US20010046038A1 - Lithography apparatus - Google Patents

Lithography apparatus Download PDF

Info

Publication number
US20010046038A1
US20010046038A1 US09/287,014 US28701499A US2001046038A1 US 20010046038 A1 US20010046038 A1 US 20010046038A1 US 28701499 A US28701499 A US 28701499A US 2001046038 A1 US2001046038 A1 US 2001046038A1
Authority
US
United States
Prior art keywords
further characterized
illumination
multipole
mode
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/287,014
Other versions
US6452662B2 (en
Inventor
Johannes Catharinus H. Mulkens
Gavin Charles Rider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Assigned to ASM LITHOGRAPHY B.V. reassignment ASM LITHOGRAPHY B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MULKENS, JOHANNES CATHARINUS HUBERTUS, RIDER, GAVIN CHARLES, TEN CATE, JAN WIETSE RICOLT
Publication of US20010046038A1 publication Critical patent/US20010046038A1/en
Assigned to ASML NETHERLANDS B.V. reassignment ASML NETHERLANDS B.V. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ASM LITHOGRAPHY B.V.
Priority to US10/177,134 priority Critical patent/US20020167653A1/en
Application granted granted Critical
Publication of US6452662B2 publication Critical patent/US6452662B2/en
Priority to US10/641,307 priority patent/US7061583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/701Off-axis setting using an aperture
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70108Off-axis setting using a light-guiding element, e.g. diffractive optical elements [DOEs] or light guides

Definitions

  • the present invention relates to an illumination system, in particular for a microlithographic exposure apparatus in which the illumination mode can be varied. More particularly, the invention relates to the application of such a device in a lithographic projection apparatus comprising:
  • a first object table provided with a mask holder for holding a mask, and connected to first positioning means;
  • a second object table provided with a substrate holder for holding a substrate, and connected to second positioning means;
  • a projection system for imaging an irradiated portion of the mask onto a target portion of the substrate.
  • the projection system may hereinafter be referred to as the “lens”; however, this term should be broadly interpreted as encompassing various types of projection system, including refractive optics, reflective optics, and catadioptric systems, for example.
  • the radiation system may also include elements operating according to any of these principles for directing, shaping or controlling the projection beam of radiation and such elements may also be referred to below, collectively or singularly, as a “lens”.
  • Any refractive, reflective or catadioptric elements in the radiation or illumination systems may be based on a substrate of glass or other suitable material, and may be provided with either single- or multi-layer coatings as desired.
  • first and second object tables may be referred to as the “mask table” and the “substrate table”, respectively.
  • the lithographic apparatus may be of a type having two or more mask tables and/or two or more substrate tables. In such “multiple stage” devices the additional tables may be used in parallel, or preparatory steps may be carried out on one or more stages while one or more other stages are being used for exposures. Twin stage lithographic apparatus are described in International Patent Applications W 0 98/28665 and WO98/40791.
  • Lithographic projection apparatus can be used, for example, in the manufacture of integrated circuits (ICs).
  • the mask (reticle) may contain a circuit pattern corresponding to an individual layer of the IC, and this pattern can then be imaged onto a target area (die) on a substrate (silicon wafer) which has been coated with a layer of photosensitive material (resist).
  • a single wafer will contain a whole network of adjacent dies which are successively irradiated through the reticle, one at a time.
  • each die is irradiated by exposing the entire reticle pattern onto the die in one go; such an apparatus is commonly referred to as a waferstepper.
  • each die is irradiated by progressively scanning the reticle pattern under the projection beam in a given reference direction (the “scanning” direction) while synchronously scanning the wafer table parallel or anti-parallel to this direction; since, in general, the projection system will have a magnification factor M (generally ⁇ 1), the speed v at which the wafer table is scanned will be a factor M times that at which the reticle table is scanned. More information with regard to lithographic devices as here described can be gleaned from International Patent Application WO 97/33205.
  • a mask defining features is illuminated with radiation from an effective source having an intensity distribution at a pupil plane corresponding to a particular illumination mode.
  • An image of the illuminated mask is projected onto a resist-coated semiconductor wafer.
  • One method to reduce feature size, i.e. increase resolution, in optical lithography is off-axis illumination.
  • the mask is illuminated at non-perpendicular angles which may improve resolution, but particularly improves the process latitude by increasing the depth of focus and/or contrast.
  • One known illumination mode is annular, in which the conventional zero order spot on the optical axis is changed to a ring-shaped intensity distribution.
  • Another mode is multipole illumination in which several spots or beams are produced which are not on the optical axis.
  • the spatial intensity distribution at the pupil plane is converted into an angular distribution at the mask plane.
  • the adiation system comprises an illumination system which comprises:
  • the illumination system according to the invention enables a range of illumination modes to be produced including conventional, annular and quadrupole.
  • the axicon, zoom and multipole generating element allow the spatial intensity distribution of the illumination mode to be continuously varied.
  • the spatial intensity distribution results in angular or oblique illumination of the reticle which improves the process latitude of the lithographic exposure apparatus.
  • FIGS. 1 and 2 illustrate prior illumination systems
  • FIG. 3 illustrates some illumination intensity distributions obtainable with prior systems
  • FIG. 4 shows an illumination system for use in the invention
  • FIG. 5 a shows an embodiment of a multipole mode generating element of the system of FIG. 4;
  • FIG. 5 b shows an illumination intensity distribution obtained with the embodiment of FIG. 5 a
  • FIGS. 6 and 7 show further alternative embodiments to that of FIG. 5 a;
  • FIG. 8 shows in cross-section another embodiment of an illumination system for use in the invention and the resulting illumination intensity distribution
  • FIG. 9 illustrates the effect of a wedge-shaped optical element on a light cone
  • FIG. 10 shows a pyramidal block on the entrance window plane of a quartz rod according to another embodiment of the invention.
  • FIG. 11 illustrates a double wedge element located at the entrance window of a quartz rod according to another embodiment of the invention.
  • FIG. 12 shows an array of Fresnel lenses for a conventional or annular illumination profile
  • FIG. 13 illustrates an array of Fresnel lens segments for quadrupole illumination according to a further embodiment of the invention
  • FIGS. 14, 15 and 16 illustrate a further array of lens segments for another embodiment of the invention.
  • FIG. 17 illustrates an example of a quadrupole illumination mode intensity distribution
  • FIG. 18 illustrates an illumination intensity distribution after transmission through a quartz rod
  • FIG. 19 illustrates a quadrupole mode generating element rotated with respect to the orientation of a quartz rod
  • FIG. 20 shows the illumination intensity distribution before transmission through a quartz rod in an illumination system according to a further embodiment of the invention
  • FIG. 21 shows the resulting illumination intensity distribution after transmission through a quartz rod of the incident distribution shown in FIG. 20.
  • FIG. 22 is a plot of depth of focus against resolution for different illumination modes
  • FIG. 23( a ) and ( b ) show diffracted beam for on- and off-axis illumination modes
  • FIG. 24 shows diffracted beams for larger features for on-axis illumination
  • FIGS. 25 ( a ) and ( b ) show mixed illumination mode intensity distributions for relatively small and larger features, respectively;
  • FIG. 26 shows an apparatus for imaging a mask on a substrate, in which apparatus the invention can be embodied.
  • FIGS. 1 and 2 Two prior illumination systems are illustrated schematically in FIGS. 1 and 2. Referring to FIGS. 1 and 2, these systems have: light collecting/collimating optics 10 ; an axicon/zoom module 12 ; and light integrating and projecting optics 14 .
  • the systems define an optical axis 16 , a pupil plane 18 , and reticle plane 20 .
  • the axicon/zoom module 12 comprises a pair of axicons 22 , one concave and one convex, whose separation can be varied.
  • the module 12 also comprises a zoom lens 24 .
  • FIG. 3 For the case of conical axicons, some examples of the illumination intensity distributions achievable at the pupil plane 18 are shown in FIG. 3.
  • the spot size can be varied between states A and B by changing the zoom lens position.
  • the annularity can be changed between states A and C by varying the axicon opening (separation between the axicons).
  • an optical integrator is used.
  • this takes the form of a light pipe 26 , such as a glass, calcium fluoride or quartz rod.
  • a coupler 28 couples the illumination at the pupil plane 18 into the rod 26 , and rod exit imaging optics 30 are also provided.
  • a fly's eye element 32 acts as the integrator.
  • the fly's eye element 32 is a composite lens comprising an array or honeycomb of small lenses. Further objective lenses 34 , 36 complete the projection optics.
  • FIG. 4 A first embodiment of the invention is shown in FIG. 4.
  • the illumination system has: light collecting/collimating optics 10 ; an axicon/zoom module 12 ; multipole mode generating element 38 ; and light integrating and projecting optics 14 .
  • the components lie along optical axis 16 and are used to illuminate a reticle (not shown) located at reticle plane which then produces an exposure pattern in etch resist on a wafer (not shown), via a projection system (also not shown).
  • the system illustrated in FIG. 4 includes a quartz rod light integrator 26 , although the invention can be embodied in other systems such as that illustrated in FIG. 2.
  • FIG. 4 includes a quartz rod light integrator 26 , although the invention can be embodied in other systems such as that illustrated in FIG. 2.
  • FIG. 4 shows the multipole mode generating element 38 located between the axicon/zoom module 12 and the integrating/projecting optics 14 at the pupil plane 18 of the system.
  • the element is located elsewhere in the system, for example before the axicon/zoom module 12 , interposable within the axicon/zoom module 12 , and at the entrance window of the rod 26 .
  • the location is related to the particular multipole mode generating element 38 that is being used, as described in the following embodiments.
  • the optical axis 16 shown in FIG. 4 can of course be folded to produce a more compact illumination system.
  • FIG. 5 a An embodiment of the multipole mode generating element 38 is shown in FIG. 5 a.
  • the element 38 has four triangular blades 41 , 42 , 43 , 44 insertable into the beam path at the pupil plane and which form a Maltese cross 40 , which is also referred to herein as a Maltese aperture blade (MAB).
  • Each blade has an apex angle ⁇ .
  • FIG. 5 b shows the illumination intensity distribution resulting from the combination of an annular illumination mode produced by the axicon/zoom module and the MAB.
  • each pole can be varied by adjusting the axicon optics, the radial width of each pole can be varied by adjusting the zoom lens, and the tangential pole width can be changed by inserting another set of blades having a different apex angle ⁇ , such as Maltese cross 40 shown in FIG. 6.
  • apex angle
  • the illumination system can be used for conventional and/or annular modes, again with continuous variation.
  • Interposing blades of different angle ⁇ permits the tangential pole width to be changed in discrete steps.
  • the tangential pole width can be continuously varied by each arm of the Maltese cross comprising a stack of n blades, rotatable with respect to each other about the optical axis of the system where their vertices lie. If the angle of each separate blade is ⁇ , the overall segment angle can be continuously varied from ⁇ to n ⁇ , thus the tangential width of each pole can be varied between the angles ⁇ /2- ⁇ and ⁇ /2-n ⁇ .
  • the rotation of the blades to vary the effective width of each arm of the Maltese cross can be automated. A simple embodiment is shown in FIG.
  • FIG. 7 in which each stack consists of two blades.
  • FIG. 7 shows the blades of each stack spread out.
  • the Maltese cross 40 will look the same as that shown in FIG. 6.
  • Another variation is to have blades rotatable about radial axes to permit their effective width to be varied, for example two blades hinged in the form of a butterfly.
  • just two blades are used as the multipole mode generating element 38 in an optical system which includes a light pipe, such as a rectangular quartz rod 26 , as shown in the illumination system of FIG. 4.
  • a light pipe such as a rectangular quartz rod 26
  • One of the blades is oriented parallel to the short side of the rectangular cross-section of the light pipe and the other blade parallel to the long side. Due to the multiple reflections in the pipe, the resulting illumination mode is a mixture of annular and quadrupole.
  • the two-blade system can produce an illumination mode including a quadruple component with lower energy-loss than the Maltese cross arrangement, as there are fewer blades obstructing the light beam.
  • the blades are triangular and are like two perpendicular arms of a Maltese cross, e.g. blades 41 and 42 shown in FIG. 5 a.
  • One or both of the blades in this embodiment can be a composite blade comprising a stack of smaller rotatable blades as described above.
  • the blades are positioned along directions corresponding to orthogonal lines on the reticle, so that the light poles are located in each quadrant with centres forty five degrees from the orthogonal lines. This orientation can produce optimal projection of the lines, particularly for dense structures, such as for DRAM-like structures.
  • the orthogonal lines are generally referred to as horizontal and vertical.
  • a further variation on the above embodiments using blades is to make all the blades rotatable about the optical axis of the illumination system so that the position of the poles can be rotated.
  • the next embodiment of the invention has an axicon/zoom module with a pyramidal prism as the multipole mode generating element.
  • This also enables conventional, annular and quadrupole illumination to be produced with continuous variations of the modes.
  • FIG. 8 shows the optical components of an axicon/zoom module.
  • the right hand column in FIG. 8 shows the illumination intensity distributions at the pupil plane 18 for various positions of the axicon pair 22 a, 22 b and zoom lens 24 .
  • the axicon pair 22 comprises a pair of elements having conical surfaces, one concave 22 a, one convex 22 b, to produce circular and annular illumination patterns.
  • the fourth row shows the effect of separating a pyramid-shaped prism 50 from element 22 b.
  • the side of the element 22 b facing the pyramid 50 is concave pyramidal for receiving the pyramid 50 .
  • Element 22 b and pyramid 50 comprise a second axicon also known as a pyramidal axicon or pyramidon.
  • the pyramid-shaped prism 50 has a four-sided base, which consequently produces quadrupole mode illumination patterns, such as the four spots illustrated at the bottom in the right hand column in FIG. 8.
  • the illumination system of FIG. 8 is extremely versatile in that the illumination mode can be varied continuously from conventional to annular or quadrupole.
  • the zoom lens 24 sets the spot size or partial coherence factor, the axicon 22 determines the annularity, and a pyramidon 50 determines the quadrupolarity.
  • the axicon 22 determines the annularity
  • a pyramidon 50 determines the quadrupolarity.
  • light flux is redistributed rather than blocked, there is virtually no light loss, so that a high throughout can be maintained.
  • FIG. 9 shows one way of altering the angular distribution of the illumination using wedge-shaped optical elements.
  • a pair of incident light cones 52 with axes parallel to the optical axis emerge from the wedges 51 as light cones inclined at an angle to the optical axis.
  • FIG. 10 shows an embodiment of the invention employing this principle.
  • a pyramidal element 54 is positioned on the entrance plane of the rod 26 .
  • the inclined faces of the pyramid act as wedge-shaped refractive elements. Light incident on the pyramid is refracted in four directions, so quadrupole-like illumination is created.
  • FIG. 11 shows an embodiment comprising a pair of wedge-shaped elements 56 placed in series in front of the entrance window of the rod 26 .
  • the wedges 56 are rotated by 90° with respect to each other to tilt an incident light cone in two directions, which after multiple reflections in the rod 26 creates quadrupole-like illumination.
  • tilting the light cone in only two orthogonal directions can still produce quadrupole illumination.
  • a variation on the above pyramid and wedge embodiments is to replace the single large pyramid or wedges by an array of many small pyramids or wedges.
  • the light deviation with small elements can be obtained by diffractive as well as refractive effects.
  • FIGS. 12 and 13 Two further ways of generating desired illumination modes are shown in FIGS. 12 and 13.
  • a micro-lens array as shown in FIG. 12 can be used.
  • Each element of the hexagonal array 59 comprises a Fresnel lens or refractive lens.
  • the embodiment shown in FIG. 13 can be used.
  • Each element of the square array 61 of micro lenses comprises a segment or quadrant of a Fresnel lens 60 .
  • FIG. 13 One way of arranging the four quadrants of the lens 60 is shown in FIG. 13. The four lens quadrants create four illumination poles at the pupil plane.
  • FIGS. 14, 15 and 16 A further currently preferred embodiment of the multipole illumination mode generating element is illustrated with reference to FIGS. 14, 15 and 16 .
  • the element is an array of lens segments. This is particularly efficient because the multipole modes are generated without blocking any parts of the beam, so there is no intensity loss and throughput is maintained.
  • FIG. 14 shows where each of four lens segments, labelled N, S, E and W, effectively come from in a complete lens.
  • the lens segments and half lens segments can be tessellated to form rectangles, as shown in FIG. 15.
  • a complete surface can be covered by lens segments, which are preferably formed into rectangles and tiled in a staggered pattern as shown in FIG. 16.
  • the lens array can be formed on the surface of a quartz substrate.
  • the lens segments are formed of grooves etched in the surface to provide segments of a Fresnel lens.
  • the depth and width of the grooves is typically of the order of micrometers, each lens segment being of the order of millimeters in size and the array dimensions being centimeters.
  • Fresnel lenses are merely used as an example. Other types of lenses or diffractive optical elements may be used. The same or better performance can be achieved using conventional refractive lenses or lens segments in the array. However, Fresnel lenses may be preferred from a manufacturing point of view.
  • the lens segment shape determines the pole shape.
  • FIG. 17 shows an example of the pole pattern at the lens pupil.
  • each pole is a segment of an annulus.
  • the angle ⁇ of each pole is determined by the lens segment angle.
  • the radii ⁇ i and ⁇ 0 are adjustable by the axicon/zoom module.
  • a preferred value of a is 30°.
  • Different ⁇ values and pole patterns, such as dipole can be achieved by providing several different, interchangeable, lens arrays or diffractive optical elements. An automatic changer can be used to swap between such different multipole mode generating elements in the illumination system.
  • the optical elements discussed above can be positioned at the rod entrance, for example as shown in FIGS. 10 and 11, but it can be advantageous to place them at some intermediate cross section of the rod.
  • the intermediate positioning gives a more homogenous angular distribution of the incoming light cones when entering the optical refractive or diffractive elements.
  • the Fresnel lens arrays are particularly suited to excimer laser illumination systems and may be placed in the collimated laser beam, for example before the light enters the axicon/zoom module.
  • the above systems for producing quadrupole illumination result in intensity distribution patterns in which there is substantially no light around the x and y axes.
  • the four poles are located at ⁇ 45° and ⁇ 135° from the positive x axis of the orthogonal coordinate system.
  • the z axis lies along the optical axis of the system and the x and y axes are in the plane perpendicular to the optical axis.
  • the x-axis is conventionally perpendicular to the long side of the rectangular cross section of the quartz rod, and the y-axis is perpendicular to the short side.
  • the four poles each comprise a number of small dots because of the discrete number of internal reflections along the quartz rod.
  • FIG. 18 illustrates schematically each pole comprising a discrete number of light spots.
  • a new illumination mode can be produced which is a mix between quadrupole and annular. This is achieved by orienting the quadrupole mode generating element such that the regions of no light intensity are no longer centered on the x and y axes. For example, the blades of a Maltese cross aperture are rotated about the z-axis by a suitable angle as shown in FIG. 19.
  • FIG. 20 shows an example of the resulting illumination intensity distribution at the pupil plane after the axicon/zoom module and before entry to the quartz rod. The multiple internal reflections in the quartz rod impose a symmetry on the intensity distribution with respect to the x and y axes, resulting in the intensity distribution pattern shown in FIG.
  • the result is four regions of high light spot density along the 45° diagonal directions, one in each quadrant. Between these are regions of low light spot density around the x and y axes.
  • the spot densities depend on the positions of the four incident spots, i.e. the orientation of the quadrupole element and the other parameters of the illumination system such as the type of quadrupole element, the axicon and zoom positions.
  • the intensity distribution of the kind shown in FIG. 21 will be called “soft quadrupole”, in contrast to “hard quadrupole”, as shown in FIG. 17, in which there is no illumination in the vicinity of the x and y axes.
  • soft quadrupole illumination provides a compromise that improves on annular illumination for vertical and horizontal features, and improves on hard quadrupole illumination for diagonal features.
  • the soft quadrupole illumination had, in the annular sections, a relative intensity of 0.5 on the x and y axes and a relative intensity of 1.0 on the diagonals.
  • Quadrupole illumination can enhance the image definition and depth of focus of finely spaced periodic arrays.
  • the quadrupole is “softened” by using soft-edged illumination poles, by enlarging the poles or by adding illumination in the background.
  • a further embodiment of the present invention is to combine two kinds of illumination in one exposure—conventional illumination for the isolated structures and quadrupole for the dense periodic structures. Since the quadrupole is generally tuned to enhance structures that are at or near the diffraction limit of the lens, conventional illumination cannot resolve these features because the diffraction orders (+1, ⁇ 1 etc.) fall outside the pupil ( 70 ), as shown in FIG. 23( a ) for conventional on-axis illumination in contrast with FIG. 23( b ) for off-axis illumination, e.g. quadrupole.
  • FIGS. 25 ( a ) and ( b ) Examples of pole patterns for small and large features are illustrated in FIGS. 25 ( a ) and ( b ) respectively.
  • Phase shift masks can be used to enhance isolated features.
  • the illumination is set to low sigma (highly coherent, close to normal incidence).
  • the combination of quadrupole illumination (which does not enhance isolated features) for enhancing dense arrays and an intense low-sigma central pole for enhancement of isolated features, in combination with a phase shift mask may yield an overall improvement of depth of focus for all features.
  • the apparatus of this invention is particularly flexible and has minimal loss of light.
  • the embodiments of the invention described above are suitable for use in lithographic systems operating with ultraviolet illumination, for example using mercury arc lamps or excimer lasers as sources.
  • mercury arc lamps are used to produce “i-line” radiation with a wavelength of 365 nm
  • excimer lasers are used to produce deep ultraviolet radiation at wavelengths of 248 nm, 193 nm and 157 nm.
  • the illumination radiation passes through the axicon before the zoom lens, the sequence of these elements can be changed. This is a design choice and can depend on the radiation source that is used.
  • FIG. 26 a lithographic apparatus will now be described in which an illumination system as described above can be used to embody the invention, for repetitive imaging of a mask M (for example a reticle) on a substrate W (for example a resist-coated wafer).
  • a mask M for example a reticle
  • a substrate W for example a resist-coated wafer.
  • the particular apparatus shown here is transmissive; however, it may also be reflective or catadioptric, for example.
  • the apparatus comprises an illumination housing LH containing a radiation source and an illumination system according to the invention for supplying an illumination beam IB.
  • This beam passes through a diaphragm DR and is subsequently incident on the mask M which is arranged on a mask table MT, which is adjustable in position.
  • the mask table MT forms part of a projection column PC incorporating also a projection lens system PL which comprises a plurality of lens elements, only two of which, L 1 and L 2 , are shown in FIG. 26.
  • the projection lens system images the mask M onto the substrate W which is provided with a photoresist layer (not shown).
  • the substrate is provided on a substrate support WC which forms part of a substrate table WT on, for example, air bearings.
  • the substrate table WT is supported, for example by a granite base plate BP which closes the projection column PC at its lower side.
  • the substrate can be displaced in the x, y and z directions and rotated, for example about the z axis with the aid of the substrate table.
  • These adjustments are controlled by various servosystems such as a focus servosystem, for example an x, y, ⁇ 2 interferometer system cooperating with the substrate support, and an alignment system with which mask marks can be aligned with respect to substrate marks.
  • a focus servosystem for example an x, y, ⁇ 2 interferometer system cooperating with the substrate support
  • an alignment system with which mask marks can be aligned with respect to substrate marks are not shown in FIG. 26. Only the alignment beams (with their chief rays AB 1 , AB 2 ) of the alignment system are shown.
  • the mask must be imaged a number of times, in accordance with the number of ICs to be formed on the substrate, each time on a different target area of the substrate.
  • the depicted apparatus can be used in two different modes:
  • step mode the mask stage MT is kept essentially stationary, and an entire mask image is projected in one go (i.e. a single “flash”) onto a target area.
  • the substrate stage WT is then shifted in the x and/or y directions so that a different target area can be irradiated by the beam IB.
  • scan direction e.g. the x direction

Abstract

An illumination system for a microlithographic exposure apparatus comprises an adjustable axicon, a variable zoom element, and a multipole illumination mode generating element. By controlling the optical components, the illumination mode can be varied continuously between conventional, annular, and multipole.

Description

  • The present invention relates to an illumination system, in particular for a microlithographic exposure apparatus in which the illumination mode can be varied. More particularly, the invention relates to the application of such a device in a lithographic projection apparatus comprising: [0001]
  • a radiation system for supplying a projection beam of radiation; [0002]
  • a first object table provided with a mask holder for holding a mask, and connected to first positioning means; [0003]
  • a second object table provided with a substrate holder for holding a substrate, and connected to second positioning means; [0004]
  • a projection system for imaging an irradiated portion of the mask onto a target portion of the substrate. [0005]
  • For the sake of simplicity, the projection system may hereinafter be referred to as the “lens”; however, this term should be broadly interpreted as encompassing various types of projection system, including refractive optics, reflective optics, and catadioptric systems, for example. The radiation system may also include elements operating according to any of these principles for directing, shaping or controlling the projection beam of radiation and such elements may also be referred to below, collectively or singularly, as a “lens”. Any refractive, reflective or catadioptric elements in the radiation or illumination systems may be based on a substrate of glass or other suitable material, and may be provided with either single- or multi-layer coatings as desired. In addition, the first and second object tables may be referred to as the “mask table” and the “substrate table”, respectively. Further, the lithographic apparatus may be of a type having two or more mask tables and/or two or more substrate tables. In such “multiple stage” devices the additional tables may be used in parallel, or preparatory steps may be carried out on one or more stages while one or more other stages are being used for exposures. Twin stage lithographic apparatus are described in International Patent Applications W[0006] 098/28665 and WO98/40791.
  • Lithographic projection apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In such a case, the mask (reticle) may contain a circuit pattern corresponding to an individual layer of the IC, and this pattern can then be imaged onto a target area (die) on a substrate (silicon wafer) which has been coated with a layer of photosensitive material (resist). In general, a single wafer will contain a whole network of adjacent dies which are successively irradiated through the reticle, one at a time. In one type of lithographic projection apparatus, each die is irradiated by exposing the entire reticle pattern onto the die in one go; such an apparatus is commonly referred to as a waferstepper. In an alternative apparatus—which is commonly referred to as a step-and-scan apparatus each die is irradiated by progressively scanning the reticle pattern under the projection beam in a given reference direction (the “scanning” direction) while synchronously scanning the wafer table parallel or anti-parallel to this direction; since, in general, the projection system will have a magnification factor M (generally≦1), the speed v at which the wafer table is scanned will be a factor M times that at which the reticle table is scanned. More information with regard to lithographic devices as here described can be gleaned from International Patent Application WO 97/33205. [0007]
  • In one form of microlithography, a mask defining features is illuminated with radiation from an effective source having an intensity distribution at a pupil plane corresponding to a particular illumination mode. An image of the illuminated mask is projected onto a resist-coated semiconductor wafer. [0008]
  • One method to reduce feature size, i.e. increase resolution, in optical lithography, is off-axis illumination. With this technique, the mask is illuminated at non-perpendicular angles which may improve resolution, but particularly improves the process latitude by increasing the depth of focus and/or contrast. One known illumination mode is annular, in which the conventional zero order spot on the optical axis is changed to a ring-shaped intensity distribution. Another mode is multipole illumination in which several spots or beams are produced which are not on the optical axis. The spatial intensity distribution at the pupil plane is converted into an angular distribution at the mask plane. [0009]
  • Problems with the prior art include lack of flexibility of the illumination system such as only having fixed illumination modes or a limited range of modes or a difficulty in selecting or mixing desired modes. Some prior systems also have a high loss of energy by blocking parts of the illuminating radiation. [0010]
  • It is an object of the present invention to alleviate, at least partially, at least some of the above problems. [0011]
  • According to the present invention, this and other objects are achieved in a lithographic projection apparatus as described in the opening paragraph, wherein the adiation system comprises an illumination system which comprises: [0012]
  • an adjustable axicon; and [0013]
  • a variable zoom element; [0014]
  • characterized by further comprising an adjustable element for generating a multipole illumination mode, whereby at least one spatial parameter of said multipole illumination mode can be continuously varied. [0015]
  • The illumination system according to the invention enables a range of illumination modes to be produced including conventional, annular and quadrupole. The axicon, zoom and multipole generating element allow the spatial intensity distribution of the illumination mode to be continuously varied. The spatial intensity distribution results in angular or oblique illumination of the reticle which improves the process latitude of the lithographic exposure apparatus. [0016]
  • Although specific reference may be made in this text to the use of the apparatus according to the invention in the manufacture of ICs, it should be explicitly understood that such an apparatus has many other possible applications. For example, it may be employed in the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, liquid-crystal display panels, thin-film magnetic heads, etc. The skilled artisan will appreciate that, in the context of such alternative applications, any use of the term “reticle”, “wafer” or “die” in this text should be considered as being replaced by the more general terms “mask”, “substrate” and “target area”, respectively.[0017]
  • Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which: [0018]
  • FIGS. 1 and 2 illustrate prior illumination systems; [0019]
  • FIG. 3 illustrates some illumination intensity distributions obtainable with prior systems; [0020]
  • FIG. 4 shows an illumination system for use in the invention; [0021]
  • FIG. 5[0022] a shows an embodiment of a multipole mode generating element of the system of FIG. 4;
  • FIG. 5[0023] b shows an illumination intensity distribution obtained with the embodiment of FIG. 5a;
  • FIGS. 6 and 7 show further alternative embodiments to that of FIG. 5[0024] a;
  • FIG. 8 shows in cross-section another embodiment of an illumination system for use in the invention and the resulting illumination intensity distribution; [0025]
  • FIG. 9 illustrates the effect of a wedge-shaped optical element on a light cone; [0026]
  • FIG. 10 shows a pyramidal block on the entrance window plane of a quartz rod according to another embodiment of the invention; [0027]
  • FIG. 11 illustrates a double wedge element located at the entrance window of a quartz rod according to another embodiment of the invention; [0028]
  • FIG. 12 shows an array of Fresnel lenses for a conventional or annular illumination profile; [0029]
  • FIG. 13 illustrates an array of Fresnel lens segments for quadrupole illumination according to a further embodiment of the invention; [0030]
  • FIGS. 14, 15 and [0031] 16 illustrate a further array of lens segments for another embodiment of the invention;
  • FIG. 17 illustrates an example of a quadrupole illumination mode intensity distribution; [0032]
  • FIG. 18 illustrates an illumination intensity distribution after transmission through a quartz rod; [0033]
  • FIG. 19 illustrates a quadrupole mode generating element rotated with respect to the orientation of a quartz rod; [0034]
  • FIG. 20 shows the illumination intensity distribution before transmission through a quartz rod in an illumination system according to a further embodiment of the invention; [0035]
  • FIG. 21 shows the resulting illumination intensity distribution after transmission through a quartz rod of the incident distribution shown in FIG. 20; and [0036]
  • FIG. 22 is a plot of depth of focus against resolution for different illumination modes; [0037]
  • FIG. 23([0038] a) and (b) show diffracted beam for on- and off-axis illumination modes;
  • FIG. 24 shows diffracted beams for larger features for on-axis illumination; [0039]
  • FIGS. [0040] 25(a) and (b) show mixed illumination mode intensity distributions for relatively small and larger features, respectively;
  • FIG. 26 shows an apparatus for imaging a mask on a substrate, in which apparatus the invention can be embodied.[0041]
  • Two prior illumination systems are illustrated schematically in FIGS. 1 and 2. Referring to FIGS. 1 and 2, these systems have: light collecting/[0042] collimating optics 10; an axicon/zoom module 12; and light integrating and projecting optics 14. The systems define an optical axis 16, a pupil plane 18, and reticle plane 20. The axicon/zoom module 12 comprises a pair of axicons 22, one concave and one convex, whose separation can be varied. The module 12 also comprises a zoom lens 24.
  • For the case of conical axicons, some examples of the illumination intensity distributions achievable at the [0043] pupil plane 18 are shown in FIG. 3. The spot size can be varied between states A and B by changing the zoom lens position. Similarly, the annularity can be changed between states A and C by varying the axicon opening (separation between the axicons).
  • To improve the illumination homogeneity, an optical integrator is used. In FIG. 1 this takes the form of a [0044] light pipe 26, such as a glass, calcium fluoride or quartz rod. A coupler 28 couples the illumination at the pupil plane 18 into the rod 26, and rod exit imaging optics 30 are also provided. In FIG. 2 a fly's eye element 32 acts as the integrator. The fly's eye element 32 is a composite lens comprising an array or honeycomb of small lenses. Further objective lenses 34, 36 complete the projection optics.
  • Further details of such illumination systems are disclosed in EP-A-687 956. The present invention can be embodied in illumination systems as described above, and in the following description like items are given like reference numerals. [0045]
  • The embodiments of the invention described below relate to quadrupole illumination modes as a particular example of multipole illumination. Other modes are of course possible with the invention, such as dipole. [0046]
  • A first embodiment of the invention is shown in FIG. 4. The illumination system has: light collecting/[0047] collimating optics 10; an axicon/zoom module 12; multipole mode generating element 38; and light integrating and projecting optics 14. The components lie along optical axis 16 and are used to illuminate a reticle (not shown) located at reticle plane which then produces an exposure pattern in etch resist on a wafer (not shown), via a projection system (also not shown). The system illustrated in FIG. 4 includes a quartz rod light integrator 26, although the invention can be embodied in other systems such as that illustrated in FIG. 2. FIG. 4 shows the multipole mode generating element 38 located between the axicon/zoom module 12 and the integrating/projecting optics 14 at the pupil plane 18 of the system. Several embodiments will be described later in which the element is located elsewhere in the system, for example before the axicon/zoom module 12, interposable within the axicon/zoom module 12, and at the entrance window of the rod 26. The location is related to the particular multipole mode generating element 38 that is being used, as described in the following embodiments. The optical axis 16 shown in FIG. 4 can of course be folded to produce a more compact illumination system.
  • An embodiment of the multipole [0048] mode generating element 38 is shown in FIG. 5a. The element 38 has four triangular blades 41, 42, 43, 44 insertable into the beam path at the pupil plane and which form a Maltese cross 40, which is also referred to herein as a Maltese aperture blade (MAB). Each blade has an apex angle β. FIG. 5b shows the illumination intensity distribution resulting from the combination of an annular illumination mode produced by the axicon/zoom module and the MAB. The distribution has four light beams or poles 45. This embodiment enables continuously variable quadrupole illumination modes to be produced. The radial position of each pole can be varied by adjusting the axicon optics, the radial width of each pole can be varied by adjusting the zoom lens, and the tangential pole width can be changed by inserting another set of blades having a different apex angle β, such as Maltese cross 40 shown in FIG. 6. By removing the blades altogether, the illumination system can be used for conventional and/or annular modes, again with continuous variation.
  • Interposing blades of different angle β permits the tangential pole width to be changed in discrete steps. According to a further embodiment of the invention, the tangential pole width can be continuously varied by each arm of the Maltese cross comprising a stack of n blades, rotatable with respect to each other about the optical axis of the system where their vertices lie. If the angle of each separate blade is β, the overall segment angle can be continuously varied from β to nβ, thus the tangential width of each pole can be varied between the angles π/2-β and π/2-nβ. The rotation of the blades to vary the effective width of each arm of the Maltese cross can be automated. A simple embodiment is shown in FIG. 7 in which each stack consists of two blades. FIG. 7 shows the blades of each stack spread out. When the blades are aligned, the [0049] Maltese cross 40 will look the same as that shown in FIG. 6. Another variation is to have blades rotatable about radial axes to permit their effective width to be varied, for example two blades hinged in the form of a butterfly.
  • According to a further embodiment, just two blades are used as the multipole [0050] mode generating element 38 in an optical system which includes a light pipe, such as a rectangular quartz rod 26, as shown in the illumination system of FIG. 4. One of the blades is oriented parallel to the short side of the rectangular cross-section of the light pipe and the other blade parallel to the long side. Due to the multiple reflections in the pipe, the resulting illumination mode is a mixture of annular and quadrupole. The two-blade system can produce an illumination mode including a quadruple component with lower energy-loss than the Maltese cross arrangement, as there are fewer blades obstructing the light beam. In one example the blades are triangular and are like two perpendicular arms of a Maltese cross, e.g. blades 41 and 42 shown in FIG. 5a. One or both of the blades in this embodiment can be a composite blade comprising a stack of smaller rotatable blades as described above.
  • Typically the blades are positioned along directions corresponding to orthogonal lines on the reticle, so that the light poles are located in each quadrant with centres forty five degrees from the orthogonal lines. This orientation can produce optimal projection of the lines, particularly for dense structures, such as for DRAM-like structures. The orthogonal lines are generally referred to as horizontal and vertical. [0051]
  • A further variation on the above embodiments using blades is to make all the blades rotatable about the optical axis of the illumination system so that the position of the poles can be rotated. [0052]
