US20020015278A1 - Solid-state electrolytic capacitor - Google Patents

Solid-state electrolytic capacitor Download PDF

Info

Publication number
US20020015278A1
US20020015278A1 US09/799,095 US79909501A US2002015278A1 US 20020015278 A1 US20020015278 A1 US 20020015278A1 US 79909501 A US79909501 A US 79909501A US 2002015278 A1 US2002015278 A1 US 2002015278A1
Authority
US
United States
Prior art keywords
capacitor element
solid
conductive polymer
resin layer
state electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/799,095
Other versions
US6442016B2 (en
Inventor
Sachiko Fukuyama
Hirotoshi Hirakawa
Shuetsu Iwanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000061378A external-priority patent/JP2001250747A/en
Priority claimed from JP2000070200A external-priority patent/JP2001267189A/en
Application filed by Saga Sanyo Industry Co Ltd, Sanyo Electric Co Ltd filed Critical Saga Sanyo Industry Co Ltd
Assigned to SAGA SANYO INDUSTRIES CO., LTD., SANYO ELECTRIC CO., LTD. reassignment SAGA SANYO INDUSTRIES CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUKUYAMA, SACHIKO, HIRAKAWA, HIROTOSHI, IWANABE, SHUETSU
Publication of US20020015278A1 publication Critical patent/US20020015278A1/en
Application granted granted Critical
Publication of US6442016B2 publication Critical patent/US6442016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation

Definitions

  • This invention relates to a solid-state electrolytic capacitor in which a capacitor element having an anode member with a dielectric film formed thereon is impregnated with conductive polymer serving as a cathode electrolyte and housed/sealed within an outer case.
  • FIG. 4 A previously known structure of a solid-state electrolytic capacitor is shown in FIG. 4, in which a capacitor element having an anode member with a dielectric film formed thereon is impregnated with conductive polymer serving as a cathode electrolyte and housed/sealed within an outer case.
  • a capacitor element 11 is manufactured in a manner that an anode foil with a dielectric film formed thereon and an opposite cathode foil are wound with a separator interposed therebetween.
  • the capacitor element 11 is impregnated with conductive polymer serving as a cathode electrolyte.
  • the capacitor element 11 is housed within a cylindrical bottomed outer case 15 and sealed by sealing rubber 16 .
  • a seat plate 18 for surface mounting is mounted on the sealed end of the outer case 15 .
  • reference numerals 17 a and 17 b denote terminals for extending the anode and the cathode, respectively.
  • JP-A-11-204377 discloses a technique that in such a solid-state electrolytic capacitor, in order to suppress gas generation from conductive polymer due to a solder heat resistance test, thereby preventing a case or sealing member from swelling, the outside of the capacitor element impregnated with conductive polymer is covered with epoxy resin.
  • the solid-state capacitor with an epoxy resin layer formed outside the capacitor element impregnated with conductive polymer according to the technique disclosed in JP-A-11-204377 has the following defect. Specifically, in the solder heat resistance test, as the case maybe, mechanical stress is applied to the interior of the capacitor element owing to a difference in a thermal expansion coefficient between the members of the capacitor including conductive polymer and the epoxy resin layer so that the dielectric film on the anode member is damaged. As a result, the leakage current is increased very greatly.
  • An object of this invention is to provide a solid-state electrolytic capacitor including conductive polymer as a cathode electrolyte which is free from attenuation of the characteristic such as an increase in a leakage current.
  • a solid-state electrolytic capacitor in which a capacitor element having an anode member with a dielectric film formed thereon is impregnated with conductive polymer serving as a cathode electrolyte and housed/sealed within an outer case, wherein the capacitor element impregnated with conductive polymer is covered with epoxy resin mixed with a silane coupling element.
  • a solid-state electrolytic capacitor in which a capacitor element having an anode member with a dielectric film formed thereon is impregnated with conductive polymer serving as a cathode electrolyte and housed/sealed within an outer case, wherein the capacitor element impregnated with conductive polymer is covered with a first resin layer and a second resin layer which are formed successively on an outside thereof, and the first resin layer is made of a material having higher flexibility than that of the second resin layer.
  • the first resin layer is made of such a material, freedom of selecting the material of the second resin layer can be enhanced.
  • FIG. 1 is a sectional view of a solid-state electrolytic capacitor according to a first embodiment of this invention
  • FIG. 2 is a graph showing the experimental result of the hygroscopic property (moisture absorption property) according to the embodiment of this invention and a comparative example;
  • FIG. 3 is a sectional view of a solid-state electrolytic capacitor according to a second embodiment of this invention.
  • FIG. 4 is a sectional view of a solid-state electrolytic capacitor according to a conventional art.
  • FIG. 1 The solid-state electrolytic capacitor according to a first embodiment of this invention is shown in FIG. 1.
  • a winding type capacitor element 11 with conductive polymer formed therein is coated with epoxy resin 12 mixed with silane coupling agent.
  • the capacitor element is housed within an outer case 15 of aluminum and sealed with sealing member 16 of rubber.
  • a seat plate 18 for surface mounting is mounted on the sealed end of the outer case.
  • the winding type capacitor element is wounded in a cylindrical shape with an anode of an aluminum foil subjected to an etching treatment and anodic oxidation treatment and an opposite cathode with a separator interposed therebetween.
  • a conductive polymer layer within the winding type capacitor element prepared are monomer of 3,4-ethylene dioxythiophene which becomes conductive polymer by oxidation/polymerization, iron (III) para-toluene sulfonic acid serving as an oxidizing agent and a chemical polymerizing liquid containing n-butyl alcohol which is diluent.
  • the capacitor element is immersed in the chemical polymerizing liquid and thereafter heat-treated for several minutes at about 200° C. so that a polymer layer of 3,4-ethylene dioxythiophene in intimate contact with an anode-formed foil and an opposite cathode foil within the capacitor is formed.
  • a coating layer of epoxy resin mixed with silane coupling agent is created in such a manner that the capacitor element with the conductive polymer layer formed is immersed in a solution consisting of silane coupling agent and epoxy resin mixed at a ratio of about 1:1 by weight, and taken out and dried.
  • the silane coupling agent maybe 3-glysidoxypropyltrimethoxy silane (chemical fomula:CH 2 (O) CH 2 C 3 O 3 H 6 Si (OCH 3 ) 3 .
  • the mixing ratio of silane coupling agent and epoxy resin should not be limited to about 1:1, but may be suitably selected within a range of e.g. about 0.001 ⁇ 1000:1.
  • the capacitor element with the coating layer thus formed is housed within a cylindrical bottomed outer case 15 made of aluminum in a state where a sealing rubber 16 is mounted on the root of the terminals 17 a and 18 a for extending the anode and cathode, respectively.
  • the capacitor element is subjected in its opening portion to lateral reduction and curling and thereafter to the aging for several tens or several hours while a rated voltage is applied.
  • a product of the capacitor can be completed.
  • FIG. 2 shows the changes in the moisture per one element when these elements are left in an air at a temperature of 25° C. and moisture of 70%.
