US20010039596A1 - Software modem having a multi-task plug-in architecture - Google Patents

Software modem having a multi-task plug-in architecture Download PDF

Info

Publication number
US20010039596A1
US20010039596A1 US09/193,066 US19306698A US2001039596A1 US 20010039596 A1 US20010039596 A1 US 20010039596A1 US 19306698 A US19306698 A US 19306698A US 2001039596 A1 US2001039596 A1 US 2001039596A1
Authority
US
United States
Prior art keywords
software
modem
modules
communication
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/193,066
Other versions
US6427178B2 (en
Inventor
Zeev Collin
Tal Tamir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PCTel Inc
Original Assignee
Conexant Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conexant Systems LLC filed Critical Conexant Systems LLC
Priority to US09/193,066 priority Critical patent/US6427178B2/en
Assigned to CONEXANT SYSTEMS, INC. reassignment CONEXANT SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COLLIN, ZEEV, TAMIR, TAL
Priority to EP99969200A priority patent/EP1114548B1/en
Priority to PCT/US1999/021660 priority patent/WO2000016534A1/en
Priority to AT99969200T priority patent/ATE441992T1/en
Priority to DE69941360T priority patent/DE69941360D1/en
Priority to TW088116019A priority patent/TWI221718B/en
Assigned to CREDIT SUISSE FIRST BOSTON reassignment CREDIT SUISSE FIRST BOSTON SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CONEXANT SYSTEMS, INC.
Assigned to CONEXANT SYSTEMS, INC., BROOKTREE WORLDWIDE SALES CORPORATION, BROOKTREE CORPORATION, CONEXANT SYSTEMS WORLDWIDE, INC. reassignment CONEXANT SYSTEMS, INC. RELEASE OF SECURITY INTEREST Assignors: CREDIT SUISSE FIRST BOSTON
Publication of US20010039596A1 publication Critical patent/US20010039596A1/en
Publication of US6427178B2 publication Critical patent/US6427178B2/en
Application granted granted Critical
Assigned to PCTEL, INC. reassignment PCTEL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CONEXANT SYSTEMS, INC.
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SYNAPTICS INCORPORATED
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/06Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/4401Bootstrapping
    • G06F9/4411Configuring for operating with peripheral devices; Loading of device drivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/02Standardisation; Integration
    • H04L41/0213Standardised network management protocols, e.g. simple network management protocol [SNMP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/022Capturing of monitoring data by sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/12Network monitoring probes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level

Definitions

  • the present invention relates to software modems, and more particularly to a software modem having a data pump with a plurality of self contained executable modules for updating and adding drivers to the software modem.
  • Modems accept digital data supplied by a computer system and convert it into modulated analog waves that are transmitted over a communication channel such as an analog telephone line. Modems also accept modulated analog waves via the communication channel and convert them into a digital form to pass on to the computer system.
  • Modems have been classified according to various parameters such as potential modem speed, data compression techniques, and other communication protocols. Common classifications include V.34, for 33.6 kbps modems and V.90, for the 56 kbps modem standard.
  • a typical hardware modem operating on a general purpose computer includes a controller, a digital signal processor (DSP), a codec (compressor/decompressor), and a digital access arrangement (DAA).
  • DSP digital signal processor
  • codec compressor/decompressor
  • DAA digital access arrangement
  • External hardware modems typically include a universal asynchronous receiver-transmitter (UART) while internal hardware modems replace the UART with a hardware driver.
  • UART universal asynchronous receiver-transmitter
  • the DSP of a software modem performs many different signal processing tasks, e.g., data modulations, fax modulations, etc.
  • the data pump performs general telephony tasks such as pulse or tone dialing. These tasks are implemented in a single software object and, in operation, consume a large amount of a computer's memory.
  • the software modem is to be updated or changed, the whole object must be replaced.
  • a hardware change in one area of the modem also requires total object replacement even though only a small portion of the object is affected.
  • a communication system comprising application software, communication software that interacts with the application software, and communication hardware that interacts with the communication software.
  • the communication software includes at least one controller and a plurality of objects with the communication software operating as an interface between the application software and the communication hardware.
  • the application software communicates with the communication hardware.
  • the controller enables the application software to activate one or more individual ones of the plurality of objects to provide communication between the communication system and a communication channel.
  • the objects of the communication system often comprise driver modules having individual modem functionality.
  • the at least one controller of the communication system enables the communication software to operate using a single one of the plurality of objects during operation of the communication system.
  • the plurality of objects are individually modifiable and individually replaceable without regard to other ones of the plurality of objects and the plurality of objects are often selected from the group consisting of drivers, data link libraries, and threads.
  • Various other aspects of the present invention are realized in a method for operating a software modem on a computer system having a memory.
  • the method comprises creating a plurality of software modules that interact with one another to perform software modem tasks on the computer system, scheduling the plurality of software modem tasks according to specific operations of the software modem, loading individual software modules into the memory of the computer system on an as needed basis as the software modem operates on the computer system, and unloading individual software modules from the memory of the computer system when the individual software module is no longer required for operation of the software modem on the computer system.
  • the method may also comprise modifying individual software modules from the plurality of software modules with the modifications occurring independently of software modules in the plurality of software modules that remain unmodified.
  • Modifying individual software modules may comprise debugging, upgrading, or isolating the individual software modules, in some cases, to perform diagnostics on the software modem independent of the remaining software modules of the software modem.
  • a software modem may include communication software and a modem card.
  • the communication software often includes a controller and a plurality of modules, the plurality of modules being independent from one another and operating according to instructions received from the controller such that only modules specified by the instructions are executed in the software modem.
  • the modem card often includes another controller, additional modules, and communication hardware. The another controller controls which of the additional modules to activate for interaction with the communication hardware.
  • the plurality of modules of the software modem are often modifiable independently of one another and the controller.
  • modules may be added to the plurality of modules already existing in the communication software of the software modem.
  • the additional modules of the modem card are modifiable independently from one another and the controller of the modem card. Similar to the modules of the communication software, the modules of the modem card may be added to the additional modules already existing in the modem card of the software modem.
  • the executable entities include at least a controller and a data pump with the controller operating as an interface between an operating system driver and the data pump when signals are passed from the operating system driver to the data pump.
  • the data pump includes at least a scheduler and a hardware driver, the scheduler interacting with additional self-contained executable entities and enabling the data pump to operate using one or more individual ones of the additional self-contained executable entities according to the signals passed from the controller to the data pump.
  • the self-contained executable entities of the software modem according to the present invention often comprise driver modules having individual modem functionality.
  • the scheduler enables the data pump to operate using a single one of the additional self-contained executable entities during operation of the software modem.
  • the additional self-contained executable entities are individually modifiable and individually replaceable without regard to other ones of the additional self-contained executable entities.
  • the additional self-contained executable entities are commonly selected from the group consisting of drivers, data link logic, and threads.
  • a software modem that includes a controller and a data pump.
  • the data pump may include an abstraction layer, a scheduler, a sampler, a hardware driver, and a plurality of modules.
  • the plurality of modules are independent from one another and operate according to instructions received from the scheduler such that only modules specified by the instructions are executed in the software modem.
  • the modules of the software modem are modifiable independently of one another and the controller.
  • the modifiable modules comprise modules which enable adding additional modules to the plurality of modules already existing in the data pump of the software modem.
  • FIG. 1 is a block diagram of an exemplary communication system built in accordance with the principles of the present invention wherein, as illustrated, the communication system communicates with a communication channel via application software, communication software, and communication hardware.
  • FIG. 2 is a block diagram of the communication system of FIG. 1 wherein the communication hardware of FIG. 1 is illustrated as being part of a modem card.
  • FIG. 3 is a block diagram of portions of the communication system of FIG. 1 wherein the application software and communication hardware are illustrated having multiple components.
  • FIG. 4 is a block diagram of an exemplary computer system built in accordance with the principles of the present invention wherein the computer system is illustrated interacting with a telephone line via components such as a software modem.
  • FIG. 5 is a block diagram of the software modem of FIG. 4 illustrated in greater detail than in FIG. 4.
  • FIG. 6 is a block diagram of exemplary self-contained signal processing tasks or driver modules that operate in conjunction with the software modem of FIG. 4.
  • FIG. 1 is a block diagram of an exemplary communication system 100 built in accordance with the principles of the present invention wherein, as illustrated, the communication system 100 communicates with a communication channel 102 via application software 104 , communication software 106 , and communication hardware 108 .
  • a user controls the application software 104 in order to operate the communication system 100 .
  • the application software 104 interacts with the communication software 106 and prompts a controller 110 to determine which object(s) 112 to activate in order to operate the communication hardware 108 and carry out communications through the communication channel 102 .
  • the object(s) 112 are interchangeable, modifiable, updateable, upgradeable, and may increase in number or in size.
  • one object 112 can interact with the application software 104 and activate other objects 112 to provide interaction with the communication hardware 108 .
  • Another embodiment provides multiple objects 112 to interact with the application software 104 and, together, activate a single object 112 for interaction with the communication hardware 108 .
  • Yet another embodiment provides for multiple objects 112 to interact with the application software 104 and then, in turn, to interact with multiple object 112 for interaction with the communication hardware 108 .
  • individual object(s) 112 can be modified without interfering with other object(s) 112 .
  • the object(s) 112 also enable the communication system 100 to operate using only the required object(s) 112 for the requested function in the communication system 100 . Further, only the required object(s) 112 are activated or accessed depending on requirements from the communication hardware 108 . Thus, the communication system 100 enables multi-task plug-in objects and operates more efficiently than prior art communication systems.
  • FIG. 2 is a block diagram of the communication system 100 of FIG. 1 wherein the communication hardware 108 is illustrated as being part of a modem card 200 .
  • the modem card 200 includes the communication hardware 108 and a controller 202 that controls object(s) 204 and activates specific ones of the object(s) 204 on the modem card 200 according to desired operations of the communications system 100 .
  • object(s) 204 interact either directly or indirectly with the communication hardware 108 as instructed by the controller 202 .
  • Communication software 205 having a controller 206 is illustrated for controlling object(s) 208 as they interact with application software 210 and the modem card 200 .
  • the objects 204 and 208 interact as directed by the controllers 202 and 206 , respectively, and create the interface between the communication software 205 and the modem card 200 .
  • FIG. 3 is a block diagram of portions of the communication system of FIG. 1 wherein the application software 104 and communication hardware 108 are illustrated as having multiple components.
  • the application software 104 comprises a plurality of software applications 300 for user access to the communication software 106 .
  • Particular software applications 300 direct the communication software 106 in particular manners.
  • the controller 110 is directed to activate one of the objects 112 which in turn activates another of the objects 112 which in turn interacts with a portion 302 of the communication hardware 108 .
  • the portion 302 of the communication hardware 108 then interacts with another portion 302 which in turn interacts with the communication channel 102 .
  • the process of the application software 104 interacting with the communication channel 102 are possible and the above example is offered only for illustrative purposes.
  • FIG. 4 is a block diagram of an exemplary computer system 400 built in accordance with the principles of the present invention wherein the computer system 400 is illustrated interacting with a telephone line 402 via components such as a software modem 404 .
  • An application 406 accesses the software modem 404 through an operating system communication driver 408 and the software modem 404 accesses the telephone line 402 through a hardware interface 410 .
  • the application 406 is a standard modem application for a user to operate a modem on the computer system 400 .
  • the operating system communication driver 408 is a standard communication driver.
  • the hardware interface 410 typically comprises a codec and a DAA and provides a path for the software modem 404 to communicate with the telephone line 402 .
  • FIG. 5 is a block diagram of the software modem 404 illustrated in greater detail than in FIG. 4.
  • the software modem 404 is illustrated having a plurality of modules including a port driver 500 , a controller 502 , a data pump abstraction layer (DPAL) 504 , an advanced modem operation scheduler (AMOS) 506 , a sampler 508 , and a hardware driver 510 .
  • the software modem 404 includes a plurality of driver modules 512 that interact with the other modules in the software modem 404 .
  • the modules between the controller 502 and the hardware interface 510 are often referred to as the “data pump” of the software modem 404 .
  • the data pump implements the scheduler (AMOS) 506 to select only the appropriate driver modules 512 for the requested modem task.
  • AMOS scheduler
  • the scheduler 506 of the data pump loads only the driver modules 512 for data modulation during data modulation operations.
  • the scheduler 506 will load only the speaker phone module into memory.
  • each modem task that can be performed with an individual driver module is typically implemented as one of the driver modules 512 and the scheduler 506 loads the required driver module(s) into memory of the computer exclusive of the other driver modules that are not required.
  • FIG. 6 is a block diagram of exemplary self-contained signal processing tasks or driver modules that operate in conjunction with the software modem 404 .
  • the driver modules 600 could include at least the following drivers, a V. 90 driver 602 , a K56Flex modem driver 604 , a fax driver 606 , a tone generator driver 608 , a speaker phone driver 610 , or other type of driver 612 .
  • the V.90 driver 602 represents the 56.0 kbps modem standard adopted by the modem Standards Committee.
  • the K56Flex modem driver 604 is a modem driver used by some modem manufacturers.
  • the fax driver 606 represents a driver to be used for facsimile transmission
  • the tone generator driver 608 represents the driver for producing modem tones during modem 404 operation
  • the speaker phone driver 610 provides speaker phone capability for the modem 404
  • numerous additional types of driver modules can be included to operate the modem 404 with the scheduler 506 .
  • the multiple driver software modem 404 provides a software data pump in which each driver is a separate self contained object such as a driver, a data link library (DLL), a thread, etc.
  • the scheduler 506 decides which driver should be loaded into computer memory, which driver should be activated, and what samples (if any) should be streamed to/from each of the drivers to the hardware interface 410 . Dividing these tasks into separate drivers provides for efficient usage of computer memory because drivers can be loaded into memory only as needed for each particular session and unloaded in accordance with the session progress.
  • a typical modem task is a modulation, such as V.90, V.34, a tone detector, or any other task such as a pulse dialer.
  • Individual modules are available for each of these tasks.
  • Another module could be implemented in which all the hardware accesses are contained in a single module thereby providing an abstract interface to other modules.

