Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS20020011923 A1
Type de publicationDemande
Numéro de demandeUS 09/482,789
Date de publication31 janv. 2002
Date de dépôt13 janv. 2000
Date de priorité13 janv. 2000
Autre référence de publicationUS6807463, US7110829, US20040267382, WO2001052515A1, WO2001052515A9
Numéro de publication09482789, 482789, US 2002/0011923 A1, US 2002/011923 A1, US 20020011923 A1, US 20020011923A1, US 2002011923 A1, US 2002011923A1, US-A1-20020011923, US-A1-2002011923, US2002/0011923A1, US2002/011923A1, US20020011923 A1, US20020011923A1, US2002011923 A1, US2002011923A1
InventeursGlen Cunningham, Ken Parker, Tim Woods, Stephen Zwonitzer, Evan Ward, Maureen Carroll, John Hamann, JoAnne Lala, Lily Kunz, Mike Swieboda, Mark Devine, Jim Montagnino
Cessionnaire d'origineThalia Products, Inc.
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Appliance Communication And Control System And Appliance For Use In Same
US 20020011923 A1
Résumé
A system of intelligent appliances coupled by common household power lines or wireless links. One or more of the appliances serves as a system controller and may include a further communications interface for coupling to an external communications network, such as the telephone network. The system can thus be accessed and controlled remotely. The system can also communicate with and obtain information from remote sources such as Internet-based facilities.
Images(15)
Previous page
Next page
Revendications(14)
What is claimed is:
1. A communications system comprising:
a first device, the first device including a first processor and a first power line interface coupled to the first processor and to a power distribution system; and
a second device, the second device including a second processor and a second power line interface coupled to the second processor and to the power distribution system,
wherein the first and second devices communicate with each other, under the control of the first and second processors, via the power distribution system and the first and second power line interfaces.
2. The system of claim 1, wherein the first device includes a network communications interface coupled to the first processor and to a communications network.
3. The system of claim 1, wherein the second device includes a wireless communications interface.
4. The system of claim 3, comprising:
a third device, the third device including a third processor and a further wireless communications interface coupled to the third processor, the further wireless communications interface being adapted to communicate with the wireless communications interface of the second device.
5. The system of claim 2, wherein the second device is accessible from the communications network.
6. The system of claim 4, wherein the first device includes a network communications interface coupled to the first processor and to a communications network and wherein the third device is accessible from the communications network.
7. The system of claim 4, wherein the wireless communications interface and the further wireless communications interface include radio frequency communications circuitry.
8. The system of claim 4, wherein the wireless communications interface and the further wireless communications interface include infrared communications circuitry.
9. A data communications method comprising:
selecting a code;
detecting a remote communications device;
providing the code to the remote communications device;
receiving from the remote communications device data accompanied by the code; and
ignoring data not accompanied by the code.
10. The method of claim 5 comprising:
activating the remote communications device; and
searching for the remote communications device for a predetermined time period.
12. A method of providing selected information comprising:
coupling to a communications network;
determining a state of an appliance communication system; and
receiving selected information from the communications network in accordance with the state of the appliance communications system.
13. The method of claim 12, comprising:
transmitting further information to the communications network in accordance with the state of the appliance communications system.
14. An interface bridge device comprising:
a processor;
a wireless interface; and
a power line interface, wherein the wireless interface and the power line interface are selectively coupled under the control of the processor.
15. A mixer apparatus comprising:
a motor;
a processor, the processor controlling the operation of the motor and monitoring the operation of the motor;
a power line interface, the power line interface being coupled to the processor; and
a weight sensor, the weight sensor being coupled to the processor.
Description
    FIELD OF THE INVENTION
  • [0001]
    The present invention relates to intelligent appliances and systems and methods whereby such appliances can interact with each other.
  • BACKGROUND INFORMATION
  • [0002]
    The use of power lines for the communication of data is well known. Power line communication (PLC) systems and methods have been used in a variety of applications, including the control of household appliances. One manufacturer, X10 Ltd. of Seattle, Wash. provides a system comprising modules for controlling the application of power to appliances connected thereto in accordance with control signals generated by a controller and communicated over 110 VAC power lines. Like the modules, the controller plugs into the power lines. Each module includes a switch for selecting one of a plurality of identifiers by which the module is addressed by the controller, thereby allowing a plurality of appliances in a household to be controlled individually by one controller. The X10 system also includes a wireless controller which communicates via RF with a unit which is plugged into the power lines. The system can also communicate with devices such as battery-powered passive infrared motion detectors and other security-related devices via radio frequency (RF) links. The X10 system also includes a computer interface allowing a personal computer (PC) to control and program the system.
  • [0003]
    Systems such as the aforementioned suffer from several limitations and drawbacks. For example, the degree of control is limited to simply turning appliances on and off. There is no capability of communicating information between the controller and the appliances or among the appliances. Moreover, the aforementioned system does not provide a method of adding components and modifying the system which is user-friendly and flexible while providing a high degree of security.
  • SUMMARY OF THE INVENTION
  • [0004]
    The present invention provides a novel system whereby two or more appliances or devices can communicate and interact with each other over common power lines within a building. In an exemplary embodiment, the system comprises a controller device and a further device, such as a coffee maker appliance, that are each coupled to and powered from the wiring of a house. The controller and appliance communicate with each other over the household power lines using a bi-directional power line communications (PLC) protocol. The appliance can operate in a stand-alone mode or in accordance with messages received from the controller via the PLC interface. The appliance generates status messages that are received by the controller, thereby keeping the controller apprised of the state of the appliance.
  • [0005]
    In an exemplary embodiment, the controller is capable of communicating with external networks such as the Internet over a telephone connection or the like.
  • [0006]
    In a further exemplary embodiment, the present invention provides a system that allows wireless communication of data to and from appliances. As such, battery-powered devices or appliances that are not coupled to power lines can communicate and interoperate within a system of the present invention.
  • [0007]
    The present invention also provides intelligent appliances that are capable of communicating and interoperating in a system in accordance with the present invention.
  • BRIEF DESCRIPTION OF THE DRAWING
  • [0008]
    [0008]FIG. 1 shows a block diagram of an exemplary embodiment of a system in accordance with the present invention.
  • [0009]
    [0009]FIG. 2 shows a block diagram of an exemplary generic appliance in accordance with the present invention.
  • [0010]
    [0010]FIG. 3 shows a flow chart of an exemplary procedure for configuring a system in accordance with the present invention.
  • [0011]
    [0011]FIG. 4 shows an exemplary embodiment of a console device in accordance with the present invention.
  • [0012]
    [0012]FIG. 5 shows a block diagram of an exemplary embodiment of a console device in accordance with the present invention.
  • [0013]
    [0013]FIG. 6 shows an exemplary embodiment of an alarm clock device in accordance with the present invention.
  • [0014]
    [0014]FIG. 7 shows a block diagram of an exemplary embodiment of an alarm clock device in accordance with the present invention.
  • [0015]
    [0015]FIG. 8 shows a block diagram of an exemplary embodiment of a hot beverage brewing device in accordance with the present invention.
  • [0016]
    [0016]FIGS. 9A and 9B show an exemplary embodiment of a stand mixer device in accordance with the present invention.
  • [0017]
    [0017]FIG. 10 shows a block diagram of an exemplary embodiment of a stand mixer device in accordance with the present invention.
  • [0018]
    [0018]FIG. 11 shows a block diagram of an exemplary embodiment of a heating blanket device in accordance with the present invention.
  • [0019]
    [0019]FIG. 12 shows a block diagram of an exemplary embodiment of a PLC/wireless bridge device in accordance with the present invention.
  • [0020]
    [0020]FIG. 13 shows a block diagram of an exemplary embodiment of a smoke detector device in accordance with the present invention.
  • [0021]
    [0021]FIG. 14 shows an exemplary embodiment of a blood pressure monitoring device in accordance with the present invention.
  • [0022]
    [0022]FIG. 15 shows a block diagram of an exemplary embodiment of a blood pressure monitoring device in accordance with the present invention.
  • [0023]
    [0023]FIG. 16 shows an exemplary embodiment of a weight measurement device in accordance with the present invention.
  • [0024]
    [0024]FIG. 17 shows a block diagram of an exemplary embodiment of a weight measurement device in accordance with the present invention.
  • DETAILED DESCRIPTION Control and Communications System
  • [0025]
    [0025]FIG. 1 is a block diagram of an exemplary embodiment of a system in accordance with the present invention. The system can be used in a variety of settings such as in a house 10 which typically has a plurality of rooms 12. The house 10 is typically coupled to a power network 20 and one or more communications networks 30, such as a PSTN or CATV network. Power, typically 50/60 Hz, 110/220 VAC, is provided to the house 10 in a known way over a power line 25 and distributed within the house over internal power lines 27 coupled to outlet boxes 29 arranged among the rooms 12 of the house. Communications, such as telephone or cable television signals are provided to the house 10 over one or more communication lines 35, in a known way.
  • [0026]
    The exemplary system of FIG. 1 comprises a plurality of devices or appliances (e.g., 50, 52, 54) that can be coupled to the power lines 27 of the house 10 by being plugged into a power outlet 29. The exemplary system of FIG. 1 also includes devices or appliances (e.g., 72, 74, 76) that are not plugged into any outlet. These will be described more fully below.
  • [0027]
    The various devices of the present invention that are coupled to the power lines 27 of the house are capable of receiving and/or sending data over the power lines 27 using a power line communications (PLC) protocol, described more fully below. (Devices which communicate via PLC will be referred to herein as PLC devices or appliances.) A system in accordance with the present invention includes at least two PLC devices, at least one of which acts as a controller. In the exemplary embodiment of FIG. 1, a kitchen console 50 and an enhanced function alarm clock 60 both act as controllers. The console 50 and the alarm clock 60 can be used to control the operation of and to receive and display information from other devices or appliances in the system. The controllers 50 and 60 may also be coupled to an external communications network (e.g., the internet, world wide web) via telephone, DSL or cable TV lines 35 or the like, or via a wireless link such as cellular telephone, satellite or the like. Such external access provides the system of the present invention with a wide array of enhanced capabilities, described more fully below. Other PLC devices in the exemplary system of FIG. 1 include a stand mixer 52, a coffee maker 54 and an electric blanket 56. A conventional PLC device 62, such as the AM465 Lamp Module or AM466 Appliance Module available from X10 Corp., can also be included in an exemplary system of the present invention, for controlling the application of power to a lamp 64 or an appliance. The system of the present invention is preferably backward compatible with such conventional PLC devices (e.g., the PLC interface circuitry of the various devices of the present invention is preferably compatible with the X10 protocol as well as the more advanced EIA-600 protocol described more fully below.) The PLC devices 52, 54 and 56 receive commands and/or data from the controllers 50 and 60 and transmit status information to the controllers 50 and 60. The functions of the various PLC devices and the messaging used in the system of the present invention will be described more fully below.
  • [0028]
    The exemplary system of FIG. 1 may also include a heating, ventilation and air conditioning (HVAC) system 85 which includes a PLC interface and is thus capable of sending and receiving commands and data over the power lines 27. The HVAC system 85 may be coupled to a thermostat 78 which includes a PLC interface or a wireless interface, described below, for communicating within a system of the present invention.
  • [0029]
    The exemplary system of FIG. 1 comprises a further device 70 which includes two interfaces: a PLC interface for communicating with other PLC devices over the power lines 27, and a wireless interface for communicating with one or more devices that are not powered via the power lines 27 and thus lack PLC interfaces. (The latter devices will be referred to as wireless devices.) The device 70 acts a bridge between the PLC devices and the wireless devices, thereby allowing them to communicate with each other. (The device 70 will therefore be referred to as a PLC/wireless bridge.)
  • [0030]
    The exemplary system of FIG. 1 includes several wireless devices: a foot scale 72, smoke detectors 74, and a blood pressure monitor 76. The wireless devices 72, 74, and 76 communicate with the bridge device 70 over a wireless link. In a preferred embodiment, such a link uses radio frequency (RF) signals, although other wireless technologies such as infrared (IR) may also be used. RF is preferred since it does not require an unobstructed line-of-sight path between the transmitting and receiving devices thereby affording greater freedom in the placement of devices.
  • [0031]
    The exemplary system of FIG. 1 also includes an interface device 58 for interfacing devices such as personal computers (PC) to the system of the present invention. The interface device 58 comprises a PLC interface and a further interface, such as an RS-232 serial interface, for coupling to a conventional PC 59. Thus coupled to the system, the PC 59 can act as a system controller. Like the console 50 and the alarm clock 60, the PC 59 may also be linked to an external communications network over telephone lines, cable, or the like.
  • [0032]
    [0032]FIG. 2 is a block diagram of an exemplary embodiment of a device 200 in accordance with the present invention for use in a system of the present invention. The exemplary device of FIG. 2 represents a generic device or appliance typically having a superset of the functionality that may be found in any one device. Generally, each of the aforementioned devices or appliances can be implemented with a subset of the functional blocks shown in FIG. 2.
  • [0033]
    As shown in FIG. 2, each device 200 includes a central processing unit (CPU) 220; a read-only memory (ROM) 222; non-volatile memory 224, such as electrically-erasable programmable ROM (E2PROM) or flash memory; random access memory (RAM) 226; and some form of input/output (I/O) controller 228 coupled to one or more of a set of sensors 230, actuators 240, switches 250, indicators 260 and sound generating devices 265. The capacities and capabilities of the various components and the mix and function of the sensors, actuators, switches and indicators will depend on the device represented by the block diagram of FIG. 2. For example, an exemplary embodiment of the mixer appliance 52 includes several buttons, a multi-segment LCD display, a dial, whose position is detected by a rotary encoder, a current sensor (for sensing the torque applied by the mixing motor), a variable speed motor controller, and a plurality of load cells for measuring weight.
