US20020068180A1 - Lubricated catheter balloon - Google Patents

Lubricated catheter balloon Download PDF

Info

Publication number
US20020068180A1
US20020068180A1 US09/727,742 US72774200A US2002068180A1 US 20020068180 A1 US20020068180 A1 US 20020068180A1 US 72774200 A US72774200 A US 72774200A US 2002068180 A1 US2002068180 A1 US 2002068180A1
Authority
US
United States
Prior art keywords
poly
dilatation balloon
copolymers
balloon
lubricious material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/727,742
Other versions
US6444324B1 (en
Inventor
Dachuan Yang
Scott Sjoquist
Jan Seppala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Scimed Life Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scimed Life Systems Inc filed Critical Scimed Life Systems Inc
Priority to US09/727,742 priority Critical patent/US6444324B1/en
Assigned to SCIMED LIFE SYSTEMS, INC. reassignment SCIMED LIFE SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEPPALA, JAN D., SJOQUIST, SCOTT L., YANG, DACHUAN
Publication of US20020068180A1 publication Critical patent/US20020068180A1/en
Application granted granted Critical
Publication of US6444324B1 publication Critical patent/US6444324B1/en
Assigned to BOSTON SCIENTIFIC SCIMED, INC. reassignment BOSTON SCIENTIFIC SCIMED, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SCIMED LIFE SYSTEMS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0045Catheters; Hollow probes characterised by structural features multi-layered, e.g. coated
    • A61M2025/0046Coatings for improving slidability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic

Definitions

  • the present invention relates to coating the inner surface of a dilatation balloon so as to reduce friction and thus reduce the required opening pressure upon inflation.
  • Medical balloon catheters having a dilatation balloon located at their distal ends are used surgically for insertion into blood vessels, urethra, or body conduits for the purpose of reducing stenoses or blockages.
  • catheters are made of materials such as polyamides, nylon, SELAR®, polyesters such as polyethylene terephthalate (PET), polyethylene (PE), polyester elastomers such as HYTREL®, or similar materials.
  • PET polyethylene terephthalate
  • PE polyethylene
  • polyester elastomers such as HYTREL®, or similar materials.
  • balloon catheters can be made of several layers with polyethylene terephthalate blended with polyethylene. Also they can be made with blends of polyethylene terephthalate and HYTREL®.
  • HYTREL® is a randomized block co-polymer of polyethers and polyesters. Such materials are not typically by themselves lubricious in nature, and must be rended lubricious by other means such as coating them with a lub
  • Balloons are typically tightly folded and wrapped upon themselves for delivery to the targeted lesion, storage and are unwrapped and expanded to a size that is considerably greater than the stored size by the introduction of an expansion fluid into the balloon. It is very difficult, and in fact almost impossible, to do so without having portions stick to each other, and possibly tearing the substrate, particularly in the absence of a lubricious coating. Furthermore, this can greatly increase the amount of opening pressure required to inflate the balloon. Or if using for stent delivery, it will need extra pressure to expand the stent and release it.
  • lubricant utilized on the outside of the balloon is hydrophobic, it may bead or run off when exposed to an aqueous environment, and can consequently reduce lubricity, and lack abrasion resistance.
  • Hydrophilic coatings are an alternative but can also migrate from the balloon surface in an aqueous environment, particularly if they are water soluble, although there are steps that can be taken to prevent migration from occurring through the use of crosslinking or coupling agents, or binders, for instance.
  • U.S. Pat. No. 5,509,899 describes a medical balloon and catheter in which the balloon is wrapped and folded upon itself tortuously and tightly so that outer surfaces contact each other for insertion into the body and in which the balloon is free of bridging and adhesion between abutting surfaces.
  • the balloon has a base of a continuous polymeric surface expandable from a folded, wrapped configuration with surfaces touching each other into a balloon when inflated, a lubricious, biocompatible, hydrogel coating disposed on the polymeric surface, and a thin, lubricious, blood-compatible coating disposed upon the hydrogel coating which adheres to it to prevent abutting surfaces of the folded polymeric surfaces from adhering to each other during inflation and to prevent delamination of the hydrogel coating and/or rupture of the balloon.
  • the present invention relates to a method of coating the inner surface of the dilatation balloon used with a catheter device with a lubricant in order to overcome friction between surfaces in contact with one another and to consequently reduce the opening pressure required to inflate the balloon. This can also avoid the problem of “water melon seeding”.
  • the dilatation balloon has an inner surface and an outer surface and a lubricious material disposed on the inner surface.
  • the inner surface at least periodically comes into contact with itself.
  • dilatation balloons are folded upon themselves for storage.
  • the lubricious material on the inner surface reduces the friction that occurs during inflation of the balloon by reducing or preventing the amount of adhesion occurring between the material of the inner surface as it comes in contact with itself. This lubricious material consequently reduces the opening force required during inflation and thus facilitates an easier inflation.
  • the lubricous material may also reduce pinholeing and ease stent delivery.
  • FIG. 1 is a perspective view of a dilatation catheter having a catheter balloon with a lubricous material on its inner surface.
  • the present invention relates in particular to coating the inner surface of a dilatation balloon with a lubricious material.
  • Balloons are typically folded and wrapped upon themselves for storage and are unwrapped and expanded to a size that is considerably greater than the stored size by the introduction of an expansion fluid into the balloon. It is very difficult, and in fact almost impossible, to do so without having portions stick to each other, and possibly tearing the substrate, particularly in the absence of a lubricious coating.
  • FIG. 1 illustrates generally at 10 , a dilatation catheter having catheter balloon attached at its distal end shown in its inflated state.
  • Catheter balloon 12 is generally conventional in its structure having a body portion 14 , cone portions 16 and waist portions 18 .
  • the balloon is charaterized in accordance with this invention by having a lubricious material 20 is shown on the inner surfaces of the cone and waist portions.
  • the balloons of the present invention are not limited to any particular any polymeric material, but may be formed of thermoplastic elastomers (i.e. block copolymers), polyolefins such as polyethylene and polypropylene, ethylene ⁇ -olefin polymers, polyesters, polyester elastomers, polyamides, polyimides, nylons, polyvinyl chlorides, thermoplastic polyurethanes, polyether-block-amide copolymers, ionomeric polymers, and their copolymers, and so forth.
  • the term copolymer will be hereinafter used to refer to those polymers having three (terpolymers) or more different monomers as well as two.
  • materials such as nylon; SELAR®; polyether-polyester block copolymers such as HYTREL®; polyether block amide copolymers such as PEBAX® including PEBAX® 7033 or 7233; polyester block ethers such as ARNITEL® including ARNITEL®EM 40; SURLYN® ionomeric polymers such as ethylene/methacrylic acid (E/MAA) copolymers wherein the MAA acid groups have been partially neutralized with lithium, sodium, or zinc ions; polyethylene terephthalate (PET); polytetrafluoroethylene (PTFE); polyvinyl chloride; polyetherurethanes; polyesterurethanes; polyurethane ureas; polyurethane siloxane block copolymers; silicone polycarbonate copolymers; ethylene vinyl acetate copolymers; acrylonitrilebutadiene-styrene copolymers; polyphenylene sulfides; copoly
  • balloon materials which may be preferable for use include, but are not limited to, the polyether block amides, such as PEBAX®7033 or 7233; the polyester block ethers such as ARNITEL®EM 40; PET; and nylon.
  • Balloon formation may be carried out in any conventional manner with conventional extrusion and blowing techniques, but basically there are three major steps in the process which include extruding a tubular preform, blow molding the balloon and annealing the balloon. Depending on the balloon material employed, the preform may be axially stretched before it is blown. Techniques for balloon formation are discussed in U.S. Pat. No. 4,490,421 to Levy and in U.S. Pat. No. 5,348,538 issued Sep. 20, 1994 to Wang et al.
  • the lubricious materials that may be utilized to lubricate the inner surface of the dilatation balloons include both hydrophobic and hydrophilic materials. These materials may be crosslinked or reactive compounds, or they may be non-reactive or uncrosslinked compounds, and may include those that are actually coupled to the balloon surface through the use of a coupling agents, for instance.
  • Useful hydrophobic materials include both reactive and nonreactive compounds. Some examples include, but are not limited to, glycerine, olive oil, vegetable oil, peanut oil, and so forth.
  • hydrophobic materials found to be quite useful include silicones (i.e. organosiloxane polymers), functionalized silicones, hydrolyzable silanes which form silicones, and so forth. These compounds include both reactive and non-reactive species including those that are crosslinkable in the presence of moisture. Blends of these compounds also find utility herein.
  • a blend of a hydrolyzable siloxane, such as an amino terminated siloxane, and a non-crosslinkable silicone oil is useful such as a blend of an amino terminated hydrolyzable polydimethylsiloxane (PDMS) and a nonhydrolyzable polydimethylsiloxanes.
  • PDMS amino terminated hydrolyzable polydimethylsiloxane
  • the noncuring (i.e. nonhydrolyzable) PDMS acts as a plasticizer which may cause the hydrolyzable PDMS to swell, forming a gel-like substance. Sesame oil and other natural oils can also be used as a plasticizer.
  • moisture crosslinkable silanes or siloxanes include, but are not limited to, 1-methoxy-3-(trimethylsiloxy)butadiene; methyltrimethoxysilane; triphenylsilanol; 1,1,3,3-tetramethyl-1,3-diethoxydisiloxane; triethylacetoxysilane; and so forth.
  • These reactive compounds include terminal groups that are activated by moisture and that will form a durable structure crosslinked through —Si—O—Si—linkages include.
  • Such terminal groups include, but are not limited to, C 1 to C 12 alkoxy groups, in particular the lower C 1 to C 4 alkoxy groups such as methoxy or ethoxy, C 2 to C 4 acryloxy, up to about C 6 (poly)alkoxyalkoxy, phenoxy, amine, oxime, halogen groups including chlorine, fluorine and bromine, and so forth.
  • hydrolyzable groups including the alkoxy, alkoxyalkoxy and the acryloxy groups are used.
  • hydrophobic materials useful herein include cellulose esters and ethers, ethyl cellulose, hydroxyethyl cellulose, cellulose nitrate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, polyurethane, polyacrylate, natural and synthetic elastomers, rubber, acetal, nylon, polyester, styrene polybutadiene, acrylic resin, polyvinylidene chloride, polycarbonate, homopolymers and copolymers of vinyl compounds, polyvinylchloride, polyvinylchloride acetate, and combinations thereof.
  • Hydrophilic material also find utility in the present invention.
  • useful hydrophilic compounds include, but are not limited to, homopolymers and copolymers of N-vinyllactam including N-vinylpyrrolidone, N-butyrolactam, N-vinyl caprolactam, polyvinylpyrrolidone, polyvinyl acetate copolymers, polyethers, polysaccharides, hydrophilic polyurethanes, acrylates such as polyacrylates and polymethacrylates having hydrophilic esterifying groups, polyhydroxyacrylate, poly(acrylic acid), poly(acrylamides), poly(N-alkylacrylamide), poly(vinyl alcohols), poly(acrylates), poly(methacrylates), poly(vinyl esters), poly(maleate esters), poly(fumarate esters), poly(ethyleneimines), polyamides, ionomeric polymers, vinyl compounds having hydrophilic polar pendant groups, and natural polymers including collagen, poly(saccharide, N-
  • hydrophilic lubricious materials also include both reactive and non-reactive species.
  • Particularly useful hydrophilic materials include hydrogels, homopolymers and copolymers of polyalkylene oxides or alkoxypolyalkylene oxides, and homopolymers or copolymers of at least one polymerizable ethylenically unsaturated compound.
  • the polyalkylene oxides of alkoxy polyalkylene glycols include, in particular, polyethylene glycol, and polyethylene oxide/polypropylen oxide (EO/PO) block copolymers.
  • the copolymer of polyetheylene oxide/castor oil, for instance, so called Cremophor ®'s, e.g. CremophorEL also are very good hydrophilic lubricant materials.
  • the homopolymers and copolymers of the polymerizable ethylenically unsaturated compound include polycarboxylic acids, including homopolymers or copolymers of acrylic acid, (meth)acrylic acid, fumaric acid, maleic acid, maleic anhydride, and so forth.
  • Other ethylenically unsaturated compounds are those having vinyl groups, and diene compounds.
  • Copolymers of maleic acid may be obtained by the maleic anhydride copolymer by reaction of some of the anhydride groups with an inorganic hydroxide, water, monofunctional amine, alcohol, epoxy, imine, and so forth, or some mixture thereof.
  • Such maleic anhydride copolymers include poly(ethylene-maleic anhydride) and maleic anhydride/methyl vinyl ether. These types of lubricious materials are discussed in U.S. Pat. No. 5,902,631 incorporated by reference herein in its entirety.
  • the hydrogels are typically hydrophilic in nature and typically have the ability to dissolve or swell in an aqueous environment, and are capable of manifesting lubricity while in a wet state. When hydrated, these polymers exhibit low frictional forces forces in humoral fluids such as saliva, digestive fluids and blood, as well as in saline solution and water.
  • a hydrogel is an interpenetrating network (IPN) of a hydrogel of polyethylene oxide (PO) captured in a crosslinked acrylic polymer network. This IPN is formed by polymerizing a mixture of an acrylic monomer composition comprising a monomer having plural (meth)acrylate groups and polyethylene oxide.
  • polymeric materials which hydrogels may comprise include polyethylene oxides in interpenetrating networks with poly(meth)acrylate homopolymers or copolymers; copolymers of maleic anhydride; (meth)acrylamide homopolymers and copolymers; (meth)acrylic acid copolymers; poly(vinyl pyrrolidone) and blends or interpolymers with polyurethanes; polysaccharides, and so forth.
  • Hydrogels are discussed, for instance, in U.S. Pat. Nos. 6,120,904, 6,080,488, 6,040,058, 6,030,656, 6,017,577, 5,919,570, 5,849,368, 5,662,960, and 5,576,072 all of which are incorporated by reference herein in their entirety.
  • the lubricious coatings can be formed from hydrophobic compounds which can be converted to a lubricious hydrophilic compound through a chemical reaction such as hydrolysis, for instance. The conversion may take place once the coating process is complete.
  • examples of such compounds include those compounds having pendant ester or amide groups, such as, for instance, esters such as poly(acrylates), poly(meth)acrylates, poly(vinyl esters), poly(maleates), poly(fumerates), polyamides, poly(acrylamides), and copolymers and terpolymers thereof, and so forth.
  • esters such as poly(acrylates), poly(meth)acrylates, poly(vinyl esters), poly(maleates), poly(fumerates), polyamides, poly(acrylamides), and copolymers and terpolymers thereof, and so forth.
  • the poly(acrylic), poly(methacrylic) or polymaleic esters, and the polyamides or poly(acrylamides) may be converted to carboxylic acids by hydrolysis
  • Hydrolysis may be basic or acidic, and heat may be added to increase the rate of reaction.
  • Esters are hydrolyzed reversibly in the presence of acid or irreversibly in the presence of base. The use of a large excess of water in the acid-catalyzed reaction favors hydrolysis.
  • Vinyl esters may also be converted to an alcohol through saponification using an alkali-metal hydroxide which forms the alcohol and the metal salt of the acid. While most of these materials are hydrophobic, some are hydrophilic and can be hydrolyzed as well While the above lubricious materials exemplify the present invention, they are not intended as a limitation on the scope of the present invention. Providing the materials are lubricious, they will find utility as a lubricant on the inner surface of the dilatation balloons of the present invention.
  • the lubricious materials may be dissolved in a solvent or a cosolvent mixture prior to application to a balloon preform, for instance, using any conventional coating techniques such as injecting, dipping, spraying, brushing, and so forth.
  • a preferable method for coating is injecting the coating solution into the tubular device.
  • Useful solvents include alcohols, aliphatic hydrocarbons, aromatic hydrocarbons, chlorinated solvents, esters, glycols, ethers, glycol ethers, ketones, and so forth.
  • Polar solvents include alcohols, glycols, water and so forth. Specific examples include ethanol, methanol, isopropanol, stearyl alcohol, ethylene glycol, propylene glycol, glycerin, water and so forth.
  • Non-polar solvents include aliphatic hydrocarbons such as heptane and hexane; aromatic hydrocarbons such as toluene and xylene; chlorinated hydrocarbons such as perchloroethylene, methylene chloride, chloroform, carbon tetrachloride, 1,1,1-trichloroethane; fluorocarbons; mineral spirits and so forth.
  • Particularly preferred solvents particularly for the hydrophilic coatings, include ethers, alcohols, water, and their mixtures.
  • the preferable solvents are more polar and preferably include the alcohols such as isopropyl alcohol or isopropanol and water and mixtures thereof.
  • a 1-20% solution of lubricious polymer is preferably utilized and more preferably a solution of about 3% to about 10 wt-% of the polymer is used.
  • the coating thickness is preferably from about 1 to about 10 ⁇ m, more preferably from about 2 to about 6 ⁇ m and most preferably from about 2 to about 4 ⁇ m.
  • the solvent may be allowed to evaporate at ambient temperatures or the tubing may be dried.
  • the pressured air or vacuum may also be used to speed the drying.
  • a moisture air stream can be passed through under room or elevated temperature to help the curing or crosslinking.
  • the lubricious material may be applied to the balloon by using a solution of the lubricious material in solvent, and injecting the solution through a tubular preform, or by spraying the preform prior to blowing the balloon.
  • the lubricious material may also be coextruded with the tubular preform.
  • the balloon or tubular preform may also be dipped in a solution of the lubricious material.

Abstract

A dilatation balloon comprising an inner surface and an outer surface, the inner surface having a lubricious material disposed thereon to reduce friction or prevent adherence of adjacent layers, and thus reduce the pressure required for inflation.

Description

    FIELD OF THE INVENTION
  • The present invention relates to coating the inner surface of a dilatation balloon so as to reduce friction and thus reduce the required opening pressure upon inflation. [0001]
  • BACKGROUND OF THE INVENTION
  • Medical balloon catheters having a dilatation balloon located at their distal ends, are used surgically for insertion into blood vessels, urethra, or body conduits for the purpose of reducing stenoses or blockages. Conventionally, such catheters are made of materials such as polyamides, nylon, SELAR®, polyesters such as polyethylene terephthalate (PET), polyethylene (PE), polyester elastomers such as HYTREL®, or similar materials. Also, such balloon catheters can be made of several layers with polyethylene terephthalate blended with polyethylene. Also they can be made with blends of polyethylene terephthalate and HYTREL®. HYTREL® is a randomized block co-polymer of polyethers and polyesters. Such materials are not typically by themselves lubricious in nature, and must be rended lubricious by other means such as coating them with a lubricant. [0002]
  • Balloons are typically tightly folded and wrapped upon themselves for delivery to the targeted lesion, storage and are unwrapped and expanded to a size that is considerably greater than the stored size by the introduction of an expansion fluid into the balloon. It is very difficult, and in fact almost impossible, to do so without having portions stick to each other, and possibly tearing the substrate, particularly in the absence of a lubricious coating. Furthermore, this can greatly increase the amount of opening pressure required to inflate the balloon. Or if using for stent delivery, it will need extra pressure to expand the stent and release it. [0003]
  • One method of overcoming some of these issues has been to coat the outside of the balloon in order to reduce the friction between the folded and wrapped layers. This coating can also provide some protection against pinhole formation in the balloon and/or coating by providing surfaces that do not stick to one another. However, coating the outside surface not only adresses the half of the balloon surface for this, but also may lead to what is referred to in the art as “watermelon seeding.” This refers to slippage of the balloon wherein the balloon which is too lubricious shoots forward on inflation causing accidental slippage from the target or repair site which ultimately may lead to stent slippage from the target site as well. [0004]
  • It is therefore necessary to also find a way in which the balloon can be retained easily at the target site during expansion or contraction without slippage. This is more readily accomplished when the balloon has no lubricity. One method of overcoming this “watermelon seeding” effect is to make the balloons with both a lubricating portion and a non-lubricating portion. U.S. Pat. No. 5,503,631 to Onishi et al. discloses a vasodilating catheter balloon whose body has a lubricating portion and a non-lubricating portion. The lubricious property of the balloon is created by grafting a lubricious coating onto a non-lubricious substrate. Only the tapered portions on opposite ends of the balloon were treated. [0005]
  • Another method of overcoming the “watermelon seeding” is found in copending U.S. patent application Ser. No. 09/306939 commonly assigned to SCIMED Life Systems, Inc. [0006]
  • Another issue is that if the lubricant utilized on the outside of the balloon is hydrophobic, it may bead or run off when exposed to an aqueous environment, and can consequently reduce lubricity, and lack abrasion resistance. Hydrophilic coatings are an alternative but can also migrate from the balloon surface in an aqueous environment, particularly if they are water soluble, although there are steps that can be taken to prevent migration from occurring through the use of crosslinking or coupling agents, or binders, for instance. [0007]
  • U.S. Pat. No. 5,509,899 describes a medical balloon and catheter in which the balloon is wrapped and folded upon itself tortuously and tightly so that outer surfaces contact each other for insertion into the body and in which the balloon is free of bridging and adhesion between abutting surfaces. The balloon has a base of a continuous polymeric surface expandable from a folded, wrapped configuration with surfaces touching each other into a balloon when inflated, a lubricious, biocompatible, hydrogel coating disposed on the polymeric surface, and a thin, lubricious, blood-compatible coating disposed upon the hydrogel coating which adheres to it to prevent abutting surfaces of the folded polymeric surfaces from adhering to each other during inflation and to prevent delamination of the hydrogel coating and/or rupture of the balloon. [0008]
  • SUMMARY OF THE INVENTION
  • The present invention relates to a method of coating the inner surface of the dilatation balloon used with a catheter device with a lubricant in order to overcome friction between surfaces in contact with one another and to consequently reduce the opening pressure required to inflate the balloon. This can also avoid the problem of “water melon seeding”. [0009]
  • The dilatation balloon has an inner surface and an outer surface and a lubricious material disposed on the inner surface. The inner surface at least periodically comes into contact with itself. Specifically, dilatation balloons are folded upon themselves for storage. The lubricious material on the inner surface reduces the friction that occurs during inflation of the balloon by reducing or preventing the amount of adhesion occurring between the material of the inner surface as it comes in contact with itself. This lubricious material consequently reduces the opening force required during inflation and thus facilitates an easier inflation. The lubricous material may also reduce pinholeing and ease stent delivery.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a dilatation catheter having a catheter balloon with a lubricous material on its inner surface.[0011]
  • DETAILED DESCRIPTIONS OF THE PREFERRED EMBODIMENTS
  • The present invention relates in particular to coating the inner surface of a dilatation balloon with a lubricious material. [0012]
  • Balloons are typically folded and wrapped upon themselves for storage and are unwrapped and expanded to a size that is considerably greater than the stored size by the introduction of an expansion fluid into the balloon. It is very difficult, and in fact almost impossible, to do so without having portions stick to each other, and possibly tearing the substrate, particularly in the absence of a lubricious coating. [0013]
  • FIG. 1 illustrates generally at [0014] 10, a dilatation catheter having catheter balloon attached at its distal end shown in its inflated state. Catheter balloon 12 is generally conventional in its structure having a body portion 14, cone portions 16 and waist portions 18. The balloon is charaterized in accordance with this invention by having a lubricious material 20 is shown on the inner surfaces of the cone and waist portions.
  • The balloons of the present invention are not limited to any particular any polymeric material, but may be formed of thermoplastic elastomers (i.e. block copolymers), polyolefins such as polyethylene and polypropylene, ethylene α-olefin polymers, polyesters, polyester elastomers, polyamides, polyimides, nylons, polyvinyl chlorides, thermoplastic polyurethanes, polyether-block-amide copolymers, ionomeric polymers, and their copolymers, and so forth. The term copolymer will be hereinafter used to refer to those polymers having three (terpolymers) or more different monomers as well as two. [0015]
  • More specifically, materials such as nylon; SELAR®; polyether-polyester block copolymers such as HYTREL®; polyether block amide copolymers such as PEBAX® including PEBAX® 7033 or 7233; polyester block ethers such as ARNITEL® including ARNITEL®EM 40; SURLYN® ionomeric polymers such as ethylene/methacrylic acid (E/MAA) copolymers wherein the MAA acid groups have been partially neutralized with lithium, sodium, or zinc ions; polyethylene terephthalate (PET); polytetrafluoroethylene (PTFE); polyvinyl chloride; polyetherurethanes; polyesterurethanes; polyurethane ureas; polyurethane siloxane block copolymers; silicone polycarbonate copolymers; ethylene vinyl acetate copolymers; acrylonitrilebutadiene-styrene copolymers; polyphenylene sulfides; copolyesters; copolymers thereof; or other similar extrudable thermoplastic, polymeric materials, or composites thereof may be utilized in the present invention. Thermosetting materials such as polyimides may also be utilized. [0016]
  • The formation of catheter balloons made of block copolymer elastomers where the hard segments are polyester or polyamide and the soft segments are polyether, is discussed in U.S. Pat. No. 5,556,383 issued Sep. 17, 1996 to Wang et al. incorporated by reference herein. [0017]
  • Some balloon materials which may be preferable for use include, but are not limited to, the polyether block amides, such as PEBAX®7033 or 7233; the polyester block ethers such as ARNITEL®EM 40; PET; and nylon. [0018]
  • Balloon formation may be carried out in any conventional manner with conventional extrusion and blowing techniques, but basically there are three major steps in the process which include extruding a tubular preform, blow molding the balloon and annealing the balloon. Depending on the balloon material employed, the preform may be axially stretched before it is blown. Techniques for balloon formation are discussed in U.S. Pat. No. 4,490,421 to Levy and in U.S. Pat. No. 5,348,538 issued Sep. 20, 1994 to Wang et al. [0019]
  • The lubricious materials that may be utilized to lubricate the inner surface of the dilatation balloons include both hydrophobic and hydrophilic materials. These materials may be crosslinked or reactive compounds, or they may be non-reactive or uncrosslinked compounds, and may include those that are actually coupled to the balloon surface through the use of a coupling agents, for instance. [0020]
  • Useful hydrophobic materials include both reactive and nonreactive compounds. Some examples include, but are not limited to, glycerine, olive oil, vegetable oil, peanut oil, and so forth. [0021]
  • Other hydrophobic materials found to be quite useful include silicones (i.e. organosiloxane polymers), functionalized silicones, hydrolyzable silanes which form silicones, and so forth. These compounds include both reactive and non-reactive species including those that are crosslinkable in the presence of moisture. Blends of these compounds also find utility herein. [0022]
  • For instance, a blend of a hydrolyzable siloxane, such as an amino terminated siloxane, and a non-crosslinkable silicone oil is useful such as a blend of an amino terminated hydrolyzable polydimethylsiloxane (PDMS) and a nonhydrolyzable polydimethylsiloxanes. The noncuring (i.e. nonhydrolyzable) PDMS acts as a plasticizer which may cause the hydrolyzable PDMS to swell, forming a gel-like substance. Sesame oil and other natural oils can also be used as a plasticizer. [0023]
  • Other examples of useful moisture crosslinkable silanes or siloxanes include, but are not limited to, 1-methoxy-3-(trimethylsiloxy)butadiene; methyltrimethoxysilane; triphenylsilanol; 1,1,3,3-tetramethyl-1,3-diethoxydisiloxane; triethylacetoxysilane; and so forth. These reactive compounds include terminal groups that are activated by moisture and that will form a durable structure crosslinked through —Si—O—Si—linkages include. Such terminal groups include, but are not limited to, C[0024] 1 to C12 alkoxy groups, in particular the lower C1 to C4 alkoxy groups such as methoxy or ethoxy, C2 to C4 acryloxy, up to about C6 (poly)alkoxyalkoxy, phenoxy, amine, oxime, halogen groups including chlorine, fluorine and bromine, and so forth. In particular emodiments of the present invention, hydrolyzable groups including the alkoxy, alkoxyalkoxy and the acryloxy groups are used.
  • Other hydrophobic materials useful herein include cellulose esters and ethers, ethyl cellulose, hydroxyethyl cellulose, cellulose nitrate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, polyurethane, polyacrylate, natural and synthetic elastomers, rubber, acetal, nylon, polyester, styrene polybutadiene, acrylic resin, polyvinylidene chloride, polycarbonate, homopolymers and copolymers of vinyl compounds, polyvinylchloride, polyvinylchloride acetate, and combinations thereof. [0025]
  • Hydrophilic material also find utility in the present invention. Some examples of useful hydrophilic compounds include, but are not limited to, homopolymers and copolymers of N-vinyllactam including N-vinylpyrrolidone, N-butyrolactam, N-vinyl caprolactam, polyvinylpyrrolidone, polyvinyl acetate copolymers, polyethers, polysaccharides, hydrophilic polyurethanes, acrylates such as polyacrylates and polymethacrylates having hydrophilic esterifying groups, polyhydroxyacrylate, poly(acrylic acid), poly(acrylamides), poly(N-alkylacrylamide), poly(vinyl alcohols), poly(acrylates), poly(methacrylates), poly(vinyl esters), poly(maleate esters), poly(fumarate esters), poly(ethyleneimines), polyamides, ionomeric polymers, vinyl compounds having hydrophilic polar pendant groups, and natural polymers including collagen, poly(saccharides), cellulose, methyl cellulose, carboxymethylcellulose, hydroxypropyl cellulose, polyvinylsulfonic acid, heparin, dextran, modified dextran, xanthan, chondroitin sulphate, lecithin, and so forth. [0026]
  • The hydrophilic lubricious materials also include both reactive and non-reactive species. [0027]
  • Particularly useful hydrophilic materials include hydrogels, homopolymers and copolymers of polyalkylene oxides or alkoxypolyalkylene oxides, and homopolymers or copolymers of at least one polymerizable ethylenically unsaturated compound. [0028]
  • The polyalkylene oxides of alkoxy polyalkylene glycols include, in particular, polyethylene glycol, and polyethylene oxide/polypropylen oxide (EO/PO) block copolymers. The copolymer of polyetheylene oxide/castor oil, for instance, so called Cremophor ®'s, e.g. CremophorEL also are very good hydrophilic lubricant materials. [0029]
  • The homopolymers and copolymers of the polymerizable ethylenically unsaturated compound include polycarboxylic acids, including homopolymers or copolymers of acrylic acid, (meth)acrylic acid, fumaric acid, maleic acid, maleic anhydride, and so forth. Other ethylenically unsaturated compounds are those having vinyl groups, and diene compounds. [0030]
  • Copolymers of maleic acid may be obtained by the maleic anhydride copolymer by reaction of some of the anhydride groups with an inorganic hydroxide, water, monofunctional amine, alcohol, epoxy, imine, and so forth, or some mixture thereof. Such maleic anhydride copolymers include poly(ethylene-maleic anhydride) and maleic anhydride/methyl vinyl ether. These types of lubricious materials are discussed in U.S. Pat. No. 5,902,631 incorporated by reference herein in its entirety. [0031]
  • The hydrogels are typically hydrophilic in nature and typically have the ability to dissolve or swell in an aqueous environment, and are capable of manifesting lubricity while in a wet state. When hydrated, these polymers exhibit low frictional forces forces in humoral fluids such as saliva, digestive fluids and blood, as well as in saline solution and water. One particular example of a hydrogel is an interpenetrating network (IPN) of a hydrogel of polyethylene oxide (PO) captured in a crosslinked acrylic polymer network. This IPN is formed by polymerizing a mixture of an acrylic monomer composition comprising a monomer having plural (meth)acrylate groups and polyethylene oxide. [0032]
  • Other polymeric materials which hydrogels may comprise include polyethylene oxides in interpenetrating networks with poly(meth)acrylate homopolymers or copolymers; copolymers of maleic anhydride; (meth)acrylamide homopolymers and copolymers; (meth)acrylic acid copolymers; poly(vinyl pyrrolidone) and blends or interpolymers with polyurethanes; polysaccharides, and so forth. [0033]
  • Hydrogels are discussed, for instance, in U.S. Pat. Nos. 6,120,904, 6,080,488, 6,040,058, 6,030,656, 6,017,577, 5,919,570, 5,849,368, 5,662,960, and 5,576,072 all of which are incorporated by reference herein in their entirety. [0034]
  • Alternatively, the lubricious coatings can be formed from hydrophobic compounds which can be converted to a lubricious hydrophilic compound through a chemical reaction such as hydrolysis, for instance. The conversion may take place once the coating process is complete. Examples of such compounds include those compounds having pendant ester or amide groups, such as, for instance, esters such as poly(acrylates), poly(meth)acrylates, poly(vinyl esters), poly(maleates), poly(fumerates), polyamides, poly(acrylamides), and copolymers and terpolymers thereof, and so forth. The poly(acrylic), poly(methacrylic) or polymaleic esters, and the polyamides or poly(acrylamides) may be converted to carboxylic acids by hydrolysis. Hydrolysis may be basic or acidic, and heat may be added to increase the rate of reaction. Esters are hydrolyzed reversibly in the presence of acid or irreversibly in the presence of base. The use of a large excess of water in the acid-catalyzed reaction favors hydrolysis. Vinyl esters may also be converted to an alcohol through saponification using an alkali-metal hydroxide which forms the alcohol and the metal salt of the acid. While most of these materials are hydrophobic, some are hydrophilic and can be hydrolyzed as well While the above lubricious materials exemplify the present invention, they are not intended as a limitation on the scope of the present invention. Providing the materials are lubricious, they will find utility as a lubricant on the inner surface of the dilatation balloons of the present invention. [0035]
  • The lubricious materials may be dissolved in a solvent or a cosolvent mixture prior to application to a balloon preform, for instance, using any conventional coating techniques such as injecting, dipping, spraying, brushing, and so forth. A preferable method for coating is injecting the coating solution into the tubular device. [0036]
  • Useful solvents include alcohols, aliphatic hydrocarbons, aromatic hydrocarbons, chlorinated solvents, esters, glycols, ethers, glycol ethers, ketones, and so forth. Polar solvents include alcohols, glycols, water and so forth. Specific examples include ethanol, methanol, isopropanol, stearyl alcohol, ethylene glycol, propylene glycol, glycerin, water and so forth. Non-polar solvents include aliphatic hydrocarbons such as heptane and hexane; aromatic hydrocarbons such as toluene and xylene; chlorinated hydrocarbons such as perchloroethylene, methylene chloride, chloroform, carbon tetrachloride, 1,1,1-trichloroethane; fluorocarbons; mineral spirits and so forth. [0037]
  • Particularly preferred solvents, particularly for the hydrophilic coatings, include ethers, alcohols, water, and their mixtures. [0038]
  • For hydrophilic coatings, the preferable solvents are more polar and preferably include the alcohols such as isopropyl alcohol or isopropanol and water and mixtures thereof. A 1-20% solution of lubricious polymer is preferably utilized and more preferably a solution of about 3% to about 10 wt-% of the polymer is used. [0039]
  • The coating thickness, once the solvent has evaporated, is preferably from about 1 to about 10 μm, more preferably from about 2 to about 6 μm and most preferably from about 2 to about 4 μm. The solvent may be allowed to evaporate at ambient temperatures or the tubing may be dried. The pressured air or vacuum may also be used to speed the drying. In case reactive coating material used a moisture air stream can be passed through under room or elevated temperature to help the curing or crosslinking. [0040]
  • The lubricious material may be applied to the balloon by using a solution of the lubricious material in solvent, and injecting the solution through a tubular preform, or by spraying the preform prior to blowing the balloon. The lubricious material may also be coextruded with the tubular preform. The balloon or tubular preform may also be dipped in a solution of the lubricious material. There are various other means of applying the lubricious material to the inner surface of the balloon material. [0041]
  • The above embodiments are illustrative of the present invention, and are not intended to limit the scope of the present invention. [0042]

Claims (21)

1. A dilatation balloon comprising an inner surface and an outer surface said inner surface having a lubricious material disposed thereon.
2. The dilatation balloon of claim 1 wherein said balloon comprises a thermoplastic polymeric material.
3. The dilatation balloon of claim 2 wherein said thermoplastic polymeric material is selected from block copolymers, polyolefins, ethylene α-olefin polymers, polyesters, polyester elastomers, polyamides, polyimides, nylons, polyvinyl chlorides, thermoplastic polyurethanes, polyether-block-amide copolymers, ionomeric polymers, and copolymers thereof.
4. The dilatation balloon of claim 2 wherein said thermoplastic polymeric material is polyethyleneterephthalate, polyether-block-amide
5. The dilataton balloon of claim 1 wherein said lubricious material is hydrophilic.
6. The dilatation balloon of claim 1 wherein said lubricious material comprises at least one selected from hydrogels, homopolymers and copolymers of polyalkylene oxides or alkoxypolyalkylene oxides, homopolymers or copolymers of at least one polymerizable ethylenically unsaturated compound, and mixtures thereof.
7. The dilatation balloon of claim 6 wherein said lubricious material is a polyethylene glycol, an ethylene oxide/propylene oxide block copolymer, or mixture thereof.
8. The dilatation balloon of claim 1 wherein said lubricious material comprises at least one selected from collagen, poly(saccharides), cellulose, methyl cellulose, carboxymethylcellulose, polyvinylsulfonic acid, heparin, dextran, modified dextran, chondroitin sulphate, lecithin, poly(vinylpyrrolidone), poly(vinyl alcohol), poly(acrylates), poly(methacrylates), poly(fumarate esters), poly(vinyl esters), poly(maleate esters), poly(acrylamide), poly(N-acrylamide), poly(ethyleneimine), polyamides, ionomeric polymers, copolymers thereof, and mixtures thereof.
9. The method of claim 1 wherein said lubricious material comprises at least one polycarboxylic acid.
10. The method of claim 9 wherein said polycarboxylic acid comprises at least one carboxylic acid selected from maleic acid, fumaric acid, acrylic acid, and (meth)acrylic acid.
11. The dilatation balloon of claim 6 wherein hydrogel comprises a polyethylene oxide captured in an interpenetrating crosslinked acrylic polymer network.
12. The dilatation balloon of claim 6 wherein said hydrogel comprises polyethylene oxide in an interpenetrating network with poly(meth)acrylate polymers or copolymers; copolymers of maleic anhydride; (meth)acrylamide polymers and copolymers; (meth)acrylic acid copolymers; poly(vinyl pyrrolidone) and blends or interpolymers with polyurethanes; and polysaccharides.
13. The dilatation balloon of claim 1 wherein said lubricious material is hydrophobic.
14. The dilatation balloon of claim 1 wherein said lubricious material comprises at least one silicone, functionalized silicone, hydrolyzable silane which forms a silicone, fluorosilanes, or mixture thereof.
15. The dilatation balloon of claim 14 wherein said lubricious material comprises a hydrolyzable silane having terminal groups selected from C1 to C12 alkoxy, C2 to C4 acryloxy, up to about C6(poly)alkoxyalkoxy, phenoxy, amine, oxime, chlorine, fluorine, and bromine.
16. The dilatation balloon of claim 1 wherein said lubricious material comprises at least one hydrolyzable siloxane and at least one nonhydrolyzable siloxane.
17. The dilatation balloon of claim 16 wherein said lubricious material comprises at least one amino terminated hydrolyzable polydimethylsiloxane and at least one nonhydrolyzable polydimethylsiloxane.
18. The dilatation balloon of claim 1 wherein said lubricious material comprises at least one copolymer of maleic acid.
19. The dilatation balloon of claim 18 wherein said copolymer of maleic acid is derived from a maleic anhydride copolymer modified by reaction of some of the anhydride groups thereof with a member selected from the group consisting of inorganic hydroxides, water, monofunctional amines, alcohols, epoxies, imines, and mixtures thereof.
20. The dilatation balloon of claim 19 wherein said maleic anhydride copolymer is a poly(ethylene-maleic anhydride) copolymer or a maleic anhydride-methyl vinyl ether copolymer.
21. A dilatation balloon comprising an inner surface wherein said inner surface is at least occasionally subjected to contact with itself, said inner surface having a lubricious material disposed thereon to reduce the friction when said inner surface comes in contact with itself.
US09/727,742 2000-12-01 2000-12-01 Lubricated catheter balloon Expired - Lifetime US6444324B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/727,742 US6444324B1 (en) 2000-12-01 2000-12-01 Lubricated catheter balloon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/727,742 US6444324B1 (en) 2000-12-01 2000-12-01 Lubricated catheter balloon

Publications (2)

Publication Number Publication Date
US20020068180A1 true US20020068180A1 (en) 2002-06-06
US6444324B1 US6444324B1 (en) 2002-09-03

Family

ID=24923867

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/727,742 Expired - Lifetime US6444324B1 (en) 2000-12-01 2000-12-01 Lubricated catheter balloon

Country Status (1)

Country Link
US (1) US6444324B1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040071988A1 (en) * 2002-10-11 2004-04-15 Nawrocki Jesse G. Medical devices having durable and lubricious polymeric coating
US20050226993A1 (en) * 2000-10-03 2005-10-13 Nawrocki Jesse G Medical devices having durable and lubricious polymeric coating
WO2007081814A3 (en) * 2006-01-11 2007-11-29 Schott Ag A pharmaceutical package having a multi-functional surface and a method of preparing a multi-functional surface on a pharmaceutical package
US20080179208A1 (en) * 2003-08-08 2008-07-31 Hollister Incorporated Vapor Hydration of a Hydrophilic Catheter in a Package
US20090012208A1 (en) * 2003-10-07 2009-01-08 Niels Joergen Madsen Medical Device Having a Wetted Hydrophilic Coating
US20090131917A1 (en) * 2007-11-19 2009-05-21 Hollister Incorporated Vapor Hydrated Catheter Assembly and Method of Making Same
EP2241286A1 (en) * 2008-01-31 2010-10-20 Menicon Co., Ltd. Method of producing medical instrument
US20100263327A1 (en) * 2006-06-08 2010-10-21 Hollister Incoporated Catheter product package and method of forming same
WO2011092268A1 (en) * 2010-01-27 2011-08-04 Joensson Anders Post operative wound support device
US20140205947A1 (en) * 2010-09-28 2014-07-24 Fujifilm Corporation Pattern forming method, chemical amplification resist composition and resist film
US20150051635A1 (en) * 2013-08-14 2015-02-19 Zoll Circulation, Inc. Aortic occluder with strength bonded balloons
US20160089254A1 (en) * 2014-09-25 2016-03-31 Merit Medical Systems, Inc. Coated balloons and coated balloon assemblies and related methods of use and manufacture
US20160339173A1 (en) * 2009-01-27 2016-11-24 Becton, Dickinson And Company Infusion Set With Anesthetic Compound
US20170367706A1 (en) * 2013-08-14 2017-12-28 Zoll Circulation, Inc. Aortic occluder with tensioned balloons
CN108211092A (en) * 2016-12-14 2018-06-29 先健科技(深圳)有限公司 Foley's tube
US20190174994A1 (en) * 2015-01-23 2019-06-13 Boston Scientific Scimed, Inc. Balloon catheter suturing systems, methods, and devices having pledgets
JP2019533502A (en) * 2016-10-06 2019-11-21 メディケム テクノロジー スポレチノスト エス ルチェニム オメゼニム Cervical dilator using osmosis and hydrogel and method for producing the same
US20190351201A1 (en) * 2018-05-16 2019-11-21 Surmodics, Inc. High-pressure balloon catheters and methods
CN111760163A (en) * 2020-06-23 2020-10-13 上海市东方医院(同济大学附属东方医院) Uterine balloon catheter and medical assembly
US11497898B2 (en) 2016-04-19 2022-11-15 Boston Scientific Scimed, Inc. Weeping balloon devices
US11623026B2 (en) * 2017-05-30 2023-04-11 Susos Ag Device having a switchable wet-dry lubricating coating
US11628055B2 (en) 2013-03-07 2023-04-18 Merit Medical Systems, Inc. Methods of manufacturing an embolic filter balloon

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947059B2 (en) 2000-03-02 2011-05-24 Boston Scientific Scimed, Inc. Multilayer medical device
US6695817B1 (en) 2000-07-11 2004-02-24 Icu Medical, Inc. Medical valve with positive flow characteristics
US6765069B2 (en) * 2001-09-28 2004-07-20 Biosurface Engineering Technologies, Inc. Plasma cross-linked hydrophilic coating
US7488339B2 (en) * 2002-10-21 2009-02-10 Boston Scientific Scimed, Inc. Multilayer medical device
US7025752B2 (en) * 2002-11-06 2006-04-11 Advanced Cardiovascular Systems, Inc. Reduced slippage balloon catheter and method of using same
US6951675B2 (en) * 2003-01-27 2005-10-04 Scimed Life Systems, Inc. Multilayer balloon catheter
US7211611B2 (en) * 2003-12-11 2007-05-01 Nike, Inc. Rubber compositions with non-petroleum oils
EP1591778A1 (en) * 2004-04-26 2005-11-02 Roche Diagnostics GmbH Electrochemical gas sensor with hydrophilic membrane coating
US8394338B2 (en) * 2004-04-26 2013-03-12 Roche Diagnostics Operations, Inc. Process for hydrophilizing surfaces of fluidic components and systems
US7635510B2 (en) * 2004-07-07 2009-12-22 Boston Scientific Scimed, Inc. High performance balloon catheter/component
US20060161115A1 (en) 2004-11-05 2006-07-20 Fangrow Thomas F Soft-grip medical connector
US20060182907A1 (en) * 2005-02-11 2006-08-17 Boston Scientific Scimed, Inc. Novel microfibrillar reinforced polymer-polymer composites for use in medical devices
US9125968B2 (en) * 2005-03-30 2015-09-08 Boston Scientific Scimed, Inc. Polymeric/ceramic composite materials for use in medical devices
US7365126B2 (en) * 2005-09-16 2008-04-29 Boston Scientific Scimed, Inc. Medical device articles formed from polymer-inorganic hybrids prepared by ester-alkoxy transesterification reaction during melt processing
US8008395B2 (en) * 2005-09-27 2011-08-30 Boston Scientific Scimed, Inc. Organic-inorganic hybrid particle material and polymer compositions containing same
US20070129748A1 (en) * 2005-12-07 2007-06-07 Tracee Eidenschink Selectively coated medical balloons
US8075995B2 (en) * 2006-03-30 2011-12-13 Becton, Dickinson And Company Coating system, articles and assembly using the same and methods of reducing sticktion
BRPI0717401A2 (en) 2006-10-25 2013-11-12 Icu Medical Inc CONNECTOR FOR MEDICAL USE
US9737640B2 (en) 2006-11-20 2017-08-22 Lutonix, Inc. Drug releasing coatings for medical devices
US8414526B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Medical device rapid drug releasing coatings comprising oils, fatty acids, and/or lipids
US9700704B2 (en) 2006-11-20 2017-07-11 Lutonix, Inc. Drug releasing coatings for balloon catheters
US8414910B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US20080276935A1 (en) 2006-11-20 2008-11-13 Lixiao Wang Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs
US8425459B2 (en) 2006-11-20 2013-04-23 Lutonix, Inc. Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent
US20080175887A1 (en) 2006-11-20 2008-07-24 Lixiao Wang Treatment of Asthma and Chronic Obstructive Pulmonary Disease With Anti-proliferate and Anti-inflammatory Drugs
US8430055B2 (en) 2008-08-29 2013-04-30 Lutonix, Inc. Methods and apparatuses for coating balloon catheters
US8998846B2 (en) 2006-11-20 2015-04-07 Lutonix, Inc. Drug releasing coatings for balloon catheters
US8414525B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US8454579B2 (en) 2009-03-25 2013-06-04 Icu Medical, Inc. Medical connector with automatic valves and volume regulator
SG175373A1 (en) 2009-04-28 2011-11-28 Surmodics Inc Devices and methods for delivery of bioactive agents
WO2011057131A1 (en) 2009-11-09 2011-05-12 Spotlight Technology Partners Llc Polysaccharide based hydrogels
AU2010314994B2 (en) 2009-11-09 2016-10-06 Spotlight Technology Partners Llc Fragmented hydrogels
US8287890B2 (en) * 2009-12-15 2012-10-16 C.R. Bard, Inc. Hydrophilic coating
USD644731S1 (en) 2010-03-23 2011-09-06 Icu Medical, Inc. Medical connector
US8440090B2 (en) 2010-04-29 2013-05-14 Abbott Cardiovascular Systems Inc. Apparatus and method of making a variable stiffness multilayer catheter tubing
US8758306B2 (en) 2010-05-17 2014-06-24 Icu Medical, Inc. Medical connectors and methods of use
US9757497B2 (en) 2011-05-20 2017-09-12 Surmodics, Inc. Delivery of coated hydrophobic active agent particles
US10213529B2 (en) 2011-05-20 2019-02-26 Surmodics, Inc. Delivery of coated hydrophobic active agent particles
US9861727B2 (en) 2011-05-20 2018-01-09 Surmodics, Inc. Delivery of hydrophobic active agent particles
US11246963B2 (en) 2012-11-05 2022-02-15 Surmodics, Inc. Compositions and methods for delivery of hydrophobic active agents
WO2014071387A1 (en) 2012-11-05 2014-05-08 Surmodics, Inc. Composition and method for delivery of hydrophobic active agents
EP3079739B1 (en) 2013-12-11 2023-02-22 ICU Medical, Inc. Check valve
USD786427S1 (en) 2014-12-03 2017-05-09 Icu Medical, Inc. Fluid manifold
USD793551S1 (en) 2014-12-03 2017-08-01 Icu Medical, Inc. Fluid manifold
EP3442642A1 (en) 2016-04-12 2019-02-20 Boston Scientific Scimed, Inc. Medical balloon
WO2018111898A1 (en) 2016-12-13 2018-06-21 Boston Scientific Scimed, Inc. Medical balloon
US10898446B2 (en) 2016-12-20 2021-01-26 Surmodics, Inc. Delivery of hydrophobic active agents from hydrophilic polyether block amide copolymer surfaces
EP3615099B1 (en) 2017-04-25 2023-03-01 Boston Scientific Scimed, Inc. Medical balloon
CN109734833B (en) * 2018-12-27 2021-09-10 武汉优城科技有限公司 Short-side-chain anti-mud polycarboxylate superplasticizer and preparation method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490421A (en) 1983-07-05 1984-12-25 E. I. Du Pont De Nemours And Company Balloon and manufacture thereof
US5304197A (en) 1988-10-04 1994-04-19 Cordis Corporation Balloons for medical devices and fabrication thereof
EP0549100A1 (en) * 1991-12-20 1993-06-30 Interventional Technologies Inc Catheter balloon formed from a polymeric composite
US5348538A (en) 1992-09-29 1994-09-20 Scimed Life Systems, Inc. Shrinking balloon catheter having nonlinear or hybrid compliance curve
US5503631A (en) 1992-10-09 1996-04-02 Terumo Kabushiki Kaisha Lubricious catheter balloon for vasodilation
ES2141928T5 (en) 1994-03-02 2009-04-16 Boston Scientific Limited BALLS OF ELASTOMERO COPOLIMERO IN BLOCKS FOR CATHETER.
US5509899A (en) 1994-09-22 1996-04-23 Boston Scientific Corp. Medical device with lubricious coating
US6017577A (en) 1995-02-01 2000-01-25 Schneider (Usa) Inc. Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices
US5662960A (en) 1995-02-01 1997-09-02 Schneider (Usa) Inc. Process for producing slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly (n-vinylpyrrolidone) polymer hydrogel
US5576072A (en) 1995-02-01 1996-11-19 Schneider (Usa), Inc. Process for producing slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with at least one other, dissimilar polymer hydrogel
US5919570A (en) 1995-02-01 1999-07-06 Schneider Inc. Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices
JP3359640B2 (en) 1995-02-01 2002-12-24 シュナイダー(ユーエスエー)インク Method for hydrophilizing hydrophobic polymers
US5868704A (en) 1995-09-18 1999-02-09 W. L. Gore & Associates, Inc. Balloon catheter device
US5902631A (en) 1997-06-03 1999-05-11 Wang; Lixiao Lubricity gradient for medical devices

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090264912A1 (en) * 2000-10-03 2009-10-22 Nawrocki Jesse G Medical devices having durable and lubricious polymeric coating
US20050226993A1 (en) * 2000-10-03 2005-10-13 Nawrocki Jesse G Medical devices having durable and lubricious polymeric coating
US7041088B2 (en) 2002-10-11 2006-05-09 Ethicon, Inc. Medical devices having durable and lubricious polymeric coating
US20040071988A1 (en) * 2002-10-11 2004-04-15 Nawrocki Jesse G. Medical devices having durable and lubricious polymeric coating
USRE48426E1 (en) 2003-08-08 2021-02-09 Hollister Incorporated Packaged ready-to-use product
US8011505B2 (en) 2003-08-08 2011-09-06 Hollister Incorporated Vapor hydrated collapsible sleeve hydrophilic catheter package
US20080179208A1 (en) * 2003-08-08 2008-07-31 Hollister Incorporated Vapor Hydration of a Hydrophilic Catheter in a Package
US9072862B2 (en) 2003-08-08 2015-07-07 Hollister, Inc. Packaged ready-to-use product
US20100155268A1 (en) * 2003-08-08 2010-06-24 Hollister Incorporated Vapor hydration of a hydrophilic catheter in a package
USRE47513E1 (en) 2003-08-08 2019-07-16 Hollister Incorporated Packaged ready-to-use product
US8720685B2 (en) 2003-08-08 2014-05-13 Hollister Incorporated Packaged ready-to-use product and method
US8205745B2 (en) 2003-08-08 2012-06-26 Hollister Incorporated Vapor hydration of a hydrophilic catheter in a package
US7886907B2 (en) 2003-08-08 2011-02-15 Hollister Incorporated Vapor hydration of a hydrophilic product in a package
US20090012208A1 (en) * 2003-10-07 2009-01-08 Niels Joergen Madsen Medical Device Having a Wetted Hydrophilic Coating
US20100044268A1 (en) * 2006-01-11 2010-02-25 Daniel Haines Pharmaceutical package having a multi-functional surface and a method of preparing a multi-functional surface on a pharmaceutical package
US8323166B2 (en) 2006-01-11 2012-12-04 Schott Ag Pharmaceutical package having a multi-functional surface and a method of preparing a multi-functional surface on a pharmaceutical package
WO2007081814A3 (en) * 2006-01-11 2007-11-29 Schott Ag A pharmaceutical package having a multi-functional surface and a method of preparing a multi-functional surface on a pharmaceutical package
US20100263327A1 (en) * 2006-06-08 2010-10-21 Hollister Incoporated Catheter product package and method of forming same
US8051981B2 (en) 2006-06-08 2011-11-08 Hollister Incorporated Catheter product package and method of forming same
US20100305527A1 (en) * 2006-06-08 2010-12-02 Hollister Incorporated Catheter product package and method of forming same
US8356457B2 (en) 2006-06-08 2013-01-22 Hollister Incorporated Catheter product package and method of forming same
US8919553B2 (en) 2006-06-08 2014-12-30 Hollister Incorporated Catheter product package and method of forming same
US20090131917A1 (en) * 2007-11-19 2009-05-21 Hollister Incorporated Vapor Hydrated Catheter Assembly and Method of Making Same
US8523843B2 (en) 2007-11-19 2013-09-03 Hollister Incorporated Vapor hydrated catheter assembly and method of making same
JP5362590B2 (en) * 2008-01-31 2013-12-11 興和株式会社 Medical device manufacturing method
EP2241286A1 (en) * 2008-01-31 2010-10-20 Menicon Co., Ltd. Method of producing medical instrument
US8523878B2 (en) 2008-01-31 2013-09-03 Kowa Company, Ltd. Method of producing medical instrument
EP2241286A4 (en) * 2008-01-31 2013-01-23 Kowa Co Method of producing medical instrument
US11383030B2 (en) * 2009-01-27 2022-07-12 Becton, Dickinson And Company Infusion set with anesthetic compound
US20160339173A1 (en) * 2009-01-27 2016-11-24 Becton, Dickinson And Company Infusion Set With Anesthetic Compound
WO2011092268A1 (en) * 2010-01-27 2011-08-04 Joensson Anders Post operative wound support device
US9814464B2 (en) 2010-01-27 2017-11-14 Aeeg Ab Post operative wound support device
EP2351529B1 (en) * 2010-01-27 2019-06-05 Aeeg Ab Post operative wound support device
US20140205947A1 (en) * 2010-09-28 2014-07-24 Fujifilm Corporation Pattern forming method, chemical amplification resist composition and resist film
US11628055B2 (en) 2013-03-07 2023-04-18 Merit Medical Systems, Inc. Methods of manufacturing an embolic filter balloon
US20150051635A1 (en) * 2013-08-14 2015-02-19 Zoll Circulation, Inc. Aortic occluder with strength bonded balloons
US20170367706A1 (en) * 2013-08-14 2017-12-28 Zoll Circulation, Inc. Aortic occluder with tensioned balloons
US20160089254A1 (en) * 2014-09-25 2016-03-31 Merit Medical Systems, Inc. Coated balloons and coated balloon assemblies and related methods of use and manufacture
JP2017529129A (en) * 2014-09-25 2017-10-05 メリット・メディカル・システムズ・インコーポレイテッドMerit Medical Systems,Inc. Coated balloon and coated balloon assembly and associated methods of use and manufacture
WO2016049262A1 (en) * 2014-09-25 2016-03-31 Merit Medical Systems, Inc. Coated balloons and coated balloon assemblies and related methods of use and manufacture
CN106572915A (en) * 2014-09-25 2017-04-19 麦瑞通医疗设备有限公司 Coated balloons and coated balloon assemblies and related methods of use and manufacture
US20210128333A1 (en) * 2014-09-25 2021-05-06 Merit Medical Systems, Inc. Coated balloons and coated balloon assemblies and related methods of use and manufacture
US10617281B2 (en) * 2015-01-23 2020-04-14 Boston Scientific Scimed, Inc Balloon catheter suturing systems, methods, and devices having pledgets
US20190174994A1 (en) * 2015-01-23 2019-06-13 Boston Scientific Scimed, Inc. Balloon catheter suturing systems, methods, and devices having pledgets
US11826020B2 (en) 2015-01-23 2023-11-28 Boston Scientific Scimed, Inc. Balloon catheter suturing systems, methods, and devices having pledgets
US11497898B2 (en) 2016-04-19 2022-11-15 Boston Scientific Scimed, Inc. Weeping balloon devices
JP2019533502A (en) * 2016-10-06 2019-11-21 メディケム テクノロジー スポレチノスト エス ルチェニム オメゼニム Cervical dilator using osmosis and hydrogel and method for producing the same
JP7193450B2 (en) 2016-10-06 2022-12-20 メディケム テクノロジー スポレチノスト エス ルチェニム オメゼニム Osmotic and hydrogel combined cervical dilators and method of making same
AU2017339919B2 (en) * 2016-10-06 2023-02-23 Medicem Technology S.R.O Combined osmotic and hydrogel cervical dilators and method of making same
US11660431B2 (en) * 2016-10-06 2023-05-30 Medicem Technology S.R.O. Combined osmotic and hydrogel cervical dilators and method of making same
CN108211092A (en) * 2016-12-14 2018-06-29 先健科技(深圳)有限公司 Foley's tube
US11623026B2 (en) * 2017-05-30 2023-04-11 Susos Ag Device having a switchable wet-dry lubricating coating
US20190351201A1 (en) * 2018-05-16 2019-11-21 Surmodics, Inc. High-pressure balloon catheters and methods
CN111760163A (en) * 2020-06-23 2020-10-13 上海市东方医院(同济大学附属东方医院) Uterine balloon catheter and medical assembly

Also Published As

Publication number Publication date
US6444324B1 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
US6444324B1 (en) Lubricated catheter balloon
CA2369282C (en) Balloon catheter with lubricious coating
US6443980B1 (en) End sleeve coating for stent delivery
JP4663945B2 (en) Stent delivery system and tube manufacturing method suitable for forming a stent retaining sleeve
CA2373505C (en) Lubricious coating for medical devices
US6447835B1 (en) Method of coating polymeric tubes used in medical devices
US6610035B2 (en) Hydrophilic lubricity coating for medical devices comprising a hybrid top coat
US20200397952A1 (en) Methods of Applying a Hydrophilic Coating to a Substrate, and Substrates Having a Hydrophilic Coating
CA2198596A1 (en) Medical device with lubricious coating

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCIMED LIFE SYSTEMS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YANG, DACHUAN;SJOQUIST, SCOTT L.;SEPPALA, JAN D.;REEL/FRAME:011359/0022;SIGNING DATES FROM 20001116 TO 20001127

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12