US20020034626A1 - Mesoporous silica film from a solution containing a surfactant and methods of making same - Google Patents

Mesoporous silica film from a solution containing a surfactant and methods of making same Download PDF

Info

Publication number
US20020034626A1
US20020034626A1 US09/837,885 US83788501A US2002034626A1 US 20020034626 A1 US20020034626 A1 US 20020034626A1 US 83788501 A US83788501 A US 83788501A US 2002034626 A1 US2002034626 A1 US 2002034626A1
Authority
US
United States
Prior art keywords
surfactant
recited
film
mesoporous
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/837,885
Inventor
Jun Liu
Karel Domansky
Xiaohong Li
Glen Fryxell
Suresh Baskaran
Nathan Kohler
Suntharampillai Thevuthasan
Christopher Coyle
Jerome Birnbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/837,885 priority Critical patent/US20020034626A1/en
Publication of US20020034626A1 publication Critical patent/US20020034626A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31695Deposition of porous oxides or porous glassy oxides or oxide based porous glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/249969Of silicon-containing material [e.g., glass, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249971Preformed hollow element-containing
    • Y10T428/249972Resin or rubber element

Definitions

  • the present invention relates generally to porous silica film with nanometer-scale porosity produced from solution precursors. More specifically, the present invention relates to mesoporous silica film from a solution containing a surfactant (surfactant templated) and the use of specific surfactants to template porosity with the characteristic pore size being defined by the surfactant micelle size. The present invention also relates to the use of dehydroxylation in combination with surfactant templated mesoporous silica films to obtain a dielectric constant less than 3 under ambient humid conditions.
  • a surfactant surfactant templated
  • silicon means a compound having silicon (Si) and oxygen (O) and possibly additional elements.
  • mesoporous refers to a size range which is greater than 1 nm, but significantly less than a micrometer. In general, this refers most often to a size range from just over 1.0 nm (10 angstroms) to a few tens of nanometers.
  • stable can mean an absolute stability, a relative stability or a combination thereof.
  • Relative stability means that a dielectric constant increases no more than about 20% when a surfactant templated mesoporous film is taken from an equilibrated condition of 0.0% relative humidity or vacuum to an equilibrated condition of 50% relative humidity.
  • Absolute stability means that the dielectric constant remains less than 3 under any conditions including humid conditions of at least 40% relative humidity.
  • hydroxylated encompasses partially and fully hydroxylated.
  • dehydroxylating encompasses partial or total removal of hydroxyl groups from surface(s) of the surfactant templated mesoporous silica film.
  • Dielectric constant of porous films is dependent on the material and pore structure.
  • material and pore structure must result in uniform dielectric constants across the wafers and in different directions on the wafer.
  • isotropic material and pore structures are expected to provide the desired uniformity in film dielectric constant compared to anisotropic material and pore structures.
  • low dielectric constant mesoporous films used commercially need to be prepared in a manner compatible with a semiconductor device manufacturing process line, for example spin coating.
  • spin coating For large-area circular wafers, other coating techniques such as dip coating are not as convenient because dip coating requires masking of the backside to prevent contamination.
  • porous dielectric films Another important concern with porous dielectric films is mechanical integrity. Because of their fragility, it appears unlikely that porous films will be directly polished using conventional chemical-mechanical-polishing (CMP) equipment, but a dense “cap” layer of silica or another material on the porous low K film will be planarized. However, even with a cap layer, the porous low K material must have adequate stiffness, compressive and shear strengths, to withstand the stresses associated with the CMP process.
  • CMP chemical-mechanical-polishing
  • Silica films with nanometer-scale (or mesoporous) porosity may be produced from solution precursors and classified into two types (1) “aerogel or xerogel” films (aerogel/xerogel) in which a random or disordered porosity is introduced by controlled removal of an alcohol-type solvent, and (2) “mesoporous” surfactant-templated silica films in which the pores are formed with ordered porosity by removal of a surfactant.
  • aerogel/xerogel-type porous silica films the most successful demonstration of low dielectric constant silica films with dielectric constant of 3.0 or less has been with aerogel/xerogel-type porous silica films.
  • disadvantages of aerogel/xerogel films include (1) deposition of aerogel/xerogel films requires careful control of alcohol removal (e.g. maintaining a controlled atmosphere containing solvent or gelling agent during preparation) for formation of the pore structure (2) the smallest pore size typically possible in aerogel/xerogel films falls in the size range of 10- 100 nm, and (3) limited mechanical strength compared to dense selica films. These disadvantages have hindered implementation of these aerogel/xerogel porous silica films in semiconductor devices.
  • Hydroxyl groups and physisorbed water molecules may be removed from silica surfaces at very high temperatures.
  • C. J. Brinker and G. W. Scherer, in Sol-Gel Science, Academic Press, New York, N.Y. (1990) (Brinker et al. 1990) discuss thermal dehydroxylation of silica by exposure to very high temperatures of over 800° C.
  • semiconductor devices with dielectric films and metal lines cannot usually be processed over about 500° C.
  • other methods of dehydroxylation are needed for porous silica films on semiconductors.
  • HMDS hexamethyldisilazane
  • the pores form ordered (e.g. hexagonal) arrays, with the characteristic pore size being defined by the surfactant micelle size.
  • the surfactant templated route allows control of the porosity, pore size and pore shape using the properties of the surfactants and their interactions with the silica species. For a given level of porosity, this control in pore size and architecture and structure of the pore walls can also result in good mechanical properties. More specifically, smaller and uniform pores can impart better mechanical properties than larger and non-uniform pores. Although easier to produce (no need for controlled atmosphere to form the porosity), mesoporous surfactant templated silica films have not been demonstrated with low dielectric constant.
  • the surfactant used was a cationic ammonium-based surfactant.
  • a goal of this work was low-dielectric constant interlayers in microelectronic devices.
  • U.S. Pat. No. 5,858,457 by Brinker et al also reports a dip coating procedure for making a surfactant-templated mesoporous silica film with ordered porosity, where the surfactant used was also a ammonium-based surfactant.
  • Brinker et al measured the dielectric constant using a mercury dot electrode on the film, reporting a value for the dielectric constant of 2.37.
  • surfactant templated mesoporous silica films prepared with ammonium surfactants and tested after pyrolysis (thermal removal) of the surfactant have been found to adsorb moisture under ambient humid conditions, and therefore do not have a low dielectric constant under the ambient humid conditions of normal manufacturing and operating conditions for semiconductor devices. No dehydroxylation steps are reported in either Bruinsma et al. or Brinker et. al.
  • a surfactant templated mesoporous silica films and method of making them that provides a dielectric constant less than 3, and that meets engineering requirements including but not limited to control of film thickness and thickness uniformity, minimum surface texture, and mechanical integrity.
  • the dielectric constant must be relatively stable under normal operating conditions which include humid air at room temperature, and must be uniform across large wafers .
  • hydroxyl groups may be replaced with hydrophobic groups such as organic alkyl groups, siloxane (—Si—O—Si—) bonds or combinations thereof on internal pore surfaces as well as external surfaces of the surfactant templated mesoporous film.
  • the surfactants used in spin-coated surfactant templated mesoporous films as described in the present invention will result in fine pores smaller than about 20 nm.
  • the average pore size can be tailored with surfactants in the size range of about 1 to about 20 nm. This pore size range is desirable in interlevel dielectric films that separate metallization lines in semiconductor devices to minimize diffusion of metal species during repeated heat treatments.
  • Further advantages of the present invention include a method which provides for superior control of film thickness and thickness uniformity across a coated wafer, films with low dielectric constant that is stable; as well as disordered porosity which increases confidence in uniformity of dielectric constant in different directions on large wafers.
  • FIG. 1 shows film porosity as a function of surfactant/TEOS mole ratio in a spin-coating solution containing polyoxyethylene ether surfactants as determined by nuclear reaction analysis (NRA) for the C X EO 10 polyoxyethylene ether surfactant series.
  • NFA nuclear reaction analysis
  • FIG. 2 shows the dielectric constant (measured at room temperature under ambient conditions in humid air) of a surfactant templated mesoporous film prepared with C 12 EO 10 polyoxyethylene ether surfactant as a function of dehydroxylation procedures.
  • FIG. 3 shows the dielectric constant (measured at room temperature under ambient conditions in humid air) of a surfactant templated mesoporous film prepared with C 16 EO 10 polyoxyethylene ether surfactant as a function of dehydroxylation procedures.
  • FIG. 4 a shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C 12 EO 10 polyoxyethylene ether surfactant.
  • the x-ray beam was along the radial direction of the circular wafer.
  • FIG. 4 b shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C 12 EO 10 polyoxyethylene ether surfactant.
  • the x-ray beam was along the tangential direction of the circular wafer.
  • FIG. 5 is a transmission electron micrograph showing microstructure of the mesoporous silica film prepared with a C 12 EO 10 polyoxyethylene ether surfactant.
  • FIG. 6 a is a surface contour map of a mesoporous silica film prepared with a C 12 EO 10 polyoxyethylene ether surfactant.
  • FIG. 6 b is a surface profile of a mesoporous silica film prepared with a C 12 EO 10 polyoxyethylene ether surfactant.
  • FIG. 7 is a graph of elastic modulus of a mesoporous silica film measured by picoindentation, as a function of the indentation load.
  • FIG. 8 a shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C 12 EO 10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0. 19. The x-ray beam was along the radial direction of the circular wafer.
  • FIG. 8 b shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C 12 EO 10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0. 19. The x-ray beam was along the tangential direction of the circular wafer.
  • FIG. 9 a shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C 12 EO 10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0.30. The x-ray beam was along the radial direction of the circular wafer.
  • FIG. 9 b shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C 12 EO 10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0.30. The x-ray beam was along the tangential direction of the circular wafer.
  • FIG. 10 a shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a mixture of C 12 EO 10 and C 12 EO 4 polyoxyethylene ether surfactant.
  • the total surfactant to TEOS mole ratio was 0.20.
  • the x-ray beam was along the radial direction of the circular wafer.
  • FIG. 11 a shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C 16 EO 10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0.20. The x-ray beam was along the radial direction of the circular wafer.
  • FIG. 11 b shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C 16 EO 10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0.20. The x-ray beam was along the tangential direction of the circular wafer.
  • FIG. 12 a shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C 18 EO 10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0.20. The x-ray beam was along the radial direction of the circular wafer.
  • FIG. 12 b shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C 18 EO 10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0.20. The x-ray beam was along the tangential direction of the circular wafer.
  • FIG. 12 c shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C 18 EO 10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0.20. The x-ray beam was along the radial direction of the circular wafer. The area scanned was located about 90 degrees (rotation) away from the area scanned in FIG. 12 a and b.
  • FIG. 12 d shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C 18 EO 10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0,20. The x-ray beam was along the tangential direction of the circular wafer. The area scanned was located about 90 degrees (rotation) away from the area scanned in FIG. 12 a and b.
  • the present invention is a mesoporous silica film made from a surfactant containing solution (surfactant templated mesoporous silica film) which has properties including but not limited to a dielectric constant less than 3, film thickness from about 0.1 ⁇ m to about 1.5 ⁇ m, also from about 0.2 ⁇ m to about 1.5 ⁇ m standard deviation of film thickness less than or equal to +/ ⁇ 5% standard deviation, average pore sizes smaller than about 20 nm, more preferably less than about 10 nm and most preferably less than about 5 nm, ordered or disordered porosity, and combinations thereof.
  • porosity is greater than 30%, preferably greater than 40% and more preferably greater than 50%.
  • the present invention includes a method of making a mesoporous silica film by templating and spin-coating silica precursor solutions containing a surfactant to form a hydroxylated film which are the same general steps as described in co-pending U.S. patent application 08/921,754, and that application is thus incorporated herein by reference, and then chemically dehydroxylating the hydroxylated film to form the mesoporous silica film.
  • the present invention is a method of making a mesoporous silica film having the steps of combining a surfactant in a silica precursor solution, forming a film by spin-coating, heat treating the film to remove the surfactant and forming a mesoporous film that is hydroxylated, and chemically dehydroxylating the hydroxylated film to obtain the mesoporous silica film with a low dielectric constant.
  • the silica precursor solution includes a silica precursor, an aqueous solvent, a catalyst and a surfactant.
  • a film is made by spin-coating a mixture of the silica precursor solution and surfactant, after which the aqueous solvent, the catalyst, and the surfactant are removed by heating to form mesoporous silica film that is hydroxylated. Chemically dehydroxylating the hydroxylated film results in a mesoporous silica film with a low dielectric constant.
  • the precursor solution may include a chemical agent including but not limited to a second surfactant, a smaller hydrophilic molecular compound, an organic co-solvent and combinations thereof.
  • a second surfactant includes but is not limited to non-ionic surfactant, cationic surfactant, anionic surfactant, amphoteric surfactant and combinations thereof.
  • Smaller hydrophilic molecular compound includes but is not limited to glycerol, propylene glycol, ethylene glycol and combinations thereof.
  • Organic co-solvent includes but is not limited to mesitylene, octane and combinations thereof.
  • the silica precursor includes but is not limited to tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate (TMOS) methyl triethoxysilane, phenyl triethoxy silane, dimethyl dimethoxy silane, ethyl triethoxysilane and combinations thereof.
  • TEOS tetraethyl orthosilicate
  • TMOS tetramethyl orthosilicate
  • the aqueous solvent includes ethanol.
  • the catalyst includes but is not limited to inorganic acid including but not limited to hydrochloric acid, nitric acid, sulfuric acid; organic acid including but not limited to carboxylic acid, amino acid and combinations thereof.
  • Carboxylic acid includes but is not limited to methanoic acid (formic acid), ethanoic acid (acetic acid), ethandioic acid (oxalic acid), butanoic acid (butyric acid), and combinations thereof.
  • Amino acid includes but is not limited to glycine, nitromethane and combinations thereof.
  • a preferred non-ionic surfactant is a polyoxyethylene ether surfactant.
  • non-ionic refers to a surfactant chemistry where cationic (e.g. ammonium or sodium ions) or anionic (e.g. sulfonate, sulfate or halide) species are not present.
  • the non-ionic polyoxyethylene ether surfactants described in this application are small molecules containing carbon, hydrogen and oxygen, with only a hydroxyl (—OH) group at the hydrophilic end of the polymer. With the use of these surfactants, in combination with the dehydroxylation procedure, low dielectric constants (i.e. low capacitance in films) are obtained using simple synthesis and processing conditions. Additionally, greater film thickness uniformity, minimum surface texture, and stability of dielectric constant are obtained through the use of these surfactants.
  • Surfactants in this polyoxyethylene ether family include but are not limited to C 12 H 25 (CH 2 CH 2 O) 10 OH also known as C 12 EO 10 or 10 lauryl ether; C 16 H 33 (CH 2 CH 2 O) 10 OH also known as C 16 EO 10 or 10 cetyl ether; C 18 H 37 (CH 2 CH 2 0) 10 OH also known as C 18 EO 10 or 10 stearyl ether; C 12 H 25 (CH 2 CH 2 O) 4 OH also known as C 12 EO 4 or 4 lauryl ether; C 16 H 33 (CH 2 CH 2 O) 2 OH also known as C 16 EO 2 or 2 cetyl ether, and combinations thereof.
