US20020049437A1 - Electrosurgical procedure for the treatment of the cornea - Google Patents

Electrosurgical procedure for the treatment of the cornea Download PDF

Info

Publication number
US20020049437A1
US20020049437A1 US08/513,589 US51358995A US2002049437A1 US 20020049437 A1 US20020049437 A1 US 20020049437A1 US 51358995 A US51358995 A US 51358995A US 2002049437 A1 US2002049437 A1 US 2002049437A1
Authority
US
United States
Prior art keywords
probe
contact end
electrosurgical
site
corneal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US08/513,589
Inventor
Thomas A. Silvestrini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Addition Tech Inc
Original Assignee
Addition Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Addition Tech Inc filed Critical Addition Tech Inc
Priority to US08/513,589 priority Critical patent/US20020049437A1/en
Assigned to KERAVISION, INC. reassignment KERAVISION, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILVESTRINI, THOMAS A.
Assigned to ADDITION TECHNOLOGY, INC. reassignment ADDITION TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KERAVISION, INC.
Publication of US20020049437A1 publication Critical patent/US20020049437A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/013Instruments for compensation of ocular refraction ; Instruments for use in cornea removal, for reshaping or performing incisions in the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/0079Methods or devices for eye surgery using non-laser electromagnetic radiation, e.g. non-coherent light or microwaves