  • The next embodiment of the invention has an axicon/zoom module with a pyramidal prism as the multipole mode generating element. This also enables conventional, annular and quadrupole illumination to be produced with continuous variations of the modes. FIG. 8 shows the optical components of an axicon/zoom module. The right hand column in FIG. 8 shows the illumination intensity distributions at the [0053] pupil plane 18 for various positions of the axicon pair 22 a, 22 b and zoom lens 24. The axicon pair 22 comprises a pair of elements having conical surfaces, one concave 22 a, one convex 22 b, to produce circular and annular illumination patterns. The fourth row shows the effect of separating a pyramid-shaped prism 50 from element 22 b. The side of the element 22 b facing the pyramid 50 is concave pyramidal for receiving the pyramid 50. Element 22 b and pyramid 50 comprise a second axicon also known as a pyramidal axicon or pyramidon. The pyramid-shaped prism 50 has a four-sided base, which consequently produces quadrupole mode illumination patterns, such as the four spots illustrated at the bottom in the right hand column in FIG. 8.
  • The illumination system of FIG. 8 is extremely versatile in that the illumination mode can be varied continuously from conventional to annular or quadrupole. The [0054] zoom lens 24 sets the spot size or partial coherence factor, the axicon 22 determines the annularity, and a pyramidon 50 determines the quadrupolarity. In addition, since light flux is redistributed rather than blocked, there is virtually no light loss, so that a high throughout can be maintained.
  • Referring to the system of FIG. 1, as discussed earlier, spatial intensity distribution at the [0055] pupil plane 18 corresponds to an angular distribution at the entrance and exit planes of the quartz rod 26. Angular or off-axis illumination at the reticle can improve process latitude. FIG. 9 shows one way of altering the angular distribution of the illumination using wedge-shaped optical elements. A pair of incident light cones 52 with axes parallel to the optical axis emerge from the wedges 51 as light cones inclined at an angle to the optical axis.
  • FIG. 10 shows an embodiment of the invention employing this principle. A [0056] pyramidal element 54 is positioned on the entrance plane of the rod 26. The inclined faces of the pyramid act as wedge-shaped refractive elements. Light incident on the pyramid is refracted in four directions, so quadrupole-like illumination is created. FIG. 11 shows an embodiment comprising a pair of wedge-shaped elements 56 placed in series in front of the entrance window of the rod 26. The wedges 56 are rotated by 90° with respect to each other to tilt an incident light cone in two directions, which after multiple reflections in the rod 26 creates quadrupole-like illumination. Thus tilting the light cone in only two orthogonal directions can still produce quadrupole illumination. Once again, since light flux is redistributed rather than blocked, there is virtually no light loss, so that a high throughout can be maintained.
  • A variation on the above pyramid and wedge embodiments is to replace the single large pyramid or wedges by an array of many small pyramids or wedges. The light deviation with small elements can be obtained by diffractive as well as refractive effects. In the case of an array of wedges, one can alternate the orientation of the wedge faces within the array rather than stacking pairs of wedges on top of each other. [0057]
  • Two further ways of generating desired illumination modes are shown in FIGS. 12 and 13. For conventional and annular illumination, a micro-lens array as shown in FIG. 12 can be used. Each element of the [0058] hexagonal array 59 comprises a Fresnel lens or refractive lens. For flexible quadrupole illumination, the embodiment shown in FIG. 13 can be used. Each element of the square array 61 of micro lenses comprises a segment or quadrant of a Fresnel lens 60. One way of arranging the four quadrants of the lens 60 is shown in FIG. 13. The four lens quadrants create four illumination poles at the pupil plane. Once again, since light flux is redistributed rather than blocked, there is virtually no light loss, so that a high throughout can be maintained.
  • A further currently preferred embodiment of the multipole illumination mode generating element is illustrated with reference to FIGS. 14, 15 and [0059] 16. The element is an array of lens segments. This is particularly efficient because the multipole modes are generated without blocking any parts of the beam, so there is no intensity loss and throughput is maintained. FIG. 14 shows where each of four lens segments, labelled N, S, E and W, effectively come from in a complete lens. The lens segments and half lens segments can be tessellated to form rectangles, as shown in FIG. 15. A complete surface can be covered by lens segments, which are preferably formed into rectangles and tiled in a staggered pattern as shown in FIG. 16.
  • In practice the lens array can be formed on the surface of a quartz substrate. The lens segments are formed of grooves etched in the surface to provide segments of a Fresnel lens. The depth and width of the grooves is typically of the order of micrometers, each lens segment being of the order of millimeters in size and the array dimensions being centimeters. [0060]
  • Fresnel lenses are merely used as an example. Other types of lenses or diffractive optical elements may be used. The same or better performance can be achieved using conventional refractive lenses or lens segments in the array. However, Fresnel lenses may be preferred from a manufacturing point of view. [0061]
  • The lens segment shape determines the pole shape. FIG. 17 shows an example of the pole pattern at the lens pupil. In this case, each pole is a segment of an annulus. The angle α of each pole is determined by the lens segment angle. The radii σ[0062] i and σ0, are adjustable by the axicon/zoom module. A preferred value of a is 30°. Different α values and pole patterns, such as dipole, can be achieved by providing several different, interchangeable, lens arrays or diffractive optical elements. An automatic changer can be used to swap between such different multipole mode generating elements in the illumination system.
  • The optical elements discussed above can be positioned at the rod entrance, for example as shown in FIGS. 10 and 11, but it can be advantageous to place them at some intermediate cross section of the rod. The intermediate positioning gives a more homogenous angular distribution of the incoming light cones when entering the optical refractive or diffractive elements. The Fresnel lens arrays are particularly suited to excimer laser illumination systems and may be placed in the collimated laser beam, for example before the light enters the axicon/zoom module. [0063]
  • The above systems for producing quadrupole illumination result in intensity distribution patterns in which there is substantially no light around the x and y axes. The four poles are located at ±45° and ±135° from the positive x axis of the orthogonal coordinate system. The z axis lies along the optical axis of the system and the x and y axes are in the plane perpendicular to the optical axis. In a system including an integrating quartz rod (e.g. FIG. 1), the x-axis is conventionally perpendicular to the long side of the rectangular cross section of the quartz rod, and the y-axis is perpendicular to the short side. After transmission through the quartz rod, the four poles each comprise a number of small dots because of the discrete number of internal reflections along the quartz rod. FIG. 18 illustrates schematically each pole comprising a discrete number of light spots. [0064]
  • According to a further embodiment of the invention, a new illumination mode can be produced which is a mix between quadrupole and annular. This is achieved by orienting the quadrupole mode generating element such that the regions of no light intensity are no longer centered on the x and y axes. For example, the blades of a Maltese cross aperture are rotated about the z-axis by a suitable angle as shown in FIG. 19. FIG. 20 shows an example of the resulting illumination intensity distribution at the pupil plane after the axicon/zoom module and before entry to the quartz rod. The multiple internal reflections in the quartz rod impose a symmetry on the intensity distribution with respect to the x and y axes, resulting in the intensity distribution pattern shown in FIG. 21, after transmission through the quartz rod. As can be seen in FIG. 21, the result is four regions of high light spot density along the 45° diagonal directions, one in each quadrant. Between these are regions of low light spot density around the x and y axes. The spot densities depend on the positions of the four incident spots, i.e. the orientation of the quadrupole element and the other parameters of the illumination system such as the type of quadrupole element, the axicon and zoom positions. [0065]
  • Research shows that for exposing horizontal or vertical features, quadrupole illumination results in larger depths of focus than annular illumination. This is particularly true for dense periodic features. However, for equivalent features oriented around 45° with respect to the x and y axes, the imaging capability with quadrupole illumination will be inferior to annular illumination. This is illustrated in FIG. 22, where the depth of focus (DOF) in micrometers is schematically plotted against resolution (λ/NA) for (a) conventional circular illumination, (b) annular illumination, (c) quadrupole illumination for horizontal/vertical features and (d) quadrupole illumination for features/lines at 45°. To benefit from the improved depth of focus, the quadrupole parameters must, of course, be selected according to the periodicity of the pattern being imaged. [0066]
  • The intensity distribution of the kind shown in FIG. 21 will be called “soft quadrupole”, in contrast to “hard quadrupole”, as shown in FIG. 17, in which there is no illumination in the vicinity of the x and y axes. Studies indicate that soft quadrupole illumination provides a compromise that improves on annular illumination for vertical and horizontal features, and improves on hard quadrupole illumination for diagonal features. In simulations, the soft quadrupole illumination had, in the annular sections, a relative intensity of 0.5 on the x and y axes and a relative intensity of 1.0 on the diagonals. [0067]
  • Quadrupole illumination can enhance the image definition and depth of focus of finely spaced periodic arrays. Previously it has not been considered very suitable for use with aperiodic and widely spaced (isolated) structures. Where such structures are used in combination with dense periodic arrays (such as edge lines, conductors leading to contact pads, mixed logic and memory circuits, etc.) a compromise has to be found between the use of quadrupole or conventional illumination conditions. Typically this means the quadrupole is “softened” by using soft-edged illumination poles, by enlarging the poles or by adding illumination in the background. [0068]
  • A further embodiment of the present invention is to combine two kinds of illumination in one exposure—conventional illumination for the isolated structures and quadrupole for the dense periodic structures. Since the quadrupole is generally tuned to enhance structures that are at or near the diffraction limit of the lens, conventional illumination cannot resolve these features because the diffraction orders (+1, −1 etc.) fall outside the pupil ([0069] 70), as shown in FIG. 23(a) for conventional on-axis illumination in contrast with FIG. 23(b) for off-axis illumination, e.g. quadrupole.
  • However, for isolated features the addition of light intensity to supplement the off-axis illumination will aid the printing of these features. General background illumination will overwhelm the off-axis illumination, so the proportion of off-axis and conventional illumination needs to be controlled. Mixing a well-defined, narrow on-axis beam of light with the off-axis illumination in a fixed ratio can be achieved, for example with a multipole diffractive optical element. [0070]
  • Furthermore, larger features in the image field can be imaged perfectly well with the conventional illumination component of the light whose first order diffraction components do not fall outside the pupil, as shown in FIG. 24. Since the separate illumination sources are not coherent, the images do not interfere with one another, and merely add to each other. Examples of pole patterns for small and large features are illustrated in FIGS. [0071] 25(a) and (b) respectively.
  • Phase shift masks can be used to enhance isolated features. To use these masks the illumination is set to low sigma (highly coherent, close to normal incidence). According to another embodiment of the invention, the combination of quadrupole illumination (which does not enhance isolated features) for enhancing dense arrays and an intense low-sigma central pole for enhancement of isolated features, in combination with a phase shift mask, may yield an overall improvement of depth of focus for all features. [0072]
  • The apparatus of this invention is particularly flexible and has minimal loss of light. The embodiments of the invention described above are suitable for use in lithographic systems operating with ultraviolet illumination, for example using mercury arc lamps or excimer lasers as sources. Typically, mercury arc lamps are used to produce “i-line” radiation with a wavelength of 365 nm, and excimer lasers are used to produce deep ultraviolet radiation at wavelengths of 248 nm, 193 nm and 157 nm. [0073]
  • Although in the illustrated examples the illumination radiation passes through the axicon before the zoom lens, the sequence of these elements can be changed. This is a design choice and can depend on the radiation source that is used. [0074]
  • Referring to FIG. 26, a lithographic apparatus will now be described in which an illumination system as described above can be used to embody the invention, for repetitive imaging of a mask M (for example a reticle) on a substrate W (for example a resist-coated wafer). The particular apparatus shown here is transmissive; however, it may also be reflective or catadioptric, for example. [0075]
  • The apparatus comprises an illumination housing LH containing a radiation source and an illumination system according to the invention for supplying an illumination beam IB. This beam passes through a diaphragm DR and is subsequently incident on the mask M which is arranged on a mask table MT, which is adjustable in position. The mask table MT forms part of a projection column PC incorporating also a projection lens system PL which comprises a plurality of lens elements, only two of which, L[0076] 1 and L2, are shown in FIG. 26. The projection lens system images the mask M onto the substrate W which is provided with a photoresist layer (not shown). The substrate is provided on a substrate support WC which forms part of a substrate table WT on, for example, air bearings. The projection lens system has, for example a magnification M=⅕, a numerical aperture NA >0.48 and a diffraction-limited image field with a diameter of, for example 22 mm. The substrate table WT is supported, for example by a granite base plate BP which closes the projection column PC at its lower side.
  • The substrate can be displaced in the x, y and z directions and rotated, for example about the z axis with the aid of the substrate table. These adjustments are controlled by various servosystems such as a focus servosystem, for example an x, y, φ[0077] 2 interferometer system cooperating with the substrate support, and an alignment system with which mask marks can be aligned with respect to substrate marks. These servosystems are not shown in FIG. 26. Only the alignment beams (with their chief rays AB1, AB2) of the alignment system are shown.
  • The mask must be imaged a number of times, in accordance with the number of ICs to be formed on the substrate, each time on a different target area of the substrate. [0078]
  • The depicted apparatus can be used in two different modes: [0079]
  • In step mode, the mask stage MT is kept essentially stationary, and an entire mask image is projected in one go (i.e. a single “flash”) onto a target area. The substrate stage WT is then shifted in the x and/or y directions so that a different target area can be irradiated by the beam IB. [0080]
  • In scan mode, essentially the same scenario applies, except that a given target area is not exposed in a single “flash”. Instead, the mask stage MT is movable in a given direction (the so-called “scan direction”, e.g. the x direction) with a speed v, so that the projection beam [0081] 11 is caused to scan over a mask image; concurrently, the substrate stage WT is simultaneously moved in the same or opposite direction at a speed V=Mv, in which M is the magnification of the lens PL (e.g. M=⅕). In this manner, a relatively large target area can be exposed, without having to compromise on resolution.
  • These processes are repeated until all areas of the substrate have been illuminated. [0082]
  • Whilst we have described above specific embodiments of the invention it will be appreciated that the invention may be practised otherwise than described. [0083]

Claims (29)

1. A lithography apparatus comprising:
a radiation system for supplying a projection beam of radiation;
a first object table provided with a mask holder for holding a mask, and connected to first positioning means;
a second object table provided with a substrate holder for holding a substrate, and connected to second positioning means;
a projection system for imaging an irradiated portion of the mask onto a target portion of the substrate,
wherein said radiation system comprises an illumination system which comprises:
an adjustable axicon; and
a variable zoom element;
characterized by further comprising an adjustable element for generating a multipole illumination mode, whereby at least one spatial parameter of said multipole illumination mode can be continuously varied.
2. An apparatus according to
claim 1
, further characterized in that the illumination mode is quadrupole.
3. An apparatus according to
claim 1
or
2
, further characterized in that the multipole mode generating element (40) comprises one or more blades insertable into the beam path of the illumination system following the axicon and zoom element.
4. An apparatus according to
claim 3
, further characterized in that said blades comprise a Maltese cross.
5. An apparatus according to
claim 3
, further characterized in that said blades comprise a pair of triangular blades.
6. An apparatus according to
claim 3
,
4
or 5, further characterized in that the effective width of at least one of said blades is continuously variable.
7. An apparatus according to
claim 6
, further characterized in that said blade is a composite blade comprising a stack of blades moveable with respect to each other to vary said effective width.
8. An apparatus according to
claim 1
or
2
, further characterized in that said element for generating a multipole illumination mode comprises a diffractive and/or refractive component.
9. An apparatus according to
claim 8
, further characterized in that said component comprises at least one pyramidal block.
10. An apparatus according to
claim 8
or
9
, further characterized in that said component comprises a single pyramidal block.
11. An apparatus according to
claim 8
or
9
, further characterized in that said component comprises an array of pyramidal blocks.
12. An apparatus according to
claim 8
, further characterized in that said component comprises at least one wedge-shaped block.
13. An apparatus according to
claim 8
, further characterized in that said component comprises at least one pair of orthogonally oriented wedge-shaped blocks.
14. An apparatus according to
claim 13
, further characterized in that the two blocks of the said pair of wedge-shaped blocks are disposed in series in the beam path.
15. An apparatus according to
claim 13
or
14
, further characterized by comprising an array of said pairs of wedge-shaped blocks.
16. An apparatus according to
claim 1
or
2
, further characterized in that said element for generating a multipole illumination mode comprises at least one array of lenses or diffractive optical elements.
17. An apparatus according to
claim 16
, further characterized in that said at least one array comprises an array of Fresnel lens segments.
18. An apparatus according to
claim 16
or
17
, further characterized by comprising a plurality of arrays, interchangeably positionable in the radiation path.
19. An apparatus according to any one of the preceding claims, further characterized in that the multipole mode generating element is rotatable about an axis parallel to the principal optical axis of the system.
20. An apparatus according to any one of the preceding claims, further characterized by further comprising a light pipe having a quadrilateral cross-section.
21. An apparatus according to
claim 20
, further characterized in that the multipole mode generating element is disposed adjacent to the light pipe entrance.
22. An apparatus according to
claim 20
, further characterized in that the multipole mode generating element is disposed at an intermediate position along the light pipe.
23. An apparatus according to
claim 20
,
21
or 22, further characterized in that the light pipe comprises a glass, quartz or calcium-fluoride rod.
24. An apparatus according to any one of
claims 20
to
23
, further characterized in that the principal transverse axes of the multipole mode generating element lie along directions angularly displaced with respect to the principal transverse axes of the light pipe.
25. An apparatus according to any one of the preceding claims, wherein the radiation system further comprises an excimer laser source, and wherein the adjustable multipole mode generating element is locatable in the collimated beam path of the source.
26. An apparatus according to any one of the preceding claims, wherein the multipole illumination mode comprises an on-axis pole and at least one off-axis pole.
27. A device manufacturing method comprising the steps of:
providing a substrate which is at least partially covered by a layer of energy-sensitive material;
providing a mask containing a pattern;
using a beam of radiation to project at least part of the mask pattern onto a target area of the layer of energy-sensitive material,
characterized by generating a multipole illumination mode from said radiation before projection, using an adjustable axicon, variable zoom element, and further adjustable element, whereby at least one spatial parameter of said multipole illumination can be continuously varied.
28. A method according to
claim 27
, further comprising generating an on-axis illumination pole in addition to off-axis poles of the multipole illumination mode.
29. A device manufactured in accordance with the method of
claim 27
or
28
.
US09/287,014 1998-04-08 1999-04-06 Lithography apparatus Expired - Lifetime US6452662B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/177,134 US20020167653A1 (en) 1998-04-08 2002-06-24 Lithography apparatus
US10/641,307 US7061583B2 (en) 1998-04-08 2003-08-15 Lithography apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP98201110 1998-04-08
EP98201110 1998-04-08
EP98201110.8 1998-04-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/177,134 Continuation US20020167653A1 (en) 1998-04-08 2002-06-24 Lithography apparatus

Publications (2)

Publication Number Publication Date
US20010046038A1 true US20010046038A1 (en) 2001-11-29
US6452662B2 US6452662B2 (en) 2002-09-17

Family

ID=8233575

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/287,014 Expired - Lifetime US6452662B2 (en) 1998-04-08 1999-04-06 Lithography apparatus
US10/177,134 Abandoned US20020167653A1 (en) 1998-04-08 2002-06-24 Lithography apparatus
US10/641,307 Expired - Lifetime US7061583B2 (en) 1998-04-08 2003-08-15 Lithography apparatus

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/177,134 Abandoned US20020167653A1 (en) 1998-04-08 2002-06-24 Lithography apparatus
US10/641,307 Expired - Lifetime US7061583B2 (en) 1998-04-08 2003-08-15 Lithography apparatus

Country Status (5)

Country Link
US (3) US6452662B2 (en)
JP (1) JP3993335B2 (en)
KR (1) KR100563124B1 (en)
DE (1) DE69931690T2 (en)
TW (1) TW419422B (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020085276A1 (en) * 2000-11-29 2002-07-04 Nikon Corporation Illumination optical apparatus and exposure apparatus provided with illumination optical apparatus
US20030038931A1 (en) * 2001-08-23 2003-02-27 Nikon Corporation Illumination optical apparatus, exposure apparatus and method of exposure
US6563567B1 (en) 1998-12-17 2003-05-13 Nikon Corporation Method and apparatus for illuminating a surface using a projection imaging apparatus
US20030198872A1 (en) * 2002-04-23 2003-10-23 Kenji Yamazoe Method for setting mask pattern and illumination condition
US20030197846A1 (en) * 2002-04-23 2003-10-23 Asml Us, Inc. System and method for improving line width control in a lithography device using an illumination system having pre-numerical aperture control
EP1369079A1 (en) * 2002-05-28 2003-12-10 Alcon Inc. Zoom device for eye tracker control system and associated methods
US20040012766A1 (en) * 1998-03-19 2004-01-22 Nikon Corporation Illumination optical apparatus and exposure apparatus
WO2004040378A2 (en) * 2002-10-29 2004-05-13 Carl Zeiss Smt Ag Illumination device for a microlithographic projection-exposure system
EP1434097A2 (en) * 2002-12-23 2004-06-30 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1434092A1 (en) * 2002-12-23 2004-06-30 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
WO2004102230A1 (en) * 2003-05-13 2004-11-25 Carl Zeiss Smt Ag Polarization-optimized axicon system, and an illuminating system for microlithographic projection system having such an axicon system
US6836365B2 (en) 1999-04-15 2004-12-28 Nikon Corporation Diffractive optical element, method of fabricating the element, illumination device provided with the element, projection exposure apparatus, exposure method, optical homogenizer, and method of fabricating the optical homogenizer
US20050012913A1 (en) * 2003-05-30 2005-01-20 Asml Netherlands B.V. Masking device, lithographic apparatus, and device manufacturing method
US6888615B2 (en) * 2002-04-23 2005-05-03 Asml Holding N.V. System and method for improving linewidth control in a lithography device by varying the angular distribution of light in an illuminator as a function of field position
US20050094121A1 (en) * 2003-04-17 2005-05-05 Asml Netherlands B.V. Illuminator controlled tone reversal printing
US20060146384A1 (en) * 2003-05-13 2006-07-06 Carl Zeiss Smt Ag Optical beam transformation system and illumination system comprising an optical beam transformation system
US20070216887A1 (en) * 2004-04-23 2007-09-20 Carl Zeiss Smt Ag Illumination System for a Microlithographic Projection Exposure Apparatus
US20080062541A1 (en) * 2006-09-12 2008-03-13 Canon Kabushiki Kaisha Illumination optical system, exposure apparatus, and device manufacturing method
US20080285000A1 (en) * 2007-05-17 2008-11-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20090092926A1 (en) * 2007-10-05 2009-04-09 Alois Gutmann Lithography Systems and Methods of Manufacturing Using Thereof
US20090168040A1 (en) * 2006-04-12 2009-07-02 Dai Nippon Printing Co., Ltd. Diffractive optical device, and aligner comprising that device
WO2010034433A1 (en) * 2008-09-26 2010-04-01 Carl Zeiss Sms Gmbh Microscope for reticle inspection with variable illumination settings
US20100142049A1 (en) * 2008-12-08 2010-06-10 Disco Corporation Polarizing device and laser unit
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
EP2654073A3 (en) * 2003-10-28 2014-07-30 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US20140240705A1 (en) * 2013-02-27 2014-08-28 Kabushiki Kaisha Toshiba Semiconductor device, reticle method for checking position misalignment and method for manufacturing position misalignment checking mark
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
CN107247297A (en) * 2017-06-22 2017-10-13 山东航天电子技术研究所 A kind of built-up shaft pyramid device
CN114355731A (en) * 2020-10-13 2022-04-15 中国科学院微电子研究所 Wafer edge exposure system and method
CN114384764A (en) * 2020-10-20 2022-04-22 上海微电子装备(集团)股份有限公司 Exposure system, photoetching machine and exposure method

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049505A1 (en) * 1998-03-24 1999-09-30 Nikon Corporation Illuminator, exposing method and apparatus, and device manufacturing method
JP3959200B2 (en) * 1999-03-19 2007-08-15 株式会社東芝 Semiconductor device manufacturing equipment
TW587199B (en) 1999-09-29 2004-05-11 Asml Netherlands Bv Lithographic method and apparatus
TW546550B (en) * 1999-12-13 2003-08-11 Asml Netherlands Bv An illuminator for a lithography apparatus, a lithography apparatus comprising such an illuminator, and a manufacturing method employing such a lithography apparatus
DE10010131A1 (en) * 2000-03-03 2001-09-06 Zeiss Carl Microlithography projection exposure with tangential polarization involves using light with preferred direction of polarization oriented perpendicularly with respect to plane of incidence
JP3413160B2 (en) * 2000-06-15 2003-06-03 キヤノン株式会社 Illumination apparatus and scanning exposure apparatus using the same
DE60134922D1 (en) * 2000-08-14 2008-09-04 Elith Llc Lithographic apparatus
US6859262B2 (en) * 2000-12-06 2005-02-22 Tegal Corporation Redistributing radiation guide
JP2002359176A (en) * 2001-05-31 2002-12-13 Canon Inc Luminaire, illumination control method, aligner, device and manufacturing method thereof
KR100431883B1 (en) * 2001-11-05 2004-05-17 삼성전자주식회사 Projection Method and projection system
US6961194B2 (en) * 2001-12-31 2005-11-01 Texas Instruments Incorporated Integrated TIR prism and lens element
US7333178B2 (en) * 2002-03-18 2008-02-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7170587B2 (en) * 2002-03-18 2007-01-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7049592B2 (en) * 2002-07-11 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2004063988A (en) * 2002-07-31 2004-02-26 Canon Inc Illumination optical system, aligner having the system, and method of manufacturing device
JP4332331B2 (en) * 2002-08-05 2009-09-16 キヤノン株式会社 Exposure method
US6703625B1 (en) 2002-12-31 2004-03-09 Intel Corporation Methods and apparatus for off-axis lithographic illumination
US7471375B2 (en) * 2003-02-11 2008-12-30 Asml Netherlands B.V. Correction of optical proximity effects by intensity modulation of an illumination arrangement
US6839125B2 (en) * 2003-02-11 2005-01-04 Asml Netherlands B.V. Method for optimizing an illumination source using full resist simulation and process window response metric
US7180576B2 (en) * 2003-02-11 2007-02-20 Asml Netherlands B.V. Exposure with intensity balancing to mimic complex illuminator shape
US7245356B2 (en) * 2003-02-11 2007-07-17 Asml Netherlands B.V. Lithographic apparatus and method for optimizing illumination using a photolithographic simulation
US7030966B2 (en) * 2003-02-11 2006-04-18 Asml Netherlands B.V. Lithographic apparatus and method for optimizing an illumination source using photolithographic simulations
US6864956B1 (en) 2003-03-19 2005-03-08 Silterra Malaysia Sdn. Bhd. Dual phase grating alignment marks
US6842223B2 (en) * 2003-04-11 2005-01-11 Nikon Precision Inc. Enhanced illuminator for use in photolithographic systems
KR100518586B1 (en) * 2003-07-24 2005-10-04 삼성전자주식회사 Diffractive optical element, illumination system comprising same, and method for fabricating semiconductor device using same
KR100530500B1 (en) 2003-07-31 2005-11-22 삼성전자주식회사 Method and apparatus for monitoring a photolithography process
US7542217B2 (en) * 2003-12-19 2009-06-02 Carl Zeiss Smt Ag Beam reshaping unit for an illumination system of a microlithographic projection exposure apparatus
US20070019179A1 (en) 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
KR101295439B1 (en) 2004-01-16 2013-08-09 칼 짜이스 에스엠티 게엠베하 Polarization-modulating optical element
US8270077B2 (en) 2004-01-16 2012-09-18 Carl Zeiss Smt Gmbh Polarization-modulating optical element
TWI395068B (en) 2004-01-27 2013-05-01 尼康股份有限公司 Optical system, exposure device and method of exposure
JP4497949B2 (en) * 2004-02-12 2010-07-07 キヤノン株式会社 Exposure equipment
US7046339B2 (en) * 2004-03-05 2006-05-16 Micron Technology, Inc. Optimized optical lithography illumination source for use during the manufacture of a semiconductor device
US20050225740A1 (en) * 2004-03-31 2005-10-13 Padlyar Sushil D Light source for photolithography
US7312850B2 (en) * 2004-04-02 2007-12-25 Asml Netherlands B.V. Lithographic apparatus, illumination system, and optical element for rotating an intensity distribution
US7324280B2 (en) * 2004-05-25 2008-01-29 Asml Holding N.V. Apparatus for providing a pattern of polarization
US8134687B2 (en) * 2004-08-23 2012-03-13 Carl Zeiss Smt Gmbh Illumination system of a microlithographic exposure apparatus
US7372540B2 (en) * 2004-10-12 2008-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8043797B2 (en) * 2004-10-12 2011-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7362413B2 (en) * 2004-12-09 2008-04-22 Asml Netherlands B.V. Uniformity correction for lithographic apparatus
US7224440B2 (en) * 2004-12-23 2007-05-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7283205B2 (en) * 2005-01-19 2007-10-16 Micron Technology, Inc. Optimized optical lithography illumination source for use during the manufacture of a semiconductor device
TW200923418A (en) * 2005-01-21 2009-06-01 Nikon Corp Exposure device, exposure method, fabricating method of device, exposure system, information collecting device, and measuring device
DE102005003905B4 (en) * 2005-01-27 2007-04-12 Infineon Technologies Ag Arrangement for projecting a pattern into an image plane
US7317506B2 (en) * 2005-03-29 2008-01-08 Asml Netherlands B.V. Variable illumination source
US7548302B2 (en) * 2005-03-29 2009-06-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4425239B2 (en) * 2005-05-16 2010-03-03 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
US7528934B2 (en) * 2005-05-16 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060256311A1 (en) * 2005-05-16 2006-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR20080059625A (en) * 2005-10-04 2008-06-30 칼 짜이스 에스엠테 아게 Lithographic apparatus and method of controlling
US8071136B2 (en) 2006-04-21 2011-12-06 Bioactives, Inc. Water-soluble pharmaceutical compositions of hops resins
JP2007299993A (en) * 2006-05-01 2007-11-15 Canon Inc Aligner
WO2008086827A1 (en) * 2007-01-16 2008-07-24 Carl Zeiss Smt Ag Projection exposure method and projection exposure system therefor
TWM324785U (en) * 2007-04-16 2008-01-01 Young Optics Inc Illumination system
US7943273B2 (en) * 2007-04-20 2011-05-17 Photronics, Inc. Photomask with detector for optimizing an integrated circuit production process and method of manufacturing an integrated circuit using the same
US7851110B2 (en) * 2007-04-20 2010-12-14 Photronics, Inc. Secure photomask with blocking aperture
US7790340B2 (en) 2007-04-20 2010-09-07 Photronics, Inc. Photomask with detector for optimizing an integrated circuit production process and method of manufacturing an integrated circuit using the same
WO2009046920A1 (en) * 2007-10-05 2009-04-16 Limo Patentverwaltung Gmbh & Co. Kg Device for creating a multipole illumination in a working plane, particularly for lithographic applications
US20090091729A1 (en) * 2007-10-05 2009-04-09 Sajan Marokkey Lithography Systems and Methods of Manufacturing Using Thereof
US8330938B2 (en) * 2009-02-27 2012-12-11 Corning Incorporated Solid-state array for lithography illumination
KR20100109164A (en) * 2009-03-31 2010-10-08 삼성전자주식회사 Illumination control module, diffraction illumination system and photolithography system including the same
JP4952800B2 (en) * 2010-01-12 2012-06-13 株式会社ニコン Illumination optical system, exposure apparatus, and exposure method
JP4952801B2 (en) * 2010-01-12 2012-06-13 株式会社ニコン Illumination optical system, exposure apparatus, and exposure method
WO2011102109A1 (en) 2010-02-20 2011-08-25 株式会社ニコン Light source optimizing method, exposure method, device manufacturing method, program, exposure apparatus, lithography system, light source evaluation method, and light source modulation method
JP5338863B2 (en) * 2011-07-04 2013-11-13 株式会社ニコン Illumination optical system, exposure apparatus, exposure method, and device manufacturing method
JP5533917B2 (en) * 2012-03-28 2014-06-25 株式会社ニコン Illumination optical system, exposure apparatus, and device manufacturing method
JP2012156536A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
EP2754524B1 (en) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Method of and apparatus for laser based processing of flat substrates being wafer or glass element using a laser beam line
CN103048894B (en) * 2013-01-29 2014-10-15 中国科学院光电研究院 Photoetching machine projection lens wave aberration on-line measuring device and method
EP2781296B1 (en) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Device and method for cutting out contours from flat substrates using a laser
CN103454865A (en) * 2013-09-05 2013-12-18 中国科学院光电技术研究所 Deep ultra-violet lithography illuminating system
JP5644921B2 (en) * 2013-09-09 2014-12-24 株式会社ニコン Illumination optics
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
JP5761329B2 (en) * 2013-12-27 2015-08-12 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
WO2016007572A1 (en) 2014-07-08 2016-01-14 Corning Incorporated Methods and apparatuses for laser processing materials
WO2016010954A2 (en) 2014-07-14 2016-01-21 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
EP3536440A1 (en) 2014-07-14 2019-09-11 Corning Incorporated Glass article with a defect pattern
EP3848334A1 (en) 2015-03-24 2021-07-14 Corning Incorporated Alkaline earth boro-aluminosilicate glass article with laser cut edge
JP5928632B2 (en) * 2015-04-03 2016-06-01 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
CN107835794A (en) 2015-07-10 2018-03-23 康宁股份有限公司 The method of continuous manufacturing hole and product related to this in flexible substrate plate
EP3957611A1 (en) 2016-05-06 2022-02-23 Corning Incorporated Transparent substrates with improved edge surfaces
EP3490945B1 (en) 2016-07-29 2020-10-14 Corning Incorporated Methods for laser processing
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
EP3848333A1 (en) 2016-10-24 2021-07-14 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639039A (en) 1964-10-22 1972-02-01 Lockheed Aircraft Corp Apparatus utilizing spatial plane filtering for performing optical image enhancement
US3492635A (en) 1966-06-22 1970-01-27 Pan American Petroleum Corp Spatial filtering system wherein different portions of an input object are differenly filtered
US3658420A (en) 1969-12-10 1972-04-25 Bell Telephone Labor Inc Photomask inspection by spatial filtering
US3729252A (en) 1970-06-05 1973-04-24 Eastman Kodak Co Optical spatial filtering with multiple light sources
DE2116713B2 (en) 1971-04-06 1974-03-28 Ibm Deutschland Gmbh, 7000 Stuttgart Exposure method for imaging very finely structured light patterns on photoresist layers and a suitable exposure device
US3770340A (en) 1972-08-21 1973-11-06 Technical Operations Inc Coherent optical system with expanded bandwidth and noise suppression
US4241390A (en) 1978-02-06 1980-12-23 The Perkin-Elmer Corporation System for illuminating an annular field
DE2852203C3 (en) 1978-12-02 1982-03-11 Ibm Deutschland Gmbh, 7000 Stuttgart Light guide device for an imaging device operated with incident light
US4241389A (en) 1979-04-25 1980-12-23 Kasper Instruments, Inc. Multiple apparent source optical imaging system
FR2465241A1 (en) 1979-09-10 1981-03-20 Thomson Csf ILLUMINATOR DEVICE FOR PROVIDING AN ADJUSTABLE INTENSITY DISTRIBUTION ILLUMINATION BEAM AND PATTERN TRANSFER SYSTEM COMPRISING SUCH A DEVICE
JPS587123A (en) 1981-07-06 1983-01-14 Olympus Optical Co Ltd High-resolution focusing optical system
JPS58147708A (en) 1982-02-26 1983-09-02 Nippon Kogaku Kk <Nikon> Optical device for illumination
JPS59160134A (en) 1983-03-04 1984-09-10 Canon Inc Illuminating optical system
US4619508A (en) 1984-04-28 1986-10-28 Nippon Kogaku K. K. Illumination optical arrangement
JPH0682598B2 (en) 1984-10-11 1994-10-19 日本電信電話株式会社 Projection exposure device
US4851882A (en) 1985-12-06 1989-07-25 Canon Kabushiki Kaisha Illumination optical system
US5337097A (en) 1985-12-26 1994-08-09 Nippon Kogaku K.K. Projection optical apparatus
JPH0782981B2 (en) 1986-02-07 1995-09-06 株式会社ニコン Projection exposure method and apparatus
US4814829A (en) 1986-06-12 1989-03-21 Canon Kabushiki Kaisha Projection exposure apparatus
US4841341A (en) 1986-06-13 1989-06-20 Matsushita Electric Industrial Co., Ltd. Integrator for an exposure apparatus or the like
US4939630A (en) 1986-09-09 1990-07-03 Nikon Corporation Illumination optical apparatus
US4854669A (en) 1987-02-27 1989-08-08 Quantum Diagnostics Ltd. Optical image processor with highly selectable modulation transfer function
JP2658051B2 (en) 1987-05-15 1997-09-30 株式会社ニコン Positioning apparatus, projection exposure apparatus and projection exposure method using the apparatus
JPS6461716A (en) * 1987-08-31 1989-03-08 Canon Kk Illuminator
US4936665A (en) 1987-10-25 1990-06-26 Whitney Theodore R High resolution imagery systems and methods
JP2569711B2 (en) 1988-04-07 1997-01-08 株式会社ニコン Exposure control device and exposure method using the same
US4947413A (en) 1988-07-26 1990-08-07 At&T Bell Laboratories Resolution doubling lithography technique
JP2699433B2 (en) 1988-08-12 1998-01-19 株式会社ニコン Projection exposure apparatus and projection exposure method
US5191374A (en) 1988-11-17 1993-03-02 Nikon Corporation Exposure control apparatus
US5153773A (en) 1989-06-08 1992-10-06 Canon Kabushiki Kaisha Illumination device including amplitude-division and beam movements
US5638211A (en) 1990-08-21 1997-06-10 Nikon Corporation Method and apparatus for increasing the resolution power of projection lithography exposure system
JP2995820B2 (en) 1990-08-21 1999-12-27 株式会社ニコン Exposure method and method, and device manufacturing method
US7656504B1 (en) 1990-08-21 2010-02-02 Nikon Corporation Projection exposure apparatus with luminous flux distribution
US6252647B1 (en) 1990-11-15 2001-06-26 Nikon Corporation Projection exposure apparatus
US5673102A (en) 1991-02-22 1997-09-30 Canon Kabushiki Kaisha Image farming and microdevice manufacturing method and exposure apparatus in which a light source includes four quadrants of predetermined intensity
US5305054A (en) 1991-02-22 1994-04-19 Canon Kabushiki Kaisha Imaging method for manufacture of microdevices
JP3200894B2 (en) 1991-03-05 2001-08-20 株式会社日立製作所 Exposure method and apparatus
JP2843196B2 (en) * 1992-03-16 1999-01-06 沖電気工業株式会社 Second harmonic generator
JP3278896B2 (en) 1992-03-31 2002-04-30 キヤノン株式会社 Illumination apparatus and projection exposure apparatus using the same
US5659409A (en) 1992-10-09 1997-08-19 Ag Technology Co., Ltd. Light source apparatus using a cone-like material and an applied apparatus thereof
US5517279A (en) * 1993-08-30 1996-05-14 Hugle; William B. Lens array photolithography
DE69418131D1 (en) * 1993-03-01 1999-06-02 Gen Signal Corp DEVICE FOR GENERATING AN ADJUSTABLE RING-SHAPED LIGHTING FOR A PHOTOLITHOGRAPHIC PROJECTION APPARATUS
JP3255312B2 (en) * 1993-04-28 2002-02-12 株式会社ニコン Projection exposure equipment
DE19520563A1 (en) 1995-06-06 1996-12-12 Zeiss Carl Fa Illumination device for a projection microlithography device
US6285443B1 (en) * 1993-12-13 2001-09-04 Carl-Zeiss-Stiftung Illuminating arrangement for a projection microlithographic apparatus
EP0658810B1 (en) * 1993-12-13 1998-11-25 Carl Zeiss Illumination device for an optical system with a reticle masking system
JP2829252B2 (en) 1994-03-07 1998-11-25 現代電子産業株式会社 Assembled light beam adjusting device for exposure equipment
EP0687956B2 (en) * 1994-06-17 2005-11-23 Carl Zeiss SMT AG Illumination device
DE4421053A1 (en) * 1994-06-17 1995-12-21 Zeiss Carl Fa Illumination device esp. for microlithographic projection exposure
JPH08316124A (en) * 1995-05-19 1996-11-29 Hitachi Ltd Method and apparatus for projection exposing
US5659408A (en) * 1995-05-24 1997-08-19 Polaroid Corporation Reflective image-providing display viewed with holographically diffused ambient light
KR0183727B1 (en) * 1995-08-07 1999-04-15 김광호 Deformed aperture projection exposure apparatus using it
US5712698A (en) 1996-03-04 1998-01-27 Siemens Aktiengesellschaft Independently controllable shutters and variable area apertures for off axis illumination
US5963305A (en) * 1996-09-12 1999-10-05 Canon Kabushiki Kaisha Illumination system and exposure apparatus
US5896188A (en) * 1996-11-25 1999-04-20 Svg Lithography Systems, Inc. Reduction of pattern noise in scanning lithographic system illuminators
US6628370B1 (en) * 1996-11-25 2003-09-30 Mccullough Andrew W. Illumination system with spatially controllable partial coherence compensating for line width variances in a photolithographic system
JP4310816B2 (en) * 1997-03-14 2009-08-12 株式会社ニコン Illumination apparatus, projection exposure apparatus, device manufacturing method, and projection exposure apparatus adjustment method
JP3005203B2 (en) * 1997-03-24 2000-01-31 キヤノン株式会社 Illumination apparatus, exposure apparatus, and device manufacturing method
JP3264224B2 (en) * 1997-08-04 2002-03-11 キヤノン株式会社 Illumination apparatus and projection exposure apparatus using the same

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012766A1 (en) * 1998-03-19 2004-01-22 Nikon Corporation Illumination optical apparatus and exposure apparatus
US20030160949A1 (en) * 1998-12-17 2003-08-28 Nikon Corporation Method and apparatus for illuminating a surface using a projection imaging apparatus
US20030156266A1 (en) * 1998-12-17 2003-08-21 Nikon Corporation Method and apparatus for illuminating a surface using a projection imaging apparatus
US6563567B1 (en) 1998-12-17 2003-05-13 Nikon Corporation Method and apparatus for illuminating a surface using a projection imaging apparatus
US20030156269A1 (en) * 1998-12-17 2003-08-21 Nikon Corporation Method and apparatus for illuminating a surface using a projection imaging apparatus
US6836365B2 (en) 1999-04-15 2004-12-28 Nikon Corporation Diffractive optical element, method of fabricating the element, illumination device provided with the element, projection exposure apparatus, exposure method, optical homogenizer, and method of fabricating the optical homogenizer
US20040263817A1 (en) * 2000-11-29 2004-12-30 Nikon Corporation Illumination optical apparatus and exposure apparatus provided with illumination optical apparatus
US20020085276A1 (en) * 2000-11-29 2002-07-04 Nikon Corporation Illumination optical apparatus and exposure apparatus provided with illumination optical apparatus
US20030038931A1 (en) * 2001-08-23 2003-02-27 Nikon Corporation Illumination optical apparatus, exposure apparatus and method of exposure
US20030197846A1 (en) * 2002-04-23 2003-10-23 Asml Us, Inc. System and method for improving line width control in a lithography device using an illumination system having pre-numerical aperture control
EP1357426A2 (en) * 2002-04-23 2003-10-29 Canon Kabushiki Kaisha Method for setting mask pattern and its illumination condition
EP1357426A3 (en) * 2002-04-23 2005-11-23 Canon Kabushiki Kaisha Method for setting mask pattern and its illumination condition
US20030198872A1 (en) * 2002-04-23 2003-10-23 Kenji Yamazoe Method for setting mask pattern and illumination condition
US6784976B2 (en) * 2002-04-23 2004-08-31 Asml Holding N.V. System and method for improving line width control in a lithography device using an illumination system having pre-numerical aperture control
US6888615B2 (en) * 2002-04-23 2005-05-03 Asml Holding N.V. System and method for improving linewidth control in a lithography device by varying the angular distribution of light in an illuminator as a function of field position
US7107573B2 (en) 2002-04-23 2006-09-12 Canon Kabushiki Kaisha Method for setting mask pattern and illumination condition
EP1369079A1 (en) * 2002-05-28 2003-12-10 Alcon Inc. Zoom device for eye tracker control system and associated methods
WO2004040378A3 (en) * 2002-10-29 2004-12-23 Zeiss Carl Smt Ag Illumination device for a microlithographic projection-exposure system
WO2004040378A2 (en) * 2002-10-29 2004-05-13 Carl Zeiss Smt Ag Illumination device for a microlithographic projection-exposure system
EP1434097A2 (en) * 2002-12-23 2004-06-30 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1434092A1 (en) * 2002-12-23 2004-06-30 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
EP1434097A3 (en) * 2002-12-23 2007-05-09 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US20050094121A1 (en) * 2003-04-17 2005-05-05 Asml Netherlands B.V. Illuminator controlled tone reversal printing
US7421677B2 (en) * 2003-04-17 2008-09-02 Asml Netherlands B.V. Illuminator controlled tone reversal printing
US20060146384A1 (en) * 2003-05-13 2006-07-06 Carl Zeiss Smt Ag Optical beam transformation system and illumination system comprising an optical beam transformation system
WO2004102230A1 (en) * 2003-05-13 2004-11-25 Carl Zeiss Smt Ag Polarization-optimized axicon system, and an illuminating system for microlithographic projection system having such an axicon system
US7511886B2 (en) 2003-05-13 2009-03-31 Carl Zeiss Smt Ag Optical beam transformation system and illumination system comprising an optical beam transformation system
US20050012913A1 (en) * 2003-05-30 2005-01-20 Asml Netherlands B.V. Masking device, lithographic apparatus, and device manufacturing method
US8059261B2 (en) * 2003-05-30 2011-11-15 Asml Netherlands B.V. Masking device, lithographic apparatus, and device manufacturing method
EP2645406A3 (en) * 2003-10-28 2014-07-30 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP2645405A3 (en) * 2003-10-28 2014-07-30 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP2654073A3 (en) * 2003-10-28 2014-07-30 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP1681710B1 (en) * 2003-10-28 2015-09-16 Nikon Corporation Lighting optical device and projection aligner
EP2645407A3 (en) * 2003-10-28 2014-07-30 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20070216887A1 (en) * 2004-04-23 2007-09-20 Carl Zeiss Smt Ag Illumination System for a Microlithographic Projection Exposure Apparatus
US20090168040A1 (en) * 2006-04-12 2009-07-02 Dai Nippon Printing Co., Ltd. Diffractive optical device, and aligner comprising that device
US8259290B2 (en) 2006-04-12 2012-09-04 Dai Nippon Printing Co., Ltd. Diffractive optical device, and aligner comprising that device
US20080062541A1 (en) * 2006-09-12 2008-03-13 Canon Kabushiki Kaisha Illumination optical system, exposure apparatus, and device manufacturing method
US8164738B2 (en) * 2006-09-12 2012-04-24 Canon Kabushiki Kaisha Illumination optical system, exposure apparatus, and device manufacturing method
US20080285000A1 (en) * 2007-05-17 2008-11-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8715909B2 (en) 2007-10-05 2014-05-06 Infineon Technologies Ag Lithography systems and methods of manufacturing using thereof
US20090092926A1 (en) * 2007-10-05 2009-04-09 Alois Gutmann Lithography Systems and Methods of Manufacturing Using Thereof
US20110164313A1 (en) * 2008-09-26 2011-07-07 Carl Zeiss Sms Gmbh Microscope for reticle inspection with variable illumination settings
US9116447B2 (en) 2008-09-26 2015-08-25 Carl Zeiss Sms Gmbh Microscope for reticle inspection with variable illumination settings
WO2010034433A1 (en) * 2008-09-26 2010-04-01 Carl Zeiss Sms Gmbh Microscope for reticle inspection with variable illumination settings
US7978408B2 (en) * 2008-12-08 2011-07-12 Disco Corporation Polarizing device and laser unit
US20100142049A1 (en) * 2008-12-08 2010-06-10 Disco Corporation Polarizing device and laser unit
US20140240705A1 (en) * 2013-02-27 2014-08-28 Kabushiki Kaisha Toshiba Semiconductor device, reticle method for checking position misalignment and method for manufacturing position misalignment checking mark
CN107247297A (en) * 2017-06-22 2017-10-13 山东航天电子技术研究所 A kind of built-up shaft pyramid device
CN114355731A (en) * 2020-10-13 2022-04-15 中国科学院微电子研究所 Wafer edge exposure system and method
CN114384764A (en) * 2020-10-20 2022-04-22 上海微电子装备(集团)股份有限公司 Exposure system, photoetching machine and exposure method

Also Published As

Publication number Publication date
KR19990082951A (en) 1999-11-25
JP3993335B2 (en) 2007-10-17
KR100563124B1 (en) 2006-03-21
US6452662B2 (en) 2002-09-17
US7061583B2 (en) 2006-06-13
JP2000058441A (en) 2000-02-25
US20040051858A1 (en) 2004-03-18
TW419422B (en) 2001-01-21
US20020167653A1 (en) 2002-11-14
DE69931690T2 (en) 2007-06-14
DE69931690D1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
US6452662B2 (en) Lithography apparatus
EP0949541B1 (en) Lithography apparatus
US20010001247A1 (en) Lithography apparatus
US6855486B1 (en) Lithographic method and apparatus
US7015491B2 (en) Lithographic apparatus, device manufacturing method and device manufactured thereby, control system
US8675177B2 (en) Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US7217503B2 (en) Exposure method and apparatus
KR101470769B1 (en) Illumination system of a microlithographic projection exposure apparatus
US7317506B2 (en) Variable illumination source
JPH1154426A (en) Lighting device and aligner using the same
KR100566776B1 (en) An illuminator for a lithography apparatus, a lithography apparatus comprising such an illuminaor, and a manufacturing method employing such a lithography apparatus
EP1091252A2 (en) Lithographic method and apparatus
US6897944B2 (en) Illumination optical system, exposure method and apparatus using the same
JP4051473B2 (en) Illumination optical apparatus and exposure apparatus provided with the illumination optical apparatus
KR100660504B1 (en) Lithographic apparatus, illumination system, and optical element for rotating an intensity distribution
JP2002057081A (en) Illumination optical apparatus, exposure apparatus and exposure method
JP2003178951A (en) Diffraction optical device, refraction optical device, illuminating optical device, exposure system, and exposure method
JP2001085293A (en) Illumination optical system and exposure system provided therewith
WO2004011968A1 (en) Diffractive optics, dioptric element, illuminating optical system, exposure system and exposure method

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASM LITHOGRAPHY B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MULKENS, JOHANNES CATHARINUS HUBERTUS;RIDER, GAVIN CHARLES;TEN CATE, JAN WIETSE RICOLT;REEL/FRAME:009992/0693

Effective date: 19990518

AS Assignment

Owner name: ASML NETHERLANDS B.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:ASM LITHOGRAPHY B.V.;REEL/FRAME:012735/0001

Effective date: 20020125

Owner name: ASML NETHERLANDS B.V.,NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:ASM LITHOGRAPHY B.V.;REEL/FRAME:012735/0001

Effective date: 20020125

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12