Abstract

A multi-task structure for a software modem including a plurality of self-contained executable entities. The executable entities include at least a controller and a data pump with the controller operating as an interface between an operating system driver and the data pump when signals are passed from the operating system driver to the data pump. In addition, the data pump includes at least a scheduler and a hardware driver, the scheduler interacting with additional self-contained executable entities and enabling the data pump to operate using one or more individual ones of the additional self-contained executable entities according to the signals passed from the controller to the data pump.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority pursuant to 35 U.S.C. § 119(e) to U.S. Provisional Application Serial No. 60/076,784, filed Mar. 4, 1998, pending, which is hereby incorporated herein by reference in its entirety. Further, the present application claims priority pursuant to 35 U.S.C. § 120 to U.S. Non-provisional patent application Serial No. 09/154,643, filed Sep. 17, 1998, pending, which is hereby incorporated herein by reference in its entirety.[0001]
  • BACKGROUND
  • 1. Field of the Invention [0002]
  • The present invention relates to software modems, and more particularly to a software modem having a data pump with a plurality of self contained executable modules for updating and adding drivers to the software modem. [0003]
  • 2. Description of the Related Art [0004]
  • Conventional modems accept digital data supplied by a computer system and convert it into modulated analog waves that are transmitted over a communication channel such as an analog telephone line. Modems also accept modulated analog waves via the communication channel and convert them into a digital form to pass on to the computer system. [0005]
  • Conventional modems using a telephone line communication channel send data at speeds commonly measured in bits per second, or bps. The most common modem speeds are 28,800 bps, 33,600 bps, and 56,000 bps. However, the actual speed of data moving across a telephone line varies and does not always equal the speed that the modem is capable of providing because the telephone line may operate with interference. Thus, to assure data integrity, data often travels across a telephone line communication channel at a lower speed than is available from the modem. [0006]
  • Modems have been classified according to various parameters such as potential modem speed, data compression techniques, and other communication protocols. Common classifications include V.34, for 33.6 kbps modems and V.90, for the 56 kbps modem standard. [0007]
  • A typical hardware modem operating on a general purpose computer includes a controller, a digital signal processor (DSP), a codec (compressor/decompressor), and a digital access arrangement (DAA). External hardware modems typically include a universal asynchronous receiver-transmitter (UART) while internal hardware modems replace the UART with a hardware driver. [0008]
  • As processing power in general purpose computers has increased through development of higher powered microprocessors, modem designers have realized that the computer's processor can be used to handle some modem operations. Thus, some functionality performed by conventional hardware modems has begun to be implemented in software. As time goes one, more and more functionality of hardware modems is being realized in software. However, each time that new functionality is converted to software, the new software functionality is added to a single software object. Thus, if one part of the functionality is found to be operating improperly, the whole software object must be replaced. [0009]
  • The DSP of a software modem, by nature, performs many different signal processing tasks, e.g., data modulations, fax modulations, etc. In addition, the data pump performs general telephony tasks such as pulse or tone dialing. These tasks are implemented in a single software object and, in operation, consume a large amount of a computer's memory. Further, if the software modem is to be updated or changed, the whole object must be replaced. A hardware change in one area of the modem also requires total object replacement even though only a small portion of the object is affected. [0010]
  • SUMMARY OF THE INVENTION
  • Various aspects of the present invention can be found in a communication system comprising application software, communication software that interacts with the application software, and communication hardware that interacts with the communication software. The communication software includes at least one controller and a plurality of objects with the communication software operating as an interface between the application software and the communication hardware. Thus, the application software communicates with the communication hardware. The controller enables the application software to activate one or more individual ones of the plurality of objects to provide communication between the communication system and a communication channel. [0011]
  • The objects of the communication system often comprise driver modules having individual modem functionality. The at least one controller of the communication system enables the communication software to operate using a single one of the plurality of objects during operation of the communication system. The plurality of objects are individually modifiable and individually replaceable without regard to other ones of the plurality of objects and the plurality of objects are often selected from the group consisting of drivers, data link libraries, and threads. [0012]
  • Various other aspects of the present invention are realized in a method for operating a software modem on a computer system having a memory. The method comprises creating a plurality of software modules that interact with one another to perform software modem tasks on the computer system, scheduling the plurality of software modem tasks according to specific operations of the software modem, loading individual software modules into the memory of the computer system on an as needed basis as the software modem operates on the computer system, and unloading individual software modules from the memory of the computer system when the individual software module is no longer required for operation of the software modem on the computer system. [0013]
  • The method may also comprise modifying individual software modules from the plurality of software modules with the modifications occurring independently of software modules in the plurality of software modules that remain unmodified. Modifying individual software modules may comprise debugging, upgrading, or isolating the individual software modules, in some cases, to perform diagnostics on the software modem independent of the remaining software modules of the software modem. [0014]
  • Further, a software modem according to principles of the present invention may include communication software and a modem card. The communication software often includes a controller and a plurality of modules, the plurality of modules being independent from one another and operating according to instructions received from the controller such that only modules specified by the instructions are executed in the software modem. The modem card often includes another controller, additional modules, and communication hardware. The another controller controls which of the additional modules to activate for interaction with the communication hardware. [0015]
  • The plurality of modules of the software modem are often modifiable independently of one another and the controller. In fact, modules may be added to the plurality of modules already existing in the communication software of the software modem. In addition, the additional modules of the modem card are modifiable independently from one another and the controller of the modem card. Similar to the modules of the communication software, the modules of the modem card may be added to the additional modules already existing in the modem card of the software modem. [0016]
  • Other aspects of the present invention can be found in a software modem including a plurality of self-contained executable entities. The executable entities include at least a controller and a data pump with the controller operating as an interface between an operating system driver and the data pump when signals are passed from the operating system driver to the data pump. The data pump includes at least a scheduler and a hardware driver, the scheduler interacting with additional self-contained executable entities and enabling the data pump to operate using one or more individual ones of the additional self-contained executable entities according to the signals passed from the controller to the data pump. [0017]
  • The self-contained executable entities of the software modem according to the present invention often comprise driver modules having individual modem functionality. The scheduler enables the data pump to operate using a single one of the additional self-contained executable entities during operation of the software modem. The additional self-contained executable entities are individually modifiable and individually replaceable without regard to other ones of the additional self-contained executable entities. The additional self-contained executable entities are commonly selected from the group consisting of drivers, data link logic, and threads. [0018]
  • Still other aspects of the present invention can be found in a software modem that includes a controller and a data pump. The data pump may include an abstraction layer, a scheduler, a sampler, a hardware driver, and a plurality of modules. The plurality of modules are independent from one another and operate according to instructions received from the scheduler such that only modules specified by the instructions are executed in the software modem. Advantageously, the modules of the software modem are modifiable independently of one another and the controller. The modifiable modules comprise modules which enable adding additional modules to the plurality of modules already existing in the data pump of the software modem. [0019]
  • Other aspects of the present invention will become apparent with further reference to the drawings and specification. [0020]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A better understanding of the present invention can be obtained when the following detailed description of the preferred embodiment is considered in conjunction with the following drawings. [0021]
  • FIG. 1 is a block diagram of an exemplary communication system built in accordance with the principles of the present invention wherein, as illustrated, the communication system communicates with a communication channel via application software, communication software, and communication hardware. [0022]
  • FIG. 2 is a block diagram of the communication system of FIG. 1 wherein the communication hardware of FIG. 1 is illustrated as being part of a modem card. [0023]
  • FIG. 3 is a block diagram of portions of the communication system of FIG. 1 wherein the application software and communication hardware are illustrated having multiple components. [0024]
  • FIG. 4 is a block diagram of an exemplary computer system built in accordance with the principles of the present invention wherein the computer system is illustrated interacting with a telephone line via components such as a software modem. [0025]
  • FIG. 5 is a block diagram of the software modem of FIG. 4 illustrated in greater detail than in FIG. 4. [0026]
  • FIG. 6 is a block diagram of exemplary self-contained signal processing tasks or driver modules that operate in conjunction with the software modem of FIG. 4. [0027]
  • DETAILED DESCRIPTION OF DRAWINGS
  • FIG. 1 is a block diagram of an [0028] exemplary communication system 100 built in accordance with the principles of the present invention wherein, as illustrated, the communication system 100 communicates with a communication channel 102 via application software 104, communication software 106, and communication hardware 108. In one embodiment, a user controls the application software 104 in order to operate the communication system 100. The application software 104 interacts with the communication software 106 and prompts a controller 110 to determine which object(s) 112 to activate in order to operate the communication hardware 108 and carry out communications through the communication channel 102.
  • The object(s) [0029] 112 are interchangeable, modifiable, updateable, upgradeable, and may increase in number or in size. In one embodiment, one object 112 can interact with the application software 104 and activate other objects 112 to provide interaction with the communication hardware 108. Another embodiment provides multiple objects 112 to interact with the application software 104 and, together, activate a single object 112 for interaction with the communication hardware 108. Yet another embodiment provides for multiple objects 112 to interact with the application software 104 and then, in turn, to interact with multiple object 112 for interaction with the communication hardware 108. Advantageously, individual object(s) 112 can be modified without interfering with other object(s) 112. The object(s) 112 also enable the communication system 100 to operate using only the required object(s) 112 for the requested function in the communication system 100. Further, only the required object(s) 112 are activated or accessed depending on requirements from the communication hardware 108. Thus, the communication system 100 enables multi-task plug-in objects and operates more efficiently than prior art communication systems.
  • FIG. 2 is a block diagram of the [0030] communication system 100 of FIG. 1 wherein the communication hardware 108 is illustrated as being part of a modem card 200. The modem card 200 includes the communication hardware 108 and a controller 202 that controls object(s) 204 and activates specific ones of the object(s) 204 on the modem card 200 according to desired operations of the communications system 100. Like the communication system 100 of FIG. 1, object(s) 204 interact either directly or indirectly with the communication hardware 108 as instructed by the controller 202. Communication software 205 having a controller 206 is illustrated for controlling object(s) 208 as they interact with application software 210 and the modem card 200. The objects 204 and 208 interact as directed by the controllers 202 and 206, respectively, and create the interface between the communication software 205 and the modem card 200.
  • FIG. 3 is a block diagram of portions of the communication system of FIG. 1 wherein the [0031] application software 104 and communication hardware 108 are illustrated as having multiple components. Specifically, in this embodiment, the application software 104 comprises a plurality of software applications 300 for user access to the communication software 106. Particular software applications 300 direct the communication software 106 in particular manners. For example, the controller 110 is directed to activate one of the objects 112 which in turn activates another of the objects 112 which in turn interacts with a portion 302 of the communication hardware 108. The portion 302 of the communication hardware 108 then interacts with another portion 302 which in turn interacts with the communication channel 102. Of course, other variations and combinations of the process of the application software 104 interacting with the communication channel 102 are possible and the above example is offered only for illustrative purposes.
  • FIG. 4 is a block diagram of an [0032] exemplary computer system 400 built in accordance with the principles of the present invention wherein the computer system 400 is illustrated interacting with a telephone line 402 via components such as a software modem 404. An application 406 accesses the software modem 404 through an operating system communication driver 408 and the software modem 404 accesses the telephone line 402 through a hardware interface 410. The application 406 is a standard modem application for a user to operate a modem on the computer system 400. The operating system communication driver 408 is a standard communication driver. The hardware interface 410 typically comprises a codec and a DAA and provides a path for the software modem 404 to communicate with the telephone line 402.
  • FIG. 5 is a block diagram of the [0033] software modem 404 illustrated in greater detail than in FIG. 4. The software modem 404 is illustrated having a plurality of modules including a port driver 500, a controller 502, a data pump abstraction layer (DPAL) 504, an advanced modem operation scheduler (AMOS) 506, a sampler 508, and a hardware driver 510. Further, the software modem 404 includes a plurality of driver modules 512 that interact with the other modules in the software modem 404. Collectively, the modules between the controller 502 and the hardware interface 510 are often referred to as the “data pump” of the software modem 404.
  • Of particular note, the plurality of modules of the [0034] software modem 404 have been divided into individual tasks rather than being combined into a single object as in the related art. Specifically, in one embodiment, the data pump implements the scheduler (AMOS) 506 to select only the appropriate driver modules 512 for the requested modem task. For example, modems commonly provide both data and fax capabilities, and data modulations are not needed for fax sessions. Thus, the scheduler 506 of the data pump loads only the driver modules 512 for data modulation during data modulation operations. Likewise, if the modem 404 is to operate as a speaker phone, the scheduler 506 will load only the speaker phone module into memory. Similarly, each modem task that can be performed with an individual driver module is typically implemented as one of the driver modules 512 and the scheduler 506 loads the required driver module(s) into memory of the computer exclusive of the other driver modules that are not required.
  • FIG. 6 is a block diagram of exemplary self-contained signal processing tasks or driver modules that operate in conjunction with the [0035] software modem 404. As illustrated, the driver modules 600 could include at least the following drivers, a V.90 driver 602, a K56Flex modem driver 604, a fax driver 606, a tone generator driver 608, a speaker phone driver 610, or other type of driver 612. The V.90 driver 602 represents the 56.0 kbps modem standard adopted by the modem Standards Committee. Similarly, the K56Flex modem driver 604 is a modem driver used by some modem manufacturers. Of course, the fax driver 606 represents a driver to be used for facsimile transmission, the tone generator driver 608 represents the driver for producing modem tones during modem 404 operation, the speaker phone driver 610 provides speaker phone capability for the modem 404, and as represented by the dotted lines of the other type of driver 612, numerous additional types of driver modules can be included to operate the modem 404 with the scheduler 506.
  • The multiple [0036] driver software modem 404 provides a software data pump in which each driver is a separate self contained object such as a driver, a data link library (DLL), a thread, etc. The scheduler 506 decides which driver should be loaded into computer memory, which driver should be activated, and what samples (if any) should be streamed to/from each of the drivers to the hardware interface 410. Dividing these tasks into separate drivers provides for efficient usage of computer memory because drivers can be loaded into memory only as needed for each particular session and unloaded in accordance with the session progress.
  • Since different drivers are loosely coupled, whenever a driver is modified, the other drivers that do not involve the modified driver do not need to be tested as would be required in a single object data pump. In particular, fixing a bug in a driver only requires replacement of a single driver and the rest of the software modem remains unchanged. These advantages also apply in the development stage, e.g., a new driver may be replaced without modifying the rest of the modem and each driver can be more easily isolated and developed separately. [0037]
  • In operation, a typical modem task is a modulation, such as V.90, V.34, a tone detector, or any other task such as a pulse dialer. Individual modules are available for each of these tasks. Another module could be implemented in which all the hardware accesses are contained in a single module thereby providing an abstract interface to other modules. [0038]
  • The above-listed sections and included information are not exhaustive and are only exemplary for computer systems. The particular sections and included information in a particular embodiment may depend upon the particular implementation and the included devices and resources. Although a system and method according to the present invention has been described in connection with the preferred embodiment, it is not intended to be limited to the specific form set forth herein, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents, as can be reasonably included within the spirit and scope of the invention as defined by the appended claims. [0039]

Claims (15)

1. A communication system comprising:
application software;
communication software that interacts with the application software;
communication hardware that interacts with the communication software;
the communication software including at least one controller and a plurality of objects, the communication software operating as an interface between the application software and the communication hardware such that the application software communicates with the communication hardware; and
the at least one controller enabling the application software to activate one or more individual ones of the plurality of objects to provide communication between the communication system and a communication channel.
2. The communication system of
claim 1
wherein the plurality of objects comprise driver modules having individual modem functionality.
3. The communication system of
claim 1
wherein the at least one controller enables the communication software to operate using a single one of the plurality of objects during operation of the communication system.
4. The communication system of
claim 1
wherein the plurality of objects are individually modifiable and individually replaceable without regard to other ones of the plurality of objects.
5. The communication system of
claim 1
wherein the plurality of objects are selected from the group consisting of drivers, data link libraries, and threads.
6. A method for operating a software modem on a computer system having a memory, the method comprising:
creating a plurality of software modules that interact with one another to perform software modem tasks on the computer system;
scheduling the plurality of software modem tasks according to specific operations of the software modem;
loading individual software modules into the memory of the computer system on an as needed basis as the software modem operates on the computer system; and
unloading individual software modules from the memory of the computer system when the individual software module is no longer required for operation of the software modem on the computer system.
7. The method of
claim 6
further comprising modifying individual software modules from the plurality of software modules, the modifications occurring independently of remaining software modules in the plurality of software modules.
8. The method of
claim 7
wherein the step of modifying individual software modules comprises debugging the individual software module.
9. The method of
claim 7
wherein the step of modifying individual software modules comprises upgrading the individual software module.
10. The method of
claim 7
wherein the step of modifying individual software modules comprises isolating the individual software module to perform diagnostics on the software modem independent of remaining software modules of the software modem.
11. A software modem comprising:
communication software and a modem card;
the communication software including a controller and a plurality of modules, the plurality of modules being independent from one another and operating according to instructions received from the controller such that only modules specified by the instructions are executed in the software modem; and
the modem card including another controller, additional modules, and communication hardware, the another controller controlling which of the additional modules to activate for interaction with the communication hardware.
12. The software modem of
claim 11
wherein the plurality of modules are modifiable independently of one another and the controller.
13. The software modem of
claim 12
wherein modules may be added to the plurality of modules already existing in the communication software of the software modem.
14. The software modem of
claim 11
wherein the additional modules of the modem card are modifiable independently from one another and the another controller.
15. The software modem of
claim 14
wherein modules may be added to the additional modules already existing in the modem card of the software modem.
US09/193,066 1998-03-04 1998-11-16 Software modem having a multi-task plug-in architecture Expired - Fee Related US6427178B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/193,066 US6427178B2 (en) 1998-03-04 1998-11-16 Software modem having a multi-task plug-in architecture
EP99969200A EP1114548B1 (en) 1998-09-17 1999-09-17 Multi-task plug-in architecture for software modem
PCT/US1999/021660 WO2000016534A1 (en) 1998-09-17 1999-09-17 Multi-task plug-in architecture for software modem
AT99969200T ATE441992T1 (en) 1998-09-17 1999-09-17 PLUGABLE MULTI-PROCESS ARCHITECTURE FOR A SOFTWARE MODEM
DE69941360T DE69941360D1 (en) 1998-09-17 1999-09-17 PLUGGABLE MULTIPROCESS ARCHITECTURE FOR A SOFTWARE MODEM
TW088116019A TWI221718B (en) 1998-09-17 1999-11-15 Modem driver for operation in a computer system having a memory, and method for employing said modem driver

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US7678498P 1998-03-04 1998-03-04
US15464398A 1998-09-17 1998-09-17
US09/193,066 US6427178B2 (en) 1998-03-04 1998-11-16 Software modem having a multi-task plug-in architecture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15464398A Continuation-In-Part 1998-03-04 1998-09-17

Publications (2)

Publication Number Publication Date
US20010039596A1 true US20010039596A1 (en) 2001-11-08
US6427178B2 US6427178B2 (en) 2002-07-30

Family

ID=26851618

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/193,066 Expired - Fee Related US6427178B2 (en) 1998-03-04 1998-11-16 Software modem having a multi-task plug-in architecture

Country Status (4)

Country Link
US (1) US6427178B2 (en)
EP (1) EP1114548B1 (en)
TW (1) TWI221718B (en)
WO (1) WO2000016534A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070192414A1 (en) * 2001-03-31 2007-08-16 Mingte Chen User interface for multi-channel communication
US20070192415A1 (en) * 2001-03-31 2007-08-16 Pak Wai H Extensible interface for inter-module communication
US20080159520A1 (en) * 2001-03-31 2008-07-03 Annadata Anil K Adaptive communication application programming interface
US7673241B2 (en) 2002-06-26 2010-03-02 Siebel Systems, Inc. User interface for multi-media communication for the visually disabled
US8365205B2 (en) 2001-02-06 2013-01-29 Siebel Systems, Inc. Adaptive communication application programming interface
US9269069B2 (en) 2001-11-15 2016-02-23 Siebel Systems, Inc. Apparatus and method for displaying selectable icons in a toolbar for a user interface

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6374312B1 (en) * 1998-09-25 2002-04-16 Intel Corporation System for dedicating a host processor to running one of a plurality of modem programs and dedicating a DSP to running another one of the modem programs
US6233250B1 (en) 1998-11-13 2001-05-15 Integrated Telecom Express, Inc. System and method for reducing latency in software modem for high-speed synchronous transmission
US7200138B2 (en) * 2000-03-01 2007-04-03 Realtek Semiconductor Corporation Physical medium dependent sub-system with shared resources for multiport xDSL system
US7075914B2 (en) * 2000-05-08 2006-07-11 Microtune (San Diego), Inc. Software modem architecture
US20020023086A1 (en) * 2000-06-30 2002-02-21 Ponzio, Jr. Frank J. System and method for providing signaling quality and integrity of data content
US7096353B2 (en) * 2001-07-09 2006-08-22 Advanced Micro Devices, Inc. Software modem with privileged mode decryption of control codes
US8161218B2 (en) * 2008-10-23 2012-04-17 Sony Ericsson Mobile Communications Ab Network adapter, method, and computer program product

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4385384A (en) 1977-06-06 1983-05-24 Racal Data Communications Inc. Modem diagnostic and control system
US4516216A (en) 1981-02-02 1985-05-07 Paradyne Corporation In-service monitoring system for data communications network
US5341477A (en) 1989-02-24 1994-08-23 Digital Equipment Corporation Broker for computer network server selection
US5613100A (en) 1989-09-12 1997-03-18 Nec Corporation Computer system having an open systems interconnection (OSI) management system for an information conversion for management of non-open systems
CA2010591C (en) * 1989-10-20 1999-01-26 Phillip M. Adams Kernels, description tables and device drivers
US5442764A (en) * 1990-08-20 1995-08-15 Texas Instruments Incorporated Digital signal processing having improved execution efficiency
JPH0689239A (en) 1991-03-20 1994-03-29 Fujitsu Ltd Automatic extraction system for communication trace
US5357519A (en) 1991-10-03 1994-10-18 Apple Computer, Inc. Diagnostic system
US5528626A (en) 1992-03-30 1996-06-18 International Business Machines Corporation Method and system for modem command processing during data transfer
DE69330691T2 (en) * 1992-06-03 2002-07-04 Sun Microsystems Inc Dynamically configurable core system
JP2516317B2 (en) * 1992-10-13 1996-07-24 インターナショナル・ビジネス・マシーンズ・コーポレイション Data processing system and method for loading digital signal processor.
US5590648A (en) * 1992-11-30 1997-01-07 Tremont Medical Personal health care system
DE69428878T2 (en) 1994-01-05 2002-06-27 Hewlett Packard Co Self-describing data processing system
US5878120A (en) 1994-06-24 1999-03-02 Intel Corporation Mechanism and method for multiplexing voice and data over a signal carrier with high bandwidth efficiency
US5774793A (en) * 1994-12-22 1998-06-30 Ora Electronics, Inc. System and method for interfacing diversely controlled devices to a bus connector having a common signal format
US5649001A (en) 1995-03-24 1997-07-15 U.S. Robotics Mobile Communications Corp. Method and apparatus for adapting a communication interface device to multiple networks
US5732261A (en) * 1995-07-19 1998-03-24 Ricoh Company, Ltd. Method of using an object-oriented communication system with support for multiple remote machine types
US5721830A (en) * 1995-09-12 1998-02-24 Pc-Tel, Inc. Host signal processing communication system that compensates for missed execution of signal maintenance procedures
US6401081B1 (en) * 1995-11-20 2002-06-04 Schlumberger Resource Management Services, Inc. Modular object-based architecture for extensible master station software
US5752032A (en) * 1995-11-21 1998-05-12 Diamond Multimedia Systems, Inc. Adaptive device driver using controller hardware sub-element identifier
US5794009A (en) * 1996-05-09 1998-08-11 Eagle Research Corp. Multiple protocol management system
US6023507A (en) 1997-03-17 2000-02-08 Sun Microsystems, Inc. Automatic remote computer monitoring system
US5960198A (en) * 1997-03-19 1999-09-28 International Business Machines Corporation Software profiler with runtime control to enable and disable instrumented executable
US5925114A (en) * 1997-03-21 1999-07-20 Motorola, Inc. Modem implemented in software for operation on a general purpose computer having operating system with different execution priority levels
US6073179A (en) 1997-06-30 2000-06-06 Integrated Telecom Express Program for controlling DMT based modem using sub-channel selection to achieve scaleable data rate based on available signal processing resources
US6134605A (en) * 1998-04-15 2000-10-17 Diamond Multimedia Systems, Inc. Redefinable signal processing subsystem

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8365205B2 (en) 2001-02-06 2013-01-29 Siebel Systems, Inc. Adaptive communication application programming interface
US20070204272A1 (en) * 2001-03-31 2007-08-30 Mingte Chen Synchronization of communication connection state with communication user interface
US20070204273A1 (en) * 2001-03-31 2007-08-30 Siebel Systems, Inc. Context-sensitive user interface
US20070192414A1 (en) * 2001-03-31 2007-08-16 Mingte Chen User interface for multi-channel communication
US20080159520A1 (en) * 2001-03-31 2008-07-03 Annadata Anil K Adaptive communication application programming interface
US7730204B2 (en) * 2001-03-31 2010-06-01 Siebel Systems, Inc. Extensible interface for inter-module communication
US7788679B2 (en) 2001-03-31 2010-08-31 Siebel Systems, Inc. User interface with context-based communication using media prediction
US8045698B2 (en) 2001-03-31 2011-10-25 Siebel Systems, Inc. Adaptive communication application programming interface
US20070192415A1 (en) * 2001-03-31 2007-08-16 Pak Wai H Extensible interface for inter-module communication
US8601492B2 (en) 2001-03-31 2013-12-03 Siebel Systems, Inc. User interface for multi-channel communication
US8839270B2 (en) 2001-03-31 2014-09-16 Siebel Systems, Inc. Synchronization of communication connection state with communication user interface
US9269069B2 (en) 2001-11-15 2016-02-23 Siebel Systems, Inc. Apparatus and method for displaying selectable icons in a toolbar for a user interface
US7673241B2 (en) 2002-06-26 2010-03-02 Siebel Systems, Inc. User interface for multi-media communication for the visually disabled

Also Published As

Publication number Publication date
TWI221718B (en) 2004-10-01
EP1114548B1 (en) 2009-09-02
US6427178B2 (en) 2002-07-30
EP1114548A1 (en) 2001-07-11
WO2000016534A1 (en) 2000-03-23

Similar Documents

Publication Publication Date Title
US6427178B2 (en) Software modem having a multi-task plug-in architecture
CA2208295C (en) User mode proxy of kernel mode operations in a computer operating system
US6240166B1 (en) LAN connection using analog modems via telephone wiring
US7415270B2 (en) Middleware services layer for platform system for mobile terminals
Mitola Software radio architecture: a mathematical perspective
US5974136A (en) Apparatus for electronic exchange having a general-purpose bus separating the exchange unit and control unit
US6092095A (en) Real-time task manager for a personal computer
KR101002489B1 (en) Process-mode independent driver model
US5630132A (en) Method and apparatus for facilitating real-time and asynchronous loading and temporally-overlapping of modular multimedia software tasks in a multimedia data processing system
US6338130B1 (en) Adaptive method and apparatus for allocation of DSP resources in a communication system
US6496486B2 (en) Multipoint digital simultaneous voice and data system
US8538417B2 (en) Performing diagnostics in a wireless system
JPH1069338A (en) Computer docking station that can be made multifunctional
US20060021026A1 (en) System and method for modular network transaction processing with plug-in processing modules and interfaces
CN114579288A (en) Task processing method and device and computer equipment
CN110764836B (en) Plug-in implementation method and plug-in implementation system
US7065380B2 (en) Software partition of MIDI synthesizer for HOST/DSP (OMAP) architecture
CN1140525A (en) Handling of interaction between supplementary services
US6643712B1 (en) Validating the creation of and routing of messages to file objects
US5729601A (en) Electronic exchange apparatus having separated exchange unit and general-purpose control unit
WO2006079281A1 (en) A mobile terminal and boot method thereof
CN101529384B (en) Portable terminal, server, and method for realizing function of portable terminal using network
CN101546422A (en) Overclocking display card and overclocking method
KR100606750B1 (en) apparatus for downloading program, which is used for handy set
CN115237204A (en) Electronic equipment control method and electronic equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONEXANT SYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COLLIN, ZEEV;TAMIR, TAL;REEL/FRAME:010083/0032;SIGNING DATES FROM 19990620 TO 19990623

AS Assignment

Owner name: CREDIT SUISSE FIRST BOSTON, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:CONEXANT SYSTEMS, INC.;REEL/FRAME:010450/0899

Effective date: 19981221

AS Assignment

Owner name: CONEXANT SYSTEMS, INC., CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:CREDIT SUISSE FIRST BOSTON;REEL/FRAME:012252/0865

Effective date: 20011018

Owner name: BROOKTREE CORPORATION, CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:CREDIT SUISSE FIRST BOSTON;REEL/FRAME:012252/0865

Effective date: 20011018

Owner name: BROOKTREE WORLDWIDE SALES CORPORATION, CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:CREDIT SUISSE FIRST BOSTON;REEL/FRAME:012252/0865

Effective date: 20011018

Owner name: CONEXANT SYSTEMS WORLDWIDE, INC., CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:CREDIT SUISSE FIRST BOSTON;REEL/FRAME:012252/0865

Effective date: 20011018

AS Assignment

Owner name: PCTEL, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONEXANT SYSTEMS, INC.;REEL/FRAME:014734/0539

Effective date: 20030617

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100730

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, NORTH CAROLINA

Free format text: SECURITY INTEREST;ASSIGNOR:SYNAPTICS INCORPORATED;REEL/FRAME:044037/0896

Effective date: 20170927

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, NORTH CARO

Free format text: SECURITY INTEREST;ASSIGNOR:SYNAPTICS INCORPORATED;REEL/FRAME:044037/0896

Effective date: 20170927