  • [0034]
    The CPU 220, ROM 222, E2PROM 224, RAM 226 and I/O block 228 can be implemented as a combination of one or more discrete components or with a single-chip micro-controller 205 such as those of the Z8 series manufactured by Zilog Corporation. Some devices, such as the console 50, described more fully below, may include mass storage 229 with fixed and/or removable storage media (e.g., hard drive, CDROM, floppy disk, DVD, etc.) or the like. The blocks 220-229 are coupled to and intercommunicate over a bi-directional bus 215 in a known way.
  • [0035]
    Devices of the present invention that are powered from household power (e.g., 110 VAC) or are otherwise coupled to the power lines 27 (i.e., the aforementioned PLC devices) comprise PLC interface circuitry 210. The PLC interface 210 couples to the power lines 27 via a conventional power connector 202. The interface 210 is coupled to the bus 215 and communicates with the other blocks in the device 200 which are coupled to the bus. The PLC interface circuitry 210 can be implemented using an SSC P300 integrated circuit (IC), available from Intellon Corporation of Ocala, Fla. Other implementations for the PLC interface are possible, although it is preferable that the PLC interface comply with an industry standard such as the EIA-600 standard (or “CE Bus” standard). The EIA-600 standard PLC interface provides 9.6-19.2 Kbaud, bi-directional communication over standard household power wiring. In an exemplary system of the present invention, the data rate is 9.6 Kbaud, although rates as low as 1.2 Kbaud may be used. The EIA-600 standard also provides higher level messaging functions using a Common Application Language (CAL).
  • [0036]
    The aforementioned wireless devices 70-78 comprise an RF interface 270 and/or an IR interface 280, depending on the wireless technology employed. The RF interface 270 may be bi-directional or, in order to limit power consumption, unidirectional (i.e., transmit-only), and can be implemented in a known way. In the case of a unidirectional RF interface 270, it may be desirable to also include an IR interface 280 which is at least capable of receiving. As described more fully below, the wireless devices 70-78 can use such an interface to receive programming information upon initial setup. Moreover, an IR interface 280 can be included in any device (PLC or wireless) to allow the device to communicate with other devices such as Personal Digital Assistants (PDAs) or telephones having IR interfaces. It may also be desirable to provide some devices with a docking interface 290 for devices such as PDAs. For example, with a PDA port 290 (or IR interface 280) the mixer 52 can be controlled directly from a PDA either in a manual mode (e.g., with the PDA acting as the mixer's control panel) or in an automatic mode (e.g., with the mixer executing a recipe downloaded from the PDA). This capability would allow an appliance of otherwise conventional functionality to greatly expand its capabilities. A device with a PDA coupled thereto (either directly or by a wireless link) may also act as a system controller.
  • [0037]
    Devices such as the kitchen console 50 and alarm clock 60 that are capable of external data communication include a modem 212, or the like, for communicating over the medium of choice (e.g., telephone, cable, wireless).
  • [0038]
    While each of the appliances of the present invention, such as the mixer 52, coffee maker 54, electric blanket 56, alarm clock 60, scale 72, smoke detector 74 and blood pressure monitor 76, are capable of operating individually in a stand-alone mode, adding an additional device of the present invention, such as a console 50, to the same household creates a control and communications system which provides substantially enhanced functionality and capabilities. A user may thus, for example, first purchase a coffee maker 54 and then add a console 50 or alarm clock 60. When a controller 50, 59, 60 and another PLC device are plugged into the power lines 27 of a household 10, an appliance communication and control system is thus formed, in accordance with the present invention. When a PLC/wireless bridge 70 is added, a mix of wireless components 72, 74, 76 can also be included in the system.
  • [0039]
    An exemplary procedure for setting up a system and adding devices to a system in accordance with the present invention will now be described with reference to FIG. 3.
  • [0040]
    When a controller, such as the console 50 or the alarm clock 60, is plugged into the power lines 27 of a house 10, it will first perform a search (step 302) for other controllers 50, 59, 60, that may be plugged into the power lines of the house. If the controller 50, 59, 60 determines (step 303) that there are no other controllers plugged into the power lines 27 of the house 10, it will select a house code (step 304) for the house 10 and proceed to search for other PLC devices (step 306) that may already be in the house (operating as stand-alone appliances) but that have not yet been enabled or programmed for communication over the system of the present invention. PLC devices in accordance with an embodiment of the present invention that are powered and operating will periodically emit identifying information (e.g., model number and serial number). The controller 50, 59, 60 will monitor the PLC interface for such identifying information (step 306). If the controller 50, 59, 60 detects valid identifying information that it has not detected before (step 307), thereby indicating the detection of a new device, it will provide the new device with the house code (step 308). The new device will store the house code in its non-volatile memory and preferably acknowledge this event with an appropriate message to the controller 50, 59, 60. Within the acknowledgement or a subsequent message, the new device may also provide the controller 50, 59, 60 with any relevant additional data for the device (e.g., software version, register contents, configuration information, etc.) The controller 50, 59, 60 will then enter the device information (e.g., serial number, model number, software version, etc.) into a database in its non-volatile memory. Some device information need not be stored at the controller, however, since it can be queried at any time the device is coupled to the system. For example, it may not be cost or space efficient or useful to store the software versions and manufacturing lot numbers of the appliances in each controller, but the information will still be available at the appliance and can be retrieved as needed.
  • [0041]
    Once a device has been programmed with a house code, it will respond only to messages that reference that house code. Moreover, messages originating from the device will reference the house code stored in the device. Any further messages communicated between the controller 50, 59, 60 and the device must include the correct house code or else they are ignored by the recipient.
  • [0042]
    By storing the house code in non-volatile memory, an appliance may be removed and reconnected to a system of the present invention and it will retain its associated house code. For example, a stand mixer 52 is often kept under the counter and plugged in only when needed. It will keep its house code so that it does not need to be reinstalled in the home system every time it is plugged in. If the house code stored in an appliance is to be changed, the user, in an exemplary embodiment, must initiate a reset sequence to clear out the old house code, such as by pressing and holding a certain button or buttons while the device is powered. This would restore the appliance to its default state (i.e., as from the factory), ready to be reinstalled in the same or a different home with a different house code.
  • [0043]
    Because multiple homes may be coupled to the same power distribution trunks 25, as shown in FIG. 1, it is possible for PLC signals from one house 10 to propagate to another house 90 coupled to the same power distribution trunks 25. By thus assigning a house code to the devices within each house, in accordance with the present invention, a device within a house will communicate only with a controller within the same house and not with controllers located in other houses coupled to the same power distribution trunks 25. This arrangement prevents a controller 92 or a PLC appliance 94 located in a house 90 from communicating with the controllers or appliances of the house 10, and vice versa.
  • [0044]
    If a newly added controller 50, 59, 60, detects that there is another controller already in the system (step 303), the newly added controller obtains the house code from the established controller, stores the house code in its non-volatile memory and uses the house code in its communications, as in the case of any newly added PLC device.
  • [0045]
    In an exemplary embodiment of a method for adding an appliance or a controller to a system of the present invention, an already installed controller is placed in a search mode that looks for new appliances and controllers in the home. This special mode times out after a predetermined period of time (e.g., 5 minutes) within which the user would have to plug in or activate the new appliance or controller. The likelihood of a neighboring system having one of its controllers in that mode at the same time is extremely low, in which case the neighboring controllers would not detect any one else's appliances as they are installed. In the unlikely case that two buildings having sufficient electrical connection to detect each others signals and each had a controller in the same search mode at the same time, then the controllers would both show any appliance newly installed in either system during the time period of the search mode. In this embodiment, the user is required to confirm the addition of each new appliance by pressing a button or taking a similar action at the controller. If a user nonetheless accidentally programs an appliance in a neighbor's house to be part of his system, then the user could have control of that appliance until the real owner corrected the problem. Presumably the real owner would immediately be aware of the mistake, since his controller would not be able to find the new appliance (since it attached and configured to the neighbor's house code). He would then be directed (e.g., by the instruction manual or on-line instructions provided by the controller) to initiate a house code reset in the appliance and to try again. This would clear the neighbor's house code from his appliance and allow him to correctly configure it for his home.
  • [0046]
    The communication and house code setup described above would apply equally to the addition of new controllers into a home. In addition to the original controller telling the new controller what the house code should be, it could also transfer controller-specific information such as information about user-selected identifiers for each of the appliances in a home. For example, an internal table could relate the serial number of each smoke alarm to a room (basement, garage, hallway, etc.) Also, multiple appliances of the same type may be described by use or owner, such as with “his” and “hers” coffee makers that might be loaded with different types of coffee.
  • [0047]
    [0047]FIG. 3 illustrates an exemplary procedure for adding a new appliance to an already operational system of the present invention. To initiate the addition of a new appliance, the user preferably puts the controller 50, 59, 60 into a search mode (steps 322). The user then powers the new device (step 324) which then begins to transmit its identifying information (e.g. model number and serial number)(step 326). The controller 50, 59, 60 monitors the PLC interface (step 306) and proceeds as described above if a new device is detected. The controller 50, 59, 60 will stay in the search mode for a predetermined period of time (e.g., 1 min) and then return to normal operation (step 309).
  • [0048]
    In an alternative embodiment, a newly added device can initiate this procedure without requiring the user to place the controller 50, 59, 60 in a search mode. This may create the problem however, of causing a controller in a neighboring building to inadvertently add the new device to the neighbor's system. In this case, before the controller provides the new device with the house code, the user can be asked to confirm this operation by manually entering the device's serial number into the controller. The controller then checks the user-entered serial number against the serial number received from the new device and if there is a match, will proceed to add the new device to its database and to provide the new device with the house code.
  • [0049]
    In an exemplary embodiment, the initial programming of wireless devices such as the scale 72, smoke detector 74 and BP monitor 76 is handled primarily by the PLC/wireless bridge device 70. In this embodiment, the bridge device 70 programs the newly added wireless device with the house code and wireless communications channel information via an IR interface, as described more fully below. The newly added wireless device confirms its initialization by transmitting its identifying information (e.g., serial and model numbers) along with the house code to the bridge device 70. The bridge device 70, in turn, via the PLC interface, informs the system controller of the new wireless device and provides to the system controller the identifying information for the newly added wireless device. The controller then adds the new wireless device to its database.
  • [0050]
    During normal operation, the controller 50, 59, 60 will periodically broadcast (e.g., hourly, daily) a supervisory message to all of the devices on the system (step 312). In addition to the house code and other system-specific information, the supervisory message preferably includes the current time and date. A properly operating device will reply to the supervisory message. Devices which include a clock function can use the time and date broadcast in the supervisory message to synchronize their clocks. If the controller 50, 59, 60 determines (step 314) that one or more devices listed in its database as active did not reply to the supervisory message, the controller will assume that the non-responding devices were removed from the system and thus remove those devices from its database (step 316). Preferably, the controller 50, 59, 60 maintains a log of devices that are removed from the system including the time and date of removal. When a safety device such as a smoke detector 74 or the like is removed, the controller preferably generates an alert to inform the user.
  • [0051]
    The action the controller takes when a previously logged appliance is absent from the system preferably depends on the appliance. A safety or security related device such as a smoke alarm or motion sensor may warrant the controller setting off an alarm or other more urgent notification. An appliance that is expected to be removed and reconnected regularly, such as the stand mixer, may simply be displayed on the controller with its current connection status only when the user causes the controller to enter a status display mode. In an exemplary embodiment, the controller will rely on the user to tell it to remove a non-connected device from its internal databases, in most cases. For example, if a smoke detector has failed and must be discarded, the controller will detect the smoke detector's absence and can provide an indication to the user. The user may then be required to confirm that the device should be permanently removed from the system. This can be either by a user initiated command, or by a user response to a controller's query, e.g. a display of the question “HALLWAY smoke alarm not detected. Remove from system permanently?”.
  • [0052]
    A further procedure may be used to add conventional devices, such as X-10 devices, to a system of the present invention. With such devices, a house and a device code are manually selected at each device. Being listen-only, such devices do not broadcast their code settings. When adding such a device to a system of the present invention, the user manually enters the house and device codes selected on the device into the system controller. The system controller then uses those codes when communicating with that device (e.g., using the X-10 protocol).
  • Intelligent Appliances and Devices
  • [0053]
    Each of the devices and appliances mentioned above will now be described in greater detail with reference to FIGS. 4 through 17.
  • PLC Appliances and Devices
  • [0054]
    KITCHEN CONSOLE
  • [0055]
    [0055]FIG. 4 shows an exemplary embodiment of a console 50, in accordance with the present invention. The console 50 comprises a housing 405 which houses the circuitry of the console including a touchscreen display 410. The touchscreen display 410 can be implemented using conventional components, such as a 12″ diagonal, 800×600 resolution, back-lit, color, liquid crystal display (LCD) with a touch-sensitive array overlaid thereon. In an alternative embodiment, the console 50 may be provided with a keyboard and/or a pointing device such as a mouse or track ball (not shown) in addition to or as alternatives to the touchscreen. Since the console 50 will likely be used in a kitchen, it is preferable that the console be easy to clean and be resistant to the often harsh conditions prevalent in a kitchen setting.
  • [0056]
    The exemplary console 50 is provided with a power cord and connector 202 and a telephone cord and connector 213. The housing may include an opening 407 for inserting removable storage media 229, such as a CDROM, DVD, floppy disk, or smart card into the console.
  • [0057]
    The touchscreen display 410 may display a multitude of images and combinations thereof such as one or more softkeys 412, static or moving images 414 or other display elements 416 such as advertising, promotional offers, or blocks of information such as weather, news headlines, stock tickers, or the like. Depending on the nature of the display element, pressing the touchscreen at the display element can provide additional information or initiate further actions. For example, a display element 416 may display an offer of a discount coupon. By pressing on the display element, the discount coupon can be added to an electronic shopping list maintained by the console 50.
  • [0058]
    It should be noted that a similar user interface can be provided with a PC 59 coupled to the system of the present invention. In that case, a mouse and keyboard would most likely be used in place of the touch-sensitive screen.