  • Table 1 shows the results when they have been subjected to the solder heat resistance test according to VPS (Vaper Phase Soldering) method (240° C. ⁇ 40 sec ⁇ twice) and the subsequent endurance test (105° C. ⁇ 500 hours under the application of a rated voltage).
  • VPS Vaper Phase Soldering
  • the capacitor elements according to this embodiment 1 and comparative example 1 have ratings of 16V ⁇ 27 ⁇ F and outer dimensions of ⁇ 6.3 mm ⁇ L5.8 mm.
  • ⁇ C/C denotes a changing rate of the electrostatic capacitance at 120 Hz
  • ESR denotes an equivalent series resistance at 100 kHz
  • LC denote a leakage current after 60 sec from when a rated voltage has been applied.
  • each of these characteristics is an average value of 20 samples.
  • the capacitor element according to the embodiment of this invention is more difficult to absorb moisture than the capacitor element according to the comparative example is. Further, as apparent from Table 1, the capacitor element according to the embodiment of this invention has less change in the characteristics by the VPS test and endurance test than the capacitor element according to the comparative example has.
  • a winding type capacitor element was used, a capacitor element with an anode member made of a sintered tantalum body coated with a dielectric film may be used.
  • FIG. 3 The solid-state electrolytic capacitor according to a second embodiment of this invention is shown in FIG. 3.
  • a winding type capacitor element 11 with conductive polymer formed therein is coated, in its outside, with a first resin layer 21 having high flexibility and further with a second resin layer 22 having high hermeticity. Thereafter, the capacitor element is housed within an outer case 15 of aluminum and sealed with sealing member 16 of rubber. A seat plate 18 for surface mounting is mounted on the sealed end of the outer case.
  • the winding type capacitor element is wounded in a cylindrical shape with an anode of an aluminum foil subjected to an etching treatment and anodic oxidation treatment and an opposite cathode with a separator interposed therebetween.
  • a conductive polymer layer within the winding type capacitor element prepared are monomer of 3,4-ethylene dioxythiophene which becomes by oxidation/polymerization, iron (III) para-toluene sulfonic acid serving as an oxidizing agent and a chemical polymerizing liquid containing n-butyl alcohol which is diluent.
  • the capacitor element is immersed in the chemical polymerizing liquid and thereafter heat-treated for several minutes at about 200° C. so that a polymer layer of 3,4-ethylene dioxythiophene in intimate contact with an anode formed foil and an opposite cathode foil within the capacitor is formed.
  • the first resin layer is preferably made of thermosetting resin (e.g. epoxy resin) which has higher flexibility than that of the second resin layer.
  • the second resin layer is preferably made of thermosetting resin (e.g. acid anhydride epoxy resin) which has higher hermeticity than that of the first resin layer.
  • the flexibility of the resin can be quantified in terms of numeric values of Rockwell hardness, tensile strength, elongation coefficient after fracture, etc.
  • the first resin layer preferably has the Rockwell hardness of 100 or less in M scale, tensile strength of 5 kg weight/mm 2 or more, and tension extension coefficient of 4% or more.
  • the first resin layer preferably has adherence to the outer surface of the capacitor element covered with conductive polymer, and surface resistivity of 10 13 ⁇ or more.
  • the capacitor element thus coated with the first and the second resin layer is housed within a cylindrical bottomed outer case 15 made of aluminum in a state where a sealing rubber 16 is mounted on the root of the terminals 17 a and 18 a for extending the anode and cathode, respectively.
  • the capacitor element is subjected in its opening portion to barring and curling and thereafter to the aging for several tens or several hours while a rated voltage is applied.
  • a product of the capacitor can be completed.
  • the inventors of this invention manufactured the solid-state electrolytic capacitor having the first and the second resin layer according to the embodiment of this invention (embodiment 2) and the solid-state electrolytic capacitor having a single layer of the same material as that of the above second resin layer (comparative example 2). These solid-state electrolytic capacitors were subjected to the solder heat-resisting test (240° C. ⁇ 90 sec ⁇ twice) by the VPS technique.
  • Table 2 shows the characteristics of these solid-state electrolytic capacitors before the solder heat-resisting test.
  • Table 3 shows changes in the leakage current of these solid-state electrolytic capacitors before and after the solder heat-resisting test.
  • the capacitor elements according to this embodiment and comparative example have ratings of 20V ⁇ 22 ⁇ F and outer dimensions of ⁇ 6.3 mm ⁇ L6.0 mm.
  • C denotes an electrostatic capacitance at 120 Hz
  • tan ⁇ denotes tangent of the loss angle at 120 Hz
  • ESR denotes an equivalent series resistance at 100 kHz.
  • each of these characteristics is an average value of 50 samples.
  • the LC yield in Table 2 shows the ratio of the number of good products to that of samples (50 pieces for each) where the good product means that the leakage current after 60 sec from when a rate voltage has been applied is not larger than 88 ⁇ A.
  • Table 3 shows a minimum value and a maximum value of the leakage current (LC) before and after 60 sec from when a rate voltage has been applied for the 50 samples according to this embodiment and the comparative example.
  • the capacitor element according to the embodiment of this invention has approximately equal initial characteristics to those of the capacitor element according to the comparative example. Further, as apparent from Table 3, in the capacitor element according to the embodiment of this invention, an increase in the leakage current by the solder heat-resisting test is suppressed more greatly than in the capacitor element according to the comparative example.
  • the polymer of 3,4-ethylene dioxythiophene was used as the material of the cathode electrolyte
  • other conductive polymers e.g. oxidized/polymerized polymer of pyrrole, thiophene, aniline or their derivative
  • a winding type capacitor element was used, a capacitor element with an anode member made of a sintered tantalum body coated with a dielectric film may be used.

Abstract

In a solid-state electrolytic capacitor in which a capacitor element having an anode member with a dielectric film formed thereon is impregnated with conductive polymer serving as a cathode electrolyte and housed/sealed within an outer case, the capacitor element impregnated with conductive polymer is covered with epoxy resin mixed with a silane coupling element. Otherwise, the capacitor element impregnated with conductive polymer is covered with a first resin layer and a second resin layer which are formed successively on an outside thereof, and the first resin layer is made of a material having higher flexibility than that of the second resin layer.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • This invention relates to a solid-state electrolytic capacitor in which a capacitor element having an anode member with a dielectric film formed thereon is impregnated with conductive polymer serving as a cathode electrolyte and housed/sealed within an outer case. [0001]
  • 2. Description of the Related Art [0002]
  • A previously known structure of a solid-state electrolytic capacitor is shown in FIG. 4, in which a capacitor element having an anode member with a dielectric film formed thereon is impregnated with conductive polymer serving as a cathode electrolyte and housed/sealed within an outer case. [0003]
  • In this solid-state electrolytic capacitor, a [0004] capacitor element 11 is manufactured in a manner that an anode foil with a dielectric film formed thereon and an opposite cathode foil are wound with a separator interposed therebetween. The capacitor element 11 is impregnated with conductive polymer serving as a cathode electrolyte. The capacitor element 11 is housed within a cylindrical bottomed outer case 15 and sealed by sealing rubber 16. A seat plate 18 for surface mounting is mounted on the sealed end of the outer case 15. In FIG. 4, reference numerals 17 a and 17 b denote terminals for extending the anode and the cathode, respectively.
  • Conventionally, in such a solid-state electrolytic capacitor, the following thing occurred. The conductive polymer impregnated in the capacitor element absorbs moisture during a manufacturing process after the conductive polymer has been formed. As a result, in a solder heat resistant test or endurance test executed for the completed product of the capacitor, the equivalent series resistance and the lead current increase. [0005]
  • JP-A-11-204377 discloses a technique that in such a solid-state electrolytic capacitor, in order to suppress gas generation from conductive polymer due to a solder heat resistance test, thereby preventing a case or sealing member from swelling, the outside of the capacitor element impregnated with conductive polymer is covered with epoxy resin. [0006]
  • However, the solid-state capacitor with an epoxy resin layer formed outside the capacitor element impregnated with conductive polymer according to the technique disclosed in JP-A-11-204377 has the following defect. Specifically, in the solder heat resistance test, as the case maybe, mechanical stress is applied to the interior of the capacitor element owing to a difference in a thermal expansion coefficient between the members of the capacitor including conductive polymer and the epoxy resin layer so that the dielectric film on the anode member is damaged. As a result, the leakage current is increased very greatly. [0007]
  • SUMMARY OF THE INVENTION
  • An object of this invention is to provide a solid-state electrolytic capacitor including conductive polymer as a cathode electrolyte which is free from attenuation of the characteristic such as an increase in a leakage current. [0008]
  • In order to attain the above object, in accordance with the first aspect of this invention, there is provided a solid-state electrolytic capacitor in which a capacitor element having an anode member with a dielectric film formed thereon is impregnated with conductive polymer serving as a cathode electrolyte and housed/sealed within an outer case, wherein the capacitor element impregnated with conductive polymer is covered with epoxy resin mixed with a silane coupling element. [0009]
  • In accordance with this invention, after the conductive polymer has been formed, moisture absorption by this polymer is suppressed. Thus, during the solder heat resistant test and endurance test executed the product of the capacitor, the equivalent series resistance and leakage current are made difficult to vary. [0010]
  • In accordance with the second aspect of this invention, there is provided a solid-state electrolytic capacitor in which a capacitor element having an anode member with a dielectric film formed thereon is impregnated with conductive polymer serving as a cathode electrolyte and housed/sealed within an outer case, wherein the capacitor element impregnated with conductive polymer is covered with a first resin layer and a second resin layer which are formed successively on an outside thereof, and the first resin layer is made of a material having higher flexibility than that of the second resin layer. [0011]
  • In this configuration, since the capacitor element is covered with the first resin layer made of higher flexibility in intimate contact with the outside thereof, mechanical stress is difficult to spread to the interior of the capacitor so that the dielectric film within the capacitor element is difficult to be damaged. [0012]
  • Since the first resin layer is made of such a material, freedom of selecting the material of the second resin layer can be enhanced. [0013]
  • In this configuration of the solid-state electrolytic capacitor, it is possible to prevent the case or sealing member from being swelled during a solder heat resistance test, and to suppress an increase in the leakage current.[0014]
  • The above and other objects and features of this invention will be more apparent from the following description taken in conjunction with the accompanying drawings. [0015]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a sectional view of a solid-state electrolytic capacitor according to a first embodiment of this invention; [0016]
  • FIG. 2 is a graph showing the experimental result of the hygroscopic property (moisture absorption property) according to the embodiment of this invention and a comparative example; [0017]
  • FIG. 3 is a sectional view of a solid-state electrolytic capacitor according to a second embodiment of this invention; and [0018]
  • FIG. 4 is a sectional view of a solid-state electrolytic capacitor according to a conventional art.[0019]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Now referring to the drawings, an explanation will be given of embodiments of this invention. [0020]
  • Embodiment 1
  • The solid-state electrolytic capacitor according to a first embodiment of this invention is shown in FIG. 1. As seen from FIG. 1, a winding [0021] type capacitor element 11 with conductive polymer formed therein is coated with epoxy resin 12 mixed with silane coupling agent. Thereafter, the capacitor element is housed within an outer case 15 of aluminum and sealed with sealing member 16 of rubber. A seat plate 18 for surface mounting is mounted on the sealed end of the outer case.
  • The winding type capacitor element is wounded in a cylindrical shape with an anode of an aluminum foil subjected to an etching treatment and anodic oxidation treatment and an opposite cathode with a separator interposed therebetween. [0022]
  • In order to form a conductive polymer layer within the winding type capacitor element, prepared are monomer of 3,4-ethylene dioxythiophene which becomes conductive polymer by oxidation/polymerization, iron (III) para-toluene sulfonic acid serving as an oxidizing agent and a chemical polymerizing liquid containing n-butyl alcohol which is diluent. The capacitor element is immersed in the chemical polymerizing liquid and thereafter heat-treated for several minutes at about 200° C. so that a polymer layer of 3,4-ethylene dioxythiophene in intimate contact with an anode-formed foil and an opposite cathode foil within the capacitor is formed. [0023]
  • A coating layer of epoxy resin mixed with silane coupling agent is created in such a manner that the capacitor element with the conductive polymer layer formed is immersed in a solution consisting of silane coupling agent and epoxy resin mixed at a ratio of about 1:1 by weight, and taken out and dried. The silane coupling agent maybe 3-glysidoxypropyltrimethoxy silane (chemical fomula:CH[0024] 2 (O) CH2C3O3H6Si (OCH3)3. The mixing ratio of silane coupling agent and epoxy resin should not be limited to about 1:1, but may be suitably selected within a range of e.g. about 0.001˜1000:1.
  • The capacitor element with the coating layer thus formed is housed within a cylindrical bottomed [0025] outer case 15 made of aluminum in a state where a sealing rubber 16 is mounted on the root of the terminals 17 a and 18 a for extending the anode and cathode, respectively. The capacitor element is subjected in its opening portion to lateral reduction and curling and thereafter to the aging for several tens or several hours while a rated voltage is applied. Thus, a product of the capacitor can be completed.
  • In comparison between the capacitor element with the conductive polymer and coating layer formed in accordance with the embodiment of this invention (embodiment 1) and the capacitor element with no coating layer (comparative example 1), FIG. 2 shows the changes in the moisture per one element when these elements are left in an air at a temperature of 25° C. and moisture of 70%. [0026]
  • Further, in comparison between the solid-state electrolytic capacitor including the capacitor element with the conductive polymer and coating layer formed according to the embodiment of this invention (embodiment 1) and the solid-state electrolytic capacitor including the capacitor element with no coating layer (comparative example 1), Table 1 shows the results when they have been subjected to the solder heat resistance test according to VPS (Vaper Phase Soldering) method (240° C.×40 sec×twice) and the subsequent endurance test (105° C.×500 hours under the application of a rated voltage). [0027]
    TABLE 1
    Before Test After VPS Test After Endurance Test
    ESR LC ΔC/C ESR LC ΔC/C ESR LC
    (mΩ) (μA) (%) (mΩ) (μA) (%) (mΩ) (μA)
    Embodiment 46.1 63.3 −0.53 46.5 42.1 −1.04 46.9 0.95
    1
    Comp. Exa. 46.1 60.6 −0.64 58.3 1125 −1.34 73.6 263
    1
  • The capacitor elements according to this embodiment 1 and comparative example 1 have ratings of 16V−27 μF and outer dimensions of φ6.3 mm×L5.8 mm. In Table 1, ΔC/C denotes a changing rate of the electrostatic capacitance at 120 Hz; ESR denotes an equivalent series resistance at 100 kHz; and LC denote a leakage current after 60 sec from when a rated voltage has been applied. Incidentally, each of these characteristics is an average value of 20 samples. [0028]
  • As apparent from FIG. 2, the capacitor element according to the embodiment of this invention is more difficult to absorb moisture than the capacitor element according to the comparative example is. Further, as apparent from Table 1, the capacitor element according to the embodiment of this invention has less change in the characteristics by the VPS test and endurance test than the capacitor element according to the comparative example has. [0029]
  • In this embodiment, although the polymer of 3, 4-ethylene dioxythiophene was used as the material of the cathode electrolyte, other conductive polymers (e.g. oxidized/polymerized polymer of pyrrole, thiophene, aniline or their derivative) may be used. [0030]
  • Further, in this embodiment, a winding type capacitor element was used, a capacitor element with an anode member made of a sintered tantalum body coated with a dielectric film may be used. [0031]
  • Embodiment 2
  • The solid-state electrolytic capacitor according to a second embodiment of this invention is shown in FIG. 3. [0032]
  • As seen from FIG. 3, a winding [0033] type capacitor element 11 with conductive polymer formed therein is coated, in its outside, with a first resin layer 21 having high flexibility and further with a second resin layer 22 having high hermeticity. Thereafter, the capacitor element is housed within an outer case 15 of aluminum and sealed with sealing member 16 of rubber. A seat plate 18 for surface mounting is mounted on the sealed end of the outer case.
  • The winding type capacitor element is wounded in a cylindrical shape with an anode of an aluminum foil subjected to an etching treatment and anodic oxidation treatment and an opposite cathode with a separator interposed therebetween. [0034]
  • In order to form a conductive polymer layer within the winding type capacitor element, prepared are monomer of 3,4-ethylene dioxythiophene which becomes by oxidation/polymerization, iron (III) para-toluene sulfonic acid serving as an oxidizing agent and a chemical polymerizing liquid containing n-butyl alcohol which is diluent. The capacitor element is immersed in the chemical polymerizing liquid and thereafter heat-treated for several minutes at about 200° C. so that a polymer layer of 3,4-ethylene dioxythiophene in intimate contact with an anode formed foil and an opposite cathode foil within the capacitor is formed. [0035]
  • The first resin layer is preferably made of thermosetting resin (e.g. epoxy resin) which has higher flexibility than that of the second resin layer. On the other hand, the second resin layer is preferably made of thermosetting resin (e.g. acid anhydride epoxy resin) which has higher hermeticity than that of the first resin layer. The flexibility of the resin can be quantified in terms of numeric values of Rockwell hardness, tensile strength, elongation coefficient after fracture, etc. The first resin layer preferably has the Rockwell hardness of 100 or less in M scale, tensile strength of 5 kg weight/mm[0036] 2 or more, and tension extension coefficient of 4% or more.
  • Further, the first resin layer preferably has adherence to the outer surface of the capacitor element covered with conductive polymer, and surface resistivity of 10[0037] 13 Ω or more. The capacitor element thus coated with the first and the second resin layer is housed within a cylindrical bottomed outer case 15 made of aluminum in a state where a sealing rubber 16 is mounted on the root of the terminals 17 a and 18 a for extending the anode and cathode, respectively. The capacitor element is subjected in its opening portion to barring and curling and thereafter to the aging for several tens or several hours while a rated voltage is applied. Thus, a product of the capacitor can be completed.
  • The inventors of this invention manufactured the solid-state electrolytic capacitor having the first and the second resin layer according to the embodiment of this invention (embodiment 2) and the solid-state electrolytic capacitor having a single layer of the same material as that of the above second resin layer (comparative example 2). These solid-state electrolytic capacitors were subjected to the solder heat-resisting test (240° C.×90 sec×twice) by the VPS technique. [0038]
  • Table 2 shows the characteristics of these solid-state electrolytic capacitors before the solder heat-resisting test. Table 3 shows changes in the leakage current of these solid-state electrolytic capacitors before and after the solder heat-resisting test. [0039]
    TABLE 2
    C (μF) tan δ (%) ESR (mΩ) LC yield (%)
    Embodiment 2 221 10 49 92
    Comp. Exa. 2 222 10 50 84
  • [0040]
    TABLE 3
    LC before Solder LC after Solder
    Heat-Resisting Test (μA) Heat-Resisting Test (μA)
    Minimum Maximum Minimum Maximum
    Embodiment 2 1 39  10  100
    Comp. Ex. 2 6 26 410 1310
  • The capacitor elements according to this embodiment and comparative example have ratings of 20V−22 μF and outer dimensions of φ 6.3 mm×L6.0 mm. In Table 2, C denotes an electrostatic capacitance at 120 Hz; tan δ denotes tangent of the loss angle at 120 Hz; and ESR denotes an equivalent series resistance at 100 kHz. Incidentally, each of these characteristics is an average value of 50 samples. [0041]
  • The LC yield in Table 2 shows the ratio of the number of good products to that of samples (50 pieces for each) where the good product means that the leakage current after 60 sec from when a rate voltage has been applied is not larger than 88 μA. [0042]
  • Table 3 shows a minimum value and a maximum value of the leakage current (LC) before and after 60 sec from when a rate voltage has been applied for the 50 samples according to this embodiment and the comparative example. [0043]
  • As apparent from Table 2, the capacitor element according to the embodiment of this invention has approximately equal initial characteristics to those of the capacitor element according to the comparative example. Further, as apparent from Table 3, in the capacitor element according to the embodiment of this invention, an increase in the leakage current by the solder heat-resisting test is suppressed more greatly than in the capacitor element according to the comparative example. [0044]
  • In this embodiment, although the polymer of 3,4-ethylene dioxythiophene was used as the material of the cathode electrolyte, other conductive polymers (e.g. oxidized/polymerized polymer of pyrrole, thiophene, aniline or their derivative) may be used. [0045]
  • Further, in this embodiment, a winding type capacitor element was used, a capacitor element with an anode member made of a sintered tantalum body coated with a dielectric film may be used. [0046]

Claims (6)

What is claimed is:
1. A solid-state electrolytic capacitor comprising:
a capacitor element having an anode member;
a dielectric film formed on said anode member;
an outer case in which said capacitor element is sealed to be impregnated with conductive polymer serving as a cathode electrolyte; and
an epoxy resin mixed with a silane coupling element, which covers said capacitor element impregnated with conductive polymer.
2. A solid-state electrolytic capacitor according to claim 1, wherein said capacitor element has an anode foil with a dielectric film formed thereon and an opposite cathode foil which are wound with a separator interposed therebetween.
3. A solid-state electrolytic capacitor according to claim 1, wherein said conductive polymer is oxidized/polymerized polymer of thiophene or its derivative.
4. A solid-state electrolytic capacitor comprising:
a capacitor element having an anode member;
a dielectric film formed on said anode member;
an outer case in which said capacitor element is sealed to be impregnated with conductive polymer serving as a cathode electrolyte; and
a first resin layer and a second resin layer which are formed successively on an outside of said capacitor element impregnated with conductive polymer, and the first resin layer is made of a material having higher flexibility than that of said second resin layer.
5. A solid-state electrolytic capacitor according to claim 4, wherein said capacitor element has an anode foil with a dielectric film formed thereon and an opposite cathode foil which are wound with a separator interposed therebetween.
6. A solid-state electrolytic capacitor according to claim 4, wherein said conductive polymer is oxidized/polymerized polymer of thiophene or its derivative.
US09/799,095 2000-03-07 2001-03-06 Solid-state electrolytic capacitor Expired - Lifetime US6442016B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JPP.2000-061378 2000-03-07
JP2000-061378 2000-03-07
JP2000061378A JP2001250747A (en) 2000-03-07 2000-03-07 Solid electrolytic capacitor
JP2000-070200 2000-03-14
JP2000070200A JP2001267189A (en) 2000-03-14 2000-03-14 Solid electrolytic capacitor
JPP.2000-070200 2000-03-14

Publications (2)

Publication Number Publication Date
US20020015278A1 true US20020015278A1 (en) 2002-02-07
US6442016B2 US6442016B2 (en) 2002-08-27

Family

ID=26586894

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/799,095 Expired - Lifetime US6442016B2 (en) 2000-03-07 2001-03-06 Solid-state electrolytic capacitor

Country Status (3)

Country Link
US (1) US6442016B2 (en)
KR (1) KR100568918B1 (en)
TW (1) TW507228B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040005265A1 (en) * 2001-12-21 2004-01-08 Massachusetts Institute Of Technology Conductive lithium storage electrode
US20040018430A1 (en) * 2002-07-26 2004-01-29 A123 Systems, Inc. Electrodes and related devices
US20050026037A1 (en) * 2002-07-26 2005-02-03 A123 Systems, Inc. Bipolar articles and related methods
US20050034993A1 (en) * 2003-06-23 2005-02-17 A123 Systems, Inc. Polymer composition for encapsulation of electrode particles
US20050272214A1 (en) * 2000-10-20 2005-12-08 Massachusetts Institute Of Technology Electrophoretic assembly of electrochemical devices
US7387851B2 (en) 2001-07-27 2008-06-17 A123 Systems, Inc. Self-organizing battery structure with electrode particles that exert a repelling force on the opposite electrode
US20080213662A1 (en) * 2000-10-20 2008-09-04 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
US20090202903A1 (en) * 2007-05-25 2009-08-13 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US7579112B2 (en) 2001-07-27 2009-08-25 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US20100136222A1 (en) * 2008-12-01 2010-06-03 Sanyo Electric Co., Ltd. Method of manufacturing solid electrolytic capacitor
US8435678B2 (en) 2005-02-03 2013-05-07 A123 Systems, LLC Electrode material with enhanced ionic transport properties
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
US9779881B2 (en) 2013-01-31 2017-10-03 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and manufacturing method thereof
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles
EP4113555A4 (en) * 2020-02-28 2024-01-10 Sun Electronic Ind Corp Capacitor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079377B2 (en) * 2002-09-30 2006-07-18 Joachim Hossick Schott Capacitor and method for producing a capacitor
US7256982B2 (en) * 2003-05-30 2007-08-14 Philip Michael Lessner Electrolytic capacitor
JP4519679B2 (en) * 2005-02-21 2010-08-04 Necトーキン株式会社 Conductive polymer composition and solid electrolytic capacitor using the same
CN101288138B (en) * 2005-10-14 2012-04-04 富士通株式会社 Electronic component and pin units for the electronic component
JP5340872B2 (en) 2008-11-05 2013-11-13 三洋電機株式会社 Manufacturing method of solid electrolytic capacitor
US9236192B2 (en) 2013-08-15 2016-01-12 Avx Corporation Moisture resistant solid electrolytic capacitor assembly
CN113728408B (en) 2019-04-25 2024-03-08 京瓷Avx元器件(曼谷)有限公司 Solid electrolytic capacitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591951A (en) * 1984-07-24 1986-05-27 Matsushita Electric Industrial Co., Ltd. Mounting arrangement for electronic components
JPH0750663B2 (en) * 1990-06-29 1995-05-31 三洋電機株式会社 Method for manufacturing organic semiconductor solid electrolytic capacitor
TW388043B (en) * 1997-04-15 2000-04-21 Sanyo Electric Co Solid electrolyte capacitor
JP3806503B2 (en) 1998-01-08 2006-08-09 三洋電機株式会社 Solid electrolytic capacitor
JP3403103B2 (en) * 1998-12-21 2003-05-06 三洋電機株式会社 Solid electrolytic capacitors

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110070489A1 (en) * 2000-10-20 2011-03-24 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
US8277975B2 (en) 2000-10-20 2012-10-02 Massachusetts Intitute Of Technology Reticulated and controlled porosity battery structures
US20100003603A1 (en) * 2000-10-20 2010-01-07 Yet-Ming Chiang Battery structures, self-organizing structures and related methods
US8148009B2 (en) 2000-10-20 2012-04-03 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
US20110151324A1 (en) * 2000-10-20 2011-06-23 Yet-Ming Chiang Battery structures, self-organizing structures and related methods
US8709647B2 (en) 2000-10-20 2014-04-29 A123 Systems Llc Battery structures and related methods
US20050272214A1 (en) * 2000-10-20 2005-12-08 Massachusetts Institute Of Technology Electrophoretic assembly of electrochemical devices
US8586238B2 (en) 2000-10-20 2013-11-19 Massachusetts Institute Of Technology Battery structures, self-organizing structures, and related methods
US8580430B2 (en) 2000-10-20 2013-11-12 Massachusetts Institute Of Technology Battery structures, self-organizing structures, and related methods
US8168326B2 (en) 2000-10-20 2012-05-01 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US20110045346A1 (en) * 2000-10-20 2011-02-24 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US20080213662A1 (en) * 2000-10-20 2008-09-04 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
US7553584B2 (en) 2000-10-20 2009-06-30 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
US20110027656A1 (en) * 2000-10-20 2011-02-03 Massachusetts Institute Of Technology Electrophoretic assembly of electrochemical devices
US20110005065A1 (en) * 2000-10-20 2011-01-13 Yet-Ming Chiang Battery structures, self-organizing structures and related methods
US7988746B2 (en) 2000-10-20 2011-08-02 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US7662265B2 (en) 2000-10-20 2010-02-16 Massachusetts Institute Of Technology Electrophoretic assembly of electrochemical devices
US8241789B2 (en) 2000-10-20 2012-08-14 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US8206468B2 (en) 2000-10-20 2012-06-26 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US7781098B2 (en) 2000-10-20 2010-08-24 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
US8206469B2 (en) 2000-10-20 2012-06-26 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US7579112B2 (en) 2001-07-27 2009-08-25 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US7387851B2 (en) 2001-07-27 2008-06-17 A123 Systems, Inc. Self-organizing battery structure with electrode particles that exert a repelling force on the opposite electrode
US8088512B2 (en) 2001-07-27 2012-01-03 A123 Systems, Inc. Self organizing battery structure method
US8148013B2 (en) 2001-12-21 2012-04-03 Massachusetts Institute Of Technology Conductive lithium storage electrode
US7338734B2 (en) 2001-12-21 2008-03-04 Massachusetts Institute Of Technology Conductive lithium storage electrode
US8852807B2 (en) 2001-12-21 2014-10-07 Massachusetts Institute Of Technology Conductive lithium storage electrode
US20040005265A1 (en) * 2001-12-21 2004-01-08 Massachusetts Institute Of Technology Conductive lithium storage electrode
US8481208B2 (en) 2002-07-26 2013-07-09 A123 Systems, LLC Bipolar articles and related methods
US7087348B2 (en) 2002-07-26 2006-08-08 A123 Systems, Inc. Coated electrode particles for composite electrodes and electrochemical cells
WO2004011901A2 (en) * 2002-07-26 2004-02-05 A123 Systems, Inc. Electrodes and related devices
US20100248028A1 (en) * 2002-07-26 2010-09-30 A123 Systems, Inc. Bipolar articles and related methods
US7763382B2 (en) 2002-07-26 2010-07-27 A123 Systems, Inc. Bipolar articles and related methods
WO2004011901A3 (en) * 2002-07-26 2004-06-24 A123 Systems Inc Electrodes and related devices
US20050026037A1 (en) * 2002-07-26 2005-02-03 A123 Systems, Inc. Bipolar articles and related methods
US20040018430A1 (en) * 2002-07-26 2004-01-29 A123 Systems, Inc. Electrodes and related devices
US20050034993A1 (en) * 2003-06-23 2005-02-17 A123 Systems, Inc. Polymer composition for encapsulation of electrode particles
US7318982B2 (en) 2003-06-23 2008-01-15 A123 Systems, Inc. Polymer composition for encapsulation of electrode particles
US8435678B2 (en) 2005-02-03 2013-05-07 A123 Systems, LLC Electrode material with enhanced ionic transport properties
US20090202903A1 (en) * 2007-05-25 2009-08-13 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US8691327B2 (en) 2008-12-01 2014-04-08 Sanyo Electric Co., Ltd. Method of manufacturing solid electrolytic capacitor
US8470389B2 (en) * 2008-12-01 2013-06-25 Sanyo Electric Co., Ltd. Method of manufacturing solid electrolytic capacitor
US20100136222A1 (en) * 2008-12-01 2010-06-03 Sanyo Electric Co., Ltd. Method of manufacturing solid electrolytic capacitor
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
US10164242B2 (en) 2011-04-07 2018-12-25 Massachusetts Institute Of Technology Controlled porosity in electrodes
US9779881B2 (en) 2013-01-31 2017-10-03 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and manufacturing method thereof
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles
EP4113555A4 (en) * 2020-02-28 2024-01-10 Sun Electronic Ind Corp Capacitor

Also Published As

Publication number Publication date
TW507228B (en) 2002-10-21
KR20010088355A (en) 2001-09-26
US6442016B2 (en) 2002-08-27
KR100568918B1 (en) 2006-04-07

Similar Documents

Publication Publication Date Title
US6442016B2 (en) Solid-state electrolytic capacitor
US7760490B2 (en) Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
US8810997B2 (en) Solid electrolytic capacitor and method of manufacturing thereof
US8273135B2 (en) Method of manufacturing solid electrolytic capacitor
US9287053B2 (en) Method of manufacturing solid electrolytic capacitor
US8462484B2 (en) Method for manufacturing electrolytic capacitor with electrically conductive solid layer and electrolytic capacitor with electrically conductive solid layer
US8363385B2 (en) Solid electrolytic capacitor and method of manufacturing thereof
US20040212951A1 (en) Solid electrolytic capacitor and method for producing the same
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
US6733545B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US7004983B2 (en) Polymer electrolyte composite for driving an electrolytic capacitor, an electrolytic capacitor using the same, and a method of making the electrolytic capacitor
EP1158551B1 (en) Solid electrolytic capacitor and its production method
US6906913B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US6151205A (en) Solid electrolytic capacitor and method for making the same
US7379289B2 (en) Conductive separator and electrolytic capacitor including the same
JP3806503B2 (en) Solid electrolytic capacitor
JP3339511B2 (en) Method for manufacturing solid electrolytic capacitor
US20240128026A1 (en) Solid-electrolyte capacitor and method for manufacturing same
JP3548040B2 (en) Solid electrolytic capacitors
JP4115359B2 (en) Electrolytic capacitor and manufacturing method thereof
JPH06204092A (en) Manufacture of solid electrolytic capacitor
JP2001284190A (en) Solid electrolytic capacitor
JP2001267189A (en) Solid electrolytic capacitor
JP2001250747A (en) Solid electrolytic capacitor
JP2024004121A (en) Solid electrolytic capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANYO ELECTRIC CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUKUYAMA, SACHIKO;HIRAKAWA, HIROTOSHI;IWANABE, SHUETSU;REEL/FRAME:011920/0101

Effective date: 20010614

Owner name: SAGA SANYO INDUSTRIES CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUKUYAMA, SACHIKO;HIRAKAWA, HIROTOSHI;IWANABE, SHUETSU;REEL/FRAME:011920/0101

Effective date: 20010614

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12