Definitions

  • This invention is a procedure for the correction of optical abnormalities in a human eye. It involves use of an electrosurgical energy probe which may be of a specific physical configuration as outlined below. This invention also includes suitable electrodes for performing the noted process. The process preferably utilizes a high frequency RF electro-desiccation or ablation device. The procedure involves the initial step of forming at least one access site allowing access to the corneal volume behind the Bowman's layer. It (the access site) preferably is placed in the anterior surface of the cornea through and ending posterior to the Bowman's layer of the eye.
  • the electrosurgical probe is then introduced into the access site and, depending upon the visual abnormality to be corrected, the probe is activated to adjust the volume of the corneal stromal layers through ablation or desiccation.
  • the shape of the volume desiccated or ablated is dependent upon the aberration to be corrected. For instance, if the optical aberration to be alleviated is hyperopia, a circular corneal volume reduction taking place about the outer periphery of the corneal mass may be accomplished. In other instances, such as for the treatment of astigmatism, certain smaller sections of the peripheral corneal volume may be shrunk. In certain circumstances, Bowman's layer may be cut to allow the curvature of the cornea to change after the corneal volume adjustment. These relief cuts may be radial, circular, semicircular or any other form appropriate for the optical adjustment needed.
  • Anomalies in the overall shape of the eye can cause visual disorders.
  • Hyperopia (“farsightedness”) occurs when the front-to-back distance in the eyeball is too short. In such a case, parallel rays originating greater than 20 feet from the eye focus behind the retina.
  • myopia (“nearsightedness”) occurs and the focus of parallel rays entering the eye occurs in front of the retina.
  • Astigmatism is a condition which occurs when the parallel rays of light do not focus to a single point within the eye, but rather have a variable focus due to the fact that the cornea refracts light in a different meridian at different distances. Some degree of astigmatism is normal, but where it is pronounced, the astigmatism must be corrected.
  • Hyperopia, myopia, and astigmatism are usually corrected by glasses or contact lenses.
  • ICR's intrastromal corneal rings
  • PMMA polymethylmethacrylate
  • One of the ring devices involves a split ring design which is inserted into a channel previously dissected in the stromal layer of the cornea. A minimally invasive incision is used both for producing the channel and for inserting the implant. See, for instance, the use of PMMA intrastromal rings in U.S. Pat. Nos. 4,452,235 to Reynolds; U.S. Pat. No. 4,671,276 to Reynolds; U.S. Pat. No. 4,766,895 to Reynolds; and U.S. Pat. No. 4,961,744 to Kilmer et al.
  • Surgical methods for the correction of such disorders are known. Such methods include radial keratotomy (see, e.g., U.S. Pat. Nos. 4,815,463 and 4,688,570) and laser corneal ablation (see, e.g., U.S. Pat. No. 4,941,093).
  • U.S. Pat. No. 4,805,616, to Pao which describes a bipolar probe device used in ophthalmic surgery.
  • the device is only described in the performance of anterior capsulotomies. In that procedure, a limbal incision is made and the active probe tip is inserted between the anterior capsule of the eye's lens and the corneal endothelium. The anterior capsule is sequentially coagulated, becomes extremely friable, and then is removed by mechanical penetration with an additional mechanical device. No mention of treatment of a cornea is found.
  • This invention involves the introduction of an electrosurgical probe into the layers of the cornea to modify local sections of that corneal mass.
  • U.S. Pat. No. 4,202,337, to Hren et al. shows a similar electrosurgical device for cutting or coagulation. It has a nonconductive handle with a blade assembly having a number of electrodes and an insulation member separating the various electrodes.
  • U.S. Pat. No. 4,799,478, to Fedorov et al. teaches a device for the coagulation of biological tissues, preferably corneal tissue.
  • the device disclosed by Fedorov et al. appears to be merely a heating device with a manner of carefully controlling the depth to which the heater or coagulator is introduced.
  • the device is said to be useful for coagulation of biological tissue and the concept of changing “the curvature” of “eye tissues, e.g., cornea” is noted.
  • This invention is a method of altering the shape of the cornea, often, the anterior surface curvature of the cornea.
  • the invention also includes certain electrosurgical probe configurations useful in this process.
  • the procedure in its preferred variations, does not entail significant surgical modification of the anterior corneal surface or of the Bowman's layer of the eye, except, in certain situations, adding surface incisions to act either as a stress relief function or to provide access for the electrosurgical probe.
  • An electrosurgical probe is a significant portion of this invention. It is used, preferably in desiccation or ablation mode, to change the volume of the mass of the cornea posterior to the Bowman's layer and found in the stromal regions of the cornea. By selectively modifying the volume of these regions, small amounts of the cornea may be controllably removed or shrunk and, upon removal of the electrosurgical probe from the cornea, the curvature of the anterior surface of the cornea will have changed and the refractive path of light entering the eye will be changed. As noted above, surface incisions may later be added to permit the anterior of the cornea, in particular, Bowman's layer, to conform to the underlying corneal tissue removal (volume change), thereby allowing for change in anterior corneal curvature.
  • the inventive procedure may be used for the treatment of hyperopia (farsightedness) or myopia.
  • a small incision or access site may be made in the anterior surface of the cornea, which incision extends down through the Bowman's layer or through the sclera and into the intrastromal volume of the cornea.
  • An electrosurgical probe may be introduced through the incision and guided around within the corneal stroma from the outer periphery of the cornea. Activation of the electrosurgical probe in an ablation mode will cause vaporization of the regions of the cornea adjacent to the active areas of the probe. Activating the probe in a desiccation mode will shrink or necrose the region of the cornea adjacent to the active areas of the probe.
  • the probe is removed and the anterior surface then relaxes to conform to the collapse or shrinkage of tissue formed by electrosurgical treatment of the corneal stromal tissue.
  • a modest incision in the anterior of the cornea may be desirable to allow curvature relaxation of the corneal anterior surface.
  • Another preferred procedure includes the alleviation of astigmatism by similar procedure.
  • Small partial depth incisions may be made into the anterior surface of the cornea through Bowman's layer or through the sclera adjacent to the cornea to get under Bowman's layer, but not reaching so far as the posterior corneal surface or the anterior chamber.
  • these initial incisions are made in the regions of the cornea or sclera to allow the electrosurgical probe to reach the corneal mass below the anterior surface which must be reduced to produce a symmetric corneal surface.
  • an electrosurgical probe is then introduced through the incisions and a selected amount of material is removed or desiccated to alleviate the nonregularity of the corneal anterior surface.
  • FIG. 1 is a schematic illustration of a horizontal section of the eye.
  • FIG. 2 is a schematic illustration of the anterior portion of the eye, showing various layers of the cornea.
  • FIGS. 3A to 3 E show a schematic process for treatment of hyperopia using the procedure of this invention.
  • FIGS. 4A to 4 D show schematic diagrams of astigmatic and normal eyes.
  • FIGS. 5 - 11 A and B show top and side views of inventive circular RF electrosurgical probes.
  • FIGS. 5 - 9 C and D show side views of alternative embodiments of inventive circular RF electrosurgical probes.
  • FIGS. 12 - 19 A and B show top and side views of inventive straight RF electrosurgical probes.
  • FIGS. 12 - 14 C and D show side views of alternative embodiments of inventive straight RF electrosurgical probes.
  • FIGS. 17C and D are top views of alternative embodiments of straight RF electrosurgical probes.
  • FIGS. 20 A and B, and 21 A, B and C show top (A and C) and side (B) views of inventive disc and washer RF electrosurgical probes.
  • FIGS. 20C and 20D are side sectional views of alternative embodiments of the probe of FIG. 20A.
  • FIGS. 21D and 21E are side sectional views of alternative embodiments of the probe of FIG. 21A.
  • FIGS. 21F and 21G are side sectional views of alternative embodiments of the probe of FIG. 21C.
  • FIGS. 22A and B illustrate sesquipolar probe configurations.
  • FIGS. 23 A-G are schematic diagrams showing top views of eyes wherein various processes for electrosurgically altering corneal curvature have been carried out.
  • FIGS. 24 A-F illustrate an apparatus for positioning a circular electrosurgical probe to perform corneal tissue removal according to the present invention.
  • FIG. 1 shows a horizontal cross-section of the eye with the globe ( 11 ) of the eye resembling a sphere with an anterior bulged spherical portion representing the cornea ( 12 ).
  • the globe ( 11 ) of the eye consists of three concentric coverings enclosing the various transparent media through which the light must pass before reaching the light-sensitive retina ( 18 ).
  • the outermost covering is a fibrous protective portion the posterior five-sixths of which is white and opaque and called the sclera ( 13 ), and sometimes referred to as the white of the eye where visible to the front.
  • the anterior one-sixth of this outer layer is the transparent cornea ( 12 ).
  • a middle covering is mainly vascular and nutritive in function and is made up of the choroid, ciliary body ( 16 ), and iris ( 17 ).
  • the choroid generally functions to maintain the retina ( 18 ).
  • the ciliary body ( 16 ) is involved in suspending the lens ( 21 ) and accommodation of the lens.
  • the iris ( 17 ) is the most anterior portion of the middle covering of the eye and is arranged in a frontal plane. It is a thin circular disc similar in function to the diaphragm of a camera, and is perforated near its center by a circular aperture called the pupil ( 19 ). The size of the pupil varies to regulate the amount of light which reaches the retina ( 18 ).
  • the iris divides the space between the cornea ( 12 ) and the lens ( 21 ) into an anterior chamber ( 22 ) and the posterior chamber ( 23 ).
  • the innermost portion of covering is the retina ( 18 ), consisting of nerve elements which form the true receptive portion for visual impressions.
  • the retina ( 18 ) is a part of the brain arising as an outgrowth from the fore-brain, with the optic nerve ( 24 ) serving as a fiber tract connecting the retina part of the brain with the fore-brain.
  • a layer of rods and cones, lying just beneath a pigmented epithelium on the anterior wall of the retina serve as visual cells or photoreceptors which transform physical energy (light) into nerve impulses.
  • the vitreous body ( 26 ) is a transparent gelatinous mass which fills the posterior four-fifths of the globe ( 11 ). At its sides it supports the ciliary body ( 16 ) and the retina ( 18 ). A frontal saucer-shaped depression houses the lens.
  • the lens ( 21 ) of the eye is a transparent bi-convex body of crystalline appearance placed between the iris ( 17 ) and vitreous body ( 26 ). Its axial diameter varies markedly with accommodation.
  • a ciliary zonule ( 27 ) consisting of transparent fibers passing between the ciliary body ( 16 ) and lens ( 21 ) serves to hold the lens ( 21 ) in position and enables the ciliary muscle to act on it.
  • this outermost fibrous transparent coating resembles a watch glass. Its curvature is somewhat greater than the rest of the globe and is ideally spherical in nature. However, often it is more curved in one meridian than another giving rise to astigmatism. Most of the refraction of the eye takes place through the cornea.
  • FIG. 2 is a more detailed drawing of the anterior portion of the globe showing the various layers of the cornea ( 12 ) making up the epithelium ( 31 ).
  • the various stroma ( 32 ) between the Bowman's layer ( 33 ) and the Descemet's membrane ( 34 ) are referred to as the corneal mass.
  • the corneal stroma ( 32 ) are made up of lamellae having bands of fibrils parallel to each other and crossing the whole of the cornea. While most of the fibrous bands are parallel to the surface, some are oblique, especially anteriorly.
  • a posterior limiting lamella ( 34 ) is referred to as Descemet's membrane. It is a strong membrane sharply defined from the stroma ( 32 ) and resistant to pathological processes of the cornea.
  • the endothelium ( 36 ) is the most posterior layer of the cornea and consists of a single layer of cells and function to maintain transparency of the cornea ( 12 ). These epithelial cells are rich in glycogen, enzymes and acetylcholine and their activity regulates the transport of water and electrolytes through the lamellae of the cornea ( 12 ).
  • the limbus ( 37 ) is the transition zone between the conjunctiva ( 38 ) and sclera on the one hand and the cornea ( 12 ) on the other.
  • inactive is meant that only an insignificant temperature rise occurs at that contact point.
  • inactive is to make it quite large in area. This causes the current to spread over a large area for completion of the circuit.
  • a bipolar electrode typically has two equal area active electrodes contained in the same electrode probe-handle structure. This symmetric bipolar electrode design produces a significant temperature rise at both electrodes.
  • the sesquipolar return electrode In a monopolar or sesquipolar configuration, only one electrode has an area of tissue contact producing significant temperature rise. Unlike the monopolar configuration, however, the sesquipolar return electrode is not so remote, and thereby limits current flow through the body to the nearby return electrode.
  • the return electrode area in the sesquipolar configuration electrode is usually at least three times the area of the active electrode and produces little or no tissue effect. In some designs, the sesquipolar return electrode may be found on the electrode probe-handle structure while on other designs it may be separately located in a non-remote region of the body.
  • the electrosurgical energy density delivered largely causes the tissue near the probe contact to vaporize.
  • the temperature at the electrode/tissue interface is increased significantly past the point of steam formation.
  • the effect of electrical resistance varies during a specific radio frequency (RF) cycle and although there is sparking, carbonization is not usually significant and the effects of the device are relatively rapid.
  • RF radio frequency
  • Electrosurgical ablation and cutting produce an effect where a thin layer of tissue is vaporized (cutting) or where a larger section of tissue is vaporized (ablation).
  • the line between “cutting” and “ablation” is not always clear.
  • Blended mode is essentially a combination of the cutting and coagulation (desiccation) modes. In blended mode, cutting or ablation with hemostasis is achieved.
  • the electrosurgical probes may be operated in cutting, ablation, desiccation or blended modes.
  • volume change or “volume modification” refers to the corneal mass being either necrosed, desiccated, ablated or subject to some combination thereof.
  • the current flow through the device is DC.
  • the current is typically a very high frequency alternating current, typically on the order of 500KHz or more.
  • the RF energy is often delivered in a pulsed or in a more continuous, non-pulsed operation depending on the exact effects desired. Some residual heating will take place no matter which course is taken.
  • FIGS. 3A through 3D This series of figures shows, in schematic fashion, one procedure for treating hyperopia (farsightedness), myopia, or astigmatism.
  • This schematic procedure shows features which may be common to all of the processes of this invention.
  • the procedure includes the step of producing one or more incisions, often towards the periphery of the cornea.
  • the electrosurgical probe may be inserted into the corneal volume without penetration of the anterior surface cornea, e.g., by access through a partial depth incision made in the sclera next to the cornea.
  • an optional step at this point may be the insertion of a non-electrosurgical lamellar separator to separate the various stroma lamellae within the cornea at the depth of the entry incision. This allows the subsequent step of inserting the electrosurgical probe to take place with greater ease.
  • the probe itself may serve the function of intralamellar separator, if so desired.
  • the electrosurgical probe is introduced into the stromal lamellar cavity so produced. Depending upon the design of the inserted electrosurgical probe and on the refractive effect desired, the probe is moved inside the intralamellar space previously formed and activated to desiccate or ablate specific geometric regions of the cornea.
  • the probe may be energized by a common electrosurgical generator such as the Force 2 manufactured by Valleylab, Inc.
  • the generator includes settings for providing the appropriate electrosurgical waveforms for cutting, coagulation or blended modes.
  • the wave shape for each mode is specified in the Valleylab generator manual.
  • Cutting is performed with a 510KHz continuous sinusoid.
  • Coagulation employs a 510 KHz damped sinusoidal burst with a repetition frequency of 31 KHz.
  • blended modes the generator outputs a 510 KHz sinusoidal burst at various duty cycles recurring at 31 KHz.
  • the probe initially may be energized at a low power setting (e.g., 5 watts) for approximately 15 seconds or longer.
  • a low power setting e.g., 5 watts
  • the surgeon observes the volume reduction process to ensure that tissue is being safely removed or shrunk from the proper corneal regions. Typically, this observation may be performed through an ophthalmic microscope.
  • the curvature of the corneal surface is then measured.
  • Curvature is typically measured after the probe has been removed to avoid distortion of the corneal surface by the probe itself.
  • One common method for measuring corneal curvature employs the Placido ring technique embodied in the Corneal Topography System manufactured by Eyesys of Houston, Tex. Curvature may also be measured using the technique described in allowed U.S. patent application Ser. No. 08/200,241, assigned to the assignee of the present invention, and incorporated by reference herein. The procedure may be repeated if insufficient correction has occurred.
  • the surgeon may increase the output power (e.g., in 5 watt increments or by doubling the power up to approximately 80 watts) to reduce a greater volume of tissue until the desired effect is achieved. If needed, Bowman's layer and a small amount of underlying stromal tissue may be lightly cut on the anterior surface adjacent to or above the site of the volume reduction to allow the anterior corneal surface to change.
  • FIG. 3A shows an eye ( 100 ) having a pupil ( 102 ) and a cornea ( 104 ).
  • a pupil 102
  • a cornea 104
  • two small partial depth incisions 106
  • These incisions may be cut radially or circumferentially and are shown for discussion purposes to be radial.
  • the number of such access sites ( 106 ) is not important. If a semi-circular lamellar separator ( 108 ) as shown in FIG. 3B is used, then the number of access sites ( 106 ) may be desirably two in number. If lamellar separators of shorter arc segments are used, more numerous slits may be desired. If a nearly circular lamellar separator or electrosurgical probe is used, a single access site ( 106 ) may be sufficient.
  • FIG. 3B shows the introduction of the optional dissector blade or lamellar separator ( 108 ) to separate the lamella found in the cornea.
  • the separator ( 108 ) is rotated until a circular channel is made in the corneal periphery, and is rotated back out of the eye.
  • FIG. 3C shows the insertion of an electrosurgical probe into the route formed in the intrastromal region shown in FIG. 3B.
  • the probe may be energized following complete insertion or may be energized in a stop, move and activate mode.
  • the step of removing and/or shrinking tissue is continued until sufficient tissue has been ablated or desiccated to achieve the desired refractive effects.
  • FIG. 3D shows the eye ( 100 ) after completion of the ablation procedure. It may be desirable to place a small stitch ( 112 ) in any access site ( 106 ) in the cornea to ensure healing of the access site and minimize the potential for infection.
  • FIG. 3E shows the eye ( 100 ) following relief cuts ( 114 ) that may be necessary in some instances to allow the anterior corneal surface to more closely conform to the underlying corneal tissue removal (volume change) thereby allowing for greater change in anterior corneal curvature.
  • These relief cuts may be circumferential as shown or they may be radial depending on the desired refractive effect. Further, the relief cuts may be continuous or may be interrupted as shown. In any case, these cuts will be shallow cuts such that they penetrate Bowman's layer and possibly a portion of the underlying corneal stroma.
  • the inventive electrosurgical method and devices aim to reduce corneal volume in controlled geometric areas of the corneal stroma to achieve refractive correction.
  • the method and devices of the present invention may also be useful in the treatment of astigmatism.
  • Astigmatism occurs, generally, when the curvature of the anterior surface of the cornea is not regular as one passes about the meridians on the anterior surface of the cornea resulting in a steep and flat axis (the astigmatic axis).
  • FIGS. 4A and 4B are schematic perspective views that show an astigmatic and normal eye, respectively. In an astigmatic eye, two axes are generally identified, corresponding to the steepest ( 120 ) and flattest ( 122 ) axis of curvature. The steepest axis is also known as the axis of astigmatism ( 120 ).
  • FIG. 4B shows a normal eye, that is, one in which the curvature of all axes are the same.
  • FIGS. 4C and 4D show schematic topographical curvature maps of an astigmatic and of a non-astigmatic eye, respectively.
  • region 130 is the steep region whereas region 132 is flatter.
  • FIGS. 5 - 11 A and B show top (A) and side (B) views of circular electrosurgical probes suitable for use in the schematic procedure described above.
  • FIGS. 5A and B show a circular RF electrosurgical probe with two active sites that operate in monopolar or sesquipolar modes.
  • the probe ( 200 ) includes a shaft ( 202 ) and two active sites ( 204 ), each active site having an arc of less than about 180°, preferably less than about 90°.
  • the probe has an inner diameter of approximately 6.5 mm and an outer diameter of approximately 8.5 mm.
  • the single source of RF energy ( 206 ) is fed in through the insulator ( 208 ) making up the probe ( 200 ).
  • FIGS. 6A and B show a circular RF electrosurgical probe ( 210 ) with a single active site ( 212 ) at the tip. Again, the single source of RF energy ( 214 ) is fed in through the insulator making up the probe.
  • FIG 2 . 7 A and 7 B show a circular RF electrosurgical probe ( 220 ) with a single active site ( 222 ) extending the length of the circular portion of the probe. Once more, the single source of RF energy ( 224 ) is fed in through the insulator ( 226 ) making up the probe.
  • FIGS. 8A and B show a circular RF electrosurgical probe ( 230 ) with two active sites ( 232 ) near the tip of the probe that operate in bipolar fashion.
  • FIGS. 9A and B show a circular RF electrosurgical probe ( 240 ) with a single active site ( 242 ) near the tip, the active site shown in FIG. 9A to be on the top part of the probe.
  • a single source of RF energy ( 244 ) is fed in through the insulator ( 246 ).
  • FIGS. 10A and B and 11 A and 11 B show other circular RF electrosurgical probes ( 250 and 260 respectively) with single active sites ( 252 and 262 respectively) near the tips of the probes.
  • a single source of RF energy ( 254 and 264 ) is fed in through each probe.
  • FIGS. 10A and B and 11 A and B are designed to contact tissue in either the forward or retracting direction to the active site on the probe, the retracting direction.
  • FIGS. 5 - 9 C and D show side views of circular electrosurgical probes in which the active sites applied to tissue are raised above a substantial portion of the nonconductive area of the probe.
  • the height of the raised active site controls the depth of the tissue removed. This height is approximately in the range of 0.0-0.55 mm.
  • the raised active site pushes tissue in contact therewith above the larger nonconductive area of the probe.
  • the unraised nonconductive portion acts as a backstop or footplate with respect to the raised active site. In the absence of a raised active site, uniform pressure must be maintained against the tissue in order to remove tissue of uniform depth.
  • the footplate larger nonconductive area acts as a stop to prevent the active site from advancing into the tissue to a depth deeper than the height of the raised active site.
  • a set of probes having active sites raised to different heights may be provided, so that the surgeon may select the proper probe depending upon the depth (and therefore volume) of tissue to be removed.
  • the surgeon may use multiple probes, e.g., increasing in active site height, until the desired depth of tissue removal is achieved.
  • a single probe may be adapted for use with removable active sites of different heights.
  • the active sites may be coupled to the rest of the probe by any number of well known means, including but not limited to screws, snaps or slideable mounts.
  • a small nonconductive portion immediately adjacent to the active site is also raised above the larger nonconductive area.
  • the raised nonconductive portion covers all or a part of the side area of the active site to limit the conductive area exposed to tissue. This prevents tissue removal from being caused by electrical energy from the covered side areas, thereby giving the surgeon greater assurance that tissue will be removed in a direction normal to the face of the active site and not in other, lateral directions spreading sideways from the raised active site.
  • the insulation of the side areas also increases the current density associated with the face of the active site, providing more efficient tissue removal.
  • FIGS. 24 A-F illustrate an apparatus for positioning a circular electrosurgical probe to perform corneal tissue removal according to the procedure of the present invention.
  • the circular probe ( 2400 ) includes a circular contact end ( 2402 ) coupled to a support arm ( 2404 ) that is angled with respect to the plane of the circular contact end ( 2402 ).
  • the angle may have a value of 0 to 90°.
  • the angle is preferably between 0 and 80°, more preferably between 10 and 50° and most preferably about 34° (+/ ⁇ 5°). This angle results in the support arm ( 2404 ) being generally perpendicular to the corneal surface when the circular contact end ( 2402 ) is introduced into the corneal stroma.
  • This angle although not absolutely critical, is desirable and has been found to prevent tearing of the epithelium during the corneal operation.
  • the length of the support arm ( 2404 ) is sufficient so that the entire circular contact end is visible through the top of the barrel ( 2406 ) during use.
  • FIG. 24B illustrates the circular contact end ( 2402 ) in greater detail.
  • the contact end ( 2402 ) may be rectangular in cross-section as shown in FIG. 24B or tapered on its smaller edge as shown in FIG. 24C.
  • the contact end may be of any convenient shape, including the rectangular cross-section of FIG. 24B or the hexagonal cross-section of FIG. 24C in which two opposite sides are longer than the remaining four.
  • the overall relationship of the sizes of the diameter of the arc ( 2408 ) of the contact end ( 2402 ) to the length of the barrel ( 2406 ) is desirably chosen so that the ratio of that length to the arc diameter is between 0.25:1 and 15:1; specifically between 0.4:1 and 1:1, at least about 1:1 and less than about 3:1; and at least about 3:1 but less than 15:1. These ratios allow easy manipulation by the surgeon.
  • the contact end ( 2402 ) has two other physical parameters relevant to effective performance of the surgical procedure. Upon rotation of the barrel ( 2406 ), the contact end ( 2402 ) must move in a path which is substantially planar.
  • the path of the contact end ( 2402 ) as it moves in the corneal intrastromal lamellar channel must not vary either up or down during the barrel ( 2406 ) rotation.
  • the distance “a” shown in FIG. 24B is chosen so that the contact end ( 2402 ) is centered about the axis ( 2410 ), which forms the center of the barrel ( 2406 ).
  • the cone angle ( 2412 ) is preferably 112°+/ ⁇ 30°. Again, this permits the contact end ( 2402 ) to traverse a channel which is parallel to the lamella found in the corneal stroma.
  • the cone angle ( 2412 ) may, of course, vary a few degrees dependent on such variables as the size of the eye and the amount of correction required.
  • all of the circular, disk-shaped and washer-shaped probes described in this disclosure take on one of the cross-sectional shapes illustrated in FIG. 24B or 24 C.
  • the active sites of those probes can reside on the central flat portion and/or on the angled portion of the contact end of FIG. 24B or 24 C.
  • FIG. 24D is a side view of a support base used in conjunction with the probe assembly of FIG. 24A.
  • the support base includes an annular circumcorneal vacuum ring ( 2450 ) and a cylindrical or central bore ( 2452 ) extending through the support base.
  • the support base contains a viewing port ( 2454 ) to allow a surgeon to view the operational steps which take place at the corneal surface.
  • the vacuum is brought in from a vacuum source line ( 2456 ) that is coupled to a vacuum pump (not shown).
  • the vacuum ring ( 2450 ) is configured so that it meets with and seals to the front of the eye, rendering the support base relatively immobile when the support base is applied to the front of the eye and a suitable vacuum is applied to the vacuum source line ( 2456 ).
  • the vacuum chamber forms an annular vacuum space across the front of the eye.
  • FIG. 24E shows a bottom view of the support base in which the circumcorneal vacuum ring ( 2450 ) may be clearly viewed.
  • the vacuum ring ( 2450 ) is made up of an inner wall ( 2458 ) terminating on its inside by the central bore ( 2452 ).
  • the central bore ( 2452 ) is at least large enough to see the entirety of the circular contact end ( 2402 ).
  • the central bore ( 2452 ) has an axis which substantially coincides with the axis of the circular contact end ( 2402 ).
  • the central bore ( 2452 ) is desirably a length such that the ratio of the bore's length to its diameter is between 0.25:1 and 15:1; specifically between 0.4:1 and 1:1, at least about 1:1 and less than about 3:1; or at least about 3:1 up to about 15:1. Preferably, the ratio is about 2.5:1. This sizing allows easy manipulation by the surgeon.
  • the outer vacuum ring wall ( 2460 ) desirably forms the outside of the support base. Interior to the vacuum ring ( 2450 ) may be one or more ridges ( 2462 ) which extend down to the corneal surface when the support base is attached to the eye.
  • ridges may be made of conductive material, while the surrounding support base structure, such as the inner wall ( 2458 ) and outer wall ( 2460 ), are made of insulative material.
  • the ridges ( 2452 ) may be coupled to an electrosurgical generator (not shown). Using this configuration, the ridges ( 2462 ) may act as return electrodes when operating in sesquipolar mode. These return electrodes may be positioned to rest on the sclera or translimbal region of the eye.
  • FIG. 24F shows an alternative arrangement of return electrodes comprised of radial vanes ( 2464 ) that extend downward through the vacuum ring ( 2450 ) to make contact with the sclera or translimbal region.
  • FIGS. 12 - 19 A and B show top (A) and side (B) views of straight electrosurgical probes suitable for use in the schematic procedure described above.
  • FIGS. 12A and B show a straight RF surgical probe ( 300 ) with a single active site ( 302 ) extending along the length of the probe. A single source of RF energy ( 304 ) is fed through the probe.
  • FIGS. 13A and B show a straight RF electrosurgical probe ( 310 ) with two active sites ( 312 ) extending along the length of the probe that operate in bipolar fashion. Two sources of RF energy ( 314 and 316 ) are fed in through the insulator ( 318 ) making up the probe.
  • FIGS. 14 - 19 A and B show other straight RF electrosurgical probes with single active sites near the tips of the probes. A single source of RF energy is fed in through each probe.
  • FIGS. 14 A and B show the active site ( 322 ) to be located near the tip of the probe ( 320 ) and on top of the probe such that the active site is raised and pointed in the retracting direction of the probe.
  • FIGS. 15A and B show the active site ( 332 ) similarly located near the tip of the probe. The end of the probe is raised and the active site ( 332 ) is located on the raised part of the tip pointing backwards, the active site being exposed on two sides.
  • FIGS. 16A and B similarly show the active site ( 342 ) raised at the end of the probe pointing backwards ( 340 ), but the active site is imbedded in the insulating curve of the probe, thereby exposing the active site on one side only.
  • FIGS. 17A and B show the active site ( 352 ) at the tip of a straight probe ( 350 ), the active site being exposed on one side on the tip portion alone.
  • FIGS. 18A and B show the active site ( 362 ) near the end of a straight probe ( 360 ). The probe is broadened at the active site.
  • FIGS. 19A and B again show a straight RF electrosurgical probe ( 370 ) with a curved tip, with the active site ( 372 ) again raised and pointing backwards and slightly upwards the active site being exposed on one side on the tip portion alone.
  • the active site is angled such that a portion ( 374 ) of the active site ( 372 ) extends beyond the curved tip.
  • the ablation or desiccation takes place either as the device is pushed forward or as it is pulled backwards, or retracted from the lamellar separation channel.
  • the active site Upon exposure to tissue and electrode activation, the active site will vaporize or desiccate the tissue. It may be desirable to provide a second lamellar channel to allow for the for the relief of gases produced by the probe when used in the ablation mode or to incorporate grooves in the probe portions that insert into the tissue to allow the escape of gases so produced.
  • FIGS. 12 - 14 C and D are side views of the probes of FIGS. 12 - 14 A, respectively, for alternative embodiments.
  • the active sites are raised above the larger nonconductive areas.
  • a small nonconductive portion immediately adjacent the active site is also raised above the larger nonconductive area.
  • FIGS. 17C and D are top views of the probe of FIG. 17A for an alternative embodiment.
  • the active site is raised above the larger nonconductive area.
  • a small nonconductive portion immediately adjacent the active site is also raised above the larger nonconductive area.
  • FIGS. 20 and 21 A and B show top (A) and side (B) views of RF electrosurgical disc and washer probes ( 400 and 410 respectively).
  • a single RF energy source is fed through each probe.
  • the disc probe ( 400 ) is a circular probe with a circular active site ( 410 ).
  • the washer probe ( 410 ) is a circular probe with a circular active site ( 412 ) with a hollow middle ( 414 ).
  • Each of these probes may have a flat surface as shown in FIGS. 20A and 21A or may be curved to conform to the curvature of the cornea.
  • the disc probe may have a wire loop surface ( 415 ) as shown in FIG. 21C.
  • FIGS. 20C, 21D and 21 F are side sectional views of the probes of FIGS. 20A, 21A and 21 C, respectively, for alternative embodiments.
  • the active sites are raised above the larger nonconductive areas.
  • FIGS. 20D, 21E and 21 G are side sectional views of the probes of FIGS. 20A, 21A and 21 C, respectively, for alternative embodiments.
  • a small nonconductive portion immediately adjacent the active site is also raised above the larger nonconductive area.
  • FIGS. 22A and B illustrate, the straight probe of FIG. 14D and the disc probe of FIG. 20A, respectively, in a sesquipolar configuration for removing tissue from a portion of the corneal mass ( 2200 ) near the center of the visual axis.
  • Each probe includes a handle ( 2202 ) that is angled with respect to the contact end portion ( 2204 ) of the probe.
  • An active lead ( 2206 ) from an electrosurgical generator ( 2208 ) runs into the handle ( 2202 ) for connection to the active site ( 2210 ).
  • the return electrode ( 2212 ) may be placed remotely on the body, e.g., onto a shaved area on the back of the patient's head.
  • the return electrode ( 2212 ) is connected to the electrosurgical generator ( 2208 ) through a return lead ( 2214 ).
  • the return electrode ( 2212 ) may be placed on the exterior of the cornea or onto the sclera or translimbal region ( 2216 ), as shown.
  • the return electrode ( 2212 ) may simply rest in place or be held by a vacuum attachment cavity built into the electrode. Because of its significantly higher area as compared to the active tissue contacting site, the return electrode ( 2212 ) does not generate much heat.
  • any of the probes described herein may use a handle, whether angled or not, for the convenience of the surgeon. Further, except for the bipolar probes, any of the probes of the invention may be arranged in the sesquipolar configuration of FIGS. 22A and B.
  • FIGS. 23A and 23C radial or circumferential partial depth incisions ( 500 ) are made in the periphery of the cornea.
  • a lamellar separator is inserted to create a zone of separated lamellae ( 502 ) and ( 504 ) for the insertion of the electrical probe.
  • the probe is withdrawn.
  • Relief cuts on the anterior cornea may be necessary as described above to allow the surface of the cornea to conform to the underlying tissue removal. In this way, the steep astigmatic axis is flattened such that the cornea becomes reasonable symmetrical and spherical.
  • a second approach to the treatment of an astigmatic eye is to steepen the flat astigmatic axis as shown in FIG. 23A.
  • the lamellar separation zone will be formed in the periphery of the cornea ( 502 ).
  • the partial depth incision ( 500 ) is placed in the corneal periphery, beneath the astigmatic axis.
  • one of the circular RF probes shown in FIGS. 5, 6, 8 , 9 , 10 , and 11 A and B probes ( 200 ), ( 210 ), ( 220 ), ( 230 ), ( 240 ), ( 250 ) and ( 260 ) respectively, is inserted through the partial depth incision ( 500 ).
  • Probe ( 200 ) is operated by inserting it into the lamellar tissue, activating it, deactivating it, and then removing it.
  • Probes ( 210 ), ( 230 ), ( 240 ), ( 250 ), and ( 260 ) are operated by inserting into the lamellar tissue, activating, deactivating, rotating to a second position to be desiccated or ablated, activating, and then removing. Again, the choice of RF probe design is dependent on the amount of tissue to be ablated or desiccated. Once ablation or desiccation is completed, the probe is withdrawn. Relief cuts to the anterior cornea may be necessary as described above to allow the surface of the cornea to conform to the underlying tissue modification. In this way, the flat, astigmatic axis ( 507 ) is steepened such that the cornea becomes reasonable symmetrical and spherical.
  • FIGS. 23B, 23D and 23 E radial or circumferential partial depth incisions ( 510 ) are made in the periphery of the cornea.
  • a lamellar separator is inserted to create a lamellar pathway ( 512 ) for the insertion of the electrical probe.
  • a circular intrastromal channel may first be made using the apparatus of U.S. Pat. No. 5,403,335, issued to Loomas et al., and assigned to the assignee of the present invention. That patent is incorporated by reference herein in its entirety.
  • the support base of FIGS. 24 D-F may be substituted for the support base of the Loomas patent so as to provide a sesquipolar return electrode for use during the later stage of tissue volume reduction.
  • one of the circular RF probes described herein is inserted through the partial depth incision ( 512 ).
  • the assembly of FIGS. 24 A-D may be employed.
  • the probe is then activated to change the volume by ablation or desiccation of the tissue ( 514 ) in the channel.
  • the choice of RF probe design is dependent on the amount of tissue to be ablated or desiccated.
  • Probes ( 210 ), ( 220 ), ( 230 ), ( 240 ), ( 250 ) and ( 260 ) will allow for desiccation of the channel.
  • Probe ( 220 ) is operated by inserting it into the lamellar tissue, activating it, deactivating it, and then removing it.
  • the other probes are operated by inserting them into the lamellar tissue, activating, deactivating, rotating to a second position to be ablated, activating, deactivating and repeating this process until the entire channel is desiccated, and then removing it.
  • Probes ( 210 ), ( 240 ), ( 250 ) and ( 260 ) will allow for ablation of the channel.
  • the probes are operated by insertion into the lamellar tissue, activation, deactivation, rotation to a second position to be ablated, activation, and repeating until the entire channel is ablated, followed by removal of the probe.
  • Probes ( 250 ) and ( 260 ) can also be operated by complete insertion into the lamellar tissue, activation, deactivation, pulling partially back out of the tissue to a second position to be ablated, activation, deactivation and repetition of this process until the entire channel is ablated, followed by removal of the probe.
  • relief cuts in the anterior of the cornea may be necessary as described above to allow the surface of the cornea to conform to the underlying tissue removal. In this way, the central corneal surface is steepened such that the cornea curvature is improved.
  • a second approach to the treatment of a hyperopic eye is to use a straight RF probe.
  • 2 or more partial depth incisions ( 510 ) are made in the periphery and 2 or more radial lamellar separation zones are formed as shown in FIGS. 23D and 23E.
  • one of the straight RF probes shown in FIGS. 12 - 19 A and B is inserted through each partial depth incision ( 510 ) in the lamellar separation zones ( 512 ) and ( 514 ).
  • the probe is then activated to change the volume by ablation or desiccation of the tissue in the channel.
  • the choice of RF probe design is dependent on the amount of tissue to be ablated or desiccated.
  • Probes ( 300 ), ( 310 ), ( 320 ), ( 330 ), ( 340 ), ( 350 ), ( 360 ) and ( 370 ) will allow for desiccation of the channel.
  • Probes ( 300 ) and ( 310 ) are operated by insertion into the lamellar tissue, activation, deactivation, and then removal.
  • Probes ( 320 ), ( 330 ), ( 340 ), ( 350 ), ( 360 ) and ( 370 ) are operated by inserting into the lamellar tissue, activating, deactivating, moving to a second position to be ablated, activating, deactivating and repeating this process until enough of the channel is desiccated, and then removing the probe.
  • the tissue desiccated can either form a continuous path ( 516 ) or can be interrupted points along the radial lamellar separation channel ( 518 ).
  • Probes ( 320 )-( 370 ) will allow for ablation of corneal volume inside the radial lamellar separation channel.
  • Probes ( 320 ), ( 340 ), ( 350 ), ( 360 ) and ( 370 ) are operated by insertion into the lamellar tissue, activation, deactivation, moving it further into the tissue to a second position to be ablated, activation, and repeating until the entire channel is ablated, and then removal.
  • the same probes can also be operated by complete insertion into the lamellar separation channel, activation, deactivation, pulling back out of the tissue channel to a second position to be ablated, activation, deactivation and repetition of the process until the enough of the channel is ablated, followed by removal of the probe.
  • relief cuts may be necessary in the anterior cornea as described above to allow the surface of the cornea to conform to the underlying tissue removal. In this way, the corneal surface is steepened centrally such that the corneal curvature is improved.
  • FIGS. 23F and 23G radial or circumferential partial depth incisions ( 520 ) are made in the periphery of the cornea.
  • a lamellar separator is inserted to create a radial lamellar separation channel ( 522 ) toward the center of the pupil for the insertion of the electrical probe.
  • the lamellar path ( 522 ) will be formed under or near the central or paracentral portion of the cornea.
  • one of the straight RF probes shown in FIGS. 14 - 19 A and B or the disc or washer probes shown in FIGS. 20 - 21 A and B is inserted through the peripheral partial depth incision ( 520 ) into the lamellar separation channel ( 522 ).
  • the probe is then activated to change the volume by ablation of the tissue in the channel, the volume change ( 524 ) resulting from the use of the disc-shaped probe ( 400 ) is shown in FIG.
  • FIG. 23F and volume change ( 526 ) resulting from the use of the washer-shaped probe ( 410 ) is shown in FIG. 23G.
  • the choice of RF probe design is dependent on the amount of tissue to be ablated.
  • Probes ( 320 )-( 370 ) will allow for ablation of the channel. The probes are operated by insertion into the lamellar tissue, activation, deactivation, advancing the probe into the channel to a second position to be ablated, activation, deactivation, repeating the process until the entire channel is ablated, and then the probe is removed.
  • the probes can also be operated by complete insertion into the lamellar separation channel, activation, deactivation, pulling out of the channel to a second position to be ablated, activation, deactivation and repeating the process until the entire channel is ablated, and then the process is removed.
  • Probes ( 400 ) and ( 410 ) are operated by insertion into the lamellar separation channel ( 522 ), activation, deactivation and removal from the channel. Again, relief cuts in the anterior cornea may be necessary as described above to allow the surface of the cornea to conform to the underlying tissue removal. In this way, the corneal surface in the central corneal area is flattened such that the corneal curvature is improved.

Abstract

This invention is a device and procedure for the correction of optical abnormalities in a human eye. It involves use of an inventive electrosurgical energy probe with specific physical configurations. The process preferably utilizes a high frequency RF electro-desiccation or ablation device. The procedure involves the initial step of forming at least one access site allowing access to the corneal volume behind the Bowman's Layer. It preferably is placed in the anterior surface of the cornea through and ending posterior to the Bowman's layer of the eye. The electrosurgical probe is then introduced into the access site and, depending upon the visual abnormality to be corrected, the probe is activated to adjust the volume of the corneal stromal layers through ablation or desiccation. The shape of the volume desiccated or ablated is dependent upon the aberration to be corrected. For instance, if the optical aberration to be alleviated is hyperopia, a circular corneal volume reduction taking place about the outer periphery of the corneal mass may be accomplished. In other instances, such as for the treatment of astigmatism, certain smaller sections of the corneal volume may be shrunk. In certain circumstances, Bowman's layer may be cut to allow the curvature of the cornea to change after the corneal volume adjustment. These relief cuts may be radial, circular, semicircular or any other form appropriate for the option adjustment needed.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. patent application Ser. No. 08/194,207, filed Feb. 9, 1994, which is incorporated by reference herein. [0001]
  • FIELD OF THE INVENTION
  • This invention is a procedure for the correction of optical abnormalities in a human eye. It involves use of an electrosurgical energy probe which may be of a specific physical configuration as outlined below. This invention also includes suitable electrodes for performing the noted process. The process preferably utilizes a high frequency RF electro-desiccation or ablation device. The procedure involves the initial step of forming at least one access site allowing access to the corneal volume behind the Bowman's layer. It (the access site) preferably is placed in the anterior surface of the cornea through and ending posterior to the Bowman's layer of the eye. The electrosurgical probe is then introduced into the access site and, depending upon the visual abnormality to be corrected, the probe is activated to adjust the volume of the corneal stromal layers through ablation or desiccation. The shape of the volume desiccated or ablated is dependent upon the aberration to be corrected. For instance, if the optical aberration to be alleviated is hyperopia, a circular corneal volume reduction taking place about the outer periphery of the corneal mass may be accomplished. In other instances, such as for the treatment of astigmatism, certain smaller sections of the peripheral corneal volume may be shrunk. In certain circumstances, Bowman's layer may be cut to allow the curvature of the cornea to change after the corneal volume adjustment. These relief cuts may be radial, circular, semicircular or any other form appropriate for the optical adjustment needed. [0002]
  • BACKGROUND OF THE INVENTION
  • Anomalies in the overall shape of the eye can cause visual disorders. Hyperopia (“farsightedness”) occurs when the front-to-back distance in the eyeball is too short. In such a case, parallel rays originating greater than 20 feet from the eye focus behind the retina. In contrast, when the front-to-back distance of eyeball is too long, myopia (“nearsightedness”) occurs and the focus of parallel rays entering the eye occurs in front of the retina. Astigmatism is a condition which occurs when the parallel rays of light do not focus to a single point within the eye, but rather have a variable focus due to the fact that the cornea refracts light in a different meridian at different distances. Some degree of astigmatism is normal, but where it is pronounced, the astigmatism must be corrected. [0003]
  • Hyperopia, myopia, and astigmatism are usually corrected by glasses or contact lenses. [0004]
  • Another method for correcting those disorders is through the implantation of polymeric rings (intrastromal corneal rings or “ICR's”) in the eye's corneal stroma to change the curvature of the cornea. Previous work involving the implantation of polymethylmethacrylate (PMMA) rings, allograft corneal tissue, and hydrogels is well documented. One of the ring devices involves a split ring design which is inserted into a channel previously dissected in the stromal layer of the cornea. A minimally invasive incision is used both for producing the channel and for inserting the implant. See, for instance, the use of PMMA intrastromal rings in U.S. Pat. Nos. 4,452,235 to Reynolds; U.S. Pat. No. 4,671,276 to Reynolds; U.S. Pat. No. 4,766,895 to Reynolds; and U.S. Pat. No. 4,961,744 to Kilmer et al. [0005]
  • Surgical methods for the correction of such disorders are known. Such methods include radial keratotomy (see, e.g., U.S. Pat. Nos. 4,815,463 and 4,688,570) and laser corneal ablation (see, e.g., U.S. Pat. No. 4,941,093). [0006]
  • There are other procedures for reshaping the surface of the cornea. Some involve surgery; others do not. Two patents dealing with the nonsurgical reshaping of the cornea are U.S. Pat. Nos. 4,326,529 to Doss, et al. and 4,381,007 to Doss. Both of these patents deal with the use of radio frequency energy to reshape the cornea of an eye. These involve the use of RF probes which are introduced non-invasively onto the cornea. They each involve an RF generating source which is placed on the anterior surface of the cornea and utilize saline solution to cool the corneal surface as the radio frequency current enters the eye. The RF apparently heats various stroma within the cornea and thereby reshapes the cornea as a biological response to the heat produced by the RF. [0007]
  • Other invasive ophthalmic surgical devices include U.S. Pat. No. 4,805,616, to Pao, which describes a bipolar probe device used in ophthalmic surgery. The device is only described in the performance of anterior capsulotomies. In that procedure, a limbal incision is made and the active probe tip is inserted between the anterior capsule of the eye's lens and the corneal endothelium. The anterior capsule is sequentially coagulated, becomes extremely friable, and then is removed by mechanical penetration with an additional mechanical device. No mention of treatment of a cornea is found. [0008]
  • Similarly, two patents to Easley et al., U.S. Pat. Nos. 5,201,730 and 5,203,353, show devices for penetrating and working in the vitreous humor of an eye using combination stripping tools and aspirators. The disclosed instrument may also have a bipolar diathermy device with an exterior needle surrounding and coaxial to a fiberoptic member. The diathermy device is used only to coagulate bleeding vessels found on the retinal surface or beneath preretinal membranes. No mention of treating the cornea is mentioned. [0009]
  • Two related applications, U.S. Pat. Nos. 5,025,811 to Dobrogowski et al., and 5,174,304, to Latina et al., show noninvasive methods for focal transcleral destruction of living human eye tissue. In general, these devices and their underlying procedures involve the use of electric currents for ablating eye tissue, particularly the ciliary process. Again, no mention of cornea treatment is seen. [0010]
  • This invention involves the introduction of an electrosurgical probe into the layers of the cornea to modify local sections of that corneal mass. [0011]
  • There are a variety of electrosurgical devices known. For instance, Hetzel, U.S. Pat. No. 4,033,351, shows a bipolar cutting electrode for high frequency surgery. The electrode shows what is said to be an improved electrode design having a number of metal tips. [0012]
  • U.S. Pat. No. 4,202,337, to Hren et al., shows a similar electrosurgical device for cutting or coagulation. It has a nonconductive handle with a blade assembly having a number of electrodes and an insulation member separating the various electrodes. [0013]
  • A similar and related patent to Degler Jr. et al., U.S. Pat. No. 4,228,800, shows an electrosurgical knife in which the blade assembly has a center electrode of specified thickness, insulation members secured to the center electrode, and a number of side electrodes secured to the insulation members. None of these devices discuss practice of a surgical procedure upon the posterior regions of a cornea. [0014]
  • U.S. Pat. No. 4,799,478, to Fedorov et al. teaches a device for the coagulation of biological tissues, preferably corneal tissue. The device disclosed by Fedorov et al. appears to be merely a heating device with a manner of carefully controlling the depth to which the heater or coagulator is introduced. The device is said to be useful for coagulation of biological tissue and the concept of changing “the curvature” of “eye tissues, e.g., cornea” is noted. The patent mentions the need for high accuracy to reach the goal of “to carry out coagulation of the eye cornea to a specific depth.” Although it is not clear what result Fedorov et al. wishes to obtain in this first patent, Fedorov et al. in U.S. Pat. No. 4,907,587, mentions the use of thermal coagulation of the cornea along certain corneal surfaces to correct various optical aberrations in the eye. It should be noted that neither of these patents suggests the use of ablation or desiccation from the reverse side of the Bowman's layer to effect any change in the anterior corneal surface. [0015]
  • SUMMARY OF THE INVENTION
  • This invention is a method of altering the shape of the cornea, often, the anterior surface curvature of the cornea. The invention also includes certain electrosurgical probe configurations useful in this process. The procedure, in its preferred variations, does not entail significant surgical modification of the anterior corneal surface or of the Bowman's layer of the eye, except, in certain situations, adding surface incisions to act either as a stress relief function or to provide access for the electrosurgical probe. [0016]
  • An electrosurgical probe is a significant portion of this invention. It is used, preferably in desiccation or ablation mode, to change the volume of the mass of the cornea posterior to the Bowman's layer and found in the stromal regions of the cornea. By selectively modifying the volume of these regions, small amounts of the cornea may be controllably removed or shrunk and, upon removal of the electrosurgical probe from the cornea, the curvature of the anterior surface of the cornea will have changed and the refractive path of light entering the eye will be changed. As noted above, surface incisions may later be added to permit the anterior of the cornea, in particular, Bowman's layer, to conform to the underlying corneal tissue removal (volume change), thereby allowing for change in anterior corneal curvature. [0017]
  • The inventive procedure may be used for the treatment of hyperopia (farsightedness) or myopia. In this procedure, a small incision or access site may be made in the anterior surface of the cornea, which incision extends down through the Bowman's layer or through the sclera and into the intrastromal volume of the cornea. An electrosurgical probe may be introduced through the incision and guided around within the corneal stroma from the outer periphery of the cornea. Activation of the electrosurgical probe in an ablation mode will cause vaporization of the regions of the cornea adjacent to the active areas of the probe. Activating the probe in a desiccation mode will shrink or necrose the region of the cornea adjacent to the active areas of the probe. After an appropriate necrosis, removal or shrinking of material is accomplished, the probe is removed and the anterior surface then relaxes to conform to the collapse or shrinkage of tissue formed by electrosurgical treatment of the corneal stromal tissue. In some instances, a modest incision in the anterior of the cornea may be desirable to allow curvature relaxation of the corneal anterior surface. [0018]
  • Another preferred procedure includes the alleviation of astigmatism by similar procedure. Small partial depth incisions may be made into the anterior surface of the cornea through Bowman's layer or through the sclera adjacent to the cornea to get under Bowman's layer, but not reaching so far as the posterior corneal surface or the anterior chamber. In a general sense, these initial incisions are made in the regions of the cornea or sclera to allow the electrosurgical probe to reach the corneal mass below the anterior surface which must be reduced to produce a symmetric corneal surface. In any event, an electrosurgical probe is then introduced through the incisions and a selected amount of material is removed or desiccated to alleviate the nonregularity of the corneal anterior surface. [0019]
  • Also as a part of this invention are certain monopolar, bipolar, and sesquipolar electrosurgical probe designs which are especially suitable for producing the specific tissue removal patterns desired in this procedure. [0020]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic illustration of a horizontal section of the eye. [0021]
  • FIG. 2 is a schematic illustration of the anterior portion of the eye, showing various layers of the cornea. [0022]
  • FIGS. 3A to [0023] 3E show a schematic process for treatment of hyperopia using the procedure of this invention.
  • FIGS. 4A to [0024] 4D show schematic diagrams of astigmatic and normal eyes.
  • FIGS. [0025] 5-11 A and B show top and side views of inventive circular RF electrosurgical probes.
  • FIGS. [0026] 5-9 C and D show side views of alternative embodiments of inventive circular RF electrosurgical probes.
  • FIGS. [0027] 12-19 A and B show top and side views of inventive straight RF electrosurgical probes.
  • FIGS. [0028] 12-14 C and D show side views of alternative embodiments of inventive straight RF electrosurgical probes.
  • FIGS. 17C and D are top views of alternative embodiments of straight RF electrosurgical probes. [0029]
  • FIGS. 20 A and B, and [0030] 21 A, B and C show top (A and C) and side (B) views of inventive disc and washer RF electrosurgical probes.
  • FIGS. 20C and 20D are side sectional views of alternative embodiments of the probe of FIG. 20A. [0031]
  • FIGS. 21D and 21E are side sectional views of alternative embodiments of the probe of FIG. 21A. [0032]
  • FIGS. 21F and 21G are side sectional views of alternative embodiments of the probe of FIG. 21C. [0033]
  • FIGS. 22A and B illustrate sesquipolar probe configurations. [0034]
  • FIGS. [0035] 23A-G are schematic diagrams showing top views of eyes wherein various processes for electrosurgically altering corneal curvature have been carried out.
  • FIGS. [0036] 24A-F illustrate an apparatus for positioning a circular electrosurgical probe to perform corneal tissue removal according to the present invention.
  • DESCRIPTION OF THE INVENTION
  • Prior to explaining the details of the inventive procedures and devices, a short explanation of the physiology of the eye is needed. [0037]
  • FIG. 1 shows a horizontal cross-section of the eye with the globe ([0038] 11) of the eye resembling a sphere with an anterior bulged spherical portion representing the cornea (12).
  • The globe ([0039] 11) of the eye consists of three concentric coverings enclosing the various transparent media through which the light must pass before reaching the light-sensitive retina (18). The outermost covering is a fibrous protective portion the posterior five-sixths of which is white and opaque and called the sclera (13), and sometimes referred to as the white of the eye where visible to the front. The anterior one-sixth of this outer layer is the transparent cornea (12).
  • A middle covering is mainly vascular and nutritive in function and is made up of the choroid, ciliary body ([0040] 16), and iris (17). The choroid generally functions to maintain the retina (18). The ciliary body (16) is involved in suspending the lens (21) and accommodation of the lens. The iris (17) is the most anterior portion of the middle covering of the eye and is arranged in a frontal plane. It is a thin circular disc similar in function to the diaphragm of a camera, and is perforated near its center by a circular aperture called the pupil (19). The size of the pupil varies to regulate the amount of light which reaches the retina (18). It contracts also to accommodation, which serves to sharpen the focus by diminishing spherical aberration. The iris divides the space between the cornea (12) and the lens (21) into an anterior chamber (22) and the posterior chamber (23). The innermost portion of covering is the retina (18), consisting of nerve elements which form the true receptive portion for visual impressions.
  • The retina ([0041] 18) is a part of the brain arising as an outgrowth from the fore-brain, with the optic nerve (24) serving as a fiber tract connecting the retina part of the brain with the fore-brain. A layer of rods and cones, lying just beneath a pigmented epithelium on the anterior wall of the retina serve as visual cells or photoreceptors which transform physical energy (light) into nerve impulses.
  • The vitreous body ([0042] 26) is a transparent gelatinous mass which fills the posterior four-fifths of the globe (11). At its sides it supports the ciliary body (16) and the retina (18). A frontal saucer-shaped depression houses the lens.
  • The lens ([0043] 21) of the eye is a transparent bi-convex body of crystalline appearance placed between the iris (17) and vitreous body (26). Its axial diameter varies markedly with accommodation. A ciliary zonule (27), consisting of transparent fibers passing between the ciliary body (16) and lens (21) serves to hold the lens (21) in position and enables the ciliary muscle to act on it.
  • Referring again to the cornea ([0044] 12), this outermost fibrous transparent coating resembles a watch glass. Its curvature is somewhat greater than the rest of the globe and is ideally spherical in nature. However, often it is more curved in one meridian than another giving rise to astigmatism. Most of the refraction of the eye takes place through the cornea.
  • FIG. 2 is a more detailed drawing of the anterior portion of the globe showing the various layers of the cornea ([0045] 12) making up the epithelium (31).
  • An anterior limiting lamella ([0046] 33), referred to as Bowman's membrane or layer, is positioned between the epithelium (31) and the stroma (32) of the cornea. The various stroma (32) between the Bowman's layer (33) and the Descemet's membrane (34) are referred to as the corneal mass. The corneal stroma (32) are made up of lamellae having bands of fibrils parallel to each other and crossing the whole of the cornea. While most of the fibrous bands are parallel to the surface, some are oblique, especially anteriorly. A posterior limiting lamella (34) is referred to as Descemet's membrane. It is a strong membrane sharply defined from the stroma (32) and resistant to pathological processes of the cornea.
  • The endothelium ([0047] 36) is the most posterior layer of the cornea and consists of a single layer of cells and function to maintain transparency of the cornea (12). These epithelial cells are rich in glycogen, enzymes and acetylcholine and their activity regulates the transport of water and electrolytes through the lamellae of the cornea (12). The limbus (37) is the transition zone between the conjunctiva (38) and sclera on the one hand and the cornea (12) on the other.
  • There are a variety of different electrical surgical delivery probes which would be suitable in this invention. In general, there are two distinct electrosurgical delivery probe types: the monopolar probe and the bipolar probe. An in-between electrosurgical configuration applicable to this invention also exists and is known as sesquipolar. In each instance, some section of the human body is used to complete a circuit between one pole and the other. In the monopolar probe device, there is a single active contact which is inserted or otherwise contacted with the human body and it is the site at which some body activity, e.g., desiccation, ablation, necrosis, fulguration, or the like, takes place. To complete the circuit in a monopolar device, there must be another contact which is inactive and placed against the body in a location from the active contact. By “inactive” is meant that only an insignificant temperature rise occurs at that contact point. One such method of insuring that the inactive electrode is in fact “inactive” is to make it quite large in area. This causes the current to spread over a large area for completion of the circuit. [0048]
  • A bipolar electrode typically has two equal area active electrodes contained in the same electrode probe-handle structure. This symmetric bipolar electrode design produces a significant temperature rise at both electrodes. [0049]
  • In a monopolar or sesquipolar configuration, only one electrode has an area of tissue contact producing significant temperature rise. Unlike the monopolar configuration, however, the sesquipolar return electrode is not so remote, and thereby limits current flow through the body to the nearby return electrode. The return electrode area in the sesquipolar configuration electrode is usually at least three times the area of the active electrode and produces little or no tissue effect. In some designs, the sesquipolar return electrode may be found on the electrode probe-handle structure while on other designs it may be separately located in a non-remote region of the body. [0050]
  • There are a variety of effects that may occur depending upon the electrosurgical mode desired. For instance, there are both high temperature and low temperature desiccation effects when the active electrosurgical probe contact(s) are used to promote tissue desiccation. The resistance of the tissue in contact with the active probe electrode obviously varies with the tissue temperature and water content of the tissue. A low temperature desiccation effect involves heating such that the temperature-time product causes tissue necrosis with little immediate denaturation or discoloration of the tissue. A high temperature desiccation includes heating tissue near the conducting probe contact to approach or slightly exceed 100° C. In the low temperature variation of this procedure, there is a transient decrease in local tissue impedance with little drying of tissue. But in the high temperature variation, there are significant increases in local tissue impedance and also significant in local tissue desiccation. [0051]
  • In the ablation mode, the electrosurgical energy density delivered largely causes the tissue near the probe contact to vaporize. The temperature at the electrode/tissue interface is increased significantly past the point of steam formation. The effect of electrical resistance varies during a specific radio frequency (RF) cycle and although there is sparking, carbonization is not usually significant and the effects of the device are relatively rapid. [0052]
  • Electrosurgical ablation and cutting produce an effect where a thin layer of tissue is vaporized (cutting) or where a larger section of tissue is vaporized (ablation). The line between “cutting” and “ablation” is not always clear. [0053]
  • Blended mode is essentially a combination of the cutting and coagulation (desiccation) modes. In blended mode, cutting or ablation with hemostasis is achieved. [0054]
  • In the procedure specified below as the invention, the electrosurgical probes may be operated in cutting, ablation, desiccation or blended modes. Herein, the term “volume change” or “volume modification” refers to the corneal mass being either necrosed, desiccated, ablated or subject to some combination thereof. [0055]
  • It is quite rare that the current flow through the device is DC. The current is typically a very high frequency alternating current, typically on the order of 500KHz or more. Additionally, the RF energy is often delivered in a pulsed or in a more continuous, non-pulsed operation depending on the exact effects desired. Some residual heating will take place no matter which course is taken. For further information concerning the electrical characteristics of electrosurgical waveforms, and electrosurgery in general, please refer to J. A. Pearce, [0056] Electrosurgery, John Wiley & Sons, 1986; U.S. Pat. No. 4,438,766 to Bowers; the SSE2K Electrosurgical Generator Service and Instruction Manuals (1982, 1980), the SSE2L Electrosurgical Generator Instruction Manual (1991), and the Force 2 Electrosurgical Generator Instruction Manual (1993), Valleylab. These references are incorporated by reference herein in their entirety.
  • With this lengthy background in place, please refer to FIGS. 3A through 3D. This series of figures shows, in schematic fashion, one procedure for treating hyperopia (farsightedness), myopia, or astigmatism. This schematic procedure shows features which may be common to all of the processes of this invention. Generically, the procedure includes the step of producing one or more incisions, often towards the periphery of the cornea. These incisions penetrate Bowman's layer in the anterior surface of the cornea and extend down into, as defined above, “the corneal mass” or “corneal volume.” It is also contemplated that the electrosurgical probe may be inserted into the corneal volume without penetration of the anterior surface cornea, e.g., by access through a partial depth incision made in the sclera next to the cornea. [0057]
  • In any event, if an anterior access partial depth incision is contemplated, an optional step at this point may be the insertion of a non-electrosurgical lamellar separator to separate the various stroma lamellae within the cornea at the depth of the entry incision. This allows the subsequent step of inserting the electrosurgical probe to take place with greater ease. The probe itself may serve the function of intralamellar separator, if so desired. [0058]
  • The electrosurgical probe is introduced into the stromal lamellar cavity so produced. Depending upon the design of the inserted electrosurgical probe and on the refractive effect desired, the probe is moved inside the intralamellar space previously formed and activated to desiccate or ablate specific geometric regions of the cornea. [0059]
  • The probe may be energized by a common electrosurgical generator such as the Force 2 manufactured by Valleylab, Inc. The generator includes settings for providing the appropriate electrosurgical waveforms for cutting, coagulation or blended modes. The wave shape for each mode is specified in the Valleylab generator manual. Cutting is performed with a 510KHz continuous sinusoid. Coagulation (desiccation) employs a 510 KHz damped sinusoidal burst with a repetition frequency of 31 KHz. In blended modes, the generator outputs a 510 KHz sinusoidal burst at various duty cycles recurring at 31 KHz. Those skilled in the art will recognize that the present invention is not limited to the generators or particular wave shapes and corresponding electrical characteristics disclosed herein The probe initially may be energized at a low power setting (e.g., 5 watts) for approximately 15 seconds or longer. During activation of the probe, the surgeon observes the volume reduction process to ensure that tissue is being safely removed or shrunk from the proper corneal regions. Typically, this observation may be performed through an ophthalmic microscope. [0060]
  • Desirably, after the completion of the corneal volume reduction step, the curvature of the corneal surface is then measured. Curvature is typically measured after the probe has been removed to avoid distortion of the corneal surface by the probe itself. One common method for measuring corneal curvature employs the Placido ring technique embodied in the Corneal Topography System manufactured by Eyesys of Houston, Tex. Curvature may also be measured using the technique described in allowed U.S. patent application Ser. No. 08/200,241, assigned to the assignee of the present invention, and incorporated by reference herein. The procedure may be repeated if insufficient correction has occurred. When repeating the procedure, the surgeon may increase the output power (e.g., in 5 watt increments or by doubling the power up to approximately 80 watts) to reduce a greater volume of tissue until the desired effect is achieved. If needed, Bowman's layer and a small amount of underlying stromal tissue may be lightly cut on the anterior surface adjacent to or above the site of the volume reduction to allow the anterior corneal surface to change. [0061]
  • Returning to the specifics of FIGS. 3A to [0062] 3D, FIG. 3A shows an eye (100) having a pupil (102) and a cornea (104). In the outer radius of cornea (104) is found two small partial depth incisions (106) which have been cut through Bowman's layer into the corneal mass as shown in FIGS. 1 and 2. These incisions may be cut radially or circumferentially and are shown for discussion purposes to be radial.
  • It should be understood, however, that although two access partial depth incisions ([0063] 106) have been portrayed in FIG. 3A, the number of such access sites (106) is not important. If a semi-circular lamellar separator (108) as shown in FIG. 3B is used, then the number of access sites (106) may be desirably two in number. If lamellar separators of shorter arc segments are used, more numerous slits may be desired. If a nearly circular lamellar separator or electrosurgical probe is used, a single access site (106) may be sufficient.
  • FIG. 3B shows the introduction of the optional dissector blade or lamellar separator ([0064] 108) to separate the lamella found in the cornea. The separator (108) is rotated until a circular channel is made in the corneal periphery, and is rotated back out of the eye. A similar procedure takes place on the other access site as shown in FIGS. 3A and 3B. FIG. 3C shows the insertion of an electrosurgical probe into the route formed in the intrastromal region shown in FIG. 3B. The probe may be energized following complete insertion or may be energized in a stop, move and activate mode. The step of removing and/or shrinking tissue is continued until sufficient tissue has been ablated or desiccated to achieve the desired refractive effects.
  • FIG. 3D shows the eye ([0065] 100) after completion of the ablation procedure. It may be desirable to place a small stitch (112) in any access site (106) in the cornea to ensure healing of the access site and minimize the potential for infection. FIG. 3E shows the eye (100) following relief cuts (114) that may be necessary in some instances to allow the anterior corneal surface to more closely conform to the underlying corneal tissue removal (volume change) thereby allowing for greater change in anterior corneal curvature. These relief cuts may be circumferential as shown or they may be radial depending on the desired refractive effect. Further, the relief cuts may be continuous or may be interrupted as shown. In any case, these cuts will be shallow cuts such that they penetrate Bowman's layer and possibly a portion of the underlying corneal stroma.
  • The above-description generally indicates the method of the present invention. Specific probe configurations and method of treatment will be described in the examples below. [0066]
  • It should be apparent from the description above, that the step of desiccating, necrosing or ablating the tissue from within the corneal mass lessens the volume of that mass in specific regions of the cornea. Consequently, the anterior sections of the cornea will become flatter or steeper and will alleviate the improper previous refraction of light. Some of the possible changes in corneal thickness and their relationship to the radius of curvature of the central corneal surface are described in [0067] Jose Barraquer: Father of Modern Refractive Keratoplasty, in Refractive and Corneal Surgery, Vol. 5, May/June 1989, pages 177-193, which is hereby incorporated by reference in its entirety. This paper describes the so-called “Law of Thickness” which indicates that when corneal volume is reduced in the periphery, central corneal steepening occurs and when a volume of tissue is removed in the center, central corneal flattening occurs. The inventive electrosurgical method and devices aim to reduce corneal volume in controlled geometric areas of the corneal stroma to achieve refractive correction.
  • The method and devices of the present invention may also be useful in the treatment of astigmatism. Astigmatism occurs, generally, when the curvature of the anterior surface of the cornea is not regular as one passes about the meridians on the anterior surface of the cornea resulting in a steep and flat axis (the astigmatic axis). FIGS. 4A and 4B are schematic perspective views that show an astigmatic and normal eye, respectively. In an astigmatic eye, two axes are generally identified, corresponding to the steepest ([0068] 120) and flattest (122) axis of curvature. The steepest axis is also known as the axis of astigmatism (120). To correct astigmatism using this invention, one must flatten the curvature of the astigmatic axis such that the cornea becomes reasonably symmetrical and more spherical. FIG. 4B shows a normal eye, that is, one in which the curvature of all axes are the same. FIGS. 4C and 4D show schematic topographical curvature maps of an astigmatic and of a non-astigmatic eye, respectively. In FIG. 4C, region 130 is the steep region whereas region 132 is flatter.
  • Other configurations of access sites and controlled removal of corneal tissue are apparent. These will be discussed for particular applications in the examples below. Further, it should be apparent to one appreciating the design of such electrosurgical RF probes, that the shape need not be nearly circular. It may be, much in the same way as were the lamellar separators ([0069] 108) in FIG. 3B, that the probes have lesser arc length or are straight for alleviating hyperopia. In fact, for treating hyperopia or other maladies, the probe may be of any convenient shape designed to ablate the tissue at hand. Such shapes will be discussed in more detail below. Further it may be noted that the handles of the probes may be straight or bent. A bent handle may allow greater facility of use within the small confines found behind an access site as shown in the above drawings. Additionally, the procedures and devices of the present invention may be useful in the treatment of more than one indication; for example myopia and astigmatism or hyperopia and astigmatism.
  • FIGS. [0070] 5-11 A and B show top (A) and side (B) views of circular electrosurgical probes suitable for use in the schematic procedure described above. FIGS. 5A and B show a circular RF electrosurgical probe with two active sites that operate in monopolar or sesquipolar modes. The probe (200) includes a shaft (202) and two active sites (204), each active site having an arc of less than about 180°, preferably less than about 90°. The probe has an inner diameter of approximately 6.5 mm and an outer diameter of approximately 8.5 mm. The single source of RF energy (206) is fed in through the insulator (208) making up the probe (200). FIGS. 6A and B show a circular RF electrosurgical probe (210) with a single active site (212) at the tip. Again, the single source of RF energy (214) is fed in through the insulator making up the probe. FIG2. 7A and 7B show a circular RF electrosurgical probe (220) with a single active site (222) extending the length of the circular portion of the probe. Once more, the single source of RF energy (224) is fed in through the insulator (226) making up the probe. FIGS. 8A and B show a circular RF electrosurgical probe (230) with two active sites (232) near the tip of the probe that operate in bipolar fashion. Two sources of RF energy (234 and 236) are fed in through the insulator (238) making up the probe. FIGS. 9A and B show a circular RF electrosurgical probe (240) with a single active site (242) near the tip, the active site shown in FIG. 9A to be on the top part of the probe. A single source of RF energy (244) is fed in through the insulator (246). FIGS. 10A and B and 11A and 11B show other circular RF electrosurgical probes (250 and 260 respectively) with single active sites (252 and 262 respectively) near the tips of the probes. A single source of RF energy (254 and 264) is fed in through each probe. FIG. 10B shows the active site (252) to be located at the tip but exposed on one side and FIG. 11B shows the active site (262) to be located at the tip but insulated on the top and thus exposed on one side only. Both probes depicted in FIGS. 10 A and B and 11 A and B are designed to contact tissue in either the forward or retracting direction to the active site on the probe, the retracting direction.
  • FIGS. [0071] 5-9 C and D show side views of circular electrosurgical probes in which the active sites applied to tissue are raised above a substantial portion of the nonconductive area of the probe. The height of the raised active site controls the depth of the tissue removed. This height is approximately in the range of 0.0-0.55 mm. The raised active site pushes tissue in contact therewith above the larger nonconductive area of the probe. The unraised nonconductive portion acts as a backstop or footplate with respect to the raised active site. In the absence of a raised active site, uniform pressure must be maintained against the tissue in order to remove tissue of uniform depth. With the raised active site of the present invention, uniform depth is easier to achieve without fine control of the applied pressure because the footplate (larger nonconductive area) acts as a stop to prevent the active site from advancing into the tissue to a depth deeper than the height of the raised active site.
  • A set of probes having active sites raised to different heights may be provided, so that the surgeon may select the proper probe depending upon the depth (and therefore volume) of tissue to be removed. During performance of a procedure, the surgeon may use multiple probes, e.g., increasing in active site height, until the desired depth of tissue removal is achieved. Alternatively, a single probe may be adapted for use with removable active sites of different heights. The active sites may be coupled to the rest of the probe by any number of well known means, including but not limited to screws, snaps or slideable mounts. [0072]
  • In FIGS. [0073] 5-9 D, a small nonconductive portion immediately adjacent to the active site is also raised above the larger nonconductive area. The raised nonconductive portion covers all or a part of the side area of the active site to limit the conductive area exposed to tissue. This prevents tissue removal from being caused by electrical energy from the covered side areas, thereby giving the surgeon greater assurance that tissue will be removed in a direction normal to the face of the active site and not in other, lateral directions spreading sideways from the raised active site. The insulation of the side areas also increases the current density associated with the face of the active site, providing more efficient tissue removal.
  • FIGS. [0074] 24 A-F illustrate an apparatus for positioning a circular electrosurgical probe to perform corneal tissue removal according to the procedure of the present invention. The circular probe (2400) includes a circular contact end (2402) coupled to a support arm (2404) that is angled with respect to the plane of the circular contact end (2402). The angle may have a value of 0 to 90°. The angle is preferably between 0 and 80°, more preferably between 10 and 50° and most preferably about 34° (+/−5°). This angle results in the support arm (2404) being generally perpendicular to the corneal surface when the circular contact end (2402) is introduced into the corneal stroma. This angle, although not absolutely critical, is desirable and has been found to prevent tearing of the epithelium during the corneal operation. The length of the support arm (2404) is sufficient so that the entire circular contact end is visible through the top of the barrel (2406) during use.
  • FIG. 24B illustrates the circular contact end ([0075] 2402) in greater detail. The contact end (2402) may be rectangular in cross-section as shown in FIG. 24B or tapered on its smaller edge as shown in FIG. 24C. The contact end may be of any convenient shape, including the rectangular cross-section of FIG. 24B or the hexagonal cross-section of FIG. 24C in which two opposite sides are longer than the remaining four.
  • The overall relationship of the sizes of the diameter of the arc ([0076] 2408) of the contact end (2402) to the length of the barrel (2406) is desirably chosen so that the ratio of that length to the arc diameter is between 0.25:1 and 15:1; specifically between 0.4:1 and 1:1, at least about 1:1 and less than about 3:1; and at least about 3:1 but less than 15:1. These ratios allow easy manipulation by the surgeon. The contact end (2402) has two other physical parameters relevant to effective performance of the surgical procedure. Upon rotation of the barrel (2406), the contact end (2402) must move in a path which is substantially planar. The path of the contact end (2402) as it moves in the corneal intrastromal lamellar channel must not vary either up or down during the barrel (2406) rotation. The distance “a” shown in FIG. 24B is chosen so that the contact end (2402) is centered about the axis (2410), which forms the center of the barrel (2406).
  • Similarly, the cone angle ([0077] 2412) is preferably 112°+/−30°. Again, this permits the contact end (2402) to traverse a channel which is parallel to the lamella found in the corneal stroma. The cone angle (2412) may, of course, vary a few degrees dependent on such variables as the size of the eye and the amount of correction required.
  • Preferably, all of the circular, disk-shaped and washer-shaped probes described in this disclosure take on one of the cross-sectional shapes illustrated in FIG. 24B or [0078] 24C. The active sites of those probes can reside on the central flat portion and/or on the angled portion of the contact end of FIG. 24B or 24C.
  • FIG. 24D is a side view of a support base used in conjunction with the probe assembly of FIG. 24A. The support base includes an annular circumcorneal vacuum ring ([0079] 2450) and a cylindrical or central bore (2452) extending through the support base. The support base contains a viewing port (2454) to allow a surgeon to view the operational steps which take place at the corneal surface. The vacuum is brought in from a vacuum source line (2456) that is coupled to a vacuum pump (not shown). The vacuum ring (2450) is configured so that it meets with and seals to the front of the eye, rendering the support base relatively immobile when the support base is applied to the front of the eye and a suitable vacuum is applied to the vacuum source line (2456). The vacuum chamber forms an annular vacuum space across the front of the eye.
  • FIG. 24E shows a bottom view of the support base in which the circumcorneal vacuum ring ([0080] 2450) may be clearly viewed. The vacuum ring (2450) is made up of an inner wall (2458) terminating on its inside by the central bore (2452). The central bore (2452) is at least large enough to see the entirety of the circular contact end (2402). The central bore (2452) has an axis which substantially coincides with the axis of the circular contact end (2402). The central bore (2452) is desirably a length such that the ratio of the bore's length to its diameter is between 0.25:1 and 15:1; specifically between 0.4:1 and 1:1, at least about 1:1 and less than about 3:1; or at least about 3:1 up to about 15:1. Preferably, the ratio is about 2.5:1. This sizing allows easy manipulation by the surgeon. The outer vacuum ring wall (2460) desirably forms the outside of the support base. Interior to the vacuum ring (2450) may be one or more ridges (2462) which extend down to the corneal surface when the support base is attached to the eye. These ridges may be made of conductive material, while the surrounding support base structure, such as the inner wall (2458) and outer wall (2460), are made of insulative material. The ridges (2452) may be coupled to an electrosurgical generator (not shown). Using this configuration, the ridges (2462) may act as return electrodes when operating in sesquipolar mode. These return electrodes may be positioned to rest on the sclera or translimbal region of the eye.
  • FIG. 24F shows an alternative arrangement of return electrodes comprised of radial vanes ([0081] 2464) that extend downward through the vacuum ring (2450) to make contact with the sclera or translimbal region.
  • FIGS. [0082] 12-19 A and B show top (A) and side (B) views of straight electrosurgical probes suitable for use in the schematic procedure described above. FIGS. 12A and B show a straight RF surgical probe (300) with a single active site (302) extending along the length of the probe. A single source of RF energy (304) is fed through the probe. FIGS. 13A and B show a straight RF electrosurgical probe (310) with two active sites (312) extending along the length of the probe that operate in bipolar fashion. Two sources of RF energy (314 and 316) are fed in through the insulator (318) making up the probe.
  • FIGS. [0083] 14-19 A and B show other straight RF electrosurgical probes with single active sites near the tips of the probes. A single source of RF energy is fed in through each probe. FIGS. 14 A and B show the active site (322) to be located near the tip of the probe (320) and on top of the probe such that the active site is raised and pointed in the retracting direction of the probe. FIGS. 15A and B show the active site (332) similarly located near the tip of the probe. The end of the probe is raised and the active site (332) is located on the raised part of the tip pointing backwards, the active site being exposed on two sides. FIGS. 16A and B similarly show the active site (342) raised at the end of the probe pointing backwards (340), but the active site is imbedded in the insulating curve of the probe, thereby exposing the active site on one side only. FIGS. 17A and B show the active site (352) at the tip of a straight probe (350), the active site being exposed on one side on the tip portion alone. FIGS. 18A and B show the active site (362) near the end of a straight probe (360). The probe is broadened at the active site.
  • FIGS. 19A and B again show a straight RF electrosurgical probe ([0084] 370) with a curved tip, with the active site (372) again raised and pointing backwards and slightly upwards the active site being exposed on one side on the tip portion alone. However, in this embodiment the active site is angled such that a portion (374) of the active site (372) extends beyond the curved tip. In this design, the ablation or desiccation takes place either as the device is pushed forward or as it is pulled backwards, or retracted from the lamellar separation channel.
  • Upon exposure to tissue and electrode activation, the active site will vaporize or desiccate the tissue. It may be desirable to provide a second lamellar channel to allow for the for the relief of gases produced by the probe when used in the ablation mode or to incorporate grooves in the probe portions that insert into the tissue to allow the escape of gases so produced. [0085]
  • FIGS. [0086] 12-14C and D are side views of the probes of FIGS. 12-14A, respectively, for alternative embodiments. In FIGS. 12-14C, the active sites are raised above the larger nonconductive areas. In FIGS. 12-14D, a small nonconductive portion immediately adjacent the active site is also raised above the larger nonconductive area. FIGS. 17C and D are top views of the probe of FIG. 17A for an alternative embodiment. In FIG. 17C, the active site is raised above the larger nonconductive area. In FIG. 17D, a small nonconductive portion immediately adjacent the active site is also raised above the larger nonconductive area.
  • FIGS. 20 and 21 A and B show top (A) and side (B) views of RF electrosurgical disc and washer probes ([0087] 400 and 410 respectively). A single RF energy source is fed through each probe. The disc probe (400) is a circular probe with a circular active site (410). The washer probe (410) is a circular probe with a circular active site (412) with a hollow middle (414). Each of these probes may have a flat surface as shown in FIGS. 20A and 21A or may be curved to conform to the curvature of the cornea. The disc probe may have a wire loop surface (415) as shown in FIG. 21C.
  • FIGS. 20C, 21D and [0088] 21F are side sectional views of the probes of FIGS. 20A, 21A and 21C, respectively, for alternative embodiments. In FIGS. 20C, 21D and 21F, the active sites are raised above the larger nonconductive areas. FIGS. 20D, 21E and 21G are side sectional views of the probes of FIGS. 20A, 21A and 21C, respectively, for alternative embodiments. In FIGS. 20D, 21E and 21G, a small nonconductive portion immediately adjacent the active site is also raised above the larger nonconductive area.
  • FIGS. 22A and B illustrate, the straight probe of FIG. 14D and the disc probe of FIG. 20A, respectively, in a sesquipolar configuration for removing tissue from a portion of the corneal mass ([0089] 2200) near the center of the visual axis. Each probe includes a handle (2202) that is angled with respect to the contact end portion (2204) of the probe. An active lead (2206) from an electrosurgical generator (2208) runs into the handle (2202) for connection to the active site (2210). The return electrode (2212) may be placed remotely on the body, e.g., onto a shaved area on the back of the patient's head. The return electrode (2212) is connected to the electrosurgical generator (2208) through a return lead (2214). Alternatively, the return electrode (2212) may be placed on the exterior of the cornea or onto the sclera or translimbal region (2216), as shown. The return electrode (2212) may simply rest in place or be held by a vacuum attachment cavity built into the electrode. Because of its significantly higher area as compared to the active tissue contacting site, the return electrode (2212) does not generate much heat. Those skilled in the art will understand that any of the probes described herein may use a handle, whether angled or not, for the convenience of the surgeon. Further, except for the bipolar probes, any of the probes of the invention may be arranged in the sesquipolar configuration of FIGS. 22A and B.
  • The above described probes are useful in the particular examples discussed below. The examples are illustrative only and are not intended to limit the scope of the invention. [0090]
  • The following examples are intended to describe a particular embodiment of the invention but are in no way intended to limit the invention in any manner. [0091]
  • EXAMPLES Example 1 The Correction of Astigmatism
  • In order to correct the astigmatic eye shown in FIGS. 4A and 4C such that it becomes more similar to that shown in FIGS. 4B and 4D, a process similar to that described above with regard to FIGS. [0092] 3A-3D is carried out. As shown in FIGS. 23A and 23C, radial or circumferential partial depth incisions (500) are made in the periphery of the cornea. A lamellar separator is inserted to create a zone of separated lamellae (502) and (504) for the insertion of the electrical probe.
  • Two different approaches are possible to correct the astigmatic eye. In the first approach shown in FIG. 23C the radial partial depth incisions and radial zone of separated lamellae will be formed beneath the astigmatic axis ([0093] 506). Following separation of the lamellar tissue, one of the straight RF probes shown in FIGS. 14-19 A and B is inserted through the partial depth incision (500). The probe is then activated to change the paracentral corneal volume (508), that is the volume near the center of the cornea, by ablation of the tissue under the figure-8-shaped astigmatism shown in FIGS. 23A and 23C. The choice of RF probe design is dependent on the amount of tissue to be ablated. Once ablation is completed, the probe is withdrawn. Relief cuts on the anterior cornea may be necessary as described above to allow the surface of the cornea to conform to the underlying tissue removal. In this way, the steep astigmatic axis is flattened such that the cornea becomes reasonable symmetrical and spherical.
  • A second approach to the treatment of an astigmatic eye is to steepen the flat astigmatic axis as shown in FIG. 23A. In this approach, the lamellar separation zone will be formed in the periphery of the cornea ([0094] 502). The partial depth incision (500) is placed in the corneal periphery, beneath the astigmatic axis. Following separation of the lamellar tissue, one of the circular RF probes shown in FIGS. 5, 6, 8, 9, 10, and 11 A and B, probes (200), (210), (220), (230), (240), (250) and (260) respectively, is inserted through the partial depth incision (500). The probe is then activated to change the volume by desiccation (probes (200), (210), (230), (240), (250) or (260)) or by ablation (probes (210), (240), (250), or (260)) of the tissue (501) under the flat axis of astigmatism axis (507) as shown in FIG. 23A. Thus some probe configurations can be used either in the ablate or in the desiccation mode. Probe (200) is operated by inserting it into the lamellar tissue, activating it, deactivating it, and then removing it. Probes (210), (230), (240), (250), and (260) are operated by inserting into the lamellar tissue, activating, deactivating, rotating to a second position to be desiccated or ablated, activating, and then removing. Again, the choice of RF probe design is dependent on the amount of tissue to be ablated or desiccated. Once ablation or desiccation is completed, the probe is withdrawn. Relief cuts to the anterior cornea may be necessary as described above to allow the surface of the cornea to conform to the underlying tissue modification. In this way, the flat, astigmatic axis (507) is steepened such that the cornea becomes reasonable symmetrical and spherical.
  • Example 2 The Correction of Hyperopia
  • In order to correct hyperopia a process similar to that described above with regard to FIGS. [0095] 3A-3D is carried out. As shown in FIGS. 23B, 23D and 23E, radial or circumferential partial depth incisions (510) are made in the periphery of the cornea. A lamellar separator is inserted to create a lamellar pathway (512) for the insertion of the electrical probe.
  • Two different approaches are possible to correct the hyperopic eye. In the first approach, shown in FIG. 23B, partial depth incisions ([0096] 510) are made in the peripheral cornea and a circumferential lamellar separation zone (512) will be formed beneath the corneal surface.
  • A circular intrastromal channel may first be made using the apparatus of U.S. Pat. No. 5,403,335, issued to Loomas et al., and assigned to the assignee of the present invention. That patent is incorporated by reference herein in its entirety. During the creation of the channel, the support base of FIGS. [0097] 24D-F may be substituted for the support base of the Loomas patent so as to provide a sesquipolar return electrode for use during the later stage of tissue volume reduction.
  • Following separation of the lamellar tissue, one of the circular RF probes described herein is inserted through the partial depth incision ([0098] 512). In particular, the assembly of FIGS. 24A-D may be employed. The probe is then activated to change the volume by ablation or desiccation of the tissue (514) in the channel. The choice of RF probe design is dependent on the amount of tissue to be ablated or desiccated. Probes (210), (220), (230), (240), (250) and (260) will allow for desiccation of the channel. Probe (220) is operated by inserting it into the lamellar tissue, activating it, deactivating it, and then removing it. The other probes are operated by inserting them into the lamellar tissue, activating, deactivating, rotating to a second position to be ablated, activating, deactivating and repeating this process until the entire channel is desiccated, and then removing it. Probes (210), (240), (250) and (260) will allow for ablation of the channel. The probes are operated by insertion into the lamellar tissue, activation, deactivation, rotation to a second position to be ablated, activation, and repeating until the entire channel is ablated, followed by removal of the probe. Probes (250) and (260) can also be operated by complete insertion into the lamellar tissue, activation, deactivation, pulling partially back out of the tissue to a second position to be ablated, activation, deactivation and repetition of this process until the entire channel is ablated, followed by removal of the probe. Again, relief cuts in the anterior of the cornea may be necessary as described above to allow the surface of the cornea to conform to the underlying tissue removal. In this way, the central corneal surface is steepened such that the cornea curvature is improved.
  • A second approach to the treatment of a hyperopic eye is to use a straight RF probe. In this second approach 2 or more partial depth incisions ([0099] 510) are made in the periphery and 2 or more radial lamellar separation zones are formed as shown in FIGS. 23D and 23E. Following separation of the lamellar tissue, one of the straight RF probes shown in FIGS. 12-19 A and B is inserted through each partial depth incision (510) in the lamellar separation zones (512) and (514). The probe is then activated to change the volume by ablation or desiccation of the tissue in the channel. The choice of RF probe design is dependent on the amount of tissue to be ablated or desiccated. Probes (300), (310), (320), (330), (340), (350), (360) and (370) will allow for desiccation of the channel. Probes (300) and (310) are operated by insertion into the lamellar tissue, activation, deactivation, and then removal. Probes (320), (330), (340), (350), (360) and (370) are operated by inserting into the lamellar tissue, activating, deactivating, moving to a second position to be ablated, activating, deactivating and repeating this process until enough of the channel is desiccated, and then removing the probe. In this way the tissue desiccated can either form a continuous path (516) or can be interrupted points along the radial lamellar separation channel (518). Probes (320)-(370) will allow for ablation of corneal volume inside the radial lamellar separation channel. Probes (320), (340), (350), (360) and (370) are operated by insertion into the lamellar tissue, activation, deactivation, moving it further into the tissue to a second position to be ablated, activation, and repeating until the entire channel is ablated, and then removal. The same probes can also be operated by complete insertion into the lamellar separation channel, activation, deactivation, pulling back out of the tissue channel to a second position to be ablated, activation, deactivation and repetition of the process until the enough of the channel is ablated, followed by removal of the probe. Again, relief cuts may be necessary in the anterior cornea as described above to allow the surface of the cornea to conform to the underlying tissue removal. In this way, the corneal surface is steepened centrally such that the corneal curvature is improved.
  • Example 3 The Correction of Myopia
  • In order to correct myopia the process similar to that described above with regard to FIGS. [0100] 3A-3D is carried out. As shown in FIGS. 23F and 23G, radial or circumferential partial depth incisions (520) are made in the periphery of the cornea. A lamellar separator is inserted to create a radial lamellar separation channel (522) toward the center of the pupil for the insertion of the electrical probe.
  • For correction of myopia, the lamellar path ([0101] 522) will be formed under or near the central or paracentral portion of the cornea. Following separation of the lamellar tissue, one of the straight RF probes shown in FIGS. 14-19 A and B or the disc or washer probes shown in FIGS. 20-21 A and B is inserted through the peripheral partial depth incision (520) into the lamellar separation channel (522). The probe is then activated to change the volume by ablation of the tissue in the channel, the volume change (524) resulting from the use of the disc-shaped probe (400) is shown in FIG. 23F and volume change (526) resulting from the use of the washer-shaped probe (410) is shown in FIG. 23G. The choice of RF probe design is dependent on the amount of tissue to be ablated. Probes (320)-(370) will allow for ablation of the channel. The probes are operated by insertion into the lamellar tissue, activation, deactivation, advancing the probe into the channel to a second position to be ablated, activation, deactivation, repeating the process until the entire channel is ablated, and then the probe is removed. The probes can also be operated by complete insertion into the lamellar separation channel, activation, deactivation, pulling out of the channel to a second position to be ablated, activation, deactivation and repeating the process until the entire channel is ablated, and then the process is removed. Probes (400) and (410) are operated by insertion into the lamellar separation channel (522), activation, deactivation and removal from the channel. Again, relief cuts in the anterior cornea may be necessary as described above to allow the surface of the cornea to conform to the underlying tissue removal. In this way, the corneal surface in the central corneal area is flattened such that the corneal curvature is improved.
  • The foregoing examples of procedures and devices according to the present invention are only representative and are not meant to be in any manner limiting. Other embodiments, areas of application, methods of use of the present invention, within the scope of the claims appended hereto, will be evident to those skilled in this art. Other embodiments of the procedures without the scope of the claims but within the spirit of invention described herein are considered to be equivalent to those procedures and devices claimed. [0102]

Claims (38)

What is claimed is:
1. A procedure for altering the shape of the anterior corneal surface of an eye having a corneal mass posterior to the anterior corneal surface, wherein the corneal mass has a volume, the procedure comprising the steps of:
initiating at least one access site into the corneal mass posterior to Bowman's layer;
introducing through the at least one access site an electrosurgical probe, the electrosurgical probe having a support end and a circular contact end, wherein the contact end has at least one active tissue contacting site, the active site is in electrical connection with an insulated conductor residing within the contact end and extending to the support end, the insulated conductor being adapted to be coupled to an electrosurgical signal source; and
actuating the electrosurgical probe to modify the volume of the corneal mass adjacent to the electrosurgical probe.
6. The procedure of claim 1 wherein the step of modifying the corneal mass is by desiccation.
7. The procedure of claim 1 wherein the electrosurgical probe is a bipolar RF electrode.
8. The procedure of claim 1 wherein the electrosurgical probe is a monopolar RF electrode.
9. The procedure of claim 1 wherein the electrosurgical RF electrode is used in a sesquipolar configuration.
10. The procedure of claim 3 therein the electrosurgical probe forms a circular probe of less than about 350°.
11. The procedure of claim 1 wherein the modification of the volume of the corneal mass is to correct hyperopia.
12. The procedure of claim 4 wherein the modification of the volume of the corneal mass is to correct hyperopia or astigmatism.
13. The procedure of claim 7 wherein the modification of the volume of the corneal mass is to correct hyperopia, myopia or astigmatism.
14. The procedure of claim 1 further comprising the placement of a relief cut in at least a portion of Bowman's layer.
15. The procedure of claim 1 wherein the modification of the volume of the corneal mass is to alleviate astigmatism.
16. The procedure of claim 1 wherein the modification of the volume of the corneal mass is to correct myopia.
17. The procedure of claim 16, wherein the modification of the volume of the corneal mass takes place at or near the center of the cornea.
18. An electrosurgical probe comprising a support end and a circular contact end, the contact end comprising at least one active tissue contacting site, the active site being in electrical connection with an insulated conductor residing within the contact end and extending to the support end, the active site being raised above a substantial portion of the contact end, and the circular contact end being adapted for introduction through an access site into a corneal mass posterior to Bowman's layer, wherein the insulated conductor is adapted for coupling to an electrosurgical signal source.
19. The electrosurgical probe of claim 18, wherein the raised active site is removably couple to the contact end.
20. The electrosurgical probe of claim 18, wherein the contact end is adapted to be coupled to raised active sites of varying heights.
21. The electrosurgical probe of claim 18, further comprising a handle attached to the support end at an angle with respect to the contact end.
22. The electrosurgical probe of claim 18, further comprising a generally cylindrical barrel coupled to the support end, wherein the support end is angled with respect to a plane of the contact end, and a barrel axis is substantially normal to the contact end plane and substantially coincident to an axis of the contact end.
23. The electrosurgical probe of claim 22, further comprising a generally cylindrical support base adapted to receive the contact end and adapted for positioning on the eye, wherein an axis of the base is adapted to be positioned substantially coincident to a central visual axis of the eye.
24. The electrosurgical probe of claim 23, wherein at least one return electrode for contact with the eye is disposed on the base.
25. The electrosurgical probe of claim 18, the probe comprising two active tissue contacting sites, the active sites being in electrical connection with a single insulated conductor residing within the contact end and extending to the support end.
26. The electrosurgical probe of claim 18, the probe comprising a single active tissue contacting site, the active site being located in a tip of the circular contact end.
27. The electrosurgical probe of claim 18, the probe comprising a single active tissue contacting site wherein the active site comprises an arc of less than about 350°.
28. The electrosurgical probe of claim 18, the probe comprising two active tissue contacting sites that are each in electrical connection with their own separate conductor residing within the contact end and extending to the support end.
29. The electrosurgical probe of claim 18, the probe comprising a single active tissue contacting site located near a tip of the contact end on a top portion of the probe.
30. The electrosurgical probe of claim 18, the probe comprising a single active tissue contacting site located near a tip of the contact end and raised and pointed in a retracting direction of the probe.
31. An electrosurgical probe comprising a support end and a straight contact end, the contact end comprising at least one active tissue contacting site, the active site being in electrical connection with an insulated conductor residing within the contact end and extending to the support end, the active site being raised above a substantial portion of the contact end, and the contact end being adapted for introduction through an access site into a corneal mass posterior to Bowman's layer, wherein the insulated conductor is adapted for coupling to an electrosurgical signal source.
32. The electrosurgical probe of claim 31, the probe comprising a single active tissue contacting site, the active site extending along the length of the straight contact end and located on the top portion of the probe.
33. The electrosurgical probe of claim 31, the probe comprising a two active tissue contacting sites that are each in electrical connection with their own separate conductor residing within the contact end and extending to the support end.
34. The electrosurgical probe of claim 31, the probe comprising a single active tissue contacting site located near a tip of the contact end located on a top portion of the probe.
35. The electrosurgical probe of claim 31, wherein a single active tissue contacting site is located near the tip of the contact end and raised and pointed in a retracting direction of the probe.
36. The electrosurgical probe of claim 31, wherein the contact end is broadened and wherein a single active tissue contacting site is located within the broadened contact end.
37. The electrosurgical probe of claim 31 further comprising a washer-shaped active tissue contacting site at a distal end of the contact end.
38. The electrosurgical probe of claim 31 further comprising a disc-shaped active tissue contacting site at a distal end of the contact end.
39. The electrosurgical probe of claim 38 wherein a wire loop forms the surface of the disc-shaped active site.
40. A sesquipolar electrosurgical kit for electrosurgically altering the shape of the corneal surface of the eye, the kit comprising in packaged combination:
(a) at least one electrosurgical probe with at least one active tissue contacting site, wherein the at least one active site is raised above a substantial portion of a contact end of the probe; and
(b) a sesquipolar return electrode adapted for positioning on or near the eye.
41. The kit of claim 40 the at least one probe including a plurality of removable active sites of different heights.
42. The kit of claim 40 the at least one probe comprising a first probe and a second probe, wherein the height of the active site of the first probe is different from the height of the active site of the second probe.
US08/513,589 1994-02-09 1995-08-10 Electrosurgical procedure for the treatment of the cornea Abandoned US20020049437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/513,589 US20020049437A1 (en) 1994-02-09 1995-08-10 Electrosurgical procedure for the treatment of the cornea

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19420794A 1994-02-09 1994-02-09
US08/513,589 US20020049437A1 (en) 1994-02-09 1995-08-10 Electrosurgical procedure for the treatment of the cornea

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US19420794A Continuation-In-Part 1994-02-09 1994-02-09

Publications (1)

Publication Number Publication Date
US20020049437A1 true US20020049437A1 (en) 2002-04-25

Family

ID=22716722

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/513,589 Abandoned US20020049437A1 (en) 1994-02-09 1995-08-10 Electrosurgical procedure for the treatment of the cornea
US08/629,062 Expired - Fee Related US5766171A (en) 1994-02-09 1996-04-08 Electrosurgical procedure for the treatment of the cornea

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08/629,062 Expired - Fee Related US5766171A (en) 1994-02-09 1996-04-08 Electrosurgical procedure for the treatment of the cornea

Country Status (13)

Country Link
US (2) US20020049437A1 (en)
EP (1) EP0743838A4 (en)
JP (1) JPH09511161A (en)
KR (1) KR970701021A (en)
CN (1) CN1143900A (en)
AU (1) AU686743B2 (en)
BR (1) BR9506762A (en)
CA (1) CA2183103A1 (en)
IL (1) IL112576A (en)
MX (1) MX9603274A (en)
SG (1) SG52621A1 (en)
TW (1) TW274514B (en)
WO (1) WO1995021578A1 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052223A2 (en) * 2002-12-09 2004-06-24 The Trustees Of Dartmouth College Electrically-induced thermokeratoplasty systems and method
US20060217705A1 (en) * 2005-02-17 2006-09-28 Baylis Medical Company Inc. Electrosurgical device with discontinuous flow density
US20060259026A1 (en) * 2005-05-05 2006-11-16 Baylis Medical Company Inc. Electrosurgical treatment method and device
US20070027449A1 (en) * 2002-03-05 2007-02-01 Baylis Medical Company Inc. Electrosurgical device and methods
US20070156136A1 (en) * 2002-03-05 2007-07-05 Neil Godara Methods of treating the sacroiliac region of a patient's body
US20070203402A1 (en) * 2002-03-05 2007-08-30 Baylis Medical Elongate member providing a variation in radiopacity
US20090024124A1 (en) * 2005-07-14 2009-01-22 Lefler Amy Methods for treating the thoracic region of a patient's body
US20090054962A1 (en) * 2002-03-05 2009-02-26 Baylis Medical Company Inc. Methods for treating the thoracic region of a patient's body
US20090149842A1 (en) * 2007-12-05 2009-06-11 David Muller Eye therapy system
US20090187173A1 (en) * 2008-01-23 2009-07-23 David Muller System and method for reshaping an eye feature
US20090187184A1 (en) * 2008-01-23 2009-07-23 David Muller System and method for reshaping an eye feature
US20090209954A1 (en) * 2008-01-23 2009-08-20 David Muller System and method for reshaping an eye feature
US20090275936A1 (en) * 2008-05-01 2009-11-05 David Muller System and method for applying therapy to an eye using energy conduction
US20100076423A1 (en) * 2008-09-19 2010-03-25 Avedro, Inc. Eye therapy system
US20100094280A1 (en) * 2008-10-01 2010-04-15 Avedro, Inc. Eye therapy system
US20100094278A1 (en) * 2008-10-13 2010-04-15 Guangyao Jia Capsularhexis Device With Flexible Heating Element
US20100094197A1 (en) * 2008-09-30 2010-04-15 John Marshall Eye therapy system
US20100256705A1 (en) * 2009-04-02 2010-10-07 Avedro, Inc. Eye therapy system
US20100280509A1 (en) * 2009-04-02 2010-11-04 Avedro, Inc. Eye Therapy System
US20100312232A1 (en) * 2009-06-03 2010-12-09 Guangyao Jia Capsulotomy Repair Device and Method for Capsulotomy Repair
US20100312252A1 (en) * 2009-06-03 2010-12-09 Guangyao Jia Capsularhexis device with flexible heating element having an angled transitional neck
US20110118716A1 (en) * 2009-10-30 2011-05-19 Avedro, Inc. System and Method for Stabilizing Corneal Tissue After Treatment
US20110118654A1 (en) * 2009-10-21 2011-05-19 Avedro, Inc. Eye Therapy
US20110190739A1 (en) * 2010-01-29 2011-08-04 Lensar, Inc. Servo controlled docking force device for use in ophthalmic applications
US20110237999A1 (en) * 2010-03-19 2011-09-29 Avedro Inc. Systems and methods for applying and monitoring eye therapy
US8202272B2 (en) 2007-07-19 2012-06-19 Avedro, Inc. Eye therapy system
US20120296321A1 (en) * 2011-03-25 2012-11-22 Frey Rudolph W System and method for correcting astigmatism using multiple paired arcuate laser generated corneal incisions
US8469952B2 (en) 2008-01-23 2013-06-25 Avedro, Inc. System and method for positioning an eye therapy device
US8708491B2 (en) 2008-07-25 2014-04-29 Lensar, Inc. Method and system for measuring an eye
US8758332B2 (en) 2009-07-24 2014-06-24 Lensar, Inc. Laser system and method for performing and sealing corneal incisions in the eye
USD707818S1 (en) 2013-03-05 2014-06-24 Alcon Research Ltd. Capsulorhexis handpiece
US8801186B2 (en) 2010-10-15 2014-08-12 Lensar, Inc. System and method of scan controlled illumination of structures within an eye
US8882757B2 (en) 2008-11-11 2014-11-11 Avedro, Inc. Eye therapy system
US8992516B2 (en) 2007-07-19 2015-03-31 Avedro, Inc. Eye therapy system
US9020580B2 (en) 2011-06-02 2015-04-28 Avedro, Inc. Systems and methods for monitoring time based photo active agent delivery or photo active marker presence
US9044308B2 (en) 2011-05-24 2015-06-02 Avedro, Inc. Systems and methods for reshaping an eye feature
USD737438S1 (en) 2014-03-04 2015-08-25 Novartis Ag Capsulorhexis handpiece
US9180051B2 (en) 2006-01-20 2015-11-10 Lensar Inc. System and apparatus for treating the lens of an eye
US9241755B2 (en) 2010-05-11 2016-01-26 Alcon Research, Ltd. Capsule polishing device and method for capsule polishing
US9498114B2 (en) 2013-06-18 2016-11-22 Avedro, Inc. Systems and methods for determining biomechanical properties of the eye for applying treatment
US9498122B2 (en) 2013-06-18 2016-11-22 Avedro, Inc. Systems and methods for determining biomechanical properties of the eye for applying treatment
US9707126B2 (en) 2009-10-21 2017-07-18 Avedro, Inc. Systems and methods for corneal cross-linking with pulsed light
US9949789B2 (en) 2002-03-05 2018-04-24 Avent, Inc. Methods of treating the sacroiliac region of a patient's body
US10028657B2 (en) 2015-05-22 2018-07-24 Avedro, Inc. Systems and methods for monitoring cross-linking activity for corneal treatments
US10114205B2 (en) 2014-11-13 2018-10-30 Avedro, Inc. Multipass virtually imaged phased array etalon
US10258809B2 (en) 2015-04-24 2019-04-16 Avedro, Inc. Systems and methods for photoactivating a photosensitizer applied to an eye
US10350111B2 (en) 2014-10-27 2019-07-16 Avedro, Inc. Systems and methods for cross-linking treatments of an eye
US10786300B2 (en) 2015-04-13 2020-09-29 Carlos Fernando Bazoberry Radiofrequency denervation needle and method
US20200345547A1 (en) * 2018-03-12 2020-11-05 Choi's Ophthalmic Institute Ophthalmic surgical apparatus
US11207410B2 (en) 2015-07-21 2021-12-28 Avedro, Inc. Systems and methods for treatments of an eye with a photosensitizer
US11291496B2 (en) 2002-03-05 2022-04-05 Avent, Inc. Methods of treating the sacroiliac region of a patient's body

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871496A (en) * 1996-03-20 1999-02-16 Cardiothoracic Systems, Inc. Surgical instrument for facilitating the detachment of an artery and the like
EP0949883B1 (en) * 1996-10-25 2010-10-06 Bausch & Lomb Incorporated Apparatus for preventing posterior capsular opacification
US5957921A (en) * 1996-11-07 1999-09-28 Optex Ophthalmologics, Inc. Devices and methods useable for forming small openings in the lens capsules of mammalian eyes
US6102906A (en) * 1997-09-22 2000-08-15 Phillips; Andrew F. System and method for the treatment of hyperopia and myopia
US6494881B1 (en) 1997-09-30 2002-12-17 Scimed Life Systems, Inc. Apparatus and method for electrode-surgical tissue removal having a selectively insulated electrode
US6066138A (en) * 1998-05-27 2000-05-23 Sheffer; Yehiel Medical instrument and method of utilizing same for eye capsulotomy
US6006756A (en) * 1998-08-03 1999-12-28 Shadduck; John H. Non-contact magnetoresonant implant system and techniques for periodic corneal re-shaping
WO2000009027A1 (en) * 1998-08-13 2000-02-24 Keravision, Inc. Corneal electrosurgical probe with a variable-height active site
US6033403A (en) * 1998-10-08 2000-03-07 Irvine Biomedical, Inc. Long electrode catheter system and methods thereof
US6673290B1 (en) 1998-11-12 2004-01-06 Scimed Life Systems, Inc. Electrode structure for heating and ablating tissue and method for making and assembling the same
WO2000052516A2 (en) 1999-03-01 2000-09-08 Boston Innovative Optics, Inc. System and method for increasing the depth of focus of the human eye
US6511508B1 (en) * 2000-08-04 2003-01-28 Environmental Robots, Inc. Surgical correction of human eye refractive errors by active composite artificial muscle implants
US7060094B2 (en) 2000-08-07 2006-06-13 Ophthalmotronics, Inc. Accommodating zonular mini-bridge implants
US6997926B2 (en) * 2002-02-04 2006-02-14 Boston Scientific Scimed, Inc. Resistance heated tissue morcellation
US20060100617A1 (en) * 2004-11-09 2006-05-11 Alcon, Inc. Capsularhexis device
EP1991148B1 (en) * 2006-02-22 2011-05-11 Custom Medical Applications, Inc. Ablation instruments
US8394140B2 (en) 2006-03-17 2013-03-12 Addition Technology, Inc. Pre-formed intrastromal corneal insert for corneal abnormalities or dystrophies
US20080125771A1 (en) * 2006-11-27 2008-05-29 Michael Lau Methods and apparatuses for contouring tissue by selective application of energy
US8123803B2 (en) * 2007-01-24 2012-02-28 Mohsen Shaninpoor System and device for correcting hyperopia and presbyopia
US20080312675A1 (en) * 2007-06-18 2008-12-18 Advanced Medical Optics, Inc. System and method for calculating limbal relaxing incisions
US7935110B1 (en) * 2007-06-25 2011-05-03 Ellman International, Inc. Eyelid RF surgery
JP4725808B2 (en) * 2007-11-14 2011-07-13 有限会社リバー精工 Endoscopic hook-type high-frequency treatment instrument
US20090306773A1 (en) * 2008-06-04 2009-12-10 Acufocus, Inc. Opaque corneal insert for refractive correction
US8137344B2 (en) * 2008-12-10 2012-03-20 Alcon Research, Ltd. Flexible, automated capsulorhexis device
US8157797B2 (en) * 2009-01-12 2012-04-17 Alcon Research, Ltd. Capsularhexis device with retractable bipolar electrodes
US20110118734A1 (en) * 2009-11-16 2011-05-19 Alcon Research, Ltd. Capsularhexis device using pulsed electric fields
US20110202049A1 (en) * 2010-02-18 2011-08-18 Alcon Research, Ltd. Small Gauge Ablation Probe For Glaucoma Surgery
NO2575711T3 (en) * 2010-06-07 2018-01-06
US8920417B2 (en) 2010-06-30 2014-12-30 Medtronic Advanced Energy Llc Electrosurgical devices and methods of use thereof
US8906012B2 (en) 2010-06-30 2014-12-09 Medtronic Advanced Energy Llc Electrosurgical devices with wire electrode
US9149388B2 (en) 2010-09-29 2015-10-06 Alcon Research, Ltd. Attenuated RF power for automated capsulorhexis
CA2857306C (en) 2011-12-02 2017-07-25 Acufocus, Inc. Ocular mask having selective spectral transmission
US9204962B2 (en) 2013-03-13 2015-12-08 Acufocus, Inc. In situ adjustable optical mask
US9427922B2 (en) 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
WO2014145148A2 (en) 2013-03-15 2014-09-18 Ellman International, Inc. Surgical instruments and systems with multimodes of treatments and electrosurgical operation
US9827140B2 (en) 2013-07-17 2017-11-28 William Thomas McClellan Percutaneous blepharoplasty device and method
US20220401261A1 (en) * 2017-12-07 2022-12-22 Harry Michael Lambert Ophthalmological surgery microsurgery instruments and methods of use in pars plana vitrectomy for increasing surgical precision and reducing vitreoretinal instrument insertions and removals and related trauma
KR102505869B1 (en) 2018-02-07 2023-03-07 싸이노슈어, 엘엘씨 Method and Apparatus for Controlled RF Processing and RF Generator System
USD1005484S1 (en) 2019-07-19 2023-11-21 Cynosure, Llc Handheld medical instrument and docking base

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE949370C (en) * 1954-02-06 1956-09-20 Phil Friedrich Loenne Dr Med D Electrosurgical instrument
US4033351A (en) * 1974-06-14 1977-07-05 Siemens Aktiengesellschaft Bipolar cutting electrode for high-frequency surgery
US3987795A (en) * 1974-08-28 1976-10-26 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
DE2525982C3 (en) * 1975-06-11 1978-03-09 Richard Wolf Gmbh, 7134 Knittlingen Cutting electrode for resectoscopes
US4202337A (en) * 1977-06-14 1980-05-13 Concept, Inc. Bipolar electrosurgical knife
US4228800A (en) * 1978-04-04 1980-10-21 Concept, Inc. Bipolar electrosurgical knife
US4326529A (en) * 1978-05-26 1982-04-27 The United States Of America As Represented By The United States Department Of Energy Corneal-shaping electrode
US4376529A (en) * 1980-03-31 1983-03-15 Xerox Corporation Output station for reproducing machine
US4805616A (en) * 1980-12-08 1989-02-21 Pao David S C Bipolar probes for ophthalmic surgery and methods of performing anterior capsulotomy
US4481948A (en) * 1980-12-29 1984-11-13 Sole Gary M Medical instrument, and methods of constructing and utilizing same
US4367744A (en) * 1980-12-29 1983-01-11 Sole Gary M Medical instrument, and method of utilizing same
US4688570A (en) * 1981-03-09 1987-08-25 The Regents Of The University Of California Ophthalmologic surgical instrument
US4381007A (en) * 1981-04-30 1983-04-26 The United States Of America As Represented By The United States Department Of Energy Multipolar corneal-shaping electrode with flexible removable skirt
US4438766A (en) * 1981-09-03 1984-03-27 C. R. Bard, Inc. Electrosurgical generator
US4559943A (en) * 1981-09-03 1985-12-24 C. R. Bard, Inc. Electrosurgical generator
US4671276A (en) * 1982-01-04 1987-06-09 Kera Associates Apparatus for corneal curvature adjustment
US4452235A (en) * 1982-01-04 1984-06-05 Reynolds Alvin E Method for corneal curvature adjustment
US4961744A (en) * 1982-01-04 1990-10-09 Keravision, Inc. Holder for inserting corneal curvature adjustable ring
US4766895A (en) * 1982-01-04 1988-08-30 Kera Corneal Devices, Inc. Apparatus for corneal curvature adjustment
FR2556953B1 (en) * 1983-12-21 1986-05-16 Hanna Khalil SURGICAL APPARATUS FOR RADIATION KERATOTOMY
AU606315B2 (en) * 1985-09-12 1991-02-07 Summit Technology, Inc. Surface erosion using lasers
SU1419676A1 (en) * 1985-12-16 1988-08-30 Московский научно-исследовательский институт микрохирургии глаза Apparatus for coagulation of biological tissues
US4901719A (en) * 1986-04-08 1990-02-20 C. R. Bard, Inc. Electrosurgical conductive gas stream equipment
US4807623A (en) * 1986-05-30 1989-02-28 David M. Lieberman Device for simultaneously forming two incisions along a path on an eye
US4802476A (en) * 1987-06-01 1989-02-07 Everest Medical Corporation Electro-surgical instrument
US5215104A (en) * 1988-08-16 1993-06-01 Steinert Roger F Method for corneal modification
US4907587A (en) * 1988-10-12 1990-03-13 Fedorov Svjatoslav N Method for surgical correction of mixed and hypermetropic astigmatism and a device for carrying same into effect
US5263951A (en) * 1989-04-21 1993-11-23 Kerus Medical Systems Correction of the optical focusing system of the eye using laser thermal keratoplasty
US5009656A (en) * 1989-08-17 1991-04-23 Mentor O&O Inc. Bipolar electrosurgical instrument
DE8911715U1 (en) * 1989-10-02 1989-11-16 Ueckmann, Bernd, 6950 Mosbach, De
US5203353A (en) * 1989-10-24 1993-04-20 Surgical Technologies, Inc. Method of penetrating and working in the vitreous humor of the eye
US5201730A (en) * 1989-10-24 1993-04-13 Surgical Technologies, Inc. Tissue manipulator for use in vitreous surgery combining a fiber optic endoilluminator with an infusion/aspiration system
US5273535A (en) * 1991-11-08 1993-12-28 Ep Technologies, Inc. Catheter with electrode tip having asymmetric left and right curve configurations
US5025811A (en) * 1990-02-16 1991-06-25 Dobrogowski Michael J Method for focal destruction of eye tissue by electroablation
US5174304A (en) * 1990-02-16 1992-12-29 Latina Mark A Electrocycloablation apparatus and method
US5346491A (en) * 1991-03-28 1994-09-13 Sony Corporation Feed device for bipolar electrodes for capsulotomy
AU1899292A (en) * 1991-05-24 1993-01-08 Ep Technologies Inc Combination monophasic action potential/ablation catheter and high-performance filter system
US5257451A (en) * 1991-11-08 1993-11-02 Ep Technologies, Inc. Method of making durable sleeve for enclosing a bendable electrode tip assembly
DE69233091T2 (en) * 1991-11-08 2004-05-06 Boston Scientific Ltd., St. Michael ABLATION ELECTRODE WITH INSULATED TEMPERATURE MEASURING ELEMENT
AU3067392A (en) * 1991-11-08 1993-06-07 Ep Technologies Inc Systems and methods for ablating tissue while monitoring tissue impedance
AU3128593A (en) * 1991-11-08 1993-06-07 Ep Technologies Inc Radiofrequency ablation with phase sensitive power detection
WO1993020878A1 (en) * 1992-04-10 1993-10-28 Cardiorhythm Shapable handle for steerable electrode catheter
US5318525A (en) * 1992-04-10 1994-06-07 Medtronic Cardiorhythm Steerable electrode catheter
US5573533A (en) * 1992-04-10 1996-11-12 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5281217A (en) * 1992-04-13 1994-01-25 Ep Technologies, Inc. Steerable antenna systems for cardiac ablation that minimize tissue damage and blood coagulation due to conductive heating patterns
WO1993020768A1 (en) * 1992-04-13 1993-10-28 Ep Technologies, Inc. Steerable microwave antenna systems for cardiac ablation
US5314466A (en) * 1992-04-13 1994-05-24 Ep Technologies, Inc. Articulated unidirectional microwave antenna systems for cardiac ablation
WO1993020893A1 (en) * 1992-04-13 1993-10-28 Ep Technologies, Inc. Steerable coaxial antenna systems for cardiac ablation
WO1993020886A1 (en) * 1992-04-13 1993-10-28 Ep Technologies, Inc. Articulated systems for cardiac ablation
US5533999A (en) * 1993-08-23 1996-07-09 Refractec, Inc. Method and apparatus for modifications of visual acuity by thermal means

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090054962A1 (en) * 2002-03-05 2009-02-26 Baylis Medical Company Inc. Methods for treating the thoracic region of a patient's body
US11291496B2 (en) 2002-03-05 2022-04-05 Avent, Inc. Methods of treating the sacroiliac region of a patient's body
US10206739B2 (en) 2002-03-05 2019-02-19 Avent, Inc. Electrosurgical device and methods
US9949789B2 (en) 2002-03-05 2018-04-24 Avent, Inc. Methods of treating the sacroiliac region of a patient's body
US20070027449A1 (en) * 2002-03-05 2007-02-01 Baylis Medical Company Inc. Electrosurgical device and methods
US20070156136A1 (en) * 2002-03-05 2007-07-05 Neil Godara Methods of treating the sacroiliac region of a patient's body
US20070203402A1 (en) * 2002-03-05 2007-08-30 Baylis Medical Elongate member providing a variation in radiopacity
US9820808B2 (en) 2002-03-05 2017-11-21 Avent, Inc. Method for treating the thoracic region of a patient's body
US9364281B2 (en) 2002-03-05 2016-06-14 Avent, Inc. Methods for treating the thoracic region of a patient's body
US9216053B2 (en) 2002-03-05 2015-12-22 Avent, Inc. Elongate member providing a variation in radiopacity
WO2004052223A3 (en) * 2002-12-09 2004-12-29 Dartmouth College Electrically-induced thermokeratoplasty systems and method
WO2004052223A2 (en) * 2002-12-09 2004-06-24 The Trustees Of Dartmouth College Electrically-induced thermokeratoplasty systems and method
US8864759B2 (en) 2004-11-15 2014-10-21 Kimberly-Clark Inc. Methods of treating the sacroiliac region of a patient's body
US20110040362A1 (en) * 2004-11-15 2011-02-17 Neil Godara Methods of Treating the Sacroiliac Region of a Patient's Body
US20060217705A1 (en) * 2005-02-17 2006-09-28 Baylis Medical Company Inc. Electrosurgical device with discontinuous flow density
US8951249B2 (en) 2005-02-17 2015-02-10 Avent Inc. Electrosurgical device with discontinuous flow density
US20060259026A1 (en) * 2005-05-05 2006-11-16 Baylis Medical Company Inc. Electrosurgical treatment method and device
US20090024124A1 (en) * 2005-07-14 2009-01-22 Lefler Amy Methods for treating the thoracic region of a patient's body
US9180051B2 (en) 2006-01-20 2015-11-10 Lensar Inc. System and apparatus for treating the lens of an eye
US8992516B2 (en) 2007-07-19 2015-03-31 Avedro, Inc. Eye therapy system
US8202272B2 (en) 2007-07-19 2012-06-19 Avedro, Inc. Eye therapy system
US8652131B2 (en) 2007-07-19 2014-02-18 Avedro, Inc. Eye therapy system
US8545487B2 (en) 2007-12-05 2013-10-01 Avedro Inc. Eye therapy system
US20090149842A1 (en) * 2007-12-05 2009-06-11 David Muller Eye therapy system
US20090187173A1 (en) * 2008-01-23 2009-07-23 David Muller System and method for reshaping an eye feature
US8348935B2 (en) 2008-01-23 2013-01-08 Avedro, Inc. System and method for reshaping an eye feature
WO2009094467A1 (en) * 2008-01-23 2009-07-30 Avedro, Inc. System and method for reshaping an eye feature
WO2009094470A1 (en) * 2008-01-23 2009-07-30 Avedro, Inc. System and method for reshaping an eye feature
US20090187184A1 (en) * 2008-01-23 2009-07-23 David Muller System and method for reshaping an eye feature
US20090209954A1 (en) * 2008-01-23 2009-08-20 David Muller System and method for reshaping an eye feature
US8409189B2 (en) 2008-01-23 2013-04-02 Avedro, Inc. System and method for reshaping an eye feature
US8469952B2 (en) 2008-01-23 2013-06-25 Avedro, Inc. System and method for positioning an eye therapy device
US20090275936A1 (en) * 2008-05-01 2009-11-05 David Muller System and method for applying therapy to an eye using energy conduction
US8708491B2 (en) 2008-07-25 2014-04-29 Lensar, Inc. Method and system for measuring an eye
US20100076423A1 (en) * 2008-09-19 2010-03-25 Avedro, Inc. Eye therapy system
US8398628B2 (en) 2008-09-19 2013-03-19 Avedro, Inc. Eye therapy system
US8366689B2 (en) 2008-09-30 2013-02-05 Avedro, Inc. Method for making structural changes in corneal fibrils
US20100094197A1 (en) * 2008-09-30 2010-04-15 John Marshall Eye therapy system
US8460278B2 (en) 2008-10-01 2013-06-11 Avedro, Inc. Eye therapy system
US20100094280A1 (en) * 2008-10-01 2010-04-15 Avedro, Inc. Eye therapy system
US20100094278A1 (en) * 2008-10-13 2010-04-15 Guangyao Jia Capsularhexis Device With Flexible Heating Element
US9125720B2 (en) 2008-10-13 2015-09-08 Alcon Research, Ltd. Capsularhexis device with flexible heating element
US8882757B2 (en) 2008-11-11 2014-11-11 Avedro, Inc. Eye therapy system
US20100256705A1 (en) * 2009-04-02 2010-10-07 Avedro, Inc. Eye therapy system
US8712536B2 (en) 2009-04-02 2014-04-29 Avedro, Inc. Eye therapy system
US20100280509A1 (en) * 2009-04-02 2010-11-04 Avedro, Inc. Eye Therapy System
CN102458320A (en) * 2009-06-03 2012-05-16 爱尔康研究有限公司 Capsulotomy repair device and method for capsulotomy repair
US20100312252A1 (en) * 2009-06-03 2010-12-09 Guangyao Jia Capsularhexis device with flexible heating element having an angled transitional neck
US8814854B2 (en) * 2009-06-03 2014-08-26 Alcon Research, Ltd. Capsulotomy repair device and method for capsulotomy repair
US20100312232A1 (en) * 2009-06-03 2010-12-09 Guangyao Jia Capsulotomy Repair Device and Method for Capsulotomy Repair
US8758332B2 (en) 2009-07-24 2014-06-24 Lensar, Inc. Laser system and method for performing and sealing corneal incisions in the eye
US8574277B2 (en) 2009-10-21 2013-11-05 Avedro Inc. Eye therapy
US9707126B2 (en) 2009-10-21 2017-07-18 Avedro, Inc. Systems and methods for corneal cross-linking with pulsed light
US9498642B2 (en) 2009-10-21 2016-11-22 Avedro, Inc. Eye therapy system
US20110118654A1 (en) * 2009-10-21 2011-05-19 Avedro, Inc. Eye Therapy
US8870934B2 (en) 2009-10-21 2014-10-28 Avedro, Inc. Eye therapy system
US8177778B2 (en) 2009-10-30 2012-05-15 Avedro, Inc. System and method for stabilizing corneal tissue after treatment
US20110118716A1 (en) * 2009-10-30 2011-05-19 Avedro, Inc. System and Method for Stabilizing Corneal Tissue After Treatment
US20110190739A1 (en) * 2010-01-29 2011-08-04 Lensar, Inc. Servo controlled docking force device for use in ophthalmic applications
US11179576B2 (en) 2010-03-19 2021-11-23 Avedro, Inc. Systems and methods for applying and monitoring eye therapy
US20110237999A1 (en) * 2010-03-19 2011-09-29 Avedro Inc. Systems and methods for applying and monitoring eye therapy
US9241755B2 (en) 2010-05-11 2016-01-26 Alcon Research, Ltd. Capsule polishing device and method for capsule polishing
US8801186B2 (en) 2010-10-15 2014-08-12 Lensar, Inc. System and method of scan controlled illumination of structures within an eye
US20120296321A1 (en) * 2011-03-25 2012-11-22 Frey Rudolph W System and method for correcting astigmatism using multiple paired arcuate laser generated corneal incisions
US20200170840A1 (en) * 2011-03-25 2020-06-04 Lensar, Inc. System and method for correcting astigmatism using multiple paired arcuate laser generated corneal incisions
US10463541B2 (en) * 2011-03-25 2019-11-05 Lensar, Inc. System and method for correcting astigmatism using multiple paired arcuate laser generated corneal incisions
US9044308B2 (en) 2011-05-24 2015-06-02 Avedro, Inc. Systems and methods for reshaping an eye feature
US9020580B2 (en) 2011-06-02 2015-04-28 Avedro, Inc. Systems and methods for monitoring time based photo active agent delivery or photo active marker presence
US10137239B2 (en) 2011-06-02 2018-11-27 Avedro, Inc. Systems and methods for monitoring time based photo active agent delivery or photo active marker presence
USD707818S1 (en) 2013-03-05 2014-06-24 Alcon Research Ltd. Capsulorhexis handpiece
US9498122B2 (en) 2013-06-18 2016-11-22 Avedro, Inc. Systems and methods for determining biomechanical properties of the eye for applying treatment
US9498114B2 (en) 2013-06-18 2016-11-22 Avedro, Inc. Systems and methods for determining biomechanical properties of the eye for applying treatment
USD737438S1 (en) 2014-03-04 2015-08-25 Novartis Ag Capsulorhexis handpiece
US10350111B2 (en) 2014-10-27 2019-07-16 Avedro, Inc. Systems and methods for cross-linking treatments of an eye
US11219553B2 (en) 2014-10-27 2022-01-11 Avedro, Inc. Systems and methods for cross-linking treatments of an eye
US10114205B2 (en) 2014-11-13 2018-10-30 Avedro, Inc. Multipass virtually imaged phased array etalon
US10786300B2 (en) 2015-04-13 2020-09-29 Carlos Fernando Bazoberry Radiofrequency denervation needle and method
US10258809B2 (en) 2015-04-24 2019-04-16 Avedro, Inc. Systems and methods for photoactivating a photosensitizer applied to an eye
US11167149B2 (en) 2015-04-24 2021-11-09 Avedro, Inc. Systems and methods for photoactivating a photosensitizer applied to an eye
US10028657B2 (en) 2015-05-22 2018-07-24 Avedro, Inc. Systems and methods for monitoring cross-linking activity for corneal treatments
US11207410B2 (en) 2015-07-21 2021-12-28 Avedro, Inc. Systems and methods for treatments of an eye with a photosensitizer
US20200345547A1 (en) * 2018-03-12 2020-11-05 Choi's Ophthalmic Institute Ophthalmic surgical apparatus

Also Published As

Publication number Publication date
AU686743B2 (en) 1998-02-12
CA2183103A1 (en) 1995-08-17
IL112576A0 (en) 1995-05-26
IL112576A (en) 1998-10-30
KR970701021A (en) 1997-03-17
TW274514B (en) 1996-04-21
EP0743838A4 (en) 1999-01-07
SG52621A1 (en) 1998-09-28
MX9603274A (en) 1997-02-28
CN1143900A (en) 1997-02-26
AU1700395A (en) 1995-08-29
BR9506762A (en) 1997-10-07
WO1995021578A1 (en) 1995-08-17
JPH09511161A (en) 1997-11-11
EP0743838A1 (en) 1996-11-27
US5766171A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
US5766171A (en) Electrosurgical procedure for the treatment of the cornea
US5599341A (en) Laser surgical procedure and device for treatment of the cornea
US20020013579A1 (en) Rotating electrosurgical blade for corneal reshaping
RU2194470C2 (en) Device for performing vision acuity correction by means of heating means
US5749871A (en) Method and apparatus for modifications of visual acuity by thermal means
US5688264A (en) Laser treatment for retinal detachment
US6213997B1 (en) Apparatus for modifications of visual acuity by thermal means
US6036688A (en) Radio frequency refractive keratectomy apparatus and method
US20030181903A1 (en) Method and apparatus for modifications of visual acuity by thermal means
JP2005324055A (en) Modifications of visual acuity by thermal means
JP2003531664A (en) Powered heated keratoplasty system that can determine wet or dry corneas
EP1104261A1 (en) Corneal electrosurgical probe with a variable-height active site
US20040049186A1 (en) Method and apparatus for modifications of visual acuity by thermal means
US20020161365A1 (en) Method of incision/excision/coagulation of scleral, peri-scleral, iris and corneal tissues with a bipolar pulsed high frequency diathermy tip
JP2003275234A (en) Electrode assembly for heating cornea forming system used to correct visual acuity
AU742705B2 (en) Method and apparatus for modifications of visual acuity by thermal means
EP1262156B1 (en) Modifications of visual acuity by thermal means
US7147636B1 (en) Method and apparatus for corneal shrinkage using a plurality of electrodes

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADDITION TECHNOLOGY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KERAVISION, INC.;REEL/FRAME:011911/0395

Effective date: 20010604

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION