US20020003643A1 - Multi-channel wavelength slicing using an etalon-based interleaver for dense wavelength division multiplexing - Google Patents

Multi-channel wavelength slicing using an etalon-based interleaver for dense wavelength division multiplexing Download PDF

Info

Publication number
US20020003643A1
US20020003643A1 US09/738,904 US73890400A US2002003643A1 US 20020003643 A1 US20020003643 A1 US 20020003643A1 US 73890400 A US73890400 A US 73890400A US 2002003643 A1 US2002003643 A1 US 2002003643A1
Authority
US
United States
Prior art keywords
optical
output
channels
wavelength
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/738,904
Inventor
Charles Qian
Yi Qin
Hongchuan Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexfon Corp
Original Assignee
Nexfon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexfon Corp filed Critical Nexfon Corp
Priority to US09/738,904 priority Critical patent/US20020003643A1/en
Priority to US10/032,180 priority patent/US20020126291A1/en
Publication of US20020003643A1 publication Critical patent/US20020003643A1/en
Assigned to NEXFON CORPORATION reassignment NEXFON CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QIAN, CHARLES X.W., QIN, YI, WANG, HONGCHUAN
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29358Multiple beam interferometer external to a light guide, e.g. Fabry-Pérot, etalon, VIPA plate, OTDL plate, continuous interferometer, parallel plate resonator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters

Definitions

  • the present invention relates generally to the field of optical communications and more particularly to an etalon-based method and apparatus for asymmetric wavelength slicing for use in dense wavelength division multiplexing (DWDM) applications.
  • DWDM dense wavelength division multiplexing
  • Optical communications is an active area of new technology and is crucial to the development and progress of several important technologies, e.g., Internet and related new technologies.
  • a key technology that enabled higher data transmission rate is the dense wavelength division multiplexing (DWDM) technology.
  • DWDM dense wavelength division multiplexing
  • optical signals generated from different sources operating at predetermined, dense-spaced center wavelengths are first combined to form a single optical output.
  • This single optical output is then transmitted, frequently amplified during transmission, through an optical fiber.
  • the single optical output is then de-multiplexed, a process to separate individual data channels and each channel is then directed to its own destinations.
  • each data channel is assigned to a center frequency and the spacing between any two adjacent channels is a constant (e.g., 200 GHz or 100 GHz). It is also understood that all channels are given frequency windows with identical width, the width of these windows is kept great enough to pass information associated with these data channels and at the same time as narrow as possible to prevent cross-talking between different data channels. It is generally understood that the more narrow the frequency spacing between different data channels, the greater the transmission capacity a DWDM system will have.
  • FIG. 1(A) is a diagram illustrating the operation of a group of devices known as optical filters.
  • An optical filter has the function of separating signals within a predetermined frequency window from the input spectrum.
  • an optical filter is employed to separate signals associated with a particular data channel as depicted in FIG. 1(A). Because each channel requires a specific filter, a DWDM de-multiplexer will require n optical filters in cascade in order to separate all of n channels into separate outputs.
  • FIG. 1(B) a filter made with optical fiber, known as fiber Bragg grating (FBG), is illustrated.
  • FBG fiber Bragg grating
  • d the index of refraction of the optical fiber is periodically modified.
  • m is the order of the Bragg grating and n is average of the index of refraction of the fiber.
  • Another type of filter frequently used in DWDM systems is a multi-layer interference filter. These filters are constructed with several, sometimes many layers of different optical materials with varying thickness such that a desired transmission (or reflection) curve centered near a predetermined channel center-frequency is obtained as depicted in FIG. 1(c).
  • each data channel is associated with a specific optical filter.
  • the DWDM system therefore consists of many filters, each of which has to be connected or placed in a particular location and/or orientation.
  • a more systematic way to construct a DWDM system is to use wavelength dispersion devices such that many channels can be multiplexed or de-multiplexed with a single device.
  • FIG. 2(A) a device commonly known as an arrayed waveguide grating (AWG) is displayed. As depicted, these AWG can be used to separate all data channels simultaneously.
  • the output channels can be connected directly to individual optical fibers.
  • AWG in the reverse direction, many different signal channels can be combined into a single optical fiber.
  • a prism can also be used to multiplex or de-multiplex optical signals.
  • the index of refraction is different for different frequency is so that the exit angle is different for channels having different center frequencies.
  • Different output channels are separated in space and connected into individual fibers.
  • diffraction grating is illustrated in FIG. 2(c).
  • FIG. 3(A) provides a function diagram of an interleaver. These interleavers separate a composite optical signal into two complementary signals in which the odd data channels are branched into one output and the even channels are directed into the other output.
  • the frequency space is divided into two parts, 50% for output 1 and 50% for output 2 , as illustrated in FIG. 3(B).
  • FIG. 3(C) and FIG. 3(D) Two typical interleaver devices are depicted in FIG. 3(C) and FIG. 3(D).
  • FIG. 3(C) an interleaver designed based upon a Fabry-Perot etalon is displayed.
  • FIG. 3(D) an interleaver based on the Michelson interferometer is illustrated.
  • the performance and optical characteristics of these interleavers can be enhanced with certain modifications. For example, when a partial reflector is inserted into a Michelson interferometer, based interleaver, parallel to one of the two mirrors, both the reflection and transmission spectra are significantly improved.
  • FIG. 4 two stages of interleavers are cascaded to provide four outputs each carrying one fourth of the original data channels.
  • the frequency spacing of the adjacent data channels for a particular output is therefore four times the spacing between adjacent data channels in the input signal.
  • FIG. 5 Another practical configuration, as demonstrated in FIG. 5, utilizes both the interleaver and wavelength dispersion devices. In this configuration, the optical alignment and/or temperature stability requirements for the dispersion devices are significantly less stringent when the channel spacing is increased to twice of the original spacing.
  • FIG. 6 an interleaver, or a two-stage cascade of interleavers, is followed by individual filters. In this configuration, filters with a larger channel spacing and hence lower tolerance (e.g., 200 GHz filters) can be used to construct DWDM systems with a smaller channel-spacing (e.g., 100 GHz or 50 GHz).
  • an Optical Spectrum Synthesizer separates a composed, multi-channel optical communication signal into two groups of channels.
  • Each output signal has a different spectrum that allows the selection of a different group of channels or the passage of different frequency regions of the original optical spectrum.
  • each spectrum can be characterized as comprising periodic passing bands. The width and period of the passing bands can be designed to accommodate specific network requirements.
  • the two output spectra are complements of each other, but may have different passing bandwidths.
  • An OSS can be used to separate two groups of channels having different OC protocols requiring different bandwidths, e.g., one output is used to pass OC-192 channels whereas the other is used to pass OC-768 channels.
  • a Spectrum De-Multiplexer constructed by cascading n OSS devices, will separate a composed multi-channel optical signal into n spectra each containing a different sub group of the incoming channels.
  • the SDEMUX has a similar functional structure in comparison with DEMUX devices used in prior DWDM technology. Instead of having outputs each carrying an individual signal channel, each output of SDEMUX carries a sub group of channels.
  • the individual channels contained in a particular output of SDEMUX can be further separated using a 1/n DEMUX where the separation between adjacent channels is n times the spacing of a prior art DEMUX.
  • a Spectrum Multiplexer (SMUX) is obtained by using the SDEMUX in the reverse direction.
  • a 1/n MUX can be constructed by using a 1/n DEMUX in the reverse direction.
  • a long haul transmission system is disclosed which utilizes SMUX, SDEMUX and EDFA devices.
  • An alternate long haul system is also disclosed consisting of 1/n MUX, 1/n DE-MUX and EDFA devices.
  • a Spectrum Add-Drop Module can be implemented with a cascade of two OSS devices. The SADM provides the network system designer a means to add and drop a group of signal channels collectively. The combination of a SDEMUX with an optical switch allows the formation of a Spectrum Switch (SS) where different groups of signal channels can be switched simultaneously.
  • SS Spectrum Switch
  • the SS can be connected to form a Spectrum Cross-Connect in a way similar to the construction of a conventional optical cross-connect using conventional optical switches.
  • Another device is also disclosed here where two (or more) OSS devices are connected with a branch coupler. Such a device maximizes the usage of frequency space and hence can be used to achieve a higher overall data throughput rate in a network system.
  • a Spectrum Processor is disclosed in which flexible usage of the frequency space is enabled by dividing that frequency space to accommodate different OC protocols and provide a group of channels all within a specific frequency window and with a different channel spacing and width.
  • FIGS. 1A through 1C are simplified diagrams illustrating conventional filters and their use in DWDM technology.
  • FIG. 1A is a block diagram illustrating the operation of a generic filter device.
  • FIG. 1B depicts a fiber Bragg grating filter.
  • FIG. 1C represents a multi-layer interference filter
  • FIGS. 2A through 2C are simplified diagrams illustrating conventional dispersion multi-channel devices and their use in DWDM technology.
  • FIG. 2A is a diagram illustrating the operation of an arrayed waveguide grating (AWG) device.
  • FIG. 2B represents a prism wavelength dispersion device.
  • FIG. 2C shows the operation of a conventional grating device
  • FIGS. 3A through 3D are simplified diagrams illustrating conventional interleaver devices and their use in DWDM technology.
  • FIG. 3A is a block diagram illustrating the operation of an interleaver.
  • FIG. 3B displays the output frequency spectra associated with two output signals.
  • FIG. 3C shows an Febray-Perot etalon interleaver
  • FIG. 3D depicts the operation of an interleaver based upon Michelson interferometer
  • FIG. 4 (prior art) is a block diagram of three interleavers in a cascade. The four outputs each carries 1 ⁇ 4 of the signal channels from the original composed input signal;
  • FIG. 5 is a schematic diagram illustrating the combination of an interleaver and two multi-channel dispersion devices (prisms);
  • FIG. 6 depicts a device composed of interleaver and filters. Each output of the device carries only one signal channel;
  • FIGS. 7A through 7B are diagrams illustrating the operation of a versatile interleaver, OSS, according to an embodiment of the present invention.
  • FIG. 7A is block diagram of an OSS
  • FIG. 7B displays the spectra associated with output signals
  • FIGS. 8A through 8C are diagrams illustrating the construction of OSS based upon a design with two Fabry-Perot Etalons.
  • FIG. 8A depicts a device having two solid Etalons and three partially reflective boundaries.
  • FIG. 8B shows an OSS constructed with a solid etalon and an air-spaced etalon.
  • FIG. 8C displays an OSS made with two solid etalons in contact through optical contacting or other process
  • FIGS. 9A through 9C are diagrams illustrating the construction of OSS based upon a design with three Fabry-Perot Etalons.
  • FIG. 9A depicts a device having three solid Etalons and four partially reflective boundaries.
  • FIG. 9B shows an OSS constructed with two solid etalons and an air-spaced etalon.
  • FIG. 9C displays an OSS made with three solid etalons in contact through optical contacting or other process
  • FIGS. 10A through 10B are diagrams depicting the separation of a composite optical signal into two outputs of signals carrying different protocol channels
  • FIG. 11 is a diagram illustrating a Spectrum DeMultiplexer (SDEMUX) constructed with three OSS devices;
  • FIGS. 12A and 12B are 1 ⁇ 3 DEMUX and 1 ⁇ 3 MUX devices according to the present invention.
  • FIGS. 13A and 13B are diagrams illustrating long haul systems according to the present invention.
  • FIG. 13A a system using 1/n MUX, EDFA and 1/n DEMUX is depicted whereas in
  • FIG. 13B a system based on SDEMUX, EDFAs and SMUX is shown;
  • FIGS. 14A through 14C are diagrams illustrating Spectrum Add-Drop Module and one application based on the present invention.
  • FIG. 14A an SADM constructed using two OSS is displayed whereas in
  • FIG. 14C a system using SADM is displayed, a symbol for this device is illustrated in FIG. 14B;
  • FIGS. 15A and 15B are diagrams illustrating the construction of a 1 ⁇ 4 Spectrum Switch.
  • a 4 ⁇ 4 switch follows an SDEMUX to allow flexible redirection of sub groups of signal channels,
  • FIG. 15B illustrates a symbol for this device;
  • FIG. 16 is a diagram which shows the construction of a 4 ⁇ 4 ⁇ 4 Spectrum Cross-Connect. Eight SS are connected to form this SCC;
  • FIGS. 17A and 17B are diagrams illustrating a module for which overlapping spectra were generated as the outputs.
  • Device of this type can be used to maximize the net data throughput rate by allowing certain amount of cross talking between adjacent channels;
  • FIGS. 18A and 18B are diagrams which illustrate a Spectrum Processor in accordance with an embodiment of the present invention wherein
  • FIG. 18A illustrates the frequency space usage
  • FIG. 18B illustrates the structure of a Spectrum Processor module
  • FIG. 19A through 19B are drawings of different designs of OSS, which are interfering etalons achieved by non-uniform, partially reflective coatings. Non-uniform phase correction plates are also indicated.
  • FIGS. 7A through 7B are diagrams illustrating the operation of a versatile interleaver, referred to herein as an Optical Spectrum Synthesizer (OSS), according to an embodiment of the present invention.
  • OSS Optical Spectrum Synthesizer
  • the terms “spectrum filter”, “asymmetric interleaver”, “1/n interleaver”, “spectrum splitter” are used interchangeably to describe various embodiments of the present invention.
  • an OSS preferably has two outputs.
  • One output has a group of broader periodic pass bands with a predetermined bandwidth and period as depicted in FIG. 7B.
  • the other output has a group of narrower periodic pass bands, which complements that of output 1 .
  • the labels of output 1 and 2 are not critical and the outputs can also be labeled as N and B for narrow and broad output.
  • the bandwidth of the N output is set to be identical to that of the output B, the device becomes a conventional interleaver as displayed in FIGS. 3A through 3D.
  • a preferred embodiment of an OSS comprises optical cavities with boundaries set by three parallel, partially reflective surfaces.
  • the thickness of each optical cavity is predetermined to obtain output spectra as displayed in FIG. 7B.
  • the incoming light preferably a parallel beam with a small angular divergence, is directed to the surface of the OSS at a small incident angle of less than 10 degrees with respect to the surface normal of the OSS.
  • the reflected light beam from OSS forms one of the outputs whereas the transmitted light beam forms another output.
  • These input and output light beams are interfaced/coupled to optical fibers through lenses.
  • a preferred type of lens is a gradient index lens known as a GRIN lens.
  • the partially reflective surfaces have reflectivities of approximately 77%, 92% and 40%, respectively.
  • the incident angles and/or environment temperature(s) of the OSS are adjusted.
  • one or both of the optical cavities may be constructed with piezoelectric materials such that the free-spectra-range of each of the optical cavities may be controlled.
  • the temperature environment may also be controlled in a way to enhance the performance of the OSS.
  • One or more electrical heaters and coolers are placed close (within a few decimeters) to the two optical cavities to ensure best performance.
  • the effect of temperature can also be compensated for through an a-thermal design where materials with different thermal expansion coefficients are used to change the incident angle of the OSS thereby achieving a stable operation condition.
  • one solid Fabry-Perot etalon is followed by an “air-spaced” Fabry-Perot etalon.
  • the solid etalon is made with an optical disc with two parallel surfaces. Each surface is coated with a predetermined, partially reflective coating.
