the rotation motor. Outer rotation tube 122 passes through a ferrofluidic rotary vacuum seal 132 and is held in place via tube clamp 134. The ferrofluidic seal 132 is itself vacuum sealed to the feedthrough flange 136 via O-ring 138.
  • The [0037] feedthrough flange 136 is sealed to the chamber bottom plate 138 via O-ring 140. A fitting 142 leads to hole 144 so that inert gas may be injected to prevent process gases from entering the space between the metal tube 104 and the bottom plate 138 and the feedthrough flange 136.
  • The details of construction of the [0038] wafer boat 36 will now be fully described in reference to FIGS. 10-17.
  • FIG. 10 shows the [0039] wafer boat 36, wherein the upper end of metal tube 104 is connected to a boat bottom plate 146 via slitted flange 148 and secured in place to flange 148 via clamp ring 150. Upper RF shaft 72 is connected to the bottom RF plate 152 via threaded rod 154. A section F is shown in FIG. 11, enlarged for a more clear illustration of the following detail. To prevent electrical contact and/or the occurrence of a plasma, insulating tube 156 made from ceramic or other suitable material is inserted between the boat bottom plate 146 and the threaded rod 154. Further isolation between the boat bottom plate 146 and the bottom RF plate 152 is provided by insulating disk 158. To prevent a plasma from occurring in the space above the bottom RF plate 152, a second insulating disk 160 is sandwiched between the bottom RF plate 152, and a metal disk 162.
  • FIG. 12 is an enlargement of the structure of section G of FIG. 10. The [0040] wafer boat 36 is configured so that wafers 164 are at ground potential or electrically floating. The plasma is generated above the wafers 164 via RF plates 166. Wafer susceptors 168 are held in place via threaded rod 170 and conductive spacers 172, 174, and 176 made from suitable material such as metal or graphite. In the event that the wafer susceptors 168 are made of conductive material, the wafers 164 will be at ground potential. If the wafer susceptors 168 are made from insulating material, the wafers 164 will be floating. The rods 170 are threaded into the boat bottom plate 178 and metal band 180 surrounds the bottom RF plate 152 with insulating disks 158 and 160 holding the band slightly away from the bottom RF plate 152 to form a dark space gap 182. Outer metal band 184 provides further structural support. The RF energy is transmitted up from the bottom RF plate 152 via threaded rod 186 which contacts the RF plates 166 via nuts 188. To prevent the occurrence of a plasma around the threaded rod 186, insulating tubes 190 surround the threaded rod 186. The insulating tubes 190 are in turn surrounded by conductive tubes 192 which connect to ground potential via conductive shield disks 194 and conductive spacers 174 and 176 and the threaded rod 170.
  • FIG. 13 is an enlargened view of Section H of FIG. 10. showing the upper right-hand portion of [0041] boat 36. To prevent contact of the conductive shield disks 194 to the RF energized nuts 188, insulating washers 196 are placed between them and insulating tubes 198 surround the nuts 188. The conductive shield disks 194 are shaped along their inside diameters to capture the insulating tubes 198 and come to within a dark space distance to the RF plates 166. To prevent the occurrence of plasma around the outside edge of RF plates 166. a conductive band 200. which is connected to ground potential via conductive shield disks 194, is positioned around the entire periphery of RF plates 166. Insulating plates 202 are positioned on top of RF plates 166 to prevent the occurrence of plasma above the RF plates 166. During processing, grounded lift plates 204 rest upon the insulating plates 202. The lift plates 204 function to lift the wafer during robotic loading and unloading as further described later herein. At the top of the boat 36, the uppermost insulating plate 202 has a grounded conductive disk 206 resting on top of it. Positioned above the grounded conductive disk 206 is an insulating disk 208 which has holes 210 drilled through it near the periphery to capture the top end of RF threaded rod 186 and the nuts 188. Before the nuts 188 are threaded onto the RF rod 186. insulating washers 209 are placed into the holes 210. On top of the nuts 188 are insulating disks 212. A grounded conductive band 214 surrounds the periphery of disk 208 and a second grounded conductive disk 216 is positioned above the insulating disk 208 after which a nut 218 is threaded onto grounded threaded rod 170.
  • FIG. 14 is an enlargened view of section G of FIG. 12, except showing a modified construction for [0042] boat 36 where the wafer susceptor 168 is powered with RF energy as opposed to the configuration of FIG. 13 where plate 166 above the wafer was RF energized. In this case, the energized susceptor 168 is connected to the RF rod 186 via nuts 188. The bottom of the susceptor is insulated to prevent a plasma on the bottom side by insulating disk 218 which rests upon grounded conductive disk 220 and which has through holes drilled therein to capture nuts 188. The thickness of insulating disk 218 is such to allow only a small dark space gap 222 between the grounded conductive disk 220 and the nut 188. Insulating washers 224 have a thickness of approximately 0.04″ to 0.07″ and hold the dark space grounded disks 226 above the susceptor to leave a small enough gap 228 as to preclude a plasma from occurring in this region. Surrounding the periphery of susceptor 168 is a grounded conductive band 230 with spacing 232 in between such as to preclude a plasma around the periphery of susceptor 168. Spacers 234 keep grounded lifting disks 236 at the desired spacing above the wafers 164 top surface. The top of this type of boat 236 has construction similar to that of FIG. 13 to insulate and preclude a plasma from occurring anywhere except in the desired region of wafers 164.
  • The following describes an apparatus for automatic robotic loading and unloading of [0043] wafers 164 into and out of boat 36. As shown in FIGS. 12 and 14, wafers 164 are resting on top of susceptors 168 when the boat 36 is in the up position within the upper chamber 26 of the reactor 22, as shown in FIG. 3. As the boat 36 is lowered down into the load/unload lower chamber 28 of the reactor 22, lift rods 238 come in contact with the movable plate 48 as shown in FIG. 15. The plate 48 is supported by three rods 240 of which only one is shown in FIGS. 3 and 15 for clarity. The rods 240 are made movable and vacuum sealed via three vertical motion mechanisms 242 shown in FIG. 3. (See U.S. patent application Ser. No. 08/909,461 for details of the mechanisms 242). The mechanisms 242 may be motorized or effected with constant upward force via the combination of the force of the bellows counteracted by the force of a downward pulling constant force spring. Once the lift rods 238 contact plate 48, continued downward motion of boat 36 causes the rods 238 to move upwards relative to the rest of boat 36 causing lift plates 244 to move up, which in turn causes the lift pins 246 to move upwards lifting wafers 164 off of the susceptors 168 as shown in more detail in FIG. 16 for the case of where the RF energy is applied during processing on plates above the wafers 164 and in FIG. 17 for the case where the RF energy is applied to the susceptors 168. The lift plates 244 are vertically spaced apart via spacers 248 (FIGS. 16 & 17) at a predetermined distance. FIG. 16 shows that the upward motion of lift plates 244 stops relative to the rest of the boat 36 when the lift plates 244 come in contact with the bottom of the susceptors 168. In FIG. 17 the lift plates 244 stop moving upward when the lift plates 244 come in contact with the grounded disk 250.
  • FIG. 18 shows the [0044] boat 36 in the fully down position. Wafers 164 are then loaded onto the pins 246 and unloaded from the pins 246 via a robotic arm which, in FIG. 18 would be moving in a plane perpendicular to the paper on which the figure is drawn. FIG. 19 shows a top view of boat 36 showing the wafer 164 being loaded onto the pins 246 via the robotic arm's end effector 248. The robotic arm's “Z” motion allows it to position the wafer 164 above the pins 246 and then the arm lowers to rest the wafers onto the pins 246. Once the end effector 248 is below the plane of the wafer 164, the end effector 248 is pulled out of the reactor via the robotic arm. The wafers 164 can be loaded one at a time through a slit valve or all at once via a multiple level end effector which passes through a larger rectangular valve in the wall of the reactor 22.
  • FIG. 20 shows apparatus in Section I referenced to FIG. 3, including the [0045] vertical motion mechanism 242. More detail on the mechanism is provided in U.S. patent application Ser. No. 08/909,461.
  • Although the present invention has been described above in terms of a specific embodiment, it is anticipated that alterations and modifications thereof will no doubt become apparent to those skilled in the art. It is therefore intended that the following claims be interpreted as covering all such alterations and modifications as fall within the true spirit and scope of the invention.[0046]

Claims (15)

What is claimed is:
1. A PECVD reactor comprising:
(a) a first chamber;
(b) means for positioning a wafer boat in the first chamber, the wafer boat capable of holding a plurality of wafers in a vertical stack arrangement, the wafer boat including a plurality of RF plates and a plurality of susceptors, whereby each of the plurality of wafers is positioned on a susceptor beneath an RF plate;
(c) means for transmitting RF energy to the RF plates of the wafer boat to create a plasma;
(d) means for introducing a reactant gas mixture to the first chamber; and
(e) means for exhausting the gas mixture from the first chamber.
2. The reactor of
claim 1
, further comprising means for rotating the wafer boat while the plasma exists.
3. The reactor of
claim 2
, wherein the reactant gas mixture is introduced on one side of the first chamber and exhausted on the opposite side of the first chamber.
4. The apparatus of
claim 1
, further comprising means for heating the wafer boat and wafers to a uniform temperature.
5. The apparatus of
claim 3
, further comprising means for heating the wafer boat and wafers to a uniform temperature.
6. A PECVD reactor comprising:
(a) a first chamber;
(b) means for positioning a wafer boat in the first chamber, the wafer boat capable of holding a plurality of wafers in a vertical stack arrangement, the wafer boat including a plurality of RF plates and a plurality of susceptors, whereby each of the plurality of wafers is positioned on a susceptor beneath an RF plate;
(c) means for transmitting RF energy to the RF plates of the wafer boat to create a plasma;
(d) means for introducing a reactant gas mixture to the first chamber;
(e) means for exhausting the gas mixture from the first chamber;
(f) a second chamber adjacent to the first chamber;
(g) means for isolating the first chamber from the second chamber;
(h) a drive for moving the wafer boat between the first and second chambers;
(i) a lift mechanism in the second chamber for lifting the wafers onto and off of the susceptors; and
(j) a robotic arm for loading and unloading the wafers.
7. The reactor of
claim 6
, further comprising means for rotating the wafer boat while the plasma exists.
8. The reactor of
claim 7
, wherein the reactant gas mixture is introduced on one side of the first chamber and exhausted on the opposite side of the first chamber.
9. The apparatus of
claim 6
, further comprising means for heating the wafer boat and wafers to a uniform temperature.
10. The apparatus of
claim 8
, further comprising means for heating the wafer boat and wafers to a uniform temperature.
11. A PECVD reactor comprising:
(a) a first chamber;
(b) means for positioning a wafer boat in the first chamber, the wafer boat capable of holding a plurality of wafers in a vertical stack arrangement, the wafer boat including a plurality of RF plates and a plurality of susceptors, whereby each of the plurality of wafers is positioned on a susceptor beneath an RF plate;
(c) means for transmitting RF energy to the RF plates of the wafer boat to create a plasma;
(d) means for introducing a reactant gas mixture to the first chamber;
(e) means for exhausting the gas mixture from the first chamber;
(f) a lift mechanism in the second chamber for lifting the wafers onto and off of the susceptors; and
(g) a robotic arm for loading and unloading the wafers.
12. The reactor of
claim 11
, further comprising means for rotating the wafer boat while the plasma exists.
13. The reactor of
claim 12
, wherein the reactant gas mixture is introduced on one side of the first chamber and exhausted on the opposite side of the first chamber.
14. The apparatus of
claim 11
, further comprising means for heating the wafer boat and wafers to a uniform temperature.
15. The apparatus of
claim 13
, further comprising means for heating the wafer boat and wafers to a uniform temperature.
US09/228,840 1997-08-11 1999-01-12 Vertical plasma enhanced process apparatus and method Expired - Fee Related US6321680B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US09/228,840 US6321680B2 (en) 1997-08-11 1999-01-12 Vertical plasma enhanced process apparatus and method
US09/229,975 US6352594B2 (en) 1997-08-11 1999-01-14 Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors
US09/396,588 US6287635B1 (en) 1997-08-11 1999-09-15 High rate silicon deposition method at low pressures
US09/396,590 US6506691B2 (en) 1997-08-11 1999-09-15 High rate silicon nitride deposition method at low pressures
US09/954,705 US6780464B2 (en) 1997-08-11 2001-09-10 Thermal gradient enhanced CVD deposition at low pressure
US10/216,079 US20030049372A1 (en) 1997-08-11 2002-08-09 High rate deposition at low pressures in a small batch reactor
US10/918,498 US20050013937A1 (en) 1997-08-11 2004-08-13 Thermal gradient enhanced CVD deposition at low pressure
US10/966,245 US20050188923A1 (en) 1997-08-11 2004-10-15 Substrate carrier for parallel wafer processing reactor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/909,461 US6352593B1 (en) 1997-08-11 1997-08-11 Mini-batch process chamber
US7157198P 1998-01-15 1998-01-15
US09/228,840 US6321680B2 (en) 1997-08-11 1999-01-12 Vertical plasma enhanced process apparatus and method

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US08/909,461 Continuation-In-Part US6352593B1 (en) 1997-08-11 1997-08-11 Mini-batch process chamber
US09/228,835 Continuation-In-Part US6167837B1 (en) 1997-08-11 1999-01-12 Apparatus and method for plasma enhanced chemical vapor deposition (PECVD) in a single wafer reactor

Related Child Applications (6)

Application Number Title Priority Date Filing Date
US08/909,461 Continuation-In-Part US6352593B1 (en) 1997-08-11 1997-08-11 Mini-batch process chamber
US09/228,835 Continuation-In-Part US6167837B1 (en) 1997-08-11 1999-01-12 Apparatus and method for plasma enhanced chemical vapor deposition (PECVD) in a single wafer reactor
US09/229,975 Continuation-In-Part US6352594B2 (en) 1997-08-11 1999-01-14 Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors
US09/396,588 Continuation-In-Part US6287635B1 (en) 1997-08-11 1999-09-15 High rate silicon deposition method at low pressures
US09/954,705 Continuation-In-Part US6780464B2 (en) 1997-08-11 2001-09-10 Thermal gradient enhanced CVD deposition at low pressure
US10/216,079 Continuation-In-Part US20030049372A1 (en) 1997-08-11 2002-08-09 High rate deposition at low pressures in a small batch reactor

Publications (2)

Publication Number Publication Date
US20010029892A1 true US20010029892A1 (en) 2001-10-18
US6321680B2 US6321680B2 (en) 2001-11-27

Family

ID=26752385

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/228,840 Expired - Fee Related US6321680B2 (en) 1997-08-11 1999-01-12 Vertical plasma enhanced process apparatus and method

Country Status (1)

Country Link
US (1) US6321680B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045873A2 (en) * 2003-10-28 2005-05-19 Nordson Corporation Plasma processing system and plasma treatment process
DE102004004858A1 (en) * 2004-01-30 2005-08-18 Infineon Technologies Ag Implements for simultaneously coating number of wafers during semiconductor manufacture by deposition from gas phase, i.e. chemical vapour deposition (CVD), or compressing chemical vapour deposition (LPCVD) as well as gas injector
WO2005104186A2 (en) * 2004-03-25 2005-11-03 Tokyo Electron Limited Method and processing system for plasma-enhanced cleaning of system components
US20060051507A1 (en) * 2004-06-02 2006-03-09 Applied Materials, Inc. Electronic device manufacturing chamber and methods of forming the same
US20060060138A1 (en) * 2004-09-20 2006-03-23 Applied Materials, Inc. Diffuser gravity support
US20060157340A1 (en) * 2002-06-21 2006-07-20 Shinichi Kurita Transfer chamber for vacuum processing system
US20060201074A1 (en) * 2004-06-02 2006-09-14 Shinichi Kurita Electronic device manufacturing chamber and methods of forming the same
US20070281106A1 (en) * 2006-05-30 2007-12-06 Applied Materials, Inc. Process chamber for dielectric gapfill
US20090120464A1 (en) * 2007-11-08 2009-05-14 Applied Materials, Inc. Multi-port pumping system for substrate processing chambers
US20090277587A1 (en) * 2008-05-09 2009-11-12 Applied Materials, Inc. Flowable dielectric equipment and processes
US7647886B2 (en) 2003-10-15 2010-01-19 Micron Technology, Inc. Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers
US20100281683A1 (en) * 2004-06-02 2010-11-11 Applied Materials, Inc. Electronic device manufacturing chamber and methods of forming the same
US20100294051A1 (en) * 2002-01-24 2010-11-25 Kla-Tencor Corporation Process condition sensing wafer and data analysis system
US7906393B2 (en) 2004-01-28 2011-03-15 Micron Technology, Inc. Methods for forming small-scale capacitor structures
US8074599B2 (en) 2004-05-12 2011-12-13 Applied Materials, Inc. Plasma uniformity control by gas diffuser curvature
US8083853B2 (en) 2004-05-12 2011-12-27 Applied Materials, Inc. Plasma uniformity control by gas diffuser hole design
CN102328827A (en) * 2011-06-15 2012-01-25 湖南红太阳光电科技有限公司 Graphite boat trolley for plasma enhanced chemical vapor deposition (PECVD) automatic wafer loading and unloading system
US8133554B2 (en) 2004-05-06 2012-03-13 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
CN102653859A (en) * 2012-05-10 2012-09-05 中国电子科技集团公司第四十八研究所 Lifting and delivering device for automatic wafer loading and unloading of graphite boat
US8328939B2 (en) 2004-05-12 2012-12-11 Applied Materials, Inc. Diffuser plate with slit valve compensation
US8518184B2 (en) 2003-12-10 2013-08-27 Micron Technology, Inc. Methods and systems for controlling temperature during microfeature workpiece processing, E.G., CVD deposition
CN103586561A (en) * 2013-10-12 2014-02-19 宁波华索光伏设备有限公司 Feeding and discharging device of solar cell welding machine
US8889566B2 (en) 2012-09-11 2014-11-18 Applied Materials, Inc. Low cost flowable dielectric films
US20140345801A1 (en) * 2011-11-17 2014-11-27 Eugene Technology Co., Ltd. Apparatus for processing substrate for supplying reaction gas having phase difference
US8927302B2 (en) 2010-12-20 2015-01-06 Samsung Electronics Co., Ltd. Chemical vapor deposition apparatus and method for manufacturing light-emitting devices using same
US20150013909A1 (en) * 2011-11-17 2015-01-15 Eugene Technology Co., Ltd. Substrate processing apparatus including auxiliary gas supply port
US20150104958A1 (en) * 2013-03-14 2015-04-16 The Timken Company Rotating vacuum chamber coupling assembly
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
US9144147B2 (en) 2011-01-18 2015-09-22 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9368380B2 (en) 2013-04-08 2016-06-14 Eugene Technology Co., Ltd. Substrate processing device with connection space
US9412581B2 (en) 2014-07-16 2016-08-09 Applied Materials, Inc. Low-K dielectric gapfill by flowable deposition
US20170081761A1 (en) * 2012-12-03 2017-03-23 Taiwan Semiconductor Manufacturing Company, Ltd. Atomic Layer Deposition Method
US9875895B2 (en) * 2011-11-17 2018-01-23 Eugene Technology Co., Ltd. Substrate processing apparatus including exhaust ports and substrate processing method
US20180105933A1 (en) * 2015-04-21 2018-04-19 Eugene Technology Co., Ltd. Substrate processing apparatus and method for cleaning chamber
US20190088061A1 (en) * 2012-06-12 2019-03-21 Snap-On Incorporated Monitoring removal and replacement of tools within an inventory control system
US11251067B2 (en) * 2019-04-26 2022-02-15 Applied Materials, Inc. Pedestal lift for semiconductor processing chambers
US20220380902A1 (en) * 2019-12-04 2022-12-01 Jiangsu Favored Nanotechnology Co., Ltd. Dlc preparation apparatus and preparation method

Families Citing this family (302)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780464B2 (en) * 1997-08-11 2004-08-24 Torrex Equipment Thermal gradient enhanced CVD deposition at low pressure
US6501070B1 (en) * 1998-07-13 2002-12-31 Newport Corporation Pod load interface equipment adapted for implementation in a fims system
US6528435B1 (en) * 2000-08-25 2003-03-04 Wafermasters, Inc. Plasma processing
US7220312B2 (en) * 2002-03-13 2007-05-22 Micron Technology, Inc. Methods for treating semiconductor substrates
US6835039B2 (en) * 2002-03-15 2004-12-28 Asm International N.V. Method and apparatus for batch processing of wafers in a furnace
US6656284B1 (en) * 2002-06-28 2003-12-02 Jusung Engineering Co., Ltd. Semiconductor device manufacturing apparatus having rotatable gas injector and thin film deposition method using the same
US20070243317A1 (en) * 2002-07-15 2007-10-18 Du Bois Dale R Thermal Processing System and Configurable Vertical Chamber
US7256375B2 (en) * 2002-08-30 2007-08-14 Asm International N.V. Susceptor plate for high temperature heat treatment
US20040043617A1 (en) * 2002-09-04 2004-03-04 Taiwan Semiconductor Manufacturing Co., Ltd. Partitioned wafer boat for constant wafer backside emmissivity
KR100491161B1 (en) * 2002-11-26 2005-05-24 주식회사 테라세미콘 Semiconductor manufacturing system for thermal process
US7033126B2 (en) * 2003-04-02 2006-04-25 Asm International N.V. Method and apparatus for loading a batch of wafers into a wafer boat
JP4038679B2 (en) * 2003-05-13 2008-01-30 住友電気工業株式会社 Fixing jig for semiconductor laser bar
WO2005004967A2 (en) * 2003-07-02 2005-01-20 Cook Incorporated Small gauge needle catheterization apparatus
US7181132B2 (en) 2003-08-20 2007-02-20 Asm International N.V. Method and system for loading substrate supports into a substrate holder
KR100568456B1 (en) * 2003-12-15 2006-04-07 주식회사 테라세미콘 Semiconductor manufacturing System and Wafer-Film manufacturing Method
CN100356505C (en) * 2003-12-26 2007-12-19 清华大学 Fast semiconductor heat-treating facility with vertical heat treating chamber
KR100549273B1 (en) * 2004-01-15 2006-02-03 주식회사 테라세미콘 Wafer-Holder for Semiconductor Manufacturing Process
US7699932B2 (en) 2004-06-02 2010-04-20 Micron Technology, Inc. Reactors, systems and methods for depositing thin films onto microfeature workpieces
DE602005016933D1 (en) * 2004-06-28 2009-11-12 Cambridge Nanotech Inc ATOMIC SEPARATION SYSTEM AND METHOD
US20060065634A1 (en) * 2004-09-17 2006-03-30 Van Den Berg Jannes R Low temperature susceptor cleaning
US20060060145A1 (en) * 2004-09-17 2006-03-23 Van Den Berg Jannes R Susceptor with surface roughness for high temperature substrate processing
US20060060920A1 (en) * 2004-09-17 2006-03-23 Applied Materials, Inc. Poly-silicon-germanium gate stack and method for forming the same
JP2006179613A (en) * 2004-12-21 2006-07-06 Rigaku Corp Magnetic fluid sealing unit for semiconductor wafer vertical heat processor
US20060281310A1 (en) * 2005-06-08 2006-12-14 Applied Materials, Inc. Rotating substrate support and methods of use
US7402534B2 (en) 2005-08-26 2008-07-22 Applied Materials, Inc. Pretreatment processes within a batch ALD reactor
DE102005056324A1 (en) * 2005-11-25 2007-06-06 Aixtron Ag CVD reactor with exchangeable process chamber ceiling
JP2010520634A (en) * 2007-03-08 2010-06-10 ソスル カンパニー, リミテッド Substrate processing apparatus and method using lifting device
US7685885B2 (en) * 2007-12-10 2010-03-30 Teradyne, Inc. Manipulator constant force spring counterbalance
JP5171584B2 (en) * 2008-03-26 2013-03-27 株式会社日立国際電気 Substrate mounting table for substrate processing apparatus, substrate processing apparatus, and method for manufacturing semiconductor device
US8372238B2 (en) 2008-05-20 2013-02-12 Nordson Corporation Multiple-electrode plasma processing systems with confined process chambers and interior-bussed electrical connections with the electrodes
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US8226795B2 (en) * 2009-02-03 2012-07-24 Nordson Corporation Magnetic clips and substrate holders for use in a plasma processing system
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
JP5243519B2 (en) * 2010-12-22 2013-07-24 東京エレクトロン株式会社 Deposition equipment
US9512520B2 (en) * 2011-04-25 2016-12-06 Applied Materials, Inc. Semiconductor substrate processing system
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
KR102263121B1 (en) 2014-12-22 2021-06-09 에이에스엠 아이피 홀딩 비.브이. Semiconductor device and manufacuring method thereof
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
JP7065857B2 (en) 2016-09-19 2022-05-12 キング・アブドゥッラー・ユニバーシティ・オブ・サイエンス・アンド・テクノロジー Susceptor
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) * 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
KR102443047B1 (en) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
CN111316417B (en) 2017-11-27 2023-12-22 阿斯莫Ip控股公司 Storage device for storing wafer cassettes for use with batch ovens
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
CN111630203A (en) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 Method for depositing gap filling layer by plasma auxiliary deposition
TW202325889A (en) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 Deposition method
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
CN116732497A (en) 2018-02-14 2023-09-12 Asm Ip私人控股有限公司 Method for depositing ruthenium-containing films on substrates by cyclical deposition processes
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
TWI811348B (en) 2018-05-08 2023-08-11 荷蘭商Asm 智慧財產控股公司 Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
TW202349473A (en) 2018-05-11 2023-12-16 荷蘭商Asm Ip私人控股有限公司 Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
TW202013553A (en) 2018-06-04 2020-04-01 荷蘭商Asm 智慧財產控股公司 Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
KR20210027265A (en) 2018-06-27 2021-03-10 에이에스엠 아이피 홀딩 비.브이. Periodic deposition method for forming metal-containing material and film and structure comprising metal-containing material
WO2020002995A1 (en) 2018-06-27 2020-01-02 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
KR20200002519A (en) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
TW202037745A (en) 2018-12-14 2020-10-16 荷蘭商Asm Ip私人控股有限公司 Method of forming device structure, structure formed by the method and system for performing the method
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
TW202104632A (en) 2019-02-20 2021-02-01 荷蘭商Asm Ip私人控股有限公司 Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
KR102638425B1 (en) 2019-02-20 2024-02-21 에이에스엠 아이피 홀딩 비.브이. Method and apparatus for filling a recess formed within a substrate surface
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
TW202100794A (en) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
KR20200116033A (en) 2019-03-28 2020-10-08 에이에스엠 아이피 홀딩 비.브이. Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
KR20200123380A (en) 2019-04-19 2020-10-29 에이에스엠 아이피 홀딩 비.브이. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Method of using a gas-phase reactor system including analyzing exhausted gas
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
TW202121506A (en) 2019-07-19 2021-06-01 荷蘭商Asm Ip私人控股有限公司 Method of forming topology-controlled amorphous carbon polymer film
CN112309843A (en) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 Selective deposition method for achieving high dopant doping
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (en) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. Liquid level sensor for a chemical source vessel
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
TW202115273A (en) 2019-10-10 2021-04-16 荷蘭商Asm Ip私人控股有限公司 Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
TW202125596A (en) 2019-12-17 2021-07-01 荷蘭商Asm Ip私人控股有限公司 Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
TW202146882A (en) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
TW202146715A (en) 2020-02-17 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method for growing phosphorous-doped silicon layer and system of the same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210132576A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Method of forming vanadium nitride-containing layer and structure comprising the same
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
KR20210132605A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Vertical batch furnace assembly comprising a cooling gas supply
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
KR20220010438A (en) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
KR20220027026A (en) 2020-08-26 2022-03-07 에이에스엠 아이피 홀딩 비.브이. Method and system for forming metal silicon oxide and metal silicon oxynitride
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
TW202217037A (en) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
KR20220076343A (en) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. an injector configured for arrangement within a reaction chamber of a substrate processing apparatus
CN114639631A (en) 2020-12-16 2022-06-17 Asm Ip私人控股有限公司 Fixing device for measuring jumping and swinging
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112066A (en) * 1977-03-11 1978-09-30 Fujitsu Ltd Plasma treatment apparatus
DE2849240C2 (en) * 1978-11-13 1983-01-13 Siemens Ag, 1000 Berlin Und 8000 Muenchen CVD coating device for small parts and their use
JPS5846057B2 (en) * 1979-03-19 1983-10-14 富士通株式会社 Plasma treatment method
US4381965A (en) * 1982-01-06 1983-05-03 Drytek, Inc. Multi-planar electrode plasma etching
US4565157A (en) * 1983-03-29 1986-01-21 Genus, Inc. Method and apparatus for deposition of tungsten silicides
US4811684A (en) * 1984-11-26 1989-03-14 Semiconductor Energy Laboratory Co., Ltd. Photo CVD apparatus, with deposition prevention in light source chamber
US4653428A (en) * 1985-05-10 1987-03-31 General Electric Company Selective chemical vapor deposition apparatus
KR960012876B1 (en) * 1988-06-16 1996-09-25 도오교오 에레구토론 사가미 가부시끼가이샤 Heat treating apparatus with cooling fluid nozzles
DE69032952T2 (en) * 1989-11-15 1999-09-30 Kokusai Electric Co Ltd Dry treatment device
JP3156326B2 (en) * 1992-01-07 2001-04-16 富士通株式会社 Semiconductor growth apparatus and semiconductor growth method using the same
US5383984A (en) * 1992-06-17 1995-01-24 Tokyo Electron Limited Plasma processing apparatus etching tunnel-type
US5356475A (en) * 1993-02-22 1994-10-18 Lsi Logic Corporation Ceramic spacer assembly for ASM PECVD boat
JPH06330323A (en) * 1993-05-18 1994-11-29 Mitsubishi Electric Corp Production device for semiconductor device and cleaning method therefor
US5613821A (en) * 1995-07-06 1997-03-25 Brooks Automation, Inc. Cluster tool batchloader of substrate carrier

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8033190B2 (en) * 2002-01-24 2011-10-11 Kla-Tencor Technologies Corporation Process condition sensing wafer and data analysis system
US20100294051A1 (en) * 2002-01-24 2010-11-25 Kla-Tencor Corporation Process condition sensing wafer and data analysis system
US20060157340A1 (en) * 2002-06-21 2006-07-20 Shinichi Kurita Transfer chamber for vacuum processing system
US8033772B2 (en) 2002-06-21 2011-10-11 Applied Materials, Inc. Transfer chamber for vacuum processing system
US7647886B2 (en) 2003-10-15 2010-01-19 Micron Technology, Inc. Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers
WO2005045873A3 (en) * 2003-10-28 2006-02-16 Nordson Corp Plasma processing system and plasma treatment process
US20060163201A1 (en) * 2003-10-28 2006-07-27 Nordson Corporation Plasma processing system and plasma treatment process
WO2005045873A2 (en) * 2003-10-28 2005-05-19 Nordson Corporation Plasma processing system and plasma treatment process
US8518184B2 (en) 2003-12-10 2013-08-27 Micron Technology, Inc. Methods and systems for controlling temperature during microfeature workpiece processing, E.G., CVD deposition
US7906393B2 (en) 2004-01-28 2011-03-15 Micron Technology, Inc. Methods for forming small-scale capacitor structures
DE102004004858A1 (en) * 2004-01-30 2005-08-18 Infineon Technologies Ag Implements for simultaneously coating number of wafers during semiconductor manufacture by deposition from gas phase, i.e. chemical vapour deposition (CVD), or compressing chemical vapour deposition (LPCVD) as well as gas injector
WO2005104186A2 (en) * 2004-03-25 2005-11-03 Tokyo Electron Limited Method and processing system for plasma-enhanced cleaning of system components
WO2005104186A3 (en) * 2004-03-25 2006-08-17 Tokyo Electron Ltd Method and processing system for plasma-enhanced cleaning of system components
US9023436B2 (en) 2004-05-06 2015-05-05 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
US8133554B2 (en) 2004-05-06 2012-03-13 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
US8328939B2 (en) 2004-05-12 2012-12-11 Applied Materials, Inc. Diffuser plate with slit valve compensation
US8074599B2 (en) 2004-05-12 2011-12-13 Applied Materials, Inc. Plasma uniformity control by gas diffuser curvature
US9200368B2 (en) 2004-05-12 2015-12-01 Applied Materials, Inc. Plasma uniformity control by gas diffuser hole design
US10262837B2 (en) 2004-05-12 2019-04-16 Applied Materials, Inc. Plasma uniformity control by gas diffuser hole design
US10312058B2 (en) 2004-05-12 2019-06-04 Applied Materials, Inc. Plasma uniformity control by gas diffuser hole design
US8083853B2 (en) 2004-05-12 2011-12-27 Applied Materials, Inc. Plasma uniformity control by gas diffuser hole design
US20100281683A1 (en) * 2004-06-02 2010-11-11 Applied Materials, Inc. Electronic device manufacturing chamber and methods of forming the same
US20060051507A1 (en) * 2004-06-02 2006-03-09 Applied Materials, Inc. Electronic device manufacturing chamber and methods of forming the same
US20060201074A1 (en) * 2004-06-02 2006-09-14 Shinichi Kurita Electronic device manufacturing chamber and methods of forming the same
US20060060138A1 (en) * 2004-09-20 2006-03-23 Applied Materials, Inc. Diffuser gravity support
US8075690B2 (en) 2004-09-20 2011-12-13 Applied Materials, Inc. Diffuser gravity support
US20070281106A1 (en) * 2006-05-30 2007-12-06 Applied Materials, Inc. Process chamber for dielectric gapfill
US7964040B2 (en) 2007-11-08 2011-06-21 Applied Materials, Inc. Multi-port pumping system for substrate processing chambers
US20090120464A1 (en) * 2007-11-08 2009-05-14 Applied Materials, Inc. Multi-port pumping system for substrate processing chambers
US20090277587A1 (en) * 2008-05-09 2009-11-12 Applied Materials, Inc. Flowable dielectric equipment and processes
US8927302B2 (en) 2010-12-20 2015-01-06 Samsung Electronics Co., Ltd. Chemical vapor deposition apparatus and method for manufacturing light-emitting devices using same
US9144147B2 (en) 2011-01-18 2015-09-22 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
CN102328827A (en) * 2011-06-15 2012-01-25 湖南红太阳光电科技有限公司 Graphite boat trolley for plasma enhanced chemical vapor deposition (PECVD) automatic wafer loading and unloading system
US20140345801A1 (en) * 2011-11-17 2014-11-27 Eugene Technology Co., Ltd. Apparatus for processing substrate for supplying reaction gas having phase difference
US9593415B2 (en) * 2011-11-17 2017-03-14 Eugene Technology Co., Ltd. Substrate processing apparatus including auxiliary gas supply port
US20150013909A1 (en) * 2011-11-17 2015-01-15 Eugene Technology Co., Ltd. Substrate processing apparatus including auxiliary gas supply port
US9875895B2 (en) * 2011-11-17 2018-01-23 Eugene Technology Co., Ltd. Substrate processing apparatus including exhaust ports and substrate processing method
US9620395B2 (en) * 2011-11-17 2017-04-11 Eugene Technology Co., Ltd. Apparatus for processing substrate for supplying reaction gas having phase difference
CN102653859A (en) * 2012-05-10 2012-09-05 中国电子科技集团公司第四十八研究所 Lifting and delivering device for automatic wafer loading and unloading of graphite boat
US10347066B2 (en) 2012-06-12 2019-07-09 Snap-On Incorporated Monitoring removal and replacement of tools within an inventory control system
US20190088061A1 (en) * 2012-06-12 2019-03-21 Snap-On Incorporated Monitoring removal and replacement of tools within an inventory control system
US11741427B2 (en) 2012-06-12 2023-08-29 Snap-On Incorporated Monitoring removal and replacement of tools within an inventory control system
US11270540B2 (en) * 2012-06-12 2022-03-08 Snap-On Incorporated Monitoring removal and replacement of tools within an inventory control system
US8889566B2 (en) 2012-09-11 2014-11-18 Applied Materials, Inc. Low cost flowable dielectric films
US10858736B2 (en) * 2012-12-03 2020-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Atomic layer deposition method
US20170081761A1 (en) * 2012-12-03 2017-03-23 Taiwan Semiconductor Manufacturing Company, Ltd. Atomic Layer Deposition Method
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
US9203200B2 (en) * 2013-03-14 2015-12-01 The Timken Company Rotating vacuum chamber coupling assembly
US20150104958A1 (en) * 2013-03-14 2015-04-16 The Timken Company Rotating vacuum chamber coupling assembly
US9368380B2 (en) 2013-04-08 2016-06-14 Eugene Technology Co., Ltd. Substrate processing device with connection space
CN103586561A (en) * 2013-10-12 2014-02-19 宁波华索光伏设备有限公司 Feeding and discharging device of solar cell welding machine
US9412581B2 (en) 2014-07-16 2016-08-09 Applied Materials, Inc. Low-K dielectric gapfill by flowable deposition
US20180105933A1 (en) * 2015-04-21 2018-04-19 Eugene Technology Co., Ltd. Substrate processing apparatus and method for cleaning chamber
US11251067B2 (en) * 2019-04-26 2022-02-15 Applied Materials, Inc. Pedestal lift for semiconductor processing chambers
US20220380902A1 (en) * 2019-12-04 2022-12-01 Jiangsu Favored Nanotechnology Co., Ltd. Dlc preparation apparatus and preparation method

Also Published As

Publication number Publication date
US6321680B2 (en) 2001-11-27

Similar Documents

Publication Publication Date Title
US6321680B2 (en) Vertical plasma enhanced process apparatus and method
US8197636B2 (en) Systems for plasma enhanced chemical vapor deposition and bevel edge etching
US4763602A (en) Thin film deposition apparatus including a vacuum transport mechanism
JP3453223B2 (en) Processing equipment
KR100246105B1 (en) Sending apparatus foe semiconductor wafer
US5820366A (en) Dual vertical thermal processing furnace
KR100636487B1 (en) Apparatus for supporting a substrate and method for dechucking a substrate
US5091217A (en) Method for processing wafers in a multi station common chamber reactor
US20060034032A1 (en) Method and apparatus for dechucking a substrate
JPH10218632A (en) Cooling and heating of glass substrate of large area and apparatus therefor
JP3965343B2 (en) Processing equipment
US20100047447A1 (en) Multiple substrate item holder and reactor
WO1999036587A1 (en) Vertical plasma enhanced process apparatus and method
US6167837B1 (en) Apparatus and method for plasma enhanced chemical vapor deposition (PECVD) in a single wafer reactor
JPH08264465A (en) Processing apparatus
JP3162955B2 (en) Plasma processing equipment
US5676757A (en) Decompression container
US6860711B2 (en) Semiconductor-manufacturing device having buffer mechanism and method for buffering semiconductor wafers
US11946140B2 (en) Hot showerhead
US20030175426A1 (en) Heat treatment apparatus and method for processing substrates
JP2682190B2 (en) Dry film deposition equipment
KR100444739B1 (en) Method and apparatus for etching film layers on large substrates
JP3056240B2 (en) Heat treatment equipment
JPH0722500A (en) Treating device
JPH07147272A (en) Processing system

Legal Events

Date Code Title Description
AS Assignment

Owner name: TORREX EQUIPMENT CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COOK, ROBERT C.;BRORS, DANIEL L.;REEL/FRAME:009897/0884

Effective date: 19990407

AS Assignment

Owner name: IDANTA PARTNERS, LTD., AS COLLATERAL AGENT ON BEHA

Free format text: SECURITY INTEREST;ASSIGNOR:TORREX EQUIPMENT CORPORATION;REEL/FRAME:013699/0001

Effective date: 20030522

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: TORREX EQUIPMENT CORPORATION, CALIFORNIA

Free format text: TERMINATION OF PATENT SECURITY INTEREST;ASSIGNOR:IDANTA PARTNERS LTD., AS COLLATERAL AGENT ON BEHALF OF THE SECURED PARTIES;REEL/FRAME:014797/0312

Effective date: 20040624

AS Assignment

Owner name: APPLIED MATERIALS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TORREX EQUIPMENT CORPORATION;REEL/FRAME:015027/0787

Effective date: 20040823

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REFU Refund

Free format text: REFUND - SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL (ORIGINAL EVENT CODE: R2551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20091127