  • [0059]
    [0059]FIG. 5 shows a block diagram of the major functional elements of the circuitry of the console 50. In an exemplary embodiment, the CPU is a Pentium class processor, from Intel Corporation, 64 MB of RAM 226 and 1 KB of NVM are included. Mass storage 229 comprises a 6 GB hard drive and a CD-ROM drive. The I/O block 228 comprises a video control circuit, for driving the LCD 261, a touchscreen scanning circuit for detecting presses of the touchscreen array 251 and a sound control circuit for driving a sound generating device 265, such as a loudspeaker, piezoelectric element or the like. The sound generating device 265 is used to produce various sounds such as alarms, prompts, key clicks, etc. or to reproduce voice or music. Each of the aforementioned blocks can be implemented using known devices.
  • [0060]
    The console 50 includes a PLC interface 210 and may also include an RF interface 270 and/or an IR interface 280.
  • [0061]
    A modem 212 is included to allow the console to communicate over conventional telephone lines. In an alternate embodiment, the modem itself may be a PLC device, accessible to other PLC devices, such as the console 50, via the PLC interface. The kitchen console 50 may also include a telephone and/or speakerphone (not shown) for voice communications over the telephone lines.
  • [0062]
    As discussed, the console 50 serves as a controller in an appliance communication and control system of the present invention. In addition to providing a user interface, the console 50 also provides a communications interface to external networks, such as the Internet, via its telephone connection. In a typical application, the console 50 can be used, for example, to browse the Internet for recipes. The recipes can be displayed on the touchscreen 410 with each recipe step having an associated softkey 412 that the user can press to request additional information (e.g., ingredient substitutions) or to indicate that the associated step has been completed. The console 50 can also provide the recipes to other devices in the system, such as the mixer 52. As explained more fully below, the mixer 52 can display the recipe steps and execute mixing functions in accordance with the recipe steps.
  • [0063]
    As a system controller, the console 50 maintains identifying and status information for each of the devices coupled to the system. The console 50 can thus be used to display status information for the various devices in the system. For example, if the coffee maker 54 has completed a brew cycle, it can send a message to the console 50 informing it of this event. The console 50 can then display a graphic indicating that the coffee maker 54 is ready to serve coffee.
  • [0064]
    In addition to device status and identifying information, the controller can also maintain a log of any error messages or alarms generated by the controller or a device.
  • [0065]
    Moreover, the various devices and/or the controller can maintain usage information, e.g., button presses, operational cycles, etc. For example, the coffee maker 54 can keep track of the number of presses of each button on its control panel, the start and end times of each brew cycle, etc. This information can be maintained locally at the appliance and uploaded to the controller periodically or upon demand.
  • [0066]
    Additionally, the controller (e.g. console 50) can supply the system information remotely. This ability is helpful, for example, when obtaining customer support for an installed system. By uploading the system information to the customer support system, a customer representative can be provided with the system information conveniently and accurately during a customer service call. Furthermore, the customer support system may also be able to run diagnostic tests remotely on a customer's system and to download the latest software for each appliance. The appliance usage information is also valuable in determining how the appliances are being used, thereby giving insights as to how they can be improved or modified.
  • [0067]
    The console 50 by virtue of its external connectivity provides a point through which the system of the present invention can be monitored and controlled remotely. For example, by accessing the console 50 over the internet or by telephone, a user can obtain the status of the various devices and appliances within the system. By the same connection, the user can also control the various devices and appliances. For example, a user can dial the console 50 and reset the brewing start time of the coffee maker 54 or activate a preheat feature of the heating blanket 56. The user can also query the system to determine whether any appliance or device has been activated or used during a specified period.
  • [0068]
    Remote access to the system of the present invention via a system controller, such as the console 50, is preferably secured such as by requiring the user to enter a password. Local access and activation of the system can also be controlled by password. For example, an authorized user can lock or disable selected appliances of the system so as to disable their operation for a preselected period of time or until the correct password is provided to the system. Such a locking function can be performed remotely, at the system controller or at each appliance. The user can also assign one or more temporary access passwords which allow temporary access to or activation of all or some of the system appliances. Such a feature is useful, for example, where the user would allow cleaning personnel to use the coffee maker 54 between the expected working hours but would not allow the cleaning personnel to use the mixer or the kitchen console 50. The user can also access the system to determine if and when the temporary access password has been entered.
  • [0069]
    The system of the present invention, via the console 50, or other such system controller, can interact with networks such as the Internet in context-specific and targeted modes that are heretofore unprecedented. Via the console 50, the system of the present invention can browse the Internet and access information therefrom as a function of the operational state of the system and/or of information gathered by the system. For example, when a user is accessing a recipe on a recipe website, the user can add all or some of the listed ingredients to a shopping list by pressing the touchscreen next to or on the respective ingredients. Selected ingredients may also have manufacturers' discount coupons attached thereto. Once completed, the user can electronically send the shopping list, with coupons, to an on-line grocer for processing, payment and delivery. The list can also be printed at a printer coupled to the system (e.g., via the PC 59) or uploaded to a PDA via the IR interface 280 or other serial data interface of the console 50. Once in the PDA, the list can then be downloaded to a receiving system at a grocery store for processing.
  • [0070]
    The system of the present invention can also provide a valuable targeted marketing function. In addition to the aforementioned coupon scenario, the system controller, such as the console 50, can receive and display advertising and promotional information which can be tailored to a specific task being carried out by a user with the system of the present invention. For example, when the user is programming the coffee maker 54, the console 50 can download or display a previously downloaded advertisement (preferably downloaded during low network usage hours) for a particular brand of coffee which may also include an electronic coupon. If the user wishes to purchase the item, he can add it to a shopping list, as described above. In another exemplary scenario, if weight measurements uploaded from the scale 72 to the console 50 suggest a significant weight increase, the console can download suggestions for dietetic food or an advertisement for a health spa. Preferably, the provision of such information and advertising can be controlled by the user.
  • [0071]
    The console 50 can also provide a variety of additional functions. For example, the console can serve as a home organizer or household information center, storing and displaying messages, reminders, telephone numbers and addresses. The console 50 can also be programmed to search for and download news and information such as sports and weather reports with pre-programmed “hot keys” for selected websites. Periodically updated information such as news can preferably be downloaded during low traffic hours and presenting later on request. The console 50 may also provide personalized “homepages” for each of multiple users for storing and providing restricted access to personal information such as memos and weight and blood pressure information obtained from the scale 72 and BP monitor 76.
  • [0072]
    ALARM CLOCK
  • [0073]
    [0073]FIG. 6 shows an exemplary embodiment of an alarm clock 60, in accordance with the present invention. As mentioned, the alarm clock 60, like the console 50, can act as a system controller. A system in accordance with the present invention may have multiple controllers, although the various controllers may have different capabilities and features. Whereas the console 50 will typically be located in a kitchen, the alarm clock 60 will typically be located in a bedroom.
  • [0074]
    As shown in FIG. 6, the clock 60 comprises a housing 605, which houses the circuitry of the clock, a display 610 and buttons 607 and 622-626. The exemplary alarm clock 60 is provided with a power cord and connector 202 and a telephone cord and connector 213. The housing 605 may comprise an opening (not shown) for a sound generating device such as a speaker.
  • [0075]
    The display 610 may comprise a time display field 614, with a set of seven-segment digit elements, a plurality of fixed graphics 616 which can be selectively enabled and a bit-mapped display field 618. A wide variety of display layouts and elements are possible. For example, in an alternate embodiment, the seven-segment digit elements can be replaced with a graphic representation of an analog-type clock face. The display 610 can be implemented in a known way using LCD technology and is preferably back-lit.
  • [0076]
    The buttons 622-626 are used to move a cursor and/or navigate through graphics, menus, etc. displayed on the display 610. The buttons 607 are used for conventional alarm clock functions such as snooze, alarm set, etc.
  • [0077]
    [0077]FIG. 7 shows a block diagram of the major functional elements of the clock 60. A modem 212, or the like, is included to allow the clock to communicate over telephone lines. A PLC interface 210 allows the clock to communicate with other PLC devices over power lines. The microcontroller 205 controls the display 610 and receives inputs from the buttons 607 and 622-626. The alarm clock 60 may also include an IR interface 280 for communicating with wireless devices. A sound generating device 265, such as a loudspeaker, piezoelectric element or the like, is controlled by the microcontroller 205 to produce various sounds such as alarms, prompts, key clicks, etc. The alarm clock 60 may also include a radio circuit (not shown) so as to act as an alarm clock radio.
  • [0078]
    As discussed, the clock 60 may operate in a stand-alone capacity as an alarm clock or may serve as a controller in an appliance communication and control system of the present invention. As a controller, the clock 60 performs many of the same functions as the console 50. In addition to providing a user interface, the clock 60, like the console 50, provides a communications interface to external networks, such as the telephone network and the Internet, via its telephone connection. Among other functions, the alarm clock 60 can obtain the correct time and software updates by dialing a predetermined telephone number or accessing an appropriate website upon start-up and/or periodically. Once it has obtained the correct time, the alarm clock 60 can cause all of the other devices in the system with clock functions (e.g., coffee maker, stand mixer) to set their clocks accordingly.
  • [0079]
    Like the console 50, the alarm clock 60, as a system controller preferably has extensive communications capabilities. For example, the alarm clock 60 can preferably be accessed directly over the Internet, it can generate and transmit e-mail alerts over the Internet, etc. In an exemplary embodiment, the alarm clock 60 can access the Internet through a portal that supports a lower level protocol, performs the translations required to access the desired information on the Internet through higher level protocols such as TCP/IP, HTML and the like, and also packages gathered information in a form that is most appropriate to send back to the alarm clock. This is similar to what has already been done to support small screen devices such as the 3Com Palm VII which has a cellular wireless Internet connection capability.
  • [0080]
    The clock 60 can also be used to display status information for the various devices in the system. For example, if the battery level of a smoke detector 74 has fallen below a safe level, a status message will be sent from the smoke detector (via the PLC/wireless bridge 70) to the clock 60 informing the clock of this condition. The clock 60 can then display a graphic on the display 610 indicating that a smoke detector needs new batteries and identifying the particular smoke detector.
  • [0081]
    In another typical application, for example, if a smoke detector 74 has detected the presence of smoke, an alarm message will be sent from the smoke detector (via the PLC/wireless bridge 70) to the clock 60 informing the clock of this condition. The clock 60 can then display a graphic on the display 610 indicating that a smoke detector has been activated and identifying the particular smoke detector. The alarm clock 60 can also generate an alarm, synthesized voice message, or the like via its speaker 265. In addition, the alarm clock 60 may place a telephone call to one or more pre-programmed telephone numbers (e.g., monitoring service, user's cell phone) with a synthesized voice message (or coded digital data, if dialing into an automated monitoring service) informing the called party of the alarm condition.
  • [0082]
    The alarm clock 60 can also perform some of the informational and organizational functions described above in connection with the kitchen console 50, to the extent allowed by the alarm clock's more limited capabilities. For example, the alarm clock 60 can provide access to a proprietary news service, whereby news headlines of interest to the user, local weather and traffic conditions, etc. could be downloaded by the clock during the night so that the user can quickly browse this information on the clock display in the morning upon waking. Furthermore, the clock can modify its or the system's operation in accordance with the information received. For example, if weather or traffic conditions indicate a longer than normal commute time for the user, the alarm clock can be programmed to automatically wake the user earlier to still be able to arrive at work on time. The alarm clock 60 can also be programmed to advance the activation of the coffee maker 54, accordingly.
  • [0083]
    COFFEE MAKER
  • [0084]
    [0084]FIG. 8 shows a block diagram of an exemplary embodiment of a coffee maker 54 in accordance with the present invention. As shown in FIG. 8, the coffee maker 54 comprises a PLC interface 210 coupled to a microcontroller 205. The microcontroller 205 receives inputs from a set of buttons or switches 252, and controls a display 262.
  • [0085]
    As with conventional coffee makers, the coffee maker 54 comprises a heater 810 and a water reservoir 820. The heater 810 is powered by heater control circuitry 242 which is controlled by the microcontroller 205. The reservoir 820 is provided with a water sensor 232. The water sensor 232 senses whether there is a predetermined quantity of water in the reservoir 820. The sensor 232 can be implemented in a variety of known ways (e.g., capacitive, conductive, etc.) The sensor 232 is preferably placed at a level in the reservoir 820 which ensures that a desired minimum amount of water (e.g., four cups) is present in the reservoir 820 before a brew cycle is initiated.
  • [0086]
    In an exemplary embodiment, the sensor 232 comprises two electrical conductors that project into the reservoir 820. The impedance between the conductors varies depending on the presence of water at the conductors. A circuit 235 senses the impedance across the two conductors and provides a binary signal to the microcontroller 205 in accordance with the sensed impedance. The binary signal thus provides an indication of the absence or presence of water in the reservoir 820.
  • [0087]
    In accordance with messages received via the PLC interface, the microcontroller 205 of the coffee maker can control the activation or deactivation of the heater 810, thus controlling the start or finish of a brewing cycle. Via the PLC interface, the coffee maker 54 can be commanded to immediately begin or end a brew cycle or it may be commanded to begin or end a brew cycle at a specified future time.
  • [0088]
    The microcontroller 205 can transmit messages via the PLC interface 210 indicating the progress of a brewing cycle and the presence of water in the water reservoir 820.
  • [0089]
    Before initiating a brewing cycle, the coffee maker 54 preferably will take into account the status of the water reservoir. If the coffee maker 54 receives a command via the PLC interface to begin a brewing cycle while the sensor 232 indicates that the reservoir does not contain a minimum amount of water (e.g., four cups), the microcontroller 205 can override the command and keep the heater 810 off. The coffee maker 54 can also transmit a message to the system controller (e.g., console 50) indicating that the water reservoir 820 does not contain the minimum quantity of water and that the requested brew cycle will not be initiated. The system controller, in turn, can indicate the low-water condition to the user, thereby prompting the user to refill the reservoir 820. Once the reservoir is refilled, the brewing cycle request can be automatically reinstated or the user can be required to request the brewing cycle anew.
  • [0090]
    In an alternative embodiment (not shown) the coffee maker 54 may be coupled to a water source, such as a household water supply line, and may draw water as needed. If the coffee maker receives a command to begin a brew cycle (immediately or at a future time) and the water level in the reservoir is low, the coffee maker can draw water from the supply line to fill the reservoir before beginning the brew cycle. In this embodiment, a solenoid valve (not shown) or the like is included between the water source and the reservoir 820 and is controlled by the microcontroller 205. A second water sensor (not shown) is preferably included at or near the top of the water reservoir 820 and is coupled to the microcontroller 205 so as to inform the microcontroller when the reservoir 820 is full and thus to shut off the solenoid valve.
  • [0091]
    In yet a further exemplary embodiment, the coffee maker 54 may comprise means for detecting the presence of grounds in the brew basket and for determining if the grounds have already been used. Such means can include a sensor for weighing the brew basket. A brew basket containing used grounds, which are typically wet, weighs more than the brew basket with dry, unused grounds, which in turn weighs more than the brew basket when empty. By thus weighing the brew basket, a determination can be made as to the presence and state (e.g., wet or dry) of grounds in the brew basket.
  • [0092]
    As with other appliances in accordance with the present invention, the coffee maker 54 can also be operated in a stand alone mode. A control panel comprising buttons 252 and a display 262 are used for this purpose and thus provide a standard set of functions such as a timer/clock, “ON/OFF”, “set delayed brew time”, etc. The display 262 may also be used to display status information (e.g. “BREW LATER”, “ADD WATER”). The buttons 252 can also be used to override remote PLC control of the coffee maker 54 or to re-program the coffee maker locally.
  • [0093]
    An additional indicator 253 (or the display 262) can be used to indicate the communications status of the coffee maker 54 over the PLC interface. If there is a controller 50, 59, 60 present on the same wiring 27, the microcontroller 205 will turn on the indicator 253. During actual communication, the microcontroller 205 can cause the indicator 253 to flash. The microcontroller 205 will keep the indicator 253 off if there is no system controller 50, 59, 60 present or if there is an error condition. If there is an error condition, additional information can be provided by the display 262 or on the display of the system controller.
  • [0094]
    MIXER
  • [0095]
    [0095]FIGS. 9A, 9B and 10 are directed to an exemplary embodiment of a mixer appliance 52 in accordance with the present invention.
  • [0096]
    [0096]FIG. 9A shows an exemplary control panel 520 for a mixer appliance 52 of the present invention. The control panel 520 comprises a display 561, one or more indicators 562, a plurality of buttons 551 and a dial 553. The mixer 52 can be controlled entirely from the control panel 520, as in a stand-alone mode, from the console 50, as in a control and communications system of the present invention, or via an IR interface 280. The IR interface 280 can be used, for example, to communicate with a PDA. The mixer 52 can also operate in an automatic or manual mode from either the control panel 520 or from the console 50. Typically, however, the mixer 52 will be operated in a manual mode from the control panel 520 and automatically from the console 50.
  • [0097]
    A schematic block diagram of an exemplary circuit for a mixer appliance 52 is shown in FIG. 10. Like other PLC appliances of the present invention, the mixer 52 comprises a microcontroller 205 coupled to a PLC interface 210. The microcontroller 205 is coupled to and controls the display 561 and indicators 562 on the mixer's control panel 520. The microcontroller 205 is also coupled to and receives inputs from the buttons 551 and the dial 553 on the mixer's control panel. The position of the dial 553 can be detected using a variety of known techniques, such as optical encoding. An encoder 555 is coupled to the microcontroller 205 to provide an indication of the position of the dial 553.
  • [0098]
    The mixer 52 comprises a motor 525 for driving one or more mixing blades 527, or the like, for processing food material in the mixing bowl 530. The motor 525 is driven by a motor control and monitoring circuit 241 under the control of the microcontroller 205. In an exemplary embodiment, the motor 525 is an alternating current (AC) motor. The motor control circuit 241 monitors the speed of the motor 525 via a tachometer input provided by a sensing device 243, such as a hall effect device. In accordance with control signals from the microcontroller 205, the motor control circuit 241 controls the speed of rotation of the motor 525 by varying the duty cycle over which power is applied to the motor. The motor control circuit 241 also includes current and back-EMF sensing circuitry to determine the load and torque being produced by the motor. This motor control circuit 241 generates a digital signal indicative of the torque, which signal is provided to the microcontroller 205. The speed control and torque sensing features of the control circuit 241 can be implemented in known ways.
  • [0099]
    The microcontroller 205 can control the mixer motor 525 in accordance with inputs to the control panel 520, messages received by the mixer over the PLC and IR interfaces or a program being executed by the microcontroller. For example, a user, via the control panel 520 can manually start or stop the mixer motor or specify a duration of operation and can also set the speed of operation using the dial 523. Via the control panel 520, console 50 or PDA, a user can access a timer function which allows the user to specify a start and stop time or a start time and a duration of operation. The timer function allows the user to set up the mixer 52 to perform a lengthy mixing process (e.g., beat eggs for 15 minutes), while freeing the user to perform other tasks without requiring the user's attention to the state of the mixer.
  • [0100]
    Messages from the console 50 received over the PLC or IR interface can command the mixer motor to start immediately or at some future time or to stop immediately or at some future time, and can also specify a speed setting (if none specified, the dial setting or some default setting can be used). Even while the mixer is under the control of the console 50, the dial 523 can be used to fine-tune the speed of the mixer motor 525 about the speed specified by the console 50. The user may override the remotely set power level or mix timer by manually adjusting the level control or timer settings, even while the mix cycle is progressing.
  • [0101]
    To prevent inadvertent starting of the mixer (either remotely or locally), the mixer 52 may also be configured so as not to allow programming of the mixer to start at some future time. It may also be desirable not to allow any starting of the mixer remotely, such as from the console 50.
  • [0102]
    The microcontroller 205 can also provide a soft start/stop feature to prevent splatter and to improve the longevity of the motor 525 and the components driven thereby. The microcontroller 205, via the control circuit 241, can gradually ramp-up or ramp-down the speed of the motor 525 in accordance, for example, with a speed profile stored in the mixer's memory.
  • [0103]
    Providing the microcontroller 205 with torque information for the motor 525 allows the microcontroller to detect a variety of conditions and to control the motor 525 accordingly. For example, if the mixer blade 525 is jammed due to an obstruction, the current drawn by the motor 525 will rise rapidly. Upon detecting this condition, the microcontroller 205 can control the motor control circuitry 241 to remove power from the motor 525.
  • [0104]
    The torque information can also be used to detect changes in the condition of the material being mixed. For example, the mixer 52 may be in the process of executing a recipe step (e.g., “MIX UNTIL A UNIFORM CONSISTENCY”) that has been downloaded from the console 50 to the mixer over the PLC interface or input locally via the mixer's control panel 520. Until a uniform consistency is achieved, the torque of the motor 525 will vary over some initial range as the mixer blades 527 randomly encounter areas within the material having different consistencies. Once uniform consistency has been achieved, however, the torque of the motor 525 and thus the current drawn by the motor will become relatively constant. Upon detection of this condition (e.g., by comparing successive current measurements), the microcontroller 205 can control the motor 525 to stop.
  • [0105]
    The exemplary mixer of FIGS. 9-10 includes a weight measurement capability. As shown in FIG. 9B, a plurality of weight sensors 535 are arranged on the base 910 of the mixer 52. In the exemplary embodiment shown, a sensor 535 is arranged between the base 910 and each of four feet 915 arranged on the base 910 of the mixer. A variety of pressure sensitive sensors such as piezoelectric sensors, strain gauges, load cells or load cells with integral strain gauges can be used for the sensors 535. Moreover, different numbers of sensors (e.g., one or more) and arrangements of sensors are possible. Known weighing arrangements and components such as are used in conventional digital scales can also be used.
  • [0106]
    The signals generated by the sensors 535 are processed by a circuit 231 which generates a digital signal representative of the weight sensed by the sensors at the base of the mixer. In an exemplary embodiment, the circuit 231 comprises an analog multiplexer 537 and a 22-bit A/D converter 237 which provides the microcontroller 205 with periodic samples of the weight measured at each of the four sensors 535. The microcontroller 205 adds the four measurements to obtain a total weight of the mixer 52 (including the contents of the mixing bowl 530). To reduce the effects of mechanical and electrical noise, the microprocessor 205 preferably adds the readings and averages and filters successive readings. The optimum sample rate and filter specifications depend on the mechanical and electrical specifics of the appliance.
  • [0107]
    The provision of weight information to the microcontroller 205 can be used for a variety of purposes. In one mode, a user can initiate an operation to weigh a batch of material by pressing a button 551 (e.g., “ON/Clear”) on the control panel 520. The microcontroller 205 determines the sensed weight at the time of the button press (the “initial weight”) and zeros the scale reading displayed on the display 561. As the user adds the material to be weighed to the mixing bowl 530, the display 561 provides a running display of the currently measured weight above the zero setting (i.e., the initial weight, the weight that was measured the last time the “ON/Clear”button was pressed). An additional button (e.g., “Units”) allows the user to select English or metric units of measurement.
  • [0108]
    In another operating mode, the weighing function may be used in carrying out a step of a recipe. For example, a recipe downloaded from the Internet by the kitchen console 50 may include a step such as “ADD TWO CUPS OF BROWN SUGAR”. Using a database of densities of commonly used ingredients, the kitchen console 50 looks up or calculates the weight of two cups of brown sugar and provides that information along with the recipe step to the mixer 52 over the PLC interface. The mixer 52 may also be capable of storing a smaller database of the more commonly used ingredients in order to perform such a conversion calculation when used in a stand-alone mode. Upon receiving the recipe step message from the console 50, the mixer first obtains an initial weight measurement using the sensors 535, and then prompts the user, via the display 561, to pour two cups of brown sugar into the mixing bowl 530. As the user pours the brown sugar into the mixing bowl, the display 561 provides a running indication of how much of the two cups of brown sugar the user has poured using an appropriate graphic representation such as a bar graph, pie chart and/or a numerical indication (e.g., percentage, weight, cups, etc.) Once the user has added the amount called for by the recipe step (e.g., two cups), an appropriate indication is generated to prompt the user to stop adding more of the ingredient. For multiple ingredients, the above procedure is repeated, with the scale zeroed between ingredients by the user or automatically (upon reaching the specified weight). When all ingredients called for by the recipe step have been added, the mixer 52 can then transmit a message to the console 50 that the recipe step has been completed. The console 50 can add a check mark next to the completed recipe step on its display and send the next recipe step to the mixer 52.
  • [0109]
    The weighing feature of the mixer 52 can be used for a variety of purposes not limited to the aforementioned. For example, with the mixing bowl removed or with an appropriately adapted tray inserted, the mixer 52 can be used as a postal scale.
  • [0110]
    ELECTRIC BLANKET
  • [0111]
    [0111]FIG. 11 shows a block diagram of an exemplary heating blanket appliance 56 in accordance with the present invention. The exemplary heating blanket appliance of FIG. 11 comprises an interface module 560, a dual-heating element blanket 1100, and two controllers 1110, 1120, one for each heating element 1102, 1104 of the blanket 1100. The interface module 560 comprises a PLC interface 210, a microcontroller 205 and a heater power control circuit 1150. The heater power control circuit 1150 controls the application of power to each of the heating elements 1102 and 1104 in accordance with control signals from the microcontroller 205. The microcontroller 205 can control the heating level of each element 1102, 1104 by varying the duty cycle of the respective control signal.
  • [0112]
    The microcontroller 205 is coupled to the controllers 1110 and 1120 and controls the heating elements 1102 and 1104 in accordance with signals received from the controllers 1110 and 1120. In a further embodiment, the controllers 1110, 1120 (or the alarm clock 60, when acting as a blanket controller, as described below) may comprise temperature sensors (e.g., thermistors) to sense ambient temperature. The ambient temperature thus sensed can be used to maintain a more consistent temperature (particularly in an open-loop system where the blanket does not have a temperature sensor).
  • [0113]
    Each controller 1110, 1120 includes one or more buttons (e.g., ON/OFF, PREHEAT) and/or a dial 252 for controlling the activation and the temperature setting of the respective heating element 1102, 1104. Each controller also includes a display 262 and logic circuitry 1115. The display 262 can be implemented with a back-lit LCD. The logic circuitry 1115 monitors the states of the buttons and dial 252 and controls the display 262 in accordance with the states of buttons and dial 252 and/or in accordance with signals from the interface module 560. Thus, for example, the display 262 can be used to display a desired temperature setting as selected with the dial. The logic circuitry 1115 also communicates the button and dial information to the microcontroller 205 which controls the heater power control circuitry 1150 accordingly.
  • [0114]
    In a preferred embodiment, the controllers 1110, 1120 are each coupled to the interface module 560 via a four-wire “I2C” serial interface (power, data, clock and ground), although a wireless interface (e.g., RF, IR) can also be used. Advantageously, since the controllers do not require a substantial amount of power, the four-wire interface can be implemented with thin wire. The logic circuitry 1115 can be implemented using discrete logic components, a logic ASIC or a simple microcontroller.
  • [0115]
    The microcontroller 205 can send and receive messages from a system controller, such as the alarm clock 60, via the PLC interface 210. The microcontroller 205 can thus communicate to the alarm clock 60 the activation state (i.e., on or off) of each heating element 1102, 1104 and the temperature setting of each. The alarm clock 60 can display the state and setting of each heating blanket element. The system controller 50, 59, 60 can also use the electric blanket activation and setting information, for example, to control a thermostat 78 of the HVAC system so as to reduce the ambient heat when the electric blanket heating elements are on, or vice versa. Conversely, the system controller can use temperature and activation information from the thermostat 78 to control the activation and/or setting of the electric blanket heating elements. In a further embodiment, the electric blanket interface unit 560 can communicate directly with the thermostat 78 (e.g., via an RF link) without the need for a system controller.
  • [0116]
    The microcontroller 205 can also control the heating elements 1102, 1104 in accordance with command messages received from the alarm clock 60. The command messages can specify that each element 1102, 1104 be turned on or off immediately or at some future time and can also specify the level at which to set each element. The controllers 1110 and 1120 thus can be eliminated and the user can input the desired heating blanket settings at the alarm clock 60.
  • [0117]
    In a preferred embodiment, the heating blanket appliance 56 includes a pre-heat feature for each of the heating elements 1102, 1104. When the pre-heat feature is activated for a heating element, the respective heating element is energized at an elevated level (e.g., maximum, or several steps above the last setting) for a selected time period. At the end of this time period, the heating element will be energized at its selected setting as set via the respective controller 1110, 1120 or via the alarm clock 60. The pre-heat feature can be activated by pressing a dedicated button 252 on a controller 1110, 1120 or via the alarm clock 60. In an exemplary embodiment, the duration of the pre-heat time period can be selected by repeatedly pressing the pre-heat key on the controller 1110, 1120 causing the display on the controller to step through a sequence of time choices until the desired choice is displayed.
  • Wireless Appliances and Devices
  • [0118]
    PLC/WIRELESS BRIDGE
  • [0119]
    [0119]FIG. 12 shows the block diagram of an exemplary embodiment of a PLC/wireless bridge device 70. As described above, the PLC/wireless bridge 70 allows wireless devices such as the scale 72, the smoke detector 74 and the blood pressure monitor 76 to communicate with PLC devices, such as the system controllers 50, 59, 60. The exemplary PLC/wireless bridge 70 of FIG. 12 comprises an RF interface 270 and a PLC interface 210, each coupled to a microcontroller 205. The RF interface 270 can be implemented using a frequency-hopping spread-spectrum IC available from Zilog Corporation, although other implementations are possible.
  • [0120]
    The bridge device 70 may also include an IR interface 280 for communicating with other devices having IR interfaces. The wireless bridge 70 can also be integrated into the console 50 or clock 60. The wireless bridge 70 can also communicate with other devices such as PDAs over the RF or IR interfaces or via a PDA I/O port 290. A PDA loaded with the appropriate software in combination with the wireless bridge 70 can act as a system controller. Moreover, a PDA having a modem can provide an external connection to the internet or the like.
  • [0121]
    Additionally, the wireless bridge 70 is also capable of setting up and maintaining the wireless links between it and the wireless devices of the present invention. Upon powering up, the wireless bridge 70 listens for traffic on all of the channels provided by the aforementioned spread-spectrum technique and selects a channel that is not in use or which has the least noise. The bridge 70 will then use the selected channel to communicate with the RF devices of the present invention. Before an RF device of the present invention is first placed in service, it is programmed to communicate on the selected channel. As described more fully below, this programming can occur via the RF interface, an IR interface or via buttons on the RF device. If the bridge 70 detects that the selected channel has become unacceptable (e.g., due to noise), it will rescan and select a new channel. The other RF devices must then be informed of the new channel, as upon initial set-up.
  • [0122]
    SMOKE DETECTOR
  • [0123]
    [0123]FIG. 13 shows a block diagram of an exemplary embodiment of a smoke detector 74 in accordance with the present invention. As mentioned, the smoke detector 74 is a wireless device which preferably communicates via an RF link with the PLC/wireless bridge 70. As shown in FIG. 13, the smoke detector comprises a smoke sensor 232, a sound generating element 265, a status indicator 261 and an RF interface 270. The various elements of the smoke detector are coupled to and controlled by a microcontroller 205.
  • [0124]
    The smoke detector of FIG. 13 is powered by one or more batteries 802, thereby allowing it to be placed anywhere without requiring the routing of power lines thereto. The smoke detector includes a power sensing circuit 805 which monitors the condition of the battery 802 such as by sensing the voltage developed by the battery. The power sensing circuit 805 is coupled to the microcontroller 205 and provides the microcontroller with an indication of the battery's condition. The power sensing circuit 805 may be implemented and operate in a variety of well known ways. For example, the sensing circuit 805 may include an analog-to-digital converter and provide to the microcontroller a digital representation of the battery's voltage level, or the sensing circuit may include a comparator which provides a binary indication to the microcontroller whether the voltage of the battery 802 is above or below a predetermined threshold.
  • [0125]
    In the exemplary embodiment of FIG. 13, the RF interface 270 includes a transmitter which allows the smoke detector to transmit signals to the PLC/wireless bridge 70. Via the RF link, the smoke detector 74 can transmit to the bridge device 70 messages indicating alarm status (i.e., the presence of a smoke condition) and battery status (e.g., an indication that the battery needs to be replaced and/or the actual voltage level developed by the battery), in addition to any other messages used by the system for administrative purposes. To save power, the RF transmitter of the RF interface 270 is on preferably only when transmitting a message. The duration of each message is on the order of 10 ms.
  • [0126]
    In addition to transmitting alarm and battery status messages, the smoke detector 74 will also preferably generate an audible smoke alarm and battery status tone from its sound generating device 265. The battery condition can also be indicated by the indicator 261. As such, the smoke detector 74 can be used in a stand-alone mode, similarly to a conventional smoke detector.
  • [0127]
    When the system controller receives an alarm or battery-low message from a smoke detector 74, in addition to indicating the event at the controller (e.g., via display or sound), the controller can also generate a voice mail or email message and transmit that to a monitoring service, fire department, homeowner, etc. via the external communications interface. When the controller 50, 59, 60 receives a low-battery message from the smoke detector 74 (or any battery-powered wireless device with that capability) it can automatically generate or add to a pending shopping list the correct number and type of batteries to replace the failing batteries.
  • [0128]
    In addition to transmitting data via its RF interface 270, the smoke detector may also be capable of receiving data, for purposes such as initial programming of the smoke detector. When initially programming the smoke detector 74, or any other wireless device in accordance with the present invention, the smoke detector 74 is provided with the house code of the system in which it is to operate and the RF channel on which it is to communicate with the wireless bridge 70. Additionally, it may be desirable to program each smoke detector 74 with an identifying code or name which identifies the individual smoke detector. Preferably, the identifier is descriptive to the user conveying the location of the smoke detector (e.g., “KITCHEN”). This identifier can be included in the alarm status or battery status messages transmitted by the smoke detector 74 to the PLC/wireless bridge 70. These messages are then provided to the controller 50, 59, 60 which informs the user of the specific smoke detector which has generated an alarm or battery condition message. The programmed identifier can also be audibly generated by the smoke detector's sound generating device 265 during an alarm or low-battery condition.
  • [0129]
    As an alternative to storing the user-selected identifier (e.g., location) of a smoke detector in the smoke detector, each system controller can maintain a list that associates the serial number of each smoke alarm with its user-selected identifier. This approach reduces the memory requirements of the smoke alarm so that it need only store the RF channel and housecode in its non-volatile memory to complete its installation in a home.
  • [0130]
    Loading data such as the aforementioned programming information into the smoke detector 74 can be accomplished in a variety of ways. In one embodiment, the RF interface 270 may include a receiver so as to provide bi-directional RF connectivity, thereby allowing the smoke detector to transmit and to receive signals to and from the PLC/wireless bridge 70. In this case, when a smoke detector 74 is powered-up in a system of the present invention, it will scan the RF channels until it finds the channel that the wireless bridge device 70 of the system is using to communicate to the wireless devices. Establishment of the RF link can be indicated by the indicator 261.
  • [0131]
    Upon establishment of an RF link between the wireless bridge 70 and the new smoke detector 74, the wireless bridge 70 can provide the new smoke detector 74 with the house code and inform the system controller of the presence of a new smoke detector 74, as described above. The system controller can then prompt the user to provide an identifier (e.g., “KITCHEN”, “#4”) for the smoke detector 74. When the user enters the identifier at the controller, the identifier is provided to the new smoke detector 74 which stores it in its non-volatile memory. Additionally or alternatively, as above, the system controller can store the identifier in association with the smoke detector's serial number in the controller's memory.
  • [0132]
    In an alternative embodiment, where the RF interface 270 provides only transmitting capability, an IR interface 280 can be used to receive the programming data. Using the IR interface 280 of the console 50, the alarm clock 60 or the wireless bridge 70, the RF channel information, house code and smoke detector identifier can be transmitted from the system controller 50, 59, 60 to the smoke detector's IR interface 280 and stored in the smoke detector's non-volatile memory. In this case, the smoke detector would be held in front of the transmitting IR device, such as the wireless/PLC bridge 70, during the programming procedure. The smoke detector would then be mounted in its intended location.
  • [0133]
    In yet a further alternative embodiment (not shown), the smoke detector 74 can be provided with one or more switches or buttons for entering the programming data.
  • [0134]
    The disclosure herein regarding the smoke detector 74 is also readily applicable to other kinds of detectors, such as carbon monoxide detectors and the like. Moreover, the start-up and programming procedures described in connection with the smoke detector 74 are also applicable to other wireless devices of the present invention. Furthermore, while the smoke detector 74 is described above as a battery-powered wireless device, as is well understood in light of the present disclosure, the smoke detector of the present invention can also be implemented with a PLC interface and be powered from household wiring.
  • [0135]
    BLOOD PRESSURE MONITOR
  • [0136]
    [0136]FIG. 14 shows an exemplary embodiment of a blood pressure (BP) monitor 76 in accordance with the present invention. The exemplary BP monitor 76 of FIG. 14 comprises a display and control unit 760, which houses the circuitry for the BP monitor, and an arm cuff 770 coupled to the display and control unit 760 via an air hose 775. A manual pump 780 may be included for inflating the cuff 770. Alternatively, the display/control unit 760 may include an electrically operated pump to inflate the cuff 770.
  • [0137]
    The control unit 760 is adapted to rest on the user's thigh and comprises positioning features 765 and a cuff holder 767 for storing the cuff 770 when not in use.
  • [0138]
    [0138]FIG. 15 shows a block diagram of an exemplary embodiment of a circuit for a BP monitor 76 of the present invention. As mentioned, the blood pressure monitor 76 is an RF device which communicates via an RF link with the bridge device 70. As shown in FIG. 15, the BP monitor comprises a pressure sensor 237 which is coupled to the hose 775 and senses the pressure in the cuff 770, a display 267, buttons 257, a power sensing circuit 705 and an RF interface 270. In addition to measuring blood pressure, the BP monitor 76 of the present invention can also measure pulse rate. The pressure sensor 237 is coupled to a processing circuit 1537 which generates a digital representation of the pressure sensed by the sensor 237, which representation is provided to the microcontroller 205. The blood pressure and pulse sensing means of the BP monitor 76 of the present invention can be implemented in known ways. The various elements of the blood pressure monitor are coupled to and controlled by a microcontroller 205.
  • [0139]
    The BP monitor of FIG. 15 is powered by one or more batteries 702, thereby allowing it to be conveniently operated without the restrictions of a power cord. A power sensing circuit 705 monitors the condition of the battery power source 702 such as by sensing the voltage developed thereby. The power sensing circuit 705 is coupled to the microcontroller 205 to provide the microcontroller with an indication of the battery's condition. The power sensing circuit 705 may be implemented and operate in a variety of well known ways, as discussed above in connection with the smoke detector.
  • [0140]
    In the exemplary embodiment of FIG. 15, the RF interface 270 includes a transmitter which allows the blood pressure monitor to transmit signals to the PLC/wireless bridge 70. Via the RF link, the blood pressure monitor 76 can transmit to the bridge device 70 messages including one or more blood pressure and/or pulse measurements and battery status (e.g., an indication that the battery needs to be replaced). In addition to transmitting blood pressure and pulse measurements and battery status messages, the BP monitor 76 will also preferably display the measurements and battery status on the display 267. As such, the BP monitor 76 can be used in a stand-alone mode, similarly to a conventional blood pressure monitor. The monitor 76 can also store a plurality of measurements and display those on demand.
  • [0141]
    For initial programming of the BP monitor 76, the buttons 257 can be used to enter the requisite data (e.g., house code, RF channel). As described above for the smoke detector 74, the blood pressure monitor 76 can be provided with an IR interface (not shown) or a bi-directional RF interface for loading programming information into the blood pressure monitor 76.
  • [0142]
    In addition to performing the initial programming, the buttons 257 can be used to enter the identity of a user from whom a measurement or series of measurements have been taken. The user identifiers can be included in measurement messages transmitted by the BP monitor 76 to the RF bridge 70. Preferably, the measurement messages also include the time and date that the corresponding measurement was made. The user identification and time/date data can also be stored by the BP monitor 76 and/or displayed on the display 267 along with the corresponding measurements.
  • [0143]
    Blood pressure and pulse measurement and battery status messages from the blood pressure monitor 76 are received by the PLC/wireless bridge 70 and forwarded via the PLC interface to the system controller 50, 59, 60. If a message indicating a low-battery condition is received, the controller 50, 59, 60 can generate an appropriate indication (e.g., a flashing icon and/or sound) to the user. Furthermore, the controller 50, 59, 60 can display and/or log the pressure/pulse measurements received from the monitor 76, along with the user identification and time/date information. That information can then be accessed remotely or transmitted, such as over the Internet, to a health care provider or the like. In response, the controller 50, 59, 60 may receive and display suggestions for altering one's diet in accordance with the reported blood pressure and pulse measurements.
  • [0144]
    In yet a further embodiment, the BP monitor may comprise an IR interface 280. Data from the BP monitor can be uploaded to a PDA or to the system via an IR receiver on the system controller (e.g., the console 50 or alarm clock 60) or on the PLC/wireless bridge device 70.
  • [0145]
    FOOT SCALE
  • [0146]
    [0146]FIG. 16 shows an exemplary embodiment of a foot scale 72 in accordance with the present invention. The exemplary scale 72 of FIG. 16 comprises a display 268 and a set of buttons 258.
  • [0147]
    [0147]FIG. 17 shows a block diagram of an exemplary embodiment of a circuit for a foot scale 72 of the present invention. As mentioned, the foot scale 72 is an RF device which communicates with the system of the present invention via an RF link provided by the PLC/wireless bridge 70. As shown in FIG. 17, the foot scale 72 comprises a weight sensor 238, a display 268, buttons 258, a power sensing circuit 705, an RF interface 270 and a microcontroller 205. The weight sensor 238 is coupled to an analog-to-digital converter 738 which is coupled to the microcontroller 205. The weight sensor 238 can be implemented, in a known way, using one or more load cells. In an exemplary embodiment, the weight sensor 238 comprises a load cell which includes a strain gauge in a bridge arrangement that generates a differential voltage which is amplified, filtered, and converted to digital form by the A/D converter 738.
  • [0148]
    The foot scale 72 may also comprise an IR interface 280 coupled to the microcontroller 205.
  • [0149]
    The foot scale of FIG. 17 is powered by one or more batteries 702, thereby allowing it to be conveniently placed and moved without the restrictions of a power cord. The power sensing circuit 705 monitors the condition of the battery power source 702 such as by sensing the voltage developed thereby. The power sensing circuit 705 is coupled to the microcontroller 205 to provide the microcontroller with an indication of the battery's condition. The power sensing circuit 705 may be implemented and operate in a variety of well known ways, as described above in connection with the smoke detector.
  • [0150]
    In the exemplary embodiment of FIG. 17, the RF interface 270 includes a transmitter which allows the foot scale 72 to transmit signals to the PLC/wireless bridge 70. Via the RF link, the foot scale 72 can transmit to the PLC/wireless bridge 70 messages including one or more weight measurements and a battery status indication (e.g., an indication that the battery needs to be replaced). In addition to transmitting weight measurements and battery status messages, the foot scale 72 also displays weight measurements and battery status on the display 267. As such, the foot scale 72 can be used in a stand-alone mode, similarly to a conventional foot scale. The scale 72 can also store a plurality of measurements and display those on demand.
  • [0151]
    For initial programming of the foot scale, the buttons 258 can be used to enter the requisite data (e.g., house code, RF channel). As described above for the smoke detector 74, the foot scale 72 can be provided with an IR interface 280 or a bi-directional RF interface for loading programming information into the foot scale 72. The scale 72 may also be provided with a further interface 295, such as a parallel interface or an RS-232 serial data interface, for communicating directly with a PC for programming or measurement uploading purposes.
  • [0152]
    In addition to performing the initial programming, the buttons 258 can be used to identify a user from whom a measurement or series of weight measurements have been taken. In the exemplary embodiment shown in FIG. 16, one button 258 is assigned to each of four users. Before a user steps on the scale 72, he can push his assigned button, thereby identifying himself to the scale (e.g., user #2). The user then steps on the scale and is weighed. The scale then displays the user's weight on the display 268 and stores the user's weight in nonvolatile memory under the user's identity. The scale can then transmit (via the wireless bridge 70) a weight measurement message to the controller 50, 59, 60 with the user's identity and weight. Upon initial programming of the scale 72 or at the controller 50, 59, 60, a name can be assigned to each button 258 so that each user can be identified by name, as opposed to a button number.
  • [0153]
    Preferably, the weight measurement messages generated by the scale 72 also include the time and date of each measurement. The user identification, time/date and weight data for a plurality of measurements (e.g., 30) can also be stored by the foot scale 72 for each of the plurality of users and uploaded to the controller 50, 59, 60 periodically (e.g., daily) or on command from the controller. The stored information can also preferably be retrieved and displayed locally on the display 268. Access to the weight information of each user can also be restricted by password.
  • [0154]
    Weight measurement and battery status messages from the foot scale 72 are received by the PLC/wireless bridge 70 and forwarded via the PLC interface to the system controller 50, 59, 60. If a message indicating a low-battery condition is received, the controller 50, 59, 60 can generate an appropriate indication (e.g., a flashing icon and/or sound) to the user. Furthermore, the controller 50, 59, 60 can display, log, graph, etc. the weight measurements received from the foot scale 72, along with the user identification and time/date information. That information can then be accessed remotely or transmitted, such as over the Internet, to a health care provider or the like. The controller can also use the weight information to obtain diet suggestions from the internet or to make suggestions of food items to add or substitute in a shopping list.
  • [0155]
    In an alternative embodiment, users can be identified by the scale by their weights. In this embodiment, the microcontroller 205 employs artificial intelligence to categorize users by their weights, e.g., the user whose weight is approximately 115 lbs. is user #1 whereas the user whose weight is approximately 175 lbs. is user #2. As each user's weight fluctuates, the scale updates the weight range associated with each user. If the weight reading is close to the recent readings for two or more users then the scale may pick the most likely match and ask the user if it is correct, or provide them with the most likely choices.
  • [0156]
    In yet a further embodiment, users can be identified by the scale 72 by the use of voice recognition. With this embodiment, upon stepping on the scale 72, the user is prompted to speak his name. The scale 72 stores the user's name and associated voice print the first time the user uses the scale. When the user uses the scale again, and speaks his name again, the speech sample is compared to those stored by the scale until a match is found. If no match is found and the user spoke a name that has already been stored, the user is denied access or prompted to use another name. If no match is found and the user spoke a name that has not already been stored, the name and associated name print are stored.
  • [0157]
    Voice recognition has the additional benefit of serving as a form of password to prevent users from viewing other user's stored weight data.
  • [0158]
    In yet a further embodiment, the scale 72 comprises means for measuring the height of a user standing on the scale. The height measurement means comprises an ultrasonic (US) transmitter and receiver. The US transmitter generates a pulse which propagates upwards from the scale. In an initial calibration operation, a pulse or sequence of pulses are transmitted by the US transmitter, bounce off of the ceiling above the scale and are received by the US receiver in the scale. The round-trip travel time (i.e., the time between transmission and reception, referred to as tc) is measured and stored. In performing a height measurement with a user standing on the scale 72, a further pulse or sequence of pulses is transmitted upwards. The time (tm) required for the pulse(s) to travel from the scale 72 up to the ceiling, bounce off of the ceiling down to the top of the user's head, bounce off of the top of the user's head back up to the ceiling, and bounce off of the ceiling back down to the scale 72 is measured. The user's height can then be readily calculated as the distance traveled by the US pulse(s) in the time period tc-tm/2.
  • [0159]
    The devices described herein are meant to be exemplary of the present invention and not exhaustive. Other appliances or devices that may be adapted in accordance with the present invention include toasters, breadmakers, blenders, steamers, humidifiers, irons, microwave ovens, stoves, grills, refrigerators, dish washers, washers, dryers and air purifiers.
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US674191522 août 200125 mai 2004Mmi Controls, Ltd.Usage monitoring HVAC control system
US6759946 *6 déc. 20016 juil. 2004Mitsubishi Electric Research Laboratories, Inc.Home appliances network
US685162118 août 20038 févr. 2005Honeywell International Inc.PDA diagnosis of thermostats
US6874691 *10 avr. 20025 avr. 2005Excel Energy Technologies, Inc.System and method for energy management
US6985714 *19 nov. 200210 janv. 2006Sony CorporationCommunication system, communication terminal and communication method
US70033782 avr. 200421 févr. 2006Mmi Controls LpHVAC control using different access levels
US705575918 août 20036 juin 2006Honeywell International Inc.PDA configuration of thermostats
US7069345 *9 mai 200127 juin 2006Koninklijke Philips Electronics N.V.Device identification and control in network environment
US708310918 août 20031 août 2006Honeywell International Inc.Thermostat having modulated and non-modulated provisions
US709185311 déc. 200315 août 2006Lucent Technologies Inc.X10 communication of one or more messages between one or more mobile communication devices and one or more module components
US71306167 août 200131 oct. 2006Simple DevicesSystem and method for providing content, management, and interactivity for client devices
US7170405 *26 déc. 200030 janv. 2007General Electric CompanyMethod and apparatus for interfacing a power line carrier and an appliance
US72160152 avr. 20048 mai 2007Mmi Controls, Ltd.HVAC control system
US72228003 juin 200429 mai 2007Honeywell International Inc.Controller customization management system
US72894665 oct. 200530 oct. 2007Honeywell International Inc.Localization for low cost sensor network
US7356614 *17 sept. 20028 avr. 2008Lg Electronics, Inc.Method for detecting and regulating identifier overlap on power line communication network, electronic appliance connected to subnet of power line communication network, and communication module used in electronic appliance
US7359988 *17 sept. 200215 avr. 2008Lg Electronics Inc.Subnet of power line communication network, method for setting up the same, electronic appliance connected to the same, and communication module used in electronic appliance
US738303610 avr. 20023 juin 2008Lg Electronics Inc.Home network system
US739478214 juil. 20051 juil. 2008Honeywell International Inc.Reduced power time synchronization in wireless communication
US74466476 mars 20064 nov. 2008Honeywell International Inc.State validation using bi-directional wireless link
US7459799 *18 déc. 20022 déc. 2008Microgen Energy LimitedDomestic combined heat and power unit
US750603531 déc. 200217 mars 2009Aol LlcContent-based alarm clock
US755536421 déc. 200430 juin 2009MMI Controls, L.P.Adaptive hierarchy usage monitoring HVAC control system
US756581320 mars 200628 juil. 2009Honeywell International Inc.Thermostat having modulated and non-modulated provisions
US7568024 *7 janv. 200328 juil. 2009Lg Electronics Inc.Method for deciding network manager in home network
US757389111 mars 200211 août 2009Optimal Innovations, Inc.Hybrid fiber/conductor integrated communication networks
US759607930 mars 200729 sept. 2009Current Technologies, LlcSystem and method for communicating in a multi-unit structure
US760269531 mai 200613 oct. 2009Current Technologies, LlcSystem and method for communicating in a multi-unit structure
US76031295 oct. 200513 oct. 2009Honeywell International Inc.Localization identification system for wireless devices
US7609153 *8 nov. 200527 oct. 2009Fujitsu LimitedControl apparatus, security-supported device, power source control method for security-supported device and program
US762040917 juin 200417 nov. 2009Honeywell International Inc.Wireless communication system with channel hopping and redundant connectivity
US76606495 juil. 20059 févr. 2010Optimal Innovations Inc.Resource management using calculated sensitivities
US77153257 juil. 200311 mai 2010Lg Electronics IncHome network system
US771544113 mai 200511 mai 2010Mosaid Technologies IncorporatedNetwork combining wired and non-wired segments
US771553417 mai 200611 mai 2010Mosaid Technologies IncorporatedTelephone outlet for implementing a local area network over telephone lines and a local area network using such outlets
US77292827 juil. 20031 juin 2010Lg Electronics Inc.Home network system and its configuration system
US77423943 juin 200522 juin 2010Honeywell International Inc.Redundantly connected wireless sensor networking methods
US78010948 août 200521 sept. 2010Honeywell International Inc.Integrated infrastructure supporting multiple wireless devices
US781345111 janv. 200612 oct. 2010Mobileaccess Networks Ltd.Apparatus and method for frequency shifting of a wireless signal and systems using frequency shifting
US7814524 *14 févr. 200712 oct. 2010Sony CorporationCapture of configuration and service provider data via OCR
US782637328 janv. 20052 nov. 2010Honeywell International Inc.Wireless routing systems and methods
US7841764 *15 déc. 200930 nov. 2010Sunbeam Products, Inc.Blender base with food processor capabilities
US78482233 juin 20057 déc. 2010Honeywell International Inc.Redundantly connected wireless sensor networking methods
US785220714 févr. 200614 déc. 2010Current Technologies, LlcMethod for establishing power line communication link
US785287421 mai 200814 déc. 2010Mosaid Technologies IncorporatedLocal area network of serial intelligent cells
US786194128 févr. 20054 janv. 2011Honeywell International Inc.Automatic thermostat schedule/program selector system
US7865568 *16 mai 20004 janv. 2011Verizon Corporate Services Group Inc.Systems and methods for controlling appliances via a network
US787305823 janv. 200818 janv. 2011Mosaid Technologies IncorporatedOutlet with analog signal adapter, a method for use thereof and a network using said outlet
US78767674 mai 200525 janv. 2011Mosaid Technologies IncorporatedNetwork combining wired and non-wired segments
US788146210 mars 20081 févr. 2011Mosaid Technologies IncorporatedOutlet add-on module
US7893812 *29 juil. 200822 févr. 2011Lawrence KatesAuthentication codes for building/area code address
US790367014 mai 20048 mars 2011Lg Electronics Inc.Home network system
US7911326 *31 janv. 200722 mars 2011Marvell World Trade Ltd.Time updating and load management systems
US793329729 nov. 200426 avr. 2011Mosaid Technologies IncorporatedNetwork combining wired and non-wired segments
US79374509 févr. 20043 mai 2011Viviana Research LlcSystem for providing content, management, and interactivity for thin client devices
US794978614 mai 200424 mai 2011Lg Electronics Inc.Method of assigning a node address in a local network
US79787261 sept. 200612 juil. 2011Mosaid Technologies IncorporatedLocal area network of serial intelligent cells
US7979164 *13 oct. 200812 juil. 2011Emerson Electric Co.Low voltage power line communication for climate control system
US799090813 févr. 20082 août 2011Mosaid Technologies IncorporatedAddressable outlet, and a network using the same
US803172414 mai 20044 oct. 2011Lg Electronics Inc.Home network system
US803225425 nov. 20084 oct. 2011Honeywell International Inc.Method and apparatus for configuring an HVAC controller
US808315429 juil. 200927 déc. 2011Honeywell International Inc.Controller system user interface
US80856728 juil. 200527 déc. 2011Honeywell International Inc.Wireless routing implementation
US808759325 nov. 20083 janv. 2012Honeywell International Inc.HVAC controller with quick select feature
US809179625 nov. 200810 janv. 2012Honeywell International Inc.HVAC controller that selectively replaces operating information on a display with system status information
US816721625 nov. 20081 mai 2012Honeywell International Inc.User setup for an HVAC remote control unit
US817564920 juin 20098 mai 2012Corning Mobileaccess LtdMethod and system for real time control of an active antenna over a distributed antenna system
US818468117 sept. 201022 mai 2012Corning Mobileaccess LtdApparatus and method for frequency shifting of a wireless signal and systems using frequency shifting
US822449125 nov. 200817 juil. 2012Honeywell International Inc.Portable wireless remote control unit for use with zoned HVAC system
US823286023 oct. 200631 juil. 2012Honeywell International Inc.RFID reader for facility access control and authorization
US828532630 déc. 20059 oct. 2012Honeywell International Inc.Multiprotocol wireless communication backbone
US828999130 nov. 200916 oct. 2012Mosaid Technologies IncorporatedNetwork combining wired and non-wired segments
US834639625 nov. 20081 janv. 2013Honeywell International Inc.HVAC controller with parameter clustering
US835135021 mai 20088 janv. 2013Honeywell International Inc.Systems and methods for configuring access control devices
US836379719 mars 201029 janv. 2013Mosaid Technologies IncorporatedTelephone outlet for implementing a local area network over telephone lines and a local area network using such outlets
US838789225 nov. 20085 mars 2013Honeywell International Inc.Remote control for use in zoned and non-zoned HVAC systems
US8392852 *9 déc. 20035 mars 2013Sony Mobile Communications Japan, Inc.Information processing apparatus
US84132275 sept. 20082 avr. 2013Honeywell International Inc.Apparatus and method supporting wireless access to multiple security layers in an industrial control and automation system or other system
US843858928 mars 20077 mai 2013Sony CorporationObtaining metadata program information during channel changes
US846025615 juil. 201011 juin 2013Allegiance CorporationCollapsible fluid collection and disposal system and related methods
US846331917 juin 200511 juin 2013Honeywell International Inc.Wireless application installation, configuration and management tool
US850070624 mars 20086 août 2013Allegiance CorporationFluid collection and disposal system having interchangeable collection and other features and methods relating thereto
US859413322 oct. 200826 nov. 2013Corning Mobileaccess Ltd.Communication system using low bandwidth wires
US859898221 mai 20083 déc. 2013Honeywell International Inc.Systems and methods for commissioning access control devices
US862149826 mars 201331 déc. 2013Sony CorporationObtaining metadata program information during channel changes
US864419221 oct. 20054 févr. 2014Honeywell International Inc.Wireless transmitter initiated communication methods
US87074146 janv. 201122 avr. 2014Honeywell International Inc.Systems and methods for location aware access control management
US8718707 *20 mars 20096 mai 2014Johnson Controls Technology CompanyDevices, systems, and methods for communicating with rooftop air handling units and other HVAC components
US873172325 nov. 200820 mai 2014Honeywell International Inc.HVAC controller having a parameter adjustment element with a qualitative indicator
US876852130 nov. 20121 juil. 2014Honeywell International Inc.HVAC controller with parameter clustering
US87877259 nov. 201122 juil. 2014Honeywell International Inc.Systems and methods for managing video data
US881123121 oct. 200519 août 2014Honeywell International Inc.Wireless transmitter initiated communication systems
US884872514 sept. 201230 sept. 2014Conversant Intellectual Property Management IncorporatedNetwork combining wired and non-wired segments
US885527728 janv. 20137 oct. 2014Conversant Intellectual Property Managment IncorporatedTelephone outlet for implementing a local area network over telephone lines and a local area network using such outlets
US88675062 avr. 201021 oct. 2014Conversant Intellectual Property Management IncorporatedNetwork combining wired and non-wired segments
US88675233 déc. 201221 oct. 2014Conversant Intellectual Property Management IncorporatedLocal area network of serial intelligent cells
US887357530 nov. 200928 oct. 2014Conversant Intellectual Property Management IncorporatedNetwork combining wired and non-wired segments
US88735862 avr. 201028 oct. 2014Conversant Intellectual Property Management IncorporatedNetwork combining wired and non-wired segments
US88760139 mai 20114 nov. 2014Honeywell International Inc.HVAC controller that selectively replaces operating information on a display with system status information
US88789314 mars 20104 nov. 2014Honeywell International Inc.Systems and methods for managing video data
US888565915 déc. 200511 nov. 2014Conversant Intellectual Property Management IncorporatedLocal area network of serial intelligent cells
US888566030 janv. 201311 nov. 2014Conversant Intellectual Property Management IncorporatedLocal area network of serial intelligent cells
US88922237 sept. 201118 nov. 2014Honeywell International Inc.HVAC controller including user interaction log
US88972157 févr. 201025 nov. 2014Corning Optical Communications Wireless LtdCommunication system using cables carrying ethernet signals
US890207114 déc. 20112 déc. 2014Honeywell International Inc.HVAC controller with HVAC system fault detection
US890867326 avr. 20079 déc. 2014Conversant Intellectual Property Management IncorporatedLocal area network of serial intelligent cells
US894146426 juin 201227 janv. 2015Honeywell International Inc.Authorization system and a method of authorization
US895068721 sept. 201010 févr. 2015Honeywell International Inc.Remote control of an HVAC system that uses a common temperature setpoint for both heat and cool modes
US898290314 juil. 200417 mars 2015Conversant Intellectual Property Management Inc.Network combining wired and non-wired segments
US898290430 nov. 200917 mars 2015Conversant Intellectual Property Management Inc.Network combining wired and non-wired segments
US900248114 juil. 20107 avr. 2015Honeywell International Inc.Building controllers with local and global parameters
US900252314 déc. 20117 avr. 2015Honeywell International Inc.HVAC controller with diagnostic alerts
US901907012 mars 201028 avr. 2015Honeywell International Inc.Systems and methods for managing access control devices
US90422057 oct. 200826 mai 2015Viviana Research LlcClock with link to the internet
US907356023 août 20137 juil. 2015Electro-Motive Diesel, Inc.System and method for determining communication paths in a trainline communication network
US911590827 juil. 201125 août 2015Honeywell International Inc.Systems and methods for managing a programmable thermostat
US911950528 janv. 20091 sept. 2015Kraft Foods R & D, Inc.Coffee brewer and a corresponding network-based method and apparatus
US915151025 nov. 20086 oct. 2015Honeywell International Inc.Display for HVAC systems in remote control units
US915764724 mars 201413 oct. 2015Honeywell International Inc.HVAC controller including user interaction log
US915776427 juil. 201113 oct. 2015Honeywell International Inc.Devices, methods, and systems for occupancy detection
US91837336 juin 201410 nov. 2015Google Inc.Controlled power-efficient operation of wireless communication devices
US918496025 sept. 201410 nov. 2015Corning Optical Communications Wireless LtdFrequency shifting a communications signal(s) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference
US920699314 déc. 20118 déc. 2015Honeywell International Inc.HVAC controller with utility saver switch diagnostic feature
US9213539 *23 déc. 201015 déc. 2015Honeywell International Inc.System having a building control device with on-demand outside server functionality
US925300312 août 20152 févr. 2016Corning Optical Communications Wireless LtdFrequency shifting a communications signal(S) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference
US926012323 août 201316 févr. 2016Electro-Motive Diesel, Inc.System and method for determining locomotive position in a consist
US927033523 août 201323 févr. 2016Electro-Motive Diesel, Inc.Receive attenuation system for trainline communication networks
US928036516 déc. 20108 mars 2016Honeywell International Inc.Systems and methods for managing configuration data at disconnected remote devices
US928678723 juil. 201415 mars 2016Google Inc.Signal strength-based routing of network traffic in a wireless communication system
US928678823 juil. 201415 mars 2016Google Inc.Traffic collision avoidance in wireless communication systems
US931801519 nov. 201419 avr. 2016Google Inc.Wireless sensor unit communication triggering and management
US933882315 sept. 201410 mai 2016Corning Optical Communications Wireless LtdRadio-frequency integrated circuit (RFIC) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods
US93446843 août 201217 mai 2016Honeywell International Inc.Systems and methods configured to enable content sharing between client terminals of a digital video management system
US9357490 *30 janv. 201431 mai 2016Google Inc.Wireless transceiver
US9360228 *13 janv. 20117 juin 2016Gtr Technologies, Inc.Ventilation control system and method
US936644828 nov. 201114 juin 2016Honeywell International Inc.Method and apparatus for configuring a filter change notification of an HVAC controller
US9400129 *12 nov. 201326 juil. 2016Lg Electronics Inc.Apparatus for controlling an air conditioner and a method for operating the same
US9400872 *4 mars 201026 juil. 2016Fat Statz LlcMetrics assessment system for health, fitness and lifestyle behavioral management
US9412260 *5 oct. 20159 août 2016Google Inc.Controlled power-efficient operation of wireless communication devices
US94425008 mars 201213 sept. 2016Honeywell International Inc.Systems and methods for associating wireless devices of an HVAC system
US946381623 août 201311 oct. 2016Electro-Motive Diesel, Inc.Trainline communication network access point including filter
US947106927 mars 201518 oct. 2016Honeywell International IncConfigurable thermostat for controlling HVAC system
US9474023 *10 juin 201618 oct. 2016Google Inc.Controlled power-efficient operation of wireless communication devices
US947723926 juil. 201225 oct. 2016Honeywell International Inc.HVAC controller with wireless network based occupancy detection and control
US948899429 mars 20128 nov. 2016Honeywell International Inc.Method and system for configuring wireless sensors in an HVAC system
US951585518 janv. 20166 déc. 2016Corning Optical Communications Wireless LtdFrequency shifting a communications signal(s) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference
US9535415 *26 juin 20123 janv. 2017Rockwell Automation Technologies, Inc.Software, systems, and methods for mobile visualization of industrial automation environments
US954930130 oct. 201217 janv. 2017Corning Optical Communications Wireless LtdMethod and system for real time control of an active antenna over a distributed antenna system
US956013911 avr. 201431 janv. 2017Electro-Motive Diesel, Inc.Train communication network
US958411923 avr. 201328 févr. 2017Honeywell International Inc.Triac or bypass circuit and MOSFET power steal combination
US96047783 juin 201328 mars 2017Allegiance CorporationFluid collection and disposal system having interchangeable collection and other features and methods relating thereto
US962137124 juil. 201211 avr. 2017Honeywell International Inc.Wireless sensor device with wireless remote programming
US9626858 *7 oct. 201418 avr. 2017Google Inc.Smart-home hazard detector with adaptive heads up pre-alarm criteria
US962807419 juin 201418 avr. 2017Honeywell International Inc.Bypass switch for in-line power steal
US967381122 nov. 20136 juin 2017Honeywell International Inc.Low power consumption AC load switches
US968374911 juil. 201420 juin 2017Honeywell International Inc.Multiple heatsink cooling system for a line voltage thermostat
US968829523 août 201327 juin 2017Electro-Motive Diesel, Inc.Trainline network access point for parallel communication
US9690466 *21 mars 201327 juin 2017Sonos, Inc.Method and apparatus for displaying single and internet radio items in a play queue
US970431325 sept. 200911 juil. 2017Honeywell International Inc.Systems and methods for interacting with access control devices
US97235595 avr. 20161 août 2017Google Inc.Wireless sensor unit communication triggering and management
US97336531 déc. 201415 août 2017Honeywell International Inc.Interview programming for an HVAC controller
US974497911 avr. 201429 août 2017Electro-Motive Diesel, Inc.Train communication network
US97570669 janv. 201712 sept. 2017Fat Statz LlcMetrics assessment system for health, fitness and lifestyle behavioral management
US976598329 mars 201219 sept. 2017Honeywell International Inc.User setup for an HVAC remote control unit
US980670523 avr. 201331 oct. 2017Honeywell International Inc.Active triac triggering circuit
US981322922 nov. 20137 nov. 2017Corning Optical Communications Wireless LtdCommunication system using low bandwidth wires
US20020010637 *9 févr. 200124 janv. 2002Lieu Sun MingTechniques to facilitate shopping for projects
US20020152126 *9 févr. 200117 oct. 2002Lieu Sun MingTokens-based system for providing information to users
US20020169914 *9 mai 200114 nov. 2002Shteyn Yevgeniy EugeneDevice identification and control in network environment
US20020198990 *25 juin 200226 déc. 2002Bradfield William T.System and method for remotely monitoring and controlling devices
US20030055922 *17 sept. 200220 mars 2003Chul KimSubnet of power line communication network, method for setting up the same, electronic appliance connected to the same, and communication module used in electronic appliance
US20030055923 *17 sept. 200220 mars 2003Chul KimMethod for detecting and regulating identifier overlap on power line communication network, electronic appliance connected to subnet of power line commmunication network, and communication module used in electronic appliance
US20030129978 *19 nov. 200210 juil. 2003Sony CorporationCommunication system, communication terminal and communication method
US20030131101 *7 janv. 200310 juil. 2003Kyoung-Woo LeeMethod for deciding network manager in home network
US20030208606 *4 mai 20026 nov. 2003Maguire Larry DeanNetwork isolation system and method
US20030217186 *16 mai 200220 nov. 2003Bushey Robert D.Apparatus for and method of seamless wireless multimedia download path to peer networked appliances
US20030233432 *18 juin 200218 déc. 2003John DavisWeb-based interface for building management systems
US20040106710 *18 août 20033 juin 2004Klausjoerg KleinCathodic electrodeposition coating agents containing bismuth salts together with yttrium and/or neodymium compounds, production and use thereof
US20040193548 *2 avr. 200430 sept. 2004Robert PothHVAC control using different access levels
US20040236471 *2 avr. 200425 nov. 2004Poth Robert J.HVAC control system
US20040253945 *9 févr. 200416 déc. 2004Janik Craig M.System for providing content, management, and interactivity for thin client devices
US20050022134 *9 déc. 200327 janv. 2005Sony CorporationInformation processing apparatus
US20050040249 *18 août 200324 févr. 2005Wacker Paul C.Pda diagnosis of thermostats
US20050040250 *3 juin 200424 févr. 2005Wruck Richard A.Transfer of controller customizations
US20050052029 *18 déc. 200210 mars 2005Aldridge Wayne KennethDomestic combined heat and power unit
US20050100043 *29 nov. 200412 mai 2005Serconet LtdNetwork combining wired and non-wired segments
US20050101312 *10 avr. 200212 mai 2005Kang Sung H.Home network system
US20050120012 *21 déc. 20042 juin 2005Poth Robert J.Adaptive hierarchy usage monitoring HVAC control system
US20050128078 *11 déc. 200316 juin 2005Pfleging Gerald W.X10 communication of one or more messages between one or more mobile communication devices and one or more module components
US20050210101 *17 mai 200522 sept. 2005Universal Electronics Inc.System and method for providing content, management, and interactivity for client devices
US20050232299 *14 juil. 200420 oct. 2005Serconet, Ltd.Network combining wired and non-wired segments
US20050254516 *4 mai 200517 nov. 2005Serconet, Ltd.Network combining wired and non-wired segments
US20050256903 *12 juin 200317 nov. 2005Van De Sluis Bartel MManaging a home network
US20050256944 *10 avr. 200217 nov. 2005Baek Seung MMethod for separating multiple home networks
US20050259691 *13 mai 200524 nov. 2005Serconet LtdNetwork combining wired and non-wired segments
US20050281215 *17 juin 200422 déc. 2005Budampati Ramakrishna SWireless communication system with channel hopping and redundant connectivity
US20060007945 *30 juin 200512 janv. 2006Roland SchoettleMedium to disparate medium hopping mesh network
US20060038672 *30 juin 200523 févr. 2006Optimal Licensing CorporationSystem and method for delivery and management of end-user services
US20060087212 *8 nov. 200527 avr. 2006Fujitsu LimitedControl apparatus, security-supported device, power source control method for security-supported device and program
US20060149813 *6 mars 20066 juil. 2006Simple DevicesSystem and method for providing content, management, and interactivity for client devices
US20060152335 *6 mars 200613 juil. 2006Honeywell International Inc.State validation using bi-directional wireless link
US20060170285 *11 janv. 20063 août 2006Kazuya MorimitsuData transmission system and data transmission method
US20060171344 *8 juil. 20053 août 2006Honeywell International Inc.Wireless routing implementation
US20060171346 *28 janv. 20053 août 2006Honeywell International Inc.Wireless routing systems and methods
US20060192021 *28 févr. 200531 août 2006Schultz David AAutomatic thermostat schedule/program selector system
US20060248158 *14 mai 20042 nov. 2006Sam-Chul HaHome network system
US20060274644 *3 juin 20057 déc. 2006Budampati Ramakrishna SRedundantly connected wireless sensor networking methods
US20060274671 *3 juin 20057 déc. 2006Budampati Ramakrishna SRedundantly connected wireless sensor networking methods
US20060287001 *17 juin 200521 déc. 2006Honeywell International Inc.Wireless application installation, configuration and management tool
US20070014264 *14 juil. 200518 janv. 2007Honeywell International Inc.Reduced power time synchronization in wireless communication
US20070019615 *14 mai 200425 janv. 2007Seung-Myun BaekHome network system
US20070025368 *14 mai 20041 févr. 2007Lg Electronics, Inc.Home network system
US20070030816 *8 août 20058 févr. 2007Honeywell International Inc.Data compression and abnormal situation detection in a wireless sensor network
US20070030832 *8 août 20058 févr. 2007Honeywell International Inc.Integrated infrastructure supporting multiple wireless devices
US20070061406 *20 janv. 200415 mars 2007Seung-Myun BaekHome network system
US20070068511 *28 sept. 200529 mars 2007Hearth & Home TechnologiesGas fireplace monitoring and control system
US20070077941 *5 oct. 20055 avr. 2007Honeywell International Inc.Localization identification system for wireless devices
US20070091824 *21 oct. 200526 avr. 2007Honeywell International Inc.Wireless transmitter initiated communication systems
US20070091825 *21 oct. 200526 avr. 2007Honeywell International Inc.Wireless transmitter initiated communication methods
US20070097873 *31 oct. 20053 mai 2007Honeywell International Inc.Multiple model estimation in mobile ad-hoc networks
US20070114291 *20 mars 200624 mai 2007Honeywell International Inc.Thermostat having modulated and non-modulated provisions
US20070125366 *5 déc. 20057 juin 2007Moreland Larry KBlower timing system for a gas fireplace
US20070133569 *7 juil. 200314 juin 2007Koon-Seok LeeHome network system and its configuration system
US20070138308 *16 févr. 200721 juin 2007Honeywell International Inc.Controller system user interface
US20070153836 *1 mars 20075 juil. 2007Serconet, Ltd.Telephone system having multiple distinct sources and accessories therefor
US20070155423 *30 déc. 20055 juil. 2007Honeywell International Inc.Multiprotocol wireless communication backbone
US20070180047 *12 déc. 20052 août 2007Yanting DongSystem and method for providing authentication of remotely collected external sensor measures
US20070189182 *14 févr. 200616 août 2007Berkman William HMethod for establishing power line communication link
US20070223500 *7 juil. 200327 sept. 2007Lg Electronics Inc.Home Network System
US20070255796 *7 juil. 20031 nov. 2007Lg Electronic Inc.Home Network System
US20070280201 *31 mai 20066 déc. 2007Berkman William HSystem and Method for Communicating in a Multi-Unit Structure
US20070280246 *30 mars 20076 déc. 2007Berkman William HSystem and Method for Communicating in a Multi-Unit Structure
US20080056338 *28 août 20066 mars 2008David Stanley YaneyPower Line Communication Device and Method with Frequency Shifted Modem
US20080097631 *20 janv. 200424 avr. 2008Lg Electronics Inc.Home Network System
US20080157938 *31 janv. 20073 juil. 2008Sehat SutardjaTime updating and load management systems
US20080196075 *14 févr. 200714 août 2008Candelore Brant LCapture of configuration and service provider data via OCR
US20080218319 *7 mars 200711 sept. 2008Optimal Licensing CorporationSystems and methods for linking utility control devices
US20080244637 *28 mars 20072 oct. 2008Sony CorporationObtaining metadata program information during channel changes
US20080284590 *29 juil. 200820 nov. 2008Lawrence KatesAuthentication codes for building/area code address
US20090012485 *24 mars 20088 janv. 2009Michaels Thomas LFluid collection and disposal system having interchangeable collection and other features and methods relating thereto
US20090058185 *7 juil. 20085 mars 2009Optimal Innovations Inc.Intelligent Infrastructure Power Supply Control System
US20090065597 *13 oct. 200812 mars 2009Garozzo James PLow voltage power line communication for climate control system
US20090077203 *7 oct. 200819 mars 2009Ez4Media, Inc.Clock with link to the internet
US20090121846 *1 août 200814 mai 2009X10 Ltd.Systems and methods for coupling power line control signals
US20090140056 *25 nov. 20084 juin 2009Honeywell International, Inc.Hvac controller with quick select feature
US20090140057 *25 nov. 20084 juin 2009Honeywell International, Inc.Display for hvac systems in remote control units
US20090140058 *25 nov. 20084 juin 2009Honeywell International, Inc.Remote control for use in zoned and non-zoned hvac systems
US20090140062 *25 nov. 20084 juin 2009Honeywell International, Inc.Hvac controller that selectively replaces operating information on a display with system status information
US20090140063 *25 nov. 20084 juin 2009Honeywell International, Inc.Hvac remote control unit
US20090198795 *17 févr. 20096 août 2009Yehuda BinderInformation device
US20090219140 *28 janv. 20093 sept. 2009Brent GuardCoffee brewer and a corresponding network-based method and apparatus
US20090282357 *29 juil. 200912 nov. 2009Honeywell International Inc.Controller system user interface
US20090298490 *9 févr. 20043 déc. 2009Janik Craig MSystem for providing content, management, and interactivity for thin client devices
US20100135106 *15 déc. 20093 juin 2010John Douglas WulfBlender base with food processor capabilities
US20100135191 *30 nov. 20093 juin 2010Mosaid Technologies IncorporatedNetwork Combining Wired and Non-Wired Segments
US20100135479 *30 nov. 20093 juin 2010Mosaid Technologies IncorporatedNetwork combining wired and non-wired segments
US20100135480 *30 nov. 20093 juin 2010Mosaid Technologies IncorporatedNetwork combining wired and non-wired segments
US20100227302 *4 mars 20109 sept. 2010Fat Statz LLC, dba BodySpexMetrics assessment system for health, fitness and lifestyle behavioral management
US20100241275 *20 mars 200923 sept. 2010Johnson Controls Technology CompanyDevices, systems, and methods for communicating with rooftop air handling units and other hvac components
US20110009077 *9 sept. 201013 janv. 2011May Patents Ltd.Information device
US20110018808 *19 juil. 201027 janv. 2011Samsung Electronics Co., Ltd.Information display method for portable terminal and apparatus using the same
US20110038278 *21 mai 200817 févr. 2011Honeywell International Inc.Systems and methods for configuring access control devices
US20110071929 *3 févr. 200924 mars 2011Honeywell International Inc.Systems and methods for managing building services
US20110077751 *9 déc. 201031 mars 2011Jason Keith RediSystems and methods for controlling appliances via a network
US20110115602 *21 mai 200819 mai 2011Honeywell International Inc.Systems and methods for commissioning access control devices
US20110118680 *15 juil. 201019 mai 2011Cardinal Health, Inc.Fluid collection and disposal system and related methods
US20110167488 *6 janv. 20117 juil. 2011Honeywell International Inc.Systems and methods for location aware access control management
US20110169621 *22 mars 201114 juil. 2011Sehat SutardjaTime updating and load management systems
US20110178482 *20 janv. 201121 juil. 2011Cardinal Health, Inc.Fluid collection and disposal system and related methods
US20130020397 *13 janv. 201124 janv. 2013Gtr Technologies, Inc.Ventilation control system and method
US20130024542 *26 juin 201224 janv. 2013Rockwell Automation Technologies, Inc.Software, systems, and methods for mobile visualization of industrial automation environments
US20130046881 *13 oct. 201121 févr. 2013Ecolink Intelligent Technology, Inc.Method and Apparatus For Network Device Detection
US20130219273 *21 mars 201322 août 2013Sonos, Inc.Method and apparatus for displaying single and internet radio items in a play queue
US20140003290 *30 août 20132 janv. 2014Broadcom CorporationWireless Network Devices Configurable via Powerline Communications Networks
US20140130524 *12 nov. 201315 mai 2014Seontaek KimApparatus for controlling an air conditioner and a method for operating the same
US20140137584 *12 nov. 201322 mai 2014Seontaek KimAir conditioning system
US20140203943 *30 janv. 201424 juil. 2014Nest Labs, Inc.Wireless transceiver
US20140219369 *6 févr. 20147 août 2014Flextronics Ap, LlcPower line communications signal aggregation and switch
US20150097687 *7 oct. 20149 avr. 2015Google Inc.Smart-home hazard detector with adaptive heads up pre-alarm criteria
USD6780845 juin 201219 mars 2013Honeywell International Inc.Thermostat housing
USD72063325 oct. 20136 janv. 2015Honeywell International Inc.Thermostat
EP1542403A2 *25 nov. 200415 juin 2005Lucent Technologies Inc.X10 communication of one or more messages between one or more mobile communication devices and one or more module components
EP1542403A3 *25 nov. 200422 juin 2005Lucent Technologies Inc.X10 communication of one or more messages between one or more mobile communication devices and one or more module components
WO2008027792A2 *24 août 20076 mars 2008Current Technologies, LlcPower line communication device and method with frequency shifted modem
WO2008027792A3 *24 août 200731 juil. 2008Current Tech LlcPower line communication device and method with frequency shifted modem
WO2016046814A3 *20 sept. 201512 mai 2016Switchbee Ltd.A method and apparatus for controlling a load
Classifications
Classification aux États-Unis340/12.32, 340/538
Classification internationaleH04L12/28, H04B3/54
Classification coopérativeA47J2043/0733, H04B3/542, H04B2203/5441, H04L2012/2841, H04B2203/5495, H04B2203/5483, H04B2203/5437, H04L2012/2845, H04L12/282, H04L12/2803, H04L2012/285, H04B2203/5458, H04L12/2818, H04L2012/2843, H04B2203/5445
Classification européenneH04L12/28H3A, H04B3/54A, H04L12/28H, H04L12/28H3B
Événements juridiques
DateCodeÉvénementDescription
18 oct. 2000ASAssignment
Owner name: THALIA PRODUCTS, INC., FLORIDA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CUNNINGHAM, GLEN;PARKER, KENNETH R.;WOODS, TIMOTHY E.;AND OTHERS;REEL/FRAME:011191/0132;SIGNING DATES FROM 20000810 TO 20001013
17 nov. 2000ASAssignment
Owner name: FIRST UNION NATIONAL BANK, AS ADMINISTRATIVE AGENT
Free format text: SECURITY INTEREST;ASSIGNOR:THALIA PRODUCTS, INC (DE CORPORATION);REEL/FRAME:011117/0137
Effective date: 20001110
Owner name: FIRST UNION NATIONAL BANK, AS ADMINISTRATIVE AGENT
Free format text: SECURITY AGREMENT;ASSIGNOR:THALIA PRODUCTS, INC. (DE CORPORATION);REEL/FRAME:011113/0649
Effective date: 20001111
5 mai 2003ASAssignment
Owner name: THALIA PRODUCTS, INC., ILLINOIS
Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST;ASSIGNOR:WACHOVIA BANK, NATIONAL ASSOCIATION (FORMERLYFIRST UNION NATIONAL BANK);REEL/FRAME:014028/0083
Effective date: 20021213