  • the “air-spaced” etalon is constructed with the addition of a precision spacer and another partially reflective window. One side of this window is coated for partial reflection whereas the other, a wedged surface, is coated for anti-reflection.
  • This construction also creates two optical cavities with boundaries set with three parallel, partially reflective coatings. The thickness of each optical cavity is predetermined to obtain the output spectra as displayed in FIG. 7B.
  • the incoming light preferably a parallel beam with a small angular divergence
  • the incoming light is directed to the surface of the OSS at a small incident angle (i.e., no more than 10 degrees from normal) with respect to the surface normal of the OSS.
  • the reflected light beam from OSS forms one of the outputs whereas the transmitted light beam forms another output.
  • These input and output light beams are interfaced/coupled to optical fibers through lenses.
  • a preferred type of lens is gradient index lens known as a GRIN lens.
  • the thickness or width of the spacer of the air-spaced etalon is about 1.5 times greater than the thickness of the solid etalon to compensate for the lower refractive index of air as compared to the refractive index of the material used in the solid etalon (i.e., quartz, glass, et cetera).
  • the incident angles and/or environment temperature(s) of the OSS are adjusted.
  • one or both of the optical cavities may be constructed with piezoelectrical materials such that the free-spectra ranges of each or both of the optical cavities may be controlled.
  • Another preferred way to adjust the free-spectra-range of the “air-spaced” etalon is to set and control the gas mixture and the pressure of the “air-spaced” cavity.
  • the temperature environment of both etalons may also be controlled in a way to enhance the performance of the OSS.
  • One or more electrical heaters and coolers are placed close (within a few decimeters) to the two optical cavities to ensure best performance.
  • the effect of temperature can also be compensated through an a-thermal design where materials with different thermal expansion coefficients are used to change the incident angle and the thickness of the OSS thereby achieving a stable operation condition.
  • the temperature sensitivity of the etalon can be reduced by using material with low thermal expansion. Temperature is important because typically a 1 degree C change in temperature can have an effect on the critical product of width and index of refraction comparable to the required precision to achieve the desired outputs.
  • one solid Fabry-Perot etalon is combined with another solid Fabry-Perot etalon.
  • the two solid etalons are preferably in optical contact where the distance between two surfaces is kept minimum. Both etalons are made with optical discs with two parallel surfaces. Each surface is coated with a predetermined partially reflective coating. This construction also creates two optical cavities with boundaries set by three parallel, partially reflective surfaces. The thickness of each of the optical cavities is predetermined to obtain the output spectra as displayed in FIG. 7B.
  • the incoming light preferably a parallel beam with a small angular divergence
  • the reflected light beam from OSS forms one of the outputs whereas the transmitted light beam forms another output.
  • These input and output light beams are interfaced/coupled to optical fibers through lenses.
  • a preferred type of lens is a gradient index lens known as a GRIN lens.
  • the incident angles and/or environment temperature(s) of the OSS are adjusted.
  • one or both of the optical cavities may be constructed with piezoelectric materials such that the free-spectra-range of each of the optical cavities may be controlled.
  • the temperature environment of both etalons may also be controlled in a way to enhance the performance of the OSS.
  • One or more electrical heaters and coolers are placed close (within a few decimeters) to the two optical cavities to ensure best performance.
  • the effect of temperature change can also be compensated through an a-thermal design where materials with different thermal expansion coefficients are used to change the incident angles and the thickness of the OSS thereby achieving a stable operation condition.
  • FIG. 9A another preferred embodiment of an OSS is made using three optical cavities with boundaries set by four parallel, partially reflective surfaces.
  • the thickness of each optical cavity is predetermined to obtain the output spectra as displayed in FIG. 7B.
  • the incoming light preferably a parallel beam with a small angular divergence, is directed to the surface of the OSS at a small incident angle with respect to the surface normal of the OSS.
  • the reflected light beam from OSS forms one of the outputs whereas the transmitted light beam forms another output.
  • These input and output light beams are interfaced/coupled to optical fibers through lenses.
  • a preferred type of lens is a gradient index lens known as a GRIN lens.
  • the partially reflective surfaces have reflectivities of approximately 36%, 75%, 75% and 36%, respectively.
  • the incident angles and/or environment temperature(s) of the OSS are adjusted.
  • one, two or all three of the optical cavities may be constructed with piezoelectrical materials such that the free-spectra ranges of each of the optical cavities may be controlled.
  • the temperature environment may also be controlled in a way to enhance the performance of the OSS.
  • One or more electrical heaters and coolers are placed close (within a few decimeters) to the three optical cavities to ensure best performance.
  • the effect of temperature can also be compensated for through an a-thermal design where materials with different thermal expansion coefficients are used to change the incident angle of the OSS thereby achieving a stable operation condition.
  • the temperature sensitivity of the air spaced etalons can be reduced by using spacer materials with a low thermal expansion coefficient.
  • two solid Fabry-Perot etalons and an “air-spaced” Fabry-Perot etalon form a “sandwich” device.
  • the solid etalons are made with optical discs with two parallel surfaces. Each surface is coated with a predetermined partially reflective coating.
  • the “air-spaced” etalon is constructed with the addition of a precision spacer placed in between the two solid etalons. This construction also creates three optical cavities with boundaries set by four parallel, partially reflective surfaces. The thickness of each optical cavity is predetermined to obtain the output spectra as displayed in FIG. 7B.
  • the incoming light preferably a parallel beam with a small angular divergence
  • the reflected light beam from OSS forms one of the outputs whereas the transmitted light beam forms another output
  • a preferred type of lens is a gradient index lens known as a GRIN lens.
  • the incident angles and/or environment temperature(s) of the OSS are adjusted.
  • one, two or all three of the optical cavities may be constructed with piezoelectric materials such that the free-spectra-range of each of the optical cavities may be controlled.
  • Another preferred way to adjust the free-spectra-range of the “air-spaced” etalon is to set and control the gas mixture and the pressure of the “air-spaced” cavity.
  • the temperature environment of these etalons may also be controlled in a way to enhance the performance of the OSS.
  • One or more electrical heaters and coolers are placed close (within a few decimeters) to the three optical cavities to ensure best performance.
  • the effect of temperature can also be compensated for through an a-thermal design where materials with different thermal expansion coefficients are used to change the incident angles and the thickness of the OSS thereby achieving a stable operation condition.
  • the temperature sensitivity of the air-spaced etalon can be reduced by using spacer materials with a low thermal expansion coefficient.
  • FIG. 9C in another preferred embodiment of OSS, three solid Fabry-Perot etalons are combined.
  • the three solid etalons are preferably in optical contacts where the distances between adjacent etalons are kept to a minimum. All three etalons are made with optical discs with two parallel surfaces. Each surface is coated with a predetermined partially reflective coating. This construction also creates three optical cavities with boundaries set by four parallel, partially reflective coatings. The thickness of each optical cavity is predetermined to obtain the output spectra as displayed in FIG. 7B.
  • the incoming light preferably a parallel beam with a small angular divergence
  • the reflected light beam from OSS forms one of the outputs whereas the transmitted light beam forms the other output.
  • These input and output light beams are interfaced/coupled to optical fibers through lenses.
  • a preferred type of lens is a gradient index lens known as a GRIN lens.
  • the incident angles and/or environment temperature(s) of the OSS are adjusted.
  • one, two, or three optical cavities may be constructed with piezoelectric materials such that the free-spectra-range of each of the optical cavities may be controlled.
  • the temperature environment of the three etalons may also be controlled in a way to enhance the performance of the OSS.
  • One or more electrical heaters and coolers are placed close (within a few decimeters) to the three optical cavities to ensure best performance.
  • the effect of temperature change can also be compensated through an a-thermal design where materials with different thermal expansion coefficients are used to change the incident angle and the thickness of the OSS thereby achieving a stable operation condition. It will be understood that the various embodiments of the invention can be implemented using more than just two or three optical cavities.
  • an OSS preferably has two outputs.
  • One output has a group of broader periodic pass bands with a predetermined bandwidth and period as depicted in FIG. 10B.
  • the other output has a group of narrower periodic pass bands, which complements that of output 1 .
  • the labels of output 1 and 2 are not critical and the output can be better labeled as N and B outputs.
  • the bandwidth of the N output is set to be identical to that of B, the device becomes a symmetrical interleaver as displayed in FIGS. 3A through 3D.
  • a phase correction element and spectrum filter element may also be introduced to each output to enhance the OSS performance.
  • one of the outputs is used to carry channels with one OC protocol, e.g., OC-192, the other output is used to carry channels of a different OC protocol to best utilize the frequency space and maximize the data throughput rate.
  • different OC protocols may be carried in one or both of the outputs.
  • FIG. 11A is a diagram illustrating a one to four Spectrum De-Multiplexer (SDEMUX) constructed with three OSS devices.
  • SDEMUX Spectrum De-Multiplexer
  • three OSS devices are in a cascade with appropriate spectrum filters and/or phase correction elements to form a SDEMUX.
  • the optical spectrum is evenly divided into four complementary spectra with the same passing channel bandwidths.
  • the optical spectrum is divided into four complementary spectra having different passing channel bandwidths.
  • the number of the optical spectra or output groups, n is greater than one.
  • FIG. 11A When n is equal to two, the SDEMUX is simply an OSS, whereas when n is equal to four, the SDEMUX device is as illustrated in FIG. 11A.
  • a particular SDEMUX can be used in the reverse direction as a SMUX. In these cases, n different and complementary spectra are combined through a SMUX to form a single composite output signal.
  • FIG. 11B illustrates a proposed symbol for a SDEMUX.
  • n 1/n DEMUX devices and n 1/n MUX devices are constructed for a SDEMUX or SMUX device.
  • Each 1/n DEMUX (and 1/n MUX) carries a sub group consisting of 1/n of the total number of channels.
  • each 1/n DEMUX (and 1/n MUX ) carries a spectrum, which uses a fraction of the whole frequency space, and in certain cases this fraction may be set to 1/n.
  • FIG. 13A is a diagram illustrating a long haul system according to a preferred embodiment of the present invention.
  • a long haul system is formed using a SDEMUX, n optical fibers, EDFAs (Erbium Doped Fiber Amplifiers) and a SMUX. Due to a much larger channel spacing compared with a conventional long haul system using only one optical fiber or several optical fibers with broadband filters, nonlinear effects are significantly reduced. A much higher optical power can therefore be lunched into each of the n fibers thereby significantly increasing the distances between amplification and/or recondition stations.
  • FIG. 13B is a diagram illustrating a long haul system according to a preferred embodiment of the present invention.
  • a long haul system is assembled using n 1/n-MUX, n optical fibers, EDFAs and n 1/n-DEMUX devices. Due to a much larger channel spacing compared with a conventional system using fewer optical fibers, nonlinear effects are significantly reduced. A much higher optical power can therefore be launched into each of the n fibers thereby significantly increasing the distances between amplification and/or recondition stations.
  • a combination of conventional DWDM devices, SMUX, SDEMUX, 1/n MUX, 1/n DEMUX and EDFA devices are arranged in a way to achieve a long haul transport system consisting of more than one fiber to transport the composed signal spectrum with a larger channel spacing in each of the fibers.
  • a Spectrum Add-Drop Module (SADM) is assembled using two OSS based upon a preferred embodiment of the present invention.
  • a group of signal channels can be added and removed simultaneously.
  • This device can be used to direct network data traffic in a collective way.
  • the status of many channels can be monitored using a SADM in a parallel way to speed up network data management and routing.
  • FIG. 14B depicts a proposed symbol for this new device and
  • FIG. 14C illustrates a long haul implementation using the SADM.
  • FIGS. 15A and 15B disclose a preferred construction of a 1 ⁇ 4 Spectrum Switch (SS).
  • SS Spectrum Switch
  • a 4 ⁇ 4 optical switch follows an SDEMUX that allows flexible redirection of sub groups of signal channels.
  • 1 ⁇ n SS is constructed with the combination of 1 to n SDEMUX and an n ⁇ n optical switch.
  • FIG. 15B illustrates a proposed symbol for the spectrum switch.
  • a 4 ⁇ 4 ⁇ 4 Spectrum Cross-Connect (SCC) is disclosed.
  • the construction of this SCC has a similar structure in comparison with a conventional optical cross-connect where different channels in a conventional cross connect are replaced by sub groups of channels in a SCC.
  • eight 1 ⁇ 4 SS are connected to form this SCC.
  • a general n ⁇ n ⁇ m SCC uses 2n 1 ⁇ m SS connected in a way similar to a conventional n ⁇ n ⁇ m optical cross connect.
  • FIGS. 17A and 17B are diagrams illustrating a module and spectra for which overlapping spectra were passed as the outputs, according to a preferred embodiment of the present invention.
  • a wavelength insensitive branch coupler is used to branch the original composed data into two or several parts.
  • An OSS is then used to split the composed signal into two spectra. These spectra are used in a collective way to process and pass data at a higher throughput rate than conventional methods by allowing certain degree of cross talking between adjacent channels. The cross talking between adjacent channels are then removed through electronic and/or optical decoding of the original data.
  • a Spectrum Processor where a flexible usage of the frequency space is enabled. As illustrated in FIG. 18A, the frequency space is divided to accommodate different OC protocols as well as to provide a group of channels all within a specific frequency window and with a different channel spacing and width. Such a SP module can be made with a combination of OSS and filters as illustrated in FIG. 18B.
  • FIG. 19A and 19B disclose additional embodiments of the present invention.
  • An OSS is implemented with interfering etalons formed by non-uniform coatings.
  • Non-uniform phase correction plates and or additional filters may also be used in the optical path to enhance the properties of the output spectra.

Abstract

A versatile, wavelength-slicing device, referred to herein as an optical spectrum synthesizer (OSS), provides new avenues and technologies for optical communication applications. Specifically, OSS separates a composed optical signal into two output spectra. Each output spectrum carries a multiple of optical communication signal channels. The bandwidth of each channel and spacing between adjacent channels may differ from one output to the other. The cascades of OSS devices, the combinations of OSS with prior art components and modules, and other new devices to be used in conjunction with OSS lead to new Spectrum Devices that add new dimensions to existing and new optical network architectures. The invention of OSS leads to new Spectrum Wavelength Division Multiplexing and management devices based on cascades of OSS devices. Examples of these devices include Spectrum Multiplexer, Spectrum Demultiplexer and Spectrum Add Drop Module. The combinations of OSS and other prior art devices also lead to several new Spectrum devices and modules. Examples of these include, Spectrum Switch, Spectrum Cross-Connect and Spectrum Long Haul Transport Modules. Other devices designed to be used in conjunction with OSS, e.g., 1/n Multiplexer and 1/n Demultiplexer, can also be used to form new devices and modules.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of pending application Ser. No. 09/573,330 filed May 18, 2000.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates generally to the field of optical communications and more particularly to an etalon-based method and apparatus for asymmetric wavelength slicing for use in dense wavelength division multiplexing (DWDM) applications. [0003]
  • 2. Background Art [0004]
  • Optical communications is an active area of new technology and is crucial to the development and progress of several important technologies, e.g., Internet and related new technologies. A key technology that enabled higher data transmission rate is the dense wavelength division multiplexing (DWDM) technology. In the DWDM technology, optical signals generated from different sources operating at predetermined, dense-spaced center wavelengths are first combined to form a single optical output. This single optical output is then transmitted, frequently amplified during transmission, through an optical fiber. The single optical output is then de-multiplexed, a process to separate individual data channels and each channel is then directed to its own destinations. In the DWDM technology, each data channel is assigned to a center frequency and the spacing between any two adjacent channels is a constant (e.g., 200 GHz or 100 GHz). It is also understood that all channels are given frequency windows with identical width, the width of these windows is kept great enough to pass information associated with these data channels and at the same time as narrow as possible to prevent cross-talking between different data channels. It is generally understood that the more narrow the frequency spacing between different data channels, the greater the transmission capacity a DWDM system will have. [0005]
  • Several multiplexing and de-multiplexing devices are essential to the operation of a DWDM system. FIG. 1(A) is a diagram illustrating the operation of a group of devices known as optical filters. An optical filter has the function of separating signals within a predetermined frequency window from the input spectrum. In a DWDM system, to de-multiplex composite data, an optical filter is employed to separate signals associated with a particular data channel as depicted in FIG. 1(A). Because each channel requires a specific filter, a DWDM de-multiplexer will require n optical filters in cascade in order to separate all of n channels into separate outputs. Using these filter cascades in the reverse direction will enable the construction of a multiplexer where individual signal channel with different center wavelengths can be combined together to form a single composed optical output signal. There are several types of optical filters and brief descriptions are provided for two types of commonly available filters. In FIG. 1(B), a filter made with optical fiber, known as fiber Bragg grating (FBG), is illustrated. In a FBG, the index of refraction of the optical fiber is periodically modified. The period of the modification, d, is related to the center wavelength λ[0006] m of the given filter as λm=2 n d/m. Where m is the order of the Bragg grating and n is average of the index of refraction of the fiber. Another type of filter frequently used in DWDM systems is a multi-layer interference filter. These filters are constructed with several, sometimes many layers of different optical materials with varying thickness such that a desired transmission (or reflection) curve centered near a predetermined channel center-frequency is obtained as depicted in FIG. 1(c).
  • In the filter approach to DWDM, each data channel is associated with a specific optical filter. The DWDM system therefore consists of many filters, each of which has to be connected or placed in a particular location and/or orientation. A more systematic way to construct a DWDM system is to use wavelength dispersion devices such that many channels can be multiplexed or de-multiplexed with a single device. In FIG. 2(A), a device commonly known as an arrayed waveguide grating (AWG) is displayed. As depicted, these AWG can be used to separate all data channels simultaneously. The output channels can be connected directly to individual optical fibers. When using an AWG in the reverse direction, many different signal channels can be combined into a single optical fiber. A prism can also be used to multiplex or de-multiplex optical signals. As displayed in FIG. 2(B), due to dispersion, i.e., the index of refraction is different for different frequency is so that the exit angle is different for channels having different center frequencies. Different output channels are separated in space and connected into individual fibers. Another commonly used device is a diffraction grating, an optical surface which is modified periodically (with a period d) such that when light is directed to this surface, the angle of incidence (α) and diffraction (β) are related to the wavelength of the incoming light λ according to: d (sin α+sin β)=m λ, where m is an integer commonly referred as the order of diffraction. Such a diffraction grating is illustrated in FIG. 2(c). [0007]
  • A third type of wavelength separating and combing devices is known as interleavers. FIG. 3(A) provides a function diagram of an interleaver. These interleavers separate a composite optical signal into two complementary signals in which the odd data channels are branched into one output and the even channels are directed into the other output. In an interleaver application, the frequency space is divided into two parts, 50% for [0008] output 1 and 50% for output 2, as illustrated in FIG. 3(B). Two typical interleaver devices are depicted in FIG. 3(C) and FIG. 3(D). In FIG. 3(C), an interleaver designed based upon a Fabry-Perot etalon is displayed. In this device, two parallel, partially reflecting surfaces are separated by a distance d. The center wavelengths λm associated with transmitted channels are given by λm=2 n d/m, where m is an integer and n is the index of refraction. In FIG. 3(D), an interleaver based on the Michelson interferometer is illustrated. The center wavelengths λm associated with channels branched into OUTPUT 2 are given by λm=2 n (d1−d2)/m, where m is an integer and n is the index of refraction along the optical path. The performance and optical characteristics of these interleavers can be enhanced with certain modifications. For example, when a partial reflector is inserted into a Michelson interferometer, based interleaver, parallel to one of the two mirrors, both the reflection and transmission spectra are significantly improved.
  • These prior art interleavers can provide more flexibility to DWDM system designers and engineers. In FIG. 4, two stages of interleavers are cascaded to provide four outputs each carrying one fourth of the original data channels. The frequency spacing of the adjacent data channels for a particular output is therefore four times the spacing between adjacent data channels in the input signal. Another practical configuration, as demonstrated in FIG. 5, utilizes both the interleaver and wavelength dispersion devices. In this configuration, the optical alignment and/or temperature stability requirements for the dispersion devices are significantly less stringent when the channel spacing is increased to twice of the original spacing. In a different configuration as displayed in FIG. 6, an interleaver, or a two-stage cascade of interleavers, is followed by individual filters. In this configuration, filters with a larger channel spacing and hence lower tolerance (e.g., 200 GHz filters) can be used to construct DWDM systems with a smaller channel-spacing (e.g., 100 GHz or 50 GHz). [0009]
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, an Optical Spectrum Synthesizer (OSS) separates a composed, multi-channel optical communication signal into two groups of channels. Each output signal has a different spectrum that allows the selection of a different group of channels or the passage of different frequency regions of the original optical spectrum. Specifically, each spectrum can be characterized as comprising periodic passing bands. The width and period of the passing bands can be designed to accommodate specific network requirements. The two output spectra are complements of each other, but may have different passing bandwidths. An OSS can be used to separate two groups of channels having different OC protocols requiring different bandwidths, e.g., one output is used to pass OC-192 channels whereas the other is used to pass OC-768 channels. A Spectrum De-Multiplexer (SDEMUX) constructed by cascading n OSS devices, will separate a composed multi-channel optical signal into n spectra each containing a different sub group of the incoming channels. The SDEMUX has a similar functional structure in comparison with DEMUX devices used in prior DWDM technology. Instead of having outputs each carrying an individual signal channel, each output of SDEMUX carries a sub group of channels. The individual channels contained in a particular output of SDEMUX can be further separated using a 1/n DEMUX where the separation between adjacent channels is n times the spacing of a prior art DEMUX. Similarly, a Spectrum Multiplexer (SMUX) is obtained by using the SDEMUX in the reverse direction. A 1/n MUX can be constructed by using a 1/n DEMUX in the reverse direction. In an additional embodiment, a long haul transmission system is disclosed which utilizes SMUX, SDEMUX and EDFA devices. An alternate long haul system is also disclosed consisting of 1/n MUX, 1/n DE-MUX and EDFA devices. A Spectrum Add-Drop Module (SADM) can be implemented with a cascade of two OSS devices. The SADM provides the network system designer a means to add and drop a group of signal channels collectively. The combination of a SDEMUX with an optical switch allows the formation of a Spectrum Switch (SS) where different groups of signal channels can be switched simultaneously. The SS can be connected to form a Spectrum Cross-Connect in a way similar to the construction of a conventional optical cross-connect using conventional optical switches. Another device is also disclosed here where two (or more) OSS devices are connected with a branch coupler. Such a device maximizes the usage of frequency space and hence can be used to achieve a higher overall data throughput rate in a network system. In still another embodiment of the invention, a Spectrum Processor is disclosed in which flexible usage of the frequency space is enabled by dividing that frequency space to accommodate different OC protocols and provide a group of channels all within a specific frequency window and with a different channel spacing and width. [0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The aforementioned objects and advantages of the present invention, as well as additional objects and advantages thereof, will be more fully understood hereinafter as a result of a detailed description of a preferred embodiment when taken in conjunction with the following drawings in which: [0011]
  • FIGS. 1A through 1C (prior art) are simplified diagrams illustrating conventional filters and their use in DWDM technology. [0012]
  • FIG. 1A is a block diagram illustrating the operation of a generic filter device. [0013]
  • FIG. 1B depicts a fiber Bragg grating filter. [0014]
  • FIG. 1C represents a multi-layer interference filter; [0015]
  • FIGS. 2A through 2C (prior art) are simplified diagrams illustrating conventional dispersion multi-channel devices and their use in DWDM technology. [0016]
  • FIG. 2A is a diagram illustrating the operation of an arrayed waveguide grating (AWG) device. [0017]
  • FIG. 2B represents a prism wavelength dispersion device. [0018]
  • FIG. 2C shows the operation of a conventional grating device; [0019]
  • FIGS. 3A through 3D (prior art) are simplified diagrams illustrating conventional interleaver devices and their use in DWDM technology. [0020]
  • FIG. 3A is a block diagram illustrating the operation of an interleaver. [0021]
  • FIG. 3B displays the output frequency spectra associated with two output signals. [0022]
  • FIG. 3C shows an Febray-Perot etalon interleaver and [0023]
  • FIG. 3D depicts the operation of an interleaver based upon Michelson interferometer; [0024]
  • FIG. 4 (prior art) is a block diagram of three interleavers in a cascade. The four outputs each carries ¼ of the signal channels from the original composed input signal; [0025]
  • FIG. 5 (prior art) is a schematic diagram illustrating the combination of an interleaver and two multi-channel dispersion devices (prisms); [0026]
  • FIG. 6 (prior art) depicts a device composed of interleaver and filters. Each output of the device carries only one signal channel; [0027]
  • FIGS. 7A through 7B are diagrams illustrating the operation of a versatile interleaver, OSS, according to an embodiment of the present invention. [0028]
  • FIG. 7A is block diagram of an OSS and [0029]
  • FIG. 7B displays the spectra associated with output signals; [0030]
  • FIGS. 8A through 8C are diagrams illustrating the construction of OSS based upon a design with two Fabry-Perot Etalons. [0031]
  • FIG. 8A depicts a device having two solid Etalons and three partially reflective boundaries. [0032]
  • FIG. 8B shows an OSS constructed with a solid etalon and an air-spaced etalon. [0033]
  • FIG. 8C displays an OSS made with two solid etalons in contact through optical contacting or other process; [0034]
  • FIGS. 9A through 9C are diagrams illustrating the construction of OSS based upon a design with three Fabry-Perot Etalons. [0035]
  • FIG. 9A depicts a device having three solid Etalons and four partially reflective boundaries. [0036]
  • FIG. 9B shows an OSS constructed with two solid etalons and an air-spaced etalon. [0037]
  • FIG. 9C displays an OSS made with three solid etalons in contact through optical contacting or other process; [0038]
  • FIGS. 10A through 10B are diagrams depicting the separation of a composite optical signal into two outputs of signals carrying different protocol channels; [0039]
  • FIG. 11 is a diagram illustrating a Spectrum DeMultiplexer (SDEMUX) constructed with three OSS devices; [0040]
  • FIGS. 12A and 12B are ⅓ DEMUX and ⅓ MUX devices according to the present invention; [0041]
  • FIGS. 13A and 13B are diagrams illustrating long haul systems according to the present invention. [0042]
  • In FIG. 13A a system using 1/n MUX, EDFA and 1/n DEMUX is depicted whereas in [0043]
  • FIG. 13B a system based on SDEMUX, EDFAs and SMUX is shown; [0044]
  • FIGS. 14A through 14C are diagrams illustrating Spectrum Add-Drop Module and one application based on the present invention. [0045]
  • In FIG. 14A an SADM constructed using two OSS is displayed whereas in [0046]
  • FIG. 14C a system using SADM is displayed, a symbol for this device is illustrated in FIG. 14B; [0047]
  • FIGS. 15A and 15B are diagrams illustrating the construction of a 1×4 Spectrum Switch. In this case, a 4×4 switch follows an SDEMUX to allow flexible redirection of sub groups of signal channels, FIG. 15B illustrates a symbol for this device; [0048]
  • FIG. 16 is a diagram which shows the construction of a 4×4×4 Spectrum Cross-Connect. Eight SS are connected to form this SCC; [0049]
  • FIGS. 17A and 17B are diagrams illustrating a module for which overlapping spectra were generated as the outputs. Device of this type can be used to maximize the net data throughput rate by allowing certain amount of cross talking between adjacent channels; [0050]
  • FIGS. 18A and 18B are diagrams which illustrate a Spectrum Processor in accordance with an embodiment of the present invention wherein [0051]
  • FIG. 18A illustrates the frequency space usage and [0052]
  • FIG. 18B illustrates the structure of a Spectrum Processor module; and [0053]
  • FIG. 19A through 19B are drawings of different designs of OSS, which are interfering etalons achieved by non-uniform, partially reflective coatings. Non-uniform phase correction plates are also indicated. [0054]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the following the details of various preferred embodiments of the present invention are disclosed. The preferred embodiments are described with the aid of the accompanying drawings, wherein like reference numerals refer to like elements throughout. [0055]
  • FIGS. 7A through 7B are diagrams illustrating the operation of a versatile interleaver, referred to herein as an Optical Spectrum Synthesizer (OSS), according to an embodiment of the present invention. Moreover, hereinafter, the terms “spectrum filter”, “asymmetric interleaver”, “1/n interleaver”, “spectrum splitter” are used interchangeably to describe various embodiments of the present invention. [0056]
  • In FIG. 7A, an OSS preferably has two outputs. One output has a group of broader periodic pass bands with a predetermined bandwidth and period as depicted in FIG. 7B. The other output has a group of narrower periodic pass bands, which complements that of [0057] output 1. The labels of output 1 and 2 are not critical and the outputs can also be labeled as N and B for narrow and broad output. When the bandwidth of the N output is set to be identical to that of the output B, the device becomes a conventional interleaver as displayed in FIGS. 3A through 3D.
  • Referring now to FIG. 8A, a preferred embodiment of an OSS comprises optical cavities with boundaries set by three parallel, partially reflective surfaces. The thickness of each optical cavity is predetermined to obtain output spectra as displayed in FIG. 7B. The incoming light, preferably a parallel beam with a small angular divergence, is directed to the surface of the OSS at a small incident angle of less than 10 degrees with respect to the surface normal of the OSS. The reflected light beam from OSS forms one of the outputs whereas the transmitted light beam forms another output. These input and output light beams are interfaced/coupled to optical fibers through lenses. A preferred type of lens is a gradient index lens known as a GRIN lens. In one preferred embodiment, the partially reflective surfaces have reflectivities of approximately 77%, 92% and 40%, respectively. [0058]
  • In order to match the center frequencies of the passing bands of [0059] output 1 and 2 to that of a standard communication grid (e.g., ITU grid), the incident angles and/or environment temperature(s) of the OSS are adjusted. In addition, one or both of the optical cavities may be constructed with piezoelectric materials such that the free-spectra-range of each of the optical cavities may be controlled. The temperature environment may also be controlled in a way to enhance the performance of the OSS. One or more electrical heaters and coolers are placed close (within a few decimeters) to the two optical cavities to ensure best performance. The effect of temperature can also be compensated for through an a-thermal design where materials with different thermal expansion coefficients are used to change the incident angle of the OSS thereby achieving a stable operation condition.
  • Referring now to FIG. 8B, in another preferred embodiment of OSS, one solid Fabry-Perot etalon is followed by an “air-spaced” Fabry-Perot etalon. The solid etalon is made with an optical disc with two parallel surfaces. Each surface is coated with a predetermined, partially reflective coating. The “air-spaced” etalon is constructed with the addition of a precision spacer and another partially reflective window. One side of this window is coated for partial reflection whereas the other, a wedged surface, is coated for anti-reflection. This construction also creates two optical cavities with boundaries set with three parallel, partially reflective coatings. The thickness of each optical cavity is predetermined to obtain the output spectra as displayed in FIG. 7B. The incoming light, preferably a parallel beam with a small angular divergence, is directed to the surface of the OSS at a small incident angle (i.e., no more than [0060] 10 degrees from normal) with respect to the surface normal of the OSS. The reflected light beam from OSS forms one of the outputs whereas the transmitted light beam forms another output. These input and output light beams are interfaced/coupled to optical fibers through lenses. A preferred type of lens is gradient index lens known as a GRIN lens. The thickness or width of the spacer of the air-spaced etalon is about 1.5 times greater than the thickness of the solid etalon to compensate for the lower refractive index of air as compared to the refractive index of the material used in the solid etalon (i.e., quartz, glass, et cetera).
  • In order to match the center frequencies of the passing bands of [0061] output 1 and 2 to that of a standard communication channel grid, the incident angles and/or environment temperature(s) of the OSS are adjusted. In addition, one or both of the optical cavities may be constructed with piezoelectrical materials such that the free-spectra ranges of each or both of the optical cavities may be controlled. Another preferred way to adjust the free-spectra-range of the “air-spaced” etalon is to set and control the gas mixture and the pressure of the “air-spaced” cavity. The temperature environment of both etalons may also be controlled in a way to enhance the performance of the OSS. One or more electrical heaters and coolers are placed close (within a few decimeters) to the two optical cavities to ensure best performance. The effect of temperature can also be compensated through an a-thermal design where materials with different thermal expansion coefficients are used to change the incident angle and the thickness of the OSS thereby achieving a stable operation condition. The temperature sensitivity of the etalon can be reduced by using material with low thermal expansion. Temperature is important because typically a 1 degree C change in temperature can have an effect on the critical product of width and index of refraction comparable to the required precision to achieve the desired outputs.
  • Referring now to FIG. 8C, in another preferred embodiment of OSS, one solid Fabry-Perot etalon is combined with another solid Fabry-Perot etalon. The two solid etalons are preferably in optical contact where the distance between two surfaces is kept minimum. Both etalons are made with optical discs with two parallel surfaces. Each surface is coated with a predetermined partially reflective coating. This construction also creates two optical cavities with boundaries set by three parallel, partially reflective surfaces. The thickness of each of the optical cavities is predetermined to obtain the output spectra as displayed in FIG. 7B. The incoming light, preferably a parallel beam with a small angular divergence, is directed to the surface of the OSS at a small incident angle (i.e., less than 10 degrees) with respect to the surface normal of the OSS. The reflected light beam from OSS forms one of the outputs whereas the transmitted light beam forms another output. These input and output light beams are interfaced/coupled to optical fibers through lenses. A preferred type of lens is a gradient index lens known as a GRIN lens. [0062]
  • In order to match the center frequencies of the passing bands of [0063] output 1 and 2 to that of a standard communication channel grid, the incident angles and/or environment temperature(s) of the OSS are adjusted. In addition, one or both of the optical cavities may be constructed with piezoelectric materials such that the free-spectra-range of each of the optical cavities may be controlled. The temperature environment of both etalons may also be controlled in a way to enhance the performance of the OSS. One or more electrical heaters and coolers are placed close (within a few decimeters) to the two optical cavities to ensure best performance. The effect of temperature change can also be compensated through an a-thermal design where materials with different thermal expansion coefficients are used to change the incident angles and the thickness of the OSS thereby achieving a stable operation condition.
  • Referring now to FIG. 9A, another preferred embodiment of an OSS is made using three optical cavities with boundaries set by four parallel, partially reflective surfaces. The thickness of each optical cavity is predetermined to obtain the output spectra as displayed in FIG. 7B. The incoming light, preferably a parallel beam with a small angular divergence, is directed to the surface of the OSS at a small incident angle with respect to the surface normal of the OSS. The reflected light beam from OSS forms one of the outputs whereas the transmitted light beam forms another output. These input and output light beams are interfaced/coupled to optical fibers through lenses. A preferred type of lens is a gradient index lens known as a GRIN lens. In one preferred embodiment, the partially reflective surfaces have reflectivities of approximately 36%, 75%, 75% and 36%, respectively. [0064]
  • In order to match the center frequencies of the passing bands of [0065] output 1 and 2 to that of a standard communication grid, the incident angles and/or environment temperature(s) of the OSS are adjusted. In addition, one, two or all three of the optical cavities may be constructed with piezoelectrical materials such that the free-spectra ranges of each of the optical cavities may be controlled. The temperature environment may also be controlled in a way to enhance the performance of the OSS. One or more electrical heaters and coolers are placed close (within a few decimeters) to the three optical cavities to ensure best performance. The effect of temperature can also be compensated for through an a-thermal design where materials with different thermal expansion coefficients are used to change the incident angle of the OSS thereby achieving a stable operation condition. The temperature sensitivity of the air spaced etalons can be reduced by using spacer materials with a low thermal expansion coefficient.
  • Referring now to FIG. 9B, in another preferred embodiment of OSS, two solid Fabry-Perot etalons and an “air-spaced” Fabry-Perot etalon form a “sandwich” device. The solid etalons are made with optical discs with two parallel surfaces. Each surface is coated with a predetermined partially reflective coating. The “air-spaced” etalon is constructed with the addition of a precision spacer placed in between the two solid etalons. This construction also creates three optical cavities with boundaries set by four parallel, partially reflective surfaces. The thickness of each optical cavity is predetermined to obtain the output spectra as displayed in FIG. 7B. The incoming light, preferably a parallel beam with a small angular divergence, is directed to the surface of the OSS at a small incident angle with respect to the surface normal of the OSS. The reflected light beam from OSS forms one of the outputs whereas the transmitted light beam forms another output These input and output light beams are interfaced/coupled to optical fibers through lenses. A preferred type of lens is a gradient index lens known as a GRIN lens. [0066]
  • In order to match the center frequencies of the passing bands of [0067] output 1 and 2 to that of a standard communication channel grid, the incident angles and/or environment temperature(s) of the OSS are adjusted. In addition, one, two or all three of the optical cavities may be constructed with piezoelectric materials such that the free-spectra-range of each of the optical cavities may be controlled. Another preferred way to adjust the free-spectra-range of the “air-spaced” etalon is to set and control the gas mixture and the pressure of the “air-spaced” cavity. The temperature environment of these etalons may also be controlled in a way to enhance the performance of the OSS. One or more electrical heaters and coolers are placed close (within a few decimeters) to the three optical cavities to ensure best performance. The effect of temperature can also be compensated for through an a-thermal design where materials with different thermal expansion coefficients are used to change the incident angles and the thickness of the OSS thereby achieving a stable operation condition. The temperature sensitivity of the air-spaced etalon can be reduced by using spacer materials with a low thermal expansion coefficient.
  • Referring now to FIG. 9C, in another preferred embodiment of OSS, three solid Fabry-Perot etalons are combined. The three solid etalons are preferably in optical contacts where the distances between adjacent etalons are kept to a minimum. All three etalons are made with optical discs with two parallel surfaces. Each surface is coated with a predetermined partially reflective coating. This construction also creates three optical cavities with boundaries set by four parallel, partially reflective coatings. The thickness of each optical cavity is predetermined to obtain the output spectra as displayed in FIG. 7B. The incoming light, preferably a parallel beam with a small angular divergence, is directed to the surface of the OSS at a small incident angle with respect to the surface normal of the OSS. The reflected light beam from OSS forms one of the outputs whereas the transmitted light beam forms the other output. These input and output light beams are interfaced/coupled to optical fibers through lenses. A preferred type of lens is a gradient index lens known as a GRIN lens. [0068]
  • In order to match the center frequencies of the passing bands of [0069] output 1 and 2 to that of a standard communication channel grid, the incident angles and/or environment temperature(s) of the OSS are adjusted. In addition, one, two, or three optical cavities may be constructed with piezoelectric materials such that the free-spectra-range of each of the optical cavities may be controlled. The temperature environment of the three etalons may also be controlled in a way to enhance the performance of the OSS. One or more electrical heaters and coolers are placed close (within a few decimeters) to the three optical cavities to ensure best performance. The effect of temperature change can also be compensated through an a-thermal design where materials with different thermal expansion coefficients are used to change the incident angle and the thickness of the OSS thereby achieving a stable operation condition. It will be understood that the various embodiments of the invention can be implemented using more than just two or three optical cavities.
  • In FIG. 10A, an OSS preferably has two outputs. One output has a group of broader periodic pass bands with a predetermined bandwidth and period as depicted in FIG. 10B. The other output has a group of narrower periodic pass bands, which complements that of [0070] output 1. The labels of output 1 and 2 are not critical and the output can be better labeled as N and B outputs. When the bandwidth of the N output is set to be identical to that of B, the device becomes a symmetrical interleaver as displayed in FIGS. 3A through 3D. In a preferred embodiment, a phase correction element and spectrum filter element may also be introduced to each output to enhance the OSS performance. In a preferred embodiment of the present invention, one of the outputs is used to carry channels with one OC protocol, e.g., OC-192, the other output is used to carry channels of a different OC protocol to best utilize the frequency space and maximize the data throughput rate. In a different embodiment of the present invention, different OC protocols may be carried in one or both of the outputs.
  • FIG. 11A is a diagram illustrating a one to four Spectrum De-Multiplexer (SDEMUX) constructed with three OSS devices. In a preferred embodiment of the present invention, three OSS devices are in a cascade with appropriate spectrum filters and/or phase correction elements to form a SDEMUX. In a preferred embodiment of the present invention, the optical spectrum is evenly divided into four complementary spectra with the same passing channel bandwidths. In a different preferred embodiment of the present invention, the optical spectrum is divided into four complementary spectra having different passing channel bandwidths. In another preferred embodiment of the present invention, the number of the optical spectra or output groups, n, is greater than one. When n is equal to two, the SDEMUX is simply an OSS, whereas when n is equal to four, the SDEMUX device is as illustrated in FIG. 11A. In additional embodiments of the present invention, a particular SDEMUX can be used in the reverse direction as a SMUX. In these cases, n different and complementary spectra are combined through a SMUX to form a single composite output signal. FIG. 11B illustrates a proposed symbol for a SDEMUX. [0071]
  • Referring now to FIGS. 12A through 12B, a group of three ⅓ DEMUX and a group of three ⅓ MUX are illustrated. According to a preferred embodiment of the present invention, [0072] n 1/n DEMUX devices and n 1/n MUX devices are constructed for a SDEMUX or SMUX device. Each 1/n DEMUX (and 1/n MUX) carries a sub group consisting of 1/n of the total number of channels. In a different preferred embodiment of the present invention, each 1/n DEMUX (and 1/n MUX carries a spectrum, which uses a fraction of the whole frequency space, and in certain cases this fraction may be set to 1/n.
  • FIG. 13A is a diagram illustrating a long haul system according to a preferred embodiment of the present invention. In this case, a long haul system is formed using a SDEMUX, n optical fibers, EDFAs (Erbium Doped Fiber Amplifiers) and a SMUX. Due to a much larger channel spacing compared with a conventional long haul system using only one optical fiber or several optical fibers with broadband filters, nonlinear effects are significantly reduced. A much higher optical power can therefore be lunched into each of the n fibers thereby significantly increasing the distances between amplification and/or recondition stations. FIG. 13B is a diagram illustrating a long haul system according to a preferred embodiment of the present invention. In this case, a long haul system is assembled using [0073] n 1/n-MUX, n optical fibers, EDFAs and n 1/n-DEMUX devices. Due to a much larger channel spacing compared with a conventional system using fewer optical fibers, nonlinear effects are significantly reduced. A much higher optical power can therefore be launched into each of the n fibers thereby significantly increasing the distances between amplification and/or recondition stations. In a different embodiment of the present invention, a combination of conventional DWDM devices, SMUX, SDEMUX, 1/n MUX, 1/n DEMUX and EDFA devices are arranged in a way to achieve a long haul transport system consisting of more than one fiber to transport the composed signal spectrum with a larger channel spacing in each of the fibers.
  • Referring now to FIGS. 14A, 14B and [0074] 14C, a Spectrum Add-Drop Module (SADM) is assembled using two OSS based upon a preferred embodiment of the present invention. A group of signal channels can be added and removed simultaneously. This device can be used to direct network data traffic in a collective way. In another preferred embodiment of the present invention, the status of many channels can be monitored using a SADM in a parallel way to speed up network data management and routing. FIG. 14B depicts a proposed symbol for this new device and FIG. 14C illustrates a long haul implementation using the SADM.
  • FIGS. 15A and 15B disclose a preferred construction of a 1×4 Spectrum Switch (SS). In this case, a 4×4 optical switch follows an SDEMUX that allows flexible redirection of sub groups of signal channels. In other preferred embodiments, 1×n SS is constructed with the combination of 1 to n SDEMUX and an n×n optical switch. FIG. 15B illustrates a proposed symbol for the spectrum switch. [0075]
  • Referring now to FIG. 16, a 4×4×4 Spectrum Cross-Connect (SCC) is disclosed. The construction of this SCC has a similar structure in comparison with a conventional optical cross-connect where different channels in a conventional cross connect are replaced by sub groups of channels in a SCC. According to a preferred embodiment of the present invention, eight 1×4 SS are connected to form this SCC. A general n×n×m SCC uses 2n 1×m SS connected in a way similar to a conventional n×n×m optical cross connect. [0076]
  • FIGS. 17A and 17B are diagrams illustrating a module and spectra for which overlapping spectra were passed as the outputs, according to a preferred embodiment of the present invention. A wavelength insensitive branch coupler is used to branch the original composed data into two or several parts. An OSS is then used to split the composed signal into two spectra. These spectra are used in a collective way to process and pass data at a higher throughput rate than conventional methods by allowing certain degree of cross talking between adjacent channels. The cross talking between adjacent channels are then removed through electronic and/or optical decoding of the original data. [0077]
  • In another preferred embodiment of the present invention, a Spectrum Processor is disclosed where a flexible usage of the frequency space is enabled. As illustrated in FIG. 18A, the frequency space is divided to accommodate different OC protocols as well as to provide a group of channels all within a specific frequency window and with a different channel spacing and width. Such a SP module can be made with a combination of OSS and filters as illustrated in FIG. 18B. [0078]
  • FIG. 19A and 19B disclose additional embodiments of the present invention. An OSS is implemented with interfering etalons formed by non-uniform coatings. Non-uniform phase correction plates and or additional filters may also be used in the optical path to enhance the properties of the output spectra. [0079]
  • Having thus disclosed various embodiments of the present invention, it being understood that numerous alternative embodiments are contemplated and that the scope of the invention is limited only by the appended claims and their equivalents.[0080]

Claims (32)

What is claimed is:
1. An apparatus for receiving a composite optical signal defined by a plurality of distinct channels having spaced center wavelengths in a continuous frequency spectrum; the apparatus generating two separate output optical signals from the received signal; the apparatus comprising:
a wavelength-dependent optical device for segregating said received signal into said two separate output optical signals having non-continuous spectra; one of said output signals having a greater number of said distinct channels than the other of said output signals.
2. The apparatus recited in claim 1 wherein the non-continuous spectrum of one of said output signals is the complement of the non-continuous spectrum of the other of said output signals.
3. The apparatus recited in claim 1 wherein the combined non-continuous spectra of said two output signals contain all of said distinct channels of said continuous frequency spectrum of said received optical signal.
4. The apparatus recited in claim 1 wherein each of said non-continuous spectra of said output optical signals comprises a plurality of passbands that are spaced from one another in frequency; the number of said distinct channels in each of said passbands of one of said output signals being greater than the number of said distinct channels in each of said passbands of the other of said output signals.
5. The apparatus recited in claim 1 wherein said wavelength-dependent optical device comprises:
a plurality of adjacent optical cavities each having at least one partially reflective surface.
6. The apparatus recited in claim 1 wherein said wavelength-dependent optical device comprises:
at least two adjacent optical cavities having a total of at least three partially reflective surfaces; said optical cavities having a selected thickness for achieving said separate output optical signals.
7. The apparatus recited in claim 6 wherein at least one of said optical cavities comprises an air spaced optical cavity.
8. The apparatus recited in claim 1 wherein said wavelength-dependent optical device comprises:
at least three adjacent optical cavities having a total of at least four partially reflective surfaces; said optical cavities having a selected thickness for achieving said separate output optical signals.
9. The apparatus recited in claim 8 wherein at least one of said optical cavities comprises an air spaced optical cavity.
10. The apparatus recited in claim 6 wherein each of said partially reflective surfaces has a reflection coefficient in the range of 5% to 90%.
11. The apparatus recited in claim 8 wherein each of said partially reflective surfaces has a reflection coefficient in the range of 5% to 90%.
12. The apparatus recited in claim 1 wherein said received composite signal is incident on said wavelength-dependent optical device at an angle of less than 10 degrees from normal.
13. The apparatus recited in claim 1 wherein said wavelength-dependent optical device comprises materials having selected thermal expansion coefficients to reduce the temperature sensitivity of said device.
14. The apparatus recited in claim 1 wherein said wavelength-dependent optical device is positioned in proximity to temperature control apparatus for selecting temperature adjacent said device.
15. An apparatus for receiving a composite optical signal defined by a plurality of distinct channels having center wavelengths in a continuous frequency spectrum; the apparatus comprising:
a wavelength-dependent optical device for segregating said received signal into N separate output optical signals having non-continuous spectra, where N≧3; each of said output optical signals having a substantially equal number of said distinct channels.
16. A spectrum add and drop apparatus for receiving a first composite optical signal defined by a plurality of distinct channels having spaced center wavelengths in a continuous frequency spectrum and generating a second composite optical signal wherein at least some of said distinct channels from said first composite signal are replaced by substitute distinct channels in said second composite signal; the apparatus comprising:
a first wavelength-dependent optical device for segregating said first composite signal into two separate output optical signals having non-continuous spectra; one of said output signals having a greater number of said distinct channels than the other of said output signals;
a second wavelength-dependent optical device connected to said first wavelength-dependent optical device for receiving said output signal having a greater number of said distinct channels, but receiving a substitute for the other output signal of said first wavelength-dependent optical device; said second wavelength-dependent optical device generating said second composite optical signal.
17. The apparatus recited in claim 1 further comprising at least one wavelength periodic filter connected for filtering of at least one of said output signals.
18. A method for demultiplexing a composite optical signal with different center-wavelengths represented by λ1, λ2, λ3, . . . λn where n is a positive integer and said wavelengths are equally spaced, comprising steps of
a) receiving said composite optical signal into an asymmetric wavelength slicing device through a device input port; and
b) slicing said composite signal and extracting a first composite optical signal comprising a first set of channels λ1, λa, λb, λc, . . . λn−a+2 through a first output port, and a second composite optical signal comprising a second set of channels λ2, λd, λe, λf, . . . λn through a second output port wherein said second set of data channels is complimentary to said first set of data channels and a spacing (λ1−λa) between λ1 and λa is different from a spacing (λ2−λd) between λ2 and λd.
19. A method for demultiplexing a composite optical signal with different center-wavelengths represented by λ1, λ2, λ3, λ4, . . . λn where n is a positive integer and the wavelengths are equally spaced, comprising steps of
a) receiving said composite optical signal into an asymmetric wavelength slicing device through a device input port; and
b) slicing said composite signal and extracting a first composite optical signal comprising a first set of channels λ1, λ3, λ5, λ7, λn−1 through a first output port, and a second composite optical signal comprising a second set of channels λ2, λ4, λ6, λ8, . . . λn through a second output port wherein said second set of data channels is complimentary to said first set of data channels but having a different bandwidth.
20. A asymmetric wavelength slicing device for demultiplexing a composite optical signal with different center-wavelengths represented by λ1, λ2, λ3, λ4, . . . λn where n is a positive integer and the wavelengths are equally spaced, comprising at least an input port and two output ports,
said composite signal being sliced into a first composite optical signal comprising a first set of channels λ1, λa, λb, λc, . . . λn−a+2 through a first output port, and a second composite optical signal comprising a second set of channels λ2, λd, λe, λf, . . . λn through a second output port wherein said second set of data channels is complimentary to said first set of data channels, but the spacing between λ1 and λa is different from the spacing between λ2 and λd.
21. A asymmetric wavelength slicing device for demultiplexing a composite optical signal with different center-wavelengths represented by λ1, λ2, λ3, λ4, . . . λn where n is a positive integer and the wavelengths are equally spaced, comprising:
at least an input port and two output ports, said composite signal being sliced into a first composite optical signal comprising a first set of channels λ1, λ3, λ5, λ7, . . . λn−1 through a first output port, and a second composite optical signal comprising a second set of channels λ2, λ4, λ6, λ8, . . . λn through a second output port wherein said second set of data channels is complimentary to said first set of data channels, but the bandwidth is different from the bandwidth of said first set of data channels.
22. The method recited in claim 18 wherein step b) is carried out by placing an etalon-based wavelength slicing device in the path of said received composite optical signal, said device having at least two optical cavities having a total of at least three partially reflective surfaces, said optical cavities having a selected thickness for achieving said first and second composite optical signals.
23. The method recited in claim 19 wherein step b) is carried out by placing an etalon-based wavelength slicing device in the path of said received composite optical signal, said device having at least two optical cavities having a total of at least three partially reflective surfaces, said optical cavities having a selected thickness for achieving said first and second composite optical signals.
24. The device recited in claim 20 further comprising an etalon-based wavelength slicing device in the path of said received composite optical signal, said device having at least two optical cavities having a total of at least three partially reflective surfaces, said optical cavities having a selected thickness for achieving said first and second composite optical signals.
25. The device recited in claim 21 further comprising an etalon-based wavelength slicing device in the path of said received composite optical signal, said device having at least two optical cavities having a total of at least three partially reflective surfaces, said optical cavities having a selected thickness for achieving said first and second composite optical signals.
26. A spectral demultiplexer for use in optical communications systems: the demultiplexer receiving a composite optical signal having spectral components in any of a plurality of wavelength channels in a continuous spectrum and generating a plurality of N output optical signals each having spectral components in 1/N of said wavelength channels in respective non-continuous spectra.
27. The spectral demultiplexer recited in claim 26 where N≧3.
28. A spectral multiplexer for use in optical communications systems; the multiplexer receiving a plurality of N input optical signals each having different discontinuous spectral components in 1/N wavelength channels of a plurality of wavelength channels in a continuous spectrum, and generating an output composite optical signal having the spectral components of all of said N input optical signals.
29. The spectral multiplexer recited in claim 28 wherein N≧3.
30. A group of optical signal demultiplexers comprising a plurality of demultiplexers each receiving a different composite optical signal having a plurality of spaced center channel wavelengths in a non-continuous spectrum and each such demultiplexer producing a plurality of individual output optical signals each having a unique one of said spaced center channel wavelengths.
31. A group of optical signal multiplexers comprising a plurality of multiplexers each receiving a plurality of individual input signals each such signal having a center channel wavelength which is spaced from the center channel wavelength of the other such signals; each such multiplexer producing a different composite output signal, each such different output signal comprising all of the center channel wavelengths of the individual input signals of the multiplexer from which the output signal is produced.
32. The apparatus recited in claim 15 further comprising an N×N switch for placing said output optical signals on N output lines in any selected order.
US09/738,904 2000-05-18 2000-12-16 Multi-channel wavelength slicing using an etalon-based interleaver for dense wavelength division multiplexing Abandoned US20020003643A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/738,904 US20020003643A1 (en) 2000-05-18 2000-12-16 Multi-channel wavelength slicing using an etalon-based interleaver for dense wavelength division multiplexing
US10/032,180 US20020126291A1 (en) 2000-12-16 2001-12-21 Spectrum division multiplexing for high channel count optical networks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/573,330 US6545782B1 (en) 2000-05-18 2000-05-18 Assymmetric wavelength slicing based dense wavelength division multiplexing
US09/738,904 US20020003643A1 (en) 2000-05-18 2000-12-16 Multi-channel wavelength slicing using an etalon-based interleaver for dense wavelength division multiplexing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/573,330 Continuation-In-Part US6545782B1 (en) 2000-05-18 2000-05-18 Assymmetric wavelength slicing based dense wavelength division multiplexing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/032,180 Continuation-In-Part US20020126291A1 (en) 2000-12-16 2001-12-21 Spectrum division multiplexing for high channel count optical networks

Publications (1)

Publication Number Publication Date
US20020003643A1 true US20020003643A1 (en) 2002-01-10

Family

ID=24291539

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/573,330 Expired - Fee Related US6545782B1 (en) 2000-05-18 2000-05-18 Assymmetric wavelength slicing based dense wavelength division multiplexing
US09/738,904 Abandoned US20020003643A1 (en) 2000-05-18 2000-12-16 Multi-channel wavelength slicing using an etalon-based interleaver for dense wavelength division multiplexing
US09/742,749 Expired - Fee Related US6741813B2 (en) 2000-05-18 2000-12-20 Interference-based DWDM optical interleaver using beam splitting and selective phase shifting and re-combining
US09/811,136 Abandoned US20030035168A1 (en) 2000-05-18 2001-03-17 Spectrum division multiplexing for high channel count optical networks

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/573,330 Expired - Fee Related US6545782B1 (en) 2000-05-18 2000-05-18 Assymmetric wavelength slicing based dense wavelength division multiplexing

Family Applications After (2)

Application Number Title Priority Date Filing Date
US09/742,749 Expired - Fee Related US6741813B2 (en) 2000-05-18 2000-12-20 Interference-based DWDM optical interleaver using beam splitting and selective phase shifting and re-combining
US09/811,136 Abandoned US20030035168A1 (en) 2000-05-18 2001-03-17 Spectrum division multiplexing for high channel count optical networks

Country Status (2)

Country Link
US (4) US6545782B1 (en)
WO (1) WO2001089120A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030026521A1 (en) * 1998-08-21 2003-02-06 Jaymin Amin Optical interleaver
US20030043471A1 (en) * 2001-08-29 2003-03-06 Belser Karl Arnold Free-space dynamic wavelength routing systems with interleaved channels for enhanced performance
US20030185565A1 (en) * 2002-01-18 2003-10-02 Nec Usa, Inc Non-uniform optical waveband aggregator and deaggregator and hierarchical hybrid optical cross-connect system
US6658172B1 (en) * 2001-03-15 2003-12-02 Cierra Photonics, Inc. Optical system with 1×N interleaver and methods of making and using same
US20090003830A1 (en) * 2007-06-29 2009-01-01 Lucent Technologies Inc. Loss of signal detection
CN102812656A (en) * 2010-03-18 2012-12-05 阿尔卡特朗讯 Method for optimizing the capacity of optical communication networks
US20120321248A1 (en) * 2011-06-10 2012-12-20 Zte (Usa) Inc. Multi-stage optical interleaving
US9360626B2 (en) * 2007-11-13 2016-06-07 Anatoliy Savchenkov Fiber-based multi-resonator optical filters
US9582726B2 (en) * 2015-06-24 2017-02-28 Qualcomm Incorporated Systems and methods for image processing in a deep convolution network
CN107506551A (en) * 2017-08-25 2017-12-22 海能达通信股份有限公司 A kind of design method and relevant device of channel forming wave filter

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545782B1 (en) * 2000-05-18 2003-04-08 Hongchuan Wang Assymmetric wavelength slicing based dense wavelength division multiplexing
US20020085252A1 (en) * 2000-07-28 2002-07-04 Chen Gang Paul Interleaver filters employing non-birefringent elements
FR2812409B1 (en) * 2000-07-28 2002-11-01 Photonetics TEMPERATURE STABILIZED TWO-WAVE OPTICAL INTERFEROMETER AND WAVELENGTH INTERCALING DEVICE INCORPORATING THE SAME
US6856459B1 (en) * 2000-12-22 2005-02-15 Cheetah Omni, Llc Apparatus and method for controlling polarization of an optical signal
US7106508B2 (en) * 2001-06-11 2006-09-12 Finisar Corporation Hybrid cell
US6871022B2 (en) * 2001-09-14 2005-03-22 Stratos International, Inc. Cascaded optical multiplexer
US6658181B2 (en) * 2002-01-02 2003-12-02 Wavesplitter Technologies, Inc. Polarization interleaver
US6791753B1 (en) * 2002-03-18 2004-09-14 Alliance Fiber Optic Products, Inc. Retro-reflective fiber optic interleaver
ATE297618T1 (en) * 2002-04-30 2005-06-15 Cit Alcatel NESTHING AND UNNESSING
US20040227996A1 (en) * 2002-06-12 2004-11-18 Tengda Du Optical interleaver and filter cell design with enhanced thermal stability
US7173763B2 (en) * 2002-06-12 2007-02-06 Finisar Corporation Optical interleaver and filter cell design with enhanced clear aperture
JP4020809B2 (en) * 2003-03-26 2007-12-12 富士通株式会社 Wavelength division multiplexing transmission system
JP2004297714A (en) * 2003-03-28 2004-10-21 Fujitsu Ltd Multiple direction optical branching device
CN100395525C (en) * 2003-05-21 2008-06-18 华为技术有限公司 Automatic testing apparatus and method for comb type filter spectrum optical module
US7996188B2 (en) 2005-08-22 2011-08-09 Accuri Cytometers, Inc. User interface for a flow cytometer system
US8303894B2 (en) * 2005-10-13 2012-11-06 Accuri Cytometers, Inc. Detection and fluidic system of a flow cytometer
US8017402B2 (en) 2006-03-08 2011-09-13 Accuri Cytometers, Inc. Fluidic system for a flow cytometer
US7429983B2 (en) 2005-11-01 2008-09-30 Cheetah Omni, Llc Packet-based digital display system
US7787765B2 (en) * 2005-12-21 2010-08-31 International Business Machines Corporation Method and apparatus device for initializing an end-to-end link in a fiber optic communications system
US7826745B2 (en) * 2005-12-21 2010-11-02 International Business Machines Corporation Open fiber control and loss of light propagation in time division multiplexed inter-system channel link
US7768708B1 (en) 2006-02-03 2010-08-03 Raytheon Company Light source having spatially interleaved light beams
US7780916B2 (en) * 2006-03-08 2010-08-24 Accuri Cytometers, Inc. Flow cytometer system with unclogging feature
US8283177B2 (en) * 2006-03-08 2012-10-09 Accuri Cytometers, Inc. Fluidic system with washing capabilities for a flow cytometer
US8077310B2 (en) * 2006-08-30 2011-12-13 Accuri Cytometers, Inc. System and method of capturing multiple source excitations from a single location on a flow channel
US8715573B2 (en) 2006-10-13 2014-05-06 Accuri Cytometers, Inc. Fluidic system for a flow cytometer with temporal processing
WO2008058217A2 (en) 2006-11-07 2008-05-15 Accuri Instruments Inc. Flow cell for a flow cytometer system
US7739060B2 (en) * 2006-12-22 2010-06-15 Accuri Cytometers, Inc. Detection system and user interface for a flow cytometer system
US7566223B2 (en) * 2007-04-20 2009-07-28 Belkin International, Inc. Electrical connector and method of manufacturing same
US7946852B2 (en) * 2007-04-20 2011-05-24 Belkin Intenational, Inc. Electrical connector and method of manufacturing same
US8432541B2 (en) * 2007-12-17 2013-04-30 Accuri Cytometers, Inc. Optical system for a flow cytometer with an interrogation zone
US8004674B2 (en) * 2009-06-02 2011-08-23 Accuri Cytometers, Inc. Data collection system and method for a flow cytometer
US8507279B2 (en) 2009-06-02 2013-08-13 Accuri Cytometers, Inc. System and method of verification of a prepared sample for a flow cytometer
US20110061471A1 (en) * 2009-06-02 2011-03-17 Rich Collin A System and method of verification of a sample for a flow cytometer
US8285144B2 (en) * 2009-07-30 2012-10-09 Jds Uniphase Corporation Optical device for rearranging wavelength channels
WO2011106402A1 (en) * 2010-02-23 2011-09-01 Accuri Cytometers, Inc. Method and system for detecting fluorochromes in a flow cytometer
US9551600B2 (en) 2010-06-14 2017-01-24 Accuri Cytometers, Inc. System and method for creating a flow cytometer network
JP5617503B2 (en) * 2010-09-30 2014-11-05 富士通株式会社 Optical network repeater
ES2897531T3 (en) 2010-10-25 2022-03-01 Accuri Cytometers Inc Systems and user interface for collecting a data set in a flow cytometer
CN112383358B (en) * 2020-11-11 2022-03-25 中国科学院上海微系统与信息技术研究所 Integrated optical transceiver

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169626B1 (en) * 1999-06-29 2001-01-02 E-Tek Dynamics Optical signal interleaver
US6252716B1 (en) * 1999-07-22 2001-06-26 Jds Uniphase Photonics C.V. Bulk optic interleaver
US6560000B2 (en) * 2000-11-20 2003-05-06 Jds Uniphase Inc. Wavelength-dependent optical signal processing using an angle-to-offset module
US6643064B2 (en) * 2001-06-07 2003-11-04 Industrial Technology Research Institute Optical signal interleaver

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163393A (en) * 1996-10-29 2000-12-19 Chorum Technologies Inc. Method and apparatus for wavelength multipexing/demultiplexing
US6115155A (en) * 1996-10-29 2000-09-05 Chorum Technologies Inc. System for dealing with faults in an optical link
US6208444B1 (en) * 1996-10-29 2001-03-27 Chorum Technologies Inc. Apparatus for wavelength demultiplexing using a multi-cavity etalon
US5933260A (en) * 1997-04-25 1999-08-03 Oplink Communications, Inc. Method and system for wavelength division multiplexer
US6275322B1 (en) * 1999-06-08 2001-08-14 Jds Uniphase Corporation Michelson phase shifter interleaver/deinterleavers
US6400508B1 (en) * 1999-11-01 2002-06-04 Zhimin Liu Compact wavelength interleaver
US6301046B1 (en) * 1999-12-31 2001-10-09 Jds Uniphase Corporation Interleaver/deinterleavers causing little or no dispersion of optical signals
US6215923B1 (en) * 2000-01-31 2001-04-10 Oplink Communications, Inc. Optical interleaver
US6545782B1 (en) * 2000-05-18 2003-04-08 Hongchuan Wang Assymmetric wavelength slicing based dense wavelength division multiplexing
US6570711B2 (en) * 2000-08-01 2003-05-27 Jds Uniphase Inc. Virtual waveplate and optical channel interleaver formed therewith
US6574049B1 (en) * 2002-05-14 2003-06-03 Nexfon Corporation Optical interleaver and de-interleaver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169626B1 (en) * 1999-06-29 2001-01-02 E-Tek Dynamics Optical signal interleaver
US6252716B1 (en) * 1999-07-22 2001-06-26 Jds Uniphase Photonics C.V. Bulk optic interleaver
US6560000B2 (en) * 2000-11-20 2003-05-06 Jds Uniphase Inc. Wavelength-dependent optical signal processing using an angle-to-offset module
US6643064B2 (en) * 2001-06-07 2003-11-04 Industrial Technology Research Institute Optical signal interleaver

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030026521A1 (en) * 1998-08-21 2003-02-06 Jaymin Amin Optical interleaver
US6956988B2 (en) * 1998-08-21 2005-10-18 Avanex Corporation Optical interleaver
US6658172B1 (en) * 2001-03-15 2003-12-02 Cierra Photonics, Inc. Optical system with 1×N interleaver and methods of making and using same
US20030043471A1 (en) * 2001-08-29 2003-03-06 Belser Karl Arnold Free-space dynamic wavelength routing systems with interleaved channels for enhanced performance
WO2003021316A1 (en) * 2001-08-29 2003-03-13 Capella Photonic, Inc. Free-space wavelength routing systems with interleaved channels
US7164859B2 (en) 2001-08-29 2007-01-16 Capella Photonics, Inc. Free-space dynamic wavelength routing systems with interleaved channels for enhanced performance
US20030185565A1 (en) * 2002-01-18 2003-10-02 Nec Usa, Inc Non-uniform optical waveband aggregator and deaggregator and hierarchical hybrid optical cross-connect system
US7340175B2 (en) * 2002-01-18 2008-03-04 Nec Corporation Non-uniform optical waveband aggregator and deaggregator and hierarchical hybrid optical cross-connect system
US20090003830A1 (en) * 2007-06-29 2009-01-01 Lucent Technologies Inc. Loss of signal detection
US7941048B2 (en) * 2007-06-29 2011-05-10 Alcatel-Lucent Usa Inc. Loss of signal detection
US9360626B2 (en) * 2007-11-13 2016-06-07 Anatoliy Savchenkov Fiber-based multi-resonator optical filters
CN102812656A (en) * 2010-03-18 2012-12-05 阿尔卡特朗讯 Method for optimizing the capacity of optical communication networks
US20120321248A1 (en) * 2011-06-10 2012-12-20 Zte (Usa) Inc. Multi-stage optical interleaving
US8983297B2 (en) * 2011-06-10 2015-03-17 Zte (Usa) Inc. Multi-stage optical interleaving
US9582726B2 (en) * 2015-06-24 2017-02-28 Qualcomm Incorporated Systems and methods for image processing in a deep convolution network
CN107506551A (en) * 2017-08-25 2017-12-22 海能达通信股份有限公司 A kind of design method and relevant device of channel forming wave filter
CN107506551B (en) * 2017-08-25 2021-04-27 海能达通信股份有限公司 Design method of channel shaping filter and related equipment

Also Published As

Publication number Publication date
WO2001089120A2 (en) 2001-11-22
US20030035168A1 (en) 2003-02-20
US6741813B2 (en) 2004-05-25
WO2001089120A3 (en) 2002-04-11
US20030099013A1 (en) 2003-05-29
US6545782B1 (en) 2003-04-08

Similar Documents

Publication Publication Date Title
US20020003643A1 (en) Multi-channel wavelength slicing using an etalon-based interleaver for dense wavelength division multiplexing
US6169828B1 (en) Fiber optic dense wavelength division multiplexer with a phase differential method of wavelength separation utilizing a polarization beam splitter and a nonlinear interferometer
US6339474B2 (en) Interferometric optical device including an optical resonator
US6453087B2 (en) Miniature monolithic optical add-drop multiplexer
US7869711B2 (en) Optical tunable asymmetric interleaver and upgrade for dense wavelength division multiplexed networks
US6256433B1 (en) Expandable interleaving optical add/drop filter module
WO2002033446A2 (en) Method and system for high channel capacity wave division multiplexer and de-multiplexer using reflective and transmission holographic methodologies for optical communications and the like
WO2002071118A1 (en) Dispersion-compensated optical wavelength router
US6907167B2 (en) Optical interleaving with enhanced spectral response and reduced polarization sensitivity
US20070258679A1 (en) Wavelength routing optical switch
US20020126291A1 (en) Spectrum division multiplexing for high channel count optical networks
US6621632B2 (en) Optical interferometer for demultiplexing an optical signal
US6496616B2 (en) Miniature monolithic optical demultiplexer
JP2009153092A (en) Intra-channel equalizing optical interleaver
Rabus Realization of optical filters using ring resonators with integrated semiconductor optical amplifiers in GaInAsP/InP
US20020081062A1 (en) Optical grating based multi-input demultiplexer for multiple sets of interleaved wavelength channels
JP6134271B2 (en) Optical transmission / reception system
JP4832700B2 (en) Optical device
JP4719786B2 (en) Wavelength selective switch using planar waveguide technology
EP1318417A2 (en) Optical filters
US20020154313A1 (en) Optical interferometer for multiplexing optical signals
US7418168B2 (en) Optical add/drop module
US20020131708A1 (en) Integrated optical interleaver/de-interleaver
de Ridder et al. Interleavers
US7561766B2 (en) Thin film interleaver

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEXFON CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:QIAN, CHARLES X.W.;QIN, YI;WANG, HONGCHUAN;REEL/FRAME:013066/0740

Effective date: 20001211

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION