Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS20020002344 A1
Type de publicationDemande
Numéro de demandeUS 09/887,574
Date de publication3 janv. 2002
Date de dépôt21 juin 2001
Date de priorité17 mai 1996
Autre référence de publicationEP1579814A2, EP1579814A3, US6352514, US7247144, US7727168, US7731668, US8123701, US8231549, US8690798, US20040006285, US20070293747, US20080015425, US20100222656, US20100222704, US20120215084
Numéro de publication09887574, 887574, US 2002/0002344 A1, US 2002/002344 A1, US 20020002344 A1, US 20020002344A1, US 2002002344 A1, US 2002002344A1, US-A1-20020002344, US-A1-2002002344, US2002/0002344A1, US2002/002344A1, US20020002344 A1, US20020002344A1, US2002002344 A1, US2002002344A1
InventeursJoel Douglas, Jeffrey Roe, Ryszard Radwanski, Brent Duchon
Cessionnaire d'origineDouglas Joel S., Roe Jeffrey N., Ryszard Radwanski, Duchon Brent G.
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Methods and apparatus for sampling and analyzing body fluid
US 20020002344 A1
Résumé
A sampling device for sampling body fluid includes a lancet for making an incision, a capillary tube for drawing-up body fluid from the incision, and a test strip affixed to an upper end of the capillary tube for receiving the fluid. An absorbent pad can be disposed between the test strip and capillary tube for spreading-out the fluid being transferred to the test strip. An on-site analyzer such as an optical analyzer and/or an electrochemical analyzer can be mounted in the device for analyzing the fluid. Alternatively, a test strip can be slid through a slot formed in the bottom end of the device so that by passing the device against the skin after an incision has been formed, the test strip will directly contact body fluid emanating from the incision.
Images(4)
Previous page
Next page
Revendications(20)
What is claimed is:
1. A sampling device for sampling body fluid, comprising:
a housing;
a lancet carrier mounted in the housing and adapted for supporting a disposable lancet;
a mechanism disposed in the housing for displacing the lancet carrier toward a lower end of the housing for forming an incision through the skin of a user; and
a body fluid sampling member mounted in the housing for conducting body fluid from the incision, comprising
a capillary member including an elongated stem having a capillary passage extending longitudinally therethrough for conducting body fluid upwardly by capillary action, and
a test strip affixed to the capillary member at an upper end thereof and in communication with the capillary passage for receiving a sample of body fluid therefrom.
2. The sampling device according to claim 1 wherein the sampling member further comprises an absorbent pad disposed between the test strip and the upper end of the capillary passage for wicking body fluid from the passage to the test strip.
3. The sampling device according to claim 2 wherein the pad is affixed directly to the capillary member, and the test strip is affixed directly to the pad.
4. The sampling device according to claim 2, further including an electrochemical analyzing mechanism mounted in the housing, the pusher carrying electrical leads arranged for making electrical connection with a body fluid sample on the test strip, the leads being electrically connected to the analyzing mechanism.
5. The sampling device according to claim 1, further including an electrochemical analyzing meter mounted in the housing, a manually movable element mounted in the housing and carrying electrical leads arranged to make electrical connection with the meter.
6. The sampling device according to claim 1 further including a drop detecting mechanism disposed adjacent a lower end of the device for detecting a drop of body fluid disposed on the user's skin.
7. The sampling device according to claim 6 wherein the drop detecting mechanism includes a pair of spaced apart electrodes arranged to contact the drop and provide a signal to an indicator.
8. The sampling device according to claim 6 wherein the drop detecting mechanism comprises a light emitter and light receiver disposed adjacent a lower end of the device and provide a signal to an indicator.
9. A sampling device for sampling body fluid, comprising:
a housing;
a lancet carrier mounted in the housing and adapted for supporting a disposable lancet;
a mechanism for displacing the lancet carrier toward a lower end of the housing for forming an incision through the skin of a user; and
a strip-holding mechanism mounted at a lower end of the housing for supporting a test strip across the lower end of the housing to enable the test strip to pick-up body fluid from the incision.
10. The sampling device according to claim 9 wherein the strip-holding mechanism comprises a sleeve surrounding the lancet carrier and including slots for receiving the test strip.
11. The sampling device according to claim 10 wherein the sleeve constitutes a first sleeve, the strip-holding mechanism further including a second sleeve surrounding the first sleeve and including slots radially aligned with the slots of the first sleeve, the second sleeve being slidable longitudinally relative to both the housing and the first sleeve and being spring biased downwardly, the slots formed in the second sleeve being elongated in a direction parallel to a longitudinal axis of the housing to enable the second sleeve to move longitudinally relative to a test strip mounted in the first sleeve.
12. A sampling device for sampling body fluid, comprising:
a housing;
means in the housing for forming an incision through the skin of a user; and
a drop-detecting mechanism disposed adjacent a lower end of the device for detecting a drop of body fluid disposed on the user's skin.
13. The sampling device according to claim 12 wherein the drop detecting mechanism includes a pair of spaced apart electrodes arranged to contact the drop.
14. The sampling device according to claim 12 wherein the drop detecting mechanism comprises a light emitter and light receiver disposed adjacent a lower end of the device.
15. A method of sampling body fluid comprising the steps of:
A) positioning a lower end of a sampling device against a skin surface;
B) displacing a lancet toward the lower end of the sampling device to form an incision through the skin;
C) mounting a test strip in the sampling device to extend across the lower end thereof; and
D) moving the sampling device toward the incision to bring the test strip into contact with body fluid emerging from the incision.
16. The method according to claim 15 wherein step C is performed prior to step B whereby the lancet pierces the test strip when displaced to form the incision.
17. A body fluid sampling member adapted to be mounted in a device for sampling body fluid, comprising:
a capillary member including an elongated stem having a capillary passage extending longitudinally therethrough for conducting body fluid upwardly by capillary action; and
a test strip affixed to the capillary member at an upper end thereof and in communication with the capillary passage for receiving a sample of body fluid.
18. The body fluid sampling member according to claim 17 further including a covering structure covering portions of the absorbent pad not covered by the membrane; the covering structure being vented by at least one air vent opening having a smaller cross section than the passage.
19. The body fluid sampling member according to claim 18 wherein the covering structure includes a flange projecting laterally outwardly from an upper end of the stem, a lower surface of the pad being seated on the flange.
20. The body fluid sampling member according to claim 19 wherein the covering structure further includes a side cover extending around a side surface of the pad.
Description
    FIELD OF THE INVENTION
  • [0001]
    The present invention relates to lancing devices and methods for obtaining samples of blood and other fluids from the body for analysis or processing.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Many medical procedures in use today require a relatively small sample of blood, in the range of 5-50 μL. It is more cost effective and less traumatic to the patient to obtain such a sample by lancing or piercing the skin at a selected location, such as the finger, to enable the collection of 1 or 2 drops of blood, than by using a phlebotomist to draw a tube of venous blood. With the advent of home use tests such as self monitoring of blood glucose, there is a requirement for a simple procedure which can be performed in any setting by a person needing to test.
  • [0003]
    Lancets in conventional use generally have a rigid body and a sterile needle which protrudes from one end. The lancet may be used to pierce the skin, thereby enabling the collection of a blood sample from the opening created. The blood is transferred to a test device or collection device. Blood is most commonly taken from the fingertips, where the supply is generally excellent. However, the nerve density in this region causes significant pain in many patients. Sampling of alternate site, such as earlobes and limbs, is sometimes practiced to access sites which are less sensitive. These sites are also less likely to provide excellent blood samples and make blood transfer directly to test devices difficult.
  • [0004]
    Repeated lancing in limited surface areas (such as fingertips) results in callous formation. This leads to increased difficulty in drawing blood and increased pain.
  • [0005]
    To reduce the anxiety of piercing the skin and the associated pain, many spring loaded devices have been developed. The following two patents are representative of the devices which were developed in the 1980's for use with home diagnostic test products.
  • [0006]
    U.S. Pat. No. 4,503,856, Cornell et al., describes a spring loaded lancet injector. The reusable device interfaces with a disposable lancet. The lancet holder may be latched in a retracted position. When the user contacts a release, a spring causes the lancet to pierce the skin at high speed and then retract. The speed is important to reduce the pain associated with the puncture.
  • [0007]
    Levin et al. U.S. Pat. No. 4,517,978 describes a blood sampling instrument. This device, which is also spring loaded, uses a standard disposable lancet. The design enables easy and accurate positioning against a fingertip so the impact site can be readily determined. After the lancet pierces the skin, a bounce back spring retracts the lancet to a safe position within the device.
  • [0008]
    In institutional settings, it is often desirable to collect the sample from the patient and then introduce the sample to a test device in a controlled fashion. Some blood glucose monitoring systems, for example, require that the blood sample be applied to a test device which is in contact with a test instrument. In such situations, bringing the finger of a patient directly to the test device poses some risk of contamination from blood of a previous patient. With such systems, particularly in hospital settings, it is common to lance a patient, collect a sample in a micropipette via capillary action and then deliver the sample from the pipette to the test device.
  • [0009]
    Haynes U.S. Pat. No. 4,920,977 describes a blood collection assembly with lancet and microcollection tube. This device incorporates a lancet and collection container in a single device. The lancing and collection are two separate activities, but the device is a convenient single disposable unit for situations when sample collection prior to use is desirable. Similar devices are disclosed in Sarrine U.S. Pat. No. 4,360,016, and O'Brien U.S. Pat. No. 4,924,879.
  • [0010]
    Jordan et al. U.S. Pat. No. 4,850,973 and No. 4,858,607, disclose a combination device which may be alternatively used as a syringe-type injection device and a lancing device with disposable solid needle lancet, depending on configuration.
  • [0011]
    Lange et al. U.S. Pat. No. 5,318,584 describes a blood lancet device for withdrawing blood for diagnostic purposes. This invention uses a rotary/sliding transmission system to reduce the pain of lancing. The puncture depth is easily and precisely adjustable by the user.
  • [0012]
    Suzuki et al. U.S. Pat. No. 5,368,047, Dombrowski U.S. Pat. No. 4,654,513 and Ishibashi et al. U.S. Pat. No. 5,320,607 each describe suction-type blood samplers. These devices develop suction between the lancing site and the end of the device when the lancet holding mechanism withdraws after piercing the skin. A flexible gasket around the end of the device helps seal the end around the puncture site until adequate sample is drawn from the puncture site or the user pulls back on the device.
  • [0013]
    Garcia et al. U.S. Pat. No. 4,637,403 discloses a combination lancing and blood collection device which uses a capillary passage to conduct body fluid to a separate test strip in the form of a microporous membrane. It is necessary to achieve a precise positioning of the upper end of the capillary passage with respect to the membrane in order to ensure that body fluid from the passage is transferred to the membrane. If an appreciable gap exists therebetween, no transfer may occur.
  • [0014]
    Also, the diameter of the capillary passage is relatively small, so the width of a sample transferred to the membrane may be too small to be measured by on-site measuring devices such as an optical measuring system or an electrochemical meter.
  • [0015]
    It is difficult for a user to determine whether a sufficiently large drop of body fluid has been developed at the incision for providing a large enough sample.
  • [0016]
    International Publication Number WO95/10223, Erickson et al., describes a means of collecting and measuring body fluids. This system uses a disposable lancing and suction device with a spacer member which compresses the skin around the lance/needle.
  • [0017]
    Single use devices have also been developed for single use tests, i.e. home cholesterol testing, and for institutional use to eliminate cross-patient contamination multi-patient use. Crossman et al. U.S. Pat. No. 4,869,249, and Swierczek U.S. Pat. No. 5,402,798, also disclose disposable, single use lancing devices.
  • [0018]
    The disclosures of the above patents are incorporated herein by reference.
  • [0019]
    An object of the present invention is to ensure that a sufficiently large drop of body fluid is developed at an incision, and that the body fluid reaches a test strip.
  • [0020]
    Another object is to ensure that the sample applied to the test strip creates a measurement area that is sufficiently wide to be properly analyzed.
  • [0021]
    An additional object is to provide a novel electrochemical analyzing system for analyzing a sample in the lancing device.
  • [0022]
    A further object is to enable a sample of body fluid to be applied to a test strip which is mounted in a lancing device.
  • [0023]
    Another object of this invention is to provide a method which can result in a sample of either blood or interstitial fluid, depending on the sample site and the penetration depth utilized. While there are no commercially available devices utilizing interstitial fluid (ISF) at this time, there are active efforts to establish the correlation of analytes, such as glucose, in ISF compared to whole blood. If ISF could be readily obtained and correlation is established, ISF may be preferable as a sample since there is no interference of red blood cells or hematocrit adjustment required.
  • [0024]
    Another object of this invention is to provide a method which can draw a small but adjustable sample, i.e. 3 μL for one test device and 8 μL for another test device, as appropriate.
  • [0025]
    Another object of this invention is to provide a method by which the drawn sample is collected and may be easily presented to a testing device, regardless of the location of the sample site on the body. This approach helps with infection control in that multiple patients are not brought in contact with a single test instrument; only the sampling device with a disposable patient-contact portion is brought to the test instrument. Alternatively, the disposable portion of a test device may be physically coupled with the sampler so the sample can be brought directly into the test device during sampling. The test device may then be read in a test instrument if appropriate or the testing system can be integrated into the sampler and the test device can provide direct results displayed for the patient.
  • [0026]
    A further object is to provide an on-site test strip with a relatively wide sample which can be analyzed by on-site analyzers such as optical and electrochemical analyzers.
  • [0027]
    It is a further object of the invention is to provide a device for minimally invasive sampling comprising a reusable sampler and disposable lancet and sample collection device.
  • SUMMARY OF THE INVENTION
  • [0028]
    One aspect of the present invention relates to a sampling device for sampling body fluid. The device includes a housing and a lancet carrier mounted in the housing for supporting a disposable lancet. The device also includes a mechanism for displacing the lancet carrier toward a lower end of the housing for forming an incision in a user. A body fluid sampling member is mounted in the housing for conducting body fluid from the incision. That sampling member comprises a capillary member, and a test strip. The capillary member includes an elongated stem having a capillary passage extending longitudinally therethrough for conducting body fluid upwardly by capillary action. The test strip is affixed to the capillary member at an upper end thereof and in communication with the capillary passage for receiving a sample of body fluid.
  • [0029]
    Preferably, the test strip comprises a microporous membrane, and an absorbent pad is preferably disposed between the test strip and the upper end of the capillary passage for wicking body fluid from the passage to the test strip.
  • [0030]
    The present invention also relates to the capillary member per se.
  • [0031]
    Another embodiment of the sampling device includes a housing, a lancet carrier mounted in the housing for supporting a disposable lancet, a mechanism for displacing the lancet carrier toward a lower end of the housing for forming an incision in a user, and a strip-holding mechanism mounted at a lower end of the housing for supporting a test strip across the lower end of the housing to enable the test strip to pick up body fluid from the incision.
  • [0032]
    The strip holding mechanism preferably comprises a sleeve disposed in surrounding relationship to the lancet carrier and includes radially aligned slots for receiving a test strip.
  • [0033]
    Preferably, the sleeve constitutes a first sleeve, and the holding mechanism further includes a second sleeve surrounding the first sleeve and including slots that are radially aligned with the slots of the first sleeve. The second sleeve is slidable longitudinally relative to both the housing and the first sleeve and is spring biased downwardly. The slots which are formed in the second sleeve are elongated in a direction parallel to a longitudinal axis of the housing to enable the second sleeve to move longitudinally relative to a test strip mounted in the first sleeve.
  • [0034]
    The present invention also relates to a method of sampling body fluid which comprises the steps of positioning a lower end of a sampling device against a skin surface, and displacing a lancet carrier toward the lower end of the sampling device to form an incision through the skin. A test strip is positioned in the sampling device to extend across the lower end thereof. The sampling device is moved toward the incision to bring the test strip into contact with body fluid emerging from the incision. The test strip is preferably positioned in the sampling device prior to the displacement of the lancet toward the lower end of the sampling device, whereby the lancet pierces the test strip.
  • [0035]
    Another aspect of the invention involves the provision of a drop-detecting mechanism on the lancing device adjacent a lower end thereof for detecting a drop of body fluid on the user's skin. The mechanism can be in the form of electrodes which contact the drop, or an optical system including a light emitter and a light sensor. The drop-detecting mechanism automatically determines whether a drop of sufficient size has been developed at the incision for providing a proper sample.
  • BRIEF DESCRIPTION OF THE DRAWING
  • [0036]
    The objects and advantages of the invention will become apparent from the following detailed description of preferred embodiments thereof in connection with the accompanying drawing in which like numerals designate like elements and in which:
  • [0037]
    [0037]FIG. 1 is a side elevational view, partially broken away, of a blood sampling device according to the present invention, with a capillary tube thereof disposed in a retracted state;
  • [0038]
    [0038]FIG. 2 is a view similar to FIG. 1 after an incision has been made, and the capillary tube has been extended;
  • [0039]
    [0039]FIG. 3 is a longitudinal sectional view through one embodiment of the capillary tube according to the present invention;
  • [0040]
    [0040]FIG. 4 is a longitudinal sectional view taken through another embodiment of a capillary tube according to the present invention;
  • [0041]
    [0041]FIG. 5 is view similar to FIG. 2 of a sampling device having an alternative form of analyzing instrument;
  • [0042]
    [0042]FIG. 6 is a fragmentary view of a lower end of a lancing device, depicting a drop-detecting mechanism according to the present invention;
  • [0043]
    [0043]FIG. 7 is a side elevational view, partially broken away of another embodiment of the sampling device, with a test strip mounted at a lower end thereof; and
  • [0044]
    [0044]FIG. 8 is a fragmentary view of the device depicted in FIG. 6 in a sampling-taking state.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
  • [0045]
    Depicted in FIGS. 1 and 2 is a lancing device 10 for making an incision through a skin surface S, wherein a disposable lancet 12 (hereinafter referred to as a “disposable”) which carries a skin-lancing member in the form of a needle 14 can be displaced toward the skin surface by a cocked spring and then rapidly retracted by another spring. Devices of this general type are known, and one preferred device is disclosed in commonly assigned, concurrently filed U.S. Pat. No. 5,879,311, the disclosure of which is incorporated herein by reference.
  • [0046]
    As disclosed in that application, the disposable 12 includes a body 16 which carries not only the needle 14, but also a capillary tube 18. The capillary tube is mounted by friction fit between holding elements 15 that are integral with the body 16 and is downwardly slidable relative to the body 16 in response to manual downward displacement of a pusher 20 which possesses an exposed actuator knob 22.
  • [0047]
    The disposable 12 is situated telescopingly within a cylindrical stimulator sleeve 24 which is slidable longitudinally relative to a housing 26 of the device. The sleeve 24 is biased downwardly, or forwardly, by a spring 28. Following the cutting of an incision I in the skin and the retraction of the lancet, the housing can be repeatedly pushed downwardly against the skin as required to express the appropriate sample from the incision, whereupon the sleeve depresses a ring of body tissue in surrounding relationship to the incision, causing the incision to bulge while spreading apart the sides of the incision. Consequently, a drop D of body fluid such as blood or interstitial fluid is formed at the open end of the incision, even if the incision I has been made in a region of the body where the supply of body fluid is relatively low as compared to, say, the fingertip region.
  • [0048]
    Once the drop D has been created, the pusher 22 is displaced to push the capillary tube downwardly to a state where the lower end of the capillary tube can be dipped into the body fluid drop to obtain a sample. The pusher is then released for return to an upper position by a return spring (not shown). As disclosed in the aforementioned application, the fluid can then be transferred from the capillary tube to a test strip, thereby making the overall sampling procedure more convenient.
  • [0049]
    In accordance with the present invention, the sampling procedure is made even more convenient by eliminating the need to transfer the body fluid from the capillary tube.
  • [0050]
    In a first embodiment, the capillary tube carries its own test strip. Depicted in FIG. 3 is a test strip 30 in the form of a microporous membrane (preferably of the type disclosed in commonly assigned U.S. application Ser. No. 08/628,489, filed Apr. 5, 1996, the disclosure of which is incorporated by reference herein).
  • [0051]
    The membrane 30 is bonded, e.g. by a suitable adhesive, to an enlarged head or flange portion 32 of the capillary tube 18 which projects laterally with respect to a stem portion 34 of the capillary tube. The head 32, when viewed from the top, can be of any shape, such as circular or rectangular (e.g., square). A capillary passage 36 extends longitudinally through the stem 34 and head 32 to conduct body fluid into contact with the membrane by capillary action.
  • [0052]
    As is known in the art of capillary tubes, the amount of body fluid which is drawn up by capillary action can be regulated by a suitable selection of diameter and length of the passage 36, thereby ensuring that a proper dosing of the membrane is achieved.
  • [0053]
    Fluid analyzing instruments can be mounted within the housing. For example, a conventional optical analyzing mechanism can be provided which includes a light source 40 and a light sensor 42 such as a phototransistor, which are electrically connected to a conventional electronics unit 44 for monitoring a color change of the sample as the sample reacts with chemicals in the test strip. The electronics unit 44 displays the results on a display panel 90. In that way, for example, the glucose level in blood can be measured. The unit 44 is electrically connected to a battery 45 that is mounted in the housing.
  • [0054]
    In lieu of an optical analyzing mechanism, an electrochemical mechanism can be provided in a device 10′ (FIG. 5), the mechanism including an electrochemical meter 50 which measures glucose levels. The meter 50 is electrically connected to a battery 51 mounted in the housing. The test strip 52 in this case would be provided with a printed electrical circuit, and the pusher 24′ would possess electrical leads 54 positioned so as to contact respective portions of the printed circuit electrical paths on the test strip when the pusher 24′ is in its lower position (after having pushed the capillary tube down). Thus, the sample conducted to the test strip 52 by the capillary tube will contact the electrical circuit for conducting a current therebetween when the leads 54 are brought into contact with the circuit. The leads are connected to the meter 50 which measures the current. Since the level of current is proportional to the glucose concentration, the meter 50 is able to measure that concentration.
  • [0055]
    When the disposable 12 is discarded after a testing operation, the capillary tube 18 and test strip 30 will be discarded therewith. A fresh disposable is then installed to present a new lancet 14, capillary tube 18 and test strip 30. Thus, the user never has to touch or otherwise maneuver a test strip separately from the capillary tube, since the test strip is attached thereto.
  • [0056]
    An alternate embodiment of a capillary tube 18′ is depicted in FIG. 4 wherein an absorbent pad 60 is disposed between the test strip 30 and the head 32′ of the capillary tube 18′. That is, the absorbent pad, which can be formed of cellulose or suitable membrane, is bonded to the capillary tube 18′, and the membrane 30 is bonded to the absorbent pad, or to a ring 62 which extends around a circumferential outer edge face of the absorbent pad 60. That ring, together with the flange 32, forms a cover which covers portions of the absorbent pad not covered by the membrane 30 to prevent the escape of the body fluid sample. When the capillary tube draws-up body fluid by capillary action, that fluid is wicked by the absorbent pad and supplied to the test strip 30. An advantage of the capillary tube 18′ is that the absorbent pad will spread-out the fluid so that a wider sample is applied to the test strip to facilitate analysis.
  • [0057]
    A backpressure may occur which opposes a flow of body fluid through the absorbent pad 60. To deal with that potential problem, the head 32′ is provided with air vent openings 64 to relieve the backpressure and facilitate the flow of fluid through the pad 60. The air vents are spaced laterally from the passage 36 and communicate with the pad. The diameter of the vent openings is smaller than that of the capillary tube and small enough to prevent the passage of body fluid therethrough.
  • [0058]
    Instead of being bonded directly to the absorbent pad 60, the membrane 30 could be bonded to the cover 62. In that case, the absorbent pad 60 could be bonded to the membrane, or to the cover, or to the capillary tube.
  • [0059]
    In any event it will be appreciated that the test strip is affixed, either directly or indirectly, to the capillary tube to constitute an integral part thereof.
  • [0060]
    One problem faced by a user is being able to determine whether a drop of body fluid expressed from an incision is of sufficient size to provide a proper sample. That determination can be made automatically by a sampling device 10″ in accordance with an embodiment of the invention depicted in FIG. 6 wherein a drop sensing mechanism 65 is mounted on an inner sleeve 66. The drop sensing mechanism comprises a pair of diametrically opposed elements 67, 68. In one embodiment, those elements comprise a pair of electrodes connected by wires 69 to the battery 45 or 51 and positioned such that when the outer sleeve 24 is retracted in response to a pressing down of the housing, the electrodes will make contact with the drop of body fluid only if the drop is of sufficient. height to provide an adequate sample. If such contact is made, the drop will close a circuit, enabling a sensor to determine that the drop is of ample size. An indicator, such as a lamp 71 can be energized to advise the user.
  • [0061]
    Alternatively, the elements 67, 68 of the mechanism 65 could comprise a light emitter and light receiver, respectively. When the drop of body fluid is of sufficient height, it will block the transmission of light to the receiver, thus indicating that the drop is of sufficient size, and triggering the energization of the lamp 71.
  • [0062]
    The drop-detecting mechanism 65 can be used with either of the embodiments disclosed in connection with FIGS. 1-2 and 5. However, it is not necessary that the incision be formed by a lancet. Other incision forming devices could be used such as a laser beam or pressurized fluid. That is, known pneumatic or hydraulic injectors of the type which inject pressurized gas or liquid against the skin could be used. Such auto injectors are sold by Becton-Dickinson, for example, to inject insulin. By eliminating the insulin and merely injecting the gas (e.g., air or nitrogen) or liquid (e.g., water) at pressures above 30 psi. an incision could be formed in the skin for taking samples of body fluid. Advantageously, small particles could be mixed with the gas to promote the tissue-cutting action. The particles could comprise carbon particles of from 1 micron to 0.010 inches in diameter.
  • [0063]
    Another embodiment of a sampling device 10″ according to the invention is depicted in FIGS. 7 and 8. In that embodiment, the stimulator sleeve 24″ is provided with a through-slot 70, and an inner sleeve 72 (which supports the disposable), is provided with a through-slot 74 that is aligned with the through-slot 70. Those aligned through-slots 70, 74 are adapted to receive a test strip 30″ which, if desired, includes an absorbent pad 60″. The test strip 30″, which may comprise a porous membrane 30A″ and an absorbent pad 30B″ attached thereto, is manually inserted through the slots 70, 74 by the user.
  • [0064]
    When a lancing procedure is performed, the lancet pierces the test strip 30″ en route to the skin surface. Then, as the housing is repeatedly pushed down to pump body fluid to the open end of the incision as described earlier, the stimulator sleeve 24″ will be repeatedly retracted, and simultaneously the inner sleeve 72, along with the test strip 30″, will approach and contact the drop of body fluid as shown in FIG. 8, whereby a sample of the fluid is collected on the test strip.
  • [0065]
    Then, the user removes the test strip for testing at an off-site analyzer.
  • [0066]
    It will be appreciated that the present invention enables a test strip to be easily installed into and removed from a lancing device, thereby minimizing any risk of contamination of the sample. In the examples according to FIGS. 1-5 the test strip is installed along with the disposable lancet, thereby being automatically positioned in proper relationship to receive a sample and to permit the sample to be analyzed by an on-side analyzing instrument. If desired, however, the analysis could be performed by an off-site instrument by removing the disposable from the device and taking it to the off-site instrument. In the example of FIGS. 7-8, the test strip is easily installed/removed by being passed through readily accessible slots.
  • [0067]
    Although the present invention has been described in connection with preferred embodiments thereof, it will be appreciated by those skilled in the art that additions, modifications, substitutions and deletions not specifically described may be made without departing from the spirit and scope of the invention as defined in the appended claims.
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US654067520 déc. 20001 avr. 2003Rosedale Medical, Inc.Analyte monitor
US65727457 déc. 20013 juin 2003Virotek, L.L.C.Electrochemical sensor and method thereof
US657610223 mars 200110 juin 2003Virotek, L.L.C.Electrochemical sensor and method thereof
US670600014 juin 200116 mars 2004Amira MedicalMethods and apparatus for expressing body fluid from an incision
US72442643 déc. 200217 juil. 2007Roche Diagnostics Operations, Inc.Dual blade lancing test strip
US7322942 *7 mai 200429 janv. 2008Roche Diagnostics Operations, Inc.Integrated disposable for automatic or manual blood dosing
US735121216 déc. 20031 avr. 2008Roche Diagnostics Operations, Inc.Blood acquisition suspension system
US735121313 avr. 20051 avr. 2008Roche Diagnostics Operation, Inc.Integrated spot monitoring device with fluid sensor
US737454629 janv. 200420 mai 2008Roche Diagnostics Operations, Inc.Integrated lancing test strip
US751243227 juil. 200431 mars 2009Abbott LaboratoriesSensor array
US76254573 janv. 20071 déc. 2009Roche Diagnostics Operations, Inc.Dual blade lancing test strip
US764846831 déc. 200219 janv. 2010Pelikon Technologies, Inc.Method and apparatus for penetrating tissue
US76549695 févr. 20082 févr. 2010Roche Diagnostics Operations, Inc.Integrated spot monitoring device with fluid sensor
US766614928 oct. 200223 févr. 2010Peliken Technologies, Inc.Cassette of lancet cartridges for sampling blood
US766615029 avr. 200423 févr. 2010Roche Diagnostics Operations, Inc.Blood and interstitial fluid sampling device
US76703015 déc. 20072 mars 2010Roche Diagnostics Operations, Inc.Integrated disposable for automatic or manual blood dosing
US767423231 déc. 20029 mars 2010Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US768231812 juin 200223 mars 2010Pelikan Technologies, Inc.Blood sampling apparatus and method
US769979112 juin 200220 avr. 2010Pelikan Technologies, Inc.Method and apparatus for improving success rate of blood yield from a fingerstick
US771321418 déc. 200211 mai 2010Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US771786331 déc. 200218 mai 2010Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US772716819 juin 20071 juin 2010Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US773166816 juil. 20078 juin 2010Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US77319006 mai 20058 juin 2010Roche Diagnostics Operations, Inc.Body fluid testing device
US774917412 juin 20026 juil. 2010Pelikan Technologies, Inc.Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US77494531 juin 20076 juil. 2010Bionostics, Inc.Devices, systems, and methods for the containment and use of liquid solutions
US775851614 févr. 200620 juil. 2010Roche Diagnostics Operations, Inc.Method and apparatus for sampling bodily fluid
US775851814 janv. 200920 juil. 2010Roche Diagnostics Operations, Inc.Devices and methods for expression of bodily fluids from an incision
US77806316 nov. 200124 août 2010Pelikan Technologies, Inc.Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US778527218 nov. 200531 août 2010Roche Diagnostics Operations, Inc.Test media cassette for bodily fluid testing device
US780312330 avr. 200428 sept. 2010Roche Diagnostics Operations, Inc.Lancet device having capillary action
US782874922 nov. 20069 nov. 2010Roche Diagnostics Operations, Inc.Blood and interstitial fluid sampling device
US78331733 févr. 201016 nov. 2010Panasonic CorporationSkin incision instrument and method for incising skin with the same
US784199126 juin 200330 nov. 2010Roche Diagnostics Operations, Inc.Methods and apparatus for expressing body fluid from an incision
US78509237 nov. 200714 déc. 2010Bionostics, Inc.Container for maintaining stabilized control solution and container for single-use control solution including prior use indicator
US787504725 janv. 200725 janv. 2011Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US78921833 juil. 200322 févr. 2011Pelikan Technologies, Inc.Method and apparatus for body fluid sampling and analyte sensing
US790136231 déc. 20028 mars 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US79013638 janv. 20048 mars 2011Roche Diagnostics Operations, Inc.Body fluid sampling device and methods of use
US790136521 mars 20078 mars 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US790977413 févr. 200722 mars 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US790977526 juin 200722 mars 2011Pelikan Technologies, Inc.Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US790977729 sept. 200622 mars 2011Pelikan Technologies, IncMethod and apparatus for penetrating tissue
US790977820 avr. 200722 mars 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US79144658 févr. 200729 mars 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US792297128 sept. 200612 avr. 2011Abbott Diabetes Care Inc.Integrated meter for analyzing biological samples
US792729117 juil. 200619 avr. 2011Roche Diagnostics Operations, Inc.Blood acquisition suspension system
US793878729 sept. 200610 mai 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US795958221 mars 200714 juin 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US797647616 mars 200712 juil. 2011Pelikan Technologies, Inc.Device and method for variable speed lancet
US798105522 déc. 200519 juil. 2011Pelikan Technologies, Inc.Tissue penetration device
US798105618 juin 200719 juil. 2011Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US798864421 mars 20072 août 2011Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US79886453 mai 20072 août 2011Pelikan Technologies, Inc.Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US7988667 *16 avr. 20082 août 2011Terumo Kabushiki KaishaPiercing tool
US800744619 oct. 200630 août 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US801677422 déc. 200513 sept. 2011Pelikan Technologies, Inc.Tissue penetration device
US801677519 oct. 200913 sept. 2011Roche Diagnostics Operations, Inc.Dual blade lancing test strip
US802163120 juil. 200920 sept. 2011Roche Diagnostics Operations, Inc.Body fluid testing device
US804331730 oct. 200125 oct. 2011Roche Diagnostics Operations, Inc.System for withdrawing blood
US806223111 oct. 200622 nov. 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US80666494 août 200829 nov. 2011Abbott Diabetes Care Inc.Integrated sensor for analyzing biological samples
US80706924 août 20086 déc. 2011Abbott Diabetes Care Inc.Integrated sensor for analyzing biological samples
US807996010 oct. 200620 déc. 2011Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US809701330 juin 201017 janv. 2012Panasonic CorporationSkin incision instrument and method for incising skin with the same
US810524428 sept. 200631 janv. 2012Abbott Diabetes Care Inc.Integrated sensor for analyzing biological samples
US81052454 août 200831 janv. 2012Abbott Diabetes Care Inc.Integrated sensor for analyzing biological samples
US812370026 juin 200728 févr. 2012Pelikan Technologies, Inc.Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US812370113 mai 201028 févr. 2012Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US8147425 *20 mars 20063 avr. 2012Terumo Kabushiki KaishaCentesis instrument
US815774810 janv. 200817 avr. 2012Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US816285322 déc. 200524 avr. 2012Pelikan Technologies, Inc.Tissue penetration device
US816288725 mars 201124 avr. 2012Abbott Biotechnology Ltd.Automatic injection devices
US818720512 août 200929 mai 2012Roche Diagnostics Operations, Inc.Integrated spot monitoring device with fluid sensor
US819237221 juil. 20105 juin 2012Roche Diagnostics Operations, Inc.Test media cassette for bodily fluid testing device
US819742116 juil. 200712 juin 2012Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US819742314 déc. 201012 juin 2012Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US820223123 avr. 200719 juin 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US820631722 déc. 200526 juin 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US820631926 août 201026 juin 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US821103722 déc. 20053 juil. 2012Pelikan Technologies, Inc.Tissue penetration device
US821615423 déc. 200510 juil. 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US822133422 déc. 201017 juil. 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US823154913 mai 201031 juil. 2012Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US823183214 août 200831 juil. 2012Intuity Medical, Inc.Analyte concentration detection devices and methods
US823591518 déc. 20087 août 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US825192110 juin 201028 août 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling and analyte sensing
US825725830 juil. 20074 sept. 2012Abbott LaboratoriesIntegrated lancet and blood glucose meter system
US825727618 févr. 20104 sept. 2012Roche Diagnostics Operations, Inc.Lancet device having capillary action
US82572772 août 20104 sept. 2012Roche Diagnostics Operations, Inc.Test media cassette for bodily fluid testing device
US82626141 juin 200411 sept. 2012Pelikan Technologies, Inc.Method and apparatus for fluid injection
US826787030 mai 200318 sept. 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling with hybrid actuation
US828257629 sept. 20049 oct. 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for an improved sample capture device
US828257715 juin 20079 oct. 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US829691823 août 201030 oct. 2012Sanofi-Aventis Deutschland GmbhMethod of manufacturing a fluid sampling device with improved analyte detecting member configuration
US830351820 déc. 20056 nov. 2012Intuity Medical, Inc.Autonomous, ambulatory analyte monitor or drug delivery device
US83337105 oct. 200518 déc. 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US83374194 oct. 200525 déc. 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US833742024 mars 200625 déc. 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US833742116 déc. 200825 déc. 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US834307523 déc. 20051 janv. 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US836099123 déc. 200529 janv. 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US836099225 nov. 200829 janv. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US83609933 août 201129 janv. 2013Intuity Medical, Inc.Method for body fluid sample extraction
US83609943 août 201129 janv. 2013Intuity Medical, Inc.Arrangement for body fluid sample extraction
US83666373 déc. 20085 févr. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US837201630 sept. 200812 févr. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling and analyte sensing
US838268129 sept. 200626 févr. 2013Intuity Medical, Inc.Fully integrated wearable or handheld monitor
US83826826 févr. 200726 févr. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US83826837 mars 201226 févr. 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US83830417 sept. 201126 févr. 2013Roche Diagnostics Operations, Inc.Body fluid testing device
US838855127 mai 20085 mars 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for multi-use body fluid sampling device with sterility barrier release
US84038641 mai 200626 mars 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US841450316 mars 20079 avr. 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US843082826 janv. 200730 avr. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for a multi-use body fluid sampling device with sterility barrier release
US843519019 janv. 20077 mai 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US843544726 juil. 20107 mai 2013Abbott Diabetes Care Inc.Integrated meter for analyzing biological samples
US843987226 avr. 201014 mai 2013Sanofi-Aventis Deutschland GmbhApparatus and method for penetration with shaft having a sensor for sensing penetration depth
US849150016 avr. 200723 juil. 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US849660116 avr. 200730 juil. 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US852378430 avr. 20043 sept. 2013Roche Diagnostics Operations, Inc.Analytical device with lancet and test element
US855682927 janv. 200915 oct. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US856254516 déc. 200822 oct. 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US857416826 mars 20075 nov. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for a multi-use body fluid sampling device with analyte sensing
US857449617 janv. 20135 nov. 2013Roche Diagnostics Operations, Inc.Body fluid testing device
US857489530 déc. 20035 nov. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus using optical techniques to measure analyte levels
US85798316 oct. 200612 nov. 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US862293018 juil. 20117 janv. 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US86366731 déc. 200828 janv. 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US863667413 janv. 201028 janv. 2014Roche Diagnostics Operations, Inc.Integrated disposable for automatic or manual blood dosing
US863670429 avr. 201028 janv. 2014Abbvie Biotechnology LtdAutomatic injection device
US863675811 oct. 201128 janv. 2014Roche Diagnostics Operations, Inc.System for withdrawing blood
US864164327 avr. 20064 févr. 2014Sanofi-Aventis Deutschland GmbhSampling module device and method
US864164423 avr. 20084 févr. 2014Sanofi-Aventis Deutschland GmbhBlood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US86520683 janv. 201218 févr. 2014Abbott Diabetes Care Inc.Integrated sensor for analyzing biological samples
US865283126 mars 200818 févr. 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for analyte measurement test time
US866865631 déc. 200411 mars 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for improving fluidic flow and sample capture
US866867010 avr. 201211 mars 2014Abbvie Biotechnology LtdAutomatic injection devices
US867903316 juin 201125 mars 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US86790615 mars 200825 mars 2014Abbvie Biotechnology LtdAutomatic injection device
US868495116 mars 20111 avr. 2014Roche Diagnostics Operations, Inc.Blood acquisition suspension system
US869079629 sept. 20068 avr. 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US86907983 mai 20128 avr. 2014Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US869659622 déc. 200915 avr. 2014Roche Diagnostics Operations, Inc.Blood and interstitial fluid sampling device
US870262429 janv. 201022 avr. 2014Sanofi-Aventis Deutschland GmbhAnalyte measurement device with a single shot actuator
US870896824 janv. 201229 avr. 2014Abbvie Biotechnology Ltd.Removal of needle shields from syringes and automatic injection devices
US87216716 juil. 200513 mai 2014Sanofi-Aventis Deutschland GmbhElectric lancet actuator
US874081330 juil. 20123 juin 2014Roche Diagnostics Operations, Inc.Methods and apparatus for expressing body fluid from an incision
US874733530 avr. 201210 juin 2014Roche Diagnostics Operations, Inc.Integrated spot monitoring device with fluid sensor
US875830115 déc. 201024 juin 2014Abbvie Biotechnology LtdFiring button for automatic injection device
US878433525 juil. 200822 juil. 2014Sanofi-Aventis Deutschland GmbhBody fluid sampling device with a capacitive sensor
US879520128 janv. 20135 août 2014Intuity Medical, Inc.Catalysts for body fluid sample extraction
US880163130 sept. 200512 août 2014Intuity Medical, Inc.Devices and methods for facilitating fluid transport
US880820115 janv. 200819 août 2014Sanofi-Aventis Deutschland GmbhMethods and apparatus for penetrating tissue
US881517519 juin 200926 août 2014Abbott Diabetes Care Inc.Integrated meter for analyzing biological samples
US882820320 mai 20059 sept. 2014Sanofi-Aventis Deutschland GmbhPrintable hydrogels for biosensors
US88455492 déc. 200830 sept. 2014Sanofi-Aventis Deutschland GmbhMethod for penetrating tissue
US88455503 déc. 201230 sept. 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US890594529 mars 20129 déc. 2014Dominique M. FreemanMethod and apparatus for penetrating tissue
US891960530 nov. 201030 déc. 2014Intuity Medical, Inc.Calibration material delivery devices and methods
US894591019 juin 20123 févr. 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for an improved sample capture device
US896547618 avr. 201124 févr. 2015Sanofi-Aventis Deutschland GmbhTissue penetration device
US896909728 févr. 20113 mars 2015Intuity Medical, Inc.Analyte detection devices and methods with hematocrit-volume correction and feedback control
US89862238 mai 201224 mars 2015Roche Diagnostics Operations, Inc.Test media cassette for bodily fluid testing device
US901728717 déc. 201328 avr. 2015Abbvie Biotechnology LtdAutomatic injection devices
US903463926 juin 201219 mai 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus using optical techniques to measure analyte levels
US906072329 juil. 201423 juin 2015Intuity Medical, Inc.Body fluid sampling arrangements
US907284231 juil. 20137 juil. 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US908929416 janv. 201428 juil. 2015Sanofi-Aventis Deutschland GmbhAnalyte measurement device with a single shot actuator
US908967821 mai 201228 juil. 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US909529230 juil. 20124 août 2015Intuity Medical, Inc.Analyte concentration detection devices and methods
US914440112 déc. 200529 sept. 2015Sanofi-Aventis Deutschland GmbhLow pain penetrating member
US918024421 avr. 201110 nov. 2015Abbvie Biotechnology LtdWearable automatic injection device for controlled delivery of therapeutic agents
US918646814 janv. 201417 nov. 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US92159933 mai 201322 déc. 2015Roche Diagnostics Operations, Inc.Analytical device with lancet and test element
US92266999 nov. 20105 janv. 2016Sanofi-Aventis Deutschland GmbhBody fluid sampling module with a continuous compression tissue interface surface
US924826718 juil. 20132 févr. 2016Sanofi-Aventis Deustchland GmbhTissue penetration device
US92614761 avr. 201416 févr. 2016Sanofi SaPrintable hydrogel for biosensors
US926588724 janv. 201223 févr. 2016Abbvie Biotechnology Ltd.Automatic injection devices having overmolded gripping surfaces
US929598715 mars 201329 mars 2016Atomo Diagnostics Pty LimitedIntegrated testing device
US931419411 janv. 200719 avr. 2016Sanofi-Aventis Deutschland GmbhTissue penetration device
US933961015 avr. 201417 mai 2016Abbvie Biotechnology LtdRemoval of needle shield from syringes and automatic injection devices
US933961216 déc. 200817 mai 2016Sanofi-Aventis Deutschland GmbhTissue penetration device
US935168014 oct. 200431 mai 2016Sanofi-Aventis Deutschland GmbhMethod and apparatus for a variable user interface
US93666364 févr. 201514 juin 2016Intuity Medical, Inc.Analyte detection devices and methods with hematocrit/volume correction and feedback control
US937516929 janv. 201028 juin 2016Sanofi-Aventis Deutschland GmbhCam drive for managing disposable penetrating member actions with a single motor and motor and control system
US938097429 sept. 20065 juil. 2016Intuity Medical, Inc.Multi-site body fluid sampling and analysis cartridge
US938694410 avr. 200912 juil. 2016Sanofi-Aventis Deutschland GmbhMethod and apparatus for analyte detecting device
US9402984 *23 nov. 20112 août 2016Debiotech S.A.Method and device for inserting needles
US9414774 *9 oct. 200616 août 2016Roche Diabetes Care, Inc.Method and system for withdrawing body fluid
US942753229 sept. 201430 août 2016Sanofi-Aventis Deutschland GmbhTissue penetration device
US94865846 nov. 20158 nov. 2016Abbvie Biotechnology Ltd.Automatic injection device
US949816029 sept. 201422 nov. 2016Sanofi-Aventis Deutschland GmbhMethod for penetrating tissue
US953894110 juin 201010 janv. 2017Roche Diabetes Care, Inc.Devices and methods for expression of bodily fluids from an incision
US956099320 déc. 20137 févr. 2017Sanofi-Aventis Deutschland GmbhBlood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US956100010 déc. 20137 févr. 2017Sanofi-Aventis Deutschland GmbhMethod and apparatus for improving fluidic flow and sample capture
US956132817 déc. 20137 févr. 2017Abbvie Biotechnology LtdAutomatic injection device
US96035625 nov. 201228 mars 2017Intuity Medical, Inc.Autonomous, ambulatory analyte monitor or drug delivery device
US96360518 juin 20092 mai 2017Intuity Medical, Inc.Detection meter and mode of operation
US96941443 déc. 20134 juil. 2017Sanofi-Aventis Deutschland GmbhSampling module device and method
US97240218 déc. 20148 août 2017Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US9743876 *9 juil. 201529 août 2017Becton, Dickinson And CompanyLancet device with first-drop removal
US976409026 mars 201519 sept. 2017Abbvie Biotechnology LtdRelating to automatic injection devices
US97755531 oct. 20083 oct. 2017Sanofi-Aventis Deutschland GmbhMethod and apparatus for a fluid sampling device
US97821143 août 201210 oct. 2017Intuity Medical, Inc.Devices and methods for body fluid sampling and analysis
US979533128 avr. 201624 oct. 2017Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor insertion
US97953349 juil. 200724 oct. 2017Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US97957472 juin 201124 oct. 2017Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US980200718 nov. 201331 oct. 2017Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US20020042594 *6 nov. 200111 avr. 2002Paul LumApparatus and method for penetration with shaft having a sensor for sensing penetration depth
US20020188224 *7 juin 200212 déc. 2002Roe Jeffrey N.Test media cassette for bodily fluid testing device
US20030060730 *29 août 200227 mars 2003Edward PerezWicking methods and structures for use in sampling bodily fluids
US20030083685 *19 avr. 20021 mai 2003Freeman Dominique M.Sampling module device and method
US20030083686 *19 avr. 20021 mai 2003Freeman Dominique M.Tissue penetration device
US20030088191 *12 juin 20028 mai 2003Freeman Dominique M.Blood sampling device with diaphragm actuated lancet
US20030135333 *22 janv. 200317 juil. 2003Rosedale Medical, Inc.Analyte Monitor
US20030195549 *16 mai 200316 oct. 2003Davison Thomas W.Cannula for receiving surgical instruments
US20030199789 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199790 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199791 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199894 *18 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US20030199896 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199897 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199898 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199899 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199900 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199901 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199902 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199903 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199904 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199905 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199906 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199907 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199908 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199909 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199910 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030199911 *31 déc. 200223 oct. 2003Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US20030233112 *12 juin 200218 déc. 2003Don AldenSelf optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US20040006285 *3 juil. 20038 janv. 2004Douglas Joel S.Methods and apparatus for sampling and analyzing body fluid
US20040009100 *28 oct. 200215 janv. 2004Agilent Technologies, Inc.Cassette of lancet cartridges for sampling blood
US20040010279 *21 avr. 200315 janv. 2004Freeman Dominique M.Device and method for variable speed lancet
US20040034318 *30 oct. 200119 févr. 2004Michael FritzSystem for withdrawing blood
US20040049219 *5 sept. 200211 mars 2004Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US20040059256 *25 sept. 200225 mars 2004Edward PerezMethod and apparatus for sampling bodily fluid
US20040067481 *12 juin 20028 avr. 2004Leslie LeonardThermal sensor for fluid detection
US20040087990 *30 mai 20036 mai 2004Pelikan Technologies, Inc.Method and apparatus for body fluid sampling with hybrid actuation
US20040098009 *3 juil. 200320 mai 2004Pelikan Technologies, Inc.Method and apparatus for body fluid sampling and analyte sensing
US20040127819 *16 déc. 20031 juil. 2004Roe Steven N.Blood acquisition suspension system
US20040133127 *17 déc. 20038 juil. 2004Roe Jeffrey N.Capillary tube tip design to assist blood flow
US20040186394 *29 janv. 200423 sept. 2004Roe Steven N.Integrated lancing test strip
US20040204662 *23 janv. 200414 oct. 2004Perez Edward P.Methods and apparatus for expressing body fluid from an incision
US20040227643 *15 juin 200418 nov. 2004Hunter Rick C.Insulated container
US20040227974 *4 févr. 200418 nov. 2004Murata Kikai Kabushiki KaishaImage processing system, scanner device and image processing method
US20040267160 *25 sept. 200230 déc. 2004Edward PerezMethod and apparatus for sampling bodily fluid
US20050010134 *29 avr. 200413 janv. 2005Douglas Joel S.Blood and interstitial fluid sampling device
US20050021066 *30 avr. 200427 janv. 2005Hans-Juergen KuhrAnalytical device with lancet and test element
US20050067737 *19 nov. 200431 mars 2005Craig RappinMethod of making sensor
US20050101979 *12 juin 200212 mai 2005Don AldenBlood sampling apparatus and method
US20050101980 *12 juin 200212 mai 2005Don AldenMethod and apparatus for improving success rate of blood yield from a fingerstick
US20050201897 *6 mai 200515 sept. 2005Volker ZimmerBody fluid testing device
US20050232815 *23 juin 200520 oct. 2005Werner RuhlBody fluid testing device
US20050234368 *13 avr. 200520 oct. 2005Daniel WongIntegrated spot monitoring device with fluid sensor
US20050251064 *7 mai 200410 nov. 2005Roe Jeffrey NIntegrated disposable for automatic or manual blood dosing
US20050256534 *6 juil. 200517 nov. 2005Don AldenElectric lancet actuator
US20060079811 *18 nov. 200513 avr. 2006Roche Diagnostics Operations, Inc.Test media cassette for bodily fluid testing device
US20060094985 *20 déc. 20054 mai 2006Rosedale MedicalAutonomous, ambulatory analyte monitor or drug delivery device
US20060100542 *13 avr. 200511 mai 2006Daniel WongIntegrated spot monitoring device with fluid sensor
US20060161077 *22 juin 200420 juil. 2006Masao TakinamiBody fluid sampling implement and body fluid sampling method
US20060167382 *29 déc. 200527 juil. 2006Ajay DeshmukhMethod and apparatus for storing an analyte sampling and measurement device
US20060175216 *22 déc. 200510 août 2006Dominique FreemanTissue penetration device
US20060178688 *22 déc. 200510 août 2006Dominique FreemanTissue penetration device
US20060178690 *23 déc. 200510 août 2006Dominique FreemanTissue penetration device
US20060184065 *10 févr. 200617 août 2006Ajay DeshmukhMethod and apparatus for storing an analyte sampling and measurement device
US20060195129 *22 déc. 200531 août 2006Dominique FreemanTissue penetration device
US20060195130 *23 déc. 200531 août 2006Dominique FreemanTissue penetration device
US20060195132 *22 déc. 200531 août 2006Dominique FreemanTissue penetration device
US20060195133 *22 déc. 200531 août 2006Dominique FreemanTissue penetration device
US20060200044 *15 déc. 20037 sept. 2006Pelikan Technologies, Inc.Method and apparatus for measuring analytes
US20060241666 *14 juin 200426 oct. 2006Briggs Barry DMethod and apparatus for body fluid sampling and analyte sensing
US20060241667 *24 mars 200626 oct. 2006Dominique FreemanTissue penetration device
US20060247554 *17 juil. 20062 nov. 2006Roe Steven NBlood acquisition suspension system
US20060263244 *4 mai 200523 nov. 2006Rannikko Minna ADevices, systems, and methods for the containment and use of liquid solutions
US20060271083 *1 mai 200630 nov. 2006Dirk BoeckerMethod and apparatus for penetrating tissue
US20070032812 *3 mai 20048 févr. 2007Pelikan Technologies, Inc.Method and apparatus for a tissue penetrating device user interface
US20070043386 *22 déc. 200522 févr. 2007Dominique FreemanTissue penetration device
US20070073188 *29 sept. 200629 mars 2007Freeman Dominique MMethod and apparatus for penetrating tissue
US20070073189 *29 sept. 200629 mars 2007Freeman Dominique MMethod and apparatus for penetrating tissue
US20070078358 *30 sept. 20055 avr. 2007Rosedale Medical, Inc.Devices and methods for facilitating fluid transport
US20070093728 *22 nov. 200626 avr. 2007Douglas Joel SBlood and interstitial fluid sampling device
US20070106178 *3 janv. 200710 mai 2007Roe Steven NDual blade lancing test strip
US20070118051 *9 oct. 200624 mai 2007Stephan KornerMethod and system for withdrawing body fluid
US20070149897 *28 sept. 200628 juin 2007Abbott Diabetes Care, Inc.Integrated Sensor for Analyzing Biological Samples
US20070167871 *19 janv. 200719 juil. 2007Freeman Dominique MMethod and apparatus for penetrating tissue
US20070167873 *6 févr. 200719 juil. 2007Dominique FreemanMethod and apparatus for penetrating tissue
US20070167874 *8 févr. 200719 juil. 2007Dominique FreemanMethod and apparatus for penetrating tissue
US20070173741 *11 janv. 200726 juil. 2007Ajay DeshmukhTissue penetration device
US20070173743 *13 févr. 200726 juil. 2007Dominique FreemanMethod and apparatus for penetrating tissue
US20070179404 *29 sept. 20062 août 2007Rosedale Medical, Inc.Fully integrated wearable or handheld monitor
US20070179405 *29 sept. 20062 août 2007Rosedale Medical, Inc.Multi-site body fluid sampling and analysis cartridge
US20070191736 *12 mars 200716 août 2007Don AldenMethod for loading penetrating members in a collection device
US20070191737 *21 mars 200716 août 2007Dominique FreemanMethod and apparatus for penetrating tissue
US20070213601 *21 mars 200713 sept. 2007Dominique FreemanMethod and apparatus for penetrating tissue
US20070219462 *16 avr. 200720 sept. 2007Barry BriggsMethods and apparatus for lancet actuation
US20070239189 *3 mai 200711 oct. 2007Freeman Dominique MSelf optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US20070249963 *26 juin 200725 oct. 2007Don AldenMethod and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US20070255301 *21 mars 20071 nov. 2007Dominique FreemanMethod and apparatus for a multi-use body fluid sampling device with sterility barrier release
US20070274869 *1 juin 200729 nov. 2007Rannikko Minna ADevices, Systems, and Methods for the Containment and Use of Liquid Solutions
US20070276290 *13 mars 200729 nov. 2007Dirk BoeckerTissue Penetrating Apparatus
US20070293747 *19 juin 200720 déc. 2007Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US20080015425 *16 juil. 200717 janv. 2008Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US20080021291 *30 juil. 200724 janv. 2008Abbott LaboratoriesIntegrated Lancet and Blood Glucose Meter System
US20080021492 *16 juil. 200724 janv. 2008Freeman Dominique MMethod and apparatus for penetrating tissue
US20080135559 *7 nov. 200712 juin 2008Randy ByrdContainer for Maintaining Stabilized Control Solution and Container for Single-Use Control Solution Including Prior Use Indicator
US20080149524 *3 mars 200826 juin 2008Rademaker William BFood containers including dental cleaning devices and other personal care items
US20080161725 *5 févr. 20083 juil. 2008Daniel WongIntegrated spot monitoring device with fluid sensor
US20080167578 *28 sept. 200610 juil. 2008Abbott Diabetes Care, Inc.Integrated Meter for Analyzing Biological Samples
US20080188771 *15 janv. 20087 août 2008Dirk BoeckerMethods and apparatus for penetrating tissue
US20080194987 *14 oct. 200414 août 2008Pelikan Technologies, Inc.Method and Apparatus For a Variable User Interface
US20080194989 *10 janv. 200814 août 2008Barry Dean BriggsMethods and apparatus for lancet actuation
US20080210574 *26 mars 20084 sept. 2008Dirk BoeckerMethod and apparatus for analyte measurement test time
US20080214917 *26 mars 20084 sept. 2008Dirk BoeckerMethod and apparatus for analyte measurement test time
US20080214956 *10 janv. 20084 sept. 2008Barry Dean BriggsMethods and apparatus for lancet actuation
US20080219885 *25 sept. 200611 sept. 2008Oryx Holdings Pty LtdMethod and Device for Collection and Transport of a Biological Sample
US20090043325 *17 oct. 200812 févr. 2009Michael FritzBlood lancet with hygienic tip protection
US20090048536 *30 sept. 200819 févr. 2009Dominique FreemanMethod and apparatus for body fluid sampling and analyte sensing
US20090054810 *14 août 200826 févr. 2009Intuity Medical, Inc.Analyte concentration detection devices and methods
US20090054811 *30 déc. 200526 févr. 2009Dirk BoeckerMethod and apparatus for analyte measurement test time
US20090099437 *11 oct. 200716 avr. 2009Vadim YuzhakovLancing Depth Adjustment Via Moving Cap
US20090112124 *3 déc. 200830 avr. 2009Dominique FreemanMethod and apparatus for penetrating tissue
US20090112247 *25 nov. 200830 avr. 2009Dominique FreemanMethod and apparatus for penetrating tissue
US20090118752 *14 janv. 20097 mai 2009Edward PerezDevices and methods for expression of bodily fluids from an incision
US20090124932 *16 déc. 200814 mai 2009Dominique FreemanMethod and apparatus for penetrating tissue
US20090131965 *16 déc. 200821 mai 2009Dominique FreemanTissue penetration device
US20090137930 *16 déc. 200828 mai 2009Dominique FreemanTissue penetration device
US20090143700 *4 août 20084 juin 2009Abbott Diabetes Care, Inc.Integrated Sensor for Analyzing Biological Samples
US20090143701 *4 août 20084 juin 2009Abbott Diabetes Care, Inc.Integrated Sensor for Analyzing Biological Samples
US20090159444 *4 août 200825 juin 2009Abbott Diabetes Care, Inc.Integrated Sensor for Analyzing Biological Samples
US20090192411 *27 janv. 200930 juil. 2009Dominique FreemanMethod and apparatus for penetrating tissue
US20090196580 *6 oct. 20066 août 2009Freeman Dominique MMethod and apparatus for an analyte detecting device
US20090204025 *29 sept. 200413 août 2009Pelikan Technologies, Inc.Method and apparatus for an improved sample capture device
US20090209883 *15 janv. 200920 août 2009Michael HigginsTissue penetrating apparatus
US20090259146 *10 avr. 200915 oct. 2009Dominique FreemanMethod and apparatus for analyte detecting device
US20090270765 *19 juin 200929 oct. 2009Abbott Diabetes Care Inc.Integrated meter for analyzing biological samples
US20090275860 *20 mars 20065 nov. 2009Terumo Kabushiki KaishaCentesis Instrument
US20090299226 *12 août 20093 déc. 2009Daniel WongIntegrated spot monitoring device with fluid sensor
US20100010374 *1 juin 200914 janv. 2010Intuity Medical, Inc.Body fluid sampling device - sampling site interface
US20100106058 *22 déc. 200929 avr. 2010Douglas Joel SBlood and interstitial fluid sampling device
US20100113977 *13 janv. 20106 mai 2010Roe Jeffrey NIntegrated disposable for automatic or manual blood dosing
US20100113981 *7 janv. 20106 mai 2010Panasonic CorporationSkin incision instrument and method for incising skin with the same
US20100137799 *16 avr. 20083 juin 2010Terumo Kabushiki KaishaPiercing tool
US20100145229 *18 févr. 201010 juin 2010Perez Edward PLancet device having capillary action
US20100160894 *5 mars 200824 juin 2010Julian Joseph FAutomatic injection device
US20100166607 *20 mai 20051 juil. 2010Norbert BartetzkoPrintable hydrogels for biosensors
US20100185224 *3 janv. 200822 juil. 2010Wu Jeffrey MSkin-piercing device for treatment of acne
US20100198107 *30 janv. 20095 août 2010Roche Diagnostics Operations, Inc.Integrated blood glucose meter and lancing device
US20100198108 *29 janv. 20105 août 2010Don AldenAnalyte measurement device with a single shot actuator
US20100204612 *29 janv. 201012 août 2010In Sang ChoiCam drive for managing disposable penetrating member actions with a single motor and motor and control system
US20100222656 *13 mai 20102 sept. 2010Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US20100222704 *13 mai 20102 sept. 2010Roche Diagnostics Operations, Inc.Methods and apparatus for sampling and analyzing body fluid
US20100228194 *26 avr. 20109 sept. 2010Dominique FreemanAppartus and method for penetration with shaft having a sensor for sensing penetration depth
US20100268259 *30 juin 201021 oct. 2010Panasonic CorporationSkin incision instrument and method for incising skin with the same
US20100274157 *10 juin 201028 oct. 2010Barry Dean BriggsMethod and apparatus for body fluid sampling and analyte sensing
US20100286560 *3 juin 200511 nov. 2010Dominique FreemanMethod and apparatus for a fluid sampling device
US20100286563 *26 juil. 201011 nov. 2010Abbott Diabetes Care Inc.Integrated Meter for Analyzing Biological Samples
US20100292611 *31 déc. 200418 nov. 2010Paul LumMethod and apparatus for improving fluidic flow and sample capture
US20100317935 *2 août 201016 déc. 2010Roe Jeffrey NTest media cassette for bodily fluid testing device
US20100324452 *26 août 201023 déc. 2010Dominique FreemanTissue penetration device
US20110016691 *23 août 201027 janv. 2011Don AldenFluid sampling device with improved analyte detecting member configuration
US20110042241 *22 déc. 200824 févr. 2011Oxtox LimitedElectrochemical Assays
US20110046515 *3 nov. 201024 févr. 2011Douglas Joel SMethods and apparatus for expressing body fluid from an incision
US20110054414 *29 avr. 20103 mars 2011Abbott Biotechnology Ltd.Automatic Injection Device
US20110077478 *9 nov. 201031 mars 2011Dominique FreemanBody fluid sampling module with a continuous compression tissue interface surface
US20110092856 *22 déc. 201021 avr. 2011Dominique FreemanMethod and apparatus for penetrating tissue
US20110166477 *16 mars 20117 juil. 2011Roe Steven NBlood acquisition suspension system
US20110178500 *15 déc. 201021 juil. 2011Shang Sherwin SFiring button for automatic injection device
US20110201909 *28 févr. 201118 août 2011Intuity Medical, Inc.Analyte detection devices and methods with hematocrit-volume correction and feedback control
US20130131479 *18 mars 201123 mai 2013John Michael KellyDiagnostic system
US20140296825 *23 nov. 20112 oct. 2014Debiotech S.A.Method and device for inserting needles
US20160015305 *9 juil. 201521 janv. 2016Becton, Dickinson And CompanyLancet Device with First-Drop Removal
EP2826419B127 sept. 200719 août 2015Abbott Diabetes Care Inc.Apparatus for providing analyte sensor insertion
WO2008039949A2 *27 sept. 20073 avr. 2008Abbott Diabetes Care, Inc.Integrated sensor for analyzing biological samples
WO2008039949A3 *27 sept. 200726 juin 2008Abbott Diabetes Care IncIntegrated sensor for analyzing biological samples
Classifications
Classification aux États-Unis600/583, 600/584, 606/181
Classification internationaleA61B17/32, A61B5/00, A61B10/00, A61B5/15, A61B17/00
Classification coopérativeA61B5/151, A61B2017/00765, A61B10/0045, A61B2562/0295, A61B2010/008, A61B5/14532, A61B5/15107, A61B5/150213, A61B5/15194, A61B5/1519, A61B5/150755, A61B5/150358, A61B5/150068, A61B5/157, A61B5/150022, A61B2010/0003, A61B5/15117, A61B5/150824, A61B5/150412
Classification européenneA61B5/145G, A61B5/151, A61B10/00L, A61B5/14B2
Événements juridiques
DateCodeÉvénementDescription
16 déc. 2004ASAssignment
Owner name: MERCURY DIAGNOSTICS, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DOUGLAS, JOEL S.;ROE, JEFFREY N.;RADWANSKI, RYSZARD;AND OTHERS;REEL/FRAME:015460/0583;SIGNING DATES FROM 19971210 TO 19971211
Owner name: AMIRA MEDICAL, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MERCURY DIAGNOSTICS, INC.;REEL/FRAME:015460/0599
Effective date: 19990901
17 déc. 2004ASAssignment
Owner name: ROCHE DIAGNOSTICS OPERATIONS, INC., INDIANA
Free format text: CHANGE OF NAME;ASSIGNOR:AMIRA MEDICAL;REEL/FRAME:015460/0634
Effective date: 20031010
23 juin 2015ASAssignment
Owner name: ROCHE DIABETES CARE, INC., INDIANA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS OPERATIONS, INC.;REEL/FRAME:036008/0670
Effective date: 20150302