  • polyoxyethylene ether surfactant may be used in conjunction with a chemical agent including but not limited to other surfactants, smaller hydrophilic molecular compounds compatible with the ethanol and water present in the aqueous solvent, organic co-solvents compatible with the surfactant(s) and combinations thereof.
  • the surfactants include but are not limited to ammonium-based cationic surfactants such as cetyl trimethyl ammonium chloride.
  • the organic co-solvents include but are not limited to mesitylene, octane and combinations thereof.
  • the smaller hydrophilic molecular compounds include but are not limited to glycerol, propylene glycol, ethylene glycol, and combinations thereof.
  • the smaller hydrophilic molecular compounds have much higher boiling points compared to water and ethanol as well as low vapor pressures. These smaller hydrophilic molecular compounds are likely to reside as inclusions in the silica-rich walls that have formed around the surfactant micelles upon spin-coating and drying, and upon calcination, these inclusions can leave behind finer scale porosity in the silica walls.
  • the silica precursor solution is made up of four solution compounds of (1) a silica precursor, preferably tetraethyl orthosilicate (TEOS); (2) an aqueous solvent, for example, ethanol, water and combinations thereof; (3) a catalyst for hydrolysis of the silica precursor, preferably an acid, for example nitric acid or hydrochloric acid, and (4) a surfactant. Because TEOS is not soluble in water alone, a co-solvent, preferably ethanol, is added.
  • a silica precursor preferably tetraethyl orthosilicate (TEOS)
  • an aqueous solvent for example, ethanol, water and combinations thereof
  • a catalyst for hydrolysis of the silica precursor preferably an acid, for example nitric acid or hydrochloric acid
  • a surfactant preferably an acid, for example nitric acid or hydrochloric acid
  • a preferable solution mixture contains mole ratios of: TEOS 1.0; water 5; ethanol 5; HC1 0.05; and surfactant 0.17
  • the surfactant/TEOS mole ratio can be varied to control the pore-volume fraction in the final film and to vary the pore structure.
  • a templated film is made by spin-coating the silica precursor solution.
  • the solution is dispensed onto the surface of a substrate and spun using a spin-coater, for example at 2000 rpm for 30 seconds.
  • the substrate is preferably a silicon wafer or an aluminum-coated silicon wafer, but it is not limited to these substrates.
  • the spin-coating technique used in the present invention requires no atmosphere control when used with these surfactant-containing solutions, and the method should be readily applicable to microelectronics manufacturing.
  • the technique produces films with good thickness uniformity across wafers ranging from small to large surface area.
  • Films produced by the method of the present invention have film thickness from about 0.2 ⁇ m to about 1.5 ⁇ m with a thickness variation having a standard deviation of less than +/ ⁇ 5%. For example, one film with a thickness of about 0.8 ⁇ m had a thickness variation with a standard deviation of less than 25 nanometers (0.3%) across a 4-inch wafer.
  • the film thickness can be controlled by adjusting the relative ratios of the solution compounds, and also by varying the spinning rate during deposition.
  • the surfactant-templated film is formed into a hydroxylated mesoporous film by removal of the aqueous solvent, the acid, and the surfactant.
  • Aqueous solvent removal is typically achieved by heating the spin-coated film. For example, exposing the spin-coated film to a temperature of 115° C. for 1 hour completes drying and increases condensation of the silica. Further heat treatment (calcination) of the film, for example at a temperature of 475° C. for 5 hours, or at 400° C. on a hot plate for 5 minutes in N2 gas, removes the surfactant and forms a mesoporous film that is partially hydroxylated.
  • the partially hydroxylated film is chemically dehydroxylated into a mesoporous silica film by exposing the partially hydroxylated film to a silicon-based organic compound such as a silane, either as the pure liquid or pure vapor or as a solution, or as a vapor in a carrier gas or gas mixture.
  • a silicon-based organic compound such as a silane
  • the silane can be chosen from the following and not limited to trimethyl iodosilane, trimethyl chlorosilane, dimethyl dimethoxy silane, hexamethyl disilazan dimethyl dichlorosilane hexaphenyl disilazane, and diphenyl tetramethyl silazane.
  • the silane exposed film may be further exposed to, a dehydroxylating gas or to a heat treatment.
  • the silane treatment may be proceeded and followed by a vacuum treatment or a treatment in an inert gas or forming gas, or both.
  • the partially hydroxylated film is preferably dehydroxylated in a two-step process which includes a soak treatment in a solution of hexamethyl disilazane in an organic solvent and exposure to an H 2 in N 2 gas at an elevated temperature.
  • the partially hydroxylated film is more preferably dehydroxylated in a multiple step high temperature process, which includes an initial vacuum treatment, followed by a vapor phase silane treatment, followed by a second vacuum treatment.
  • the silane/vacuum treatment step is preferably repeated using the same silane or a different silane and is followed by a high temperature inert gas or forming gas treatment.
  • soaking the hydroxylated film for 24 hours in a 10% solution of hexamethyl disilazane in toluene and then exposing it to 2% H 2 in N 2 gas at 400° C. for 2 hours results in effective dehydroxylation of the mesoporous film, which then exhibits stable dielectric properties in moist air.
  • This sequence of dehydroxylation process steps is preferably repeated once.
  • the resulting mesoporous film has a dielectric constant typically less than 2.5 under ambient humid conditions, and the dielectric constant of the film is stable in moist or humid atmosphere over long periods of time.
  • the surfactant/TEOS mole ratio was varied from about 0.10 to about 0.50. All the components except for the TEOS were mixed until a homogeneous solution was obtained. When the surfactant/TEOS mole ratio is greater than about 0.2 and ratios of TEOS:H20:ethanol are about 1: 5 : 5, homogenaity is more readily achieved by heating the solution from about 40° C. to about 50° C., especially for polyoxethylene ether surfactants. Heating may not be needed for more dilute solutions.
  • TEOS was then added and the solution was stirred. Following addition of TEOS, the solution was aged for 20 hours at room temperature. No precipitate was formed under these solution conditions.
  • the aged solution was dispensed onto the surface of polished 4-inch Si wafers by spin-coating at 2000 rpm for 30 seconds using a spin-coater.
  • the resulting surfactant-templated films were converted to a mesoporous film by removing the aqueous solvent, the acid, and the surfactant. This removal was achieved by subjecting the templated films to a temperature of 115° C. for 1 hour. Complete removal of the surfactant from the films was achieved by calcination (heat treatment) at 475° C. for 5 hours.
  • the calcined films were characterized by nuclear reaction analysis (NRA) to determine porosity, and by profilometry to measure thickness.
  • NRA nuclear reaction analysis
  • the NRA porosity data was not used as an exact measure of porosity, but rather was used for guidance to help determine which films to select for further electrical/capacitance measurements.
  • FIG. 1 shows the porosity determined by NRA for the C X EO 10 polyoxyethylene ether surfactant series.
  • the graph shows only porosity values using the different surfactants for only specific surfactant/TEOS values.
  • the film quality was not acceptable for evaluation of electrical properties, and films formed with such ratios were therefore not investigated further.
  • the film thickness should be in the range of about 0.5 to about 1.2 ⁇ m.
  • the films should be uniform in thickness, crack-free, and without major blemishes or surface defects. Films with non-wetted islands, cracks, ring-like structures, serrated patterns or cloudy inclusions were not considered for electrical evaluation.
  • Each of these two partially hydroxylated films was therefore dehydroxylated by exposing the hydroxylated film separately to a silane and a dehydroxylating gas.
  • the films were dehydroxylated by treatments of soaking for 24 hours in a 10% solution of hexamethyl disilazane in toluene and exposure for 2 hours to 2% H 2 in N 2 gas at 400° C. This sequence of dehydroxylation process steps was repeated once on each film, and the dielectric constant was measured after each of these steps.
  • the capacitance measurements were performed as follows. The backside of the wafer was scratched/etched to expose bare silicon surface and a layer of gold was then sputter-deposited. On the top film side, an array of gold dots approximately 2.8 mm in diameter was formed by sputtering using a shadow mask. Capacitance was measured at room temperature at ambient conditions for four dots on each sample, and the dielectric constant was calculated using the film thickness and dot diameter. The dielectric constant data obtained in this way is shown in FIG. 2 and FIG. 3 for the two different films.
  • the data in FIG. 2 shows that a dielectric constant of 1.80 can be obtained for the film synthesized with the C 12 EO 10 surfactant.
  • the data in FIG. 3 shows that a dielectric constant of 1.85 can be obtained for the fihn synthesized with the C 16 EO 10 surfactant.
  • Such low dielectric constants indicate tremendous promise for application of such mesoporous silica films prepared with small polyoxyethylene ether surfactants in semiconductor devices.
  • the low dielectric constants obtained with these films are also relatively stable, increasing by less than 5% over a period of one day in ambient laboratory conditions with temperatures at 20-22° C. and a relative humidity of 40-65%. The dielectric constants did not increase in value thereafter.
  • FIGS. 4A, 4B The pore structure of the surfactant templated mesoporous film was probed by low angle x-ray diffraction (XRD) and transmission electron microscopy (TEM).
  • XRD low angle x-ray diffraction
  • TEM transmission electron microscopy
  • the spectra did not contain any peak in the range of 2 to 6 degrees 2-theta, thereby indicating that pores are not ordered.
  • a TEM micrograph of a section of the film in FIG. 5 indicates that the pores are disordered with an isotropic nanoporous structure. Pore sizes were estimated to be less than 3 nm from TEM micrographs, and from nitrogen adsorption/desorption analysis of powders prepared from the solution by a rapid spray drying process.
  • FIG. 6 a A surface contour map of the film is shown in FIG. 6 a. Roughness is generally less than ⁇ 50 angstroms over length scales of tens of microns (FIG. 6 b ).
  • the elastic modulus of the mesoporous silica film was measured with a Hysitron PicoindenterTM using a Berkowich diamond tip.
  • the instrument and tip were calibrated on a dense silica standard with a modulus of 70 GPa.
  • a range of indentation loads (50-300 ⁇ N) and residence time (50-900 s) at maximum load were studied.
  • indentation depths were less than 10% of the film thickness, and therefore substrate effects were not expected to affect the measured values.
  • the effect of indentation load on measured modulus values for a residence time of 300 s is shown in FIG. 7 for the mesoporous silica film.
  • the relative modulus of the porous silica film with respect to dense silica is in reasonable agreement with calculations for porous solids based on either closed or open porosity.
  • the relatively high modulus for the porous film indicates promise for withstanding CMP in interconnect fabrication.
  • TEOS was then added and the solution was stirred. Following addition of TEOS, the solution was aged for 20 hours at room temperature and dispensed onto the surface of polished 4-inch Si wafers by spin-coating at 2000 rpm for 30 seconds using a spin-coater.
  • the resulting surfactant-templated films were converted to mesoporous film by heating on a series of three hot plates.
  • the highest hot plate temperature was about 400° C.
  • Selected films from this set were subjected to a dehydroxylation procedure including treatment in hexamethyl disilazane solution followed by treatment in 2% H 2 /N 2 as described previously, and the film dielectric constants measured.
  • the table shows that film dielectric constants of less than 2.25 can be obtained using more than one surfactant.
  • the disordered pore structures of films prepared with polyoxethelene ether surfactants were probed more extensively by low angle x-ray diffraction to determine any characteristic features in the x-ray spectra of these films.
  • the components of the spin coating solutions including the surfactant type and amount used in each solution are shown in Table E3-1. All the components except for the TEOS were mixed until a homogeneous solution was obtained. In this experiment, the components were added in the following order: surfactant, ethanol, water and acid. When the surfactant was a solid at room temperature, the surfactant was heated to about 30 to 40° C. to melt the surfactant, before adding other solution components.
  • TEOS was then added and the solution was stirred. Following addition of TEOS, the solution was aged for 20 hours at room temperature and dispensed onto the surface of polished 4-inch Si wafers by spin-coating at 2000 rpm for 30 seconds using a spin-coater.
  • the films were probed by x-ray diffraction, using the experimental parameters below.
  • X-ray spectra were obtained on a scanned area about 1 cm ⁇ 1 cm in extent, with the centroid of the scanned area being located about 3.5 cm from the center of the wafer. Spectra were obtained in both the radial and tangential directions of the x-ray beam with respect to the circular wafer.
  • Diffractometer Philips X'Pert MPD (Model PW3040/00)
  • X-ray Source Sealed Ceramic Tube, Long-Fine Focus (LFF) Cu Anode (Cu K alpha radiation)
  • X-ray Power 40 kV, 50 mA (2000 W)
  • FIGS. 12 a - 12 d Two sets of x-ray spectra obtained on this sample are shown in FIGS. 12 a - 12 d.
  • One set (radial and tangential direction) was obtained about a quarter-wafer away (about 90 degrees rotation of the wafer) from the other.
  • FIGS. 12 a, 12 b the spectra obtained in the radial and tangential direction in one area do not show clear evidence of a peak at low angles.
  • each of the spectra in FIGS. 12 c, 12 d from the other area on the sample contains a single peak at around 1.1-1.2 degrees 2-theta. Transmission electron microscopy of a thin section of this film showed no evidence of ordered porosity.
  • the areas of the fihn that were studied did not show any regular geometric arrangement of pores, especially long-range geometric arrangement.
  • the wafer Upon cooling, the wafer was removed from the reaction vessel and, following deposition of gold electrodes on the surfaces, was placed in a tube furnace and treated with forming gas (2%H 2 /N 2 ) at 673 K (400 C) for two hours. The capacitance of the film was measured under ambient conditions. The films were also placed in a flow of dry nitrogen gas and film capacitance measured. Finally the wafer was placed in a sealed glass container containing a beaker of water to simulate 100% relative humidity for time periods ranging from 1 to 3 days, and the sample then was removed and the capacitance measured again in room air.
  • forming gas 20%H 2 /N 2
  • a gaseous silane is pumped into the chamber at the desired pressure, and thereafter a vacuum is again applied.
  • the cycle may be repeated as many times as necessary to achieve the desired degree of dehydroxylation.
  • forming or an inert gas is pumped into the chamber.
  • Mono- and di-alkyl substituted alkoxysilanes can be used as additional silica precursors in the surfactant-containing spin coating solution used to prepare low dielectric constant mesoporous silica films with dielectric constants of ⁇ 2.5.
  • a series of solutions were prepared as described in example 1 except that methyl triethoxysilane and dimethyl dimethoxysilane were added to the one mole ratio of tetraethoxysilane. Molar ratios of 0.95 : 0.05 to 0.25: 0.75 of TEOS to the alkyl-ethoxysilane respectively were prepared.
  • the surfactant used was 10 lauryl ether.
  • the surfactant to silica precursor mole ratio was 0.17.
  • Silicon wafers were spin coated with these solutions and heat-treated as described in example 2. Selected coated wafers were subjected to the dehydroxylation treatment as follows. The coated silicon wafer was placed in a stainless steel reaction vessel having an internal volume of ⁇ 0.081 cm 3 . The reaction vessel (equipped with inlet and outlet high temperature valves) was connected to a high vacuum line via vacuum tubing. The reactor was placed in a sand bath and temperatures were monitored employing thermocouples deployed uniformly about the reactor. The initial heating up step (0 min. to 2 hrs) was conducted with the chamber placed under high vacuum ( ⁇ 10 ⁇ 5 torr). After the reaction chamber had achieved the desired temperature it was opened to the silane in vapor phase.
  • the pressure of the silane vapor was dependent on the silane's vapor pressure at or near its boiling point. After the desired time had elapsed the chamber was placed under vacuum.
  • the treatments of the mesoporous films essentially consisted of a vacuum treatment followed by one or more silane treatments in vapor phase followed by one or more vacuum treatments at temperatures ranging from 298 to 723 K (25 C to 450 C). Vacuum treatments and silane treatments were varied in duration from 5 minutes to 2 hours.
  • the wafer was removed from the reaction vessel and gold electrodes deposited on the surfaces. The capacitance of the film was measured under ambient conditions. The films were also placed in a flow of dry nitrogen gas and film capacitance measured. The results of one wafer are given in Table E5-1.

Abstract

The present invention is a mesoporous silica film having a low dielectric constant and method of making having the steps of combining a surfactant in a silica precursor solution, spin-coating a film from this solution mixture, forming a partially hydroxylated mesoporous film, and dehydroxylating the hydroxylated film to obtain the mesoporous film. It is advantageous that the small polyoxyethylene ether surfactants used in spin-coated films as described in the present invention will result in fine pores smaller on average than about 20 nm. The resulting mesoporous film has a dielectric constant less than 3, which is stable in moist air with a specific humidity. The present invention provides a method for superior control of film thickness and thickness uniformity over a coated wafer, and films with low dielectric constant.

Description

    CROSS REFERENCE TO RELATED INVENTION
  • This application is a Continuation-In-Part of application Ser. No. 09/361,499, filed Jul. 23, 1999, now abandoned, which is a Continuation-in-Part of application Ser. No. 09/335,210, filed Jun. 17, 1999, now abandoned, which is a Continuation-In-Part of application Ser. No. 09/220,882 filed Dec. 23, 1998, now abandoned.[0001]
  • [0002] This invention was made with Government support under Contract DE-AC0676RL01830 awarded by the U.S. Department of Energy. The Government has certain rights in the invention.
  • FIELD OF THE INVENTION
  • The present invention relates generally to porous silica film with nanometer-scale porosity produced from solution precursors. More specifically, the present invention relates to mesoporous silica film from a solution containing a surfactant (surfactant templated) and the use of specific surfactants to template porosity with the characteristic pore size being defined by the surfactant micelle size. The present invention also relates to the use of dehydroxylation in combination with surfactant templated mesoporous silica films to obtain a dielectric constant less than 3 under ambient humid conditions. [0003]
  • As used herein, the term “silica” means a compound having silicon (Si) and oxygen (O) and possibly additional elements. [0004]
  • Further, as used herein, “mesoporous” refers to a size range which is greater than 1 nm, but significantly less than a micrometer. In general, this refers most often to a size range from just over 1.0 nm (10 angstroms) to a few tens of nanometers. [0005]
  • The term “stable” can mean an absolute stability, a relative stability or a combination thereof. Relative stability means that a dielectric constant increases no more than about 20% when a surfactant templated mesoporous film is taken from an equilibrated condition of 0.0% relative humidity or vacuum to an equilibrated condition of 50% relative humidity. Absolute stability means that the dielectric constant remains less than 3 under any conditions including humid conditions of at least 40% relative humidity. [0006]
  • The term “hydroxylated” encompasses partially and fully hydroxylated. The term “dehydroxylating” encompasses partial or total removal of hydroxyl groups from surface(s) of the surfactant templated mesoporous silica film. [0007]
  • BACKGROUND OF THE INVENTION
  • Porous silica films are potentially useful as low dielectric constant intermetal materials in semiconductor devices, as low dielectric constant coatings on fibers and other structures, and in catalytic supports. Most of the U.S. semiconductor industry is presently (1998) in the process of implementing interlevel dielectric films that are silica films, or derivatives of silica and silicates, or polymeric films, with less than 25% or no porosity with dielectric constant (k′) in the range of 3.0 to 4.0. Further reductions in dielectric constant are desired to improve the operating speed of semiconductor devices, reduce power consumption in semiconductor devices and reduce overall cost of semiconductor devices by decreasing the number of metallization levels that are required. [0008]
  • Since air has a dielectric constant of 1.0, the introduction of porosity is an effective way of lowering the dielectric constant of a film. In addition, because silica dielectrics have been a standard in microelectronic devices, silica films with porosity are very attractive to the semiconductor industry for advanced devices that require low dielectric constant materials. The feature size or design rule in the semiconductor interconnect will be sub-150 nm in ultralarge scale integration; and pore sizes to achieve lower dielectric constant (k<3) must be significantly smaller than the intermetal spacing. [0009]
  • Dielectric constant of porous films is dependent on the material and pore structure. For porous silica films for use in microelectronic devices, material and pore structure must result in uniform dielectric constants across the wafers and in different directions on the wafer. In general, isotropic material and pore structures are expected to provide the desired uniformity in film dielectric constant compared to anisotropic material and pore structures. [0010]
  • Also, low dielectric constant mesoporous films used commercially need to be prepared in a manner compatible with a semiconductor device manufacturing process line, for example spin coating. For large-area circular wafers, other coating techniques such as dip coating are not as convenient because dip coating requires masking of the backside to prevent contamination. [0011]
  • Surface topography is also very critical to fabrication of a multilevel interconnect structure. In the “damascene” process for copper interconnects intended for ultralarge scale integration on semiconductor chips, each dielectric layer is etched, following which copper is deposited, and the structure planarized by chemical-mechanical polishing (CMP). The initial planarity and the absence of surface texture in the low k dielectric film is very critical in maintaining planarity at each level of the interconnect. [0012]
  • Another important concern with porous dielectric films is mechanical integrity. Because of their fragility, it appears unlikely that porous films will be directly polished using conventional chemical-mechanical-polishing (CMP) equipment, but a dense “cap” layer of silica or another material on the porous low K film will be planarized. However, even with a cap layer, the porous low K material must have adequate stiffness, compressive and shear strengths, to withstand the stresses associated with the CMP process. [0013]
  • Silica films with nanometer-scale (or mesoporous) porosity may be produced from solution precursors and classified into two types (1) “aerogel or xerogel” films (aerogel/xerogel) in which a random or disordered porosity is introduced by controlled removal of an alcohol-type solvent, and (2) “mesoporous” surfactant-templated silica films in which the pores are formed with ordered porosity by removal of a surfactant. Heretofore, the most successful demonstration of low dielectric constant silica films with dielectric constant of 3.0 or less has been with aerogel/xerogel-type porous silica films. However, disadvantages of aerogel/xerogel films include (1) deposition of aerogel/xerogel films requires careful control of alcohol removal (e.g. maintaining a controlled atmosphere containing solvent or gelling agent during preparation) for formation of the pore structure (2) the smallest pore size typically possible in aerogel/xerogel films falls in the size range of 10- 100 nm, and (3) limited mechanical strength compared to dense selica films. These disadvantages have hindered implementation of these aerogel/xerogel porous silica films in semiconductor devices. [0014]
  • In order to obtain a porous film with a low dielectric constant of any material made by any process, it is necessary to minimize the number of hydroxyl groups in the structure, especially at pore surfaces. The dielectric films must be made hydrophobic in order for the electrical properties to be stable in humid air. Hydroxylated surfaces in porous silica films result in a dielectric constant exceeding that of dense silica (i.e. approximately 4.0). Physisorption of water molecules by hydroxylated surfaces can further increase the dielectric constant and effective capacitance of a mesoporous silica film. Physisorption of water molecules can be avoided by handling films in non-humid atmospheres or vacuum, or by minimizing exposure of films to humid conditions. Hydroxyl groups and physisorbed water molecules may be removed from silica surfaces at very high temperatures. C. J. Brinker and G. W. Scherer, in Sol-Gel Science, Academic Press, New York, N.Y. (1990) (Brinker et al. 1990) discuss thermal dehydroxylation of silica by exposure to very high temperatures of over 800° C. However, semiconductor devices with dielectric films and metal lines cannot usually be processed over about 500° C. Thus, other methods of dehydroxylation are needed for porous silica films on semiconductors. [0015]
  • E. F. Vansant, P. Van der Voort and K. C. Vrancken, [0016] in Characterization and Chemical Modification of the Silica Surface, Vol. 93 of Studies in Surface Science and Catalysis, Elsevier, New York, N.Y. (1995), and Brinker et al., 1990, cite procedures for hydroxylation of silica surfaces by fluorination or by treatment with silane solutions. Aerogel/Xerogel-type films have been dehydroxylated by both (a) fluorination treatment, and (b) a two-step dehydroxylation method of (1) initial silane solution treatment (e.g. trimethylchlorosilane or hexamethyldisilazane (HMDS) in a solvent), and then (2) following this solution treatment with a treatment in hydrogen-containing gases (e.g. 10% hydrogen in nitrogen) at moderately high temperatures of 300-450° C. The silane/forming gas(H2 in N2) treatment is discussed in U.S. Pat. No. 5,504,042 and some of the other related patents by Smith and colleagues that are referenced therein.
  • In the surfactant-templated films, the pores form ordered (e.g. hexagonal) arrays, with the characteristic pore size being defined by the surfactant micelle size. The surfactant templated route allows control of the porosity, pore size and pore shape using the properties of the surfactants and their interactions with the silica species. For a given level of porosity, this control in pore size and architecture and structure of the pore walls can also result in good mechanical properties. More specifically, smaller and uniform pores can impart better mechanical properties than larger and non-uniform pores. Although easier to produce (no need for controlled atmosphere to form the porosity), mesoporous surfactant templated silica films have not been demonstrated with low dielectric constant. [0017]
  • U.S. patent application 08/921,754 filed Aug. 26, 1997 by Bruinsma et al, now U.S. Pat. No. 5,922,299, describes the preparation of mesoporous surfactant templated silica films with ordered porosity by spin coating. The surfactant used was a cationic ammonium-based surfactant. A goal of this work was low-dielectric constant interlayers in microelectronic devices. [0018]
  • U.S. Pat. No. 5,858,457 by Brinker et al also reports a dip coating procedure for making a surfactant-templated mesoporous silica film with ordered porosity, where the surfactant used was also a ammonium-based surfactant. Brinker et al measured the dielectric constant using a mercury dot electrode on the film, reporting a value for the dielectric constant of 2.37. [0019]
  • However, surfactant templated mesoporous silica films prepared with ammonium surfactants and tested after pyrolysis (thermal removal) of the surfactant have been found to adsorb moisture under ambient humid conditions, and therefore do not have a low dielectric constant under the ambient humid conditions of normal manufacturing and operating conditions for semiconductor devices. No dehydroxylation steps are reported in either Bruinsma et al. or Brinker et. al. [0020]
  • The paper Continuous Mesoporous Silica Films With Highly Ordered Large Pore Structures, D. Zhao, P. Yang, N. Melosh, J. Feng, B F Chmelka, and G D Stucky, Advanced Materials, vol. 10 No. 16, 1998, pp 1380-1385, discusses the formation of directional or ordered large pore structures in films by dip coating silica based solutions containing non-ionic poly(alkalene oxide) triblock copolymers and low molecular weight alkyl(ethylene oxide) surfactants. Low dielectric constants (1.45-2.1) were reported for these films as measured after calcination of the films. However, a disadvantage of ordered porosity, for example hexagonal porosity, is the uncertainty in uniformity of dielectric constant in different directions on large wafers. Furthermore, no dehydroxylation procedures, that are useful for maintaining low values of dielectric constant, are reported in the paper by Zhao et al. [0021]
  • Thus, there is a need for a surfactant templated mesoporous silica films and method of making them that provides a dielectric constant less than 3, and that meets engineering requirements including but not limited to control of film thickness and thickness uniformity, minimum surface texture, and mechanical integrity. The dielectric constant must be relatively stable under normal operating conditions which include humid air at room temperature, and must be uniform across large wafers . [0022]
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide a surfactant templated mesoporous silica film which has properties including but not limited to dielectric constant less than 3, film thickness from about 0.1 μm to about 1.5 μm, standard deviation of film thickness less than or equal to +/−5% standard deviation, average pore sizes smaller than about 20 nm, low dielectric constant and combinations thereof. [0023]
  • The present invention includes a method of making a surfactant templated mesoporous film having the same general steps as described in co-pending U.S. patent application 08/921,754. Thus, the present invention is a method of making a mesoporous silica film having the steps of combining a surfactant in a silica precursor solution, spin-coating a film, heating the film to remove the surfactant to form a mesoporous film that is at least partially hydroxylated, and dehydroxylating the partially hydroxylated film to obtain the mesoporous film. According to the present invention, selection of surfactant, selection of concentrations of silica precursor solution constituents and combinations thereof provide a film having one or more of the features set forth above. [0024]
  • The advantage of low dielectric constant (k<3) that is stable at ambient humid conditions is achieved in accordance with the present invention in combination with dehydroxylation which involves partial or complete removal of hydroxyl groups at temperatures within electronic component processing temperatures. During dehydroxylation, hydroxyl groups may be replaced with hydrophobic groups such as organic alkyl groups, siloxane (—Si—O—Si—) bonds or combinations thereof on internal pore surfaces as well as external surfaces of the surfactant templated mesoporous film. [0025]
  • It is advantageous that the surfactants used in spin-coated surfactant templated mesoporous films as described in the present invention will result in fine pores smaller than about 20 nm. Most often the average pore size can be tailored with surfactants in the size range of about 1 to about 20 nm. This pore size range is desirable in interlevel dielectric films that separate metallization lines in semiconductor devices to minimize diffusion of metal species during repeated heat treatments. Further advantages of the present invention include a method which provides for superior control of film thickness and thickness uniformity across a coated wafer, films with low dielectric constant that is stable; as well as disordered porosity which increases confidence in uniformity of dielectric constant in different directions on large wafers. [0026]
  • The subject matter of the present invention is particularly pointed out and distinctly claimed in the concluding portion of this specification. However, both the organization and method of operation, together with further advantages and objects thereof, may best be understood by reference to the following description taken in connection with accompanying drawings wherein like reference characters refer to like[0027]
  • elements. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows film porosity as a function of surfactant/TEOS mole ratio in a spin-coating solution containing polyoxyethylene ether surfactants as determined by nuclear reaction analysis (NRA) for the C[0028] XEO10 polyoxyethylene ether surfactant series.
  • FIG. 2 shows the dielectric constant (measured at room temperature under ambient conditions in humid air) of a surfactant templated mesoporous film prepared with C[0029] 12EO10 polyoxyethylene ether surfactant as a function of dehydroxylation procedures.
  • FIG. 3 shows the dielectric constant (measured at room temperature under ambient conditions in humid air) of a surfactant templated mesoporous film prepared with C[0030] 16EO10 polyoxyethylene ether surfactant as a function of dehydroxylation procedures.
  • FIG. 4[0031] a shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C12EO10 polyoxyethylene ether surfactant. The x-ray beam was along the radial direction of the circular wafer.
  • FIG. 4[0032] b shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C12EO10 polyoxyethylene ether surfactant. The x-ray beam was along the tangential direction of the circular wafer.
  • FIG. 5 is a transmission electron micrograph showing microstructure of the mesoporous silica film prepared with a C[0033] 12EO10 polyoxyethylene ether surfactant. FIG. 6a is a surface contour map of a mesoporous silica film prepared with a C12EO10 polyoxyethylene ether surfactant.
  • FIG. 6[0034] b is a surface profile of a mesoporous silica film prepared with a C12EO10 polyoxyethylene ether surfactant.
  • FIG. 7 is a graph of elastic modulus of a mesoporous silica film measured by picoindentation, as a function of the indentation load. [0035]
  • FIG. 8[0036] a shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C12EO10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0. 19. The x-ray beam was along the radial direction of the circular wafer.
  • FIG. 8[0037] b shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C12EO10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0. 19. The x-ray beam was along the tangential direction of the circular wafer.
  • FIG. 9[0038] a shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C12EO10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0.30. The x-ray beam was along the radial direction of the circular wafer.
  • FIG. 9[0039] b shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C12EO10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0.30. The x-ray beam was along the tangential direction of the circular wafer.
  • FIG. 10[0040] a shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a mixture of C12EO10 and C12EO4 polyoxyethylene ether surfactant. The total surfactant to TEOS mole ratio was 0.20. The x-ray beam was along the radial direction of the circular wafer.
  • FIG. 10[0041] b shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a mixture of C12EO10 and C12EO4 polyoxyethylene ether surfactant. The total surfactant to TEOS mole ratio was 0.20. The x-ray beam was along the tangential direction of the circular wafer.
  • FIG. 11[0042] a shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C16EO10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0.20. The x-ray beam was along the radial direction of the circular wafer.
  • FIG. 11[0043] b shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C16EO10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0.20. The x-ray beam was along the tangential direction of the circular wafer.
  • FIG. 12[0044] a shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C18EO10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0.20. The x-ray beam was along the radial direction of the circular wafer.
  • FIG. 12[0045] b shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C18EO10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0.20. The x-ray beam was along the tangential direction of the circular wafer.
  • FIG. 12[0046] c shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C18EO10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0.20. The x-ray beam was along the radial direction of the circular wafer. The area scanned was located about 90 degrees (rotation) away from the area scanned in FIG. 12a and b.
  • FIG. 12[0047] d shows the low angle x-ray diffraction spectrum for mesoporous silica film prepared with a C18EO10 polyoxyethylene ether surfactant. Surfactant/TEOS mole ratio was 0,20. The x-ray beam was along the tangential direction of the circular wafer. The area scanned was located about 90 degrees (rotation) away from the area scanned in FIG. 12a and b.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention is a mesoporous silica film made from a surfactant containing solution (surfactant templated mesoporous silica film) which has properties including but not limited to a dielectric constant less than 3, film thickness from about 0.1 μm to about 1.5 μm, also from about 0.2 μm to about 1.5 μm standard deviation of film thickness less than or equal to +/−5% standard deviation, average pore sizes smaller than about 20 nm, more preferably less than about 10 nm and most preferably less than about 5 nm, ordered or disordered porosity, and combinations thereof. According to the present invention, porosity is greater than 30%, preferably greater than 40% and more preferably greater than 50%. [0048]
  • The present invention includes a method of making a mesoporous silica film by templating and spin-coating silica precursor solutions containing a surfactant to form a hydroxylated film which are the same general steps as described in co-pending U.S. patent application 08/921,754, and that application is thus incorporated herein by reference, and then chemically dehydroxylating the hydroxylated film to form the mesoporous silica film. Therefore, the present invention is a method of making a mesoporous silica film having the steps of combining a surfactant in a silica precursor solution, forming a film by spin-coating, heat treating the film to remove the surfactant and forming a mesoporous film that is hydroxylated, and chemically dehydroxylating the hydroxylated film to obtain the mesoporous silica film with a low dielectric constant. [0049]
  • The silica precursor solution includes a silica precursor, an aqueous solvent, a catalyst and a surfactant. A film is made by spin-coating a mixture of the silica precursor solution and surfactant, after which the aqueous solvent, the catalyst, and the surfactant are removed by heating to form mesoporous silica film that is hydroxylated. Chemically dehydroxylating the hydroxylated film results in a mesoporous silica film with a low dielectric constant. The chemical dehydroxylating is preferably achieved by exposing the hydroxylated film separately to a silicon-based organic compound such as a silane, either as the pure liquid or pure vapor or as a solution, or as a vapor in a carrier gas or gas mixture, and a dehydroxylating gas. The resulting mesoporous film has a dielectric constant less than 3 that remains less than 3 in a humid environment. According to a further preferred embodiment of the present invention, low dielectric constant (k<3) mesoporous surfactant-templated films may be obtained by using one or more dehydroxylation step(s) that includes removing hydroxyl groups from surfaces of the mesoporous material. In this embodiment, the surfactant may be any surfactant including but not limited to non-ionic surfactant, cationic surfactant, anionic surfactant, amphoteric surfactant, and combinations thereof. [0050]
  • The precursor solution may include a chemical agent including but not limited to a second surfactant, a smaller hydrophilic molecular compound, an organic co-solvent and combinations thereof. A second surfactant includes but is not limited to non-ionic surfactant, cationic surfactant, anionic surfactant, amphoteric surfactant and combinations thereof. Smaller hydrophilic molecular compound includes but is not limited to glycerol, propylene glycol, ethylene glycol and combinations thereof. Organic co-solvent includes but is not limited to mesitylene, octane and combinations thereof. [0051]
  • The silica precursor includes but is not limited to tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate (TMOS) methyl triethoxysilane, phenyl triethoxy silane, dimethyl dimethoxy silane, ethyl triethoxysilane and combinations thereof. [0052]
  • In a preferred embodiment, the aqueous solvent includes ethanol. [0053]
  • The catalyst includes but is not limited to inorganic acid including but not limited to hydrochloric acid, nitric acid, sulfuric acid; organic acid including but not limited to carboxylic acid, amino acid and combinations thereof. Carboxylic acid includes but is not limited to methanoic acid (formic acid), ethanoic acid (acetic acid), ethandioic acid (oxalic acid), butanoic acid (butyric acid), and combinations thereof. Amino acid includes but is not limited to glycine, nitromethane and combinations thereof. [0054]
  • A preferred non-ionic surfactant is a polyoxyethylene ether surfactant. The term “non-ionic” refers to a surfactant chemistry where cationic (e.g. ammonium or sodium ions) or anionic (e.g. sulfonate, sulfate or halide) species are not present. The non-ionic polyoxyethylene ether surfactants described in this application are small molecules containing carbon, hydrogen and oxygen, with only a hydroxyl (—OH) group at the hydrophilic end of the polymer. With the use of these surfactants, in combination with the dehydroxylation procedure, low dielectric constants (i.e. low capacitance in films) are obtained using simple synthesis and processing conditions. Additionally, greater film thickness uniformity, minimum surface texture, and stability of dielectric constant are obtained through the use of these surfactants. [0055]
  • Surfactants in this polyoxyethylene ether family include but are not limited to C[0056] 12H25 (CH2CH2O)10OH also known as C12EO10 or 10 lauryl ether; C16H33(CH2CH2O)10OH also known as C16EO10 or 10 cetyl ether; C18H37 (CH2CH20)10OH also known as C18EO10 or 10 stearyl ether; C12H25(CH2CH2O)4OH also known as C12EO4 or 4 lauryl ether; C16H33(CH2CH2O)2OH also known as C16EO2 or 2 cetyl ether, and combinations thereof.
  • Additionally, polyoxyethylene ether surfactant may be used in conjunction with a chemical agent including but not limited to other surfactants, smaller hydrophilic molecular compounds compatible with the ethanol and water present in the aqueous solvent, organic co-solvents compatible with the surfactant(s) and combinations thereof. The surfactants include but are not limited to ammonium-based cationic surfactants such as cetyl trimethyl ammonium chloride. The organic co-solvents include but are not limited to mesitylene, octane and combinations thereof. The smaller hydrophilic molecular compounds include but are not limited to glycerol, propylene glycol, ethylene glycol, and combinations thereof. The smaller hydrophilic molecular compounds have much higher boiling points compared to water and ethanol as well as low vapor pressures. These smaller hydrophilic molecular compounds are likely to reside as inclusions in the silica-rich walls that have formed around the surfactant micelles upon spin-coating and drying, and upon calcination, these inclusions can leave behind finer scale porosity in the silica walls. [0057]
  • The silica precursor solution is made up of four solution compounds of (1) a silica precursor, preferably tetraethyl orthosilicate (TEOS); (2) an aqueous solvent, for example, ethanol, water and combinations thereof; (3) a catalyst for hydrolysis of the silica precursor, preferably an acid, for example nitric acid or hydrochloric acid, and (4) a surfactant. Because TEOS is not soluble in water alone, a co-solvent, preferably ethanol, is added. Although a preferable solution mixture contains mole ratios of: TEOS 1.0; [0058] water 5; ethanol 5; HC1 0.05; and surfactant 0.17, the surfactant/TEOS mole ratio can be varied to control the pore-volume fraction in the final film and to vary the pore structure. Also, it will be recognized by those skilled in the art that a much wider range of surfactant sizes and amounts in this family of small polyoxyethylene ethers may be possible with different solvent amounts. It is important to avoid precipitation of the silica precursor in the solution prior to spin coating. Precipitation of the silica precursor may be avoided by the use of alcohol as a co-solvent, preferably as a primary solvent, in combination with acidic pH. Alternatively, precipitation may be avoided by controlling the water to TEOS mole ratio alone or in combination with control of pH, addition of alcohol, or both.
  • A templated film is made by spin-coating the silica precursor solution. The solution is dispensed onto the surface of a substrate and spun using a spin-coater, for example at 2000 rpm for 30 seconds. The substrate is preferably a silicon wafer or an aluminum-coated silicon wafer, but it is not limited to these substrates. [0059]
  • The spin-coating technique used in the present invention requires no atmosphere control when used with these surfactant-containing solutions, and the method should be readily applicable to microelectronics manufacturing. The technique produces films with good thickness uniformity across wafers ranging from small to large surface area. Films produced by the method of the present invention have film thickness from about 0.2 μm to about 1.5 μm with a thickness variation having a standard deviation of less than +/−5%. For example, one film with a thickness of about 0.8 μm had a thickness variation with a standard deviation of less than 25 nanometers (0.3%) across a 4-inch wafer. The film thickness can be controlled by adjusting the relative ratios of the solution compounds, and also by varying the spinning rate during deposition. [0060]
  • After spin-coating, the surfactant-templated film is formed into a hydroxylated mesoporous film by removal of the aqueous solvent, the acid, and the surfactant. Aqueous solvent removal is typically achieved by heating the spin-coated film. For example, exposing the spin-coated film to a temperature of 115° C. for 1 hour completes drying and increases condensation of the silica. Further heat treatment (calcination) of the film, for example at a temperature of 475° C. for 5 hours, or at 400° C. on a hot plate for 5 minutes in N2 gas, removes the surfactant and forms a mesoporous film that is partially hydroxylated. [0061]
  • The partially hydroxylated film is chemically dehydroxylated into a mesoporous silica film by exposing the partially hydroxylated film to a silicon-based organic compound such as a silane, either as the pure liquid or pure vapor or as a solution, or as a vapor in a carrier gas or gas mixture. The silane can be chosen from the following and not limited to trimethyl iodosilane, trimethyl chlorosilane, dimethyl dimethoxy silane, hexamethyl disilazan dimethyl dichlorosilane hexaphenyl disilazane, and diphenyl tetramethyl silazane. Additionally, the silane exposed film may be further exposed to, a dehydroxylating gas or to a heat treatment. The silane treatment may be proceeded and followed by a vacuum treatment or a treatment in an inert gas or forming gas, or both. The partially hydroxylated film is preferably dehydroxylated in a two-step process which includes a soak treatment in a solution of hexamethyl disilazane in an organic solvent and exposure to an H[0062] 2 in N2 gas at an elevated temperature. The partially hydroxylated film is more preferably dehydroxylated in a multiple step high temperature process, which includes an initial vacuum treatment, followed by a vapor phase silane treatment, followed by a second vacuum treatment. The silane/vacuum treatment step is preferably repeated using the same silane or a different silane and is followed by a high temperature inert gas or forming gas treatment.
  • For example, soaking the hydroxylated film for 24 hours in a 10% solution of hexamethyl disilazane in toluene and then exposing it to 2% H[0063] 2 in N2 gas at 400° C. for 2 hours results in effective dehydroxylation of the mesoporous film, which then exhibits stable dielectric properties in moist air. This sequence of dehydroxylation process steps is preferably repeated once. The resulting mesoporous film has a dielectric constant typically less than 2.5 under ambient humid conditions, and the dielectric constant of the film is stable in moist or humid atmosphere over long periods of time.
  • EXAMPLE 1
  • An experiment was conducted to demonstrate the efficacy of a preferred embodiment of the present invention. Three different surfactants in the polyoxyethylene ether family were investigated: (1) C[0064] 12H25 (CH2CH2O)10OH, also known as C12EO10 or 10 lauryl ether; (2) C16H33(CH2CH2O)10OH, also known as C16EO10 or 10 cetyl ether; and (3) C18H37 (CH2CH2O)10OH, also known as C18EO10 or 10 stearyl ether. All the films with these surfactants were prepared using a solution with the following molar ratios: TEOS:H20:ethanol:hydrochloric acid=1: 5 : 5 : 0.05.
  • The surfactant/TEOS mole ratio was varied from about 0.10 to about 0.50. All the components except for the TEOS were mixed until a homogeneous solution was obtained. When the surfactant/TEOS mole ratio is greater than about 0.2 and ratios of TEOS:H20:ethanol are about 1: 5 : 5, homogenaity is more readily achieved by heating the solution from about 40° C. to about 50° C., especially for polyoxethylene ether surfactants. Heating may not be needed for more dilute solutions. [0065]
  • TEOS was then added and the solution was stirred. Following addition of TEOS, the solution was aged for 20 hours at room temperature. No precipitate was formed under these solution conditions. [0066]
  • The aged solution was dispensed onto the surface of polished 4-inch Si wafers by spin-coating at 2000 rpm for 30 seconds using a spin-coater. [0067]
  • The resulting surfactant-templated films were converted to a mesoporous film by removing the aqueous solvent, the acid, and the surfactant. This removal was achieved by subjecting the templated films to a temperature of 115° C. for 1 hour. Complete removal of the surfactant from the films was achieved by calcination (heat treatment) at 475° C. for 5 hours. [0068]
  • Prior to making electrical/capacitance measurements, the calcined films were characterized by nuclear reaction analysis (NRA) to determine porosity, and by profilometry to measure thickness. The NRA porosity data was not used as an exact measure of porosity, but rather was used for guidance to help determine which films to select for further electrical/capacitance measurements. [0069]
  • FIG. 1 shows the porosity determined by NRA for the C[0070] XEO10 polyoxyethylene ether surfactant series. The graph shows only porosity values using the different surfactants for only specific surfactant/TEOS values. For several higher surfactant/TEOS ratios the film quality was not acceptable for evaluation of electrical properties, and films formed with such ratios were therefore not investigated further. For consideration as dielectric films in semiconductor devices, the film thickness should be in the range of about 0.5 to about 1.2 μm. In addition, the films should be uniform in thickness, crack-free, and without major blemishes or surface defects. Films with non-wetted islands, cracks, ring-like structures, serrated patterns or cloudy inclusions were not considered for electrical evaluation. Defects such as comets (e.g. due to dust particles on the wafer) on otherwise uniform films were considered acceptable, as these could not be attributed to inherent solution properties. The table E1-1 lists the observations in terms of film quality with these surfactants at different concentrations.
    TABLE E1-11
    Film Quality for CxEO10 based Films
    Surfactant>>>>
    Surfactant/TEOS Film Quality Film Quality Film Quality
    mole ratio (below) C12EO10 C16EO10 C18EO10
    0.10 Good Acceptable Acceptable
    0.17 Good Poor Poor
    0.24 Poor Acceptable Poor
    0.30 Poor Acceptable Poor
    0.40 Poor Poor Poor
    0.50 Poor Poor Poor
  • Based on the NRA porosity data shown in FIG. 1 and the observations concerning film quality, two films were selected for electrical measurements. These two films as shown in Table 1 were those prepared with solutions containing (1) C[0071] 12EO10, surfactant/TEOS mole ratio of 0.17; and (2) C16EO10, surfactant/TEOS mole ratio of 0.30.
  • Initial electrical testing of these calcined films for capacitance using a precision LCR meter yielded dielectric constants (i.e. capacitance) much higher than expected for porous films, because the film still contained a significant amount of hydroxyl (—OH) groups. [0072]
  • Each of these two partially hydroxylated films was therefore dehydroxylated by exposing the hydroxylated film separately to a silane and a dehydroxylating gas. The films were dehydroxylated by treatments of soaking for 24 hours in a 10% solution of hexamethyl disilazane in toluene and exposure for 2 hours to 2% H[0073] 2 in N2 gas at 400° C. This sequence of dehydroxylation process steps was repeated once on each film, and the dielectric constant was measured after each of these steps.
  • The capacitance measurements were performed as follows. The backside of the wafer was scratched/etched to expose bare silicon surface and a layer of gold was then sputter-deposited. On the top film side, an array of gold dots approximately 2.8 mm in diameter was formed by sputtering using a shadow mask. Capacitance was measured at room temperature at ambient conditions for four dots on each sample, and the dielectric constant was calculated using the film thickness and dot diameter. The dielectric constant data obtained in this way is shown in FIG. 2 and FIG. 3 for the two different films. [0074]
  • The data in FIG. 2 shows that a dielectric constant of 1.80 can be obtained for the film synthesized with the C[0075] 12EO10 surfactant. The data in FIG. 3 shows that a dielectric constant of 1.85 can be obtained for the fihn synthesized with the C16EO10 surfactant. Such low dielectric constants indicate tremendous promise for application of such mesoporous silica films prepared with small polyoxyethylene ether surfactants in semiconductor devices. The low dielectric constants obtained with these films are also relatively stable, increasing by less than 5% over a period of one day in ambient laboratory conditions with temperatures at 20-22° C. and a relative humidity of 40-65%. The dielectric constants did not increase in value thereafter.
  • The pore structure of the surfactant templated mesoporous film was probed by low angle x-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD spectra of the film on the wafer for two different directions, radial and tangential, are shown in FIGS. 4A, 4B. The spectra did not contain any peak in the range of 2 to 6 degrees 2-theta, thereby indicating that pores are not ordered. A TEM micrograph of a section of the film in FIG. 5 indicates that the pores are disordered with an isotropic nanoporous structure. Pore sizes were estimated to be less than 3 nm from TEM micrographs, and from nitrogen adsorption/desorption analysis of powders prepared from the solution by a rapid spray drying process. [0076]
  • Film planarity and surface topography were measured by optical profilometry. Minimal striation-type surface texture was observed in these films. A surface contour map of the film is shown in FIG. 6[0077] a. Roughness is generally less than ±50 angstroms over length scales of tens of microns (FIG. 6b).
  • The elastic modulus of the mesoporous silica film was measured with a Hysitron Picoindenter™ using a Berkowich diamond tip. The instrument and tip were calibrated on a dense silica standard with a modulus of 70 GPa. A range of indentation loads (50-300 μN) and residence time (50-900 s) at maximum load were studied. For the measurement parameters used, indentation depths were less than 10% of the film thickness, and therefore substrate effects were not expected to affect the measured values. The effect of indentation load on measured modulus values for a residence time of 300 s is shown in FIG. 7 for the mesoporous silica film. The modulus is in the range of 14-17 GPa for a highly porous film prepared with the C[0078] 12EO10 poyloxyethylene ether surfactant with a porosity of =55%. The relative modulus of the porous silica film with respect to dense silica is in reasonable agreement with calculations for porous solids based on either closed or open porosity. The relatively high modulus for the porous film indicates promise for withstanding CMP in interconnect fabrication.
  • EXAMPLE 2
  • An experiment was conducted to demonstrate use of various polyoxethelene ether surfactants alone and in combination in preparation of a mesoporous silica film with low dielectric constants. The components of the spin coating solutions including the surfactant type and amount used in each solution, as well as the dielectric constant of selected films are shown in Table E2-1. All the components except for the TEOS were mixed until a homogeneous solution was obtained. In this experiment, the components were added in the following order: surfactant, ethanol, water and acid. When the surfactant was a solid at room temperature, the surfactant was heated to about 30 to 40° C. to melt the surfactant, before adding other solution components. Heating the surfactant is not always necessary, but a homogeneous solution could be more readily obtained by this procedure. TEOS was then added and the solution was stirred. Following addition of TEOS, the solution was aged for 20 hours at room temperature and dispensed onto the surface of polished 4-inch Si wafers by spin-coating at 2000 rpm for 30 seconds using a spin-coater. [0079]
  • The resulting surfactant-templated films were converted to mesoporous film by heating on a series of three hot plates. The highest hot plate temperature was about 400° C. Selected films from this set were subjected to a dehydroxylation procedure including treatment in hexamethyl disilazane solution followed by treatment in 2% H[0080] 2/N2 as described previously, and the film dielectric constants measured. The table shows that film dielectric constants of less than 2.25 can be obtained using more than one surfactant.
    TABLE E2-1
    Composition: Mole Ratio
    Sample # Teos H2O ETOH HNO3 Surfactant 1 Surfactant 2 K′
    CC24 1 5 10  0.05 0.1 C12EO10 0.1 C16EO10
    CC25 1 5 10  0.05 0.13 C12EO10 0.13 C16EO10
    CC26 1 5 10  0.05 0.15 C12EO10 0.15 C16EO10 2.16
    CC27 1 5 5 0.05 0.06 C12EO10 0.06 C18EO20
    CC28 1 5 5 0.05 0.1 C12EO10 0.1 C18EO20 2.11
    CC29 1 5 5 0.05 0.1 C12EO10 0.1 C12EO4
    CC30 1 5 5 0.05 0.13 C12EO10 0.13 C12EO4
    CC31 1 5 5 0.05 0.15 C12EO10 0.15 C12EO4 2.23
  • EXAMPLE 3
  • The disordered pore structures of films prepared with polyoxethelene ether surfactants were probed more extensively by low angle x-ray diffraction to determine any characteristic features in the x-ray spectra of these films. The components of the spin coating solutions including the surfactant type and amount used in each solution are shown in Table E3-1. All the components except for the TEOS were mixed until a homogeneous solution was obtained. In this experiment, the components were added in the following order: surfactant, ethanol, water and acid. When the surfactant was a solid at room temperature, the surfactant was heated to about 30 to 40° C. to melt the surfactant, before adding other solution components. Heating the surfactant is not always necessary, but a homogeneous solution could be more readily obtained by this procedure. TEOS was then added and the solution was stirred. Following addition of TEOS, the solution was aged for 20 hours at room temperature and dispensed onto the surface of polished 4-inch Si wafers by spin-coating at 2000 rpm for 30 seconds using a spin-coater. [0081]
    TABLE E3-1
    Composition: Mole Ratios
    Sample # TEOS H2O EtOH HCl HNO3 Surfactant
    144-3-I-D 1 5 5 0.05 0.19 C12EO10
    CC22C 1 5 10 0.05 0.3 C12EO10
    CC29A 1 5 5 0.05 0.1 C12EO10
    0.1 C12EO4
    CC81-1B 1 5 20 0.05 0.2 C16EO10
    CC83-1B 1 5 20 0.05 0.2 C18EO10
  • The resulting surfactant-templated films were converted to mesoporous films by heating on a series of three hot plates. The highest hot plate temperature was about 400° C. Two films from this set, 143-3-I-D and CC22C were subjected to a dehydroxylation procedure including a treatment in hexamethyl disilazane solution followed by treatment in 2% H[0082] 2/N2 as described previously.
  • The films were probed by x-ray diffraction, using the experimental parameters below. X-ray spectra were obtained on a scanned area about 1 cm×1 cm in extent, with the centroid of the scanned area being located about 3.5 cm from the center of the wafer. Spectra were obtained in both the radial and tangential directions of the x-ray beam with respect to the circular wafer. [0083]
  • Scan Range: 1.00-6.00 deg (2 Theta) [0084]
  • Scan Rate: 0.05 deg / 10 sec [0085]
  • Scan Type: Continuous (i.e., not Step-Scan) [0086]
  • Diffractometer: Philips X'Pert MPD (Model PW3040/00) [0087]
  • X-ray Source: Sealed Ceramic Tube, Long-Fine Focus (LFF) Cu Anode (Cu K alpha radiation) [0088]
  • X-ray Power: 40 kV, 50 mA (2000 W) [0089]
  • Gonoimeter Radius: 250 mm. [0090]
  • Incident Beam Optics: [0091]
  • 0.04 rad Soller Slit [0092]
  • Programmable, Automatic Divergence Slit (10 mm spot length) [0093]
  • 10 mm Beam Mask (10 mm spot width) [0094]
  • Receiving Optics: [0095]
  • 0.04 rad Soller Slit [0096]
  • Programmable, Automatic Anti-Scatter Slit (10 mm spot length) [0097]
  • Programmable Receiving Slit (0.2 mm) [0098]
  • Curved Graphite Monochromator [0099]
  • Detector: Xe Proportional Counter [0100]
  • 144-3-I-D: X-ray spectra corresponding to the radial and tangential directions are shown in FIG. 8[0101] a, FIG. 8b, respectively. The intensity of the diffracted or reflected beam steadily increases as lower angles are approached, because a greater percentage of the direct beam reaches the detector, in spite of careful alignment of the system components and control of the sample height relative to the path of the incident and reflected beam. In spite of this increasing intensity, there is evidence of a peak near 1.1 degrees 2-theta in both spectra. Transmission electron microscopy of a thin section of this film showed no evidence of ordered porosity. The areas of the film that were studied did not show any regular geometric arrangement of pores, especially long-range geometric arrangement.
  • CC22C: X-ray spectra corresponding to the radial and tangential directions are shown in FIG. 9[0102] a, FIG. 9b respectively. In the tangential directions, there is evidence of a peak at about 1.1 degrees, but in the radial direction, a clear peak is not evident. Only increasing intensity with lower angles is observed.
  • CC29C: X-ray spectra corresponding to the radial and tangential directions are shown in FIG. 10[0103] a, FIG. 10b respectively. In both the radial and the tangential directions, there is evidence of a peak at about 1.1 to 1.2 degrees 2-theta.
  • CC81-1B: X-ray spectra corresponding to the radial and tangential directions are shown in FIG. 11[0104] a, FIG. 11b respectively. In both the radial and the tangential directions, there is evidence of a peak at about 1.1 to 1.2 degrees 2-theta.
  • CC83-1B: Two sets of x-ray spectra obtained on this sample are shown in FIGS. 12[0105] a-12 d. One set (radial and tangential direction) was obtained about a quarter-wafer away (about 90 degrees rotation of the wafer) from the other. In FIGS. 12a, 12 b, the spectra obtained in the radial and tangential direction in one area do not show clear evidence of a peak at low angles. However, each of the spectra in FIGS. 12c, 12 d from the other area on the sample contains a single peak at around 1.1-1.2 degrees 2-theta. Transmission electron microscopy of a thin section of this film showed no evidence of ordered porosity. The areas of the fihn that were studied did not show any regular geometric arrangement of pores, especially long-range geometric arrangement.
  • The observations concerning x-ray reflections at low angle and transmission electron microscopy in this example, in combination with the observations concerning x-ray reflections and the microstructure by TEM in Example 1 are consistent with a pore structure that does not have any ordered geometric “crystalline” arrangement, especially long range. This disordered porosity was characterized by an X-ray diffraction peak at very low angles (about 0.75 to about 2 degrees 2- theta). It is to be noted that this peak is not observed 100% of the time for disordered porosity. [0106]
  • EXAMPLE 4
  • Dehydroxylation of mesoporous silica films utilizing a silane in the vapor form at room temperature can produce dielectric constants less than 2.5. A mesoporous film on a silicon wafer was placed in a stainless steel reaction vessel having an internal volume of ˜0.081 cm[0107] 3. The reaction vessel (equipped with inlet and outlet high temperature valves) was connected to a high vacuum line via vacuum tubing. The reactor was placed in a sand bath and temperatures were monitored employing thermocouples deployed uniformly about the reactor. The initial heating up step (0 min. to 2 hrs) was conducted with the chamber placed under high vacuum (˜10−5 torr). After the reaction chamber had achieved the desired temperature it was opened to the silane in vapor phase. The pressure of the silane vapor was dependent on the silane's vapor pressure at or near its boiling point. After the desired time had elapsed the chamber was placed under vacuum. The treatments of the mesoporous films essentially consisted of a vacuum treatment followed by one or more silane treatments in vapor phase followed by one or more vacuum treatments at temperatures ranging from 298 to 723 K (25 C to 450 C). Vacuum treatments and silane treatments were varied in duration from 5 minutes to 2 hours. This procedure was repeated for a number of cycles for the samples illustrated in Table E4-1. Upon cooling, the wafer was removed from the reaction vessel and, following deposition of gold electrodes on the surfaces, was placed in a tube furnace and treated with forming gas (2%H2/N2) at 673 K (400 C) for two hours. The capacitance of the film was measured under ambient conditions. The films were also placed in a flow of dry nitrogen gas and film capacitance measured. Finally the wafer was placed in a sealed glass container containing a beaker of water to simulate 100% relative humidity for time periods ranging from 1 to 3 days, and the sample then was removed and the capacitance measured again in room air. Several different silanes were investigated, including trimethyl iodosilane, trimethyl chlorosilane, dimethyl dimethoxy silane, and hexamethyl disilazane. The results of experiments with trimethyl iodosilane and hexamethyl disilazane are set forth in Table E4-1. These results illustrate that, depending on the silane and the treatment conditions employed, low dielectric constants (<2.5) on mesoporous silica films can be achieved with a procedure that includes an exposure of the mesoporous silica film to silane. This exposure may occur in high humidity conditions. These results indicate that dehydroxylation by silanes may be most effective with a procedure that includes removal of gas-phase or physisorbed species in the porous film before and/or after the silane treatment step. This removal of gas-phase or physisorbed species was carried out by treatment in vacuum or by treatment in flowing forming gas, but may also be accomplished by treatment in other flowing inert gases such as high purity nitrogen or argon.
    TABLE E4-1
    Number K′
    Silane Total of cycles K′ (in air,
    (pressure Mmole Temp Time* (silane K′ (in flowing after 100%
    Sample # in torr) silane ° C. (min) treatment) (in air) nitrogen) humidity)**
    JB-3 (CH3) 0.16 275 60 1 1.66 1.57 1.91
    3SiI 36
    torr
    JB-6 CH3) 0.17 400 10 3 1.73 1.65 1.72
    3 SiI 30
    torr
    JB-8 HMDS*** 0.17 350 10 5 1.77 1.67 1.86
    19
    torr
  • It is believed that such treatment may be best accomplished in a chamber wherein the film temperature can be controlled, and where the required gases can be fed into the chamber in the proper sequence, and the chamber pumped down in vacuum before and/or after silane exposure. We designed an experimental reaction chamber to be used for 20 dehydroxylation of mesoporous silica films supported on silicon wafers which could be an independent chamber or part of an integrated spin-track tool. The stainless steel chamber is constructed to hold 4, 6, 8 and 12 inch wafers. Under high vacuum the chamber will support an outer pressure of one atmosphere, and the cooled seal on the front-opening door will maintain a vacuum of 10[0108] −5 torr. The internal self-heating shelves will heat to 500 C, and internal circulation is assured with a fan. After an initial vacuum treatment, a gaseous silane is pumped into the chamber at the desired pressure, and thereafter a vacuum is again applied. The cycle may be repeated as many times as necessary to achieve the desired degree of dehydroxylation. After the last vacuum treatment, forming or an inert gas is pumped into the chamber.
  • EXAMPLE 5
  • Mono- and di-alkyl substituted alkoxysilanes can be used as additional silica precursors in the surfactant-containing spin coating solution used to prepare low dielectric constant mesoporous silica films with dielectric constants of <2.5. A series of solutions were prepared as described in example 1 except that methyl triethoxysilane and dimethyl dimethoxysilane were added to the one mole ratio of tetraethoxysilane. Molar ratios of 0.95 : 0.05 to 0.25: 0.75 of TEOS to the alkyl-ethoxysilane respectively were prepared. The surfactant used was 10 lauryl ether. The surfactant to silica precursor mole ratio was 0.17. Silicon wafers were spin coated with these solutions and heat-treated as described in example 2. Selected coated wafers were subjected to the dehydroxylation treatment as follows. The coated silicon wafer was placed in a stainless steel reaction vessel having an internal volume of ˜0.081 cm[0109] 3. The reaction vessel (equipped with inlet and outlet high temperature valves) was connected to a high vacuum line via vacuum tubing. The reactor was placed in a sand bath and temperatures were monitored employing thermocouples deployed uniformly about the reactor. The initial heating up step (0 min. to 2 hrs) was conducted with the chamber placed under high vacuum (˜10−5 torr). After the reaction chamber had achieved the desired temperature it was opened to the silane in vapor phase. The pressure of the silane vapor was dependent on the silane's vapor pressure at or near its boiling point. After the desired time had elapsed the chamber was placed under vacuum. The treatments of the mesoporous films essentially consisted of a vacuum treatment followed by one or more silane treatments in vapor phase followed by one or more vacuum treatments at temperatures ranging from 298 to 723 K (25 C to 450 C). Vacuum treatments and silane treatments were varied in duration from 5 minutes to 2 hours. Upon cooling, the wafer was removed from the reaction vessel and gold electrodes deposited on the surfaces. The capacitance of the film was measured under ambient conditions. The films were also placed in a flow of dry nitrogen gas and film capacitance measured. The results of one wafer are given in Table E5-1.
    TABLE E5-1
    Dehydroxy
    Siloxane lation Total
    molar silane mmol Time Temp No. of K' K'
    Sample # ratio (pressure) silane (min) (° C.) cycles Air nitrogen
    JB-21 0.85 (CH3)3SiI 0.23 10 390 5 2.24 2.23
    TEOS 17 torr
    0.15
    Methyl
    triethoxide
  • CLOSURE
  • While a preferred embodiment of the present invention has been shown and described, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the invention in its broader aspects. The appended claims are therefore intended to cover all such changes and modifications as fall within the true spirit and scope of the invention. [0110]

Claims (74)

We claim:
1. A mesoporous silica film prepared from a surfactant containing solution, having a dielectric constant less than 3 that has both a relative stability and an absolute stability in a humid atmosphere, a film thickness from about 0.1 μm to about 1.5 μm, and an average pore diameter less than or equal to about 20 nm.
2. The mesoporous silica film as recited in claim 1, wherein said average pore diameter is less than or equal to about 10 nm.
3. The mesoporous silica film as recited in claim 1, wherein said thickness has a standard deviation less than +/−5%.
4. The mesoporous silica film as recited in claim 1, wherein a porosity of said mesoporous silica film is disordered.
5. A mesoporous silica film having a thickness from about 0.1 μm to about 1.5 μm and a standard deviation about said thickness, wherein said standard deviation is less than +/−5%.
6. The mesoporous silica film as recited in claim 5, wherein a dielectric constant of said mesoporous silica film is less than 3.
7. The mesoporous silica film as recited in claim 5, having a dielectric constant with a relative stability and an absolute stability.
8. The mesoporous silica film as recited in claim 5, having an average pore size less than or equal to about 20 nm.
9. The mesoporous silica film as recited in claim 5, having a porosity that is disordered.
10. A mesoporous silica film prepared from a surfactant containing solution, comprising a porosity that is disordered, said porosity having an average pore diameter of less than or equal to about 20 nm, and a film thickness from about 0.1 μm to about 1.5 μm.
11. The mesoporous silica film as recited in claim 10, having a dielectric constant less than 3, said dielectric constant having both a relative stability and an absolute stability.
12. A method of making a mesoporous film comprising the steps of:
(a) combining a silica precursor with an aqueous solvent, a catalyst and a surfactant into a precursor solution;
(b) spin coating said precursor solution into a templated film;
(c) removing said aqueous solvent, said catalyst and said surfactant from said templated film and forming a hydroxylated film with disordered porosity; and
(d) dehydroxylating said hydroxylated film and obtaining said mesoporous film.
13. The method as recited in claim 12, wherein said surfactant is a polyoxyethylene ether surfactant.
14. The method as recited in claim 13, wherein said polyoxyethylene ether surfactant is C12H25 (CH2CH2O)10OH also known as C12EO10 or 10 lauryl ether; C16H33(CH2CH2O)10OH also known as C16EO10 or 10 cetyl ether; C18H37 (CH2CH2O)10OH also known as C18EO10 or 10 stearyl ether; C12H25(CH2CH2O)4OH also known as C12EO4 or 4 lauryl ether; C16H33(CH2CH2O)2OH also known as C16EO2 or 2 cetyl ether or combinations thereof.
15. The method as recited in claim 12, wherein said surfactant is in combination with a chemical agent selected from the group of a second surfactant, smaller hydrophilic molecular compounds, and with organic co-solvents.
16. The method as recited in claim 15, wherein said second surfactant is selected from the group consisting of non-ionic surfactant, cationic surfactant, anionic surfactant, amphoteric surfactant and combinations thereof.
17. The method as recited in claim 16, wherein said cationic surfactant is an ammonium-based surfactant.
18. The method as recited in claim 15, wherein said smaller hydrophilic molecular compounds are selected from the group consisting of glycerol, propylene glycol, and ethylene glycol.
19. The method as recited in claim 15, wherein said organic co-solvents are selected from the group consisting of mesitylene, octane and combinations thereof.
20. The method as recited in claim 12, wherein said silica precursor is selected from the group consisting of tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate (TMOS), methyl triethoxysilane, phenyl triethoxy silane, dimethyl dimethoxy silane ethyl triethyoxysilane, and combinations thereof.
21. The method as recited in claim 12, wherein said aqueous solvent comprises ethanol and water.
22. The method as recited in claim 12, wherein said acid is selected from the group consisting of inorganic acid, organic acid and combinations thereof.
23. The method as recited in claim 12, wherein said precursor solution includes at least one other surfactant.
24. The method as recited in claim 12, wherein said precursor solution includes at least one smaller hydrophilic molecular compound.
25. The method as recited in claim 12 wherein said precursor solution includes at least one organic co-solvent.
26. The method as recited in claim 23, wherein said at least one other surfactant is selected from the group consisting of non-ionic surfactant, cationic surfactant, anionic surfactant, amphoteric surfactant and combinations thereof.
27. The method as recited in claim 24, wherein said at least one smaller hydrophilic molecular compound is selected from the group consisting of glycerol, propylene glycol, ethylene glycol and combinations thereof.
28. The method as recited in claim 25, wherein said at least one organic co-solvent is selected from the group consisting of mesitylene, octane and combinations thereof.
29. The method as recited in claim 12, wherein dehydroxylating occurs in the presence of a silicon-based organic compound in the vapor phase.
30. The method as recited in claim 29, wherein the silicon-based organic compound is a silane.
31. The method as recited in claim 30, wherein the silane is selected from the group consisting of trimethyl iodosilane, trimethyl chlorosilane, dimethyl dimethoxy silane, demethyl dichloro silane, hexaphenyl disilazane, diphenyl tetramethyl silazane and hexamethyl disilazane .
32. A method of making a mesoporous film with a surfactant containing solution, the method comprising the steps of:
(a) combining a silica precursor with an aqueous solvent, a catalyst and a surfactant that is a polyoxethylene ether surfactant into a precursor solution;
(b) spin coating said precursor solution into a templated film;
(c) removing said aqueous solvent, said catalyst and said surfactant forming a hydroxylated film having porosity; and
(d) dehydroxylating said hydroxylated film and obtaining said mesoporous film.
33. The method as recited in claim 32, wherein said polyoxyethylene ether surfactant is C12H25 (CH2CH2O)10OH also known as C12EO10 or 10 lauryl ether; C16H33(CH2CH2))10OH also known as C16EO10 or 10 cetyl ether; C18H37 (CH2CH2O)10OH also known as C18EO10 or 10 stearyl ether; C12H25(CH2CH2O)4OH also known as C12EO4 or 4 lauryl ether; C16H33(CH2CH2O)2OH also known as C16EO2 or 2 cetyl ether or combinations thereof.
34. The method as recited in claim 32, wherein said porosity is disordered as indicated by an absence of an x-ray diffraction peak in the range of 2 to 6 degrees 2-theta.
35. The method as recited in claim 32, wherein said porosity is disordered, lacking a regular geometric arrangement of pores, and the pore structure is characterized by an x-ray diffraction peak between about 0.75 and about 2 degrees 2-theta.
36. The method as recited in claim 32, wherein said precursor solution includes at least one other surfactant.
37. The method as recited in claim 32, wherein said precursor solution includes at least one smaller hydrophilic molecular compound.
38. The method as recited in claim 32, wherein said precursor solution includes at least one organic co-solvent.
39. The method as recited in claim 32, wherein said precursor solution includes an agent selected from the group consisting of a second surfactant, a smaller hydrophilic molecular compound, an organic co-solvent and combinations thereof.
40. The method as recited in claim 36, wherein said at least one other surfactant is selected from the group consisting of non-ionic surfactant, cationic surfactant, anionic surfactant, amphoteric surfactant and combinations thereof.
41. The method as recited in claim 37, wherein said at least one smaller hydrophilic molecular compound is selected from the group consisting of glycerol, propylene glycol, ethylene glycol and combinations thereof.
42. The method as recited in claim 38, wherein said at least one organic co-solvent is selected from the group consisting of mesitylene, octane and combinations thereof.
43. The method as recited in claim 39, wherein said second surfactant is selected from the group consisting of non-ionic surfactant, cationic surfactant, anionic surfactant, amphoteric surfactant and combinations thereof.
44. The method as recited in claim 39, wherein said smaller hydrophilic molecular compound is selected from the group consisting of glycerol, propylene glycol, ethylene glycol and combinations thereof.
45. The method as recited in claim 39, wherein said organic co-solvent is selected from the group consisting of mesitylene, octane and combinations thereof.
46. The method as recited in claim 32 wherein said silica precursor is selected from the group consisting of tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate, methyl triethoxysilane, phenyl triethoxy silane, dimethyl dimethoxy silane and combinations thereof.
47. The method as recited in claim 32 wherein said aqueous solvent includes ethanol.
48. The method as recited in claim 32, wherein said catalyst is selected from the group consisting of inorganic acid, organic acid and combinations thereof.
49. The method as recited in claim 48, wherein said organic acid is carboxylic acid selected from the group consisting of methanoic acid (formic acid), ethanoic acid (acetic acid), ethandioic acid (oxalic acid), butanoic acid (butyric acid), and combinations thereof.
50. The method as recited in claim 32, wherein dehydroxylating occurs in the presence of a silicon-based organic compound in the vapor phase.
51. The method as recited in claim 50, wherein the silicon-based organic compound is a silane.
52. The method as recited in claim 51, wherein the silane is selected from the group consisting of trimethyl iodosilane, trimethyl chlorosilane, dimethyl dichloro silane, hexaphenyl disilazane, diphenyl tetramethyl silazane and hexamethyl disilazane.
53. A mesoporous silica film made by the method of claim 32, comprising:
a disordered porosity, lacking a regular geometric arrangement of pores, and characterized by an x-ray diffraction peak between about 0.75 and about 2 degrees 2-theta;
a dielectric constant less than 3.0 that is stable;
a film thickness from about 0.1 μm to about 1.5 μm; and
an average pore diameter less than or equal to about 20 nm.
54. A mesoporous silica film made by the method of claim 32, comprising:
a disordered porosity as indicated by an absence of an XRD peak in the range from 2 to 6 degrees 2-theta;
a dielectric constant less than 3.0 that is stable;
a film thickness from about 0.1 μm to about 1.5 μm; and
an average pore diameter less than or equal to about 20 nm.
55. A mesoporous film made by the method of claim 12, comprising: a dielectric constant less than 3.0 that is stable; a film thickness from about 0.1 μm to about 1.5 μm; and an average pore diameter less than or equal to about 20 nm.
56. A method of making a mesoporous film comprising the steps of:
(a) combining a silica precursor with an aqueous solvent, an acid and a polyoxethylene ether surfactant into a precursor solution;
(b) spin-coating said precursor solution into a templated film;
(c) removing said aqueous solvent, said acid and said surfactant forming a hydroxylated film; and
(d) dehydroxylating said hydroxylated film and obtaining said mesoporous film.
57. The method as recited in claim 56, wherein said polyoxyethylene ether surfactant is C12H25 (CH2CH2O)10OH also known as C12EO10 or 10 lauryl ether; C16H33(CH2CH2O)10OH also known as C16EO10 or 10 cetyl ether; C18H37 (CH2CH2O)10OH also known as C18EO10 or 10 stearyl ether; C12H25(CH2CH2O)4OH also known as C12EO4 or 4 lauryl ether; C16H33(CH2CH2O)2OH also known as C16EO2 or 2 cetyl ether or combinations thereof.
58. The method as recited in claim 57, wherein said polyoxyethylene ether surfactant is in combination with other small surfactants, with smaller hydrophilic molecules, and with organic co-solvents.
59. The method as recited in claim 58, wherein said small surfactants are ammonium-based surfactants.
60. The method as recited in claim 59, wherein said ammonium-based surfactants are cetyl trimethyl ammonium chloride.
61. The method as recited in claim 58, wherein said smaller hydrophilic molecules are selected from the group consisting of glycerol, propylene glycol, and ethylene glycol.
62. The method as recited in claim 58, wherein said organic co-solvents are selected from the group consisting of mesitylene and octane.
63. The method as recited in claim 56, wherein said silica precursor is tetraethyl orthosilicate (TEOS).
64. The method as recited in claim 56, wherein said aqueous solvent comprises ethanol and water.
65. The method as recited in claim 56, wherein said acid is hydrochloric acid.
66. A mesoporous film having a dielectric constant less than 2.5, a film thickness from about 0.2 μm to about 1.5 μm, and an average pore diameter less than or equal to about 5 nm.
67. A mesoporous film having a thickness from about 0.2 μm to about 1.5 μm and a standard deviation about said thickness that is less than +/−5%.
68. A mesoporous silica film prepared from a surfactant containing solution, having a dielectric constant less than 3 that has both a relative stability and an absolute stability in a humid atmosphere, a film thickness from about 0.1 μm to about 1.5 μm, an average pore diameter less than or equal to about 20 nm, and a porosity that is disordered.
69. The mesoporous silica film as recited in claim 68, wherein disordered is indicated by the absence of an X-ray diffraction peak in the range of about 2 to about 6 degrees 2-theta.
70. The mesoporous silica film as recited in claim 68, wherein disordered porosity is characterized by an X-ray diffraction peak between about 0.75 and about 2 degrees 2-theta.
71. A method of making a mesoporous film comprising the steps of:
(a) combining a silica precursor with an aqueous solvent, a catalyst and a surfactant into a precursor solution;
(b) spin coating said precursor solution into a templated film;
(c) removing said aqueous solvent, said catalyst and said surfactant from said templated film and forming a hydroxylated film; and
(d) dehydroxylating said hydroxylated film with a gaseous silicon-based organic compound and obtaining said mesoporous film.
72. The method of claim 71, wherein the silicon-based organic compound is a silane.
73. The method of claim 71, wherein said dehydroxylation of said film occurs in alternating exposures of said film to a vacuum and to the gaseous silane.
74. The method of claim 71, wherein said silane is selected from the group consisting of trimethyl iodosilane, trimethyl chlorosilane, dimethyl dimethoxy silane, dimethyl dichloro silane, hexaphenyl disilazane, diphenyl tetramethyl silazane and hexamethyl disilazane.
US09/837,885 1998-12-23 2001-04-18 Mesoporous silica film from a solution containing a surfactant and methods of making same Abandoned US20020034626A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/837,885 US20020034626A1 (en) 1998-12-23 2001-04-18 Mesoporous silica film from a solution containing a surfactant and methods of making same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US22088298A 1998-12-23 1998-12-23
US33521099A 1999-06-17 1999-06-17
US36149999A 1999-07-23 1999-07-23
US09/413,062 US6329017B1 (en) 1998-12-23 1999-10-04 Mesoporous silica film from a solution containing a surfactant and methods of making same
US09/837,885 US20020034626A1 (en) 1998-12-23 2001-04-18 Mesoporous silica film from a solution containing a surfactant and methods of making same

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US36149999A Continuation-In-Part 1998-12-23 1999-07-23
US09/413,062 Division US6329017B1 (en) 1998-12-23 1999-10-04 Mesoporous silica film from a solution containing a surfactant and methods of making same

Publications (1)

Publication Number Publication Date
US20020034626A1 true US20020034626A1 (en) 2002-03-21

Family

ID=27499216

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/413,062 Expired - Fee Related US6329017B1 (en) 1998-12-23 1999-10-04 Mesoporous silica film from a solution containing a surfactant and methods of making same
US09/711,666 Expired - Fee Related US6548113B1 (en) 1998-12-23 2000-11-09 Vacuum/gas phase reactor for dehydroxylation and alkylation of porous silica
US09/837,885 Abandoned US20020034626A1 (en) 1998-12-23 2001-04-18 Mesoporous silica film from a solution containing a surfactant and methods of making same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/413,062 Expired - Fee Related US6329017B1 (en) 1998-12-23 1999-10-04 Mesoporous silica film from a solution containing a surfactant and methods of making same
US09/711,666 Expired - Fee Related US6548113B1 (en) 1998-12-23 2000-11-09 Vacuum/gas phase reactor for dehydroxylation and alkylation of porous silica

Country Status (1)

Country Link
US (3) US6329017B1 (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020187335A1 (en) * 1999-12-03 2002-12-12 Kelley Kurtis C. Patterned hydrophilic-oleophilic metal oxide coating and method of forming
WO2004015167A2 (en) * 2002-08-09 2004-02-19 Canon Kabushiki Kaisha Mesostructured film, porous film and the method of preparing the same
US6746714B2 (en) * 1999-07-13 2004-06-08 Clariant Finance (Bvi) Limited Porous silica coating with low dielectric constant, semiconductor device and coating composition
US20050258578A1 (en) * 2001-09-14 2005-11-24 Jerome Birnbaum Method for producing high purity low dielectric constant ceramic and hybrid ceramic films field of the invention
US7001669B2 (en) 2002-12-23 2006-02-21 The Administration Of The Tulane Educational Fund Process for the preparation of metal-containing nanostructured films
US20060079606A1 (en) * 2004-10-08 2006-04-13 Industrial Technology Research Institute Low dielectric constant substrate
US20060156934A1 (en) * 2003-09-19 2006-07-20 Gallus Druckmaschinen Ag Rotary printing press
US20060158106A1 (en) * 2005-01-14 2006-07-20 Seiko Epson Corporation Method of manufacturing light-emitting element, light-emitting element, display device and electronic equipment
US7094713B1 (en) 2004-03-11 2006-08-22 Novellus Systems, Inc. Methods for improving the cracking resistance of low-k dielectric materials
US20060204758A1 (en) * 2003-08-08 2006-09-14 Canon Kabushiki Kaisha Mesostructured film, mesoporous material film, and production methods for the same
US20060269842A1 (en) * 2005-05-31 2006-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery and battery module
US7166531B1 (en) 2005-01-31 2007-01-23 Novellus Systems, Inc. VLSI fabrication processes for introducing pores into dielectric materials
US7176144B1 (en) 2003-03-31 2007-02-13 Novellus Systems, Inc. Plasma detemplating and silanol capping of porous dielectric films
US7208389B1 (en) 2003-03-31 2007-04-24 Novellus Systems, Inc. Method of porogen removal from porous low-k films using UV radiation
US7241704B1 (en) 2003-03-31 2007-07-10 Novellus Systems, Inc. Methods for producing low stress porous low-k dielectric materials using precursors with organic functional groups
US7253125B1 (en) 2004-04-16 2007-08-07 Novellus Systems, Inc. Method to improve mechanical strength of low-k dielectric film using modulated UV exposure
US7265061B1 (en) 2003-05-09 2007-09-04 Novellus Systems, Inc. Method and apparatus for UV exposure of low dielectric constant materials for porogen removal and improved mechanical properties
US7326444B1 (en) 2004-09-14 2008-02-05 Novellus Systems, Inc. Methods for improving integration performance of low stress CDO films
US7341761B1 (en) 2004-03-11 2008-03-11 Novellus Systems, Inc. Methods for producing low-k CDO films
US7381662B1 (en) 2004-03-11 2008-06-03 Novellus Systems, Inc. Methods for improving the cracking resistance of low-k dielectric materials
US7381644B1 (en) 2005-12-23 2008-06-03 Novellus Systems, Inc. Pulsed PECVD method for modulating hydrogen content in hard mask
US7390537B1 (en) 2003-11-20 2008-06-24 Novellus Systems, Inc. Methods for producing low-k CDO films with low residual stress
US7510982B1 (en) 2005-01-31 2009-03-31 Novellus Systems, Inc. Creation of porosity in low-k films by photo-disassociation of imbedded nanoparticles
US7622162B1 (en) 2007-06-07 2009-11-24 Novellus Systems, Inc. UV treatment of STI films for increasing tensile stress
US7622400B1 (en) 2004-05-18 2009-11-24 Novellus Systems, Inc. Method for improving mechanical properties of low dielectric constant materials
US20090298671A1 (en) * 2004-03-02 2009-12-03 Air Products And Chemicals, Inc. Compositions for Preparing Low Dielectric Materials Containing Solvents
US7695765B1 (en) 2004-11-12 2010-04-13 Novellus Systems, Inc. Methods for producing low-stress carbon-doped oxide films with improved integration properties
US7776682B1 (en) * 2005-04-20 2010-08-17 Spansion Llc Ordered porosity to direct memory element formation
US7781351B1 (en) 2004-04-07 2010-08-24 Novellus Systems, Inc. Methods for producing low-k carbon doped oxide films with low residual stress
US7790633B1 (en) 2004-10-26 2010-09-07 Novellus Systems, Inc. Sequential deposition/anneal film densification method
US20100267553A1 (en) * 2007-09-14 2010-10-21 Nippon Oil Corporation Tungsten-containing Mesoporous Silica Thin Film, Highly Hydrophilic Material Containing the Same, and Method for Producing Tungsten-Containing Mesoporous Silica Thin Film
US7851232B2 (en) 2006-10-30 2010-12-14 Novellus Systems, Inc. UV treatment for carbon-containing low-k dielectric repair in semiconductor processing
US7892985B1 (en) 2005-11-15 2011-02-22 Novellus Systems, Inc. Method for porogen removal and mechanical strength enhancement of low-k carbon doped silicon oxide using low thermal budget microwave curing
US7906174B1 (en) 2006-12-07 2011-03-15 Novellus Systems, Inc. PECVD methods for producing ultra low-k dielectric films using UV treatment
US20110076416A1 (en) * 2008-05-26 2011-03-31 Basf Se Method of making porous materials and porous materials prepared thereof
US7923376B1 (en) 2006-03-30 2011-04-12 Novellus Systems, Inc. Method of reducing defects in PECVD TEOS films
US20110117678A1 (en) * 2006-10-30 2011-05-19 Varadarajan Bhadri N Carbon containing low-k dielectric constant recovery using uv treatment
US8110493B1 (en) 2005-12-23 2012-02-07 Novellus Systems, Inc. Pulsed PECVD method for modulating hydrogen content in hard mask
US8137465B1 (en) 2005-04-26 2012-03-20 Novellus Systems, Inc. Single-chamber sequential curing of semiconductor wafers
US8211510B1 (en) 2007-08-31 2012-07-03 Novellus Systems, Inc. Cascaded cure approach to fabricate highly tensile silicon nitride films
US8242028B1 (en) 2007-04-03 2012-08-14 Novellus Systems, Inc. UV treatment of etch stop and hard mask films for selectivity and hermeticity enhancement
US8282768B1 (en) 2005-04-26 2012-10-09 Novellus Systems, Inc. Purging of porogen from UV cure chamber
WO2013078464A1 (en) * 2011-11-22 2013-05-30 Znano Llc Self-assembled surfactant structures
US8454750B1 (en) 2005-04-26 2013-06-04 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US8557877B2 (en) 2009-06-10 2013-10-15 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
US8864898B2 (en) 2011-05-31 2014-10-21 Honeywell International Inc. Coating formulations for optical elements
US8889233B1 (en) 2005-04-26 2014-11-18 Novellus Systems, Inc. Method for reducing stress in porous dielectric films
US8980769B1 (en) 2005-04-26 2015-03-17 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US9050623B1 (en) 2008-09-12 2015-06-09 Novellus Systems, Inc. Progressive UV cure
US9659769B1 (en) 2004-10-22 2017-05-23 Novellus Systems, Inc. Tensile dielectric films using UV curing
US9847221B1 (en) 2016-09-29 2017-12-19 Lam Research Corporation Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
US10037905B2 (en) 2009-11-12 2018-07-31 Novellus Systems, Inc. UV and reducing treatment for K recovery and surface clean in semiconductor processing
US10544329B2 (en) 2015-04-13 2020-01-28 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications
US10589231B2 (en) 2010-05-21 2020-03-17 Znano Llc Self-assembled surfactant structures
CN112142057A (en) * 2020-08-26 2020-12-29 航天特种材料及工艺技术研究所 Aerogel and preparation method thereof based on constant-temperature constant-humidity drying

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2787350B1 (en) * 1998-12-21 2002-01-04 Saint Gobain Vitrage GLASS WITH FUNCTIONAL MESOPOROUS COATING, ESPECIALLY HYDROPHOBIC
US6329017B1 (en) * 1998-12-23 2001-12-11 Battelle Memorial Institute Mesoporous silica film from a solution containing a surfactant and methods of making same
US6536604B1 (en) * 1999-06-25 2003-03-25 C. Jeffrey Brinker Inorganic dual-layer microporous supported membranes
US6365266B1 (en) * 1999-12-07 2002-04-02 Air Products And Chemicals, Inc. Mesoporous films having reduced dielectric constants
JP2002043423A (en) * 2000-07-24 2002-02-08 Tokyo Ohka Kogyo Co Ltd Method for processing film and method for manufacturing semiconductor device using the same
JP4722269B2 (en) * 2000-08-29 2011-07-13 Azエレクトロニックマテリアルズ株式会社 Low dielectric constant porous siliceous film, semiconductor device and coating composition, and method for producing low dielectric constant porous siliceous film
DE10051725A1 (en) * 2000-10-18 2002-05-02 Merck Patent Gmbh Aqueous coating solution for abrasion-resistant SiO2 anti-reflective coatings
US6703324B2 (en) * 2000-12-21 2004-03-09 Intel Corporation Mechanically reinforced highly porous low dielectric constant films
US6683006B2 (en) * 2001-06-25 2004-01-27 Tokyo Electron Limited Film forming method and film forming apparatus
KR20040039368A (en) * 2001-09-17 2004-05-10 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Electronic device and composition
TW561634B (en) * 2001-09-25 2003-11-11 Rohm Co Ltd Method for producing semiconductor device
US7541200B1 (en) 2002-01-24 2009-06-02 Novellus Systems, Inc. Treatment of low k films with a silylating agent for damage repair
US6808742B2 (en) * 2002-03-07 2004-10-26 Competitive Technologies, Inc. Preparation of thin silica films with controlled thickness and tunable refractive index
US20030185975A1 (en) * 2002-03-26 2003-10-02 Ben-Zu Wan Process for preparing low-dielectric-constant silica film
US7122880B2 (en) * 2002-05-30 2006-10-17 Air Products And Chemicals, Inc. Compositions for preparing low dielectric materials
US7307343B2 (en) * 2002-05-30 2007-12-11 Air Products And Chemicals, Inc. Low dielectric materials and methods for making same
JP3869318B2 (en) * 2002-06-17 2007-01-17 ダイムラークライスラー・アクチェンゲゼルシャフト Proton conductive thin film and method for producing the same
US7794833B2 (en) * 2002-06-21 2010-09-14 Board Of Regents, The University Of Texas System Electrospun mesoporous molecular sieve fibers
US20040091411A1 (en) * 2002-11-08 2004-05-13 Bijan Modrek-Najafabadi High surface area, high porosity silica packing with narrow particle and pore diameter distribution and methods of making same
US20040096586A1 (en) * 2002-11-15 2004-05-20 Schulberg Michelle T. System for deposition of mesoporous materials
KR100496286B1 (en) * 2003-04-12 2005-06-17 삼성에스디아이 주식회사 Organic electro luminescence display and method for manufacturing the same
US7425505B2 (en) 2003-07-23 2008-09-16 Fsi International, Inc. Use of silyating agents
EP1660433A2 (en) 2003-07-24 2006-05-31 The Queen's Medical Center Preparation and use of alkylating agents
US7354623B2 (en) * 2004-05-24 2008-04-08 Taiwan Semiconductor Manufacturing Company, Ltd. Surface modification of a porous organic material through the use of a supercritical fluid
US8901268B2 (en) 2004-08-03 2014-12-02 Ahila Krishnamoorthy Compositions, layers and films for optoelectronic devices, methods of production and uses thereof
KR20060020830A (en) * 2004-09-01 2006-03-07 삼성코닝 주식회사 Method for preparing surfactant-templated, mesostructured thin film with low dielectric constant
US20060081557A1 (en) 2004-10-18 2006-04-20 Molecular Imprints, Inc. Low-k dielectric functional imprinting materials
KR20060057778A (en) * 2004-11-24 2006-05-29 삼성코닝 주식회사 Method for preparing mesoporous thin film with low dielectric constant
KR101202955B1 (en) * 2004-12-31 2012-11-19 삼성코닝정밀소재 주식회사 Composition for forming low dielectric film comprising porous nanoparticles and method for preparing low dielectric thin film using the same
KR101119141B1 (en) * 2005-01-20 2012-03-19 삼성코닝정밀소재 주식회사 Composition for forming low dielectric film comprising polymeric nanoparticles and method for preparing low dielectric thin film using the same
US20060247663A1 (en) * 2005-04-27 2006-11-02 Southern Illinois University Office Of Research, Development And Administration Laser resistant calculus retrieval device and method of using
US7588995B2 (en) * 2005-11-14 2009-09-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method to create damage-free porous low-k dielectric films and structures resulting therefrom
US20070299239A1 (en) * 2006-06-27 2007-12-27 Air Products And Chemicals, Inc. Curing Dielectric Films Under A Reducing Atmosphere
US7951723B2 (en) * 2006-10-24 2011-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated etch and supercritical CO2 process and chamber design
JP5156256B2 (en) * 2007-04-17 2013-03-06 花王株式会社 Mesoporous silica film
CN101062839B (en) * 2007-04-19 2010-05-19 上海交通大学 Preparation method of regular macroscopic oriented mesoporous film
JP5727788B2 (en) * 2007-11-21 2015-06-03 モレキュラー・インプリンツ・インコーポレーテッド Porous templates and imprint stacks for nanoimprint lithography
US8247315B2 (en) * 2008-03-17 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method for manufacturing semiconductor device
US20100072671A1 (en) * 2008-09-25 2010-03-25 Molecular Imprints, Inc. Nano-imprint lithography template fabrication and treatment
US8470188B2 (en) * 2008-10-02 2013-06-25 Molecular Imprints, Inc. Nano-imprint lithography templates
US20100104852A1 (en) * 2008-10-23 2010-04-29 Molecular Imprints, Inc. Fabrication of High-Throughput Nano-Imprint Lithography Templates
WO2010075014A2 (en) 2008-12-23 2010-07-01 3M Innovative Properties Company Organic chemical sensor with microporous organosilicate material
WO2010075333A2 (en) 2008-12-23 2010-07-01 3M Innovative Properties Company Organic chemical sensor with microporous organosilicate material
US8616873B2 (en) * 2010-01-26 2013-12-31 Molecular Imprints, Inc. Micro-conformal templates for nanoimprint lithography
TW201144091A (en) * 2010-01-29 2011-12-16 Molecular Imprints Inc Ultra-compliant nanoimprint lithography templates
WO2017086361A1 (en) * 2015-11-16 2017-05-26 三井化学株式会社 Semiconductor film composition, method for manufacturing semiconductor film composition, method for manufacturing semiconductor member, method for manufacturing processing material for semiconductor, and semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504042A (en) * 1994-06-23 1996-04-02 Texas Instruments Incorporated Porous dielectric material with improved pore surface properties for electronics applications

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8610024D0 (en) 1986-04-24 1986-05-29 Unilever Plc Porous structures
US5795566A (en) 1989-05-29 1998-08-18 Robertet S.A. Deodorant compositions containing at least two aldehydes and the deodorant products containing them
US5211934A (en) 1990-01-25 1993-05-18 Mobil Oil Corp. Synthesis of mesoporous aluminosilicate
US5238676A (en) 1990-01-25 1993-08-24 Mobil Oil Corporation Method for modifying synthetic mesoporous crystalline materials
US5145816A (en) 1990-12-10 1992-09-08 Mobil Oil Corporation Method for functionalizing synthetic mesoporous crystalline material
US5104515A (en) 1990-01-25 1992-04-14 Mobil Oil Corp. Method for purifying synthetic mesoporous crystalline material
US5102643A (en) 1990-01-25 1992-04-07 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis
US5057296A (en) 1990-12-10 1991-10-15 Mobil Oil Corp. Method for synthesizing mesoporous crystalline material
US5300277A (en) 1990-01-25 1994-04-05 Mobil Oil Corporation Synthesis of mesoporous crystalline material
US5108725A (en) 1990-01-25 1992-04-28 Mobil Oil Corp. Synthesis of mesoporous crystalline material
US5250282A (en) 1990-01-25 1993-10-05 Mobil Oil Corp. Use of amphiphilic compounds to produce novel classes of crystalline oxide materials
US5198203A (en) 1990-01-25 1993-03-30 Mobil Oil Corp. Synthetic mesoporous crystalline material
US5112589A (en) 1990-01-25 1992-05-12 Mobil Oil Corp. Method for synthesizing mesoporous crystalline material using acid
DK0512026T3 (en) 1990-01-25 1995-03-20 Mobil Oil Corp Synthetic porous crystalline material, its preparation and use
US5215737A (en) 1990-01-25 1993-06-01 Mobil Oil Corp. Synthesis of mesoporous aluminosilicate
US5264203A (en) 1990-01-25 1993-11-23 Mobil Oil Corporation Synthetic mesoporous crystalline materials
US5156829A (en) 1990-01-25 1992-10-20 Mobil Oil Corporation Method for stabilizing synthetic mesoporous crystalline material
US5256277A (en) 1991-07-24 1993-10-26 Mobil Oil Corporation Paraffin isomerization process utilizing a catalyst comprising a mesoporous crystalline material
US5565142A (en) 1992-04-01 1996-10-15 Deshpande; Ravindra Preparation of high porosity xerogels by chemical surface modification.
US5321102A (en) 1992-10-26 1994-06-14 The United States Of America As Represented By The Department Of Energy Molecular engineering of porous silica using aryl templates
US5364797A (en) 1993-05-20 1994-11-15 Mobil Oil Corp. Sensor device containing mesoporous crystalline material
IT1265320B1 (en) 1993-12-22 1996-10-31 Eniricerche Spa PROCEDURE FOR THE PREPARATION OF CATALYTICALLY ACTIVE AMORPHOUS SILICON-ALUMIN
US5470802A (en) 1994-05-20 1995-11-28 Texas Instruments Incorporated Method of making a semiconductor device using a low dielectric constant material
US5494858A (en) 1994-06-07 1996-02-27 Texas Instruments Incorporated Method for forming porous composites as a low dielectric constant layer with varying porosity distribution electronics applications
DE4422912A1 (en) 1994-06-30 1996-01-11 Hoechst Ag Xerogels, processes for their manufacture and their use
US5472913A (en) 1994-08-05 1995-12-05 Texas Instruments Incorporated Method of fabricating porous dielectric material with a passivation layer for electronics applications
US5622684A (en) 1995-06-06 1997-04-22 Board Of Trustees Operating Michigan State University Porous inorganic oxide materials prepared by non-ionic surfactant templating route
US5807607A (en) 1995-11-16 1998-09-15 Texas Instruments Incorporated Polyol-based method for forming thin film aerogels on semiconductor substrates
US5736425A (en) 1995-11-16 1998-04-07 Texas Instruments Incorporated Glycol-based method for forming a thin-film nanoporous dielectric
US5753305A (en) 1995-11-16 1998-05-19 Texas Instruments Incorporated Rapid aging technique for aerogel thin films
US5840271A (en) 1996-02-09 1998-11-24 Intevep, S.A. Synthetic material with high void volume associated with mesoporous tortuous channels having a narrow size distribution
US5800799A (en) 1996-05-02 1998-09-01 Board Of Trustees Operating Michigan State University Porous inorganic oxide materials prepared by non-ionic surfactant and fluoride ion
US5922299A (en) 1996-11-26 1999-07-13 Battelle Memorial Institute Mesoporous-silica films, fibers, and powders by evaporation
US5858457A (en) 1997-09-25 1999-01-12 Sandia Corporation Process to form mesostructured films
US6329017B1 (en) * 1998-12-23 2001-12-11 Battelle Memorial Institute Mesoporous silica film from a solution containing a surfactant and methods of making same
US6165905A (en) * 1999-01-20 2000-12-26 Philips Electronics, North America Corp. Methods for making reliable via structures having hydrophobic inner wall surfaces

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504042A (en) * 1994-06-23 1996-04-02 Texas Instruments Incorporated Porous dielectric material with improved pore surface properties for electronics applications

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746714B2 (en) * 1999-07-13 2004-06-08 Clariant Finance (Bvi) Limited Porous silica coating with low dielectric constant, semiconductor device and coating composition
US6890640B2 (en) * 1999-12-03 2005-05-10 Caterpillar Inc Patterned hydrophilic-oleophilic metal oxide coating and method of forming
US20020187335A1 (en) * 1999-12-03 2002-12-12 Kelley Kurtis C. Patterned hydrophilic-oleophilic metal oxide coating and method of forming
US8012403B2 (en) * 2001-09-14 2011-09-06 Battelle Memorial Institute Method for producing high purity low dielectric constant ceramic and hybrid ceramic films
US20050258578A1 (en) * 2001-09-14 2005-11-24 Jerome Birnbaum Method for producing high purity low dielectric constant ceramic and hybrid ceramic films field of the invention
WO2004015167A2 (en) * 2002-08-09 2004-02-19 Canon Kabushiki Kaisha Mesostructured film, porous film and the method of preparing the same
WO2004015167A3 (en) * 2002-08-09 2004-05-27 Canon Kk Mesostructured film, porous film and the method of preparing the same
US20060014028A1 (en) * 2002-08-09 2006-01-19 Cannon Kabushiki Kaisha Mesostructured film, porous film and the method of preparing the same
US7001669B2 (en) 2002-12-23 2006-02-21 The Administration Of The Tulane Educational Fund Process for the preparation of metal-containing nanostructured films
US7923385B2 (en) 2003-03-31 2011-04-12 Novellus Systems, Inc. Methods for producing low stress porous and CDO low-K dielectric materials using precursors with organic functional groups
US7473653B1 (en) 2003-03-31 2009-01-06 Novellus Systems, Inc. Methods for producing low stress porous low-k dielectric materials using precursors with organic functional groups
US20090239390A1 (en) * 2003-03-31 2009-09-24 Novellus Systems, Inc. Methods for producing low stress porous and cdo low-k dielectric materials using precursors with organic functional groups
US7799705B1 (en) 2003-03-31 2010-09-21 Novellus Systems, Inc. Methods for producing low stress porous low-k dielectric materials using precursors with organic functional groups
US7241704B1 (en) 2003-03-31 2007-07-10 Novellus Systems, Inc. Methods for producing low stress porous low-k dielectric materials using precursors with organic functional groups
US7208389B1 (en) 2003-03-31 2007-04-24 Novellus Systems, Inc. Method of porogen removal from porous low-k films using UV radiation
US7176144B1 (en) 2003-03-31 2007-02-13 Novellus Systems, Inc. Plasma detemplating and silanol capping of porous dielectric films
US7265061B1 (en) 2003-05-09 2007-09-04 Novellus Systems, Inc. Method and apparatus for UV exposure of low dielectric constant materials for porogen removal and improved mechanical properties
US7618703B2 (en) * 2003-08-08 2009-11-17 Canon Kabushiki Kaisha Mesostructured film, mesoporous material film, and production methods for the same
US20060204758A1 (en) * 2003-08-08 2006-09-14 Canon Kabushiki Kaisha Mesostructured film, mesoporous material film, and production methods for the same
US20060156934A1 (en) * 2003-09-19 2006-07-20 Gallus Druckmaschinen Ag Rotary printing press
US7390537B1 (en) 2003-11-20 2008-06-24 Novellus Systems, Inc. Methods for producing low-k CDO films with low residual stress
US20090298671A1 (en) * 2004-03-02 2009-12-03 Air Products And Chemicals, Inc. Compositions for Preparing Low Dielectric Materials Containing Solvents
US7381662B1 (en) 2004-03-11 2008-06-03 Novellus Systems, Inc. Methods for improving the cracking resistance of low-k dielectric materials
US7341761B1 (en) 2004-03-11 2008-03-11 Novellus Systems, Inc. Methods for producing low-k CDO films
US7737525B1 (en) 2004-03-11 2010-06-15 Novellus Systems, Inc. Method for producing low-K CDO films
US7094713B1 (en) 2004-03-11 2006-08-22 Novellus Systems, Inc. Methods for improving the cracking resistance of low-k dielectric materials
US7781351B1 (en) 2004-04-07 2010-08-24 Novellus Systems, Inc. Methods for producing low-k carbon doped oxide films with low residual stress
US8715788B1 (en) 2004-04-16 2014-05-06 Novellus Systems, Inc. Method to improve mechanical strength of low-K dielectric film using modulated UV exposure
US8043667B1 (en) 2004-04-16 2011-10-25 Novellus Systems, Inc. Method to improve mechanical strength of low-K dielectric film using modulated UV exposure
US7611757B1 (en) 2004-04-16 2009-11-03 Novellus Systems, Inc. Method to improve mechanical strength of low-K dielectric film using modulated UV exposure
US7253125B1 (en) 2004-04-16 2007-08-07 Novellus Systems, Inc. Method to improve mechanical strength of low-k dielectric film using modulated UV exposure
US7622400B1 (en) 2004-05-18 2009-11-24 Novellus Systems, Inc. Method for improving mechanical properties of low dielectric constant materials
US7326444B1 (en) 2004-09-14 2008-02-05 Novellus Systems, Inc. Methods for improving integration performance of low stress CDO films
US20060079606A1 (en) * 2004-10-08 2006-04-13 Industrial Technology Research Institute Low dielectric constant substrate
US9659769B1 (en) 2004-10-22 2017-05-23 Novellus Systems, Inc. Tensile dielectric films using UV curing
US7790633B1 (en) 2004-10-26 2010-09-07 Novellus Systems, Inc. Sequential deposition/anneal film densification method
US7695765B1 (en) 2004-11-12 2010-04-13 Novellus Systems, Inc. Methods for producing low-stress carbon-doped oxide films with improved integration properties
US7591699B2 (en) * 2005-01-14 2009-09-22 Seiko Epson Corporation Method of manufacturing light-emitting element including the emission layer and the carrier transfer layer
US20060158106A1 (en) * 2005-01-14 2006-07-20 Seiko Epson Corporation Method of manufacturing light-emitting element, light-emitting element, display device and electronic equipment
US7510982B1 (en) 2005-01-31 2009-03-31 Novellus Systems, Inc. Creation of porosity in low-k films by photo-disassociation of imbedded nanoparticles
US7972976B1 (en) 2005-01-31 2011-07-05 Novellus Systems, Inc. VLSI fabrication processes for introducing pores into dielectric materials
US7629224B1 (en) 2005-01-31 2009-12-08 Novellus Systems, Inc. VLSI fabrication processes for introducing pores into dielectric materials
US7166531B1 (en) 2005-01-31 2007-01-23 Novellus Systems, Inc. VLSI fabrication processes for introducing pores into dielectric materials
US8062983B1 (en) 2005-01-31 2011-11-22 Novellus Systems, Inc. Creation of porosity in low-k films by photo-disassociation of imbedded nanoparticles
US7776682B1 (en) * 2005-04-20 2010-08-17 Spansion Llc Ordered porosity to direct memory element formation
US10121682B2 (en) 2005-04-26 2018-11-06 Novellus Systems, Inc. Purging of porogen from UV cure chamber
US8980769B1 (en) 2005-04-26 2015-03-17 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US9384959B2 (en) 2005-04-26 2016-07-05 Novellus Systems, Inc. Purging of porogen from UV cure chamber
US8454750B1 (en) 2005-04-26 2013-06-04 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US8889233B1 (en) 2005-04-26 2014-11-18 Novellus Systems, Inc. Method for reducing stress in porous dielectric films
US8734663B2 (en) 2005-04-26 2014-05-27 Novellus Systems, Inc. Purging of porogen from UV cure chamber
US9873946B2 (en) 2005-04-26 2018-01-23 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US8137465B1 (en) 2005-04-26 2012-03-20 Novellus Systems, Inc. Single-chamber sequential curing of semiconductor wafers
US8629068B1 (en) 2005-04-26 2014-01-14 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US8518210B2 (en) 2005-04-26 2013-08-27 Novellus Systems, Inc. Purging of porogen from UV cure chamber
US8282768B1 (en) 2005-04-26 2012-10-09 Novellus Systems, Inc. Purging of porogen from UV cure chamber
US8076023B2 (en) 2005-05-31 2011-12-13 Panasonic Corporation Non-aqueous electrolyte secondary battery and battery module
US20060269842A1 (en) * 2005-05-31 2006-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery and battery module
US20110206975A1 (en) * 2005-05-31 2011-08-25 Panasonic Corporation Non-aqueous electrolyte secondary battery and battery module
US7951482B2 (en) * 2005-05-31 2011-05-31 Panasonic Corporation Non-aqueous electrolyte secondary battery and battery module
US7892985B1 (en) 2005-11-15 2011-02-22 Novellus Systems, Inc. Method for porogen removal and mechanical strength enhancement of low-k carbon doped silicon oxide using low thermal budget microwave curing
US7381644B1 (en) 2005-12-23 2008-06-03 Novellus Systems, Inc. Pulsed PECVD method for modulating hydrogen content in hard mask
US8110493B1 (en) 2005-12-23 2012-02-07 Novellus Systems, Inc. Pulsed PECVD method for modulating hydrogen content in hard mask
US7923376B1 (en) 2006-03-30 2011-04-12 Novellus Systems, Inc. Method of reducing defects in PECVD TEOS films
US7851232B2 (en) 2006-10-30 2010-12-14 Novellus Systems, Inc. UV treatment for carbon-containing low-k dielectric repair in semiconductor processing
US8465991B2 (en) 2006-10-30 2013-06-18 Novellus Systems, Inc. Carbon containing low-k dielectric constant recovery using UV treatment
US20110045610A1 (en) * 2006-10-30 2011-02-24 Van Schravendijk Bart Uv treatment for carbon-containing low-k dielectric repair in semiconductor processing
US20110117678A1 (en) * 2006-10-30 2011-05-19 Varadarajan Bhadri N Carbon containing low-k dielectric constant recovery using uv treatment
US7906174B1 (en) 2006-12-07 2011-03-15 Novellus Systems, Inc. PECVD methods for producing ultra low-k dielectric films using UV treatment
US8242028B1 (en) 2007-04-03 2012-08-14 Novellus Systems, Inc. UV treatment of etch stop and hard mask films for selectivity and hermeticity enhancement
US7622162B1 (en) 2007-06-07 2009-11-24 Novellus Systems, Inc. UV treatment of STI films for increasing tensile stress
US8512818B1 (en) 2007-08-31 2013-08-20 Novellus Systems, Inc. Cascaded cure approach to fabricate highly tensile silicon nitride films
US8211510B1 (en) 2007-08-31 2012-07-03 Novellus Systems, Inc. Cascaded cure approach to fabricate highly tensile silicon nitride films
US20100267553A1 (en) * 2007-09-14 2010-10-21 Nippon Oil Corporation Tungsten-containing Mesoporous Silica Thin Film, Highly Hydrophilic Material Containing the Same, and Method for Producing Tungsten-Containing Mesoporous Silica Thin Film
US20110076416A1 (en) * 2008-05-26 2011-03-31 Basf Se Method of making porous materials and porous materials prepared thereof
US9050623B1 (en) 2008-09-12 2015-06-09 Novellus Systems, Inc. Progressive UV cure
US8784985B2 (en) 2009-06-10 2014-07-22 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
US8557877B2 (en) 2009-06-10 2013-10-15 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
US10037905B2 (en) 2009-11-12 2018-07-31 Novellus Systems, Inc. UV and reducing treatment for K recovery and surface clean in semiconductor processing
US10259723B2 (en) 2010-05-21 2019-04-16 Znano Llc Self-assembled surfactant structures
US10589231B2 (en) 2010-05-21 2020-03-17 Znano Llc Self-assembled surfactant structures
US11401179B2 (en) 2010-05-21 2022-08-02 Diamond Gold Investors, Llc Self-assembled surfactant structures
US8864898B2 (en) 2011-05-31 2014-10-21 Honeywell International Inc. Coating formulations for optical elements
WO2013078464A1 (en) * 2011-11-22 2013-05-30 Znano Llc Self-assembled surfactant structures
US10544329B2 (en) 2015-04-13 2020-01-28 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications
US9847221B1 (en) 2016-09-29 2017-12-19 Lam Research Corporation Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
CN112142057A (en) * 2020-08-26 2020-12-29 航天特种材料及工艺技术研究所 Aerogel and preparation method thereof based on constant-temperature constant-humidity drying

Also Published As

Publication number Publication date
US6548113B1 (en) 2003-04-15
US6329017B1 (en) 2001-12-11

Similar Documents

Publication Publication Date Title
US6329017B1 (en) Mesoporous silica film from a solution containing a surfactant and methods of making same
EP1144310B1 (en) Mesoporous silica film from a solution containing a surfactant and methods of making same
US6383466B1 (en) Method of dehydroxylating a hydroxylated material and method of making a mesoporous film
Yang et al. Spin‐on Mesoporous Silica Films with Ultralow Dielectric Constants, Ordered Pore Structures, and Hydrophobic Surfaces
US6573131B2 (en) Silica zeolite low-k dielectric thin films and methods for their production
US7186613B2 (en) Low dielectric materials and methods for making same
US6042994A (en) Nanoporous silica dielectric films modified by electron beam exposure and having low dielectric constant and low water content
EP1123753B1 (en) Mesoporous ceramic films having reduced dielectric constants
JP5030478B2 (en) Precursor composition of porous film and preparation method thereof, porous film and preparation method thereof, and semiconductor device
JP2008513321A (en) Method for converting crosslinked organic groups in organosilica materials
KR100671850B1 (en) Method for modifying porous film, modified porous film and use of same
JP5551885B2 (en) Method for forming low dielectric constant silica-based coating and low dielectric constant silica-based coating obtained from the method
US20100249445A1 (en) Post-spin-on silylation method for hydrophobic and hydrofluoric acid-resistant porous silica films
JP4261297B2 (en) Method for modifying porous film, modified porous film and use thereof
JP4422643B2 (en) Porous film manufacturing method, interlayer insulating film, semiconductor material, and semiconductor device
TW568885B (en) Mesoporous silica film from a solution containing a surfactant and methods of making same
Lew The characterization and optimization of pure-silica-zeolite low-dielectric constant films
Caragianis-Broadbridge et al. Microstructure and electronic properties of thin film nanoporous silica as a function of processing and annealing methods
KR980012540A (en) Low Volatile Solvent Substrate Method for Forming Thin Film Nanoporous Aerogel on Li-Semiconductor Substrate
WO2003069672A1 (en) Nanoporous dielectric films with graded density and process for making such films

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION