US20010049401A1 - Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints - Google Patents

Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints Download PDF

Info

Publication number
US20010049401A1
US20010049401A1 US09/898,192 US89819201A US2001049401A1 US 20010049401 A1 US20010049401 A1 US 20010049401A1 US 89819201 A US89819201 A US 89819201A US 2001049401 A1 US2001049401 A1 US 2001049401A1
Authority
US
United States
Prior art keywords
polymer
crosslinking
crystallinity
crosslinked
vivo implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/898,192
Inventor
Ronald Salovey
Harry McKellop
Fu-Wen Shen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Southern California USC
Original Assignee
University of Southern California USC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27007631&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20010049401(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by University of Southern California USC filed Critical University of Southern California USC
Priority to US09/898,192 priority Critical patent/US20010049401A1/en
Publication of US20010049401A1 publication Critical patent/US20010049401A1/en
Priority to US10/244,661 priority patent/US20030158287A1/en
Priority to US10/262,869 priority patent/US20030045603A1/en
Priority to US10/752,167 priority patent/US20040208841A1/en
Priority to US10/982,082 priority patent/US20050125074A1/en
Priority to US11/982,100 priority patent/US20080133018A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/468Testing instruments for artificial joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/08Conditioning or physical treatment of the material to be shaped by using wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0063After-treatment of articles without altering their shape; Apparatus therefor for changing crystallisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30233Stepped cylinders, i.e. having discrete diameter changes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3082Grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30879Ribs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3611Heads or epiphyseal parts of femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/085Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using gamma-ray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/16Forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0087Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength or toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene

Definitions

  • the present invention relates to polymers. It discloses a method for enhancing the wear-resistance of polymers, especially polymers that are to be irradiated, by crosslinking the polymers.
  • the crosslinked polymers may be annealed to stabilize their size shrinkage.
  • the polymers disclosed herein are particularly useful for making in vivo implants.
  • Ultrahigh molecular weight polyethylene (hereinafter referred to as “UHMW polyethylene”) is commonly used to make prosthetic joints such as artificial hip joints.
  • UHMW polyethylene Ultrahigh molecular weight polyethylene
  • tissue necrosis and interface osteolysis in response to UHMW polyethylene wear debris, are primary contributors to the long-term loosening failure of prosthetic joints.
  • the process of wear of acetabular cups of UHMW polyethylene in artificial hip joints introduces many microscopic wear particles into the surrounding tissues.
  • the reaction of the body to these particles includes inflammation and deterioration of the tissues, particularly the bone to which the prosthesis is anchored.
  • the prosthesis becomes painfully loose and must be revised. It is generally accepted by orthopaedic surgeons and biomaterials scientists that the reaction of tissue to wear debris is the chief cause of long-term failure of such prostheses.
  • Adhesive wear occurs when there is local bonding between asperities on the polymer and the opposing (metal or ceramic) counterface. If the ratio of the strength of the adhesive bond to the cohesive strength of the polymer is great enough, the polymer may be pulled into a fibril, finally breaking loose to form a wear particle. Small wear particles (measuring microns or less) are typically produced.
  • Abrasive wear occurs when asperities on the surface of the femoral ball, or entrapped third-body particles, penetrate into the softer polyethylene and cut or plow along the surface during sliding. Debris may be immediately formed by a cutting process, or material may be pushed to the side of the track by plastic deformation, but remain an integral part of the surface.
  • Fatigue wear is dependent on cyclic stresses applied to the polymer.
  • fatigue wear is an independent wear mechanism involving crack formation and propagation within the polymer. Cracks may form at the surface and coalesce, releasing wear particles as large as several millimeters and leaving behind a corresponding pit on the surface, or cracks may form a distance below the surface and travel parallel to it, eventually causing sloughing off of large parts of the surface.
  • UHMW polyethylene components are known to undergo a spontaneous, post-fabrication increase in crystallinity and changes in other physical properties. ⁇ Grood, E. S., et al., J. Biomedical Materials Res., 16:399-405 (1976); Kurth, J., et al., Trans. Third World Biomaterials Congress, 589 (1988); Rimnac, C. M., et al., J. Bone & Joint Surgery, 76-A(7):1052-1056 (1994) ⁇ . These occur even in stored (non-implanted) cups after sterilization with gamma radiation which initiates an ongoing process of chain scission, crosslinking, and oxidation or peroxidation involving free radical formation.
  • the best total hip prosthesis for withstanding wear is one with an alumina head and an irradiated UHMW polyethylene socket, as compared to a un-irradiated socket.
  • the irradiated socket had been irradiated with 10 8 rad of ⁇ -radiation, or about 40 times the usual sterilization dose.
  • the usual average sterilization dose ranges from 2.5 to 4.0 Mrad.
  • DePuy.DuPont Orthopaedic has fabricated acetabular cups from conventionally extruded bar stock that has previously been subjected to heating and hydrostatic pressure that reduces fusion defects and increases the crystallinity, density, stiffness, hardness, yield strength, and resistance to creep, oxidation and fatigue.
  • Silane cross-linked UHMW polyethylene has also been used to make acetabular cups for total hip replacements in goats.
  • the number of in vivo debris particles appeared to be greater for XLP than conventional UHMW polyethylene cup implants ⁇ Ferris, B. D., J. Exp. Path., 71:367-373 (1990) ⁇ .
  • One aspect of the invention presents a method for reducing the crystallinity of a polymer so that it can better withstand wear.
  • An effective method for reducing the crystallinity of the polymer is by crosslinking.
  • the polymer may be irradiated in the melt or, preferably, chemically crosslinked in the molten state.
  • the method is particularly useful for polymer which undergoes irradiation sterilization in the solid state. It is advantageous if the crosslinked polymer is annealed to stabilize its shrinkage.
  • Another aspect of the invention presents a method for making in vivo implants based on the above treatment of the polymer.
  • Another aspect of the invention presents a polymer, made from the above method, having an increased ability to withstand wear.
  • Another aspect of the invention presents in vivo implants made from the polymer described above.
  • FIG. 1 presents SEM micrographs of fracture surfaces of the compression molded UHMW polyethylene (after irradiation) at magnifications of (A) ⁇ 200 and (B) ⁇ 5000.
  • FIG. 2 presents SEM micrographs of fracture surfaces of compression molded UHMW polyethylene crosslinked with 1 wt % peroxide (after irradiation) at magnifications of (A) ⁇ 200 and (B) ⁇ 5000.
  • FIG. 3 presents the geometry of the acetabular cup tested for wear on the hip joint simulator used in EXAMPLE 2 below.
  • FIG. 4 presents a schematic diagram of the hip joint simulator used in EXAMPLE 2 below.
  • FIG. 5 presents a graph comparing the amounts of wear of the modified and unmodified UHMW polyethylene cups during a run lasting a million cycles.
  • DSC differential scanning calorimetry
  • UHMWPE ultra-high molecular weight polyethylene, also referred to as UHMW polyethylene
  • the degree of crystallinity of the polymer is preferably reduced by crosslinking.
  • the crosslinking can be achieved by various methods known in the art, for example, by irradiation crosslinking of the molten polymer; photocrosslinking of the molten polymer; and crosslinking of the polymer with a free radical generating chemical.
  • the preferred method is chemical crosslinking.
  • the crosslinking is to be achieved by irradiation, the polymer should be irradiated in the melt, unlike the above mentioned prior art irradiation methods, such as in Oonishi et al. Applicants also discovered that such a crosslinked polymer is useful for in vivo implant because it is wear resistant.
  • the present invention also provides for annealing the crosslinked polymer in order to shrink it to a stable size before reshaping the polymer.
  • implants which are produced by the foregoing methods of the invention are more wear resistant than conventional untreated polymer.
  • an example of the present invention presents an UHMW polyethylene acetabular cup of a total hip prosthesis which has been chemically crosslinked by a peroxide, and then sterilized by irradiation, showing only one fifth of the wear of a control cup after a simulated year of in vivo use.
  • One aspect of the invention presents a method for treating a polymer to reduce its crystallinity to less than 45% to enable the resulting polymer to better withstand wear.
  • the polymer's crystallinity is preferably reduced by crosslinking in the molten state followed by cooling to the solid state.
  • the crosslinking reduces the crystallinity of the polymer by about 10% to 50%; more preferably, by about 10% to 40%; and most preferably, by about 10% to 30% compared to an uncrosslinked polymer.
  • the preferable degree of crystallinity of crosslinked UHMW polyethylene is between about 24% to 44%; more preferably, between 29% to 44%; and most preferably, between about 34% to 44%
  • the crosslinked polymer has a reduced crystallinity compared to the uncrosslinked polymer.
  • the irradiated crosslinked polymer possesses about 10% to 50%; more preferably, about 10% to 40%; and most preferably, about 10% to 30% less degree of crystallinity compared to the uncrosslinked but irradiated polymer.
  • the preferable degree of crystallinity of irradiated, crosslinked UHMW polyethylene is between about 28% to 51%; more preferably, between about 33% to 51%; and most preferably, between about 39% to 51%.
  • EXAMPLE 1 Table 1 below shows the degree of crystallinity for UHMW polyethylene containing different weight percentage of peroxide.
  • EXAMPLE 2 UHMW polyethylene which was crosslinked by 1% weight (wt) peroxide exhibited about 39.8% crystallinity, i.e. about a 19% reduction in crystallinity compared to 8 uncrosslinked UHMW polyethylene which possessed about 49.2% crystallinity.
  • the crosslinked UHMW polyethylene After gamma irradiation to an average dose of about 3.4 Mrad, the crosslinked UHMW polyethylene exhibits about 42% crystallinity, i.e., a reduction of about 25% in crystallinity compared to the originally uncrosslinked but radiation sterilized UHMW polyethylene which possessed about 55.8% crystallinity.
  • the treated polymer after the usual sterilization dosage in the solid state, which generally averages between 2.5 to 4.0 Mrad, the treated polymer preferably possesses less than about 45% crystallinity, and more preferably about 42% crystallinity or less. Also, the treated polymer preferably possesses less than about 43%, more preferably less than about 40%, crystallinity before irradiation in the solid state.
  • the polymer may be placed in the mold and crosslinked therein.
  • Further crosslinking examples are: (1) irradiation of the polymer when it is in a molten state, e.g. UHMW polyethylene has been crosslinked in the melt by electron beam irradiation; and molten linear polyethylene has been irradiated with fast electrons ⁇ Dijkstra, D. J. et al., Polymer, 30:866-709 (1989); Gielenz G. & Jungnickle, B.
  • the polymer may also be gamma-irradiated in the melt; and (2) photocrosslinking of the polymer in the melt, e.g. polyethylene and low-density polyethylene have been photocrosslinked ⁇ Chen, Y. L. & Ranby, B., J. Polymer Sci.: Part A: Polymer Chemistry, 27:4051-4075, 4077-4086 (1989) ⁇ ; Qu, B. J. & Ranby, B., J. Applied Polymer Sci., 48:711-719 (1993) ⁇ .
  • photocrosslinking of the polymer in the melt e.g. polyethylene and low-density polyethylene have been photocrosslinked ⁇ Chen, Y. L. & Ranby, B., J. Polymer Sci.: Part A: Polymer Chemistry, 27:4051-4075, 4077-4086 (1989) ⁇ ; Qu, B. J. & Ranby, B., J. Applied Polymer Sci., 48:711-719 (1993) ⁇ .
  • the polymers are generally polyhydrocarbons. Ductile polymers that wear well are preferred. Examples of such polymers include: polyethylene, polypropylene, polyester and polycarbonates.
  • UHMW polymers may be used, such as UHMW polyethylene and UHMW polypropylene.
  • An UHMW polymer is a polymer having a molecular weight (MW) of at least about a million.
  • the preferred polymers are those that are wear resistant and have exceptional chemical resistance.
  • UHMW polyethylene is the most preferred polymer as it is known for these properties and is currently widely used to make acetabular cups for total hip prostheses.
  • UHMW polyethylene examples include Hostalen GUR 415 medical grade UHMW polyethylene flake (Hoechst-Celanese Corporation, League City, Tex.), with a weight average molecular weight of 6 ⁇ 10 6 MW; Hostalen GUR 412 with a weight average molecular weight of between 2.5 ⁇ 10 6 to 3 ⁇ 10 6 MW; Hostalen GUR 413 of 3 ⁇ 10 6 to 4 ⁇ 10 6 MW; RCH 1000 (Hoechst-Celanese Corp.); and HiFax 1900 of 4 ⁇ 10 6 MW (HiMont, Elkton, Md.). GUR 412, 413 and 415 are in the form of powder. RCH 1000 is usually available as compression molded bars.
  • GUR 412 and GUR 415 for making acetabular cups.
  • Hoechst-Celanese Corp. changed the designation of GUR 415 to 4150 resin and indicated that 4150 HP was for use in medical implants.
  • the degree of crystallinity of the crosslinked polymer may be determined after it has been crosslinked or molded.
  • the treated polymer is further irradiated, e.g., to sterilize the polymer before its implant into humans, the degree of crystallinity may be determined after irradiation, since irradiation effects further crystallization of the polymer.
  • the degree of crystallinity can be determined using methods known in the art, e.g. by differential scanning calorimetry (DSC), which is generally used to assess the crystallinity and melting behavior of a polymer.
  • DSC differential scanning calorimetry
  • X-ray scattering from the resulting polymer can also be used to further confirm the degree of crystallinity of the polymer, e.g. as described in Spruiell, J. E., & Clark, E. S.,in “Methods of Experimental Physics”, L. Marton & C. Marton, Eds., Vol. 16, Part B, Academic Press, New York (1980). Swelling is generally used to characterize crosslink distributions in polymers, the procedure is described in Ding, Z. Y., et al., J. Polymer Sci., Polymer Chem., 29: 1035-38 (1990).
  • Another method for determining the degree of crystallinity of the resulting polymer may include FTIR ⁇ Painter, P.C. et al., “The Theory Of Vibrational Spectroscopy And Its Application To Polymeric Materials”, John Wiley and Sons, New York, U.S.A. (1982) ⁇ and electron diffraction.
  • FTIR assesses the depth profiles of oxidation as well as other chemical changes such as unsaturation ⁇ Nagy, E. V., & Li, S., “A Fourier transform infrared technique for the evaluation of polyethylene orthopaedic bearing materials”, Trans. Soc. for Biomaterials, 13:109 (1990); Shinde, A. & Salovey, R., J. Polymer Sci., Polym. Phys. Ed., 23:1681-1689 (1985) ⁇ .
  • a further method for determining the degree of crystallinity of the resulting polymer may include density measurement according to ASTM D1505-68.
  • the polymer is preferably chemically crosslinked to decrease its crystallinity.
  • the crosslinking chemical i.e. a free radical generating chemical
  • the molding temperature is the temperature at which the polymer is molded.
  • the molding temperature is generally at or above the melting temperature of polymer. If the crosslinking chemical has a long half-life at the molding temperature, it will decompose slowly, and the resulting free radicals can diffuse in the polymer to form a homogeneous crosslinked network at the molding temperature.
  • the molding temperature is also preferably high enough to allow the flow of the polymer to occur to distribute or diffuse the crosslinking chemical and the resulting free radicals to form the homogeneous network.
  • the molding temperature is between 150° to 220° C. and the molding time is between 1 to 3 hours; the preferable molding temperature and time being 170° C. and 2 hours, respectively.
  • the crosslinking chemical may be any chemical that decomposes at the molding temperature to form highly reactive intermediates, free radicals, which would react with the polymers to form the crosslinked network.
  • free radical generating chemicals are peroxides, peresters, azo compounds, disulfides, dimethacrylates, tetrazenes, and divinyl benzene.
  • azo compounds are: azobis-isobutyronitride, azobis-isobutyronitrile, and dimethylazodi isobutyrate.
  • peresters are t-butyl peracetate and t-butyl perbenzoate.
  • the polymer is crosslinked by treating it with an organic peroxide.
  • the preferable peroxides are 2,5-dimethyl-2,5-bis(tert-butylperoxy)-3-hexyne (Lupersol 130, Atochem Inc., Philadelphia, Pa.); 2,5-dimethyl-2,5-di-(t-butylperoxy)-hexane; t-butyl ⁇ -cumyl peroxide; di-butyl peroxide; t-butyl hydroperoxide; benzoyl peroxide; dichlorobenzoyl peroxide; dicumyl peroxide; di-tertiary butyl peroxide; 2,5 dimethyl-2,5 di(peroxy benzoate) hexyne-3; 1,3-bis(t-butyl peroxy isopropyl) benzene; lauroyl peroxide; di-t-amyl peroxide; 1,1-di-(t-)
  • the more preferred peroxide is 2,5-dimethyl-2,5-bis(tert-butylperoxy)-3-hexyne.
  • the preferred peroxides have a half-life of between 2 minutes to 1 hour; and more preferably, the half-life is between 5 minutes to 50 minutes at the molding temperature.
  • the range is between 0.5 to 3.0 wt % of peroxide; and most preferably, the range is between 0.6 to 2 wt %.
  • the peroxide can be dissolved in an inert solvent before being added to the polymer powder.
  • the inert solvent preferably evaporates before the polymer is molded. Examples of such inert solvents are alcohol and acetone.
  • the reaction between the polymer and the crosslinking chemical can generally be carried out at molding pressures.
  • the reactants are incubated at molding temperature, between 1 to 3 hours, and more preferably, for about 2 hours.
  • the reaction mixture is preferably slowly heated to achieve the molding temperature.
  • the crosslinked polymer is preferably slowly cooled down to room temperature.
  • the polymer may be left at room temperature and allowed to cool on its own. Slow cooling allows the formation of a stable crystalline structure.
  • reaction parameters for crosslinking polymers with peroxide can be determined by one skilled in the art.
  • peroxides are available for reaction with polyolefins, and investigations of their relative efficiencies have been reported ⁇ Lem, K. W. & Han, C. D., J. Appl. Polym. Sci., 27:1367 (1982); Kampouris, E. M. & Andreopoulos, A. G., J. Appl. Polym. Sci., 34:1209 (1987) and Bremner, T. & Rudin, A. J. Appl. Polym. Sci., 49:785 (1993) ⁇ .
  • Another aspect of the invention presents a process for making in vivo implants using the above chemically crosslinked polymer. Since in vivo implants are often irradiated to sterilize them before implant, the present invention provides the further step of selecting for implant use, a polymer with about 45% crystallinity or less after irradiation sterilization. For ⁇ -irradiation sterilization, the minimum dosage is generally 2.5 Mrad. The sterilization dosage generally falls between 2.5 and 4.0 Mrad. The preferable degree of crystallinity is between 25% to 45% crystallinity.
  • the polymer has about 39.8% crystallinity after crosslinking; and about 42% crystallinity after further irradiation with ⁇ -radiation to an average dose of about 3.4 Mrad.
  • the chemically crosslinked UHMW polymer preferably possesses less than about 43% crystallinity before irradiation in the solid state, and less than about 45% crystallinity after irradiation with ⁇ -radiation to an average dose of about 3.4 Mrad.
  • the present invention further provides for annealing a polymer to pre-shrink it to a size which will not shrink further (i.e. stabilize the polymer's shrinkage or size).
  • one aspect of the invention provides for a method of: 1) crosslinking a polymer, 2) selecting a crosslinked polymer of reduced crystallinity, 3) annealing the polymer to stabilize its size.
  • the polymer can be molded at a size larger than desired, and the molded polymer is then annealed to stabilize its size. After size stabilization, the molded polymer is then resized, such as by machining, into a product with the desired dimension.
  • the annealing temperature is preferably chosen to avoid thermal oxidation of the crosslinked polymer which will increase its crystallinity.
  • the annealing temperature is preferably below the melting point of the molded polymer before irradiation.
  • the melting temperatures of molded UHMW polyethylene and molded 1 wt % peroxide UHMW polyethylene are 132.6° C. and 122.3° C., before irradiation, respectively.
  • the preferable annealing temperature for both these molded UHMW polyethylenes is between 60° C. to 120° C., before irradiation, and more preferably 100° C. These temperatures were determined by observation, based on experiments, of their minimal effect on thermal oxidation of the molded polymers.
  • the annealing time is generally between 1 to 6 hours, and more preferably between 2 to 4 hours. In the case of UHMW polyethylene, the annealing time is preferably between 2 to 4 hours, and more preferably about 2 hours.
  • the annealing is most preferably conducted in a vacuum oven.
  • the crosslinked and annealed polymer has the desired degree of crystallinity
  • its degree of crystallinity is preferably determined after the annealing process, using the method(s) described previously.
  • Another aspect of the invention presents a polymer with 45% of crystallinity or less, in particular, after irradiation in the solid state and/or annealing.
  • the polymer has about 39.8% crystallinity after crosslinking; and about 42% crystallinity, after further irradiation with ⁇ -radiation to an average dose of about 3.4 Mrad; or about 40.8% crystallinity, after crosslinking and annealing, but before irradiation in the solid state.
  • the polymers of the present invention can be used in any situation where a polymer, especially UHMW polyethylene, is called for, but especially in situations where high wear resistance is desired and irradiation of the solid polymer is called for. More particularly, these polymers are useful for making in vivo implants.
  • the modified polymer can be used to make in vivo implants for various parts of the body, such as components of a joint in the body.
  • the modified polymer in the hip joints, can be used to make the acetabular cup, or the insert or liner of the cup, or trunnion bearings (e.g. between the modular head and the stem).
  • the modified polymer in the knee joint, can be used to make the tibial plateau (femoro-tibial articulation), the patellar button (patello-femoral articulation), and trunnion or other bearing components, depending on the design of the artificial knee joint.
  • the modified polymer can be used to make the talar surface (tibio-talar articulation) and other bearing components.
  • the modified polymer can be used to make the radio-humeral joint, ulno-humeral joint, and other bearing components.
  • the modified polymer can be used to make the glenoro-humeral articulation, and other bearing components.
  • the modified polymer can be used to make intervertebral disk replacement and facet joint replacement.
  • the modified polymer can also be made into temporo-mandibular joint (jaw) and finger joints.
  • the specimens were irradiated with ⁇ -rays at room temperature in air atmosphere by SteriGenics International (Tustin, Calif.). Cobalt-60 was used as a source of gamma irradiation.
  • the radiation doses were delivered at a dose rate of 5 kGy/hr. Specimens received doses to an average of about 34 kGy (i.e., an average of about 3.4 Mrad).
  • the degree of crystallinity, peak melting temperature, and recrystallization temperature for the peroxide-free specimen are 49.2%, 132.6 and 115.5° C., respectively.
  • the degree of crystallinity, peak melting temperature, and recrystallization temperature are reduced to 39.8%, 122.3 and 110.1° C., respectively.
  • Peroxide crosslinking reactions are accompanied by the decomposition of peroxide and abstraction of hydrogen atoms, and the resulting combination of alkyl radicals to produce carbon-carbon crosslinks. Generally, this reaction was performed above the melting temperature of the polymer. Thus the crosslinking step preceded the crystallization step.
  • peroxide crosslinked samples show a ductile (smooth) fracture surface, compared to the rough fracture surface of peroxide-free specimen.
  • the difference in appearance of fracture surfaces for peroxide-free and 1 wt % peroxide specimens is due to the crystallinity difference.
  • the degree of crystallinity for the peroxide-free and 1 wt % peroxide specimens were 55.8 and 42%, respectively. It is believed that the peroxide-free specimen (55.8% crystallinity) suffered higher forces and less deformation during fracturing process, leading to a sharp break in the polymer.
  • FTIR measurements showed that, after irradiation, the carbonyl concentration significantly increased. This is because the free radicals produced by irradiation react with oxygen dissolved and/or diffused in the polymer.
  • carbonyl concentration in the irradiated peroxide-crosslinked samples is higher, compared to the peroxide-free sample (after irradiation). This is because peroxide crosslinking introduces tertiary carbons which are more susceptible to oxidation during irradiation, so that the carbonyl concentration in the irradiated peroxide-crosslinked samples increases.
  • FIG. 4 presents a schematic diagram of the hip joint simulator.
  • the arrow indicates the direction of the computer controlled simulated physiological load exerted on the simulated hip joint.
  • the simulator contains: a torque transducer 5 , the acetabular cup 6 , a dual axis offset drive block 7 , a test chamber 8 , serum 9 , and a femoral head 10 .

Abstract

The present invention discloses a method for enhancing the wear-resistance of polymers by crosslinking them, especially before irradiation sterilization. In particular, this invention presents the use of chemically crosslinked ultrahigh molecular weight polyethylene in in vivo implants.

Description

    TECHNICAL FIELD OF THE INVENTION
  • The present invention relates to polymers. It discloses a method for enhancing the wear-resistance of polymers, especially polymers that are to be irradiated, by crosslinking the polymers. The crosslinked polymers may be annealed to stabilize their size shrinkage. The polymers disclosed herein are particularly useful for making in vivo implants. [0001]
  • BACKGROUND OF THE INVENTION
  • Ultrahigh molecular weight polyethylene (hereinafter referred to as “UHMW polyethylene”) is commonly used to make prosthetic joints such as artificial hip joints. In recent years, it has become increasingly apparent that tissue necrosis and interface osteolysis, in response to UHMW polyethylene wear debris, are primary contributors to the long-term loosening failure of prosthetic joints. For example, the process of wear of acetabular cups of UHMW polyethylene in artificial hip joints introduces many microscopic wear particles into the surrounding tissues. The reaction of the body to these particles includes inflammation and deterioration of the tissues, particularly the bone to which the prosthesis is anchored. Eventually, the prosthesis becomes painfully loose and must be revised. It is generally accepted by orthopaedic surgeons and biomaterials scientists that the reaction of tissue to wear debris is the chief cause of long-term failure of such prostheses. [0002]
  • Laboratory experiments and examination of worn polyethylene components, as used in acetabular cups of total hip prostheses, after removal from patients, have shown that polyethylene wear in vivo primarily involves three fundamental mechanisms: adhesive, abrasive, and fatigue wear {Brown, K. J., et al., [0003] Plastics in Medicine & Surgery Plastics & Rubber Institute, London, 2.1-2.5 (1975); Nusbaum, H. J. & Rose, R. M., J. Biomed. Materials Res., 13:557-576 (1979); Rostoker, W., et al., J. Biomed. Materials Res., 12:317-335 (1978); Swanson, S. A. V. & Freeman, M. A. R., Chapter 3, “Friction, lubrication and wear.”, The Scientific Basis of Joint Replacement, Pittman Medical Publishing Co., Ltd. (1977).}
  • Adhesive wear occurs when there is local bonding between asperities on the polymer and the opposing (metal or ceramic) counterface. If the ratio of the strength of the adhesive bond to the cohesive strength of the polymer is great enough, the polymer may be pulled into a fibril, finally breaking loose to form a wear particle. Small wear particles (measuring microns or less) are typically produced. [0004]
  • Abrasive wear occurs when asperities on the surface of the femoral ball, or entrapped third-body particles, penetrate into the softer polyethylene and cut or plow along the surface during sliding. Debris may be immediately formed by a cutting process, or material may be pushed to the side of the track by plastic deformation, but remain an integral part of the surface. [0005]
  • Fatigue wear is dependent on cyclic stresses applied to the polymer. As used herein, fatigue wear is an independent wear mechanism involving crack formation and propagation within the polymer. Cracks may form at the surface and coalesce, releasing wear particles as large as several millimeters and leaving behind a corresponding pit on the surface, or cracks may form a distance below the surface and travel parallel to it, eventually causing sloughing off of large parts of the surface. [0006]
  • There are gaps in the prior art regarding the contributions of the above three basic mechanisms to the wear of polyethylene cups in vivo. While numerous laboratory studies and analyses of retrieved implants have provided valuable details on wear in vivo, there is ongoing disagreement regarding which wear mechanisms predominate and what are the controlling factors for wear. [0007]
  • However, it is clear that improving the wear resistance of the UHMW polyethylene socket and, thereby, reducing the amount of wear debris generated each year, would extend the useful life of artificial joints and permit them to be used successfully in younger patients. Consequently, numerous modifications in physical properties of UHMW polyethylene have been proposed to improve its wear resistance. [0008]
  • UHMW polyethylene components are known to undergo a spontaneous, post-fabrication increase in crystallinity and changes in other physical properties. {Grood, E. S., et al., [0009] J. Biomedical Materials Res., 16:399-405 (1976); Kurth, J., et al., Trans. Third World Biomaterials Congress, 589 (1988); Rimnac, C. M., et al., J. Bone & Joint Surgery, 76-A(7):1052-1056 (1994)}. These occur even in stored (non-implanted) cups after sterilization with gamma radiation which initiates an ongoing process of chain scission, crosslinking, and oxidation or peroxidation involving free radical formation. {Eyerer, P. & Ke, Y. C., J. Biomed. Materials Res. 18:1137-1151 (1984); Nusbaum, H. J. & Rose, R. M., J. Biomed. Materials Res., 13:557-576 (1979); Roe, R. J., et al., J. Biomed. Materials Res., 15:209-230 (1981); Shen, C. & Dumbleton, J. H., Wear, 30:349-364 (1974)}. These degradative changes may be accelerated by oxidative attack from the joint fluid and cyclic stresses applied during use. {Eyerer, P. & Ke, Y. C., J. Biomed. Materials Res., supra; Grood, E. S., et al., J. Biomed. Materials Res., supra; Rimnac, C. M., et al., ASTM Symposium on Biomaterials' Mechanical Properties, Pittsburgh, May 5-6 (1992)}.
  • on the other hand, it has been reported that the best total hip prosthesis for withstanding wear is one with an alumina head and an irradiated UHMW polyethylene socket, as compared to a un-irradiated socket. The irradiated socket had been irradiated with 10[0010] 8 rad of γ-radiation, or about 40 times the usual sterilization dose. {Oonishi, H., et al., Radiat. Phys. Chem., 39(6):495-504 (1992)}. The usual average sterilization dose ranges from 2.5 to 4.0 Mrad. Other investigators did not find any significant reduction in the wear rates of UHMW polyethylene acetabular cups which had been irradiated, in the solid phase, in special atmospheres to reduce oxidation and encourage crosslinking. {Ferris, B. D., J. Exp. Path., 71:367-373 (1990); Kurth, M., et al., Trans. Third World Biomaterials Congress, 589 (1988); Roe, R. J., et al., J. Biomed. Materials Res., 15:209-230 (1981); Rose, et al., J. Bone & Joint Surgery, 62A(4):537-549 (1980); Streicher, R. M., Plastics & Rubber Processing & Applications, 10:221-229 (1988)}.
  • Meanwhile, DePuy.DuPont Orthopaedic has fabricated acetabular cups from conventionally extruded bar stock that has previously been subjected to heating and hydrostatic pressure that reduces fusion defects and increases the crystallinity, density, stiffness, hardness, yield strength, and resistance to creep, oxidation and fatigue. {U.S. Pat. No. 5,037,928, to Li, et al., Aug. 6, 1991; Huang, D. D. & Li, S., Trans. 38th Ann. Mtg., [0011] Orthop. Res. Soc., 17:403 (1992); Li, S. & Howard, E. G., Trans. 16th Ann. Society for Biomaterials Meeting, Charleston, S. C., 190 (1990).} Silane cross-linked UHMW polyethylene (XLP) has also been used to make acetabular cups for total hip replacements in goats. In this case, the number of in vivo debris particles appeared to be greater for XLP than conventional UHMW polyethylene cup implants {Ferris, B. D., J. Exp. Path., 71:367-373 (1990)}.
  • Other modifications of UHMW polyethylene have included: (a) reinforcement with carbon fibers {“Poly Two Carbon-Polyethylene Composite-A Carbon Fiber Reinforced Molded Ultra-High Molecular Weight Polyethylene”, Technical Report, Zimmer (a Bristol-Myers Squibb Company), Warsaw (1977)}; and (b) post processing treatments such as solid phase compression molding {Eyerer, P., Polyethylene, [0012] Concise Encyclopedia of Medical & Dental Implant Materials, Pergamon Press, Oxford, 271-280 (1990); Li, S., et al., Trans. 16th Annual Society for Biomaterials Meeting, Charleston, S. C., 190 (1990); Seedhom, B. B., et al., Wear, 24:35-51 (1973); Zachariades, A. E., Trans. Fourth World Biomaterials Congress, 623 (1992)). However, to date, none of these modifications has been demonstrated to provide a significant reduction in the wear rates of acetabular cups. Indeed, carbon fiber reinforced polyethylene and a heat-pressed polyethylene have shown relatively poor wear resistance when used as the tibial components of total knee prosthesis. {Bartel, D. L., et al., J. Bone & Joint Surgery, 68-A(7):1041-1051 (1986); Conelly, G. M., et al., J. Orthop. Res., 2:119-125 (1984); Wright, T. M., et al., J. Biomed. Materials Res., 15: 719-730 (1981); Bloebaum, R. D., et al., Clin. Orthop., 269:120-127 (1991); Goodman, S. & Lidgren, L., Acta Orthop. Scand., 63(3) 358-364 (1992); Landy, M. M. & Walker, P. S., J. Arthroplasty, Supplement, 3:S73-S85 (1988); Rimnac, C. M., et al., Trans. Orthopaedic Research Society, 17:330 (1992); Rimnac, C. M. et al., “Chemical and mechanical degradation of UHMW polyethylene: Preliminary report of an in vitro investigation,” ASTM Symposium on Biomaterials' Mechanical Properties, Pittsburgh, May 5-6 (1992)}.
  • SUMMARY OF THE INVENTION
  • One aspect of the invention presents a method for reducing the crystallinity of a polymer so that it can better withstand wear. An effective method for reducing the crystallinity of the polymer is by crosslinking. For reduction of crystallinity, the polymer may be irradiated in the melt or, preferably, chemically crosslinked in the molten state. The method is particularly useful for polymer which undergoes irradiation sterilization in the solid state. It is advantageous if the crosslinked polymer is annealed to stabilize its shrinkage. [0013]
  • Another aspect of the invention presents a method for making in vivo implants based on the above treatment of the polymer. [0014]
  • Another aspect of the invention presents a polymer, made from the above method, having an increased ability to withstand wear. [0015]
  • Another aspect of the invention presents in vivo implants made from the polymer described above.[0016]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 presents SEM micrographs of fracture surfaces of the compression molded UHMW polyethylene (after irradiation) at magnifications of (A)×200 and (B)×5000. [0017]
  • FIG. 2 presents SEM micrographs of fracture surfaces of compression molded UHMW polyethylene crosslinked with 1 wt % peroxide (after irradiation) at magnifications of (A)×200 and (B)×5000. [0018]
  • FIG. 3 presents the geometry of the acetabular cup tested for wear on the hip joint simulator used in EXAMPLE 2 below. [0019]
  • FIG. 4 presents a schematic diagram of the hip joint simulator used in EXAMPLE 2 below. [0020]
  • FIG. 5 presents a graph comparing the amounts of wear of the modified and unmodified UHMW polyethylene cups during a run lasting a million cycles.[0021]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Abbreviations used in this application are as follows: [0022]
  • DSC—differential scanning calorimetry. [0023]
  • FTIR—Fourier Transform Infrared Spectroscopy [0024]
  • SEM—scanning electron microscopy [0025]
  • UHMW—ultra-high molecular weight [0026]
  • UHMWPE—ultra-high molecular weight polyethylene, also referred to as UHMW polyethylene [0027]
  • WAXS—wide angle X-ray scattering [0028]
  • Cutting through the plethora of choices and confusion in the art, applicants discovered that a low degree of crystallinity is a major factor in increasing the ability of polyethylene to withstand wear in vivo, contrary to the above teaching of DePuy.DuPont Orthopaedic. Solid polymers that can crystallize generally contain both crystalline and amorphous states. These two states have different physical properties. The applicants believe that the crystalline component of polymers is more brittle and less wear-resistant than the amorphous component, the amorphous component being more ductile and more wear-resistant. [0029]
  • In the present invention, the degree of crystallinity of the polymer is preferably reduced by crosslinking. The crosslinking can be achieved by various methods known in the art, for example, by irradiation crosslinking of the molten polymer; photocrosslinking of the molten polymer; and crosslinking of the polymer with a free radical generating chemical. The preferred method is chemical crosslinking. As indicated, if the crosslinking is to be achieved by irradiation, the polymer should be irradiated in the melt, unlike the above mentioned prior art irradiation methods, such as in Oonishi et al. Applicants also discovered that such a crosslinked polymer is useful for in vivo implant because it is wear resistant. Such in vivo implant has not been envisioned by the prior art. Moreover, since acetabular cups are routinely sterilized by irradiation which increases the crystallinity of UHMW polyethylene {Bhateja, S. K., [0030] J. Macromol. Sci. Phys., B22:159 (1983); Bhateja, S. K., et al., J. Polym. Sci. Polym. Phys. Ed., 21:523 (1983); and Bhateja, S. K. & Andrews, E. H., J. Mater. Sci., 20:2839 (1985)}, applicants realized that the irradiation in fact makes the polymer more susceptible to wear, contrary to the teaching of the prior art such as Oonishi et al, supra. By crosslinking the polymer before sterilization by irradiation, applicants' method mitigates the deleterious effects of irradiation, such as chain scission. Applicants' method calls for determination of the crystallinity after irradiation to adjust the crosslinking conditions to reduce crystallinity. The polymer may also be irradiated under certain conditions e.g., in nitrogen atmosphere to reduce the immediate and subsequent amounts of oxidation. Reducing oxidation increases the amount of crosslinking. In producing acetabular cups, applicants discovered that both uncrosslinked and crosslinked cups show shrinkage in size, but crosslinked cups tend to shrink more than uncrosslinked cups. Thus, the present invention also provides for annealing the crosslinked polymer in order to shrink it to a stable size before reshaping the polymer.
  • Most importantly, implants which are produced by the foregoing methods of the invention are more wear resistant than conventional untreated polymer. Thus, an example of the present invention presents an UHMW polyethylene acetabular cup of a total hip prosthesis which has been chemically crosslinked by a peroxide, and then sterilized by irradiation, showing only one fifth of the wear of a control cup after a simulated year of in vivo use. [0031]
  • Method for Treating the Polymers
  • One aspect of the invention presents a method for treating a polymer to reduce its crystallinity to less than 45% to enable the resulting polymer to better withstand wear. The polymer's crystallinity is preferably reduced by crosslinking in the molten state followed by cooling to the solid state. Preferably, the crosslinking reduces the crystallinity of the polymer by about 10% to 50%; more preferably, by about 10% to 40%; and most preferably, by about 10% to 30% compared to an uncrosslinked polymer. For example, the preferable degree of crystallinity of crosslinked UHMW polyethylene is between about 24% to 44%; more preferably, between 29% to 44%; and most preferably, between about 34% to 44% After sterilization by irradiation, the crosslinked polymer has a reduced crystallinity compared to the uncrosslinked polymer. Preferably, the irradiated crosslinked polymer possesses about 10% to 50%; more preferably, about 10% to 40%; and most preferably, about 10% to 30% less degree of crystallinity compared to the uncrosslinked but irradiated polymer. For example, the preferable degree of crystallinity of irradiated, crosslinked UHMW polyethylene is between about 28% to 51%; more preferably, between about 33% to 51%; and most preferably, between about 39% to 51%. For example, EXAMPLE 1, Table 1 below shows the degree of crystallinity for UHMW polyethylene containing different weight percentage of peroxide. In the following EXAMPLE 2, UHMW polyethylene which was crosslinked by 1% weight (wt) peroxide exhibited about 39.8% crystallinity, i.e. about a 19% reduction in crystallinity compared to 8 uncrosslinked UHMW polyethylene which possessed about 49.2% crystallinity. After gamma irradiation to an average dose of about 3.4 Mrad, the crosslinked UHMW polyethylene exhibits about 42% crystallinity, i.e., a reduction of about 25% in crystallinity compared to the originally uncrosslinked but radiation sterilized UHMW polyethylene which possessed about 55.8% crystallinity. Thus, it is contemplated that after the usual sterilization dosage in the solid state, which generally averages between 2.5 to 4.0 Mrad, the treated polymer preferably possesses less than about 45% crystallinity, and more preferably about 42% crystallinity or less. Also, the treated polymer preferably possesses less than about 43%, more preferably less than about 40%, crystallinity before irradiation in the solid state. [0032]
  • If the polymer is to be molded, e.g. as an acetabular cup, the polymer may be placed in the mold and crosslinked therein. Further crosslinking examples are: (1) irradiation of the polymer when it is in a molten state, e.g. UHMW polyethylene has been crosslinked in the melt by electron beam irradiation; and molten linear polyethylene has been irradiated with fast electrons {Dijkstra, D. J. et al., [0033] Polymer, 30:866-709 (1989); Gielenz G. & Jungnickle, B. J., Colloid & Polymer Sci., 260:742-753 (1982)); the polymer may also be gamma-irradiated in the melt; and (2) photocrosslinking of the polymer in the melt, e.g. polyethylene and low-density polyethylene have been photocrosslinked {Chen, Y. L. & Ranby, B., J. Polymer Sci.: Part A: Polymer Chemistry, 27:4051-4075, 4077-4086 (1989)}; Qu, B. J. & Ranby, B., J. Applied Polymer Sci., 48:711-719 (1993)}.
  • Choices of Polymers
  • The polymers are generally polyhydrocarbons. Ductile polymers that wear well are preferred. Examples of such polymers include: polyethylene, polypropylene, polyester and polycarbonates. For example, UHMW polymers may be used, such as UHMW polyethylene and UHMW polypropylene. An UHMW polymer is a polymer having a molecular weight (MW) of at least about a million. [0034]
  • For in vivo implants, the preferred polymers are those that are wear resistant and have exceptional chemical resistance. UHMW polyethylene is the most preferred polymer as it is known for these properties and is currently widely used to make acetabular cups for total hip prostheses. Examples of UHMW polyethylene are: Hostalen GUR 415 medical grade UHMW polyethylene flake (Hoechst-Celanese Corporation, League City, Tex.), with a weight average molecular weight of 6×10[0035] 6 MW; Hostalen GUR 412 with a weight average molecular weight of between 2.5×106 to 3×106 MW; Hostalen GUR 413 of 3×106 to 4×106 MW; RCH 1000 (Hoechst-Celanese Corp.); and HiFax 1900 of 4×106 MW (HiMont, Elkton, Md.). GUR 412, 413 and 415 are in the form of powder. RCH 1000 is usually available as compression molded bars. Historically, companies which make implants have used GUR 412 and GUR 415 for making acetabular cups. Recently, Hoechst-Celanese Corp. changed the designation of GUR 415 to 4150 resin and indicated that 4150 HP was for use in medical implants.
  • Methods for Characterizing the Polymers (Especially the Determination of Their Crystallinity
  • The degree of crystallinity of the crosslinked polymer may be determined after it has been crosslinked or molded. In case the treated polymer is further irradiated, e.g., to sterilize the polymer before its implant into humans, the degree of crystallinity may be determined after irradiation, since irradiation effects further crystallization of the polymer. [0036]
  • The degree of crystallinity can be determined using methods known in the art, e.g. by differential scanning calorimetry (DSC), which is generally used to assess the crystallinity and melting behavior of a polymer. Wang, X. & Salovey, R., [0037] J. App. Polymer Sci., 34: 593-599 (1987).
  • X-ray scattering from the resulting polymer can also be used to further confirm the degree of crystallinity of the polymer, e.g. as described in Spruiell, J. E., & Clark, E. S.,in “Methods of Experimental Physics”, L. Marton & C. Marton, Eds., Vol. 16, Part B, Academic Press, New York (1980). Swelling is generally used to characterize crosslink distributions in polymers, the procedure is described in Ding, Z. Y., et al., [0038] J. Polymer Sci., Polymer Chem., 29: 1035-38 (1990). Another method for determining the degree of crystallinity of the resulting polymer may include FTIR {Painter, P.C. et al., “The Theory Of Vibrational Spectroscopy And Its Application To Polymeric Materials”, John Wiley and Sons, New York, U.S.A. (1982)} and electron diffraction. FTIR assesses the depth profiles of oxidation as well as other chemical changes such as unsaturation {Nagy, E. V., & Li, S., “A Fourier transform infrared technique for the evaluation of polyethylene orthopaedic bearing materials”, Trans. Soc. for Biomaterials, 13:109 (1990); Shinde, A. & Salovey, R., J. Polymer Sci., Polym. Phys. Ed., 23:1681-1689 (1985)}. A further method for determining the degree of crystallinity of the resulting polymer may include density measurement according to ASTM D1505-68.
  • Methods for Chemically Crosslinking the Polymers
  • The polymer is preferably chemically crosslinked to decrease its crystallinity. Preferably, the crosslinking chemical, i.e. a free radical generating chemical, has a long half-life at the molding temperature of the chosen polymer. The molding temperature is the temperature at which the polymer is molded. The molding temperature is generally at or above the melting temperature of polymer. If the crosslinking chemical has a long half-life at the molding temperature, it will decompose slowly, and the resulting free radicals can diffuse in the polymer to form a homogeneous crosslinked network at the molding temperature. Thus, the molding temperature is also preferably high enough to allow the flow of the polymer to occur to distribute or diffuse the crosslinking chemical and the resulting free radicals to form the homogeneous network. For UHMW polyethylene, the molding temperature is between 150° to 220° C. and the molding time is between 1 to 3 hours; the preferable molding temperature and time being 170° C. and 2 hours, respectively. [0039]
  • Thus, the crosslinking chemical may be any chemical that decomposes at the molding temperature to form highly reactive intermediates, free radicals, which would react with the polymers to form the crosslinked network. Examples of free radical generating chemicals are peroxides, peresters, azo compounds, disulfides, dimethacrylates, tetrazenes, and divinyl benzene. Examples of azo compounds are: azobis-isobutyronitride, azobis-isobutyronitrile, and dimethylazodi isobutyrate. Examples of peresters are t-butyl peracetate and t-butyl perbenzoate. [0040]
  • Preferably the polymer is crosslinked by treating it with an organic peroxide. The preferable peroxides are 2,5-dimethyl-2,5-bis(tert-butylperoxy)-3-hexyne (Lupersol 130, Atochem Inc., Philadelphia, Pa.); 2,5-dimethyl-2,5-di-(t-butylperoxy)-hexane; t-butyl α-cumyl peroxide; di-butyl peroxide; t-butyl hydroperoxide; benzoyl peroxide; dichlorobenzoyl peroxide; dicumyl peroxide; di-tertiary butyl peroxide; 2,5 dimethyl-2,5 di(peroxy benzoate) hexyne-3; 1,3-bis(t-butyl peroxy isopropyl) benzene; lauroyl peroxide; di-t-amyl peroxide; 1,1-di-(t-butylperoxy) cyclohexane; 2,2-di-(t-butylperoxy)butane; and 2,2-di-(t-amylperoxy) propane. The more preferred peroxide is 2,5-dimethyl-2,5-bis(tert-butylperoxy)-3-hexyne. The preferred peroxides have a half-life of between 2 minutes to 1 hour; and more preferably, the half-life is between 5 minutes to 50 minutes at the molding temperature. [0041]
  • Generally, between 0.2 to 5.0 wt % of peroxide is used; more preferably, the range is between 0.5 to 3.0 wt % of peroxide; and most preferably, the range is between 0.6 to 2 wt %. [0042]
  • The peroxide can be dissolved in an inert solvent before being added to the polymer powder. The inert solvent preferably evaporates before the polymer is molded. Examples of such inert solvents are alcohol and acetone. [0043]
  • For convenience, the reaction between the polymer and the crosslinking chemical, such as peroxide, can generally be carried out at molding pressures. Generally, the reactants are incubated at molding temperature, between 1 to 3 hours, and more preferably, for about 2 hours. [0044]
  • The reaction mixture is preferably slowly heated to achieve the molding temperature. After the incubation period, the crosslinked polymer is preferably slowly cooled down to room temperature. For example, the polymer may be left at room temperature and allowed to cool on its own. Slow cooling allows the formation of a stable crystalline structure. [0045]
  • The reaction parameters for crosslinking polymers with peroxide, and the choices of peroxides, can be determined by one skilled in the art. For example, a wide variety of peroxides are available for reaction with polyolefins, and investigations of their relative efficiencies have been reported {Lem, K. W. & Han, C. D., [0046] J. Appl. Polym. Sci., 27:1367 (1982); Kampouris, E. M. & Andreopoulos, A. G., J. Appl. Polym. Sci., 34:1209 (1987) and Bremner, T. & Rudin, A. J. Appl. Polym. Sci., 49:785 (1993)}. Differences in decomposition rates are perhaps the main factor in selecting a particular peroxide for an intended application {Bremner, T. & Rudin, A. J. Appl. Polym. Sci., 49:785 (1993)}. Bremner and Rudin, id., compared three dialkyl peroxides on the basis of their ability to increase the gel content, crosslinking efficiency, and storage modulus of virgin polyethylene through a crosslinking mechanism and found that they decreased in the order of α, α-bis(tertiary butylperoxy)-p-diisopropyl benzene> dicumyl peroxide>2,5-dimethyl-2,5-di-(tertiary butylproxy)-hexyne-3 at the same active peroxide radical concentrations and temperature.
  • More specifically, peroxide crosslinking of UHMW polyethylene has also been reported (de Boer, J. & Pennings, A. J., [0047] Makromol. Chem. Rapid Commun., 2:749 (1981); de Boer, J. & Pennings, A. J., Polymer, 23:1944 (1982); de Boer, J., et al., Polymer, 25:513 (1984) and Narkis, M., et al., J. Macromol. Sci. Phys., B 26:37, 58 (1987)}. de Boer et al. crosslinked UHMW polyethylene in the melt at 180° C. by means of 2,5-dimethyl-2,5-di-(tert-butylperoxy)-hexyne-3 and found that crosslinks and entanglements, whether trapped or not, contributed to the same degree to the decrease in crystallinity of UHMW polyethylene upon crosslinking {de Boer, J. & Pennings, A. J., Polymer, 23:1944 (1982)}. It was concluded that an almost completely crosslinked (or gelled) material with high crystallinity and good mechanical properties could be obtained by using as little as 0.2-0.3 wt % of peroxide.
  • Some of the above references investigated the effect of peroxide crosslinking on UHMW polyethylene, such as in lowering crystallinity; and the effects of reaction parameters, such as peroxide concentrations {de Boer, J. & Pennings, A. J., [0048] Polymer, 23:1944 (1982); Narkis, M., et al., J. Macromol. Sci. Phys., B 26:37-58 (1987)}. However, these references do not address the effect of peroxide crosslinking or the lowering of crystallinity in relation to the wear property of the resulting polymer. For example, de Boer and Pennings, in Polymer, 23:1944 (1982), were concerned with the effect of crosslinking on the crystallization behavior and the tensile properties of UHMW polyethylene. The authors found that tensile properties, such as tensile strength at break point and Young's modulus, of the UHMW polyethylene, showed a tendency to decrease with increasing peroxide content.
  • Similarly, Narkis, M., et al., [0049] J. Macromol. Sci. Phys., B 26:37-58 (1987), separately determined the effects of irradiation and peroxide on the crosslinking and degree of crystallinity of UHMW polyethylene (Hostalen GUR 412), high molecular weight polyethylene, and normal molecular weight polyethylene. However, M. Narkis et al., did not study the inter-relationship of peroxide crosslinking and irradiation, nor their effects on wear resistance.
  • Use of Crosslinked Polymers for In Vivo Implants
  • Another aspect of the invention presents a process for making in vivo implants using the above chemically crosslinked polymer. Since in vivo implants are often irradiated to sterilize them before implant, the present invention provides the further step of selecting for implant use, a polymer with about 45% crystallinity or less after irradiation sterilization. For γ-irradiation sterilization, the minimum dosage is generally 2.5 Mrad. The sterilization dosage generally falls between 2.5 and 4.0 Mrad. The preferable degree of crystallinity is between 25% to 45% crystallinity. In EXAMPLE 2 below, the polymer has about 39.8% crystallinity after crosslinking; and about 42% crystallinity after further irradiation with γ-radiation to an average dose of about 3.4 Mrad. Thus, the chemically crosslinked UHMW polymer preferably possesses less than about 43% crystallinity before irradiation in the solid state, and less than about 45% crystallinity after irradiation with γ-radiation to an average dose of about 3.4 Mrad. [0050]
  • Annealing of Crosslinked Polymers
  • Applicants observed that both crosslinked and uncrosslinked polymers tended to shrink, but the crosslinked polymer tended to shrink more than the uncrosslinked polymer (see EXAMPLE 3 below). Thus, the present invention further provides for annealing a polymer to pre-shrink it to a size which will not shrink further (i.e. stabilize the polymer's shrinkage or size). Thus, one aspect of the invention provides for a method of: 1) crosslinking a polymer, 2) selecting a crosslinked polymer of reduced crystallinity, 3) annealing the polymer to stabilize its size. Thus, the polymer can be molded at a size larger than desired, and the molded polymer is then annealed to stabilize its size. After size stabilization, the molded polymer is then resized, such as by machining, into a product with the desired dimension. [0051]
  • The annealing temperature is preferably chosen to avoid thermal oxidation of the crosslinked polymer which will increase its crystallinity. Thus; the annealing temperature is preferably below the melting point of the molded polymer before irradiation. For example, the melting temperatures of molded UHMW polyethylene and molded 1 wt % peroxide UHMW polyethylene are 132.6° C. and 122.3° C., before irradiation, respectively. The preferable annealing temperature for both these molded UHMW polyethylenes is between 60° C. to 120° C., before irradiation, and more preferably 100° C. These temperatures were determined by observation, based on experiments, of their minimal effect on thermal oxidation of the molded polymers. The annealing time is generally between 1 to 6 hours, and more preferably between 2 to 4 hours. In the case of UHMW polyethylene, the annealing time is preferably between 2 to 4 hours, and more preferably about 2 hours. [0052]
  • To further avoid thermal oxidation of the crosslinked polymer, the annealing is most preferably conducted in a vacuum oven. [0053]
  • To ensure that the crosslinked and annealed polymer has the desired degree of crystallinity, its degree of crystallinity is preferably determined after the annealing process, using the method(s) described previously. [0054]
  • Wear-Resistant Polymers
  • Another aspect of the invention presents a polymer with 45% of crystallinity or less, in particular, after irradiation in the solid state and/or annealing. In EXAMPLE 2 below, the polymer has about 39.8% crystallinity after crosslinking; and about 42% crystallinity, after further irradiation with γ-radiation to an average dose of about 3.4 Mrad; or about 40.8% crystallinity, after crosslinking and annealing, but before irradiation in the solid state. [0055]
  • The polymers of the present invention can be used in any situation where a polymer, especially UHMW polyethylene, is called for, but especially in situations where high wear resistance is desired and irradiation of the solid polymer is called for. More particularly, these polymers are useful for making in vivo implants. [0056]
  • In Vivo Implants Made of Crosslinked Polymers
  • An important aspect of this invention presents in vivo implants that are made with the above polymers or according to the method presented herein. These implants are more wear resistant than their untreated counterpart, especially after irradiation. In particular, these in vivo implants are chemically crosslinked UHMW polymers, which have been molded, annealed, and resized into the shape of the implants. Further, the chemically crosslinked UHMW polymer preferably possesses less than about 43% crystallinity before irradiation in the solid state, and less than about 45% crystallinity, after γ-irradiation to an average dose of 3.4 Mrad, in the solid state. The modified polymer can be used to make in vivo implants for various parts of the body, such as components of a joint in the body. For example, in the hip joints, the modified polymer can be used to make the acetabular cup, or the insert or liner of the cup, or trunnion bearings (e.g. between the modular head and the stem). In the knee joint, the modified polymer can be used to make the tibial plateau (femoro-tibial articulation), the patellar button (patello-femoral articulation), and trunnion or other bearing components, depending on the design of the artificial knee joint. In the ankle joint, the modified polymer can be used to make the talar surface (tibio-talar articulation) and other bearing components. In the elbow joint, the modified polymer can be used to make the radio-humeral joint, ulno-humeral joint, and other bearing components. In the shoulder joint, the modified polymer can be used to make the glenoro-humeral articulation, and other bearing components. In the spine, the modified polymer can be used to make intervertebral disk replacement and facet joint replacement. The modified polymer can also be made into temporo-mandibular joint (jaw) and finger joints. The above are by way of example, and are not meant to be limiting. [0057]
  • Having described what the applicants believe their invention to be, the following examples are presented to illustrate the invention, and are not to be construed as limiting the scope of the invention. [0058]
  • EXAMPLES Example 1 Experimental Details
  • Commercial-grade UHMW polyethylene GUR 415 (from Hoechst-Celanese Corporation, League City, Tex.), with a weight average molecular weight of 6×10[0059] 6, was used as received. The peroxide used was 2,5-dimethyl-2,5-bis(tert-butylperoxy)-3-hexyne (Lupersol 130, Atochem Inc., Philadelphia, Pa.). The reason for choosing Lupersol 130 was its long half-life at elevated temperature. The peroxide will decompose slowly, and the resultant free radicals can diffuse in the specimen to form a homogeneous network at elevated temperatures.
  • Mixing of the UHMW polyethylene and the peroxide was accomplished by dispersing polyethylene powder in an acetone solution of the peroxide and subsequently evaporating the solvent {de Boer, J., et al., [0060] J. Polym. Sci., Polym. Phys. Ed., 14:187 (1976); de Boer, J. & Pennings, A. J., Makromol. Chem, Rapid Commun., 2:749 (1981) and de Boer, J. & Pennings, A. J., Polymer, 23:1944 (1982)}. The mixed powder (22 g) was poured into the mold cavity and then compression molded in a mold between two stainless-steel plates at 120° C. and ram pressure 11×103 kPa for 10 minutes in order to evacuate the trapped air in the powder. After pressing, the pressure was reduced to 7.5×103 kPa and the specimen was heated to 170° C. by circulated heating oil. These conditions were held for 2 hours. The half-life time of peroxide at 170° C. in dodecane is about 9 minutes. After 2 hours, pressure was increased to 15×103 kPa to avoid cavities in the specimen and sink marks on the surface and the specimen was slowly cooled in the mold to room temperature. The mold was in the shape of an acetabular cup for a total hip prosthesis.
  • The specimens were irradiated with γ-rays at room temperature in air atmosphere by SteriGenics International (Tustin, Calif.). Cobalt-60 was used as a source of gamma irradiation. The radiation doses were delivered at a dose rate of 5 kGy/hr. Specimens received doses to an average of about 34 kGy (i.e., an average of about 3.4 Mrad). [0061]
  • The physical properties of specimens before and after irradiation were characterized by DSC, equilibrium swelling, FTIR, and WAXS measurements. Surface morphology was examined by SEM. [0062]
  • Results and Discussion
  • Before irradiation, the degree of crystallinity, peak melting temperature, and recrystallization temperature for the peroxide-free specimen are 49.2%, 132.6 and 115.5° C., respectively. For a 1 wt % peroxide specimen, the degree of crystallinity, peak melting temperature, and recrystallization temperature are reduced to 39.8%, 122.3 and 110.1° C., respectively. Peroxide crosslinking reactions are accompanied by the decomposition of peroxide and abstraction of hydrogen atoms, and the resulting combination of alkyl radicals to produce carbon-carbon crosslinks. Generally, this reaction was performed above the melting temperature of the polymer. Thus the crosslinking step preceded the crystallization step. It was suggested that crystallization from a crosslinked melt produced an imperfect crystal, and crosslinks suppressed crystal growth, resulting in the depression of melting temperature and a decreased crystallinity (decreased crystallite size) {de Boer, J. et al., [0063] J. Polym. Sci., Polym. Phys. Ed., 14:187 (1976); de Boer, J. & Pennings, A. J., Makromol. Chem, Rapid Commun., 2:749 (1981); de Boer, J. & Pennings, A. J., Polymer, 23:1944 (1982) and Narkis, M., et al., J. Macromol. Sci. Phys., B26:37 (1987)}. Wide-angle x-ray scattering shows that the degree of crystallinity, crystal perfection and size decrease after peroxide crosslinking. For swelling measurement, the peroxide-free specimen dissolves completely in boiling p-xylene. The gel content, degree of swelling, and average molecular weight between crosslinks for the 1 wt % peroxide specimen are 99.6%, 2.53, and 1322 (g/mol), respectively. Because of the extremely long polymer chains in UHmw polyethylene, only a few crosslinks were needed for gelation. In addition, an almost 100% gel can be obtained by peroxide crosslinking because no chain scission occurs by peroxide crosslinking.
  • After irradiation, the degree of crystallinity and peak melting temperature for the peroxide-free specimen were increased to 55.8% and 135° C., respectively. It was suggested that irradiation-induced scission of taut tie molecules permits recrystallization of broken chains from the noncrystalline regions, and results in an increase in the degree of crystallinity and an increased perfection of existing folded chain crystallites {Narkis, M., et al., [0064] J. Macromol. Sci. Phys., B26:37 (1987); Bhateja, S. K., J. Macromol. Sci. Phys., B22:159 (1983); Bhateja, S. K., et al., J. Polym. Sci., Polym. Phys. Ed., 21:523 (1983); Kamel, I. & Finegold, L., J. Polym. Sci., Polym. Phys. Ed., 23:2407 (1985); Shinde, A. & Salovey, R., J. Polym. Sci., Polym, Phys. Ed., 23:1681 (1985); Bhateja, S. K. & Andrews, E. H., J. Mater. Sci., 20:2839 (1985); Minkova, L., Colloid Polym. Sci., 266:6 (1988); Minkova, L. & Mihailov, M., Colloid Polym. Sci., 268:1018 (1990) and Zhao, Y., et al., J. Appl. Polym. Sci., 50:1797 (1993)}. The gel content after irradiation for the peroxide-free specimen was 70.8%.
  • For the 1 wt % peroxide specimen, the degree of crystallinity and peak melting temperature after irradiation were increased to 42% (about 2% increase) and 125.1° C., respectively. The gel content decreased to 97.5% after irradiation, whereas, the degree of swelling and molecular weight between crosslinks increased to 3.35 and 2782 (g/mol), respectively. Apparently, irradiation-induced scission of taut tie molecules resulted in a decreased gel content and an increased degree of swelling. However, after peroxide crosslinking, the effect of irradiation on network properties was mitigated. As a result of peroxide crosslinking, radiation-induced chain scission becomes less important in determining gel content. We suggest that peroxide crosslinking reduces the effect of irradiation on the crosslinked network because crosslinks introduced by peroxide crosslinking stabilize chain fragments resulting from the scission of taut tie molecules and suppress recrystallization of broken chains. Wide-angle x-ray scattering showed that crystal perfection increased after irradiation. It is suggested that crystal perfection was improved by irradiation-induced scission of taut tie molecules in the amorphous regions. [0065]
  • FTIR measurements showed that, after irradiation) the carbonyl concentration significantly increased. This is because the free radicals produced by irradiation reacted with oxygen dissolved and/or diffused in the polymer. In addition, the carbonyl concentration in irradiated peroxide-crosslinked samples was higher, compared to the peroxide-free sample (after irradiation). Peroxide crosslinking produces tertiary carbons, therefore, the concentration of tertiary carbons increases with increasing peroxide concentration. Applicants believe that tertiary carbons are more susceptible to oxidation during irradiation. Therefore, carbonyl concentration in the irradiated peroxide-crosslinked samples increased with increasing peroxide concentration. [0066]
  • After irradiation, scanning electron micrographs were taken of the fracture surfaces of the peroxide-free and 1 wt % peroxide specimens, compression molded at 170° C. for 2 hours and subsequently slowly cooled to room temperature. The micrographs are shown in FIGS. [0067] 1 and 2, respectively. As shown in FIG. 1, a brittle (rough) fracture boundary of size comparable to that of the original UHMW polyethylene powder particles is observed. Close examination (×5000 magnification) shows an oriented nodular structure, composed of many smooth, submicron spheres. These smooth, minute spheres are believed to correspond to those present in the raw UHMW polyethylene powder and to form an aggregate. In FIG. 2, peroxide crosslinked samples show a ductile (smooth) fracture surface, compared to the rough fracture surface of peroxide-free specimen. The difference in appearance of fracture surfaces for peroxide-free and 1 wt % peroxide specimens is due to the crystallinity difference. After irradiation, the degree of crystallinity for the peroxide-free and 1 wt % peroxide specimens were 55.8 and 42%, respectively. It is believed that the peroxide-free specimen (55.8% crystallinity) suffered higher forces and less deformation during fracturing process, leading to a sharp break in the polymer.
  • The crosslinking experiment was also conducted with different concentrations of Lupersol 130, using a smaller amount, 5 g, of GUR 415 and a smaller mold which was in the form of a disk. It was observed that the degree of crystallinity of the crosslinked polymer decreased with increased concentrations of Lupersol 130. The result is shown in Table 1 below: [0068]
    TABLE 1
    wt % Crystallinity (%) Crystallinity (%)
    Peroxide Before Irradiation After Irradiation
    0   49.2 55.8
    0.2 44.0 50.0
    0.4 41.6 46.8
    0.6 41.3 46.2
    0.8 40.0 45.0
    1.0 39.8 42.0
    1.5 36.8 36.8
    2.0 36.5 36.7
  • Conclusions
  • Peroxide crosslinking leads to a decrease in the degree of crystallinity, peak melting temperatures, and recrystallization temperatures for 1 wt % peroxide specimen. Irradiation produces crosslinking in amorphous regions plus extensive scission of taut tie molecules and leads to increased crystallinity and crystal perfection, reduces gel content, and increases the degree of swelling of a crosslinked network. [0069]
  • Peroxide crosslinking reduces the effect of irradiation on the crosslinked network. This is because crosslinks introduced by peroxide crosslinking can stabilize the chain fragments resulting from the scission of taut tie molecules and suppress recrystallization of broken chains. [0070]
  • FTIR measurements showed that, after irradiation, the carbonyl concentration significantly increased. This is because the free radicals produced by irradiation react with oxygen dissolved and/or diffused in the polymer. In addition, carbonyl concentration in the irradiated peroxide-crosslinked samples is higher, compared to the peroxide-free sample (after irradiation). This is because peroxide crosslinking introduces tertiary carbons which are more susceptible to oxidation during irradiation, so that the carbonyl concentration in the irradiated peroxide-crosslinked samples increases. [0071]
  • Wide-angle x-ray scattering shows that crystal perfection increases after irradiation. It is suggested that crystal perfection is improved by irradiation-induced scission of taut tie molecules in the amorphous regions. [0072]
  • The peroxide-free specimen shows brittle fracture because of higher crystallinity (55.8%), whereas, the 1 wt % peroxide specimen shows ductile fracture due to lower crystallinity (42%). [0073]
  • Example 2 Materials and Methods
  • In this example, the wear resistance of the polyethylenes treated (modified) and untreated (unmodified) with peroxide in EXAMPLE 2 were tested. The control (unmodified) and modified polyethylenes were compression molded directly into the form of acetabular cups. These were then exposed to an average of approximately 3.4 Mrad of gamma radiation (SteriGenics International, Tustin, Calif.), to simulate the condition of cups that would be used in patients. Due to different amounts of post-molding shrinkage, the internal surface of each cup was machined to provide nearly identical internal diameters and ball-to-cup clearances among the control and modified cups (FIG. 3). As shown in FIG. 3B, the cup's [0074] outer radius 1 is 24.5 mm, its inner radius 2 is 16.1 mm, its height 3 is 29.8 mm, and its diameter 4 is 49.0 mm
  • The cups were pre-soaked in distilled water for three weeks prior to the wear test to minimize fluid absorption during the wear test. The wear cups were mounted on the hip joint simulator, including four cups of control polyethylene and three cups of modified polyethylene. Each cup was held in a urethane mold and mounted in a stainless steel test chamber, with a plexiglass wall to contain the bovine serum lubricant. The lubricant had 0.2% sodium azide added to retard bacterial degradation, and 20 milli-Molar ethylene-diaminetetraacetic acid (EDTA) to prevent precipitation of calcium phosphate on the surfaces of the ball (McKellop, H. & Lu, B., “Friction and Wear of Polyethylene-Metal and Polyethylene-Ceramic Hip Prostheses on a Joint Simulator, Fourth World Biomaterials Congress, Berlin, Apr. 1992, 118). A polyethylene skirt covered each chamber to minimize air-borne contamination. The cups were oscillated against highly polished femoral balls of cast cobalt-chromium alloy, as used on artificial hips. The simulator applied a Paul-type cyclic load at one cycle per second {Paul, J. P., [0075] Proc. Instn. Mech. Engrs., 181, Part 3J, 8-15, (1967)}with a 2000N peak, simulating the load on the human hip during normal walking, and the cups were oscillated through a bi-axial 46 degree arc at 68 cycles per minute. At intervals of 250,000 cycles, the cups were removed from the wear machine, rinsed, inspected and replaced with fresh lubricant. At 500,000 cycles and one million cycles, all of the cups were removed from the wear simulator, cleaned, dried and weighed to determine the weight loss due to wear. One million cycles is the equivalent of about one year's use of a prosthetic hip in a patient. FIG. 4 presents a schematic diagram of the hip joint simulator. The arrow indicates the direction of the computer controlled simulated physiological load exerted on the simulated hip joint. The simulator contains: a torque transducer 5, the acetabular cup 6, a dual axis offset drive block 7, a test chamber 8, serum 9, and a femoral head 10.
  • Three soak-correction acetabular cups of each material (control and modified) were prepared in an identical manner, but were not wear tested. These cups were mounted in a separate test frame and a cyclic load, identical to that used in the wear test, was applied. These soak-correction cups were cleaned and weighed together with the wear test cups, and the average weight gain of the correction cups was added to the apparent weight loss of the wear test cups (i.e. to correct for fluid absorption by the wear test cups that would obscure the weight loss due to wear). [0076]
  • Results and Discussion
  • Because of the apparent “negative” wear at 0.5 million cycles (discussed below), the wear rates were calculated and compared for all of the cups only for the interval from 0.5 to 1.0 million cycles. The four control polyethylene cups showed comparable amounts of wear (FIG. 5), with an average corrected wear rate of 19.19 (S. D.=2.38) milligrams per million cycles (Table 2). This was within the range that applicants have measured for cups of conventional UHMW polyethylene in a variety of studies that applicants have run. [0077]
  • The wear was much lower for the modified cups (FIG. 5). As shown in Table 2, the mean wear rate for the modified cups was 4.12 (S.D.=1.26) milligrams per million cycles, i.e. about one-fifth of the wear of the control cups. This difference was statistically significant at the level of p=0.0002). [0078]
    TABLE 2
    WEAR RATES FOR CONTROL AND MODIFIED POLYETHYLENES
    (INTERVAL FROM 0.5 TO 1.0 MILLION CYCLES)
    WEAR RATE MEAN WEAR RATE
    CUP (mg/million (STANDARD
    MATERIAL NUMBER cycles) DEVIATION)
    CONTROL C2 21.67
    POLYETHYLENE C3 16.78 19.19
    C4 17.57  (2.38)
    C9 20.76
    MODIFIED M4  4.08
    POLYETHYLENE M5  2.88  4.12
    M7  5.39  (1.26)
  • For the data point at 0.5 million cycles, the corrected weights were lower than the weights before the wear test. This was most likely the result of the wear being very small, and the fluid absorption by the test cups being slightly greater than the average gain of the soak correction cups, such that the correction factor did not entirely offset the fluid gain by the wear cups (giving an apparent “negative” wear). A small difference in water absorption rates between the wear cups and the correction cups could arise due to differences in equilibrium temperatures (the wear cups were typically at 350° C. to 45° C., whereas the soak correction cups were at room temperature, about 20° C.), due to mechanical agitation of the serum during oscillation of the wear test chambers, or other causes. [0079]
  • Example 3
  • During the wear test in the simulator described in EXAMPLE 2, it was discovered that the acetabular cups shrunk at simulated human body temperature. In order to stabilize the shrinkage, in this experiment (unrelated to EXAMPLE 2), the cups were annealed at 100° C. in a vacuum oven for 2 hours. After annealing, the total shrinkage in diameter for uncrosslinked and crosslinked cups was approximately 1% and 2%, respectively. The degrees of crystallinity of the annealed cups were determined by DSC. The degree of crystallinity of the uncrosslinked polymer was unchanged, whereas that of the crosslinked polymer was increased by approximately 1%. To test for further shrinkage, the cups were again put in the vacuum oven at 80° C. for two hours, and no further shrinkage was observed. [0080]
  • The present invention has been described with reference to specific embodiments. However, this application is intended to cover those changes and substitutions which may be made by those skilled in the art without departing from the spirit and scope of the appended claims. [0081]

Claims (41)

We claim:
1. A method for producing a crosslinked polymer with increased ability to withstand wear, comprising the steps of:
a) crosslinking a polymer to form a crosslinked polymer;
b) determining the degree of crystallinity of the crosslinked polymer; and
c) adjusting reaction conditions such that the degree of crystallinity of the polymer after crosslinking is reduced by 10% to 50%;
wherein the crosslinking is achieved by a method selected from the group consisting of:
i) irradiation crosslinking of the polymer when it is in a molten state;
ii) photocrosslinking of the polymer in the melt; and
iii) crosslinking of the polymer with a free radical generating chemical.
2. The method of
claim 1
, further comprising the step of irradiating the crosslinked polymer in the solid state.
3. The method of
claim 2
, further comprising the step of annealing the crosslinked polymer.
4. A method for producing a crosslinked polymer with increased ability to withstand wear, comprising the steps of:
a) crosslinking a polymer to form a crosslinked polymer without irradiating the polymer in its solid state;
b) irradiating the crosslinked polymer in its solid state at a sterilization dose; and
c) selecting for the crosslinked polymer which, after the irradiation in step (b), possesses a degree of crystallinity of about 45% or less.
5. The method of
claim 4
, wherein the crosslinking is achieved by a method selected from the group consisting of:
a) irradiation crosslinking of the polymer when it is in a molten state;
b) photocrosslinking of the polymer in the melt; and
c) crosslinking of the polymer with a free radical generating chemical.
6. The method of
claim 5
, further comprising the step of annealing the crosslinked polymer.
7. A method for producing a crosslinked polymer with increased ability to withstand wear, comprising the steps of:
a) crosslinking a polymer to form a crosslinked polymer without irradiating the polymer in its solid state;
b) annealing the crosslinked polymer;
c) irradiating the crosslinked polymer in its solid state at a sterilization dose; and
d) selecting for the crosslinked polymer which, after the irradiation in step (c) and the annealing in step (b), possesses a degree of crystallinity of about 45% or less.
8. A method for making a crosslinked polymer suitable for use in vivo implant, said crosslinked polymer has an increased ability to withstand wear, said method comprising the steps of:
a) reducing crystallinity of the polymer by crosslinking the polymer; and
b) molding the resulting polymer into a shape suitable for in vivo implant;
wherein the crosslinking of step (a) does not include irradiating the polymer in a solid state.
9. The method of
claim 8
, wherein the crosslinking is achieved by a method selected from the group consisting of:
a) irradiation of the polymer when it is in a molten state;
b) photocrosslinking of the polymer in the melt; and
c) crosslinking of the polymer with a free radical generating chemical.
10. The method of
claim 9
, wherein the crosslinking is achieved with a free radical generating chemical.
11. The method of
claim 10
, wherein the free radical generating chemical is selected from the group consisting of: peroxides, peresters, azo compounds, disulfides, dimethacrylates, tetrazenes, and divinyl benzene.
12. The method of
claim 11
, further comprising the step of radiation sterilization of the in vivo implant.
13. The method of
claim 12
, wherein the degree of crystallinity of the polymer is reduced by between 10 to 50% by crosslinking.
14. The method of
claim 13
, further comprising the step of annealing the crosslinked polymer to stabilize its shrinkage.
15. The method of
claim 14
, wherein the polymer is UHMW polyhydrocarbon.
16. An in vivo implant made by a polymer produced by the method comprising the steps of:
a) reducing the crystallinity of the polymer to enable it to better withstand wear; and
b) molding the polymer into a shape suitable for in vivo implant;
wherein the reduction of crystallinity in step (a) does not include irradiating the polymer in a solid state.
17. The in vivo implant of
claim 16
, wherein the step (a) is achieved by crosslinking the polymer using a method selected from the group consisting of:
a) irradiation crosslinking of the polymer when it is in a molten state;
b) photocrosslinking of the polymer in the melt; and
c) crosslinking of the polymer with a free radical generating chemical.
18. The in vivo implant of
claim 17
, wherein the polymer is chemically crosslinked with a free radical generating chemical.
19. The in vivo implant of
claim 18
, wherein the free radical generating chemical is selected from the group consisting of: peroxides, peresters, azo compounds, disulfides, dimethacrylates, tetrazenes, and divinyl benzene.
20. The in vivo implant of
claim 19
, wherein the crosslinking reduces the crystallinity of the polymer by 10 to 50%.
21. The in vivo implant of
claim 20
, wherein the polymer is a polyhydrocarbon.
22. The in vivo implant of
claim 21
, wherein the polyhydrocarbon is an UHMW polyhydrocarbon.
23. The in vivo implant of
claim 17
, wherein the in vivo implant is capable of possessing about 45% crystallinity or less if irradiated by gamma irradiation to an average dose of about 3.4 Mrad or less.
24. The in vivo implant of
claim 23
, wherein the polymer is UHMW polyhydrocarbon.
25. The in vivo implant of
claim 24
, wherein the in vivo implant increases in its degree of crystallinity by about 1% if annealed.
26. The in vivo implant of
claim 23
, wherein the free radical generating chemical is selected from the group consisting of: peroxides, peresters, azo compounds, disulfides, dimethacrylates, tetrazenes, and divinyl benzene.
27. The in vivo implant of
claim 26
, wherein the polymer is chemically crosslinked by a free radical generating chemical, and the polymer is UHMW polyhydrocarbon.
28. The in vivo implant of
claim 17
, capable of suffering less than or equal to one-fifth of the wear suffered by another in vivo implant made from an uncrosslinked polymer.
29. The in vivo implant of
claim 28
, wherein the polymer is chemically crosslinked by a free radical generating chemical, and the polymer is UHMW polyhydrocarbon.
30. A polyhydrocarbon capable of maintaining a degree of crystallinity of about 42% or less after gamma irradiation to an average dose of about 3.4 Mrad or less.
31. The polyhydrocarbon of
claim 30
, wherein the polyhydrocarbon has a crystallinity of about 39.8% or less before the gamma irradiation.
32. The polyhydrocarbon of
claim 30
, wherein the polyhydrocarbon is UHMW polyhydrocarbon.
33. A crosslinked in vivo implant comprising a component of an animal joint, said in vivo implant being capable of suffering about one-fifth or less of the wear suffered by an uncrosslinked in vivo implant, wherein the crosslinked in vivo implant and the uncrosslinked in vivo implant are made of UHMW polyethylene and have been sterilized by irradiation, and the crosslink is achieved by a method selected from the group consisting of:
a) irradiation crosslinking of the UHMW polyethylene when it is in a molten state;
b) photocrosslinking of the UHMW polyethylene in the melt; and
c) crosslinking of the UHMW polyethylene with a free radical generating chemical.
34. The crosslinked in vivo implant of
claim 33
, wherein the in vivo implant is an acetabular cup and the crosslink is achieved by crosslinking of the UHMW polyethylene with a free radical generating chemical selected from the group consisting of: peroxides, peresters, azo compounds, disulfides, dimethacrylates, tetrazenes, and divinyl benzene.
35. The crosslinked in vivo implant of
claim 34
, wherein the free radical generating chemical is a peroxide.
36. An in vivo implant made from a polyhydrocarbon having a crystallinity of about 43% or less.
37. The in vivo implant of
claim 36
, capable of maintaining a crystallinity of 45% or less after irradiation with gamma irradiation at a sterilization dose.
38. The in vivo implant of
claim 37
, wherein said polyhydrocarbon is UHMW polyethylene.
39. The in vivo implant of
claim 38
, wherein the UHMW polyethylene is chemically crosslinked.
40. The in vivo implant of
claim 39
, wherein the UHMW polyethylene has a crystallinity of about 40% before irradiation in the solid state, and a crystallinity of about 42% after gamma irradiation to an average dose of about 3.4 Mrad.
41. The in vivo implant of
claim 36
, wherein the polyhydrocarbon is chemically crosslinked.
US09/898,192 1995-01-20 2001-07-02 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints Abandoned US20010049401A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/898,192 US20010049401A1 (en) 1995-01-20 2001-07-02 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10/244,661 US20030158287A1 (en) 1995-01-20 2002-09-17 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10/262,869 US20030045603A1 (en) 1995-01-20 2002-10-03 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10/752,167 US20040208841A1 (en) 1995-01-20 2004-01-03 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10/982,082 US20050125074A1 (en) 1995-01-20 2004-11-04 Crosslinking of polyethylene for low wear using radiation and thermal treatments
US11/982,100 US20080133018A1 (en) 1995-01-20 2007-10-31 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US37695395A 1995-01-20 1995-01-20
US69863896A 1996-08-15 1996-08-15
US09/406,305 US6281264B1 (en) 1995-01-20 1999-09-27 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US09/898,192 US20010049401A1 (en) 1995-01-20 2001-07-02 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/406,305 Continuation US6281264B1 (en) 1995-01-20 1999-09-27 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/244,661 Continuation US20030158287A1 (en) 1995-01-20 2002-09-17 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10/262,869 Continuation US20030045603A1 (en) 1995-01-20 2002-10-03 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints

Publications (1)

Publication Number Publication Date
US20010049401A1 true US20010049401A1 (en) 2001-12-06

Family

ID=27007631

Family Applications (6)

Application Number Title Priority Date Filing Date
US09/406,305 Expired - Lifetime US6281264B1 (en) 1995-01-20 1999-09-27 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US09/898,192 Abandoned US20010049401A1 (en) 1995-01-20 2001-07-02 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10/244,661 Abandoned US20030158287A1 (en) 1995-01-20 2002-09-17 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10/262,869 Abandoned US20030045603A1 (en) 1995-01-20 2002-10-03 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10/752,167 Abandoned US20040208841A1 (en) 1995-01-20 2004-01-03 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US11/982,100 Abandoned US20080133018A1 (en) 1995-01-20 2007-10-31 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/406,305 Expired - Lifetime US6281264B1 (en) 1995-01-20 1999-09-27 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints

Family Applications After (4)

Application Number Title Priority Date Filing Date
US10/244,661 Abandoned US20030158287A1 (en) 1995-01-20 2002-09-17 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10/262,869 Abandoned US20030045603A1 (en) 1995-01-20 2002-10-03 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10/752,167 Abandoned US20040208841A1 (en) 1995-01-20 2004-01-03 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US11/982,100 Abandoned US20080133018A1 (en) 1995-01-20 2007-10-31 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints

Country Status (6)

Country Link
US (6) US6281264B1 (en)
EP (1) EP0722973B2 (en)
JP (2) JP3323728B2 (en)
CA (1) CA2166450C (en)
DE (1) DE69631076T2 (en)
IT (1) IT1284325B1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050125074A1 (en) * 1995-01-20 2005-06-09 Ronald Salovey Crosslinking of polyethylene for low wear using radiation and thermal treatments
US20060085080A1 (en) * 2002-10-11 2006-04-20 Cartificial A/S Medical device comprising a bio-compatible polymeric product with a layered structure
US7344672B2 (en) 2004-10-07 2008-03-18 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US20080133018A1 (en) * 1995-01-20 2008-06-05 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US7462318B2 (en) 2004-10-07 2008-12-09 Biomet Manufacturing Corp. Crosslinked polymeric material with enhanced strength and process for manufacturing
US7547405B2 (en) 2004-10-07 2009-06-16 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US20100029858A1 (en) * 2007-04-10 2010-02-04 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US7846376B2 (en) 2005-08-18 2010-12-07 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US20100328739A1 (en) * 2009-06-25 2010-12-30 Oki Data Corporation Image scanning apparatus and image processing system
US8003709B2 (en) 1996-07-09 2011-08-23 Orthopaedic Hospital Crosslinking of polyethylene for low wear using radiation and thermal treatments
US8262976B2 (en) 2004-10-07 2012-09-11 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US8399535B2 (en) 2010-06-10 2013-03-19 Zimmer, Inc. Polymer [[s]] compositions including an antioxidant
US8641959B2 (en) 2007-07-27 2014-02-04 Biomet Manufacturing, Llc Antioxidant doping of crosslinked polymers to form non-eluting bearing components
USRE44762E1 (en) 1994-09-21 2014-02-11 Bmg Incorporated Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same
US8652212B2 (en) 2008-01-30 2014-02-18 Zimmer, Inc. Orthopedic component of low stiffness
US8664290B2 (en) 2007-04-10 2014-03-04 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8851201B2 (en) 2008-08-06 2014-10-07 Milwaukee Electric Tool Corporation Precision torque tool
US9017416B2 (en) 2009-12-21 2015-04-28 Derek J. McMinn Method of forming a polymer component
US9586370B2 (en) 2013-08-15 2017-03-07 Biomet Manufacturing, Llc Method for making ultra high molecular weight polyethylene
US9708467B2 (en) 2013-10-01 2017-07-18 Zimmer, Inc. Polymer compositions comprising one or more protected antioxidants
US9745462B2 (en) 2008-11-20 2017-08-29 Zimmer Gmbh Polyethylene materials
US10184031B2 (en) 2014-03-12 2019-01-22 Zimmer, Inc. Melt-stabilized ultra high molecular weight polyethylene and method of making the same
US10265891B2 (en) 2014-12-03 2019-04-23 Zimmer, Inc. Antioxidant-infused ultra high molecular weight polyethylene

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414049A (en) * 1993-06-01 1995-05-09 Howmedica Inc. Non-oxidizing polymeric medical implant
US20020156536A1 (en) * 1996-02-13 2002-10-24 Harris William H. Polyethylene hip joint prosthesis with extended range of motion
PL189272B1 (en) * 1996-02-13 2005-07-29 Gen Hospital Corp Prosthetic device made of irradiated and fused polyethylene of ultrahigh molecular weight
US8865788B2 (en) 1996-02-13 2014-10-21 The General Hospital Corporation Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
JP5073626B2 (en) * 1996-02-13 2012-11-14 マサチューセッツ インスティテュート オブ テクノロジー Radiation and melt processed ultra high molecular weight polyethylene prosthetic device
US5879400A (en) 1996-02-13 1999-03-09 Massachusetts Institute Of Technology Melt-irradiated ultra high molecular weight polyethylene prosthetic devices
US8563623B2 (en) 1996-02-13 2013-10-22 The General Hospital Corporation Radiation melt treated ultra high molecular weight polyethylene prosthetic devices
US6228900B1 (en) 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6017975A (en) * 1996-10-02 2000-01-25 Saum; Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
EP1028760B1 (en) * 1996-10-15 2004-04-14 Orthopaedic Hospital Wear resistant surface-gradient cross-linked polyethylene
US6692679B1 (en) 1998-06-10 2004-02-17 Depuy Orthopaedics, Inc. Cross-linked molded plastic bearings
EP0963824B1 (en) * 1998-06-10 2004-12-08 DePuy Products, Inc. Method for forming cross-linked molded plastic bearings
US6245276B1 (en) 1999-06-08 2001-06-12 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6627141B2 (en) 1999-06-08 2003-09-30 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6432349B1 (en) 1999-06-29 2002-08-13 Zimmer, Inc. Process of making an articulating bearing surface
US6143232A (en) * 1999-07-29 2000-11-07 Bristol-Meyers Squibb Company Method of manufacturing an articulating bearing surface for an orthopaedic implant
US6184265B1 (en) 1999-07-29 2001-02-06 Depuy Orthopaedics, Inc. Low temperature pressure stabilization of implant component
US6365089B1 (en) 1999-09-24 2002-04-02 Zimmer, Inc. Method for crosslinking UHMWPE in an orthopaedic implant
YU45502A (en) 1999-12-17 2003-07-07 Cartificial A/S. Medico Chemical Lab. Ap S. A prosthetic device
US6395799B1 (en) 2000-02-21 2002-05-28 Smith & Nephew, Inc. Electromagnetic and mechanical wave energy treatments of UHMWPE
WO2001080778A1 (en) 2000-04-27 2001-11-01 The Orthopaedic Hospital Oxidation-resistant and wear-resistant polyethylenes for human joint replacements and methods for making them
KR20010108801A (en) * 2000-05-31 2001-12-08 안복현 Method for enhancement of wear resistance of ultra-high molecular weight polyethylene
US6503439B1 (en) 2000-06-15 2003-01-07 Albert H. Burstein Process for forming shaped articles of ultra high molecular weight polyethylene suitable for use as a prosthetic device or a component thereof
ES2286131T3 (en) 2000-07-31 2007-12-01 Massachusetts General Hospital CONSTREATED MONOPOLAR ACETABULAR COMPONENT.
US6818172B2 (en) 2000-09-29 2004-11-16 Depuy Products, Inc. Oriented, cross-linked UHMWPE molding for orthopaedic applications
DE60122360T2 (en) * 2000-09-29 2007-08-09 DePuy Orthopaedics, Inc., Warsaw TREATMENT OF ANY IRRADIATED PROBATION OF A PROSTHETIC POLYETHYLENE BEARING ELEMENT COMPRISING AN OVERCRITICAL FLUID
US6626947B2 (en) 2000-10-03 2003-09-30 Depuy Orthopaedics, Inc. Press fit acetabular cup and associated method for securing the cup to an acetabulum
WO2002036828A2 (en) * 2000-11-01 2002-05-10 Genomic Solutions Inc. COMPOSITIONS AND SYSTEMS FOR IDENTIFYING AND COMPARING EXPRESSED GENES (mRNAs) IN EUKARYOTIC ORGANISMS
US6558426B1 (en) 2000-11-28 2003-05-06 Medidea, Llc Multiple-cam, posterior-stabilized knee prosthesis
DE10105085C1 (en) 2001-02-05 2002-04-18 Plus Endoprothetik Ag Rotkreuz Production of implant part, e.g. bearing for hip prosthesis, by crosslinking ultra-high molecular weight polyethylene parison with ionizing radiation includes recombination of free radicals with microwaves and/or ultrasound
US6547828B2 (en) 2001-02-23 2003-04-15 Smith & Nephew, Inc. Cross-linked ultra-high molecular weight polyethylene for medical implant use
US7695521B2 (en) 2001-05-01 2010-04-13 Amedica Corporation Hip prosthesis with monoblock ceramic acetabular cup
US20050177238A1 (en) * 2001-05-01 2005-08-11 Khandkar Ashok C. Radiolucent bone graft
US7776085B2 (en) * 2001-05-01 2010-08-17 Amedica Corporation Knee prosthesis with ceramic tibial component
WO2002102275A2 (en) * 2001-06-14 2002-12-27 Amedica Corporation Metal-ceramic composite articulation
US6652586B2 (en) * 2001-07-18 2003-11-25 Smith & Nephew, Inc. Prosthetic devices employing oxidized zirconium and other abrasion resistant surfaces contacting surfaces of cross-linked polyethylene
US7182784B2 (en) 2001-07-18 2007-02-27 Smith & Nephew, Inc. Prosthetic devices employing oxidized zirconium and other abrasion resistant surfaces contacting surfaces of cross-linked polyethylene
GB0122117D0 (en) 2001-09-13 2001-10-31 United Ind Operations Ltd Method of crosslinking polyolefins
WO2003049930A1 (en) * 2001-12-12 2003-06-19 Depuy Products, Inc. Orthopaedic device and method for making same
WO2003059200A1 (en) * 2002-01-04 2003-07-24 Massachusetts General Hospital A high modulus crosslinked polyethylene with reduced residual free radical concentration prepared below the melt
US7819925B2 (en) * 2002-01-28 2010-10-26 Depuy Products, Inc. Composite prosthetic bearing having a crosslinked articulating surface and method for making the same
EP1332733B1 (en) 2002-01-28 2006-06-14 Depuy Products, Inc. Composite prosthetic bearing and method of manufacture
US7186364B2 (en) 2002-01-28 2007-03-06 Depuy Products, Inc. Composite prosthetic bearing constructed of polyethylene and an ethylene-acrylate copolymer and method for making the same
JP4384496B2 (en) 2002-01-29 2009-12-16 プラス オーソペディクス アーゲー Sintering method of ultra high molecular polyethylene
WO2003070289A1 (en) * 2002-02-19 2003-08-28 Kabushiki Kaisha Kobe Seiko Sho Artificial joint member made of polymeric material
US20030207661A1 (en) * 2002-05-01 2003-11-06 Alexander Tregub Annealing of CMP polishing pads
JP2003338156A (en) * 2002-05-20 2003-11-28 Fuji Photo Film Co Ltd Magnetic disk cartridge
CA2429930C (en) * 2002-06-06 2008-10-14 Howmedica Osteonics Corp. Sequentially cross-linked polyethylene
US7485670B2 (en) * 2002-08-02 2009-02-03 Cambridge Polymer Group, Inc. Systems and methods for controlling and forming polymer gels
US7745532B2 (en) * 2002-08-02 2010-06-29 Cambridge Polymer Group, Inc. Systems and methods for controlling and forming polymer gels
US7329284B2 (en) 2002-09-27 2008-02-12 Depuy Products, Inc. Concave resurfacing prosthesis
AU2003287190A1 (en) 2002-10-23 2004-05-13 Alastair J. T. Clemow Modular femoral component for a total knee joint replacement for minimally invasive implantation
US6677395B1 (en) * 2002-11-27 2004-01-13 Basell Poliolefine Italia S.P.A. Irradiated, oxidized olefin polymer dispersing agents
WO2004058098A2 (en) * 2002-12-17 2004-07-15 Amedica Corporation Total disc implant
AU2003299851B2 (en) 2002-12-20 2009-12-10 Smith & Nephew, Inc. High performance knee prostheses
US7344565B2 (en) * 2003-02-04 2008-03-18 Wright Medical Technology, Inc. Acetabular component insertion and extraction tool for use therewith, and method of locking an acetabular component to an insertion and extraction tool
US7938861B2 (en) 2003-04-15 2011-05-10 Depuy Products, Inc. Implantable orthopaedic device and method for making the same
DE602004025030D1 (en) 2003-06-27 2010-02-25 Abs Corp FUSSGELARTARTHROPLASTIE SYSTEM
US20040265165A1 (en) * 2003-06-30 2004-12-30 Depuy Products, Inc. Free radical quench process for irradiated ultrahigh molecular weight polyethylene
US7214764B2 (en) * 2003-06-30 2007-05-08 Depuy Products, Inc. Free radical quench process for irradiated ultrahigh molecular weight polyethylene
EP2335651A1 (en) 2003-07-11 2011-06-22 DePuy Products, Inc. In vivo joint space measurement device
US7470288B2 (en) * 2003-07-11 2008-12-30 Depuy Products, Inc. Telemetric tibial tray
US7347874B2 (en) * 2003-07-11 2008-03-25 Depuy Products, Inc. In vivo joint implant cycle counter
US7218232B2 (en) * 2003-07-11 2007-05-15 Depuy Products, Inc. Orthopaedic components with data storage element
US7384430B2 (en) * 2004-06-30 2008-06-10 Depuy Products, Inc. Low crystalline polymeric material for orthopaedic implants and an associated method
US7927335B2 (en) 2004-09-27 2011-04-19 Depuy Products, Inc. Instrument for preparing an implant support surface and associated method
US7892287B2 (en) * 2004-09-27 2011-02-22 Depuy Products, Inc. Glenoid augment and associated method
US20060074353A1 (en) * 2004-09-27 2006-04-06 Deffenbaugh Daren L Glenoid instrumentation and associated method
US7922769B2 (en) 2004-09-27 2011-04-12 Depuy Products, Inc. Modular glenoid prosthesis and associated method
US7160329B2 (en) * 2004-12-01 2007-01-09 Mayo Foundation For Medical Research And Education Radial-capitellar implant
US7335697B2 (en) * 2004-12-23 2008-02-26 Depuy Products, Inc. Polymer composition comprising cross-linked polyethylene and methods for making the same
US7896921B2 (en) 2004-12-30 2011-03-01 Depuy Products, Inc. Orthopaedic bearing and method for making the same
US7879275B2 (en) 2004-12-30 2011-02-01 Depuy Products, Inc. Orthopaedic bearing and method for making the same
US7883653B2 (en) 2004-12-30 2011-02-08 Depuy Products, Inc. Method of making an implantable orthopaedic bearing
US7435372B2 (en) 2005-03-31 2008-10-14 Zimmer, Inc. Liquid bath annealing of polymers for orthopaedic implants
WO2006133711A2 (en) * 2005-06-14 2006-12-21 Cartificial A/S Medical device for insertion into a joint
US7803310B2 (en) 2005-06-14 2010-09-28 Omni Life Science, Inc. Crosslinked polyethylene article
US7538379B1 (en) * 2005-06-15 2009-05-26 Actel Corporation Non-volatile two-transistor programmable logic cell and array layout
US8343230B2 (en) * 2005-09-22 2013-01-01 Depuy Products, Inc. Orthopaedic bearing material
US20070077268A1 (en) * 2005-09-30 2007-04-05 Depuy Products, Inc. Hydrophobic carrier modified implants for beneficial agent delivery
US8252058B2 (en) * 2006-02-16 2012-08-28 Amedica Corporation Spinal implant with elliptical articulatory interface
US20070198093A1 (en) * 2006-02-17 2007-08-23 Amedica Corporation Spinal implant with offset keels
US7635725B2 (en) * 2006-02-21 2009-12-22 The Brigham And Women's Hospital, Inc. Crosslinked polymers
US20070212162A1 (en) * 2006-03-08 2007-09-13 Scott Schank Shearing-force mechanism with cross-linked thermoplastic
US7812098B2 (en) 2006-03-31 2010-10-12 Depuy Products, Inc. Bearing material of medical implant having reduced wear rate and method for reducing wear rate
US7897171B2 (en) 2006-08-25 2011-03-01 Boston Scientific Scimed, Inc. Medical devices having improved mechanical performance
US7897170B2 (en) * 2006-08-25 2011-03-01 Boston Scientific Scimed, Inc. Medical devices having improved mechanical performance
DE602007009345D1 (en) 2006-08-25 2010-11-04 Depuy Products Inc Material for carrying a medical implant
US7604665B2 (en) 2006-09-20 2009-10-20 Depuy Products, Inc. Glenoid component for shoulder arthroplasty
EP2083981B1 (en) 2006-10-30 2021-10-06 Smith & Nephew Orthopaedics AG Processes comprising crosslinking polyethylene or using crosslinked polyethylene
US8163028B2 (en) 2007-01-10 2012-04-24 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
US8187280B2 (en) 2007-10-10 2012-05-29 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
US8157869B2 (en) 2007-01-10 2012-04-17 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
US8328873B2 (en) 2007-01-10 2012-12-11 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
US8562616B2 (en) 2007-10-10 2013-10-22 Biomet Manufacturing, Llc Knee joint prosthesis system and method for implantation
WO2008098250A2 (en) * 2007-02-10 2008-08-14 Small Bone Innovations, Inc. Radial head implant and related instrument
WO2009032909A2 (en) 2007-09-04 2009-03-12 Smith & Nephew Orthopaedics Ag Ultra high molecular weight polyethylene for bearing surfaces
US20110035017A1 (en) * 2007-09-25 2011-02-10 Depuy Products, Inc. Prosthesis with cut-off pegs and surgical method
US8632600B2 (en) 2007-09-25 2014-01-21 Depuy (Ireland) Prosthesis with modular extensions
US8715359B2 (en) 2009-10-30 2014-05-06 Depuy (Ireland) Prosthesis for cemented fixation and method for making the prosthesis
US8128703B2 (en) 2007-09-28 2012-03-06 Depuy Products, Inc. Fixed-bearing knee prosthesis having interchangeable components
US9204967B2 (en) 2007-09-28 2015-12-08 Depuy (Ireland) Fixed-bearing knee prosthesis having interchangeable components
JP5698121B2 (en) 2008-05-13 2015-04-08 スミス・アンド・ネフュー・オルソペディクス・アーゲー Oxidation resistant high crosslink UHMWPE
US8206451B2 (en) 2008-06-30 2012-06-26 Depuy Products, Inc. Posterior stabilized orthopaedic prosthesis
US8187335B2 (en) 2008-06-30 2012-05-29 Depuy Products, Inc. Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US8236061B2 (en) 2008-06-30 2012-08-07 Depuy Products, Inc. Orthopaedic knee prosthesis having controlled condylar curvature
US8192498B2 (en) 2008-06-30 2012-06-05 Depuy Products, Inc. Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature
US8828086B2 (en) 2008-06-30 2014-09-09 Depuy (Ireland) Orthopaedic femoral component having controlled condylar curvature
US9119723B2 (en) 2008-06-30 2015-09-01 Depuy (Ireland) Posterior stabilized orthopaedic prosthesis assembly
US9168145B2 (en) 2008-06-30 2015-10-27 Depuy (Ireland) Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
DE102008047009B4 (en) * 2008-07-11 2020-08-06 Mathys Ag Bettlach Joint socket with physiological load transfer
DE102008053793A1 (en) 2008-10-21 2010-04-22 Aesculap Ag Synthetic polymer material, useful for producing medical articles e.g. catheters and trocar, comprises amino acids and/or peptides having anti-oxidative effect
US8241365B2 (en) * 2008-12-23 2012-08-14 Depuy Products, Inc. Shoulder prosthesis with vault-filling structure having bone-sparing configuration
DE112010002027B4 (en) 2009-05-15 2021-12-09 Cummins Filtration Ip, Inc. Coalescence separator and use of a coalescence separator in a coalescence system
US9101476B2 (en) 2009-05-21 2015-08-11 Depuy (Ireland) Prosthesis with surfaces having different textures and method of making the prosthesis
US11213397B2 (en) 2009-05-21 2022-01-04 Depuy Ireland Unlimited Company Prosthesis with surfaces having different textures and method of making the prosthesis
WO2011053713A1 (en) * 2009-10-29 2011-05-05 Depuy Products, Inc. Methods of making crosslinked polymeric material for orthopaedic implants
EP2316384B1 (en) 2009-10-30 2013-04-03 DePuy Products, Inc. Prosthesis with modular extensions
DK2319462T3 (en) 2009-10-30 2013-07-08 Depuy Products Inc Prosthesis with composite component
EP2316382B1 (en) 2009-10-30 2014-03-05 DePuy (Ireland) Prosthesis for cementless fixation
EP2319460A1 (en) 2009-10-30 2011-05-11 DePuy Products, Inc. Prosthesis with cut-off pegs
DK2316383T3 (en) 2009-10-30 2013-07-22 Depuy Products Inc Prosthesis with surfaces with different textures
US8231683B2 (en) * 2009-12-08 2012-07-31 Depuy Products, Inc. Shoulder prosthesis assembly having glenoid rim replacement structure
US9011547B2 (en) 2010-01-21 2015-04-21 Depuy (Ireland) Knee prosthesis system
US9132209B2 (en) 2010-05-07 2015-09-15 Howmedia Osteonics Corp. Surface crosslinked polyethylene
US8523476B2 (en) 2010-06-01 2013-09-03 Reell Precision Manufacturing Corporation Positioning and damper device using shear force from cyclic differential compressive strain of a cross-linked thermoplastic
DE102010029633A1 (en) 2010-06-02 2011-12-08 Hd Kunststoffe & Kunststofferzeugnisse Gmbh Comminution of ultra-high molecular weight polyethylene fibers
US8465548B2 (en) 2010-11-24 2013-06-18 DePuy Synthes Products, LLC Modular glenoid prosthesis
US8480750B2 (en) 2010-11-24 2013-07-09 DePuy Synthes Products, LLC Modular glenoid prosthesis
US8551177B2 (en) 2011-03-18 2013-10-08 DePuy Synthes Products, LLC Revision glenoid kit
US9226830B2 (en) 2011-03-18 2016-01-05 DePuy Synthes Products, Inc. Device and method for retroversion correction for shoulder arthroplasty
US8764836B2 (en) 2011-03-18 2014-07-01 Lieven de Wilde Circular glenoid method for shoulder arthroplasty
US9763679B2 (en) 2011-03-18 2017-09-19 DePuy Synthes Products, Inc. Combination driver/anti-rotation handle for shoulder arthroplasty
US9820758B2 (en) 2011-03-18 2017-11-21 DePuy Synthes Products, Inc. Combination reamer/drill bit for shoulder arthoplasty
EP2623050B1 (en) 2012-02-01 2014-11-26 DePuy Synthes Products, LLC Instrument for use in shoulder arthroplasty
US8959717B2 (en) 2012-03-12 2015-02-24 Reell Precision Manufacturing Corporation Circumferential strain rotary detent
US10058808B2 (en) 2012-10-22 2018-08-28 Cummins Filtration Ip, Inc. Composite filter media utilizing bicomponent fibers
US9237953B2 (en) 2013-03-15 2016-01-19 Depuy (Ireland) Mechanical assembly of pegs to prosthesis
US9144499B2 (en) 2013-12-17 2015-09-29 Depuy (Ireland) Low profile mobile/fixed prosthetic knee systems
DE112017002974T5 (en) 2016-07-19 2019-03-07 Cummins Filtration Ip, Inc. KOALESZER WITH PERFORATED LAYER
US10070959B2 (en) 2016-09-28 2018-09-11 DePuy Synthes Products, Inc. Method of texturing prosthetic implants
MX2019008689A (en) * 2017-02-07 2019-09-11 Dow Global Technologies Llc Process for foaming polyolefin compositions using a modified high density polyethylene.
US10092675B1 (en) * 2017-08-12 2018-10-09 Dewey M Sims, Jr. Wear-resistant joint arthroplasty implant devices
US11147903B2 (en) 2019-03-23 2021-10-19 Dewey M. Sims, Jr. Wear-resistant joint arthroplasty implant devices
RU2725063C1 (en) * 2019-12-25 2020-06-29 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Polymer insert of acetabular component of endoprosthesis with bioactive porous layer for osteosynthesis

Citations (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948866A (en) * 1958-10-24 1960-08-09 Cie Ind Des Telephones Adjustable correcting networks
US2948668A (en) * 1957-11-02 1960-08-09 Tno Electrodialysing apparatus with supported membranes
US2948666A (en) * 1956-11-21 1960-08-09 Gen Electric Irradiation process
US3022543A (en) * 1958-02-07 1962-02-27 Grace W R & Co Method of producing film having improved shrink energy
US3090770A (en) * 1960-04-26 1963-05-21 Grace W R & Co Blended polyethylene compositions of improved clarity and method of making same
US3297641A (en) * 1964-01-17 1967-01-10 Grace W R & Co Process for cross-linking polyethylene
US3330748A (en) * 1955-01-11 1967-07-11 Gen Electric Method and apparatus for irradiating organic polymers with electrons
US3563869A (en) * 1957-11-05 1971-02-16 Grace W R & Co Irradiated polyethylene
US3646155A (en) * 1968-12-20 1972-02-29 Midland Silicones Ltd Cross-linking of a polyolefin with a silane
US3671477A (en) * 1969-03-10 1972-06-20 Campbell Mfg Co Ltd Composition comprising unsaturated elastomer,epoxy resin polycarboxylic acid or anhydride,cross-linking catalyst and filler and golf ball made therefrom
US3886056A (en) * 1971-11-01 1975-05-27 Ryozo Kitamaru Process for producing a high melting temperature polyethylene employing irradiation and orienting
US3944536A (en) * 1973-06-18 1976-03-16 E. I. Du Pont De Nemours & Company Exceptionally rigid and tough ultrahigh molecular weight linear polyethylene
US3944538A (en) * 1973-10-02 1976-03-16 Miklos Bodanszky Process and apparatus for the synthesis of peptides not linked to polymers
US4138382A (en) * 1978-05-01 1979-02-06 Dow Corning Corporation Hydrophilic, water-swellable, crosslinked, copolymer gel and prosthesis employing same
US4281420A (en) * 1979-02-15 1981-08-04 Raab S Bone connective prostheses adapted to maximize strength and durability of prostheses-bone cement interface; and methods of forming same
US4390666A (en) * 1981-08-14 1983-06-28 Asahi Kasei Kogyo Kabushiki Kaisha Polyethylene blend composition
US4455691A (en) * 1979-10-03 1984-06-26 Minnesota Mining And Manufacturing Company Silicone gel filled prosthesis
US4582656A (en) * 1981-08-12 1986-04-15 Hewing Gmbh & Co. Method of producing molded articles from polyolefin molding compositions crosslinked by irradiation
US4582856A (en) * 1983-04-07 1986-04-15 Bayer Aktiengesellschaft Pesticidal 2,2-dimethyl-3-(2-halogeno-vinyl)-cyclopropanecarboxylic acid esters
US4586995A (en) * 1982-09-17 1986-05-06 Phillips Petroleum Company Polymer and irradiation treatment method
US4587163A (en) * 1984-03-06 1986-05-06 Zachariades Anagnostis E Preparation of ultra high molecular weight polyethylene morphologies of totally fused particles with superior mechanical performance
US4655769A (en) * 1984-10-24 1987-04-07 Zachariades Anagnostis E Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
US4668527A (en) * 1985-03-06 1987-05-26 Osaka University Method for amorphizing a material by means of injection of exotic atoms into a solid with electron beams
US4682656A (en) * 1986-06-20 1987-07-28 Otis Engineering Corporation Completion apparatus and method for gas lift production
US4743493A (en) * 1986-10-06 1988-05-10 Spire Corporation Ion implantation of plastics
US4747990A (en) * 1985-03-12 1988-05-31 Cie Oris Industrie S.A. Process of making a high molecular weight polyolefin part
US4813210A (en) * 1985-09-27 1989-03-21 Nissho Corporation Radiation-sterilized, packaged medical device
US4816517A (en) * 1982-09-29 1989-03-28 Vulkor, Incorporated Crosslinked polymer interdispersions containing polyolefin and method of making
US4820466A (en) * 1985-01-31 1989-04-11 Zachariades Anagnostis E Process for obtaining ultra-high modulus products
US4828827A (en) * 1986-12-12 1989-05-09 Ethicon, Inc. Process for augmenting soft tissue with cross-linked polyvinyl pyrrolidone
US4832965A (en) * 1985-05-17 1989-05-23 Helin Stig Aake Method of making a bottle and packaging a water ration therein
US4891173A (en) * 1987-09-09 1990-01-02 Toa Nenryo Kogyo Kabushiki Kaisha Process for producing a crosslinked and oriented polyethylene film
US4892552A (en) * 1984-03-30 1990-01-09 Ainsworth Robert D Orthopedic device
US4916517A (en) * 1985-03-23 1990-04-10 Stc, Plc Semiconductor devices
US4916198A (en) * 1985-01-31 1990-04-10 Himont Incorporated High melt strength, propylene polymer, process for making it, and use thereof
US4944974A (en) * 1984-10-24 1990-07-31 Zachariades Anagnostis E Composite structures of ultra-high-molecular-weight polymers, such as ultra-high-molecular-weight polyethylene products, and method of producing such structures
US4950151A (en) * 1985-01-31 1990-08-21 Zachariades Anagnostic E Rolling die for producing high modulus products
US5001008A (en) * 1987-07-21 1991-03-19 Mitsui Petrochemical Industries, Ltd. Reinforcing fibrous material
US5001206A (en) * 1983-12-10 1991-03-19 Stamicarbon B.V. Oriented polyolfins
US5005053A (en) * 1989-02-15 1991-04-02 Mita Industrial Co., Ltd. Image-forming machine having a process assembly comprising two independently movable units
US5014494A (en) * 1988-09-27 1991-05-14 Sherwood Medical Company Method of sterilizing medical articles
US5017627A (en) * 1980-10-09 1991-05-21 National Research Development Corporation Composite material for use in orthopaedics
US5024670A (en) * 1989-10-02 1991-06-18 Depuy, Division Of Boehringer Mannheim Corporation Polymeric bearing component
US5030402A (en) * 1989-03-17 1991-07-09 Zachariades Anagnostis E Process for producing a new class of ultra-high-molecular-weight polyethylene orthopaedic prostheses with enhanced mechanical properties
US5037928A (en) * 1989-10-24 1991-08-06 E. I. Du Pont De Nemours And Company Process of manufacturing ultrahigh molecular weight linear polyethylene shaped articles
US5096654A (en) * 1987-07-24 1992-03-17 The National Research And Development Corporation Solid phase deformation process
US5130378A (en) * 1989-09-02 1992-07-14 Bayer Aktiengesellschaft Copolymers containing secondary amino groups and a process for their production
US5137688A (en) * 1990-11-29 1992-08-11 General Electric Company Irradiated articles molded from polycarbonate-polyamide blends
US5178812A (en) * 1990-11-28 1993-01-12 E. I. Du Pont De Nemours And Company Method of making composites having improved surface properties
US5180484A (en) * 1990-08-27 1993-01-19 Uop Caustic free liquid/liquid process for sweeting a sour hydrocarbon fraction
US5180394A (en) * 1989-07-25 1993-01-19 Davidson James A Zirconium oxide and nitride coated prosthesis for wear and corrosion resistance
US5192323A (en) * 1990-11-05 1993-03-09 Zimmer, Inc. Method of surface hardening orthopedic implant devices
US5200439A (en) * 1990-04-13 1993-04-06 Mitsui Toatsu Chemicals, Inc. Method for increasing intrinsic viscosity of syndiotactic polypropylene
US5210130A (en) * 1990-08-07 1993-05-11 E. I. Du Pont De Nemours And Company Homogeneous, high modulus ultrahigh molecular weight polyethylene composites and processes for the preparation thereof
US5236583A (en) * 1992-05-20 1993-08-17 Wang Yiu Te High-pressure/vacuum operated apparatus for sewage and mud disposal
US5236669A (en) * 1990-09-12 1993-08-17 E. I. Du Pont De Nemours And Company Pressure vessel
US5238563A (en) * 1992-07-29 1993-08-24 Exxon Research & Engineering Company Multi-element housing
US5292584A (en) * 1991-04-11 1994-03-08 E. I. Du Pont De Nemours And Company Ultrahigh molecular weight polyethylene and lightly-filled composites thereof
US5296583A (en) * 1992-07-09 1994-03-22 University Of Michigan Calcification-resistant synthetic biomaterials
US5334640A (en) * 1992-04-08 1994-08-02 Clover Consolidated, Ltd. Ionically covalently crosslinked and crosslinkable biocompatible encapsulation compositions and methods
US5407623A (en) * 1994-01-06 1995-04-18 Polteco, Inc. Process for obtaining ultra-high modulus line products with enhanced mechanical properties
US5414049A (en) * 1993-06-01 1995-05-09 Howmedica Inc. Non-oxidizing polymeric medical implant
US5435723A (en) * 1993-08-18 1995-07-25 O'brien; Gary R. Endosseous dental implant system
US5439949A (en) * 1991-08-21 1995-08-08 Rexene Corporation Propylene compositions with improved resistance to thermoforming sag
US5480683A (en) * 1988-05-24 1996-01-02 Nitruvid Process for reducing the coefficient of friction and wear between a metal part and an organic polymer-or copolymer-based part and its application to artificial limb-joints and fittings working in marine environments
US5505984A (en) * 1993-01-21 1996-04-09 England; Garry L. Method for forming biocompatible components using an isostatic press
US5508079A (en) * 1994-08-15 1996-04-16 Owens-Corning Fiberglas Technology, Inc. Conformable insulation assembly
US5515590A (en) * 1994-07-19 1996-05-14 University Of Kentucky Research Foundation Method for reducing the generation of wear particulates from an implant
US5545453A (en) * 1994-08-15 1996-08-13 Owens Corning Fiberglas Technology, Inc. Conformable insulation assembly
US5593719A (en) * 1994-03-29 1997-01-14 Southwest Research Institute Treatments to reduce frictional wear between components made of ultra-high molecular weight polyethylene and metal alloys
US5609638A (en) * 1994-11-29 1997-03-11 Zimmer, Inc. Reinforced polyethylene for articular surfaces
US5609643A (en) * 1995-03-13 1997-03-11 Johnson & Johnson Professional, Inc. Knee joint prosthesis
US5621070A (en) * 1988-12-02 1997-04-15 E. I. Du Pont De Nemours And Company Ultra high molecular weight linear polyethylene processes of manufacture
US5625858A (en) * 1995-01-18 1997-04-29 Canon Kabushiki Kaisha Contact charging member, process for producing same and electrophotographic apparatus using same
US5652281A (en) * 1989-12-21 1997-07-29 Montell North America Inc. Graft copolymers of polyolefins and a method of producing same
US5709020A (en) * 1994-07-19 1998-01-20 University Of Kentucky Research Foundation Method for reducing the generation of wear particulates from an implant
US5721334A (en) * 1996-02-16 1998-02-24 Newyork Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Process for producing ultra-high molecular weight low modulus polyethylene shaped articles via controlled pressure and temperature and compositions and articles produced therefrom
US5753182A (en) * 1996-02-14 1998-05-19 Biomet, Inc. Method for reducing the number of free radicals present in ultrahigh molecular weight polyethylene orthopedic components
US5876453A (en) * 1994-11-30 1999-03-02 Implant Innovations, Inc. Implant surface preparation
US5879400A (en) * 1996-02-13 1999-03-09 Massachusetts Institute Of Technology Melt-irradiated ultra high molecular weight polyethylene prosthetic devices
US5879407A (en) * 1997-07-17 1999-03-09 Waggener; Herbert A. Wear resistant ball and socket joint
US6017975A (en) * 1996-10-02 2000-01-25 Saum; Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
US6168626B1 (en) * 1994-09-21 2001-01-02 Bmg Incorporated Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same
US6184265B1 (en) * 1999-07-29 2001-02-06 Depuy Orthopaedics, Inc. Low temperature pressure stabilization of implant component
US6228900B1 (en) * 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6245276B1 (en) * 1999-06-08 2001-06-12 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US20020007219A1 (en) * 1996-02-13 2002-01-17 Merrill Edward W. Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
US6692679B1 (en) * 1998-06-10 2004-02-17 Depuy Orthopaedics, Inc. Cross-linked molded plastic bearings
US20050048096A1 (en) * 1996-07-09 2005-03-03 Fu-Wen Shen Crosslinking of polyethylene for low wear using radiation and thermal treatments
US20080133018A1 (en) * 1995-01-20 2008-06-05 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2904480A (en) * 1955-06-06 1959-09-15 Grace W R & Co Polyethylene
US3057791A (en) * 1959-07-06 1962-10-09 Phillips Petroleum Co Radiation curing of polymers
DE1241994B (en) 1964-01-31 1967-06-08 Glanzstoff Ag Process for the saturation of double bonds in polyolefins
DE1669649B2 (en) * 1966-05-27 1971-05-19 Badische Anilin- & Soda-Fabrik Ag, 6700 Ludwigshafen PROCESS FOR MANUFACTURING FINE PARTICLE, FOAM-SHAPED OLEFINE POLYMERIZATES WITH HIGH HEAT STABILITY
US3832827A (en) * 1967-12-18 1974-09-03 J Lemelson Container forming and filling apparatus
DE1805921C3 (en) * 1968-10-30 1979-06-07 Dynamit Nobel Ag, 5210 Troisdorf Thermoplastic polyamide molding compounds that can be processed into transparent blow moldings
US3758273A (en) 1970-04-03 1973-09-11 Gillette Co Processes for sterilizing polypropylene objects
US4055769A (en) * 1972-03-21 1977-10-25 Conrad Sander Method and apparatus for curing, a coating on a substrate
DE2447627C3 (en) * 1974-10-05 1980-06-26 Dr. Rudolf Kuerner Chemische Spezialprodukte Inh. Dr. Rudolf Kuerner, 6380 Bad Homburg Antimicrobial preparation
US4055862A (en) 1976-01-23 1977-11-01 Zimmer Usa, Inc. Human body implant of graphitic carbon fiber reinforced ultra-high molecular weight polyethylene
AU523866B2 (en) * 1978-04-18 1982-08-19 Du Pont Canada Inc. Manufacture of film
JPS58157830A (en) 1982-03-12 1983-09-20 Nitto Electric Ind Co Ltd Preparation of sliding sheet
US4483333A (en) 1982-06-01 1984-11-20 Wrf/Aquaplast Corporation Orthopedic cast
JPS59168050A (en) * 1983-03-14 1984-09-21 Mitsuboshi Belting Ltd Ultra-high-molecular-weight polyethylene composition having improved resistance to friction and wear
US4518552A (en) 1983-11-09 1985-05-21 Mitsuboshi Belting Ltd. Method of producing accurately sized material of ultra high molecular weight polyethylene
GB8332952D0 (en) 1983-12-09 1984-01-18 Ward I M Polymer irradiation
US4539374A (en) 1984-03-21 1985-09-03 E. I. Du Pont De Nemours And Company Polyolefin with improved processing properties
EP0169259A1 (en) 1984-07-25 1986-01-29 Surgical Patent Products Inc. Ltd. Vascular prostheses for dry preservation, method of conditioning and their use in surgery
US5160472A (en) 1984-10-24 1992-11-03 Zachariades Anagnostis E Method of producing composite structures of ultra-high-molecular-weight polymers, such as ultra-high-molecular-weight polyethylene products
US4682666A (en) * 1984-12-31 1987-07-28 J. I. Case Company Operator compartment assembly
US4701288A (en) * 1985-06-05 1987-10-20 Bausch & Lomb Incorporated Method of making articles of dissimilar polymer compositions
US4876049A (en) 1985-11-21 1989-10-24 Nippon Petrochemicals Co., Ltd. Method for preparing molded articles of ultra-high molecular weight polyethylene
US4870136A (en) 1985-11-30 1989-09-26 Mitsui Pertrochemical Industries, Ltd. Molecular oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article and process for preparation thereof
JPH0639499B2 (en) * 1986-04-17 1994-05-25 日本石油株式会社 Method for producing crosslinked ultra high molecular weight polyethylene
US4965846A (en) * 1986-08-11 1990-10-23 Baxter International Inc. Pivot pin bearing/seal with loose eyelet especially suited for disposable continuous flow blood filtration system cartridges
US4888369A (en) 1987-01-21 1989-12-19 Himont Incorporated Polypropylene composition resistant to high energy radiation, and radiation sterilized articles therefrom
US4981173A (en) * 1988-03-18 1991-01-01 Otis Engineering Corporation Electric surface controlled subsurface valve system
BE1001574A6 (en) * 1988-04-07 1989-12-05 Flatech Internationa B V B A Orthopaedic and podological material - comprising thermoplastic high density polyethylene contg. silane(s)
US5047446A (en) * 1988-07-22 1991-09-10 Himont Incorporated Thermal treatment of irradiated propylene polymer material
JPH04502028A (en) 1988-12-02 1992-04-09 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Ultra-high molecular weight linear polyethylene, products and manufacturing methods
US5153039A (en) * 1990-03-20 1992-10-06 Paxon Polymer Company, L.P. High density polyethylene article with oxygen barrier properties
US5130376A (en) 1990-04-23 1992-07-14 Hercules Incorporated UHMWPE/styrenic molding compositions with improved flow properties and impact strength
US5236563A (en) 1990-06-18 1993-08-17 Advanced Surface Technology Inc. Surface-modified bioabsorbables
US5133757A (en) 1990-07-31 1992-07-28 Spire Corporation Ion implantation of plastic orthopaedic implants
US5352732A (en) * 1990-08-07 1994-10-04 E. I. Du Pont De Nemours And Company Homogeneous, high modulus ultrahigh molecular weight polyethylene composites and processes for the preparation thereof
US5702448A (en) 1990-09-17 1997-12-30 Buechel; Frederick F. Prosthesis with biologically inert wear resistant surface
DE4030564A1 (en) 1990-09-27 1992-04-02 Hoechst Ag GRAFT POLYMER BASED ON ULTRA HIGH MOLECULAR POLYETHYLENE
JPH04185651A (en) * 1990-11-21 1992-07-02 Fujikura Ltd Production of crosslinked polyolefin molding
JPH04198242A (en) 1990-11-27 1992-07-17 Komatsu Ltd Ultrahigh-molecular-weight polyethylene composition
US5059196A (en) * 1991-03-07 1991-10-22 Dow Corning Wright Corporation Femoral prosthesis holder/driver tool and method of implantation using same
US5508319A (en) * 1991-06-21 1996-04-16 Montell North America Inc. High melt strength, ethylene polymer, process for making it, and use thereof
US5972444A (en) * 1991-10-15 1999-10-26 The Dow Chemical Company Polyolefin compositions with balanced shrink properties
US5443519A (en) 1993-04-22 1995-08-22 Implex Corporation Prosthetic ellipsoidal acetabular cup
WO1995006148A1 (en) * 1993-08-20 1995-03-02 Smith & Nephew Richards, Inc. Self-reinforced ultra-high molecular weight polyethylene composites
US5549700A (en) 1993-09-07 1996-08-27 Ortho Development Corporation Segmented prosthetic articulation
US5449145A (en) * 1993-10-08 1995-09-12 Surgin Surgical Instrumentation, Inc. Valve device for controlling flows in surgical applications
AU1542895A (en) 1994-02-03 1995-08-21 Smith & Nephew Plc Surface treatment
US5507804A (en) 1994-11-16 1996-04-16 Alcon Laboratories, Inc. Cross-linked polyethylene oxide coatings to improve the biocompatibility of implantable medical devices
JP3904095B2 (en) * 1995-12-21 2007-04-11 大日本インキ化学工業株式会社 Powder coating composition and coating method thereof
US5674293A (en) * 1996-01-19 1997-10-07 Implant Sciences Corp. Coated orthopaedic implant components
US5714206A (en) * 1996-05-06 1998-02-03 Morton International, Inc. Two component powder coating system and method for coating wood therewith
EP1028760B1 (en) * 1996-10-15 2004-04-14 Orthopaedic Hospital Wear resistant surface-gradient cross-linked polyethylene
US5798417A (en) * 1996-10-15 1998-08-25 E. I. Du Pont De Nemours And Company (Fluorovinyl ether)-grafted high-surface-area polyolefins and preparation thereof
US6125200A (en) * 1997-12-16 2000-09-26 Adobe Systems Incorporated Removing non-text information from a color image
CA2254002A1 (en) * 1998-11-12 2000-05-12 Takiron Co., Ltd. Shape-memory, biodegradable and absorbable material
WO2001080778A1 (en) * 2000-04-27 2001-11-01 The Orthopaedic Hospital Oxidation-resistant and wear-resistant polyethylenes for human joint replacements and methods for making them
US6407623B1 (en) * 2001-01-31 2002-06-18 Qualcomm Incorporated Bias circuit for maintaining a constant value of transconductance divided by load capacitance

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330748A (en) * 1955-01-11 1967-07-11 Gen Electric Method and apparatus for irradiating organic polymers with electrons
US2948666A (en) * 1956-11-21 1960-08-09 Gen Electric Irradiation process
US2948668A (en) * 1957-11-02 1960-08-09 Tno Electrodialysing apparatus with supported membranes
US3563869A (en) * 1957-11-05 1971-02-16 Grace W R & Co Irradiated polyethylene
US3022543A (en) * 1958-02-07 1962-02-27 Grace W R & Co Method of producing film having improved shrink energy
US2948866A (en) * 1958-10-24 1960-08-09 Cie Ind Des Telephones Adjustable correcting networks
US3090770A (en) * 1960-04-26 1963-05-21 Grace W R & Co Blended polyethylene compositions of improved clarity and method of making same
US3297641A (en) * 1964-01-17 1967-01-10 Grace W R & Co Process for cross-linking polyethylene
US3646155A (en) * 1968-12-20 1972-02-29 Midland Silicones Ltd Cross-linking of a polyolefin with a silane
US3671477A (en) * 1969-03-10 1972-06-20 Campbell Mfg Co Ltd Composition comprising unsaturated elastomer,epoxy resin polycarboxylic acid or anhydride,cross-linking catalyst and filler and golf ball made therefrom
US3886056A (en) * 1971-11-01 1975-05-27 Ryozo Kitamaru Process for producing a high melting temperature polyethylene employing irradiation and orienting
US3944536A (en) * 1973-06-18 1976-03-16 E. I. Du Pont De Nemours & Company Exceptionally rigid and tough ultrahigh molecular weight linear polyethylene
US3944538A (en) * 1973-10-02 1976-03-16 Miklos Bodanszky Process and apparatus for the synthesis of peptides not linked to polymers
US4138382A (en) * 1978-05-01 1979-02-06 Dow Corning Corporation Hydrophilic, water-swellable, crosslinked, copolymer gel and prosthesis employing same
US4281420A (en) * 1979-02-15 1981-08-04 Raab S Bone connective prostheses adapted to maximize strength and durability of prostheses-bone cement interface; and methods of forming same
US4336618A (en) * 1979-02-15 1982-06-29 Raab S Bone connective prostheses adapted to maximize strength and durability of prostheses-bone cement interface; and methods of forming same
US4455691A (en) * 1979-10-03 1984-06-26 Minnesota Mining And Manufacturing Company Silicone gel filled prosthesis
US5017627A (en) * 1980-10-09 1991-05-21 National Research Development Corporation Composite material for use in orthopaedics
US4582656A (en) * 1981-08-12 1986-04-15 Hewing Gmbh & Co. Method of producing molded articles from polyolefin molding compositions crosslinked by irradiation
US4390666A (en) * 1981-08-14 1983-06-28 Asahi Kasei Kogyo Kabushiki Kaisha Polyethylene blend composition
US4586995A (en) * 1982-09-17 1986-05-06 Phillips Petroleum Company Polymer and irradiation treatment method
US4816517A (en) * 1982-09-29 1989-03-28 Vulkor, Incorporated Crosslinked polymer interdispersions containing polyolefin and method of making
US4582856A (en) * 1983-04-07 1986-04-15 Bayer Aktiengesellschaft Pesticidal 2,2-dimethyl-3-(2-halogeno-vinyl)-cyclopropanecarboxylic acid esters
US5001206A (en) * 1983-12-10 1991-03-19 Stamicarbon B.V. Oriented polyolfins
US4587163A (en) * 1984-03-06 1986-05-06 Zachariades Anagnostis E Preparation of ultra high molecular weight polyethylene morphologies of totally fused particles with superior mechanical performance
US4587163B1 (en) * 1984-03-06 1990-04-03 E Zachariades Anagnostis
US4892552A (en) * 1984-03-30 1990-01-09 Ainsworth Robert D Orthopedic device
US4655769A (en) * 1984-10-24 1987-04-07 Zachariades Anagnostis E Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
US4944974A (en) * 1984-10-24 1990-07-31 Zachariades Anagnostis E Composite structures of ultra-high-molecular-weight polymers, such as ultra-high-molecular-weight polyethylene products, and method of producing such structures
US4820466A (en) * 1985-01-31 1989-04-11 Zachariades Anagnostis E Process for obtaining ultra-high modulus products
US4950151A (en) * 1985-01-31 1990-08-21 Zachariades Anagnostic E Rolling die for producing high modulus products
US4916198A (en) * 1985-01-31 1990-04-10 Himont Incorporated High melt strength, propylene polymer, process for making it, and use thereof
US4668527A (en) * 1985-03-06 1987-05-26 Osaka University Method for amorphizing a material by means of injection of exotic atoms into a solid with electron beams
US4747990A (en) * 1985-03-12 1988-05-31 Cie Oris Industrie S.A. Process of making a high molecular weight polyolefin part
US4916517A (en) * 1985-03-23 1990-04-10 Stc, Plc Semiconductor devices
US4832965A (en) * 1985-05-17 1989-05-23 Helin Stig Aake Method of making a bottle and packaging a water ration therein
US4813210A (en) * 1985-09-27 1989-03-21 Nissho Corporation Radiation-sterilized, packaged medical device
US4682656A (en) * 1986-06-20 1987-07-28 Otis Engineering Corporation Completion apparatus and method for gas lift production
US4743493A (en) * 1986-10-06 1988-05-10 Spire Corporation Ion implantation of plastics
US4828827A (en) * 1986-12-12 1989-05-09 Ethicon, Inc. Process for augmenting soft tissue with cross-linked polyvinyl pyrrolidone
US5001008A (en) * 1987-07-21 1991-03-19 Mitsui Petrochemical Industries, Ltd. Reinforcing fibrous material
US5096654A (en) * 1987-07-24 1992-03-17 The National Research And Development Corporation Solid phase deformation process
US4891173A (en) * 1987-09-09 1990-01-02 Toa Nenryo Kogyo Kabushiki Kaisha Process for producing a crosslinked and oriented polyethylene film
US5480683A (en) * 1988-05-24 1996-01-02 Nitruvid Process for reducing the coefficient of friction and wear between a metal part and an organic polymer-or copolymer-based part and its application to artificial limb-joints and fittings working in marine environments
US5014494A (en) * 1988-09-27 1991-05-14 Sherwood Medical Company Method of sterilizing medical articles
US5621070A (en) * 1988-12-02 1997-04-15 E. I. Du Pont De Nemours And Company Ultra high molecular weight linear polyethylene processes of manufacture
US5005053A (en) * 1989-02-15 1991-04-02 Mita Industrial Co., Ltd. Image-forming machine having a process assembly comprising two independently movable units
US5030402A (en) * 1989-03-17 1991-07-09 Zachariades Anagnostis E Process for producing a new class of ultra-high-molecular-weight polyethylene orthopaedic prostheses with enhanced mechanical properties
US5180394A (en) * 1989-07-25 1993-01-19 Davidson James A Zirconium oxide and nitride coated prosthesis for wear and corrosion resistance
US5130378A (en) * 1989-09-02 1992-07-14 Bayer Aktiengesellschaft Copolymers containing secondary amino groups and a process for their production
US5024670A (en) * 1989-10-02 1991-06-18 Depuy, Division Of Boehringer Mannheim Corporation Polymeric bearing component
US5037928A (en) * 1989-10-24 1991-08-06 E. I. Du Pont De Nemours And Company Process of manufacturing ultrahigh molecular weight linear polyethylene shaped articles
US5652281A (en) * 1989-12-21 1997-07-29 Montell North America Inc. Graft copolymers of polyolefins and a method of producing same
US5200439A (en) * 1990-04-13 1993-04-06 Mitsui Toatsu Chemicals, Inc. Method for increasing intrinsic viscosity of syndiotactic polypropylene
US5210130A (en) * 1990-08-07 1993-05-11 E. I. Du Pont De Nemours And Company Homogeneous, high modulus ultrahigh molecular weight polyethylene composites and processes for the preparation thereof
US5180484A (en) * 1990-08-27 1993-01-19 Uop Caustic free liquid/liquid process for sweeting a sour hydrocarbon fraction
US5236669A (en) * 1990-09-12 1993-08-17 E. I. Du Pont De Nemours And Company Pressure vessel
US5192323A (en) * 1990-11-05 1993-03-09 Zimmer, Inc. Method of surface hardening orthopedic implant devices
US5178812A (en) * 1990-11-28 1993-01-12 E. I. Du Pont De Nemours And Company Method of making composites having improved surface properties
US5137688A (en) * 1990-11-29 1992-08-11 General Electric Company Irradiated articles molded from polycarbonate-polyamide blends
US5292584A (en) * 1991-04-11 1994-03-08 E. I. Du Pont De Nemours And Company Ultrahigh molecular weight polyethylene and lightly-filled composites thereof
US5439949A (en) * 1991-08-21 1995-08-08 Rexene Corporation Propylene compositions with improved resistance to thermoforming sag
US5334640A (en) * 1992-04-08 1994-08-02 Clover Consolidated, Ltd. Ionically covalently crosslinked and crosslinkable biocompatible encapsulation compositions and methods
US5236583A (en) * 1992-05-20 1993-08-17 Wang Yiu Te High-pressure/vacuum operated apparatus for sewage and mud disposal
US5296583A (en) * 1992-07-09 1994-03-22 University Of Michigan Calcification-resistant synthetic biomaterials
US5238563A (en) * 1992-07-29 1993-08-24 Exxon Research & Engineering Company Multi-element housing
US5505984A (en) * 1993-01-21 1996-04-09 England; Garry L. Method for forming biocompatible components using an isostatic press
US6372814B1 (en) * 1993-06-01 2002-04-16 Stryker Technologies Corporation Non-oxidizing polymeric medical implant
US5728748A (en) * 1993-06-01 1998-03-17 Howmedica Inc. Non oxidizing polymeric medical implant
US5543471A (en) * 1993-06-01 1996-08-06 Howmedica Inc. Non-oxidizing polymeric medical implant
US5414049A (en) * 1993-06-01 1995-05-09 Howmedica Inc. Non-oxidizing polymeric medical implant
US5650485A (en) * 1993-06-01 1997-07-22 Howmedica Inc. Non-oxidizing polymeric medical implant
US5435723A (en) * 1993-08-18 1995-07-25 O'brien; Gary R. Endosseous dental implant system
US5407623A (en) * 1994-01-06 1995-04-18 Polteco, Inc. Process for obtaining ultra-high modulus line products with enhanced mechanical properties
US5593719A (en) * 1994-03-29 1997-01-14 Southwest Research Institute Treatments to reduce frictional wear between components made of ultra-high molecular weight polyethylene and metal alloys
US5709020A (en) * 1994-07-19 1998-01-20 University Of Kentucky Research Foundation Method for reducing the generation of wear particulates from an implant
US5515590A (en) * 1994-07-19 1996-05-14 University Of Kentucky Research Foundation Method for reducing the generation of wear particulates from an implant
US5879388A (en) * 1994-07-19 1999-03-09 The University Of Kentucky Research Foundation Implant pre-treated for reducing the generation of wear particulates
US5508079A (en) * 1994-08-15 1996-04-16 Owens-Corning Fiberglas Technology, Inc. Conformable insulation assembly
US5545453A (en) * 1994-08-15 1996-08-13 Owens Corning Fiberglas Technology, Inc. Conformable insulation assembly
US6168626B1 (en) * 1994-09-21 2001-01-02 Bmg Incorporated Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same
US5609638A (en) * 1994-11-29 1997-03-11 Zimmer, Inc. Reinforced polyethylene for articular surfaces
US5876453A (en) * 1994-11-30 1999-03-02 Implant Innovations, Inc. Implant surface preparation
US5625858A (en) * 1995-01-18 1997-04-29 Canon Kabushiki Kaisha Contact charging member, process for producing same and electrophotographic apparatus using same
US20080133018A1 (en) * 1995-01-20 2008-06-05 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US5609643A (en) * 1995-03-13 1997-03-11 Johnson & Johnson Professional, Inc. Knee joint prosthesis
US20020007219A1 (en) * 1996-02-13 2002-01-17 Merrill Edward W. Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
US5879400A (en) * 1996-02-13 1999-03-09 Massachusetts Institute Of Technology Melt-irradiated ultra high molecular weight polyethylene prosthetic devices
US5753182A (en) * 1996-02-14 1998-05-19 Biomet, Inc. Method for reducing the number of free radicals present in ultrahigh molecular weight polyethylene orthopedic components
US5721334A (en) * 1996-02-16 1998-02-24 Newyork Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Process for producing ultra-high molecular weight low modulus polyethylene shaped articles via controlled pressure and temperature and compositions and articles produced therefrom
US6228900B1 (en) * 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
US20050048096A1 (en) * 1996-07-09 2005-03-03 Fu-Wen Shen Crosslinking of polyethylene for low wear using radiation and thermal treatments
US20080133021A1 (en) * 1996-07-09 2008-06-05 Fu-Wen Shen Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6242507B1 (en) * 1996-10-02 2001-06-05 Depuy Orthopaedics, Inc. Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
US6017975A (en) * 1996-10-02 2000-01-25 Saum; Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
US6562540B2 (en) * 1996-10-02 2003-05-13 Depuy Orthopaedics, Inc. Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
US5879407A (en) * 1997-07-17 1999-03-09 Waggener; Herbert A. Wear resistant ball and socket joint
US6692679B1 (en) * 1998-06-10 2004-02-17 Depuy Orthopaedics, Inc. Cross-linked molded plastic bearings
US6245276B1 (en) * 1999-06-08 2001-06-12 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6184265B1 (en) * 1999-07-29 2001-02-06 Depuy Orthopaedics, Inc. Low temperature pressure stabilization of implant component

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44762E1 (en) 1994-09-21 2014-02-11 Bmg Incorporated Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same
US20050125074A1 (en) * 1995-01-20 2005-06-09 Ronald Salovey Crosslinking of polyethylene for low wear using radiation and thermal treatments
US20080133018A1 (en) * 1995-01-20 2008-06-05 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US8003709B2 (en) 1996-07-09 2011-08-23 Orthopaedic Hospital Crosslinking of polyethylene for low wear using radiation and thermal treatments
US8008365B2 (en) 1996-07-09 2011-08-30 Orthopaedic Hospital Crosslinking of polyethylene for low wear using radiation and thermal treatments
US20060085080A1 (en) * 2002-10-11 2006-04-20 Cartificial A/S Medical device comprising a bio-compatible polymeric product with a layered structure
US8137608B2 (en) 2004-10-07 2012-03-20 Biomet Manufacturing Corp. Crosslinked polymeric material with enhanced strength and process for manufacturing
US7344672B2 (en) 2004-10-07 2008-03-18 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US8398913B2 (en) 2004-10-07 2013-03-19 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US8262976B2 (en) 2004-10-07 2012-09-11 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US7462318B2 (en) 2004-10-07 2008-12-09 Biomet Manufacturing Corp. Crosslinked polymeric material with enhanced strength and process for manufacturing
US7927536B2 (en) 2004-10-07 2011-04-19 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US7993401B2 (en) 2004-10-07 2011-08-09 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US7780896B2 (en) 2004-10-07 2010-08-24 Biomet Manufacturing Corp. Crosslinked polymeric material with enhanced strength and process for manufacturing
US7547405B2 (en) 2004-10-07 2009-06-16 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US9017590B2 (en) 2004-10-07 2015-04-28 Biomet Manufacturing, Llc Solid state deformation processing of crosslinked high molecular weight polymeric materials
US7863348B2 (en) 2005-08-18 2011-01-04 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US8673202B2 (en) 2005-08-18 2014-03-18 Zimmer, Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US11015030B2 (en) 2005-08-18 2021-05-25 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US7846376B2 (en) 2005-08-18 2010-12-07 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US11001680B2 (en) 2005-08-18 2021-05-11 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US8470903B2 (en) 2005-08-18 2013-06-25 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US20100029858A1 (en) * 2007-04-10 2010-02-04 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8178594B2 (en) 2007-04-10 2012-05-15 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8664290B2 (en) 2007-04-10 2014-03-04 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8669299B2 (en) 2007-04-10 2014-03-11 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US10556998B2 (en) 2007-04-10 2020-02-11 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US8129440B2 (en) 2007-04-10 2012-03-06 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US9926432B2 (en) 2007-04-10 2018-03-27 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US9265545B2 (en) 2007-04-10 2016-02-23 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US9277949B2 (en) 2007-04-10 2016-03-08 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US9822224B2 (en) 2007-04-10 2017-11-21 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US8641959B2 (en) 2007-07-27 2014-02-04 Biomet Manufacturing, Llc Antioxidant doping of crosslinked polymers to form non-eluting bearing components
US9421104B2 (en) 2007-07-27 2016-08-23 Biomet Manufacturing, Llc Antioxidant doping of crosslinked polymers to form non-eluting bearing components
US8652212B2 (en) 2008-01-30 2014-02-18 Zimmer, Inc. Orthopedic component of low stiffness
US9718241B2 (en) 2008-01-30 2017-08-01 Zimmer, Inc. Method of manufacturing an acetabular component
US8851201B2 (en) 2008-08-06 2014-10-07 Milwaukee Electric Tool Corporation Precision torque tool
US9745462B2 (en) 2008-11-20 2017-08-29 Zimmer Gmbh Polyethylene materials
US20100328739A1 (en) * 2009-06-25 2010-12-30 Oki Data Corporation Image scanning apparatus and image processing system
US9017416B2 (en) 2009-12-21 2015-04-28 Derek J. McMinn Method of forming a polymer component
US9283079B2 (en) 2009-12-21 2016-03-15 Derek James Wallace McMinn Cup with crosslinked polymer layer cable ties
US9956081B2 (en) 2009-12-21 2018-05-01 Derek James Wallace McMinn Cup with cross-linked polymer layer
US10966837B2 (en) 2009-12-21 2021-04-06 Derek James Wallace McMinn Cup with conical permanent pegs
US9649193B2 (en) 2009-12-21 2017-05-16 Derek James Wallace McMinn Cup with crosslinked polymer layer modular pegs
US8399535B2 (en) 2010-06-10 2013-03-19 Zimmer, Inc. Polymer [[s]] compositions including an antioxidant
US9586370B2 (en) 2013-08-15 2017-03-07 Biomet Manufacturing, Llc Method for making ultra high molecular weight polyethylene
US9708467B2 (en) 2013-10-01 2017-07-18 Zimmer, Inc. Polymer compositions comprising one or more protected antioxidants
US10184031B2 (en) 2014-03-12 2019-01-22 Zimmer, Inc. Melt-stabilized ultra high molecular weight polyethylene and method of making the same
US10265891B2 (en) 2014-12-03 2019-04-23 Zimmer, Inc. Antioxidant-infused ultra high molecular weight polyethylene

Also Published As

Publication number Publication date
CA2166450A1 (en) 1996-07-21
AU4078596A (en) 1996-08-01
DE69631076T2 (en) 2004-10-21
AU716762B2 (en) 2000-03-09
DE69631076D1 (en) 2004-01-29
EP0722973B2 (en) 2013-02-13
ITTO960027A1 (en) 1997-07-19
EP0722973B1 (en) 2003-12-17
US6281264B1 (en) 2001-08-28
JPH093207A (en) 1997-01-07
JP3323728B2 (en) 2002-09-09
IT1284325B1 (en) 1998-05-18
JP2003000698A (en) 2003-01-07
US20030045603A1 (en) 2003-03-06
JP3652669B2 (en) 2005-05-25
ITTO960027A0 (en) 1996-01-19
US20030158287A1 (en) 2003-08-21
EP0722973A1 (en) 1996-07-24
US20040208841A1 (en) 2004-10-21
US20080133018A1 (en) 2008-06-05
CA2166450C (en) 2008-03-25

Similar Documents

Publication Publication Date Title
US6281264B1 (en) Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
EP0935446B1 (en) Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6228900B1 (en) Crosslinking of polyethylene for low wear using radiation and thermal treatments
AU2003204537B2 (en) Sequentially cross-linked polyethylene
US6494917B1 (en) Wear resistant surface-gradient crosslinked polyethylene
WO1998001085A9 (en) Crosslinking of polyethylene for low wear using radiation and thermal treatments
US20050125074A1 (en) Crosslinking of polyethylene for low wear using radiation and thermal treatments
AU727279B2 (en) Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION