US20010047199A1 - Stent with nested or overlapping rings - Google Patents

Stent with nested or overlapping rings Download PDF

Info

Publication number
US20010047199A1
US20010047199A1 US09/207,867 US20786798A US2001047199A1 US 20010047199 A1 US20010047199 A1 US 20010047199A1 US 20786798 A US20786798 A US 20786798A US 2001047199 A1 US2001047199 A1 US 2001047199A1
Authority
US
United States
Prior art keywords
stent
ring
crossties
peaks
rings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/207,867
Other versions
US6340366B2 (en
Inventor
Bandula Wijay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/207,867 priority Critical patent/US6340366B2/en
Publication of US20010047199A1 publication Critical patent/US20010047199A1/en
Application granted granted Critical
Publication of US6340366B2 publication Critical patent/US6340366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91508Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a difference in amplitude along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped

Definitions

  • the field of this invention relates to vascular stents.
  • Vascular stents are structures that are designed to maintain the patency of a vessel in the body.
  • the stent provides internal support to allow the circulation to proceed therethrough.
  • Stents can be used in the vascular system in ureters, bile ducts, esophagus, and in many other tubular structures in the human body.
  • Stents can be tubular or can be made from wire. Stents are typically made from a metal or polymeric substance or a metal coated with polymers which are biocompatible or contain heparin to reduce blood clotting or other tissue reactions. Many prior designs have used a coil approach where a wire is helically wound on a mandrel. Yet other designs have evolved-braided wire mesh and angulated wire forms wrapped on a spindle to form a coil.
  • U.S. Pat. Nos. 5,292,331 by Boneau and U.S. Pat. No. 5,403,341 describe such wire forms. These devices have very poor radial support to withstand the hoop strengths of the artery or vein and further are not suitable for arteries that are bent or curved or for long lesions; multiple stent are required. These designs do not provide any support to hold the wall of the artery, other than the memory of the metal.
  • Wall Stent produced by Pfizer Inc., is a braided wire tube. Although this stent is flexible so as to be placed in curved arteries or veins and other body cavities, it does not have any radial strength imparted to it by design.
  • Wiktor U.S. Pat. Nos. 4,649,922; 4,886,062; 4,969,458; and 5,133,732 describe a wire form stent. He describes stents made of wire helix made of a preformed wire which is in the sinusoidal form, in which either all or some of the adjacent strands are connected.
  • Henry Wall, U.S. Pat. No. 5,266,073 also describes a stent, tubular, that has slots machined into it. When expanded, the edges of the stent lock to form a cylinder. Not only is this device stiff and can only be used for short lesions, but also the diameter cannot be adjusted to meet the exact needs of the particular vessel but it is fixed to the predetermined sizes.
  • European patent document 042172982 employs wires that are doubled up and whose ends are snipped off to make a given joint. Such doubling up at the junction of two elements with snipped off free ends creates a potential puncture problem upon radial expansion.
  • the sheer bulk of the doubled up wires makes them rotate radially outwardly away from the longitudinal center-line of the stent, while the plain ends on such an arrangement which are snipped off offer the potential of sharp points which can puncture or damage the intima.
  • the apparatus of the present invention employing sharp angles, as defined, avoids this problem in an embodiment which illustrates a continuous wire or wire-like member bent into a sharp angle. This type of structure alleviates the concerns of sharp edges, as well as the tendency of a doubled up heavy joint to rotate outwardly toward the intima upon radial expansion of the stem, as would be expected in the EPO reference 042172982.
  • these stents are layered with polymeric sheaths that are impregnated with biocompatible substances or can be coated with heparin or hydrogel. Most sheath-type coatings reduce endothelial cell growth through the stent, which is a major requirement in successful stenting of body cavities such as arteries and veins.
  • FIG. 1 depicts two rings of a stent of a design known in the prior art.
  • Rings 10 and 12 are each sinusoidal, having respective peaks 14 and 16 joined together by crossties such as 18 .
  • Respective valleys 20 and 22 are deposed opposite each other to create a lengthy elongated opening 24 , which has a length 26 nearly as long as the distance from opposing valleys 20 and 22 .
  • FIG. 2 illustrates what happens to the oblong openings 24 when the rings 10 and 12 are expanded radially to set the stent of the prior art shown in FIG. 1.
  • each of the openings 24 is quite large, allowing tissue growth to enter therethrough, as shown in FIG. 3, which shows more rings than the rings 10 and 12 illustrated in FIG. 1.
  • the tissue growth 28 significantly constricts the blood flow passage through the stent of the prior art shown in FIGS. 1 - 3 .
  • One of the objectives of the present invention is to provide a stent which overcomes this problem.
  • Alternative solutions are illustrated to achieve the objective of making the opening smaller to provide better resistance to tissue growth into the blood flow passage through the stent.
  • the objective is accomplished by nesting adjacent rings which have sinusoidal bending so as to more closely pack them to reduce the opening sizes between them.
  • adjacent sinusoidal rings are made to be overlapping to again accomplish the objective of deceasing opening sizes in the expanded state for a stent of a given diameter and length.
  • a flexible stent which reduced openings between rings by two alternative techniques.
  • adjacent sinusoidally bending rings are nested to compact them closer together to reduce the opening sizes therebetween.
  • adjacent sinusoidal rings overlap each other to achieve the same effect.
  • the nested design can be fabricated from a long continuous sinusoidal band having alternating high and low peaks wrapped spirally around the mandrel and welded at crossties.
  • the assembly can be covered with a graft as a support therefor.
  • FIG. 1 is a partial flattened view of a stent of the prior art, showing sinusoidal rings with crossties connecting adjacent peaks.
  • FIG. 2 is a view of one of the openings formed between adjacent rings in the prior art stent shown in FIG. 1.
  • FIG. 3 is a section view through the stent shown in FIG. 1.
  • FIG. 4 illustrates two rings of a stent of one of the embodiments of the present invention shown in a flattened form.
  • FIG. 5 illustrates one of the elongated openings of the stent of FIG. 4 after expansion.
  • FIG. 6 is a section view of the stent of FIG. 4.
  • FIG. 7 shows how adjacent rings are connected to each other to form the stent of FIG. 4.
  • FIG. 8 shows an alternative embodiment to the stent of FIG. 4 and the technique for connecting adjacent rings.
  • FIG. 9 shows the stent of FIG. 8 with two overlapping rings connected.
  • FIG. 10 is the stent of FIGS. 8 and 9 showing four overlapping rings.
  • FIG. 11 is the stent of FIG. 4 with a graft around the outside.
  • FIG. 12 illustrates a technique for making the stent of FIG. 4 which is an alternative to the technique of FIG. 8.
  • FIG. 4 A portion of a stent S is shown in FIG. 4. More specifically, adjacent undulating rings 30 and 32 are illustrated. Each of these rings has an undulating, preferably sinusoidal shape with alternating high and low peaks. For example, in ring 30 alternating high peaks 34 exist between low peaks 36 . Between peaks 34 and 36 are valleys 35 . The height is defined as the distance from valleys 35 to peaks 34 .
  • the crossties 38 connect ring 30 to ring 32 .
  • Crossties 38 are optional as ring 30 can be connected directly to ring 32 without them. Crossties can connect peaks to peaks, valley to valley, or at least one peak or one valley to another location on the next ring.
  • Ring 32 has alternating high peaks 40 and low peaks 42 .
  • the high peaks 40 of ring 32 are juxtaposed against the low peaks 36 of ring 30 .
  • the low peaks 42 of ring 32 are juxtaposed against the high peaks 34 of ring 30 .
  • the result of this construction is that the oblong openings 44 get smaller as adjacent rings such as 30 and 32 in a typical stent S get nested into each other.
  • the minimum length of opening 44 is less than the combined height of peaks 34 and 42 , including the material.
  • FIG. 5 illustrates the resultant shape of the opening 44 after radial expansion of the rings such as 30 and 32 which make up the stent S.
  • FIG. 5 can be compared to FIG.
  • the typical opening in the stent S of the preferred embodiment of the present invention is smaller than the large oblong openings 24 , which necessarily arise when rings such as 10 and 12 are aligned adjacent peak 14 to peak 16 with a crosstie 18 in between.
  • the rings 10 and 12 of the prior art get no closer to each other then the length of the crosstie 18 and there is no nesting or overlapping between rings 10 and 12 of the design in the prior art.
  • additional rings are shown besides rings 30 and 32 . These rings 46 and 48 reflect a continuation of a pattern. As can be seen from FIG.
  • the peaks 50 of ring 46 extend in alignment but in the opposite direction from the low peaks 42 of ring 32 to create an opening 44 ′ which is the same size as opening 44 .
  • a graft 52 is mounted over the stent S.
  • the openings 44 and 44 ′ are identical and form a spiral pattern around the periphery of the stent S. The spiral pattern is continued with openings 44 ′′ which exist between rings 46 and 48 .
  • each ring does not need to be identical to its adjacent ring. It is within the scope of the invention that the greatest peak-to-valley height is varied from one ring to the next.
  • the preferred embodiment is to make such height longer at ends of the stent and shorter in between.
  • the degree of nesting of adjacent rings such as 30 and 32 can be varied along with the width of openings such as 44 by adjusting the heights of the corresponding peaks and valleys.
  • FIG. 1 depicts an extreme in the spacing between adjacent rings which provides the maximum width of openings 24 .
  • adjacent rings such as 30 and 32 in effect become a single ring.
  • the present invention is directed to the range of designs in between the two stated extremes which result in narrowing the longitudinal gap such as 44 , 44 ′, and 44 ′′, etc., while maintaining the rings such as 30 , 32 , 46 , and 48 distinct and connected with crossties such as 38 . Referring to FIG.
  • FIG. 12 an alternative technique to making individual rings such as 30 , 32 , 46 , and 48 , and connecting such as by welding the crossties such as 38 in between is illustrated.
  • a single elongated band is produced having alternating peaks and valleys as described previously, with at least some but preferably each of the high peaks and low peaks such as 34 and 36 having a crosstie 38 thereon.
  • the assembly shown in the top part of FIG. 12 is then wrapped around a mandrel 54 in a spiral fashion such that the crossties 38 bridge between a low peak 36 and a high peak 34 , as illustrated in the lower part of FIG. 12.
  • the same stent S is produced as is shown in FIGS.
  • the stent S of FIG. 11 is assembled in a technique shown in FIG. 7, which involves taking adjacent rings such as 30 and 32 , aligning them as previously described, and welding the crossties 38 to join ring 30 to ring 32 in alternating locations.
  • Each opening 44 is identified by a welded crosstie 38 above and below.
  • FIGS. 8 through 10 Yet another embodiment of the present invention is shown in FIGS. 8 through 10.
  • adjacent rings 62 and 64 are built identically with an undulating, preferably sinusoidal shape, with each bend preferably having the same height 65 as the adjacent band akin to the individual rings 10 and 12 illustrated in the prior art. Varying heights can also be used.
  • the method of connection of adjacent rings 62 and 64 is substantially different wherein the crossties 66 are connected to an opposing valley 68 .
  • the crossties 66 from a peak 70 connect to valley 68 of ring 62 .
  • the crossties can be connected to other locations.
  • FIG. 9 illustrates the appearance of rings 62 and 64 after the crossties 66 are positioned for welding.
  • FIG. 10 illustrates rings 62 and 64 with additional rings 70 and 72 .
  • crossties 74 extend from ring 62 at its various peaks 76 to be connected to peaks 78 of ring 70 .
  • the crossties 74 literally extend between the undulations of ring 64 to reach the peak 78 of ring 70 .
  • Ring 72 is connected to ring 70 by crossties 80 , putting ring 72 in an overlapping relationship with ring 70 , while ring 70 overlaps ring 64 and, in turn, ring 64 overlaps ring 62 .
  • Openings 82 are the widest in this design and their width is affected by the configuration of the individual rings as well as the length of the crossties connecting them so that the width of opening 82 can be lengthened or shortened as desired.
  • the width of opening 82 the stiffer the stent and the more difficult the stent can become to maneuver.
  • FIG. 10 is generally stiffer than the stent of FIG. 4 in view of the fact that the rings 62 , 64 , 70 , and 72 overlap each other, generally increasing the thickness of the stent being formed and somewhat decreasing its central passage when compared to a comparable design using the nesting technique shown in FIG. 4.
  • the advantage of the design in FIG. 10 is that the size of the openings, particularly their width, can be more carefully controlled and reduced to present the stent with a smaller opening area so as to take maximum advantage of the smaller openings to obtain the desired effect shown in FIG. 6.
  • the desirable advantage of either design is that the intrusion of tissue due to overly large openings, which present themselves after expansion in the designs of the prior art such as shown in FIG. 1, are dramatically reduced with either of the alternative designs illustrated.

Abstract

A flexible stent is disclosed which reduced openings between rings by two alternative techniques. In the first instance, adjacent sinusoidally bending rings are nested to compact them closer together to reduce the opening sizes therebetween. In another embodiment, adjacent sinusoidal rings overlap each other to achieve the same effect. The nested design can be fabricated from a long continuous sinusoidal band having alternating high and low peaks wrapped spirally around the mandrel and welded at crossties. The assembly can be covered with a graft as a support therefor.

Description

    FIELD OF THE INVENTION
  • The field of this invention relates to vascular stents. [0001]
  • BACKGROUND OF THE INVENTION
  • Vascular stents are structures that are designed to maintain the patency of a vessel in the body. The stent provides internal support to allow the circulation to proceed therethrough. Stents can be used in the vascular system in ureters, bile ducts, esophagus, and in many other tubular structures in the human body. [0002]
  • Stents can be tubular or can be made from wire. Stents are typically made from a metal or polymeric substance or a metal coated with polymers which are biocompatible or contain heparin to reduce blood clotting or other tissue reactions. Many prior designs have used a coil approach where a wire is helically wound on a mandrel. Yet other designs have evolved-braided wire mesh and angulated wire forms wrapped on a spindle to form a coil. [0003]
  • U.S. Pat. Nos. 5,292,331 by Boneau and U.S. Pat. No. 5,403,341 describe such wire forms. These devices have very poor radial support to withstand the hoop strengths of the artery or vein and further are not suitable for arteries that are bent or curved or for long lesions; multiple stent are required. These designs do not provide any support to hold the wall of the artery, other than the memory of the metal. [0004]
  • Wall Stent, produced by Pfizer Inc., is a braided wire tube. Although this stent is flexible so as to be placed in curved arteries or veins and other body cavities, it does not have any radial strength imparted to it by design. [0005]
  • Wiktor, U.S. Pat. Nos. 4,649,922; 4,886,062; 4,969,458; and 5,133,732 describe a wire form stent. He describes stents made of wire helix made of a preformed wire which is in the sinusoidal form, in which either all or some of the adjacent strands are connected. [0006]
  • Arthus Fontaine, U.S. Pat. No. 5,370,683, also describes a similar device where a flat wire form of sinusoidal shape is wound on a mandrel to form a helical coil. The wire bends are “U” shaped and are connected to alternate “U”-shaped bands. [0007]
  • Allen Tower, U.S. Pat. Nos. 5,217,483 and 5,389,106 describes a similar device where the wire is preformed to a sinusoidal shape and subsequently wound on a mandrel to form a helical coil. [0008]
  • All of the above-described art fails to provide radial support. The pre-shaped wire form (sinusoidal in most of the prior art) is wrapped on a mandrel to form a coil. However, the forces imported by the vessel wall's hoop strength are radially inward. In other words, the force is acting perpendicular to the plane of the U-shaped wire form. This means that the bends that are in the wire add no structural strength to the wire form to support the force produced by the wall, which is radially inward. [0009]
  • When we examine the simple coils, such as taught in U.S. Pat. Nos. 5,383,928 to Scott or Gene Samson 5,370,691 or Rolando Gills 5,222,969, it is apparent that the spring coil will withstand substantial radial forces due to the vessel wall; however, all these stents are bulky in their pre-expanded form and are hard to place in small and curved arteries or veins of the body. Also, a major disadvantage of this design is that when the coil stent is placed in a curved artery or vein, it forms an “accordion” shape whereby some strands in the outer radius are spread and those of the inner radius are gathered. Spring coils can also “flip” to form a flat structure when a longitudinal force is applied on one side of the stent. [0010]
  • The other types of stents that have been developed are tube stents. Palmer, U.S. Pat. Nos. 4,733,665; 4,739,762; 7,776,337; and 4,793,348 describe such a tube stent of slotted metal tube. The slotted metal tube is expanded by a high-pressure balloon to implant the stent into the inside wall of the artery or vein. [0011]
  • Joseph Weinstein, U.S. Pat. No. 5,213,561 describes a similar stent made of tubular materials with slots cut into it. On expansion using a balloon, it forms a structure with diamond-shaped slots. [0012]
  • Henry Wall, U.S. Pat. No. 5,266,073 also describes a stent, tubular, that has slots machined into it. When expanded, the edges of the stent lock to form a cylinder. Not only is this device stiff and can only be used for short lesions, but also the diameter cannot be adjusted to meet the exact needs of the particular vessel but it is fixed to the predetermined sizes. [0013]
  • Lau and Hastigan, U.S. Pat. No. 5,344,426 describes a slotted tubular stent that has a structure similar to Henry Wall's but has provided prongs that will lock in as the stent is expanded. [0014]
  • Michael Marin, U.S. Pat. No. 5,397,355 also describes a tubular slotted stent with locking prongs. [0015]
  • All the above-described tube stents, although typically providing substantial radial support when expanded, are not flexible enough to be placed in curved vessels. Arteries and veins in the human body are mostly curved and are tapered. As such, these tube stents suffer from this main disadvantage. [0016]
  • European patent document 042172982 employs wires that are doubled up and whose ends are snipped off to make a given joint. Such doubling up at the junction of two elements with snipped off free ends creates a potential puncture problem upon radial expansion. The sheer bulk of the doubled up wires makes them rotate radially outwardly away from the longitudinal center-line of the stent, while the plain ends on such an arrangement which are snipped off offer the potential of sharp points which can puncture or damage the intima. On the other hand, the apparatus of the present invention, employing sharp angles, as defined, avoids this problem in an embodiment which illustrates a continuous wire or wire-like member bent into a sharp angle. This type of structure alleviates the concerns of sharp edges, as well as the tendency of a doubled up heavy joint to rotate outwardly toward the intima upon radial expansion of the stem, as would be expected in the EPO reference 042172982. [0017]
  • Often these stents are layered with polymeric sheaths that are impregnated with biocompatible substances or can be coated with heparin or hydrogel. Most sheath-type coatings reduce endothelial cell growth through the stent, which is a major requirement in successful stenting of body cavities such as arteries and veins. [0018]
  • One of the problems with prior designs of slotted tube and wire stents is that in their expanded state, the openings in them become fairly large. This allows tissue to protrude through these openings or windows. When there are protrusions into the body cavity through the stent, it causes disturbances to the blood flow, causing activation of platelets causing blood clotting. This phenomenon can also enhance the process of restenosis due to the large area exposed for neointimal formation. [0019]
  • FIG. 1 depicts two rings of a stent of a design known in the prior art. [0020] Rings 10 and 12 are each sinusoidal, having respective peaks 14 and 16 joined together by crossties such as 18. Respective valleys 20 and 22 are deposed opposite each other to create a lengthy elongated opening 24, which has a length 26 nearly as long as the distance from opposing valleys 20 and 22. FIG. 2 illustrates what happens to the oblong openings 24 when the rings 10 and 12 are expanded radially to set the stent of the prior art shown in FIG. 1. As shown in FIG. 2, each of the openings 24 is quite large, allowing tissue growth to enter therethrough, as shown in FIG. 3, which shows more rings than the rings 10 and 12 illustrated in FIG. 1. The tissue growth 28 significantly constricts the blood flow passage through the stent of the prior art shown in FIGS. 1-3.
  • One of the objectives of the present invention is to provide a stent which overcomes this problem. Alternative solutions are illustrated to achieve the objective of making the opening smaller to provide better resistance to tissue growth into the blood flow passage through the stent. Thus, in one embodiment, the objective is accomplished by nesting adjacent rings which have sinusoidal bending so as to more closely pack them to reduce the opening sizes between them. In yet another embodiment, adjacent sinusoidal rings are made to be overlapping to again accomplish the objective of deceasing opening sizes in the expanded state for a stent of a given diameter and length. These and other objectives will be readily apparent to those skilled in the art from a description of the preferred embodiments of the invention below. [0021]
  • SUMMARY OF THE INVENTION
  • A flexible stent is disclosed which reduced openings between rings by two alternative techniques. In the first instance, adjacent sinusoidally bending rings are nested to compact them closer together to reduce the opening sizes therebetween. In another embodiment, adjacent sinusoidal rings overlap each other to achieve the same effect. The nested design can be fabricated from a long continuous sinusoidal band having alternating high and low peaks wrapped spirally around the mandrel and welded at crossties. The assembly can be covered with a graft as a support therefor.[0022]
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a partial flattened view of a stent of the prior art, showing sinusoidal rings with crossties connecting adjacent peaks. [0023]
  • FIG. 2 is a view of one of the openings formed between adjacent rings in the prior art stent shown in FIG. 1. [0024]
  • FIG. 3 is a section view through the stent shown in FIG. 1. [0025]
  • FIG. 4 illustrates two rings of a stent of one of the embodiments of the present invention shown in a flattened form. [0026]
  • FIG. 5 illustrates one of the elongated openings of the stent of FIG. 4 after expansion. [0027]
  • FIG. 6 is a section view of the stent of FIG. 4. [0028]
  • FIG. 7 shows how adjacent rings are connected to each other to form the stent of FIG. 4. [0029]
  • FIG. 8 shows an alternative embodiment to the stent of FIG. 4 and the technique for connecting adjacent rings. [0030]
  • FIG. 9 shows the stent of FIG. 8 with two overlapping rings connected. [0031]
  • FIG. 10 is the stent of FIGS. 8 and 9 showing four overlapping rings. [0032]
  • FIG. 11 is the stent of FIG. 4 with a graft around the outside. [0033]
  • FIG. 12 illustrates a technique for making the stent of FIG. 4 which is an alternative to the technique of FIG. 8.[0034]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to FIG. 4, the preferred embodiment is illustrated. A portion of a stent S is shown in FIG. 4. More specifically, adjacent undulating rings [0035] 30 and 32 are illustrated. Each of these rings has an undulating, preferably sinusoidal shape with alternating high and low peaks. For example, in ring 30 alternating high peaks 34 exist between low peaks 36. Between peaks 34 and 36 are valleys 35. The height is defined as the distance from valleys 35 to peaks 34. The crossties 38 connect ring 30 to ring 32. Crossties 38 are optional as ring 30 can be connected directly to ring 32 without them. Crossties can connect peaks to peaks, valley to valley, or at least one peak or one valley to another location on the next ring. Ring 32 has alternating high peaks 40 and low peaks 42. The high peaks 40 of ring 32 are juxtaposed against the low peaks 36 of ring 30. Similarly, the low peaks 42 of ring 32 are juxtaposed against the high peaks 34 of ring 30. The result of this construction is that the oblong openings 44 get smaller as adjacent rings such as 30 and 32 in a typical stent S get nested into each other. The minimum length of opening 44 is less than the combined height of peaks 34 and 42, including the material. FIG. 5 illustrates the resultant shape of the opening 44 after radial expansion of the rings such as 30 and 32 which make up the stent S. FIG. 5 can be compared to FIG. 2 to illustrate that the typical opening in the stent S of the preferred embodiment of the present invention is smaller than the large oblong openings 24, which necessarily arise when rings such as 10 and 12 are aligned adjacent peak 14 to peak 16 with a crosstie 18 in between. In a sense, the rings 10 and 12 of the prior art get no closer to each other then the length of the crosstie 18 and there is no nesting or overlapping between rings 10 and 12 of the design in the prior art. Referring to FIG. 11, additional rings are shown besides rings 30 and 32. These rings 46 and 48 reflect a continuation of a pattern. As can be seen from FIG. 11, the peaks 50 of ring 46 extend in alignment but in the opposite direction from the low peaks 42 of ring 32 to create an opening 44′ which is the same size as opening 44. In the embodiment shown in FIG. 11, a graft 52 is mounted over the stent S. Those skilled in the art will appreciate that, in the preferred embodiment, the openings 44 and 44′ are identical and form a spiral pattern around the periphery of the stent S. The spiral pattern is continued with openings 44″ which exist between rings 46 and 48. Those skilled in the art will appreciate that each ring does not need to be identical to its adjacent ring. It is within the scope of the invention that the greatest peak-to-valley height is varied from one ring to the next. The preferred embodiment is to make such height longer at ends of the stent and shorter in between. Also, the degree of nesting of adjacent rings such as 30 and 32 can be varied along with the width of openings such as 44 by adjusting the heights of the corresponding peaks and valleys. The prior art FIG. 1 depicts an extreme in the spacing between adjacent rings which provides the maximum width of openings 24. At the other extreme, adjacent rings such as 30 and 32 in effect become a single ring. The present invention is directed to the range of designs in between the two stated extremes which result in narrowing the longitudinal gap such as 44, 44′, and 44″, etc., while maintaining the rings such as 30, 32, 46, and 48 distinct and connected with crossties such as 38. Referring to FIG. 12, an alternative technique to making individual rings such as 30, 32, 46, and 48, and connecting such as by welding the crossties such as 38 in between is illustrated. Here in FIG. 12, a single elongated band is produced having alternating peaks and valleys as described previously, with at least some but preferably each of the high peaks and low peaks such as 34 and 36 having a crosstie 38 thereon. The assembly shown in the top part of FIG. 12 is then wrapped around a mandrel 54 in a spiral fashion such that the crossties 38 bridge between a low peak 36 and a high peak 34, as illustrated in the lower part of FIG. 12. In essence, the same stent S is produced as is shown in FIGS. 4 and 11, with the difference being that the elongated openings such as 44 are skewed with respect to the longitudinal axis 56 but are still disposed in a generally spiral pattern akin to that shown in FIG. 11, despite the skew shown in FIG. 12 due to the method of assembly. The stent S of FIG. 11 is assembled in a technique shown in FIG. 7, which involves taking adjacent rings such as 30 and 32, aligning them as previously described, and welding the crossties 38 to join ring 30 to ring 32 in alternating locations. Each opening 44 is identified by a welded crosstie 38 above and below.
  • Accordingly, those skilled in the art can see that when the stent S of the preferred embodiment illustrated in FIG. 4 is inserted into a vessel as shown in FIG. 6, the gaps, such as between [0036] rings 30 and 32 which define the width of openings 44, are significantly smaller than the oblong openings 24 between rings 10 and 12 of the prior art as shown in FIG. 3. Thus, the central passage 58 is not obstructed by an invasion of tissue 28 in the design of FIG. 4, illustrated in section in FIG. 6. This should be contrasted to the constriction and internal roughness of the passage 60 as illustrated in FIG. 3.
  • Yet another embodiment of the present invention is shown in FIGS. 8 through 10. Here, [0037] adjacent rings 62 and 64 are built identically with an undulating, preferably sinusoidal shape, with each bend preferably having the same height 65 as the adjacent band akin to the individual rings 10 and 12 illustrated in the prior art. Varying heights can also be used. However, the method of connection of adjacent rings 62 and 64 is substantially different wherein the crossties 66 are connected to an opposing valley 68. Thus, for example, as shown in FIG. 8, the crossties 66 from a peak 70 connect to valley 68 of ring 62. The crossties can be connected to other locations. FIG. 9 illustrates the appearance of rings 62 and 64 after the crossties 66 are positioned for welding. As can readily be seen, the ring 64 overlaps ring 62. The amount of overlap can be varied with a variety of techniques, such as variation of the length of the crossties 66 or the peak-to-valley heights of either of the rings 62 or 64. FIG. 10 illustrates rings 62 and 64 with additional rings 70 and 72. As seen in FIG. 10, crossties 74 extend from ring 62 at its various peaks 76 to be connected to peaks 78 of ring 70. The crossties 74 literally extend between the undulations of ring 64 to reach the peak 78 of ring 70. Ring 72 is connected to ring 70 by crossties 80, putting ring 72 in an overlapping relationship with ring 70, while ring 70 overlaps ring 64 and, in turn, ring 64 overlaps ring 62. As shown in FIG. 10, it can be seen that a series of oblong openings of different sizes are provided. Openings 82 are the widest in this design and their width is affected by the configuration of the individual rings as well as the length of the crossties connecting them so that the width of opening 82 can be lengthened or shortened as desired. Those skilled in the art will appreciate that the smaller the width of opening 82, the stiffer the stent and the more difficult the stent can become to maneuver. The stent of FIG. 10 is generally stiffer than the stent of FIG. 4 in view of the fact that the rings 62, 64, 70, and 72 overlap each other, generally increasing the thickness of the stent being formed and somewhat decreasing its central passage when compared to a comparable design using the nesting technique shown in FIG. 4. The advantage of the design in FIG. 10 is that the size of the openings, particularly their width, can be more carefully controlled and reduced to present the stent with a smaller opening area so as to take maximum advantage of the smaller openings to obtain the desired effect shown in FIG. 6. Thus, either of the two designs can be used alternatively, depending on the application and the accessability to the location for setting the particular stent. The desirable advantage of either design is that the intrusion of tissue due to overly large openings, which present themselves after expansion in the designs of the prior art such as shown in FIG. 1, are dramatically reduced with either of the alternative designs illustrated.
  • The foregoing disclosure and description of the invention are illustrative and explanatory thereof, and various changes in the size, shape and materials, as well as in the details of the illustrated construction, may be made without departing from the spirit of the invention. [0038]

Claims (29)

1. A stent, comprising:
a band made in an undulating form having a plurality of high and low peaks such that when wound spirally, it presents a high peak opposite a low peak;
at least some of said opposed high and low peaks are connected so as to give the effect of nesting undulations due to said spiral winding.
2. The stent of
claim 1
, wherein:
said nested undulations define oblong openings between pairs of crossties.
3. The stent of
claim 2
, wherein:
said oblong openings are spirally disposed with respect to a longitudinal axis of the cylindrical shape formed by said ring when spirally wound.
4. The stent of
claim 1
, wherein:
said ring comprises alternating high and low peaks connected by crossties.
5. The stent of
claim 4
, wherein:
each said peak comprises a crosstie; and
each said high peak is equal in height to every other high peak and each said low peak is equal in height to every other low peak.
6. The stent of
claim 5
, wherein:
said nested undulations define oblong openings between pairs of crossties.
7. The stent of
claim 6
, wherein:
said oblong openings are spirally disposed with respect to a longitudinal axis of the cylindrical shape formed by said ring when spirally wound.
8. A stent, comprising:
a plurality of rings, each said ring further comprising an undulating form with a plurality of high and low peaks;
at least one said ring disposed adjacent another said ring in a manner where on at least one side, a high peak on one ring is disposed opposite a low peak on the adjacent ring so as to nest said adjacent rings; and
said rings connected to each other.
9. The stent of
claim 8
, wherein:
said high and low peaks alternate to define a plurality of valleys therebetween.
10. The stent of
claim 9
, wherein:
at least one said ring disposed adjacent another said ring in a manner where on at least one side, a valley on one ring is disposed opposite a valley on the adjacent ring.
11. The stent of
claim 10
, further comprising:
crossties to connect said rings;
said opposed valleys are each connected by said crossties;
said crossties connect each pair of opposed high and low peaks.
12. The stent of
claim 8
, wherein:
said rings define oblong openings therebetween whose minimum length is less than the combined height of said high and low peaks.
13. The stent of
claim 12
, further comprising:
crossties to connect said rings;
said minimum length also includes the length of a crosstie.
14. The stent of
claim 8
, wherein:
said crossties comprise connecting a high peak directly to its opposing low peak.
15. The stent of
claim 13
, wherein:
said crossties comprise an elongated member that spans a gap between said opposed high and low peaks.
16. The stent of
claim 10
, further comprising:
crossties to connect said rings;
said crossties comprise connecting a valley to its opposing valley.
17. The stent of
claim 10
, further comprising:
crossties to connect said rings;
said crossties comprise elongated members which span a gap between opposing valleys and are not connected at said valleys.
18. The stent of
claim 8
, further comprising:
a graft supported by said rings.
19. A stent, comprising:
a plurality of undulating rings which overlap each other, at least in part, and crossties to connect them.
20. The stent of
claim 19
, wherein:
each said ring comprises alternating peaks and valleys;
said crossties connect peaks on one ring to peaks on an adjacent ring.
21. The stent of
claim 19
, wherein:
each said ring comprises alternating peaks and valleys;
said crossties connect at least one peak on one ring to a point between a peak and a valley on an adjacent ring.
22. The stent of
claim 19
, wherein:
each said ring comprises alternating peaks and valleys;
said crossties connect between a peak and a valley on one ring to a location between a peak and a valley on an adjacent ring.
23. The stent of
claim 19
, wherein:
each said ring comprises at least one multiply recurring high peak and at least one multiply recurring low peak.
24. The stent of
claim 23
, wherein:
said high peaks alternate with said low peaks.
25. The stent of
claim 19
, wherein:
said rings define a plurality of heights.
26. The stent of
claim 19
, further comprising:
at least a first, second and third overlapping and undulating rings;
each said ring comprising alternating peaks and valleys;
said crossties on said first ring extend through said second ring to connect to said third ring.
27. The stent of
claim 26
, wherein:
said crossties connect said valley on said first ring with a peak on said third ring.
28. The stent of
claim 1
, wherein:
said high peaks have at least two different values and said low peaks have at least two different values.
29. The stent of
claim 8
, wherein:
said high peaks have at least two different values and said low peaks have at least two different values.
US09/207,867 1998-12-08 1998-12-08 Stent with nested or overlapping rings Expired - Lifetime US6340366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/207,867 US6340366B2 (en) 1998-12-08 1998-12-08 Stent with nested or overlapping rings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/207,867 US6340366B2 (en) 1998-12-08 1998-12-08 Stent with nested or overlapping rings

Publications (2)

Publication Number Publication Date
US20010047199A1 true US20010047199A1 (en) 2001-11-29
US6340366B2 US6340366B2 (en) 2002-01-22

Family

ID=22772307

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/207,867 Expired - Lifetime US6340366B2 (en) 1998-12-08 1998-12-08 Stent with nested or overlapping rings

Country Status (1)

Country Link
US (1) US6340366B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024363A1 (en) * 2001-09-17 2003-03-27 Ev3 Peripheral, Inc. Stent with offset cell geometry
US20060052861A1 (en) * 2002-12-24 2006-03-09 Novostent Corporation Vascular prothesis having interdigitating edges and methods of use
US20070233236A1 (en) * 2004-08-03 2007-10-04 Medtronic Vascular, Inc. Flexible Resheathable Stent Design
US20070250148A1 (en) * 2005-09-26 2007-10-25 Perry Kenneth E Jr Systems, apparatus and methods related to helical, non-helical or removable stents with rectilinear ends
US20080065191A1 (en) * 2001-11-28 2008-03-13 Aptus Endosystems, Inc. Prosthesis systems and methods
US20100152836A1 (en) * 2000-03-06 2010-06-17 Boston Scientific Scimed, Inc. Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
US8343211B2 (en) * 2005-12-14 2013-01-01 Boston Scientific Scimed, Inc. Connectors for bifurcated stent
US20140288637A1 (en) * 2007-04-16 2014-09-25 Boston Scientific Scimed, Inc. Radiopaque Compositions, Stents and Methods of Preparation
US9320589B2 (en) 2001-11-28 2016-04-26 Medtronic Vascular, Inc. Endovascular aneurysm repair system
US9320503B2 (en) 2001-11-28 2016-04-26 Medtronic Vascular, Inc. Devices, system, and methods for guiding an operative tool into an interior body region
US9808250B2 (en) 2001-11-28 2017-11-07 Medtronic Vascular, Inc. Systems and methods for attaching a prosthesis within a body lumen or hollow organ
US9943426B2 (en) * 2015-07-15 2018-04-17 Elixir Medical Corporation Uncaging stent
US10098770B2 (en) 2001-11-28 2018-10-16 Medtronic Vascular, Inc. Endovascular aneurysm devices, systems, and methods
WO2019010458A1 (en) * 2017-07-07 2019-01-10 Endologix, Inc. Endovascular graft systems and methods for deployment in main and branch arteries
US10194905B2 (en) 2001-11-28 2019-02-05 Medtronic Vascular, Inc. Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
US10918505B2 (en) 2016-05-16 2021-02-16 Elixir Medical Corporation Uncaging stent
WO2021121307A1 (en) * 2019-12-17 2021-06-24 北京迈迪顶峰医疗科技股份有限公司 Infant pulmonary artery stent
US20220257393A1 (en) * 2021-02-16 2022-08-18 Olympus Corporation Stent

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2079417C (en) * 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
EP0884029B1 (en) * 1997-06-13 2004-12-22 Gary J. Becker Expandable intraluminal endoprosthesis
US5938697A (en) * 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6755856B2 (en) * 1998-09-05 2004-06-29 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation
US7815763B2 (en) * 2001-09-28 2010-10-19 Abbott Laboratories Vascular Enterprises Limited Porous membranes for medical implants and methods of manufacture
US7887578B2 (en) 1998-09-05 2011-02-15 Abbott Laboratories Vascular Enterprises Limited Stent having an expandable web structure
US20020019660A1 (en) * 1998-09-05 2002-02-14 Marc Gianotti Methods and apparatus for a curved stent
US6682554B2 (en) * 1998-09-05 2004-01-27 Jomed Gmbh Methods and apparatus for a stent having an expandable web structure
US6273911B1 (en) 1999-04-22 2001-08-14 Advanced Cardiovascular Systems, Inc. Variable strength stent
US6540775B1 (en) * 2000-06-30 2003-04-01 Cordis Corporation Ultraflexible open cell stent
US6579310B1 (en) * 2000-08-17 2003-06-17 Advanced Cardiovascular Systems, Inc. Stent having overlapping struts
US8038708B2 (en) 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
EP3123984A1 (en) * 2001-02-09 2017-02-01 OrbusNeich Medical, Inc. Crimpable intraluminal endoprosthesis having helical elements
US6679911B2 (en) 2001-03-01 2004-01-20 Cordis Corporation Flexible stent
US6955686B2 (en) 2001-03-01 2005-10-18 Cordis Corporation Flexible stent
US6790227B2 (en) * 2001-03-01 2004-09-14 Cordis Corporation Flexible stent
AU784552B2 (en) * 2001-03-02 2006-05-04 Cardinal Health 529, Llc Flexible stent
US6599314B2 (en) * 2001-06-08 2003-07-29 Cordis Corporation Apparatus and method for stenting a vessel using balloon-actuated stent with interlocking elements
GB0121980D0 (en) 2001-09-11 2001-10-31 Cathnet Science Holding As Expandable stent
EP1516600B1 (en) * 2001-09-18 2007-03-14 Abbott Laboratories Vascular Enterprises Limited Stent
US7182779B2 (en) * 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US7351255B2 (en) * 2001-12-03 2008-04-01 Xtent, Inc. Stent delivery apparatus and method
US7137993B2 (en) 2001-12-03 2006-11-21 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US20040186551A1 (en) 2003-01-17 2004-09-23 Xtent, Inc. Multiple independent nested stent structures and methods for their preparation and deployment
US7892273B2 (en) * 2001-12-03 2011-02-22 Xtent, Inc. Custom length stent apparatus
US7147656B2 (en) * 2001-12-03 2006-12-12 Xtent, Inc. Apparatus and methods for delivery of braided prostheses
US20030135266A1 (en) * 2001-12-03 2003-07-17 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7309350B2 (en) 2001-12-03 2007-12-18 Xtent, Inc. Apparatus and methods for deployment of vascular prostheses
US7060089B2 (en) * 2002-01-23 2006-06-13 Boston Scientific Scimed, Inc. Multi-layer stent
US7637935B2 (en) * 2002-05-06 2009-12-29 Abbott Laboratories Endoprosthesis for controlled contraction and expansion
EP2529707B1 (en) * 2002-05-08 2015-04-15 Abbott Laboratories Endoprosthesis having foot extensions
US20040054398A1 (en) * 2002-09-13 2004-03-18 Cully Edward H. Stent device with multiple helix construction
US7223283B2 (en) * 2002-10-09 2007-05-29 Boston Scientific Scimed, Inc. Stent with improved flexibility
US7331986B2 (en) * 2002-10-09 2008-02-19 Boston Scientific Scimed, Inc. Intraluminal medical device having improved visibility
US7625399B2 (en) * 2003-04-24 2009-12-01 Cook Incorporated Intralumenally-implantable frames
US7717952B2 (en) * 2003-04-24 2010-05-18 Cook Incorporated Artificial prostheses with preferred geometries
EP1615595B1 (en) * 2003-04-24 2009-10-21 Cook Incorporated Artificial valve prosthesis with improved flow dynamics
US7658759B2 (en) * 2003-04-24 2010-02-09 Cook Incorporated Intralumenally implantable frames
US7625398B2 (en) * 2003-05-06 2009-12-01 Abbott Laboratories Endoprosthesis having foot extensions
US7625401B2 (en) * 2003-05-06 2009-12-01 Abbott Laboratories Endoprosthesis having foot extensions
US7241308B2 (en) * 2003-06-09 2007-07-10 Xtent, Inc. Stent deployment systems and methods
US7131993B2 (en) * 2003-06-25 2006-11-07 Boston Scientific Scimed, Inc. Varying circumferential spanned connectors in a stent
US7553324B2 (en) * 2003-10-14 2009-06-30 Xtent, Inc. Fixed stent delivery devices and methods
US7851192B2 (en) * 2004-11-22 2010-12-14 New England Biolabs, Inc. Modified DNA cleavage enzymes and methods for use
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US20050149168A1 (en) * 2003-12-30 2005-07-07 Daniel Gregorich Stent to be deployed on a bend
US7323006B2 (en) * 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
US20050288766A1 (en) 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US8317859B2 (en) 2004-06-28 2012-11-27 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US7744641B2 (en) * 2004-07-21 2010-06-29 Boston Scientific Scimed, Inc. Expandable framework with overlapping connectors
CN100352406C (en) * 2004-08-17 2007-12-05 微创医疗器械(上海)有限公司 Combined membrane-covered stent capable of being bent in any direction
US7763198B2 (en) * 2005-04-12 2010-07-27 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
US7947207B2 (en) 2005-04-12 2011-05-24 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
EP2364676B1 (en) 2005-06-30 2018-12-19 Abbott Laboratories Endoprosthesis having foot extensions
US8206428B2 (en) * 2005-09-02 2012-06-26 Medtronic Vascular, Inc. Tabbed stent with minimum compressed profile
US20070219618A1 (en) * 2006-03-17 2007-09-20 Cully Edward H Endoprosthesis having multiple helically wound flexible framework elements
JP2009530060A (en) 2006-03-20 2009-08-27 エックステント・インコーポレーテッド Apparatus and method for deploying connected prosthetic segments
US20070281117A1 (en) * 2006-06-02 2007-12-06 Xtent, Inc. Use of plasma in formation of biodegradable stent coating
US8414637B2 (en) * 2006-09-08 2013-04-09 Boston Scientific Scimed, Inc. Stent
US9622888B2 (en) 2006-11-16 2017-04-18 W. L. Gore & Associates, Inc. Stent having flexibly connected adjacent stent elements
US20080199510A1 (en) 2007-02-20 2008-08-21 Xtent, Inc. Thermo-mechanically controlled implants and methods of use
US8486132B2 (en) 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US7810223B2 (en) * 2007-05-16 2010-10-12 Boston Scientific Scimed, Inc. Method of attaching radiopaque markers to intraluminal medical devices, and devices formed using the same
US8016874B2 (en) 2007-05-23 2011-09-13 Abbott Laboratories Vascular Enterprises Limited Flexible stent with elevated scaffolding properties
US8128679B2 (en) 2007-05-23 2012-03-06 Abbott Laboratories Vascular Enterprises Limited Flexible stent with torque-absorbing connectors
US8337544B2 (en) * 2007-12-20 2012-12-25 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having flexible connectors
US8920488B2 (en) * 2007-12-20 2014-12-30 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having a stable architecture
US7850726B2 (en) 2007-12-20 2010-12-14 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having struts linked by foot extensions
US8926688B2 (en) * 2008-01-11 2015-01-06 W. L. Gore & Assoc. Inc. Stent having adjacent elements connected by flexible webs
US9101503B2 (en) * 2008-03-06 2015-08-11 J.W. Medical Systems Ltd. Apparatus having variable strut length and methods of use
US8114151B2 (en) * 2008-05-08 2012-02-14 Boston Scientific Scimed, Inc. Stent with tabs and holes for drug delivery
US20100010618A1 (en) * 2008-07-08 2010-01-14 Boston Scientific Scimed, Inc. Overlapping Stent
US20100292641A1 (en) * 2009-05-15 2010-11-18 Bandula Wijay Targeted drug delivery device and method
JP4852631B2 (en) * 2009-06-28 2012-01-11 株式会社沖データ Communication device and connection control method thereof
JP2014508559A (en) 2010-12-30 2014-04-10 ボストン サイエンティフィック サイムド,インコーポレイテッド Multi-stage open stent design
US8790388B2 (en) 2011-03-03 2014-07-29 Boston Scientific Scimed, Inc. Stent with reduced profile
WO2012118526A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Low strain high strength stent
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
AU2014214700B2 (en) 2013-02-11 2018-01-18 Cook Medical Technologies Llc Expandable support frame and medical device
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
CN103932821A (en) * 2014-04-08 2014-07-23 许尚栋 Covered stent
US10299948B2 (en) 2014-11-26 2019-05-28 W. L. Gore & Associates, Inc. Balloon expandable endoprosthesis
US10568752B2 (en) 2016-05-25 2020-02-25 W. L. Gore & Associates, Inc. Controlled endoprosthesis balloon expansion

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503569A (en) 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
ES8705239A1 (en) 1984-12-05 1987-05-01 Medinvent Sa A device for implantation and a method of implantation in a vessel using such device.
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
JPS6346171A (en) 1986-06-06 1988-02-27 旭光学工業株式会社 Support of medical device stayed in living body
US4740207A (en) 1986-09-10 1988-04-26 Kreamer Jeffry W Intralumenal graft
JPS63212374A (en) 1987-02-27 1988-09-05 テルモ株式会社 Catheter equipped with expander
US5041126A (en) 1987-03-13 1991-08-20 Cook Incorporated Endovascular stent and delivery system
US4795458A (en) 1987-07-02 1989-01-03 Regan Barrie F Stent for use following balloon angioplasty
US4969458A (en) 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4820298A (en) 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
US5266073A (en) 1987-12-08 1993-11-30 Wall W Henry Angioplasty stent
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
SE8803444D0 (en) 1988-09-28 1988-09-28 Medinvent Sa A DEVICE FOR TRANSLUMINAL IMPLANTATION OR EXTRACTION
CA1322628C (en) 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US4913141A (en) 1988-10-25 1990-04-03 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
US4950227A (en) 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
CH678393A5 (en) 1989-01-26 1991-09-13 Ulrich Prof Dr Med Sigwart
US5163958A (en) 1989-02-02 1992-11-17 Cordis Corporation Carbon coated tubular endoprosthesis
US5100429A (en) 1989-04-28 1992-03-31 C. R. Bard, Inc. Endovascular stent and delivery system
US5015253A (en) 1989-06-15 1991-05-14 Cordis Corporation Non-woven endoprosthesis
US5292331A (en) 1989-08-24 1994-03-08 Applied Vascular Engineering, Inc. Endovascular support device
CA2026604A1 (en) 1989-10-02 1991-04-03 Rodney G. Wolff Articulated stent
US5304121A (en) 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5108416A (en) 1990-02-13 1992-04-28 C. R. Bard, Inc. Stent introducer system
JPH067843B2 (en) 1990-02-15 1994-02-02 寛治 井上 Artificial blood vessel with frame
US5344426A (en) 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5158548A (en) 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5236447A (en) 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
US5139480A (en) 1990-08-22 1992-08-18 Biotech Laboratories, Inc. Necking stents
US5213561A (en) 1990-09-06 1993-05-25 Weinstein Joseph S Method and devices for preventing restenosis after angioplasty
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
DK0480667T3 (en) 1990-10-09 1996-06-10 Cook Inc Percutaneous stent construction
US5222971A (en) 1990-10-09 1993-06-29 Scimed Life Systems, Inc. Temporary stent and methods for use and manufacture
US5160341A (en) 1990-11-08 1992-11-03 Advanced Surgical Intervention, Inc. Resorbable urethral stent and apparatus for its insertion
US5163951A (en) 1990-12-27 1992-11-17 Corvita Corporation Mesh composite graft
FR2671280B1 (en) 1991-01-03 1993-03-05 Sgro Jean Claude SELF-EXHIBITING VASCULAR STENT WITH PERMANENT ELASTICITY, LOW SHORTENING AND ITS APPLICATION MATERIAL.
WO1992011824A1 (en) 1991-01-04 1992-07-23 American Medical Systems, Inc. Resectable self-expanding stent
US5439444A (en) 1991-01-28 1995-08-08 Corpak, Inc. Pre-formed member for percutaneous catheter
DE69219593T2 (en) 1991-03-25 1998-01-02 Meadox Medicals Inc Vascular prosthesis
US5197978B1 (en) 1991-04-26 1996-05-28 Advanced Coronary Tech Removable heat-recoverable tissue supporting device
US5304200A (en) 1991-05-29 1994-04-19 Cordis Corporation Welded radially expandable endoprosthesis and the like
US5527354A (en) 1991-06-28 1996-06-18 Cook Incorporated Stent formed of half-round wire
US5314472A (en) 1991-10-01 1994-05-24 Cook Incorporated Vascular stent
US5183085A (en) 1991-09-27 1993-02-02 Hans Timmermans Method and apparatus for compressing a stent prior to insertion
US5234457A (en) 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
US5354309A (en) 1991-10-11 1994-10-11 Angiomed Ag Apparatus for widening a stenosis in a body cavity
CA2079417C (en) 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
US5258042A (en) 1991-12-16 1993-11-02 Henry Ford Health System Intravascular hydrogel implant
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
CA2087132A1 (en) 1992-01-31 1993-08-01 Michael S. Williams Stent capable of attachment within a body lumen
US5405377A (en) 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5222969A (en) 1992-03-16 1993-06-29 Rolando Gillis Intravascular stent for cardiovascular intervention
US5282823A (en) 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5370683A (en) * 1992-03-25 1994-12-06 Cook Incorporated Vascular stent
US5368566A (en) 1992-04-29 1994-11-29 Cardiovascular Dynamics, Inc. Delivery and temporary stent catheter having a reinforced perfusion lumen
US5540712A (en) 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
US5354308A (en) 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5383928A (en) 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US5496365A (en) 1992-07-02 1996-03-05 Sgro; Jean-Claude Autoexpandable vascular endoprosthesis
US5306294A (en) 1992-08-05 1994-04-26 Ultrasonic Sensing And Monitoring Systems, Inc. Stent construction of rolled configuration
WO1994003230A1 (en) 1992-08-07 1994-02-17 Boston Scientific Corporation Support catheter assembly
US5287861A (en) 1992-10-30 1994-02-22 Wilk Peter J Coronary artery by-pass method and associated catheter
US5342348A (en) 1992-12-04 1994-08-30 Kaplan Aaron V Method and device for treating and enlarging body lumens
US5336518A (en) 1992-12-11 1994-08-09 Cordis Corporation Treatment of metallic surfaces using radiofrequency plasma deposition and chemical attachment of bioactive agents
US5370691A (en) 1993-01-26 1994-12-06 Target Therapeutics, Inc. Intravascular inflatable stent
US5360401A (en) 1993-02-18 1994-11-01 Advanced Cardiovascular Systems, Inc. Catheter for stent delivery
FR2702954B1 (en) 1993-03-03 1997-09-26 Andrew H Cragg Prosthesis and intraluminal implant.
DE69432145T2 (en) 1993-03-11 2004-01-15 Medinol Ltd STENT
US5334201A (en) 1993-03-12 1994-08-02 Cowan Kevin P Permanent stent made of a cross linkable material
US5441515A (en) 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5480423A (en) 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
US5391172A (en) 1993-05-24 1995-02-21 Advanced Cardiovascular Systems, Inc. Stent delivery system with coaxial catheter handle
US5437632A (en) 1993-06-02 1995-08-01 Target Therapeutics, Inc. Variable stiffness balloon catheter
ES2157977T3 (en) 1993-07-23 2001-09-01 Cook Inc FLEXIBLE PROBE THAT HAS A CONFORMED CONFIGURATION FROM A MATERIAL SHEET.
KR970004845Y1 (en) 1993-09-27 1997-05-21 주식회사 수호메디테크 Stent for expanding a lumen
US5433706A (en) 1993-10-25 1995-07-18 Cordis Corporation Perfusion balloon catheter
US5389106A (en) 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
JP2703510B2 (en) 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and method of manufacturing the same
US5403341A (en) 1994-01-24 1995-04-04 Solar; Ronald J. Parallel flow endovascular stent and deployment apparatus therefore
US5556413A (en) 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5554181A (en) 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
US5397355A (en) 1994-07-19 1995-03-14 Stentco, Inc. Intraluminal stent
US5549662A (en) 1994-11-07 1996-08-27 Scimed Life Systems, Inc. Expandable stent using sliding members
US5562697A (en) 1995-09-18 1996-10-08 William Cook, Europe A/S Self-expanding stent assembly and methods for the manufacture thereof
DE69735530T2 (en) * 1996-01-04 2006-08-17 Chuter, Timothy A.M. Dr., Atherton FLAT WIRE STENT
US5707387A (en) 1996-03-25 1998-01-13 Wijay; Bandula Flexible stent
US6039756A (en) * 1996-04-26 2000-03-21 Jang; G. David Intravascular stent

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663317B2 (en) 2000-03-06 2014-03-04 Boston Scientific Scimed, Inc. Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
US20100152836A1 (en) * 2000-03-06 2010-06-17 Boston Scientific Scimed, Inc. Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
US8267991B2 (en) * 2000-03-06 2012-09-18 Boston Scientific Scimed, Inc. Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
US7993388B2 (en) 2001-09-17 2011-08-09 Ev3 Peripheral, Inc. Stent with offset cell geometry
WO2003024363A1 (en) * 2001-09-17 2003-03-27 Ev3 Peripheral, Inc. Stent with offset cell geometry
US9707111B2 (en) 2001-09-17 2017-07-18 Covidien Lp Stent with offset cell geometry
US8876888B2 (en) 2001-09-17 2014-11-04 Covidien Lp Stent with offset cell geometry
US20080281404A1 (en) * 2001-09-17 2008-11-13 Ev3 Peripheral, Inc. Stent with Offset Cell Geometry
US10299791B2 (en) 2001-11-28 2019-05-28 Medtronic Vascular, Inc. Endovascular aneurysm repair system
US10098770B2 (en) 2001-11-28 2018-10-16 Medtronic Vascular, Inc. Endovascular aneurysm devices, systems, and methods
US10595867B2 (en) 2001-11-28 2020-03-24 Medtronic Vascular, Inc. Systems and methods for attaching a prosthesis within a body lumen or hollow organ
US10357230B2 (en) 2001-11-28 2019-07-23 Medtronic Vascular, Inc. Devices, system, and methods for guiding an operative tool into an interior body region
US20080065191A1 (en) * 2001-11-28 2008-03-13 Aptus Endosystems, Inc. Prosthesis systems and methods
US10194905B2 (en) 2001-11-28 2019-02-05 Medtronic Vascular, Inc. Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
US9848869B2 (en) * 2001-11-28 2017-12-26 Medtronic Vascular, Inc. Prosthesis systems and methods
US9320589B2 (en) 2001-11-28 2016-04-26 Medtronic Vascular, Inc. Endovascular aneurysm repair system
US9320503B2 (en) 2001-11-28 2016-04-26 Medtronic Vascular, Inc. Devices, system, and methods for guiding an operative tool into an interior body region
US9808250B2 (en) 2001-11-28 2017-11-07 Medtronic Vascular, Inc. Systems and methods for attaching a prosthesis within a body lumen or hollow organ
US7901448B2 (en) 2002-12-24 2011-03-08 Novostent Corporation Vascular prothesis having interdigitating edges and methods of use
US20060052861A1 (en) * 2002-12-24 2006-03-09 Novostent Corporation Vascular prothesis having interdigitating edges and methods of use
US20070233236A1 (en) * 2004-08-03 2007-10-04 Medtronic Vascular, Inc. Flexible Resheathable Stent Design
US7799067B2 (en) * 2004-08-03 2010-09-21 Medtronic Vascular, Inc. Flexible resheathable stent design
US20070250148A1 (en) * 2005-09-26 2007-10-25 Perry Kenneth E Jr Systems, apparatus and methods related to helical, non-helical or removable stents with rectilinear ends
US8343211B2 (en) * 2005-12-14 2013-01-01 Boston Scientific Scimed, Inc. Connectors for bifurcated stent
US9801742B2 (en) * 2007-04-16 2017-10-31 Boston Scientific Scimed, Inc. Radiopaque compositions, stents and methods of preparation
US20140288637A1 (en) * 2007-04-16 2014-09-25 Boston Scientific Scimed, Inc. Radiopaque Compositions, Stents and Methods of Preparation
US9943426B2 (en) * 2015-07-15 2018-04-17 Elixir Medical Corporation Uncaging stent
US10076431B2 (en) 2016-05-16 2018-09-18 Elixir Medical Corporation Uncaging stent
US10383750B1 (en) 2016-05-16 2019-08-20 Elixir Medical Corporation Uncaging stent
US10271976B2 (en) 2016-05-16 2019-04-30 Elixir Medical Corporation Uncaging stent
US10786374B2 (en) 2016-05-16 2020-09-29 Elixir Medical Corporation Uncaging stent
US10918505B2 (en) 2016-05-16 2021-02-16 Elixir Medical Corporation Uncaging stent
US11622872B2 (en) 2016-05-16 2023-04-11 Elixir Medical Corporation Uncaging stent
WO2019010458A1 (en) * 2017-07-07 2019-01-10 Endologix, Inc. Endovascular graft systems and methods for deployment in main and branch arteries
CN111093561A (en) * 2017-07-07 2020-05-01 恩朵罗杰克斯股份有限公司 Endovascular graft system and method for deployment in main and branch arteries
US11559386B2 (en) 2017-07-07 2023-01-24 Endologix Llc Endovascular graft systems and methods for deployment in main and branch arteries
WO2021121307A1 (en) * 2019-12-17 2021-06-24 北京迈迪顶峰医疗科技股份有限公司 Infant pulmonary artery stent
US20220257393A1 (en) * 2021-02-16 2022-08-18 Olympus Corporation Stent

Also Published As

Publication number Publication date
US6340366B2 (en) 2002-01-22

Similar Documents

Publication Publication Date Title
US6340366B2 (en) Stent with nested or overlapping rings
US5824059A (en) Flexible stent
US6053940A (en) Vascular stent
US6203569B1 (en) Flexible stent
US5741293A (en) Locking stent
US5707387A (en) Flexible stent
US8974515B2 (en) Stent with flexible hinges
WO1997014375A9 (en) Vascular stent
US8764815B2 (en) Intraluminal stent
EP2926775B1 (en) A balloon expandable stent
EP1703859B1 (en) Stent to be deployed on a bend
US6319277B1 (en) Nested stent
US5342387A (en) Artificial support for a blood vessel
US20120143314A1 (en) Longitudinally flexible expandable stent
US20020156525A1 (en) Spiral wound stent
US20080097582A1 (en) Stent with flexible hinges
CA2155527A1 (en) Stent
CZ20011901A3 (en) Coiled, spiral and ladder-like stent
JP2003024451A (en) Flexible stent
SK165499A3 (en) Serpentine coiled ladder stent

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REFU Refund

Free format text: REFUND - SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL (ORIGINAL EVENT CODE: R2551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12