US20020078477A1 - Production of syringyl lignin in gymnosperms - Google Patents

Production of syringyl lignin in gymnosperms Download PDF

Info

Publication number
US20020078477A1
US20020078477A1 US09/796,256 US79625601A US2002078477A1 US 20020078477 A1 US20020078477 A1 US 20020078477A1 US 79625601 A US79625601 A US 79625601A US 2002078477 A1 US2002078477 A1 US 2002078477A1
Authority
US
United States
Prior art keywords
leu
gymnosperm
ala
gly
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/796,256
Inventor
Vincent Chiang
Daniel Carraway
Richard Smeltzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/796,256 priority Critical patent/US20020078477A1/en
Publication of US20020078477A1 publication Critical patent/US20020078477A1/en
Priority to US10/681,878 priority patent/US7411059B2/en
Priority to US12/219,227 priority patent/US7754869B2/en
Priority to US12/801,785 priority patent/US8207399B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8255Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving lignin biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)

Definitions

  • the invention relates to the molecular modification of gymnosperms in order to cause the production of syringyl units during lignin biosynthesis and to production and propagation of gymnosperms containing syringyl lignin.
  • Lignin is a major part of the supportive structure of most woody plants including angiosperm and gymnosperm trees which in turn are the principal sources of fiber for making paper and cellulosic products.
  • angiosperm and gymnosperm trees which in turn are the principal sources of fiber for making paper and cellulosic products.
  • Lignin is removed from wood chips by treatment of the chips in an alkaline solution at elevated temperatures and pressure in an initial step of papermaking processes.
  • the rate of removal of lignin from wood of different tree species varies depending upon lignin structure.
  • Three different lignin structures have been identified in trees: p-hydroxyphenyl, guaiacyl and syringyl, which are illustrated in FIG. 1.
  • Angiosperm species such as Liquidambar styraciflua L. [sweetgum] have lignin composed of a mixture of guaiacyl and syringyl monomer units.
  • gymnosperm species such as Pinus taeda L. [loblolly pine] have lignin which is devoid of syringyl monomer units.
  • the rate of delignification in a pulping process is directly proportional to the amount of syringyl lignin present in the wood.
  • Another object of the invention is to provide gymnosperm species such as loblolly pine which contain syringyl lignin.
  • An additional object of the invention is to provide a method for modifying genes involved in ligning biosynthesis in gymnosperm species so that production of syringyl lignin is increased while production of guaiacyl lignin is suppressed.
  • Still another object of the invention is to produce whole gymnosperm plants containing genes which increase production of syringyl lignin and repress production of guaiacyl lignin.
  • Yet another object of the invention is to identify, isolate and/or clone those genes in angiosperms responsible for production of syringyl lignin.
  • a further object of the invention is to provide, in gymnosperms, genes which produce syringyl lignin.
  • Another object of the invention is to provide a method for making an expression cassette insertable into a gymnosperm cell for the purpose of inducing formation of syringyl lignin in a gymnosperm plant derived from the cell.
  • promoter refers to a DNA sequence in the 5′ flanking region of a given gene which is involved in recognition and binding of RNA polymerase and other transcriptional proteins and is required to initiate DNA transcription in cells.
  • constitutive promoter refers to a promoter which activates transcription of a desired gene, and is commonly used in creation of an expression cassette designed for preliminary experiments relative to testing of gene function.
  • An example of a constitutive promoter is 35S CaMV, available from Clonetech.
  • expression cassette refers to a double stranded DNA sequence which contains both promoters and genes such that expression of a given gene is acheived upon insertion of the expression cassette into a plant cell.
  • plant includes whole plants and portions of plants, including plant organs (e.g. roots, stems, leaves, etc.)
  • angiosperm refers to plants which produce seeds encased in an ovary.
  • a specific example of an angiosperm is Liquidambar styraciflua (L.)[sweetgum].
  • the angiosperm sweetgum produces syringyl lignin.
  • gymnosperm refers to plants which produce naked seeds, that is, seeds which are not encased in an ovary.
  • a specific example of a gymnosperm is Pinus taeda (L.)(loblolly pine]. The gymnosperm loblolly pine does not produce syringyl lignin.
  • the invention provides a method for inducing production of syringyl lignin in gymnosperms and to gymnosperms which contain syringyl lignin for improved delignification in the production of pulp for papermaking and other applications.
  • the invention involves cloning an angiosperm DNA sequence which codes for enzymes involved in production of syringyl lignin monomer units, fusing the angiosperm DNA sequence to a lignin promoter region to form an expression cassette, and inserting the expression cassette into a gymnosperm genome.
  • Enzymes required for production of syringyl lignin in an angiosperm are obtained by deducing an amino acid sequence of the enzyme, extrapolating an mRNA sequence from the amino acid sequence, constructing a probe for the corresponding DNA sequence and cloning the DNA sequence which codes for the desired enzyme.
  • a promoter region specific to a gymnosperm lignin biosynthesis gene is identified by constructing a probe for a gymnosperm lignin biosynthesis gene, sequencing the 5′ flanking region of the DNA which encodes the gymnosperm lignin biosynthesis gene to locate a promoter sequence, and then cloning that sequence.
  • An expression cassette is constructed by fusing the angiosperm syringyl lignin DNA sequence to the gymnosperm promoter DNA sequence.
  • the angiosperm syringyl lignin DNA is fused to a constitutive promoter to form an expression cassette.
  • the expression cassette is inserted into the gymnosperm genome to transform the gymnosperm genome. Cells containing the transformed genome are selected and used to produce a transformed gymnosperm plant containing syringyl lignin.
  • the angiosperm gene sequences bi-OMT, 4CL, FA5H-1 and FA5H-2 have been determined and isolated as associated with production of syringyl lignin in sweetgum and lignin promoter regions for the gymnosperm loblolly pine have been determined to be the 5′ flanking regions for the 4CL1B, 4CL3B and PAL gymnosperm lignin genes.
  • Expression cassettes containing sequences of selected genes from sweetgum have been inserted into loblolly pine embryogenic cells and presence of sweetgum genes associated with production of syringyl lignin has been confirmed in daughter cells of the resulting loblolly pine embryogenic cells.
  • the invention therefore enables production of gymnosperms such as loblolly pine containing genes which code for production of syringyl lignin, to thereby produce in such species syringyl lignin in the wood structure for enhanced pulpability.
  • FIG. 1 illustrates a generalized pathway for lignin synthesis
  • FIG. 2 illustrates a bifunctional-O-methyl transferase (bi-OMT) gene sequence involved in the production of syringyl lignin in an angiosperm (SEQ ID 3);
  • FIG. 3 illustrates a 4-coumarate CoA ligase (4CL) gene sequence involved in the production of syringyl lignin in an angiosperm (SEQ ID 4);
  • FIG. 4 illustrates a ferulic acid-5-hydroxylase (FA5H-1) gene sequence involved in the production of syringyl lignin in an angiosperm (SEQ ID 1);
  • FIG. 5 illustrates a ferulic acid-5-hydroxylase (FA5H-2) gene sequence involved in the production of syringyl lignin in an angiosperm (SEQ ID 2);
  • FIG. 6 illustrates nucleotide sequences of the 5′ flanking region of the loblolly pine 4CL1B gene showing the location of regulatory elements for lignin biosynthesis (SEQ ID 6);
  • FIG. 7 illustrates nucleotide sequences of the 5′ flanking region of the loblolly pine 4CL3B gene showing the location of regulatory elements for lignin biosynthesis (SEQ ID 7);
  • FIG. 8 illustrates nucleotide sequences of the 5′ flanking region of loblolly pine PAL gene showing the location of regulatory elements for lignin biosynthesis (SEQ ID 5);
  • FIG. 9 illustrates a PCR confirmation of the sweetgum FA5H-1 gene sequence in transgenic loblolly pine cells
  • a method for modifying a gymnosperm genome, such as the genome of a loblolly pine, so that syringyl lignin will be produced in the resulting plant, thereby enabling cellulosic fibers of the same to be more easily separated from lignin in a pulping process.
  • ASL DNA sequences angiosperm DNA sequences
  • GL promoter region a gymnosperm lignin promoter region
  • GSL expression cassette a gymnosperm syringyl lignin expression cassette
  • the GSL expression cassette preferably also includes selectable marker genes which enable transformed cells to be differentiated from untransformed cells.
  • the GSL expression cassette containing selectable marker genes is inserted into the gymnosperm genome and transformed cells are identified and selected, from which whole gymnosperm plants may be produced which exhibit production of syringyl lignin.
  • genes from the gymnosperm associated with production of these less preferred forms of lignin are identified, isolated and the DNA sequence coding for anti-sense mRNA (referred to at times herein as the “GL anti-sense sequence”) for these genes is produced.
  • the DNA sequence coding for anti-sense mRNA is then incorporated into the gymnosperm genome, which when expressed bind to the less preferred guaiacyl gymnosperm lignin mRNA, inactivating it.
  • one aim of the present invention is to identify, sequence and clone specific genes of interest from an angiosperm such as sweetgum which are involved in production of syringyl lignin and to then introduce those genes into the genome of a gymnosperm, such as loblolly pine, to induce production of syringyl lignin.
  • angiosperm such as sweetgum which are involved in production of syringyl lignin
  • a gymnosperm such as loblolly pine
  • Genes of interest may be identified in various ways, depending on how much information about the gene is already known. Genes believed to be associated with production of syringyl lignin have already been sequenced from a few angiosperm species, viz, CCL and OMT.
  • DNA sequences of the various CCL and OMT genes are compared to each other to determine if there are conserved regions. Once the conserved regions of the DNA sequences are identified, oligo-dT primers homologous to the conserved sequences are synthesized. Reverse transcription of the DNA-free total RNA which was purified from sweetgum xylem tissue, followed by double PCR using gene-specific primers, enables production of probes for the CCL and OMT genes.
  • a sweetgum cDNA library is constructed in a host, such as lambda ZAPII, available from Stratagene, of LaJolla, Calif., using poly(A) +RNA isolated from sweetgum xylem, according to the methods described by Bugos et al. (1995 Biotechniques 19:734-737).
  • the above mentioned probes are used to assay the sweetgum cDNA library to locate cDNA which codes for enzymes involved in production of syringyl lignin. Once a syringyl lignin sequence is located, it is then cloned and sequenced according to known methods which are familiar to those of ordinary skill.
  • two sweetgum syringyl lignin genes have been determined using the above-described technique. These genes have been designated 4CL and bi-OMT.
  • probes are developed to locate lignin genes. After the gymnosperm lignin gene is located, the portion of DNA upstream from the gene is sequenced, preferably using the GenomeWalker Kit, available from Clonetech. The portion of DNA upstream from the lignin gene will generally contain the gymnosperm lignin promoter region.
  • Gymnosperm genes of interest include CCL-like genes and PAL-like genes, which are beleived to be involved in the production of lignin in gymnosperms.
  • Preferred probe sequences are developed based on previously sequenced genes, which are available from the gene bank.
  • the preferred gene bank accession numbers for the CCL-like genes include U39404 and U39405.
  • a preferred gene bank accession number for a PAL-like gene is U39792. Probes for such genes are constructed according to methods familiar to those of ordinary skill in the art. A genomic DNA library is constructed and DNA fragments which code for gymnosperm lignin genes are then identified using the above mentioned probes.
  • a preferred DNA library is obtained from the gymnosperm, Pinus taeda (L.)[Loblolly Pine], and a preferred host of the genomic library is Lambda DashII, available from Stratagene of LaJolla, Calif.
  • the genomic region upstream from the gymnosperm lignin gene (the 5′ flanking region) was identified. This region contains the GL promoter.
  • Three promoter regions were located from gymnosperm lignin biosynthesis genes. The first is the 5′ flanking region of the loblolly pine 4CL1B gene, shown in FIG. 6 (SEQ ID 6). The second is the 5′ flanking region of the loblolly pine gene 4CL3B, shown in FIG. 7 (SEQ ID 7). The third is the 5′ flanking region of the loblolly pine gene PAL, shown in FIG. 8 (SEQ ID 5).
  • the next step of the process is to fuse the GL promoter region to the ASL DNA sequence to make a GSL expression cassette for insertion into the genome of a gymnosperm.
  • This may be accomplished by standard techniques.
  • the GL promoter region is first cloned into a suitable vector.
  • Preferred vectors are pGEM7Z, available from Promega, Madison, Wis. and SK available from Stratagene, of LaJolla, Calif.
  • the promoter sequence is cloned into the vector, it is then released with suitable restriction enzymes.
  • the ASL DNA sequence is released with the same restriction enzyme(s) and purified.
  • the GL promoter region sequence and the ASL DNA sequence are then ligated such as with T4 DNA ligase, available from Promega, to form the GSL expression cassette. Fusion of the GL and ASL DNA sequence is confirmed by restriction enzyme digestion and DNA sequencing. After confirmation of GL promoter-ASL DNA fusion, the GSL expression cassette is released from the original vector with suitable restriction enzymes and used in construction of vectors for plant transformation.
  • a standard constitutive promoter may be fused with the ASL DNA sequence to make a GSL expression cassette.
  • a standard constitutive promoter may be fused with FA5H-1 to form an expression cassette for insertion of FA5H-1 sequences into a gymnosperm genome.
  • a standard constitutive promoter may be fused with FA5H-2 to form an expression cassette for insertion of FA5H-2 into a gymnosperm genome.
  • a constitutive promoter for use in the invention is the double 35S promoter, available from Clonetech.
  • a suitable vector such as pBi221 is digested XbaI and HindIII to release the 35S promoter.
  • the vector pHygro available from International Paper, was disgested by XbaI and HindIII to release the double 35S promoter.
  • the double 35S promoter was ligated to the previously digested pBi221 vector to produce a new pBi221 with the double 35S promoter.
  • This new pBi221 was digested with SacI and SmaI, to release the GUS fragment.
  • the vector is next treated with T4 DNA polymerase to produce blunt ends and the vector is self-ligated.
  • This vector is then further digested with BamHI and XbaI, available from Promega. After the pBi221 vector containing the constitutive promoter region has been prepared, lignin gene sequences are prepared for insertion into the pBi221 vector.
  • the coding regions of sweetgum FA5H-1 or FA5H-2 are amplified by PCR using primer with restriction sites incorporated in the 5′ and 3′ ends.
  • an XbaI site was incorporated at the 5′ end and a BamHI site was incorporated at the 3′ end of the sweetgum FA5H-1 or FA5H-2 genes.
  • the FA5H-1 and FA5H-2 genes were separately cloned into a TA vector available from Invitrogen.
  • the GSL expression cassette may be inserted into a target gymnosperm cell.
  • One method of inserting the expression cassette into the gymnosperm is by micro-projectile bombardment of gymnosperm cells.
  • embryogenic tissue cultures of loblolly pine may be initiated from immature zygotic embryos. Tissue is maintained in an undifferentiated state on semi-solid proliferation medium. For transformation, embryogenic tissue is suspended in liquid proliferation medium. Cells are then sieved through, a preferably 40 mesh screen, to separate small, densely cytoplasmic cells from large vacuolar cells.
  • liquid cell suspension fraction After separation, a portion of the liquid cell suspension fraction is vacuum deposited onto filter paper and placed on semi-solid proliferation medium. The prepared gymnosperm target cells are then grown for several days on filter paper discs in a petri dish.
  • a 1:1 mixture of plasmid DNA containing the selectable marker expression cassette and plasmid DNA containing the FA5H-1 expression cassette may be precipitated with gold to form microprojectiles.
  • the microprojectiles are rinsed in absolute ethanol and aliqots are dried onto a suitable macrocarrier such as the macrocarrier available from BioRad in Hercules, Calif.
  • embryogenic tissue Prior to bombardment, embryogenic tissue is preferably desiccated under a sterile laminar-flow hood.
  • the desiccated tissue is transferred to semi-solid proliferation medium.
  • the prepared microprojectiles are accelerated from the macrocarrier into the desiccated target cells using a suitable apparatus such as a BioRad PDS-1000/HE particle gun.
  • each plate is bombarded once, rotated 180 degrees, and bombarded a second time.
  • Preferred bombardment parameters are 1350 psi rupture disc pressure, 6 mm distance from the rupture disc to macrocarrier (gap distance), 1 cm macrocarrier travel distance, and 10 cm distance from macrocarrier stopping screen to culture plate (microcarrier travel distance).
  • Tissue is then transferred to semi-solid proliferation medium containing a selection agent, such as hygromycin B, for two days after bombardment.
  • GSL expression cassette Other methods of inserting the GSL expression cassette include use of silicon carbide whiskers, transformed protoplasts, Agrobacterium vectors and electroporation.
  • insertion of the GSL expression cassette will typically be carried out in a mass of cells and it will be necessary to determine which cells harbor the recombinant DNA molecule containing the GSL expression cassette.
  • Transformed cells are first identified by their ability to grow vigorously on a medium containing an antibiotic which is toxic to non-transformed cells.
  • Preferred antibiotics are kanamycin and hygromycin B.
  • Cells which grow vigorously on antibiotic containing medium are further tested for presence of either portions of the plasmid vector, the syringyl lignin genes in the GSL expression cassette; e.g. the angiosperm bi-OMT, 4CL, FA5H-1 or FA5H-2 gene, or by testing for presence of other fragments in the GSL expression cassette.
  • Specific methods which can be used to test for presence of portions of the GSL expression cassette include Southern blotting with a labeled complementary probe or PCR amplification with specific complementary primers.
  • an expressed syringyl lignin enzyme can be detected by Western blotting with a specific antibody, or by assaying for a functional property such as the appearance of functional enzymatic activity.
  • transformed embryogenic cells of the gymnosperm Once transformed embryogenic cells of the gymnosperm have been identified, isolated and multiplied, they may be grown into plants. It is expected that all plants resulting from transformed cells will contain the GSL expression cassette in all their cells, and that wood in the secondary growth stage of the mature plant will be characterized by the presence of syringyl lignin.
  • Transgenic embryogenic cells are allowed to replicate and develop into a somatic embryo, which are then converted into a somatic seedling.
  • anti-sense sequences may be incorporated into a gymnosperm genome, via GSL expression cassettes, in order to suppress formation of the less preferred native gymnosperm lignin.
  • the gymnosperm lignin gene is first located and sequenced in order to determine its nucleotide sequence. Methods for locating and sequencing amino acids which have been previously discussed may be employed. For example, if the gymnosperm lignin gene has already been purified, standard sequencing methods may be employed to determine the DNA nucleic acid sequence.
  • gymnosperm lignin gene has not been purified and functionally similar DNA or mRNA sequences from similar species are known, those sequences may be compared to identify highly conserved regions and this information used as a basis for the construction of a probe.
  • a gymnosperm cDNA or genomic library can be probed with the above mentioned sequences to locate the gymnosperm lignin cDNA or genomic DNA. Once the gymnosperm lignin DNA is located, it may be sequenced using standard sequencing methods.
  • the complementary anti-sense strand is constructed and incorporated into an expression cassette.
  • the GL mRNA anti-sense sequence may be fused to a promoter region to form an expression cassette as described above.
  • the GL mRNA anti-sense sequence is incorporated into the previously discussed GSL expression cassette which is inserted into the gymnosperm genome as described above.
  • angiosperm lignin genes such as the FA5H genes may remain inactive or not acheive full or desired activity after insertion into the genome of a gymnosperm. Inactivity or insufficient activity can be determined by testing the resulting plant which contains the FA5H genes for the presence of syringyl lignin in secondary growth. It is known that cytochrome P450 reductase (CPR) may be involved in promoting certain reductive biochemical reactions, and may activate the desired expression of genes in many plants.
  • CPR cytochrome P450 reductase
  • CPR may be inserted in the gymnosperm genome.
  • the DNA sequence of the enzyme is ligated to a constitutive promoter or, for a specific species such as loblolly pine, xylem-specific lignin promoters such as PAL, 4CL1B or 4CL3B to form an expression cassette.
  • the expression cassette may then be inserted into the gymnosperm genome by various methods as described above.
  • the angiosperm is Liquidambar styraciflua (L.)[sweetgum] and the gymnosperm is Pinus taeda (L.)[loblolly pine].
  • genes refered to in the examples is as follows: Genes Biochemical Name 4CL (angiosperm) 4-coumarate CoA ligase bi-OMT (angiosperm) bifunctional-O-methyl transferase FA5H-1 (angiosperm) ferulic acid-5-hydroxylase FA5H-2 (angiosperm) ferulic acid-5-hydroxylase PAL (gymnosperm) phenylalanine ammonia-lyase 4CL1B (gymnosperm) 4-coumarate CoA ligase 4CL3B (gymnosperm) 4-coumarate CoA ligase
  • a cDNA library for Sweetgum was constructed in Lambda ZAPII, available from Stratagene, of LaJolla, CA, using poly(A) +RNA isolated from Sweetgum xylem tissue. Probes for bi-OMT and 4CL were obtained through reverse transcription of their mRNAs and followed by double PCR using gene-specific primers which were designed based on the OMT and CCL cDNA sequences obtained from similar genes cloned from other species.
  • oligo-dT primer bi-OMT (which was cloned through modified differential display technique, as described below in Example 2) and the other two were degenerate primers, which were based on the conserved sequences of all known OMTs.
  • the two degenerate primers were derived based on the following amino acid sequences:
  • a 900 bp PCR product was produced when oligo-dT primer and primer #22 were used, and a 550 bp fragment was produced when primer numbers 22 and were used.
  • R1S and H1S were both sense primers.
  • Primer R2A was an anti-sense primer.
  • a 650 bp fragment was produced if R1S and R2A primers were used and a 550 bp fragment was produced when primers H1S and R2A were used.
  • the sequence of these three primers were derived from conserved sequences for plant CCLs.
  • the reverse transcription-double PCR cloning technique used for these examples consisted of adding 10 ⁇ m of DNA-free total RNA in 25 ⁇ g DEPC-treated water to a microfuge tube. Next, the following solutions were added:
  • the tube was incubated at a temperature of 42° C. for one (1) hour, followed by incubation at 70° C. for fifteen (15) minutes. Forty (40) ⁇ l of IN NaOH was added and the tube was further incubated at 68° C. for twenty (20) minutes. After the incubation periods, 80 ⁇ l of 1N HCl was added to the reaction mixture. At the same time, 17 ⁇ l NaOAc, 5 ⁇ l glycogen and 768 ⁇ l of 100% ethanol were added and the reaction mixture was maintained at ⁇ 80° C. for 15 minutes in order to precipitate the cDNA. The precipitated cDNA was centrifuged at high speed at 4° C. for 15 minutes. The resulting pellet was washed with 70% ethanol and then dried at room temperature, and then was dissolved in 20 ⁇ l of water.
  • the foregoing procedure produced purified cDNA which was used as a template to carry out first round PCR using primers #22 and oligo-dT for cloning OMT cDNA and primer R1S and R2A for cloning 4CL cDNA.
  • first round PCR a master mix of 50 ⁇ l for each reaction was prepared. Each 50 ⁇ l mixture contained:
  • the cDNA fragments obtained from the first round of PCR were used as templates to perform the second round of PCR using primers 22 and 23 for cloning bi-OMT cDNA and primer HIS and R2A for cloning 4CL cDNA.
  • the second round of PCR conditions were the same as the first round.
  • one bi-OMT clone was produced via modified differential display technique.
  • This method is another type of reverse transcription-PCR, in which DNA-free total RNA was reverse transcribed using oligo-dT primers with a single base pair anchor to form cDNA.
  • the oligo-dT primers used for reverse transcription of mRNA to synthesize cDNA were:
  • T11A TTTTTTTTTTTTTTA
  • T11C TTTTTTTTTTTTTTC
  • T11G TTTTTTTTTTTTTTG
  • cDNAs were then used as templates for radioactive PCR which was conducted in the presence of the same oligo-dT primers as listed above, a bi-OMT gene-specific primer and 35S-dATP.
  • the OMT gene-specific primer was derived from the following amino acid sequence: 5′-Cys Cys Asn Gly Gly Asn Gly Gly Ser Ala Arg Gly Ala-3′.
  • the tube was heated to a temperature of 94° C. and held for 45 seconds, then at 37° C. for 2 minutes and then 72° C. for 45 seconds for forty cycles, followed by a final reaction at 72° C. for 5 minutes.
  • the amplified products were fractionated on a denaturing polyacrylamide sequencing gel and autoradiography was used to identify and excise the fragments with a predicted size.
  • the designed OMT gene-specific primer had a sequence conserved in a region toward the 3′-end of the OMT cDNA sequence. This primer, together with oligo-dT, was amplified into a OMT cDNA fragment of about 300 bp.
  • oligo-dTs with a single base pair of A, C or G, respectively, were used to pair with the OMT gene-specific primer.
  • Eight potential OMT cDNA fragments with predicted sizes of about 300 bp were excised from the gels after several independent PCR rounds using different combinations of oligo-dT and OMT gene-specific oligo-nucleotides as primers.
  • the OMT cDNA fragments were then re-amplified.
  • a Southern blot analysis was performed for the resulting cDNAs using a 360 base-pair, 32P radio-isotope labeled, aspen OMT cDNA 3′-end fragment as a probe to identify the cDNA fragments having a strong hybridization signal, under low stringency conditions. Eight fragments were identified. Out of these eight cDNA fragments, three were selected based on their high hybridization signal for sub-cloning and sequencing.
  • LsOMT3′-1 (where the “Ls” prefix indicates that the clone was derived from the Liquidambar styraciflua (L.) genome) was confirmed to encode bi-OMT based on its high homology to other lignin-specific plant OMTs at both nucleotide and amino acid sequence levels.
  • a cDNA library was constructed in Lambda ZAP II, available from Stratagene, of LaJolla, Calif., using 5mg poly(A)+RNA isolated from sweetgum xylem tissue.
  • the primary library consisting of approximately 0.7 ⁇ 106 independent recombinants was amplified and approximately 105 plaque-forming-units (pfu) were screened using a homologous 550 base-pair probe.
  • the hybridized filter was washed at high stringency (0.25 ⁇ SSC, 0.1% SDS, 65° C.) conditions.
  • the colony containing the bi-OMT fragment identified by the probe was eluted and the bi-OMT fragment was produced.
  • the sequence as illustrated in FIG. 2 (SEQ ID 3) was obtained.
  • This primer was synthesized with the incorporation of an XboI restriction site to give a 26-base-pair oligomer with a nucleotide sequence of 5′ATG TGC AGT TTT TTT TTT TTT TTT TT-3′.
  • This primer and the oligo-dT-XhoI primer were then used to perform PCR reactions with the sweetgum cDNA library as a template.
  • the cDNA library was constructed in Lambda ZAPII, available from Stratagene, of LaJolla, CA, using poly(a) +RNA isolated from Sweetgum xylem tissue. Amplified fragments of 300 to 600 bp were obtained. Because the designed primer was located upstream of the highly conserved P450 domain, this design distinguished whether the PCR products were P450 gene fragments depending on whether they contained the highly conserved amino acid domain.
  • the novel sweetgum P450 cDNA fragment was used as a probe to screen a full length cDNA encoding for FA5H-1. Once the FA5H-1 gene was located it was sequenced. The length of the FA5H-1 cDNA is 1707 bp and it contains 45 bp of 5′ non-coding region and 135 bp of 3′ non-coding region. The deduced amino acid sequence also indicates that this P450 cDNA has a hydrophobic core at the N-terminal, which could be regarded as a leader sequence for c-translational targeting to membranes during protein synthesis. At the C-terminal region, there is a heme binding domain that is characteristic of all P450 genes.
  • the FA5H-1 sequence as illustrated in FIG. 4 (SEQ ID 1), was produced, according to the above described methods.
  • FA5H-2 contains 1883 bp and encodes an open reading frame of 511 amino acids.
  • the amino acid similarity shared between Arabidopsis F5H and the FA5H-2 sweetgum clone is about 75%, indicating that the isolated clone belongs to the same class of cDNAs that encode a F5H protein, which has been shown to be functional by genetic complimentation in Arabidopsis.
  • the FA5H-2 protein was further purified for production of antibodies in rabbits, and antibodies have been successfully produced. In addition, Western blots show that this antibody is specific to the membrane fraction of sweetgum and aspen xylem extract.
  • FIG. 5 illustrates the FA5H-2 sequence.
  • loblolly pine PAL and 4CL1B and 4CL3B lignin genes were used as primers to screen the loblolly pine genomic library, using the GenomeWalker Kit.
  • the loblolly pine PAL primer sequence was obtained from the GenBank, reference number U39792.
  • the loblolly pine 4CL1B primer sequences were also obtained from the gene bank, reference numbers U39404 and U39405.
  • the loblolly pine genomic library was constructed in Lambda DashII, available from Stratagene, of LaJolla, Calif. 3 ⁇ 106 phage plaques from the genomic library of loblolly pine were screened using both the above mentioned PAL cDNA and 4CL (PCR clone) fragments as probes. Five 4CL clones were obtained after screening. Lambda DNAs of two 4CL of the five 4CL clones obtained after screening were isolated and digested by EcoRV, PstI, Sa1I and XbaI for Southern analysis. Southern analysis using 4CL fragments as probes indicated that both clones for the 4CL gene were identical. Results from further mapping showed that none of the original five 4CL clones contained promoter regions. When tested, the PAL clones obtained from the screening also did not contain promoter regions.
  • a 1.6 kb fragment and a 0.6 kb fragment for PAL gene and a 2.3 kb fragment (4CL1B) and a 0.7 kb fragment (4CL3B) for the 4CL gene were cloned, sequenced and found to contain promoter regions for all three genes. See FIG. 6 (SEQ ID 6), 7 (SEQ ID 7) and 8 (SEQ ID 5).
  • a ASL DNA sequence, FA5H-1 was fused with a constitutive promoter region according to the methods described in the above Section IV to form an FA5H-1 expression cassette.
  • a second ASL DNA sequence, FA5H-2 was then fused with a constitutive promoter in the same manner to form an FA5H-2 expression cassette.
  • the FA5H-1 expression cassette was inserted into the gymnosperm genome by micro-projectile bombaradment. Embryogenic tissue cultures of loblolly pine were initiated from immature zygotic embryos. The tissue was maintained in an undifferentiated state on semi-solid proliferation medium, according to methods described by Newton et al. TAES Technical Publication “Somatic Embryogenesis in Slash Pine”, 1995 and Keinonen-Mettala et al. 1996 , Scand. J. For. Res. 11: 242-250.
  • the DNA-coated microprojectiles were rinsed in absolute ethanol and aliqots of 10 ⁇ l (5 ⁇ g DNA/3 mg gold) were dried onto a macrocarrier, such as those available from BioRad (Hercules, Calif.).
  • embryogenic tissue Prior to bombardment, embryogenic tissue was desiccated under a sterile laminar-flow hood for 5 minutes. The desiccated tissue was transferred to semi-solid proliferation medium. The microprojectiles were accelerated into desiccated target cells using a BioRad PDS-1000/HE particle gun.
  • Each plate was bombarded once, rotated 180 degrees, and bombarded a second time.
  • Preferred bombardment parameters were 1350 psi rupture disc pressure, 6 mm distance from the rupture disc to macrocarrier (gap distance), 1 cm macrocarrier travel distance, and 10 cm distance from macrocarrier stopping screen to culture plate (microcarrier travel distance). Tissue was then transferred to semi-solid proliferation medium containing hygromycin B for two days after bombardment.
  • the FA5H-2 expression cassette was inserted into the gymnosperm genome according to the same procedures.
  • PCR techniques were then used to verify that the FA5H-1 gene had been successfully integrated into the genomes of of the established cell lines by extracting genomic DNA using the Plant DNAeasy kit, available from Quaign. 200 ng DNA from each cell line were used for each PCR reaction. Two FA5H-1 specific primers were designed to perform a PCR reaction with a 600bp PCR product size. The primers were:
  • LsFa5H-im1-S primer ATGGCTTTCCTTCTAATACCCATCTC
  • LsFA5H-im1-A primer GGGTGTAATGGACGAGCAAGGACTTG.
  • Each PCR reaction (100 ⁇ l) consisted of 75 ⁇ l H2O, 1 ⁇ l MgCl (25 mM), 10 ⁇ l PCR buffer 1 ⁇ l 10 mM dNTPs, and 10 ⁇ l DNA. 100 ⁇ l oil was layered on the top of each reaction mix. Hot start PCR was done as follows: PCR reaction was incubated at 95 degrees C for 7 minutes and 1 ⁇ l each of both LsFA5H-im1-S and LsFa5H-im1-A primers (100 ⁇ M stock) and 1 ⁇ l of Taq polymerase were added through oil in each reaction. The PCR program used was 95 degrees C for 1.5 minutes, 55 degrees C for 45 sec and 72 degrees C for 2 minutes, repeated for 40 cycles, followed by extension at 72 degrees C for 10 minutes.
  • PCR amplification was performed using template DNA from cells which grew vigorously on hygromycin B-containing medium.
  • the PCR products were electrophoresis in an agarose gel containing 9 lanes.
  • Lanes 1-4 contained PCR amplification of products of the Sweetgum FA5H-1 gene from a non-transformed control and transgenic loblolly pine cell lines.
  • Lane 1 contained the non-transformed control PT52.
  • Lane 2 contained transgenic line Y2.
  • Lane 3 contained transgenic line Y17 and Lane 4 contained the plasmid which contains the expression cassette pSSLsFA5H1-im-s. Lanes 2 through 4 all contain an amplified fragment of about 600 bp, indicating that the FA5H-1 gene has been successfully inserted into transgenic cell lines Y2 and Y17.
  • Lane 5 contained a DNA size marker Phi 174/HaeIII (BRL). The top four bands in this lane indicate molecular sizes of 1353, 1078, 872 and 603 bp.
  • Lanes 6-9 contained PCR amplification products of hygromycin B gene from non-transformed control and transgenic loblolly pine cell lines. Lane 6 contained the non-transformed control PT52 line, available from ______. Lane 7 contained transgenic line Y7. Lane 8 contained transgenic line O4. Lane 9 contained the plasmid which includes the expression cassette containing the gene encoding the enzyme which confers resistance tot he antibiotic hygromycin B. Lanes 7-9 all show an amplified fragment of about 1000 bp, indicating that the hygromycin gene has been successfully inserted into transgenic lines Y7 and O4.
  • the DNA sequences include variant polynucleotide sequences encoding polypeptides which have substantial identity with the amino acid sequence of syringyl lignin and which show syringyl lignin activity in gymnosperms.

Abstract

The present invention relates to a method for producing syringyl lignin in gymnosperms. The production of syringyl lignin in gymnosperms is accomplished by genetically transforming a gymnosperm genome, which does not normally contain genes which code for enzymes necessary for production of syringyl lignin, with DNA which codes for enzymes found in angiosperms associated with production of syringyl lignin. The expression of the inserted DNA is mediated using host promoter regions in the gymnosperm. In addition, genetic sequences which code for gymnosperm lignin anti-sense mRNA may be incorporated into the gymnosperm genome in order to suppress the formation of the less preferred forms of lignin in the gymnosperm such as guaiacyl lignin.

Description

    FIELD OF THE INVENTION
  • This application claims the benefit of U.S. Provisional Application No. 60/033,381, filed Dec. 16, 1996. The invention relates to the molecular modification of gymnosperms in order to cause the production of syringyl units during lignin biosynthesis and to production and propagation of gymnosperms containing syringyl lignin.[0001]
  • BACKGROUND OF THE INVENTION
  • Lignin is a major part of the supportive structure of most woody plants including angiosperm and gymnosperm trees which in turn are the principal sources of fiber for making paper and cellulosic products. In order to liberate fibers from wood structure in a manner suitable for making many grades of paper, it is necessary to remove much of the lignin from the fiber/lignin network. Lignin is removed from wood chips by treatment of the chips in an alkaline solution at elevated temperatures and pressure in an initial step of papermaking processes. The rate of removal of lignin from wood of different tree species varies depending upon lignin structure. Three different lignin structures have been identified in trees: p-hydroxyphenyl, guaiacyl and syringyl, which are illustrated in FIG. 1. [0002]
  • Angiosperm species, such as [0003] Liquidambar styraciflua L. [sweetgum], have lignin composed of a mixture of guaiacyl and syringyl monomer units. In contrast, gymnosperm species such as Pinus taeda L. [loblolly pine] have lignin which is devoid of syringyl monomer units. Generally speaking, the rate of delignification in a pulping process is directly proportional to the amount of syringyl lignin present in the wood. The higher delignification rates associated with species having a greater proportion of syringyl lignin result in more efficient pulp mill operations since the mills make better use of energy and capital investment and the environmental impact is lessened due to a decrease in chemicals used for delignification.
  • It is therefore an object of the invention to provide gymnosperm species which are easier to delignify in pulping processes. [0004]
  • Another object of the invention is to provide gymnosperm species such as loblolly pine which contain syringyl lignin. [0005]
  • An additional object of the invention is to provide a method for modifying genes involved in ligning biosynthesis in gymnosperm species so that production of syringyl lignin is increased while production of guaiacyl lignin is suppressed. [0006]
  • Still another object of the invention is to produce whole gymnosperm plants containing genes which increase production of syringyl lignin and repress production of guaiacyl lignin. [0007]
  • Yet another object of the invention is to identify, isolate and/or clone those genes in angiosperms responsible for production of syringyl lignin. [0008]
  • A further object of the invention is to provide, in gymnosperms, genes which produce syringyl lignin. [0009]
  • Another object of the invention is to provide a method for making an expression cassette insertable into a gymnosperm cell for the purpose of inducing formation of syringyl lignin in a gymnosperm plant derived from the cell. [0010]
  • DEFINITIONS
  • The term “promoter” refers to a DNA sequence in the 5′ flanking region of a given gene which is involved in recognition and binding of RNA polymerase and other transcriptional proteins and is required to initiate DNA transcription in cells. [0011]
  • The term “constitutive promoter” refers to a promoter which activates transcription of a desired gene, and is commonly used in creation of an expression cassette designed for preliminary experiments relative to testing of gene function. An example of a constitutive promoter is 35S CaMV, available from Clonetech. [0012]
  • The term “expression cassette” refers to a double stranded DNA sequence which contains both promoters and genes such that expression of a given gene is acheived upon insertion of the expression cassette into a plant cell. [0013]
  • The term “plant” includes whole plants and portions of plants, including plant organs (e.g. roots, stems, leaves, etc.) [0014]
  • The term “angiosperm” refers to plants which produce seeds encased in an ovary. A specific example of an angiosperm is [0015] Liquidambar styraciflua (L.)[sweetgum]. The angiosperm sweetgum produces syringyl lignin.
  • The term “gymnosperm” refers to plants which produce naked seeds, that is, seeds which are not encased in an ovary. A specific example of a gymnosperm is [0016] Pinus taeda (L.)(loblolly pine]. The gymnosperm loblolly pine does not produce syringyl lignin.
  • SUMMARY OF THE INVENTION
  • With regard to the above and other objects, the invention provides a method for inducing production of syringyl lignin in gymnosperms and to gymnosperms which contain syringyl lignin for improved delignification in the production of pulp for papermaking and other applications. In accordance with one of its aspects, the invention involves cloning an angiosperm DNA sequence which codes for enzymes involved in production of syringyl lignin monomer units, fusing the angiosperm DNA sequence to a lignin promoter region to form an expression cassette, and inserting the expression cassette into a gymnosperm genome. [0017]
  • Enzymes required for production of syringyl lignin in an angiosperm are obtained by deducing an amino acid sequence of the enzyme, extrapolating an mRNA sequence from the amino acid sequence, constructing a probe for the corresponding DNA sequence and cloning the DNA sequence which codes for the desired enzyme. A promoter region specific to a gymnosperm lignin biosynthesis gene is identified by constructing a probe for a gymnosperm lignin biosynthesis gene, sequencing the 5′ flanking region of the DNA which encodes the gymnosperm lignin biosynthesis gene to locate a promoter sequence, and then cloning that sequence. [0018]
  • An expression cassette is constructed by fusing the angiosperm syringyl lignin DNA sequence to the gymnosperm promoter DNA sequence. Alternatively, the angiosperm syringyl lignin DNA is fused to a constitutive promoter to form an expression cassette. The expression cassette is inserted into the gymnosperm genome to transform the gymnosperm genome. Cells containing the transformed genome are selected and used to produce a transformed gymnosperm plant containing syringyl lignin. [0019]
  • In accordance with the invention, the angiosperm gene sequences bi-OMT, 4CL, FA5H-1 and FA5H-2 have been determined and isolated as associated with production of syringyl lignin in sweetgum and lignin promoter regions for the gymnosperm loblolly pine have been determined to be the 5′ flanking regions for the 4CL1B, 4CL3B and PAL gymnosperm lignin genes. Expression cassettes containing sequences of selected genes from sweetgum have been inserted into loblolly pine embryogenic cells and presence of sweetgum genes associated with production of syringyl lignin has been confirmed in daughter cells of the resulting loblolly pine embryogenic cells. [0020]
  • The invention therefore enables production of gymnosperms such as loblolly pine containing genes which code for production of syringyl lignin, to thereby produce in such species syringyl lignin in the wood structure for enhanced pulpability.[0021]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other aspects of the invention will now be further described in the following detailed specification considered in conjunction with the following drawings in which: [0022]
  • FIG. 1 illustrates a generalized pathway for lignin synthesis; and [0023]
  • FIG. 2 illustrates a bifunctional-O-methyl transferase (bi-OMT) gene sequence involved in the production of syringyl lignin in an angiosperm (SEQ ID 3); [0024]
  • FIG. 3 illustrates a 4-coumarate CoA ligase (4CL) gene sequence involved in the production of syringyl lignin in an angiosperm (SEQ ID 4); [0025]
  • FIG. 4 illustrates a ferulic acid-5-hydroxylase (FA5H-1) gene sequence involved in the production of syringyl lignin in an angiosperm (SEQ ID 1); [0026]
  • FIG. 5 illustrates a ferulic acid-5-hydroxylase (FA5H-2) gene sequence involved in the production of syringyl lignin in an angiosperm (SEQ ID 2); [0027]
  • FIG. 6 illustrates nucleotide sequences of the 5′ flanking region of the loblolly pine 4CL1B gene showing the location of regulatory elements for lignin biosynthesis (SEQ ID 6); [0028]
  • FIG. 7 illustrates nucleotide sequences of the 5′ flanking region of the loblolly pine 4CL3B gene showing the location of regulatory elements for lignin biosynthesis (SEQ ID 7); [0029]
  • FIG. 8 illustrates nucleotide sequences of the 5′ flanking region of loblolly pine PAL gene showing the location of regulatory elements for lignin biosynthesis (SEQ ID 5); [0030]
  • FIG. 9 illustrates a PCR confirmation of the sweetgum FA5H-1 gene sequence in transgenic loblolly pine cells; and[0031]
  • DETAILED DESCRIPTION OF THE INVENTION
  • In accordance with the invention, a method is provided for modifying a gymnosperm genome, such as the genome of a loblolly pine, so that syringyl lignin will be produced in the resulting plant, thereby enabling cellulosic fibers of the same to be more easily separated from lignin in a pulping process. In general, this is accomplished by fusing one or more angiosperm DNA sequences (referred to at times herein as the “ASL DNA sequences”) which are involved in production of syringyl lignin to a gymnosperm lignin promoter region (referred to at times herein as the “GL promoter region”) specific to genes involved in gymnosperm lignin biosynthesis to form a gymnosperm syringyl lignin expression cassette (referred to at times herein as the “GSL expression cassette”). Alternatively, the one or more ASL DNA sequences are fused to one or more constitutive promoters to form a GSL expression cassette. [0032]
  • The GSL expression cassette preferably also includes selectable marker genes which enable transformed cells to be differentiated from untransformed cells. The GSL expression cassette containing selectable marker genes is inserted into the gymnosperm genome and transformed cells are identified and selected, from which whole gymnosperm plants may be produced which exhibit production of syringyl lignin. [0033]
  • To suppress production of less preferred forms of lignin in gymnosperms, such as guaiacyl lignin, genes from the gymnosperm associated with production of these less preferred forms of lignin are identified, isolated and the DNA sequence coding for anti-sense mRNA (referred to at times herein as the “GL anti-sense sequence”) for these genes is produced. The DNA sequence coding for anti-sense mRNA is then incorporated into the gymnosperm genome, which when expressed bind to the less preferred guaiacyl gymnosperm lignin mRNA, inactivating it. [0034]
  • Further features of these and various other steps and procedures associated with practice of the invention will now be described in more detail beginning with identification and isolation of ASL DNA sequences of interest for use in inducing production of syringyl lignin in a gymnosperm. [0035]
  • I. Determination of DNA Sequence for Genes Associated with Production of Syringyl Lignin [0036]
  • The general biosynthetic pathway for production of lignin has been postulated as shown in FIG. 1. From FIG. 1, it can be seen that the genes CCL, OMT and F5H (which is from the class of P450 genes) may play key roles in production of syringyl lignin in some plant species, but their specific contributions and mechanisms remain to be positively established. It is suspected that the CCL, OMT and F5H genes may have specific equivalents in a specific angiosperm, such as sweetgum. Accordingly, one aim of the present invention is to identify, sequence and clone specific genes of interest from an angiosperm such as sweetgum which are involved in production of syringyl lignin and to then introduce those genes into the genome of a gymnosperm, such as loblolly pine, to induce production of syringyl lignin. [0037]
  • Genes of interest may be identified in various ways, depending on how much information about the gene is already known. Genes believed to be associated with production of syringyl lignin have already been sequenced from a few angiosperm species, viz, CCL and OMT. [0038]
  • DNA sequences of the various CCL and OMT genes are compared to each other to determine if there are conserved regions. Once the conserved regions of the DNA sequences are identified, oligo-dT primers homologous to the conserved sequences are synthesized. Reverse transcription of the DNA-free total RNA which was purified from sweetgum xylem tissue, followed by double PCR using gene-specific primers, enables production of probes for the CCL and OMT genes. [0039]
  • A sweetgum cDNA library is constructed in a host, such as lambda ZAPII, available from Stratagene, of LaJolla, Calif., using poly(A) +RNA isolated from sweetgum xylem, according to the methods described by Bugos et al. (1995 Biotechniques 19:734-737). The above mentioned probes are used to assay the sweetgum cDNA library to locate cDNA which codes for enzymes involved in production of syringyl lignin. Once a syringyl lignin sequence is located, it is then cloned and sequenced according to known methods which are familiar to those of ordinary skill. [0040]
  • In accordance with the invention, two sweetgum syringyl lignin genes have been determined using the above-described technique. These genes have been designated 4CL and bi-OMT. The sequence obtained for the sweetgum syringyl lignin gene, designated bi-OMT, is illustrated in FIG. 2 (SEQ ID 3). The sequence obtained for the sweetgum syringyl lignin gene, designated 4CL, is illustrated in FIG. 3 (SEQ ID 4). [0041]
  • An alternative procedure was employed to identify the F5H equivalent genes in sweetgum. Because the DNA sequences for similar P450 genes from other plant species were known, probes for the P450 genes were designed based on the conserved regions found by comparing the known sequences for similar P450 genes. The known P450 sequences used for comparison include all plant P450 genes in the GenBank database. Primers were designed based on two highly conserved regions which are common to all known plant P450 genes. The primers were then used in a PCR reaction with the sweetgum cDNA library as a template. Once P450-like fragments were located, they were amplified using standard PCR techniques, cloned into a pBluescript vector available from Clonetech of Palo Alto, Calif. and transformed into a DH5[0042] α E. coli strain available from Gibco BRL of Gaithersburg, Md.
  • After [0043] E. coli colonies were tested in order to determine that they contained the P450-like DNA fragments, the fragments were sequenced. Several P450-like sequences were located in sweetgum using the above described technique. One P450-like sequence was sufficiently different from other known P450 sequences to indicate that it represented a new P450 gene family. This potentially new P450 cDNA fragment was used as a probe to screen a full length clone from the sweetgum xylem library. This putative hydroxylase clone was designated FA5H-1. The sequence obtained for FA5H-1 is illustrated in FIG. 4 (SEQ ID 1).
  • II. Identification of GL Gene Promoter Regions [0044]
  • In order to locate gymnosperm lignin promoter regions, probes are developed to locate lignin genes. After the gymnosperm lignin gene is located, the portion of DNA upstream from the gene is sequenced, preferably using the GenomeWalker Kit, available from Clonetech. The portion of DNA upstream from the lignin gene will generally contain the gymnosperm lignin promoter region. [0045]
  • Gymnosperm genes of interest include CCL-like genes and PAL-like genes, which are beleived to be involved in the production of lignin in gymnosperms. Preferred probe sequences are developed based on previously sequenced genes, which are available from the gene bank. The preferred gene bank accession numbers for the CCL-like genes include U39404 and U39405. A preferred gene bank accession number for a PAL-like gene is U39792. Probes for such genes are constructed according to methods familiar to those of ordinary skill in the art. A genomic DNA library is constructed and DNA fragments which code for gymnosperm lignin genes are then identified using the above mentioned probes. A preferred DNA library is obtained from the gymnosperm, [0046] Pinus taeda (L.)[Loblolly Pine], and a preferred host of the genomic library is Lambda DashII, available from Stratagene of LaJolla, Calif.
  • Once the DNA fragments which code for the gymnosperm lignin genes are located, the genomic region upstream from the gymnosperm lignin gene (the 5′ flanking region) was identified. This region contains the GL promoter. Three promoter regions were located from gymnosperm lignin biosynthesis genes. The first is the 5′ flanking region of the loblolly pine 4CL1B gene, shown in FIG. 6 (SEQ ID 6). The second is the 5′ flanking region of the loblolly pine gene 4CL3B, shown in FIG. 7 (SEQ ID 7). The third is the 5′ flanking region of the loblolly pine gene PAL, shown in FIG. 8 (SEQ ID 5). [0047]
  • III. Fusing the GL Promoter Region to the ASL DNA Sequence [0048]
  • The next step of the process is to fuse the GL promoter region to the ASL DNA sequence to make a GSL expression cassette for insertion into the genome of a gymnosperm. This may be accomplished by standard techniques. In a preferred method, the GL promoter region is first cloned into a suitable vector. Preferred vectors are pGEM7Z, available from Promega, Madison, Wis. and SK available from Stratagene, of LaJolla, Calif. After the promoter sequence is cloned into the vector, it is then released with suitable restriction enzymes. The ASL DNA sequence is released with the same restriction enzyme(s) and purified. [0049]
  • The GL promoter region sequence and the ASL DNA sequence are then ligated such as with T4 DNA ligase, available from Promega, to form the GSL expression cassette. Fusion of the GL and ASL DNA sequence is confirmed by restriction enzyme digestion and DNA sequencing. After confirmation of GL promoter-ASL DNA fusion, the GSL expression cassette is released from the original vector with suitable restriction enzymes and used in construction of vectors for plant transformation. [0050]
  • IV. Fusing the ASL DNA Sequence to a Constitutive Promoter Region [0051]
  • In an alternative embodiment, a standard constitutive promoter may be fused with the ASL DNA sequence to make a GSL expression cassette. For example, a standard constitutive promoter may be fused with FA5H-1 to form an expression cassette for insertion of FA5H-1 sequences into a gymnosperm genome. In addition, a standard constitutive promoter may be fused with FA5H-2 to form an expression cassette for insertion of FA5H-2 into a gymnosperm genome. A constitutive promoter for use in the invention is the double 35S promoter, available from Clonetech. [0052]
  • In the preferred practice of the invention using constitutive promters, a suitable vector such as pBi221, is digested XbaI and HindIII to release the 35S promoter. At the same time the vector pHygro, available from International Paper, was disgested by XbaI and HindIII to release the double 35S promoter. The double 35S promoter was ligated to the previously digested pBi221 vector to produce a new pBi221 with the double 35S promoter. This new pBi221 was digested with SacI and SmaI, to release the GUS fragment. The vector is next treated with T4 DNA polymerase to produce blunt ends and the vector is self-ligated. This vector is then further digested with BamHI and XbaI, available from Promega. After the pBi221 vector containing the constitutive promoter region has been prepared, lignin gene sequences are prepared for insertion into the pBi221 vector. [0053]
  • The coding regions of sweetgum FA5H-1 or FA5H-2 are amplified by PCR using primer with restriction sites incorporated in the 5′ and 3′ ends. In one example, an XbaI site was incorporated at the 5′ end and a BamHI site was incorporated at the 3′ end of the sweetgum FA5H-1 or FA5H-2 genes. After PCR, the FA5H-1 and FA5H-2 genes were separately cloned into a TA vector available from Invitrogen. The TA vectors containing the FA5H-1 and FA5H-2 genes, respectively, were digested by XbaI and BamHI to release the FA5H-1 or FA5H-2 sequences. [0054]
  • The p35SS vector, described above, and the isolated sweetgum FA5H-1 or FA5H-2 fragments were then ligated to make GLS expression cassettes containing the constiutive promoter. [0055]
  • V. Inserting the Expression Cassette into the Gymnosperm Genome [0056]
  • There are a number of methods by which the GSL expression cassette may be inserted into a target gymnosperm cell. One method of inserting the expression cassette into the gymnosperm is by micro-projectile bombardment of gymnosperm cells. For example, embryogenic tissue cultures of loblolly pine may be initiated from immature zygotic embryos. Tissue is maintained in an undifferentiated state on semi-solid proliferation medium. For transformation, embryogenic tissue is suspended in liquid proliferation medium. Cells are then sieved through, a preferably 40 mesh screen, to separate small, densely cytoplasmic cells from large vacuolar cells. [0057]
  • After separation, a portion of the liquid cell suspension fraction is vacuum deposited onto filter paper and placed on semi-solid proliferation medium. The prepared gymnosperm target cells are then grown for several days on filter paper discs in a petri dish. [0058]
  • A 1:1 mixture of plasmid DNA containing the selectable marker expression cassette and plasmid DNA containing the FA5H-1 expression cassette may be precipitated with gold to form microprojectiles. The microprojectiles are rinsed in absolute ethanol and aliqots are dried onto a suitable macrocarrier such as the macrocarrier available from BioRad in Hercules, Calif. [0059]
  • Prior to bombardment, embryogenic tissue is preferably desiccated under a sterile laminar-flow hood. The desiccated tissue is transferred to semi-solid proliferation medium. The prepared microprojectiles are accelerated from the macrocarrier into the desiccated target cells using a suitable apparatus such as a BioRad PDS-1000/HE particle gun. In a preferred method, each plate is bombarded once, rotated 180 degrees, and bombarded a second time. Preferred bombardment parameters are 1350 psi rupture disc pressure, 6 mm distance from the rupture disc to macrocarrier (gap distance), 1 cm macrocarrier travel distance, and 10 cm distance from macrocarrier stopping screen to culture plate (microcarrier travel distance). Tissue is then transferred to semi-solid proliferation medium containing a selection agent, such as hygromycin B, for two days after bombardment. [0060]
  • Other methods of inserting the GSL expression cassette include use of silicon carbide whiskers, transformed protoplasts, Agrobacterium vectors and electroporation. [0061]
  • VI. Identifying Transformed Cells [0062]
  • In general, insertion of the GSL expression cassette will typically be carried out in a mass of cells and it will be necessary to determine which cells harbor the recombinant DNA molecule containing the GSL expression cassette. Transformed cells are first identified by their ability to grow vigorously on a medium containing an antibiotic which is toxic to non-transformed cells. Preferred antibiotics are kanamycin and hygromycin B. Cells which grow vigorously on antibiotic containing medium are further tested for presence of either portions of the plasmid vector, the syringyl lignin genes in the GSL expression cassette; e.g. the angiosperm bi-OMT, 4CL, FA5H-1 or FA5H-2 gene, or by testing for presence of other fragments in the GSL expression cassette. Specific methods which can be used to test for presence of portions of the GSL expression cassette include Southern blotting with a labeled complementary probe or PCR amplification with specific complementary primers. In yet another approach, an expressed syringyl lignin enzyme can be detected by Western blotting with a specific antibody, or by assaying for a functional property such as the appearance of functional enzymatic activity. [0063]
  • VII. Production of a Gymnosperm Plant from the Transformed Gymnosperm Cell [0064]
  • Once transformed embryogenic cells of the gymnosperm have been identified, isolated and multiplied, they may be grown into plants. It is expected that all plants resulting from transformed cells will contain the GSL expression cassette in all their cells, and that wood in the secondary growth stage of the mature plant will be characterized by the presence of syringyl lignin. [0065]
  • Transgenic embryogenic cells are allowed to replicate and develop into a somatic embryo, which are then converted into a somatic seedling. [0066]
  • VIII. Identification, Production and Insertion of a GL mRNA Anti-Sense Sequence [0067]
  • In addition to adding ASL DNA sequences, anti-sense sequences may be incorporated into a gymnosperm genome, via GSL expression cassettes, in order to suppress formation of the less preferred native gymnosperm lignin. To this end, the gymnosperm lignin gene is first located and sequenced in order to determine its nucleotide sequence. Methods for locating and sequencing amino acids which have been previously discussed may be employed. For example, if the gymnosperm lignin gene has already been purified, standard sequencing methods may be employed to determine the DNA nucleic acid sequence. [0068]
  • If the gymnosperm lignin gene has not been purified and functionally similar DNA or mRNA sequences from similar species are known, those sequences may be compared to identify highly conserved regions and this information used as a basis for the construction of a probe. A gymnosperm cDNA or genomic library can be probed with the above mentioned sequences to locate the gymnosperm lignin cDNA or genomic DNA. Once the gymnosperm lignin DNA is located, it may be sequenced using standard sequencing methods. [0069]
  • After the DNA sequence has been obtained for a gymnosperm lignin sequence, the complementary anti-sense strand is constructed and incorporated into an expression cassette. For example, the GL mRNA anti-sense sequence may be fused to a promoter region to form an expression cassette as described above. In a preferred method, the GL mRNA anti-sense sequence is incorporated into the previously discussed GSL expression cassette which is inserted into the gymnosperm genome as described above. [0070]
  • IX. Inclusion of Cytochrome P450 Reductase (CPR) to Enhance Biosynthesis of Syringyl Lignin in Gymnosperms [0071]
  • In the absence of external cofactors such as NADPH (an electron donor in reductive biosyntheses), certain angiosperm lignin genes such as the FA5H genes may remain inactive or not acheive full or desired activity after insertion into the genome of a gymnosperm. Inactivity or insufficient activity can be determined by testing the resulting plant which contains the FA5H genes for the presence of syringyl lignin in secondary growth. It is known that cytochrome P450 reductase (CPR) may be involved in promoting certain reductive biochemical reactions, and may activate the desired expression of genes in many plants. Accordingly, if it is desired to enhance the expression of the angiosperm syringyl lignin genes in the gymnosperm, CPR may be inserted in the gymnosperm genome. In order to express CPR, the DNA sequence of the enzyme is ligated to a constitutive promoter or, for a specific species such as loblolly pine, xylem-specific lignin promoters such as PAL, 4CL1B or 4CL3B to form an expression cassette. The expression cassette may then be inserted into the gymnosperm genome by various methods as described above. [0072]
  • X. EXAMPLES
  • The following non-limiting examples illustrate further aspects of the invention. In these examples, the angiosperm is [0073] Liquidambar styraciflua (L.)[sweetgum] and the gymnosperm is Pinus taeda (L.)[loblolly pine]. The nomenclature for the genes refered to in the examples is as follows:
    Genes Biochemical Name
    4CL (angiosperm) 4-coumarate CoA ligase
    bi-OMT (angiosperm) bifunctional-O-methyl transferase
    FA5H-1 (angiosperm) ferulic acid-5-hydroxylase
    FA5H-2 (angiosperm) ferulic acid-5-hydroxylase
    PAL (gymnosperm) phenylalanine ammonia-lyase
    4CL1B (gymnosperm) 4-coumarate CoA ligase
    4CL3B (gymnosperm) 4-coumarate CoA ligase
  • Example 1 Isolating and Sequencing bi-OMT and 4CL Genes from an Angiosperm
  • A cDNA library for Sweetgum was constructed in Lambda ZAPII, available from Stratagene, of LaJolla, CA, using poly(A) +RNA isolated from Sweetgum xylem tissue. Probes for bi-OMT and 4CL were obtained through reverse transcription of their mRNAs and followed by double PCR using gene-specific primers which were designed based on the OMT and CCL cDNA sequences obtained from similar genes cloned from other species. [0074]
  • Three primers were used for amplifying OMT fragments. One was an oligo-dT primer, bi-OMT, (which was cloned through modified differential display technique, as described below in Example 2) and the other two were degenerate primers, which were based on the conserved sequences of all known OMTs. The two degenerate primers were derived based on the following amino acid sequences: [0075]
  • 5′-Gly Gly Met Ala Thr Tyr Cys Cys Ala Thr Thr Tyr Ala Ala Cys Ala Ala Gly Gly Cys-3′ (primer #22) and [0076]
  • 3′-Ala Ala Ala Gly Ala Gly Ala Gly Asn Ala Cys Asn Asn Ala Asn Asn Ala Asn Gly Ala-5′ (primer #23). [0077]
  • A 900 bp PCR product was produced when oligo-dT primer and primer #22 were used, and a 550 bp fragment was produced when primer numbers 22 and were used. [0078]
  • Three primers were used for amplifying CCL fragments. They were derived from the following amino acid sequences: [0079]
  • 5′-Thr Thr Gly Gly Ala Thr Cys Cys Gly Gly Ile Ala Cys Ile Ala Cys Ile Gly Gly Ile Tyr Thr Ile Cys Cys Ile Ala Ala Arg Gly Gly-3′ (primer R1S) [0080]
  • 5′-Thr Thr Gly Gly Ala Thr Cys Cys Gly Thr Ile Gly Thr Ile Gly Cys Ile Cys Ala Arg Cys Ala Arg Gly Thr Ile Gly Ala Tyr Gly Gly-3′ (primer HIS) and [0081]
  • 3′-Cys Cys Ile Cys Thr Tyr Thr Ala Asp Ala Cys Arg Thr Ala Asp Gly Cys Ile Cys Cys Ala Gly Cys Thr Gly Thr Ala-5′ (primer R2A) [0082]
  • R1S and H1S were both sense primers. Primer R2A was an anti-sense primer. A 650 bp fragment was produced if R1S and R2A primers were used and a 550 bp fragment was produced when primers H1S and R2A were used. The sequence of these three primers were derived from conserved sequences for plant CCLs. [0083]
  • The reverse transcription-double PCR cloning technique used for these examples consisted of adding 10 μm of DNA-free total RNA in 25 μg DEPC-treated water to a microfuge tube. Next, the following solutions were added: [0084]
  • a. 5× Reverse transcript buffer 8.0 μl, [0085]
  • b. 0.1 μM DDT 4.0 μl [0086]
  • c. 10 mM dNTP 2.0 μl [0087]
  • d. 100 μM oligo-dT primers 8.0 μl [0088]
  • e. Rnasin 2.0 μl [0089]
  • f. Superscript II 1.0 μl [0090]
  • After mixing, the tube was incubated at a temperature of 42° C. for one (1) hour, followed by incubation at 70° C. for fifteen (15) minutes. Forty (40) μl of IN NaOH was added and the tube was further incubated at 68° C. for twenty (20) minutes. After the incubation periods, 80 μl of 1N HCl was added to the reaction mixture. At the same time, 17 μl NaOAc, 5 μl glycogen and 768 μl of 100% ethanol were added and the reaction mixture was maintained at −80° C. for 15 minutes in order to precipitate the cDNA. The precipitated cDNA was centrifuged at high speed at 4° C. for 15 minutes. The resulting pellet was washed with 70% ethanol and then dried at room temperature, and then was dissolved in 20 μl of water. [0091]
  • The foregoing procedure produced purified cDNA which was used as a template to carry out first round PCR using primers #22 and oligo-dT for cloning OMT cDNA and primer R1S and R2A for cloning 4CL cDNA. For the first round PCR, a master mix of 50 μl for each reaction was prepared. Each 50 μl mixture contained: [0092]
  • a. 10× [0093] buffer 5 μl
  • b. 25 [0094] mM MgCl 5 μl
  • c. 100 [0095] μM sense primer 1 μl (primer #22 for OMT and primer R1S for CCL).
  • d. 100 μl [0096] anti-sense primer 1 μl (oligo-dT primer for OMT and R2A for CCL).
  • e. 10 mM [0097] dNTP 1 μl
  • f. Taq. DNA polymerase 0.5 μl [0098]
  • Of this master mix, 48 μl was added into a PCR tube containing 2 μl of cDNA for PCR. The tube was heated to 95° C. for 45 seconds, 52° C. for one minute and 72° C. for two minutes. This temperature cycle was repeated for 40 cycles and the mixture was then held at 72° C. for 10 minutes. [0099]
  • The cDNA fragments obtained from the first round of PCR were used as templates to perform the second round of PCR using primers 22 and 23 for cloning bi-OMT cDNA and primer HIS and R2A for cloning 4CL cDNA. The second round of PCR conditions were the same as the first round. [0100]
  • The desired cDNA fragment was then sub-cloned and sequenced. After the second round of PCR, the product with the predicted size was excised from the gel and ligated into a pUC19 vector, available from Clonetech, of Palo Alto, Calif., and then transformed into DH5α, an [0101] E. coli strain, available from Gibco BRL, of Gaithersburg, Md. After the inserts had been checked for correct size, the colonies were isolated and plasmids were sequenced using a Sequenase kit available from USB, of Cleveland, Ohio. The sequences are shown in FIG. 2 (SEQ ID 3) and FIG. 3 (SEQ ID 4).
  • Example 2 Alternative Isolation Method of Angiosperm bi-OMT gene
  • As previously mentioned, one bi-OMT clone was produced via modified differential display technique. This method is another type of reverse transcription-PCR, in which DNA-free total RNA was reverse transcribed using oligo-dT primers with a single base pair anchor to form cDNA. The oligo-dT primers used for reverse transcription of mRNA to synthesize cDNA were: [0102]
  • T11A: TTTTTTTTTTTTTTA, [0103]
  • T11C: TTTTTTTTTTTTTTC, and [0104]
  • T11G: TTTTTTTTTTTTTTG, [0105]
  • These cDNAs were then used as templates for radioactive PCR which was conducted in the presence of the same oligo-dT primers as listed above, a bi-OMT gene-specific primer and 35S-dATP. The OMT gene-specific primer was derived from the following amino acid sequence: 5′-Cys Cys Asn Gly Gly Asn Gly Gly Ser Ala Arg Gly Ala-3′. [0106]
  • The following PCR reaction solutions were combined in a microfuge tube: [0107]
  • a. H2O 9.2 μl, [0108]
  • b. Taq Buffer 2.0 μl [0109]
  • c. dNTP (25 μM) 1.6 μl [0110]
  • d. Primers (5 μM) 2 μl, for each primer [0111]
  • e. 35S-[0112] dATP 1 μl
  • f. Taq. pol. 0.2 μl [0113]
  • g. cDNA 2.0 μl. [0114]
  • The tube was heated to a temperature of 94° C. and held for 45 seconds, then at 37° C. for 2 minutes and then 72° C. for 45 seconds for forty cycles, followed by a final reaction at 72° C. for 5 minutes. [0115]
  • The amplified products were fractionated on a denaturing polyacrylamide sequencing gel and autoradiography was used to identify and excise the fragments with a predicted size. The designed OMT gene-specific primer had a sequence conserved in a region toward the 3′-end of the OMT cDNA sequence. This primer, together with oligo-dT, was amplified into a OMT cDNA fragment of about 300 bp. [0116]
  • Three oligo-dTs with a single base pair of A, C or G, respectively, were used to pair with the OMT gene-specific primer. Eight potential OMT cDNA fragments with predicted sizes of about 300 bp were excised from the gels after several independent PCR rounds using different combinations of oligo-dT and OMT gene-specific oligo-nucleotides as primers. [0117]
  • The OMT cDNA fragments were then re-amplified. A Southern blot analysis was performed for the resulting cDNAs using a 360 base-pair, 32P radio-isotope labeled, [0118] aspen OMT cDNA 3′-end fragment as a probe to identify the cDNA fragments having a strong hybridization signal, under low stringency conditions. Eight fragments were identified. Out of these eight cDNA fragments, three were selected based on their high hybridization signal for sub-cloning and sequencing. One clone, LsOMT3′-1, (where the “Ls” prefix indicates that the clone was derived from the Liquidambar styraciflua (L.) genome) was confirmed to encode bi-OMT based on its high homology to other lignin-specific plant OMTs at both nucleotide and amino acid sequence levels.
  • A cDNA library was constructed in Lambda ZAP II, available from Stratagene, of LaJolla, Calif., using 5mg poly(A)+RNA isolated from sweetgum xylem tissue. The primary library consisting of approximately 0.7×106 independent recombinants was amplified and approximately 105 plaque-forming-units (pfu) were screened using a homologous 550 base-pair probe. The hybridized filter was washed at high stringency (0.25× SSC, 0.1% SDS, 65° C.) conditions. The colony containing the bi-OMT fragment identified by the probe was eluted and the bi-OMT fragment was produced. The sequence as illustrated in FIG. 2 (SEQ ID 3) was obtained. [0119]
  • Example 3 Isolating and Producing the DNA which codes for the Angiosperm FA5H-1 Gene
  • In order to find putative FA5H cDNA fragments as probes for cDNA library screening, a highly degenerated sense primer based on the amino acid sequence of 5′-Glu, Glu, Phe, Arg, Pro, Glu, Arg-3′ was designed based on the conserved regions found in some plant P450 proteins. This conserved domain was located upstream of another highly conserved region in P450 proteins, which had an amino acid sequence of 5′-Phe Gly Xaa Gly Xaa Xaa Cys Xaa Gly-3′. This primer was synthesized with the incorporation of an XboI restriction site to give a 26-base-pair oligomer with a nucleotide sequence of 5′ATG TGC AGT TTT TTT TTT TTT TTT TT-3′. [0120]
  • This primer and the oligo-dT-XhoI primer were then used to perform PCR reactions with the sweetgum cDNA library as a template. The cDNA library was constructed in Lambda ZAPII, available from Stratagene, of LaJolla, CA, using poly(a) +RNA isolated from Sweetgum xylem tissue. Amplified fragments of 300 to 600 bp were obtained. Because the designed primer was located upstream of the highly conserved P450 domain, this design distinguished whether the PCR products were P450 gene fragments depending on whether they contained the highly conserved amino acid domain. [0121]
  • All the fragments obtained from the PCR reaction were then cloned into a pUC19 vector, available from Stratagene, of LaJolla, Calif., and transformed into a DH5[0122] α E. coli strain, available from Gibco BRL, of Gaithersburg, Md.
  • Twenty-four positive colonies were obtained and sequenced. Sequence analysis indicated four groupings withing the twenty-four colonies. One was C4H, one was an unknown P450 gene, and two did not belong to P450 genes. Homologies of P450 genes in different species are usually more than 80%. Because the homologies between the P450 gene families found here were around 40%, the sequence analysis indicated that a new P450 gene family was sequenced. Moreover, since this P450 cDNA was isolated from xylem tissue, it was highly probable that this P450 gene was FA5H-1. [0123]
  • The novel sweetgum P450 cDNA fragment was used as a probe to screen a full length cDNA encoding for FA5H-1. Once the FA5H-1 gene was located it was sequenced. The length of the FA5H-1 cDNA is 1707 bp and it contains 45 bp of 5′ non-coding region and 135 bp of 3′ non-coding region. The deduced amino acid sequence also indicates that this P450 cDNA has a hydrophobic core at the N-terminal, which could be regarded as a leader sequence for c-translational targeting to membranes during protein synthesis. At the C-terminal region, there is a heme binding domain that is characteristic of all P450 genes. The FA5H-1 sequence, as illustrated in FIG. 4 (SEQ ID 1), was produced, according to the above described methods. [0124]
  • Example 4 Isolating and Producing the DNA which codes for the Angiosperm FA5H-2 Gene
  • By using similar strategy of synthesizing PCR primers from the published literature for hydroxylase genes in plants, another full length FA5H cDNA has been isolated that shows significant similarity with a putitive F5H clone from Arabidopsis (Meyers et al. 1996: PNAS 93, 6869-6874). This cloned cDNA, designated FA5H-2, contains 1883 bp and encodes an open reading frame of 511 amino acids. The amino acid similarity shared between Arabidopsis F5H and the FA5H-2 sweetgum clone is about 75%, indicating that the isolated clone belongs to the same class of cDNAs that encode a F5H protein, which has been shown to be functional by genetic complimentation in Arabidopsis. [0125]
  • To confirm the function of the FA5H-2 gene, it was expressed in [0126] E. coli, strain, DH5 alpha, via pQE vector preparation, according to directions available with the kit. A CO—Fe2+ binding assay was also performed to confirm the expression of FA5H-2 as a functional P450 gene. (Omura & Sato 1964, J. of Biochemistry 239: 2370-2378, Babriac et.al. 1991 Archives of Biochemistry and Biophysics 288:302-309). The CO—Fe2+ binding assay showed a peak at 450 nm which indicates that FA5H-2 has been overexpressed as a functional P450 gene.
  • The FA5H-2 protein was further purified for production of antibodies in rabbits, and antibodies have been successfully produced. In addition, Western blots show that this antibody is specific to the membrane fraction of sweetgum and aspen xylem extract. When the FA5H-2 antibody was added to a reaction mixture containing aspen xylem tissue, enzyme inhibition studies showed that the activity of FA5H in aspen was reduced more than 60%, a further indication that FA5H-2 performs a P450-like function. FIG. 5 (SEQ ID 2) illustrates the FA5H-2 sequence. [0127]
  • Example 5 Identifying Gymnosperm Promoter Regions
  • In order to identify gymnosperm promoter regions, sequences from loblolly pine PAL and 4CL1B and 4CL3B lignin genes were used as primers to screen the loblolly pine genomic library, using the GenomeWalker Kit. The loblolly pine PAL primer sequence was obtained from the GenBank, reference number U39792. The loblolly pine 4CL1B primer sequences were also obtained from the gene bank, reference numbers U39404 and U39405. [0128]
  • The loblolly pine genomic library was constructed in Lambda DashII, available from Stratagene, of LaJolla, Calif. 3×106 phage plaques from the genomic library of loblolly pine were screened using both the above mentioned PAL cDNA and 4CL (PCR clone) fragments as probes. Five 4CL clones were obtained after screening. Lambda DNAs of two 4CL of the five 4CL clones obtained after screening were isolated and digested by EcoRV, PstI, Sa1I and XbaI for Southern analysis. Southern analysis using 4CL fragments as probes indicated that both clones for the 4CL gene were identical. Results from further mapping showed that none of the original five 4CL clones contained promoter regions. When tested, the PAL clones obtained from the screening also did not contain promoter regions. [0129]
  • In a second attempt to clone the promoter regions associated with the PAL and 4CL a Universal GenomeWalkerTM kit, available from CLONETECH, was used. In the process, total DNA from loblolly pine was digested by several restriction enzymes and ligated into the adaptors (libraries) provied with the kit. Two gene-specific primers for each gene were designed (GSP1 and 2). After two rounds of PCR using these primers and adapter primers of the kit, several fragments were amplified from each library. A 1.6 kb fragment and a 0.6 kb fragment for PAL gene and a 2.3 kb fragment (4CL1B) and a 0.7 kb fragment (4CL3B) for the 4CL gene were cloned, sequenced and found to contain promoter regions for all three genes. See FIG. 6 (SEQ ID 6), 7 (SEQ ID 7) and 8 (SEQ ID 5). [0130]
  • Example 6 Fusing the ASL DNA Sequence to A Constitutive Promoter Region and Inserting the Expression Cassette Into a Gymnosperm Genome
  • As a first step, a ASL DNA sequence, FA5H-1, was fused with a constitutive promoter region according to the methods described in the above Section IV to form an FA5H-1 expression cassette. A second ASL DNA sequence, FA5H-2, was then fused with a constitutive promoter in the same manner to form an FA5H-2 expression cassette. The FA5H-1 expression cassette was inserted into the gymnosperm genome by micro-projectile bombaradment. Embryogenic tissue cultures of loblolly pine were initiated from immature zygotic embryos. The tissue was maintained in an undifferentiated state on semi-solid proliferation medium, according to methods described by Newton et al. [0131] TAES Technical Publication “Somatic Embryogenesis in Slash Pine”, 1995 and Keinonen-Mettala et al. 1996, Scand. J. For. Res. 11: 242-250.
  • After separation, 5 ml of the liquid cell suspension fraction which passes through the 40 mesh screen was vacuum deposited onto filter paper and placed on semi-solid proliferation medium. The prepared gymnosperm target cells were then grown for 2 days on filter paper discs placed on semi-solid proliferation medium in a petri dish. These target cell were then bombarded with plasmid DNA containing the FA5H-1 expression cassette and an expression cassette containing a selectable marker gene encoding the enzyme which confers resistance to the antibiotic hygromycin B. A 1:1 mixture of of selectable marker expression cassette and plasmid DNA containing the FA5H-1 expression cassette is precipitated with gold (1.5-3.0 microns) as described by Sanford et al. (1992). The DNA-coated microprojectiles were rinsed in absolute ethanol and aliqots of 10 μl (5 μg DNA/3 mg gold) were dried onto a macrocarrier, such as those available from BioRad (Hercules, Calif.). [0132]
  • Prior to bombardment, embryogenic tissue was desiccated under a sterile laminar-flow hood for 5 minutes. The desiccated tissue was transferred to semi-solid proliferation medium. The microprojectiles were accelerated into desiccated target cells using a BioRad PDS-1000/HE particle gun. [0133]
  • Each plate was bombarded once, rotated 180 degrees, and bombarded a second time. Preferred bombardment parameters were 1350 psi rupture disc pressure, 6 mm distance from the rupture disc to macrocarrier (gap distance), 1 cm macrocarrier travel distance, and 10 cm distance from macrocarrier stopping screen to culture plate (microcarrier travel distance). Tissue was then transferred to semi-solid proliferation medium containing hygromycin B for two days after bombardment. [0134]
  • The FA5H-2 expression cassette was inserted into the gymnosperm genome according to the same procedures. [0135]
  • Example 7 Selecting Transformed Target Cells
  • After insertion of the FA5H-1 expression cassette and the selectable marker expression cassette into the gymnosperm target cells as described in Example 6, transformed cells were selected by exposure to an antibiotic that causes mortality of any cells not containing the GSL expression cassette. Forty independent cell lines were established from cultures cobombarded with an expression cassette containing a hygromycin resistance gene construct and the FA5H-1 construct. These cell lines include lines Y2, Y17, Y7 and O4, as discussed in more detail below. [0136]
  • PCR techniques were then used to verify that the FA5H-1 gene had been successfully integrated into the genomes of of the established cell lines by extracting genomic DNA using the Plant DNAeasy kit, available from Quaign. 200 ng DNA from each cell line were used for each PCR reaction. Two FA5H-1 specific primers were designed to perform a PCR reaction with a 600bp PCR product size. The primers were: [0137]
  • LsFa5H-im1-S primer: ATGGCTTTCCTTCTAATACCCATCTC, and [0138]
  • LsFA5H-im1-A primer: GGGTGTAATGGACGAGCAAGGACTTG. [0139]
  • Each PCR reaction (100 μl) consisted of 75 μl H2O, 1 μl MgCl (25 mM), 10 [0140] μl PCR buffer 1 μl 10 mM dNTPs, and 10 μl DNA. 100 μl oil was layered on the top of each reaction mix. Hot start PCR was done as follows: PCR reaction was incubated at 95 degrees C for 7 minutes and 1 μl each of both LsFA5H-im1-S and LsFa5H-im1-A primers (100 μM stock) and 1 μl of Taq polymerase were added through oil in each reaction. The PCR program used was 95 degrees C for 1.5 minutes, 55 degrees C for 45 sec and 72 degrees C for 2 minutes, repeated for 40 cycles, followed by extension at 72 degrees C for 10 minutes.
  • The above PCR products were employed to determine if gymnosperm cells contained the angiosperm lignin gene sequences. With reference to FIG. 9, PCR amplification was performed using template DNA from cells which grew vigorously on hygromycin B-containing medium. The PCR products were electrophoresis in an agarose gel containing 9 lanes. Lanes 1-4 contained PCR amplification of products of the Sweetgum FA5H-1 gene from a non-transformed control and transgenic loblolly pine cell lines. [0141] Lane 1 contained the non-transformed control PT52. Lane 2 contained transgenic line Y2. Lane 3 contained transgenic line Y17 and Lane 4 contained the plasmid which contains the expression cassette pSSLsFA5H1-im-s. Lanes 2 through 4 all contain an amplified fragment of about 600 bp, indicating that the FA5H-1 gene has been successfully inserted into transgenic cell lines Y2 and Y17.
  • [0142] Lane 5 contained a DNA size marker Phi 174/HaeIII (BRL). The top four bands in this lane indicate molecular sizes of 1353, 1078, 872 and 603 bp.
  • Lanes 6-9 contained PCR amplification products of hygromycin B gene from non-transformed control and transgenic loblolly pine cell lines. [0143] Lane 6 contained the non-transformed control PT52 line, available from ______. Lane 7 contained transgenic line Y7. Lane 8 contained transgenic line O4. Lane 9 contained the plasmid which includes the expression cassette containing the gene encoding the enzyme which confers resistance tot he antibiotic hygromycin B. Lanes 7-9 all show an amplified fragment of about 1000 bp, indicating that the hygromycin gene has been successfully inserted into transgenic lines Y7 and O4.
  • These PCR results confirmed the presence of FA5H-1 and hygromycin resistance gene in transformed loblolly pine cell cultures. The results obtained from the PCR verification of 4 cell lines, and similar tests with the remaining 36 cell lines, confirm stable integration of the FA5H-1 gene and the hygromycin B gene in 25% of the 40 cell lines. [0144]
  • In addition, loblolly pine embryogenic cells which have been co-bombarded with the FA5H-2 and hygromycin B expression cassettes, are growing vigorously on hygromycin selection medium, indicating that the FA5H-2 expression cassette was successfully integrated into the gymnosperm genome. [0145]
  • Although various embodiments and features of the invention have been described in the foregoing detailed description, those of ordinary skill will recognize the invention is capable of numerous modifications, rearrangements and substitutions without departing from the scope of the invention as set forth in the appended claims. For example, in the case where the lignin DNA sequence is transcribed and translated to produce a functional syringyl lignin gene, those of ordinary skill will recognize that because of codon degeneracy a number of polynucleotide sequences will encode the same gene. These variants are intended to be covered by the DNA sequences disclosed and claimed herein. In addition, the sequences claimed herein include those sequences with encode a gene having substantial functional identity with those claimed. Thus, in the case of syringyl lignin genes, for example, the DNA sequences include variant polynucleotide sequences encoding polypeptides which have substantial identity with the amino acid sequence of syringyl lignin and which show syringyl lignin activity in gymnosperms. [0146]
  • 0
    SEQUENCE LISTING
    <160> NUMBER OF SEQ ID NOS: 11
    <210> SEQ ID NO 1
    <211> LENGTH: 1708
    <212> TYPE: DNA
    <213> ORGANISM: Liquidambar styraciflua
    <220> FEATURE:
    <221> NAME/KEY: CDS
    <222> LOCATION: (48)..(1571)
    <400> SEQUENCE: 1
    cggcacgagg aaaccctaaa actcacctct cttacccttt ctcttca atg gct ttc 56
    Met Ala Phe
    1
    ctt cta ata ccc atc tca ata atc ttc atc gtc tta gct tac cag ctc 104
    Leu Leu Ile Pro Ile Ser Ile Ile Phe Ile Val Leu Ala Tyr Gln Leu
    5 10 15
    tat caa cgg ctc aga ttt aag ctc cca ccc ggc cca cgt cca tgg ccg 152
    Tyr Gln Arg Leu Arg Phe Lys Leu Pro Pro Gly Pro Arg Pro Trp Pro
    20 25 30 35
    atc gtc gga aac ctt tac gac ata aaa ccg gtg agg ttc cgg tgt ttc 200
    Ile Val Gly Asn Leu Tyr Asp Ile Lys Pro Val Arg Phe Arg Cys Phe
    40 45 50
    gcc gag tgg tca caa gcg tac ggt ccg atc ata tcg gtg tgg ttc ggt 248
    Ala Glu Trp Ser Gln Ala Tyr Gly Pro Ile Ile Ser Val Trp Phe Gly
    55 60 65
    tca acg ttg aat gtg atc gta tcg aat tcg gaa ttg gct aag gaa gtg 296
    Ser Thr Leu Asn Val Ile Val Ser Asn Ser Glu Leu Ala Lys Glu Val
    70 75 80
    ctc aag gaa aaa gat caa caa ttg gct gat agg cat agg agt aga tca 344
    Leu Lys Glu Lys Asp Gln Gln Leu Ala Asp Arg His Arg Ser Arg Ser
    85 90 95
    gct gcc aaa ttt agc agg gat ggg cag gac ctt ata tgg gct gat tat 392
    Ala Ala Lys Phe Ser Arg Asp Gly Gln Asp Leu Ile Trp Ala Asp Tyr
    100 105 110 115
    gga cct cac tat gtg aag gtt aca aag gtt tgt acc ctc gag ctt ttt 440
    Gly Pro His Tyr Val Lys Val Thr Lys Val Cys Thr Leu Glu Leu Phe
    120 125 130
    act cca aag cgg ctt gaa gct ctt aga ccc att aga gaa gat gaa gtt 488
    Thr Pro Lys Arg Leu Glu Ala Leu Arg Pro Ile Arg Glu Asp Glu Val
    135 140 145
    aca gcc atg gtt gag tcc att ttt aat gac act gcg aat cct gaa aat 536
    Thr Ala Met Val Glu Ser Ile Phe Asn Asp Thr Ala Asn Pro Glu Asn
    150 155 160
    tat ggg aag agt atg ctg gtg aag aag tat ttg gga gca gta gca ttc 584
    Tyr Gly Lys Ser Met Leu Val Lys Lys Tyr Leu Gly Ala Val Ala Phe
    165 170 175
    aac aac att aca aga ctc gca ttt gga aag cga ttc gtg aat tca gag 632
    Asn Asn Ile Thr Arg Leu Ala Phe Gly Lys Arg Phe Val Asn Ser Glu
    180 185 190 195
    ggt gta atg gac gag caa gga ctt gaa ttt aag gaa att gtg gcc aat 680
    Gly Val Met Asp Glu Gln Gly Leu Glu Phe Lys Glu Ile Val Ala Asn
    200 205 210
    gga ctc aag ctt ggt gcc tca ctt gca atg gct gag cac att cct tgg 728
    Gly Leu Lys Leu Gly Ala Ser Leu Ala Met Ala Glu His Ile Pro Trp
    215 220 225
    ctc cgt tgg atg ttc cca ctt gag gaa ggg gcc ttt gcc aag cat ggg 776
    Leu Arg Trp Met Phe Pro Leu Glu Glu Gly Ala Phe Ala Lys His Gly
    230 235 240
    gca cgt agg gac cga ctt acc aga gct atc atg gaa gag cac aca ata 824
    Ala Arg Arg Asp Arg Leu Thr Arg Ala Ile Met Glu Glu His Thr Ile
    245 250 255
    gcc cgt aaa aag agt ggt gga gcc caa caa cat ttc gtg gat gca ttg 872
    Ala Arg Lys Lys Ser Gly Gly Ala Gln Gln His Phe Val Asp Ala Leu
    260 265 270 275
    ctc acc cta caa gag aaa tat gac ctt agc gag gac act att att ggg 920
    Leu Thr Leu Gln Glu Lys Tyr Asp Leu Ser Glu Asp Thr Ile Ile Gly
    280 285 290
    ctc ctt tgg gat atg atc act gca ggc atg gac aca acc gca atc tct 968
    Leu Leu Trp Asp Met Ile Thr Ala Gly Met Asp Thr Thr Ala Ile Ser
    295 300 305
    gtc gaa tgg gcc atg gcc gag tta att aag aac cca agg gtg caa caa 1016
    Val Glu Trp Ala Met Ala Glu Leu Ile Lys Asn Pro Arg Val Gln Gln
    310 315 320
    aaa gct caa gag gag cta gac aat gta ctt ggg tcc gaa cgt gtc ctg 1064
    Lys Ala Gln Glu Glu Leu Asp Asn Val Leu Gly Ser Glu Arg Val Leu
    325 330 335
    acc gaa ttg gac ttc tca agc ctc cct tat cta caa tgt gta gcc aag 1112
    Thr Glu Leu Asp Phe Ser Ser Leu Pro Tyr Leu Gln Cys Val Ala Lys
    340 345 350 355
    gag gca cta agg ctg cac cct cca aca cca cta atg ctc cct cat cgc 1160
    Glu Ala Leu Arg Leu His Pro Pro Thr Pro Leu Met Leu Pro His Arg
    360 365 370
    gcc aat gcc aac gtc aaa att ggt ggc tac gac atc cct aag gga tca 1208
    Ala Asn Ala Asn Val Lys Ile Gly Gly Tyr Asp Ile Pro Lys Gly Ser
    375 380 385
    aat gtt cat gta aat gtc tgg gcc gtg gct cgt gat cca gca gtg tgg 1256
    Asn Val His Val Asn Val Trp Ala Val Ala Arg Asp Pro Ala Val Trp
    390 395 400
    cgt gac cca cta gag ttt cga ccg gaa cgg ttc tct gaa gac gat gtc 1304
    Arg Asp Pro Leu Glu Phe Arg Pro Glu Arg Phe Ser Glu Asp Asp Val
    405 410 415
    gac atg aaa ggt cac gat tat agg cta ctg ccg ttt ggt gca ggg agg 1352
    Asp Met Lys Gly His Asp Tyr Arg Leu Leu Pro Phe Gly Ala Gly Arg
    420 425 430 435
    cgt gtt tgc ccc ggt gca caa ctt ggc atc aat ttg gtc aca tcc atg 1400
    Arg Val Cys Pro Gly Ala Gln Leu Gly Ile Asn Leu Val Thr Ser Met
    440 445 450
    atg ggt cac cta ttg cac cat ttc tat tgg agc cct cct aaa ggt gta 1448
    Met Gly His Leu Leu His His Phe Tyr Trp Ser Pro Pro Lys Gly Val
    455 460 465
    aaa cca gag gag att gac atg tca gag aat cca gga ttg gtc acc tac 1496
    Lys Pro Glu Glu Ile Asp Met Ser Glu Asn Pro Gly Leu Val Thr Tyr
    470 475 480
    atg cga acc ccg gtg caa gct gtt ccc act cca agg ctg cct gct cac 1544
    Met Arg Thr Pro Val Gln Ala Val Pro Thr Pro Arg Leu Pro Ala His
    485 490 495
    ttg tac aaa cgt gta gct gtg gat atg taattcttag tttgttatta 1591
    Leu Tyr Lys Arg Val Ala Val Asp Met
    500 505
    ttcatgctct taaggttttg gactttgaac ttatgatgag atttgtaaaa ttccaagtga 1651
    tcaaatgaag aaaagaccaa ataaaaaggc ttgacgattt aaaaaaaaaa aaaaaaa 1708
    <210> SEQ ID NO 2
    <211> LENGTH: 508
    <212> TYPE: PRT
    <213> ORGANISM: Liquidambar styraciflua
    <400> SEQUENCE: 2
    Met Ala Phe Leu Leu Ile Pro Ile Ser Ile Ile Phe Ile Val Leu Ala
    1 5 10 15
    Tyr Gln Leu Tyr Gln Arg Leu Arg Phe Lys Leu Pro Pro Gly Pro Arg
    20 25 30
    Pro Trp Pro Ile Val Gly Asn Leu Tyr Asp Ile Lys Pro Val Arg Phe
    35 40 45
    Arg Cys Phe Ala Glu Trp Ser Gln Ala Tyr Gly Pro Ile Ile Ser Val
    50 55 60
    Trp Phe Gly Ser Thr Leu Asn Val Ile Val Ser Asn Ser Glu Leu Ala
    65 70 75 80
    Lys Glu Val Leu Lys Glu Lys Asp Gln Gln Leu Ala Asp Arg His Arg
    85 90 95
    Ser Arg Ser Ala Ala Lys Phe Ser Arg Asp Gly Gln Asp Leu Ile Trp
    100 105 110
    Ala Asp Tyr Gly Pro His Tyr Val Lys Val Thr Lys Val Cys Thr Leu
    115 120 125
    Glu Leu Phe Thr Pro Lys Arg Leu Glu Ala Leu Arg Pro Ile Arg Glu
    130 135 140
    Asp Glu Val Thr Ala Met Val Glu Ser Ile Phe Asn Asp Thr Ala Asn
    145 150 155 160
    Pro Glu Asn Tyr Gly Lys Ser Met Leu Val Lys Lys Tyr Leu Gly Ala
    165 170 175
    Val Ala Phe Asn Asn Ile Thr Arg Leu Ala Phe Gly Lys Arg Phe Val
    180 185 190
    Asn Ser Glu Gly Val Met Asp Glu Gln Gly Leu Glu Phe Lys Glu Ile
    195 200 205
    Val Ala Asn Gly Leu Lys Leu Gly Ala Ser Leu Ala Met Ala Glu His
    210 215 220
    Ile Pro Trp Leu Arg Trp Met Phe Pro Leu Glu Glu Gly Ala Phe Ala
    225 230 235 240
    Lys His Gly Ala Arg Arg Asp Arg Leu Thr Arg Ala Ile Met Glu Glu
    245 250 255
    His Thr Ile Ala Arg Lys Lys Ser Gly Gly Ala Gln Gln His Phe Val
    260 265 270
    Asp Ala Leu Leu Thr Leu Gln Glu Lys Tyr Asp Leu Ser Glu Asp Thr
    275 280 285
    Ile Ile Gly Leu Leu Trp Asp Met Ile Thr Ala Gly Met Asp Thr Thr
    290 295 300
    Ala Ile Ser Val Glu Trp Ala Met Ala Glu Leu Ile Lys Asn Pro Arg
    305 310 315 320
    Val Gln Gln Lys Ala Gln Glu Glu Leu Asp Asn Val Leu Gly Ser Glu
    325 330 335
    Arg Val Leu Thr Glu Leu Asp Phe Ser Ser Leu Pro Tyr Leu Gln Cys
    340 345 350
    Val Ala Lys Glu Ala Leu Arg Leu His Pro Pro Thr Pro Leu Met Leu
    355 360 365
    Pro His Arg Ala Asn Ala Asn Val Lys Ile Gly Gly Tyr Asp Ile Pro
    370 375 380
    Lys Gly Ser Asn Val His Val Asn Val Trp Ala Val Ala Arg Asp Pro
    385 390 395 400
    Ala Val Trp Arg Asp Pro Leu Glu Phe Arg Pro Glu Arg Phe Ser Glu
    405 410 415
    Asp Asp Val Asp Met Lys Gly His Asp Tyr Arg Leu Leu Pro Phe Gly
    420 425 430
    Ala Gly Arg Arg Val Cys Pro Gly Ala Gln Leu Gly Ile Asn Leu Val
    435 440 445
    Thr Ser Met Met Gly His Leu Leu His His Phe Tyr Trp Ser Pro Pro
    450 455 460
    Lys Gly Val Lys Pro Glu Glu Ile Asp Met Ser Glu Asn Pro Gly Leu
    465 470 475 480
    Val Thr Tyr Met Arg Thr Pro Val Gln Ala Val Pro Thr Pro Arg Leu
    485 490 495
    Pro Ala His Leu Tyr Lys Arg Val Ala Val Asp Met
    500 505
    <210> SEQ ID NO 3
    <211> LENGTH: 1883
    <212> TYPE: DNA
    <213> ORGANISM: Liquidambar styraciflua
    <220> FEATURE:
    <221> NAME/KEY: CDS
    <222> LOCATION: (74)..(1606)
    <400> SEQUENCE: 3
    tgcaaacctg cacaaacaaa gagagagaag aagaaaaagg aagagaggag agagagagag 60
    agagagagaa gcc atg gat tct tct ctt cat gaa gcc ttg caa cca cta 109
    Met Asp Ser Ser Leu His Glu Ala Leu Gln Pro Leu
    1 5 10
    ccc atg acg ctg ttc ttc att ata cct ttg cta ctc tta ttg ggc cta 157
    Pro Met Thr Leu Phe Phe Ile Ile Pro Leu Leu Leu Leu Leu Gly Leu
    15 20 25
    gta tct cgg ctt cgc cag aga cta cca tac cca cca ggc cca aaa ggc 205
    Val Ser Arg Leu Arg Gln Arg Leu Pro Tyr Pro Pro Gly Pro Lys Gly
    30 35 40
    tta ccg gtg atc gga aac atg ctc atg atg gat caa ctc act cac cga 253
    Leu Pro Val Ile Gly Asn Met Leu Met Met Asp Gln Leu Thr His Arg
    45 50 55 60
    gga ctc gcc aaa ctc gcc aaa caa tac ggc ggt cta ttc cac ctc aag 301
    Gly Leu Ala Lys Leu Ala Lys Gln Tyr Gly Gly Leu Phe His Leu Lys
    65 70 75
    atg gga ttc tta cac atg gtg gcc gtt tcc aca ccc gac atg gct cgc 349
    Met Gly Phe Leu His Met Val Ala Val Ser Thr Pro Asp Met Ala Arg
    80 85 90
    caa gtc ctt caa gtc caa gac aac atc ttc tcg aac cgg cca gcc acc 397
    Gln Val Leu Gln Val Gln Asp Asn Ile Phe Ser Asn Arg Pro Ala Thr
    95 100 105
    ata gcc atc agc tac ctc acc tat gac cga gcc gac atg gcc ttc gct 445
    Ile Ala Ile Ser Tyr Leu Thr Tyr Asp Arg Ala Asp Met Ala Phe Ala
    110 115 120
    cac tac ggc ccg ttt tgg cgt cag atg cgt aaa ctc tgc gtc atg aaa 493
    His Tyr Gly Pro Phe Trp Arg Gln Met Arg Lys Leu Cys Val Met Lys
    125 130 135 140
    tta ttt agc cgg aaa cga gcc gag tcg tgg gag tcg gtc cga gac gag 541
    Leu Phe Ser Arg Lys Arg Ala Glu Ser Trp Glu Ser Val Arg Asp Glu
    145 150 155
    gtc gac tcg gca gta cga gtg gtc gcg tcc aat att ggg tcg acg gtg 589
    Val Asp Ser Ala Val Arg Val Val Ala Ser Asn Ile Gly Ser Thr Val
    160 165 170
    aat atc ggc gag ctg gtt ttt gct ctg acg aag aat att act tac agg 637
    Asn Ile Gly Glu Leu Val Phe Ala Leu Thr Lys Asn Ile Thr Tyr Arg
    175 180 185
    gcg gct ttt ggg acg atc tcg cat gag gac cag gac gag ttc gtg gcc 685
    Ala Ala Phe Gly Thr Ile Ser His Glu Asp Gln Asp Glu Phe Val Ala
    190 195 200
    ata ctg caa gag ttt tcg cag ctg ttt ggt gct ttt aat ata gct gat 733
    Ile Leu Gln Glu Phe Ser Gln Leu Phe Gly Ala Phe Asn Ile Ala Asp
    205 210 215 220
    ttt atc cct tgg ctc aaa tgg gtt cct cag ggg att aac gtc agg ctc 781
    Phe Ile Pro Trp Leu Lys Trp Val Pro Gln Gly Ile Asn Val Arg Leu
    225 230 235
    aac aag gca cga ggg gcg ctt gat ggg ttt att gac aag atc atc gac 829
    Asn Lys Ala Arg Gly Ala Leu Asp Gly Phe Ile Asp Lys Ile Ile Asp
    240 245 250
    gat cat ata cag aag ggg agt aaa aac tcg gag gag gtt gat act gat 877
    Asp His Ile Gln Lys Gly Ser Lys Asn Ser Glu Glu Val Asp Thr Asp
    255 260 265
    atg gta gat gat tta ctt gct ttt tac ggt gag gaa gcc aaa gta agc 925
    Met Val Asp Asp Leu Leu Ala Phe Tyr Gly Glu Glu Ala Lys Val Ser
    270 275 280
    gaa tct gac gat ctt caa aat tcc atc aaa ctc acc aaa gac aac atc 973
    Glu Ser Asp Asp Leu Gln Asn Ser Ile Lys Leu Thr Lys Asp Asn Ile
    285 290 295 300
    aaa gct atc atg gac gta atg ttt gga ggg acc gaa acg gtg gcg tcc 1021
    Lys Ala Ile Met Asp Val Met Phe Gly Gly Thr Glu Thr Val Ala Ser
    305 310 315
    gcg att gaa tgg gcc atg acg gag ctg atg aaa agc cca gaa gat cta 1069
    Ala Ile Glu Trp Ala Met Thr Glu Leu Met Lys Ser Pro Glu Asp Leu
    320 325 330
    aag aag gtc caa caa gaa ctc gcc gtg gtg gtg ggt ctt gac cgg cga 1117
    Lys Lys Val Gln Gln Glu Leu Ala Val Val Val Gly Leu Asp Arg Arg
    335 340 345
    gtc gaa gag aaa gac ttc gag aag ctc acc tac ttg aaa tgc gta ctg 1165
    Val Glu Glu Lys Asp Phe Glu Lys Leu Thr Tyr Leu Lys Cys Val Leu
    350 355 360
    aag gaa gtc ctt cgc ctc cac cca ccc atc cca ctc ctc ctc cac gag 1213
    Lys Glu Val Leu Arg Leu His Pro Pro Ile Pro Leu Leu Leu His Glu
    365 370 375 380
    act gcc gag gac gcc gag gtc ggc ggc tac tac att ccg gcg aaa tcg 1261
    Thr Ala Glu Asp Ala Glu Val Gly Gly Tyr Tyr Ile Pro Ala Lys Ser
    385 390 395
    cgg gtg atg atc aac gcg tgc gcc atc ggc cgg gac aag aac tcg tgg 1309
    Arg Val Met Ile Asn Ala Cys Ala Ile Gly Arg Asp Lys Asn Ser Trp
    400 405 410
    gcc gac cca gat acg ttt agg ccc tcc agg ttt ctc aaa gac ggt gtg 1357
    Ala Asp Pro Asp Thr Phe Arg Pro Ser Arg Phe Leu Lys Asp Gly Val
    415 420 425
    ccc gat ttc aaa ggg aac aac ttc gag ttc atc cca ttc ggg tca ggt 1405
    Pro Asp Phe Lys Gly Asn Asn Phe Glu Phe Ile Pro Phe Gly Ser Gly
    430 435 440
    cgt cgg tct tgc ccc ggt atg caa ctc gga ctc tac gcg cta gag acg 1453
    Arg Arg Ser Cys Pro Gly Met Gln Leu Gly Leu Tyr Ala Leu Glu Thr
    445 450 455 460
    act gtg gct cac ctc ctt cac tgt ttc acg tgg gag ttg ccg gac ggg 1501
    Thr Val Ala His Leu Leu His Cys Phe Thr Trp Glu Leu Pro Asp Gly
    465 470 475
    atg aaa ccg agt gaa ctc gag atg aat gat gtg ttt gga ctc acc gcg 1549
    Met Lys Pro Ser Glu Leu Glu Met Asn Asp Val Phe Gly Leu Thr Ala
    480 485 490
    cca aga gcg att cga ctc acc gcc gtg ccg agt cca cgc ctt ctc tgt 1597
    Pro Arg Ala Ile Arg Leu Thr Ala Val Pro Ser Pro Arg Leu Leu Cys
    495 500 505
    cct ctc tat tgatcgaatg attgggggag ctttgtggag gggcttttat 1646
    Pro Leu Tyr
    510
    ggagactcta tatatagatg ggaagtgaaa caacgacagg tgaatgcttg gatttttggt 1706
    atatattggg gagggagggg aaaaaaaaaa taatgaaagg aaagaaaaga gagaatttga 1766
    atttctcttc ctctgtggat aaaagcctcg tttttaattg tttttatgtg gagatatttg 1826
    tgtttgttta tttttatctc tttttttgca ataacactca aaaataaaaa aaaaaaa 1883
    <210> SEQ ID NO 4
    <211> LENGTH: 511
    <212> TYPE: PRT
    <213> ORGANISM: Liquidambar styraciflua
    <400> SEQUENCE: 4
    Met Asp Ser Ser Leu His Glu Ala Leu Gln Pro Leu Pro Met Thr Leu
    1 5 10 15
    Phe Phe Ile Ile Pro Leu Leu Leu Leu Leu Gly Leu Val Ser Arg Leu
    20 25 30
    Arg Gln Arg Leu Pro Tyr Pro Pro Gly Pro Lys Gly Leu Pro Val Ile
    35 40 45
    Gly Asn Met Leu Met Met Asp Gln Leu Thr His Arg Gly Leu Ala Lys
    50 55 60
    Leu Ala Lys Gln Tyr Gly Gly Leu Phe His Leu Lys Met Gly Phe Leu
    65 70 75 80
    His Met Val Ala Val Ser Thr Pro Asp Met Ala Arg Gln Val Leu Gln
    85 90 95
    Val Gln Asp Asn Ile Phe Ser Asn Arg Pro Ala Thr Ile Ala Ile Ser
    100 105 110
    Tyr Leu Thr Tyr Asp Arg Ala Asp Met Ala Phe Ala His Tyr Gly Pro
    115 120 125
    Phe Trp Arg Gln Met Arg Lys Leu Cys Val Met Lys Leu Phe Ser Arg
    130 135 140
    Lys Arg Ala Glu Ser Trp Glu Ser Val Arg Asp Glu Val Asp Ser Ala
    145 150 155 160
    Val Arg Val Val Ala Ser Asn Ile Gly Ser Thr Val Asn Ile Gly Glu
    165 170 175
    Leu Val Phe Ala Leu Thr Lys Asn Ile Thr Tyr Arg Ala Ala Phe Gly
    180 185 190
    Thr Ile Ser His Glu Asp Gln Asp Glu Phe Val Ala Ile Leu Gln Glu
    195 200 205
    Phe Ser Gln Leu Phe Gly Ala Phe Asn Ile Ala Asp Phe Ile Pro Trp
    210 215 220
    Leu Lys Trp Val Pro Gln Gly Ile Asn Val Arg Leu Asn Lys Ala Arg
    225 230 235 240
    Gly Ala Leu Asp Gly Phe Ile Asp Lys Ile Ile Asp Asp His Ile Gln
    245 250 255
    Lys Gly Ser Lys Asn Ser Glu Glu Val Asp Thr Asp Met Val Asp Asp
    260 265 270
    Leu Leu Ala Phe Tyr Gly Glu Glu Ala Lys Val Ser Glu Ser Asp Asp
    275 280 285
    Leu Gln Asn Ser Ile Lys Leu Thr Lys Asp Asn Ile Lys Ala Ile Met
    290 295 300
    Asp Val Met Phe Gly Gly Thr Glu Thr Val Ala Ser Ala Ile Glu Trp
    305 310 315 320
    Ala Met Thr Glu Leu Met Lys Ser Pro Glu Asp Leu Lys Lys Val Gln
    325 330 335
    Gln Glu Leu Ala Val Val Val Gly Leu Asp Arg Arg Val Glu Glu Lys
    340 345 350
    Asp Phe Glu Lys Leu Thr Tyr Leu Lys Cys Val Leu Lys Glu Val Leu
    355 360 365
    Arg Leu His Pro Pro Ile Pro Leu Leu Leu His Glu Thr Ala Glu Asp
    370 375 380
    Ala Glu Val Gly Gly Tyr Tyr Ile Pro Ala Lys Ser Arg Val Met Ile
    385 390 395 400
    Asn Ala Cys Ala Ile Gly Arg Asp Lys Asn Ser Trp Ala Asp Pro Asp
    405 410 415
    Thr Phe Arg Pro Ser Arg Phe Leu Lys Asp Gly Val Pro Asp Phe Lys
    420 425 430
    Gly Asn Asn Phe Glu Phe Ile Pro Phe Gly Ser Gly Arg Arg Ser Cys
    435 440 445
    Pro Gly Met Gln Leu Gly Leu Tyr Ala Leu Glu Thr Thr Val Ala His
    450 455 460
    Leu Leu His Cys Phe Thr Trp Glu Leu Pro Asp Gly Met Lys Pro Ser
    465 470 475 480
    Glu Leu Glu Met Asn Asp Val Phe Gly Leu Thr Ala Pro Arg Ala Ile
    485 490 495
    Arg Leu Thr Ala Val Pro Ser Pro Arg Leu Leu Cys Pro Leu Tyr
    500 505 510
    <210> SEQ ID NO 5
    <211> LENGTH: 1380
    <212> TYPE: DNA
    <213> ORGANISM: Liquidambar styraciflua
    <220> FEATURE:
    <221> NAME/KEY: CDS
    <222> LOCATION: (67)..(1170)
    <400> SEQUENCE: 5
    cggcacgagc cctacctcct ttcttggaaa aatttcccca ttcgatcaca atccgggcct 60
    caaaaa atg gga tca aca agc gaa acg aag atg agc ccg agt gaa gca 108
    Met Gly Ser Thr Ser Glu Thr Lys Met Ser Pro Ser Glu Ala
    1 5 10
    gca gca gca gaa gaa gaa gca ttc gta ttc gct atg caa tta acc agt 156
    Ala Ala Ala Glu Glu Glu Ala Phe Val Phe Ala Met Gln Leu Thr Ser
    15 20 25 30
    gct tca gtt ctt ccc atg gtc cta aaa tca gcc ata gag ctc gac gtc 204
    Ala Ser Val Leu Pro Met Val Leu Lys Ser Ala Ile Glu Leu Asp Val
    35 40 45
    tta gaa atc atg gct aaa gct ggt cca ggt gcg cac ata tcc aca tct 252
    Leu Glu Ile Met Ala Lys Ala Gly Pro Gly Ala His Ile Ser Thr Ser
    50 55 60
    gac ata gcc tct aag ctg ccc aca aag aat cca gat gca gcc gtc atg 300
    Asp Ile Ala Ser Lys Leu Pro Thr Lys Asn Pro Asp Ala Ala Val Met
    65 70 75
    ctt gac cgt atg ctc cgc ctc ttg gct agc tac tct gtt cta acg tgc 348
    Leu Asp Arg Met Leu Arg Leu Leu Ala Ser Tyr Ser Val Leu Thr Cys
    80 85 90
    tct ctc cgc acc ctc cct gac ggc aag atc gag agg ctt tac ggc ctt 396
    Ser Leu Arg Thr Leu Pro Asp Gly Lys Ile Glu Arg Leu Tyr Gly Leu
    95 100 105 110
    gca ccc gtt tgt aaa ttc ttg acc aga aac gat gat gga gtc tcc ata 444
    Ala Pro Val Cys Lys Phe Leu Thr Arg Asn Asp Asp Gly Val Ser Ile
    115 120 125
    gcc gct ctg tct ctc atg aat caa gac aag gtc ctc atg gag agc tgg 492
    Ala Ala Leu Ser Leu Met Asn Gln Asp Lys Val Leu Met Glu Ser Trp
    130 135 140
    tac cac ttg acc gag gca gtt ctt gaa ggt gga att cca ttt aac aag 540
    Tyr His Leu Thr Glu Ala Val Leu Glu Gly Gly Ile Pro Phe Asn Lys
    145 150 155
    gcc tat gga atg aca gca ttt gag tac cat ggc acc gat ccc aga ttc 588
    Ala Tyr Gly Met Thr Ala Phe Glu Tyr His Gly Thr Asp Pro Arg Phe
    160 165 170
    aac aca gtt ttc aac aat gga atg tcc aat cat tcg acc att acc atg 636
    Asn Thr Val Phe Asn Asn Gly Met Ser Asn His Ser Thr Ile Thr Met
    175 180 185 190
    aag aaa atc ctt gag act tac aaa ggg ttc gag gga ctt gga tct gtg 684
    Lys Lys Ile Leu Glu Thr Tyr Lys Gly Phe Glu Gly Leu Gly Ser Val
    195 200 205
    gtt gat gtt ggt ggt ggc act ggt gcc cac ctt aac atg att atc gct 732
    Val Asp Val Gly Gly Gly Thr Gly Ala His Leu Asn Met Ile Ile Ala
    210 215 220
    aaa tac ccc atg atc aag ggc att aac ttc gac ttg cct cat gtt att 780
    Lys Tyr Pro Met Ile Lys Gly Ile Asn Phe Asp Leu Pro His Val Ile
    225 230 235
    gag gag gct ccc tcc tat cct ggt gtg gag cat gtt ggt gga gat atg 828
    Glu Glu Ala Pro Ser Tyr Pro Gly Val Glu His Val Gly Gly Asp Met
    240 245 250
    ttt gtt agt gtt cca aaa gga gat gcc att ttc atg aag tgg ata tgt 876
    Phe Val Ser Val Pro Lys Gly Asp Ala Ile Phe Met Lys Trp Ile Cys
    255 260 265 270
    cat gat tgg agc gat gaa cac tgc ttg aag ttt ttg aag aaa tgt tat 924
    His Asp Trp Ser Asp Glu His Cys Leu Lys Phe Leu Lys Lys Cys Tyr
    275 280 285
    gaa gca ctt cca acc aat ggg aag gtg atc ctt gct gaa tgc atc ctc 972
    Glu Ala Leu Pro Thr Asn Gly Lys Val Ile Leu Ala Glu Cys Ile Leu
    290 295 300
    ccc gtg gcg cca gac gca agc ctc ccc act aag gca gtg gtc cat att 1020
    Pro Val Ala Pro Asp Ala Ser Leu Pro Thr Lys Ala Val Val His Ile
    305 310 315
    gat gtc atc atg ttg gct cat aac cca ggt ggg aaa gag aga act gag 1068
    Asp Val Ile Met Leu Ala His Asn Pro Gly Gly Lys Glu Arg Thr Glu
    320 325 330
    aag gag ttt gag gcc ttg gcc aag ggg gct gga ttt gaa ggt ttc cga 1116
    Lys Glu Phe Glu Ala Leu Ala Lys Gly Ala Gly Phe Glu Gly Phe Arg
    335 340 345 350
    gta gta gcc tcg tgc gct tac aat aca tgg atc atc gaa ttt ttg aag 1164
    Val Val Ala Ser Cys Ala Tyr Asn Thr Trp Ile Ile Glu Phe Leu Lys
    355 360 365
    aag att tgagtcctta ctcggctttg agtacataat accaactcct tttggttttc 1220
    Lys Ile
    gagattgtga ttgtgattgt gattgtctct ctttcgcagt tggccttatg atataatgta 1280
    tcgttaactc gatcacagaa gtgcaaaaga cagtgaatgt acactgcttt ataaaataaa 1340
    aattttaaga ttttgattca tgtaaaaaaa aaaaaaaaaa 1380
    <210> SEQ ID NO 6
    <211> LENGTH: 368
    <213> ORGANISM: Liquidambar styraciflua
    <400> SEQUENCE: 6
    Met Gly Ser Thr Ser Glu Thr Lys Met Ser Pro Ser Glu Ala Ala Ala
    1 5 10 15
    Ala Glu Glu Glu Ala Phe Val Phe Ala Met Gln Leu Thr Ser Ala Ser
    20 25 30
    Val Leu Pro Met Val Leu Lys Ser Ala Ile Glu Leu Asp Val Leu Glu
    35 40 45
    Ile Met Ala Lys Ala Gly Pro Gly Ala His Ile Ser Thr Ser Asp Ile
    50 55 60
    Ala Ser Lys Leu Pro Thr Lys Asn Pro Asp Ala Ala Val Met Leu Asp
    65 70 75 80
    Arg Met Leu Arg Leu Leu Ala Ser Tyr Ser Val Leu Thr Cys Ser Leu
    85 90 95
    Arg Thr Leu Pro Asp Gly Lys Ile Glu Arg Leu Tyr Gly Leu Ala Pro
    100 105 110
    Val Cys Lys Phe Leu Thr Arg Asn Asp Asp Gly Val Ser Ile Ala Ala
    115 120 125
    Leu Ser Leu Met Asn Gln Asp Lys Val Leu Met Glu Ser Trp Tyr His
    130 135 140
    Leu Thr Glu Ala Val Leu Glu Gly Gly Ile Pro Phe Asn Lys Ala Tyr
    145 150 155 160
    Gly Met Thr Ala Phe Glu Tyr His Gly Thr Asp Pro Arg Phe Asn Thr
    165 170 175
    Val Phe Asn Asn Gly Met Ser Asn His Ser Thr Ile Thr Met Lys Lys
    180 185 190
    Ile Leu Glu Thr Tyr Lys Gly Phe Glu Gly Leu Gly Ser Val Val Asp
    195 200 205
    Val Gly Gly Gly Thr Gly Ala His Leu Asn Met Ile Ile Ala Lys Tyr
    210 215 220
    Pro Met Ile Lys Gly Ile Asn Phe Asp Leu Pro His Val Ile Glu Glu
    225 230 235 240
    Ala Pro Ser Tyr Pro Gly Val Glu His Val Gly Gly Asp Met Phe Val
    245 250 255
    Ser Val Pro Lys Gly Asp Ala Ile Phe Met Lys Trp Ile Cys His Asp
    260 265 270
    Trp Ser Asp Glu His Cys Leu Lys Phe Leu Lys Lys Cys Tyr Glu Ala
    275 280 285
    Leu Pro Thr Asn Gly Lys Val Ile Leu Ala Glu Cys Ile Leu Pro Val
    290 295 300
    Ala Pro Asp Ala Ser Leu Pro Thr Lys Ala Val Val His Ile Asp Val
    305 310 315 320
    Ile Met Leu Ala His Asn Pro Gly Gly Lys Glu Arg Thr Glu Lys Glu
    325 330 335
    Phe Glu Ala Leu Ala Lys Gly Ala Gly Phe Glu Gly Phe Arg Val Val
    340 345 350
    Ala Ser Cys Ala Tyr Asn Thr Trp Ile Ile Glu Phe Leu Lys Lys Ile
    355 360 365
    <210> SEQ ID NO 7
    <211> LENGTH: 2025
    <212> TYPE: DNA
    <213> ORGANISM: Liquidambar styraciflua
    <220> FEATURE:
    <221> NAME/KEY: CDS
    <222> LOCATION: (60)..(1679)
    <400> SEQUENCE: 7
    cggcacgagc tcattttcca cttctggttt gatctctgca attcttccat cagtcccta 59
    atg gag acc caa aca aaa caa gaa gaa atc ata tat cgg tcg aaa ctc 107
    Met Glu Thr Gln Thr Lys Gln Glu Glu Ile Ile Tyr Arg Ser Lys Leu
    1 5 10 15
    ccc gat atc tac atc ccc aaa cac ctc cct tta cat tcg tat tgt ttc 155
    Pro Asp Ile Tyr Ile Pro Lys His Leu Pro Leu His Ser Tyr Cys Phe
    20 25 30
    gag aac atc tca cag ttc ggc tcc cgc ccc tgt ctg atc aat ggc gca 203
    Glu Asn Ile Ser Gln Phe Gly Ser Arg Pro Cys Leu Ile Asn Gly Ala
    35 40 45
    acg ggc aag tat tac aca tat gct gag gtt gag ctc att gcg cgc aag 251
    Thr Gly Lys Tyr Tyr Thr Tyr Ala Glu Val Glu Leu Ile Ala Arg Lys
    50 55 60
    gtc gca tcc ggc ctc aac aaa ctc ggc gtt cga caa ggt gac atc atc 299
    Val Ala Ser Gly Leu Asn Lys Leu Gly Val Arg Gln Gly Asp Ile Ile
    65 70 75 80
    atg ctt ttg cta ccc aac tcg ccg gag ttc gtg ttt tca att ctc ggc 347
    Met Leu Leu Leu Pro Asn Ser Pro Glu Phe Val Phe Ser Ile Leu Gly
    85 90 95
    gca tcc tac cgc ggg gct gcc gcc acc gcc gca aac ccg ttt tat acc 395
    Ala Ser Tyr Arg Gly Ala Ala Ala Thr Ala Ala Asn Pro Phe Tyr Thr
    100 105 110
    cct gcc gag atc agg aag caa gcc aaa acc tcc aac gcc agg ctt att 443
    Pro Ala Glu Ile Arg Lys Gln Ala Lys Thr Ser Asn Ala Arg Leu Ile
    115 120 125
    atc aca cat gcc tgt tac tat gag aaa gtg aag gac ttg gtg gaa gag 491
    Ile Thr His Ala Cys Tyr Tyr Glu Lys Val Lys Asp Leu Val Glu Glu
    130 135 140
    aac gtt gcc aag atc ata tgt ata gac tca ccc ccg gac ggt tgt ttg 539
    Asn Val Ala Lys Ile Ile Cys Ile Asp Ser Pro Pro Asp Gly Cys Leu
    145 150 155 160
    cac ttc tcg gag ctg agt gag gcg gac gag aac gac atg ccc aat gta 587
    His Phe Ser Glu Leu Ser Glu Ala Asp Glu Asn Asp Met Pro Asn Val
    165 170 175
    gag att gac ccc gat gat gtg gtg gcg ctg ccg tac tcg tca ggg acg 635
    Glu Ile Asp Pro Asp Asp Val Val Ala Leu Pro Tyr Ser Ser Gly Thr
    180 185 190
    acg ggt tta cca aag ggg gtg atg cta aca cac aag gga caa gtg acg 683
    Thr Gly Leu Pro Lys Gly Val Met Leu Thr His Lys Gly Gln Val Thr
    195 200 205
    agt gtg gcg caa cag gtg gac gga gag aat ccg aac ctg tat ata cat 731
    Ser Val Ala Gln Gln Val Asp Gly Glu Asn Pro Asn Leu Tyr Ile His
    210 215 220
    agc gag gac gtg gtt ctg tgc gtg ttg cct ctg ttt cac atc tac tcg 779
    Ser Glu Asp Val Val Leu Cys Val Leu Pro Leu Phe His Ile Tyr Ser
    225 230 235 240
    atg aac gtc atg ttt tgc ggg tta cga gtt ggt gcg gcg att ctg att 827
    Met Asn Val Met Phe Cys Gly Leu Arg Val Gly Ala Ala Ile Leu Ile
    245 250 255
    atg cag aaa ttt gaa ata tat ggg ttg tta gag ctg gtc aga agt aca 875
    Met Gln Lys Phe Glu Ile Tyr Gly Leu Leu Glu Leu Val Arg Ser Thr
    260 265 270
    ggt gac cat cat gcc tat cgt aca ccc atc gta ttg gca atc tcc aag 923
    Gly Asp His His Ala Tyr Arg Thr Pro Ile Val Leu Ala Ile Ser Lys
    275 280 285
    act ccg gat ctt cac aac tat gat gtg tcc tcc att cgg act gtc atg 971
    Thr Pro Asp Leu His Asn Tyr Asp Val Ser Ser Ile Arg Thr Val Met
    290 295 300
    tca ggt gcg gct cct ctg ggc aag gaa ctt gaa gat tct gtc aga gct 1019
    Ser Gly Ala Ala Pro Leu Gly Lys Glu Leu Glu Asp Ser Val Arg Ala
    305 310 315 320
    aag ttt ccc acc gcc aaa ctt ggt cag gga tat gga atg acg gag gca 1067
    Lys Phe Pro Thr Ala Lys Leu Gly Gln Gly Tyr Gly Met Thr Glu Ala
    325 330 335
    ggg ccc gtg cta gcg atg tgt ttg gca ttt gcc aag gaa ggg ttt gaa 1115
    Gly Pro Val Leu Ala Met Cys Leu Ala Phe Ala Lys Glu Gly Phe Glu
    340 345 350
    ata aaa tcg ggg gca tct gga act gtt tta agg aac gca cag atg aag 1163
    Ile Lys Ser Gly Ala Ser Gly Thr Val Leu Arg Asn Ala Gln Met Lys
    355 360 365
    att gtg gac cct gaa acc ggt gtc act ctc cct cga aac caa ccc gga 1211
    Ile Val Asp Pro Glu Thr Gly Val Thr Leu Pro Arg Asn Gln Pro Gly
    370 375 380
    gag att tgc att aga gga gac caa atc atg aaa ggt tat ctt aat gat 1259
    Glu Ile Cys Ile Arg Gly Asp Gln Ile Met Lys Gly Tyr Leu Asn Asp
    385 390 395 400
    cct gag gcg acg gag aga acc ata gac aag gaa ggt tgg tta cac aca 1307
    Pro Glu Ala Thr Glu Arg Thr Ile Asp Lys Glu Gly Trp Leu His Thr
    405 410 415
    ggt gat gtg ggc tac atc gac gat gac act gag ctc ttc att gtt gat 1355
    Gly Asp Val Gly Tyr Ile Asp Asp Asp Thr Glu Leu Phe Ile Val Asp
    420 425 430
    cgg ttg aag gaa ctg atc aaa tac aaa ggg ttt cag gtg gca ccc gct 1403
    Arg Leu Lys Glu Leu Ile Lys Tyr Lys Gly Phe Gln Val Ala Pro Ala
    435 440 445
    gag ctt gag gcc atg ctc ctc aac cat ccc aac atc tct gat gct gcc 1451
    Glu Leu Glu Ala Met Leu Leu Asn His Pro Asn Ile Ser Asp Ala Ala
    450 455 460
    gtc gtc cca atg aaa gac gat gaa gct gga gag ctc cct gtg gcg ttt 1499
    Val Val Pro Met Lys Asp Asp Glu Ala Gly Glu Leu Pro Val Ala Phe
    465 470 475 480
    gtt gta aga tca gat ggt tct cag ata tcc gag gct gaa atc agg caa 1547
    Val Val Arg Ser Asp Gly Ser Gln Ile Ser Glu Ala Glu Ile Arg Gln
    485 490 495
    tac atc gca aaa cag gtg gtt ttt tat aaa aga ata cat cgc gta ttt 1595
    Tyr Ile Ala Lys Gln Val Val Phe Tyr Lys Arg Ile His Arg Val Phe
    500 505 510
    ttc gtc gaa gcc att cct aaa gcg ccc tct ggc aaa atc ttg cgg aag 1643
    Phe Val Glu Ala Ile Pro Lys Ala Pro Ser Gly Lys Ile Leu Arg Lys
    515 520 525
    gac ctg aga gcc aaa ttg gcg tct ggt ctt ccc aat taattctcat 1689
    Asp Leu Arg Ala Lys Leu Ala Ser Gly Leu Pro Asn
    530 535 540
    tcgctaccct cctttctctt atcatacgcc aacacgaacg aagaggctca attaaacgct 1749
    gctcattcga agcggctcaa ttaaagctgc tcattcatgt ccaccgagtg ggcagcctgt 1809
    cttgttggga tgttctttca tttgattcag ctgtgagaag ccagaccctc attatttatt 1869
    gtgaaattca caagaatgtc tgtaaatcga tgttgtgagt gatgggtttc aaaacacttt 1929
    tgacattgtt tacgttgtat ttcctgctgt tgaaaataac tactttgtat gacttttatt 1989
    tgggaagata acctttcaaa aaaaaaaaaa aaaaaa 2025
    <210> SEQ ID NO 8
    <211> LENGTH: 540
    <212> TYPE: PRT
    <213> ORGANISM: Liquidambar styraciflua
    <400> SEQUENCE: 8
    Met Glu Thr Gln Thr Lys Gln Glu Glu Ile Ile Tyr Arg Ser Lys Leu
    1 5 10 15
    Pro Asp Ile Tyr Ile Pro Lys His Leu Pro Leu His Ser Tyr Cys Phe
    20 25 30
    Glu Asn Ile Ser Gln Phe Gly Ser Arg Pro Cys Leu Ile Asn Gly Ala
    35 40 45
    Thr Gly Lys Tyr Tyr Thr Tyr Ala Glu Val Glu Leu Ile Ala Arg Lys
    50 55 60
    Val Ala Ser Gly Leu Asn Lys Leu Gly Val Arg Gln Gly Asp Ile Ile
    65 70 75 80
    Met Leu Leu Leu Pro Asn Ser Pro Glu Phe Val Phe Ser Ile Leu Gly
    85 90 95
    Ala Ser Tyr Arg Gly Ala Ala Ala Thr Ala Ala Asn Pro Phe Tyr Thr
    100 105 110
    Pro Ala Glu Ile Arg Lys Gln Ala Lys Thr Ser Asn Ala Arg Leu Ile
    115 120 125
    Ile Thr His Ala Cys Tyr Tyr Glu Lys Val Lys Asp Leu Val Glu Glu
    130 135 140
    Asn Val Ala Lys Ile Ile Cys Ile Asp Ser Pro Pro Asp Gly Cys Leu
    145 150 155 160
    His Phe Ser Glu Leu Ser Glu Ala Asp Glu Asn Asp Met Pro Asn Val
    165 170 175
    Glu Ile Asp Pro Asp Asp Val Val Ala Leu Pro Tyr Ser Ser Gly Thr
    180 185 190
    Thr Gly Leu Pro Lys Gly Val Met Leu Thr His Lys Gly Gln Val Thr
    195 200 205
    Ser Val Ala Gln Gln Val Asp Gly Glu Asn Pro Asn Leu Tyr Ile His
    210 215 220
    Ser Glu Asp Val Val Leu Cys Val Leu Pro Leu Phe His Ile Tyr Ser
    225 230 235 240
    Met Asn Val Met Phe Cys Gly Leu Arg Val Gly Ala Ala Ile Leu Ile
    245 250 255
    Met Gln Lys Phe Glu Ile Tyr Gly Leu Leu Glu Leu Val Arg Ser Thr
    260 265 270
    Gly Asp His His Ala Tyr Arg Thr Pro Ile Val Leu Ala Ile Ser Lys
    275 280 285
    Thr Pro Asp Leu His Asn Tyr Asp Val Ser Ser Ile Arg Thr Val Met
    290 295 300
    Ser Gly Ala Ala Pro Leu Gly Lys Glu Leu Glu Asp Ser Val Arg Ala
    305 310 315 320
    Lys Phe Pro Thr Ala Lys Leu Gly Gln Gly Tyr Gly Met Thr Glu Ala
    325 330 335
    Gly Pro Val Leu Ala Met Cys Leu Ala Phe Ala Lys Glu Gly Phe Glu
    340 345 350
    Ile Lys Ser Gly Ala Ser Gly Thr Val Leu Arg Asn Ala Gln Met Lys
    355 360 365
    Ile Val Asp Pro Glu Thr Gly Val Thr Leu Pro Arg Asn Gln Pro Gly
    370 375 380
    Glu Ile Cys Ile Arg Gly Asp Gln Ile Met Lys Gly Tyr Leu Asn Asp
    385 390 395 400
    Pro Glu Ala Thr Glu Arg Thr Ile Asp Lys Glu Gly Trp Leu His Thr
    405 410 415
    Gly Asp Val Gly Tyr Ile Asp Asp Asp Thr Glu Leu Phe Ile Val Asp
    420 425 430
    Arg Leu Lys Glu Leu Ile Lys Tyr Lys Gly Phe Gln Val Ala Pro Ala
    435 440 445
    Glu Leu Glu Ala Met Leu Leu Asn His Pro Asn Ile Ser Asp Ala Ala
    450 455 460
    Val Val Pro Met Lys Asp Asp Glu Ala Gly Glu Leu Pro Val Ala Phe
    465 470 475 480
    Val Val Arg Ser Asp Gly Ser Gln Ile Ser Glu Ala Glu Ile Arg Gln
    485 490 495
    Tyr Ile Ala Lys Gln Val Val Phe Tyr Lys Arg Ile His Arg Val Phe
    500 505 510
    Phe Val Glu Ala Ile Pro Lys Ala Pro Ser Gly Lys Ile Leu Arg Lys
    515 520 525
    Asp Leu Arg Ala Lys Leu Ala Ser Gly Leu Pro Asn
    530 535 540
    <210> SEQ ID NO 9
    <211> LENGTH: 1544
    <212> TYPE: DNA
    <213> ORGANISM: Pinus taeda
    <400> SEQUENCE: 9
    aaagataata tatgtgtatg cctactacta cacattgttt tgaagtgtgt aaacatagtg 60
    caacactagg aggactcaca atgagcactt gttgacatga aactagctaa atgcccaaca 120
    atattagtga aagctagtta aactaacccc tttgactttc aagatgatat atttatatcc 180
    ctactacgtc ttcctctttt tgtctttctc ttgtgattaa accttccttg aaacaattct 240
    caaatgtaaa attaaacctt gaaacttgta gagaccaaac ttccctagga gaaaccacat 300
    ttatgacaac atatatacac caacccattg catactataa tattggaatt acctgcagcg 360
    aacgaaagaa acgctgtctc accaactcgt gcactacatc ccgaaactta accttcccct 420
    gatacagatt gaagagccga aaaaagcgtg catccaaatt tctggtatgg tgaggagccg 480
    aaaaacgcgt gcgcctaatt tttttgagat gggccggaaa ataatgcgtg catctaaatt 540
    ttcacgtgtc gcgtattggc gaggttgcgc tgaatgtgat cctgtgcgtg agccacattc 600
    attccattgg ttgacccgcc ggtaccgcga ggaccgtggg gtctcacaga tacgcggatg 660
    gtggatcagc actgagaaga ttagatgatg accaggcggg catttgaagt aaaaacttgg 720
    gggtggttgg caagtacgcg acaaagaggg gtagtgcgca aggaagcgag ttggatgcaa 780
    ataatattac aaagtgggtt ggtgggcatg agcatcaacc agaatgatgt tgttgctggt 840
    tccgtgcaaa ttctgaccag tagtttgaac aatactaccc aacttgtttt tggtaaaaca 900
    tgaagtgggt aaggagaatt gaacttacgt ctcatggtaa agggcaaggg caaatgactt 960
    aacacatacc tttaactaat aaaaataccc ctaacaaata cgaaaacgaa tgagttatca 1020
    cagaccttca actaataaga tagccatcag acccacatct cctgactgac caaaaacaaa 1080
    tgacttcaac caactaagat acccatcaaa gctaacccac aacccaattc ctcacttccc 1140
    cttaccagac caaccaagca gacctacgcc attaactact ttaggacgtg ggaattgggg 1200
    gtgccaccgt tgaagaatgg cactcagggt tggtaatccc tccacgtgta tgtagcagtc 1260
    gtttggtgga gacggcgtgt ttgaatgtcc accttccagt ttggagaaca aggaaattgg 1320
    gcttatatta ggcctggatc tcttgtttca gagcaggagt agttcaggac aggaactagc 1380
    attcaagaat tcaattgccc tgccctgctc tgctctgctt tgctcaactt attgatccct 1440
    gctctggttt gttcaatttc ttgacccctg ctgggttctg ctctggtttg cacactttct 1500
    cgattatata agtcattttg gatccttgca aggaagagaa tatg 1544
    <210> SEQ ID NO 10
    <211> LENGTH: 659
    <212> TYPE: DNA
    <213> ORGANISM: Pinus taeda
    <400> SEQUENCE: 10
    aaacaccaat ttaatgggat ttcagatttg tatcccatgc tattggctaa ggcatttttc 60
    ttattgtaat ctaaccaatt ctaatttcca ccctggtgtg aactgactga caaatgcggt 120
    ccgaaaacag cgaatgaaat gtctgggtga tcggtcaaac aagcggtggg cgagagagcg 180
    cgggtgttgg cctagccggg atgggggtag gtagacggcg tattaccggc gagttgtccg 240
    aatggagttt tcggggtagg tagtaacgta gacgtcaatg gaaaaagtca taatctccgt 300
    caaaaatcca accgctcctt cacatcgcag agttggtggc cacgggaccc tccacccact 360
    cactcaatcg atcgcctgcc gtggttgccc attattcaac catacgccac ttgactcttc 420
    accaacaatt ccaggccggc tttctataca atgtactgca caggaaaatc caatataaaa 480
    agccggcctc tgcttccttc tcagtagccc ccagctcatt caattcttcc cactgcaggc 540
    tacatttgtc agacacgttt tccgccattt ttcgcctgtt tctgcggaga atttgatcag 600
    gttcggattg ggattgaatc aattgaaagg tttttatttt cagtatttcg atcgccatg 659
    <210> SEQ ID NO 11
    <211> LENGTH: 2251
    <212> TYPE: DNA
    <213> ORGANISM: Pinus taeda
    <400> SEQUENCE: 11
    ggccgggtgg tgacatttat tcataaattc atctcaaaac aagaaggatt tacaaaaata 60
    aaagaaaaca aaattttcat ctttaacata attataattg tgttcacaaa attcaaactt 120
    aaacccttaa tataaagaat ttctttcaac aatacacttt aatcacaact tcttcaatca 180
    caacctcctc caacaaaatt aaaatagatt aataaataaa taaacttaac tatttaaaaa 240
    aaaatattat acaaaattta ttaaaacttc aaaataaaca aactttttat acaaaattca 300
    tcaaaacttt aaaataaagc taaacactga aaatgtgagt acatttaaaa ggacgctgat 360
    cacaaaaatt ttgaaaacat aaacaaactt gaaactctac cttttaagaa tgagtttgtc 420
    gtctcattaa ctcattagtt ttatagttcg aatccaatta acgtatcttt tattttatgg 480
    aataagggtg ttttaataag tgattttggg atttttttag taatttattt gtgatatgtt 540
    atggagtttt taaaaatata tatatatata tatatttttg ggttgagttt acttaaaatt 600
    tggaaaaggt tggtaagaac tataaattga gttgtgaatg agtgttttat ggatttttta 660
    agatgttaaa tttatatatg taattaaaat tttattttga ataacaaaaa ttataattgg 720
    ataaaaaatt gttttgttaa atttagagta aaaatttcaa aatctaaaat aattaaacac 780
    tattattttt aaaaaatttg ttggtaaatt ttatcttata tttaagttaa aatttagaaa 840
    aaattaattt taaattaata aacttttgaa gtcaaatatt ccaaatattt tccaaaatat 900
    taaatctatt ttgcattcaa aatacaattt aaataataaa acttcatgga atagattaac 960
    caatttgtat aaaaaccaaa aatctcaaat aaaatttaaa ttacaaaaca ttatcaacat 1020
    tatgatttca agaaagacaa taaccagttt ccaataaaat aaaaaacctc atggcccgta 1080
    attaagatct cattaattaa ttcttatttt ttaatttttt tacatagaaa atatctttat 1140
    attgtatcca agaaatatag aatgttctcg tccagggact attaatctcc aaacaagttt 1200
    caaaatcatt acattaaagc tcatcatgtc atttgtggat tggaaattat attgtataag 1260
    agaaatatag aatgttctcg tctagggact attaatttcc aaacaaattt caaaatcatt 1320
    acattaaagc tcatcatgtc atttgtggat tggaaattag acaaaaaaaa tcccaaatat 1380
    ttctctcaat ctcccaaaat atagttcgaa ctccatattt ttggaaattg agaatttttt 1440
    tacccaataa tatatttttt tatacatttt agagattttc cagacatatt tgctctggga 1500
    tttattggaa tgaaggttga gttataaact ttcagtaatc caagtatctt cggtttttga 1560
    agatactaaa tccattatat aataaaaaca cattttaaac accaatttaa tgggatttca 1620
    gatttgtatc ccatgctatt ggctaaggca tttttcttat tgtaatctaa ccaattctaa 1680
    tttccaccct ggtgtgaact gactgacaaa tgcggtccga aaacagcgaa tgaaatgtct 1740
    gggtgatcgg tcaaacaagc ggtgggcgag agagcgcggg tgttggccta gccgggatgg 1800
    gggtaggtag acggcgtatt accggcgagt tgtccgaatg gagttttcgg ggtaggtagt 1860
    aacgtagacg tcaatggaaa aagtcataat ctccgtcaaa aatccaaccg ctccttcaca 1920
    tcgcagagtt ggtggccacg ggaccctcca cccactcact cgatcgcctg ccgtggttgc 1980
    ccattattca accatacgcc acttgactct tcaccaacaa ttccaggccg gctttctata 2040
    caatgtactg cacaggaaaa tccaatataa aaagccggcc tctgcttcct tctcagtagc 2100
    ccccagctca ttcaattctt cccactgcag gctacatttg tcagacacgt tttccgccat 2160
    ttttcgcctg tttctgcgga gaatttgatc aggttcggat tgggattgaa tcaattgaaa 2220
    ggtttttatt ttcagtattt cgatcgccat g 2251

Claims (45)

What is claimed is:
1. A method for modifying the genome of a gymnosperm which comprises cloning one or more angiosperm DNA sequences which code for genes necessary for production of angiosperm syringyl lignin monomer units, fusing one or more of the angiosperm DNA sequences to a promoter region associated with a gene to form an expression cassette and inserting the expression cassette into the gymnosperm genome to thereby produce a modified genome in the gymnosperm containing genes which code for enzymes which produce syringyl lignin monomer units.
2. The method of claim 1, further comprising incorporating a genetic sequence which codes for anti-sense mRNA into the gymnosperm genome in order to suppress formation of guaiacyl lignin monomer units.
3. A gymnosperm plant containing an expression cassette produced according to the method of claim 1.
4. A loblolly pine containing an expression cassette produced according to the method of claim 1.
5. The method of claim 1 wherein the angiosperm DNA sequences are selected from the class consisting of 4-coumarate CoA ligase (4CL), bifunctional-O-methyl transferase (bi-OMT) and ferulic acid-5-hydroxylase (FA5H-1 and FA5H-2).
6. The method of claim 1 wherein the promoter region isselected from the class consisting of the 5′ flanking region of phenylalanine ammonia-lyase (PAL) and the 5′ flanking region of 4-coumarate CoA ligase (4CL1B and 4CL3B).
7. The method of claim 1 wherein the expression cassette is inserted into the gymnosperm genome by way of the transformation vector Agrobacterium.
8. The method of claim 7 wherein the Agrobacterium is Agrobacterium tumefaciens EH101.
9. The method of claim 1 wherein the expression cassette is inserted into the gymnosperm genome via direct DNA delivery to a target cell.
10. The method of claim 1 wherein expression cassette is inserted into the gymnosperm genome by micro-projectile bombardment of a gymnosperm cell.
11. The method of claim 1 wherein the expression cassette is inserted into the gymnosperm genome by electroporation of a gymnosperm cell.
12. The method of claim 1 wherein the expression cassette is inserted into the gymnosperm genome via silicon carbide whiskers.
13. The method of claim 1 wherein the expression cassette is inserted into the gymnosperm genome via transformed protoplast.
14. The method of claim 1 further comprising inserting a selectable marker into the expression cassette.
15. The method of claim 14 wherein the selectable marker is selected from the group consisting of kanamycin and hygromycin B.
16. The method of claim 2 wherein the anti-sense mRNA is a gymnosperm genetic sequence which codes for the 4-coumarate CoA ligase (4CL) gene.
17. The method of claim 1 wherein the promoter region is a DNA sequence which includes the 5′ flanking region of the gymnosperm loblolly pine PAL gene.
18. The method of claim 1 wherein the promoter region is a DNA sequence which includes the 5′ flanking region of the gymnosperm loblolly pine 4CL1B gene.
19. The method of claim 1 wherein the promoter region is a DNA sequence which includes the 5′ flanking region of the gymnosperm loblolly pine 4CL3B gene.
20. The method of claim 1 wherein the promoter region includes a constitutive promoter.
21. An isolated FA5H-1 DNA sequence which encodes an enzyme involved in the biosynthesis of syringyl lignin monomer units, wherein said DNA is as shown in SEQ ID. No. 1.
22. An isolated FA5H-2 DNA sequence which encodes an enzyme involved in the biosynthesis of syringyl lignin monomer units, wherein said DNA is as shown in SEQ ID. No. 2.
23. An isolated bi-OMT DNA sequence which encodes an enzyme involved in the biosynthesis of syringyl lignin monomer units, wherein said DNA is as shown in SEQ ID No. 3.
24. An isolated 4CL DNA sequence which encodes an enzyme involved in the biosynthesis of syringyl lignin monomer units, wherein said DNA is as shown in SEQ ID No. 4.
25. An isolated DNA, wherein said DNA encodes for an enzyme involved in the biosynthesis one or more syringyl lignin monomer units.
26. An isolated DNA sequence which includes the 5′ flanking region of the gymnosperm loblolly pine PAL gene, containing the lignin promoter region and regulatory elements for gymnosperm lignin biosynthesis as shown in SEQ ID No.5.
27. An isolated DNA sequence which includes the 5′ flanking region of the gymnosperm loblolly pine 4CL1B, containing the lignin promoter region and regulatory elements for gymnosperm lignin biosynthesis as shown in SEQ ID No. 6.
28. An isolated DNA sequence which includes the 5′ flanking region of gymnosperm loblolly pine 4CL3B, containing the lignin promoter region and regulatory elements for gymnosperm lignin biosynthesis as shown in SEQ ID No. 7.
29. An isolated DNA, wherein said DNA includes the promoter region of a gymnosperm gene involved in syringyl lignin biosynthesis.
30. A method for modifying the genome of loblolly pine which comprises cloning one or more angiosperm DNA sequences which code for enzymes necessary for production of syringyl lignin monomer units, fusing one or more of the angiosperm DNA sequences to a promoter region to form an expression cassette, and inserting the expression cassette into the loblolly pine genome to thereby produce a modified genome in the loblolly pine containing genes which code for enzymes which produce syringyl lignin monomer units.
31. The method of claim 30 wherein the promoter region is a constitutive promoter.
32. A loblolly pine containing an expression cassette produced according to claim 30.
33. The method of claim 30 wherein the angiosperm DNA sequence is selected from the class consisting of 4-coumarate CoA ligase (4CL), bifunctional-O-methyl transferase (bi-OMT) and ferulic acid-5-hydroxylase (FA5H-1 and FA5H-2).
34. A loblolly pine containing one or more of the DNA sequences of claim 33.
35. A loblolly pine containing the angiosperm DNA sequence inserted by the method of claim 30.
36. A method for modifying the genome of loblolly pine which comprises cloning the sweetgum FA5H-1 gene, fusing it to a constitutive promoter to form an expression cassette, and inserting the expression cassette into the loblolly pine genome.
37. A loblolly pine containing the FA5H-1 gene.
38. A method for modifying the genome of loblolly pine which comprises cloning the sweetgum FA5H-2 gene, fusing it to a constitutive promoter to form an expression cassette, and inserting the expression cassette into the loblolly pine genome.
39. A loblolly pine containing the FA5H-2 gene.
40. A method for modifying the genome of a gymnosperm which comprises cloning the sweetgum FA5H-1 gene, fusing it to a constitutive promoter to form an expression cassette, and inserting the expression cassette into the gymnosperm genome.
41. A method for modifying the genome of a gymnosperm which comprises cloning the sweetgum FA5H-2 gene, fusing it to a consititutive promoter to form an expression cassette, and inserting the expression cassette into a gymnosperm genome.
42. A gymnosperm containing the FA5H-1 gene.
43. A gymnosperm containing the FA5H-2 gene.
44. A gymnosperm containing a DNA sequence selected from the class consisting of the FA5H-1 DNA sequence of SEQ ID No. 1, the FA5H-2 DNA sequence of SEQ ID No. 2, the bi-OMT DNA sequence of SEQ ID No. 3, and the 4CL DNA sequences of SEQ ID No. 4.
45. The gymnosperm of claim 38, further comprising syringyl lignin.
US09/796,256 1996-12-16 2001-02-28 Production of syringyl lignin in gymnosperms Abandoned US20020078477A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/796,256 US20020078477A1 (en) 1996-12-16 2001-02-28 Production of syringyl lignin in gymnosperms
US10/681,878 US7411059B2 (en) 1996-12-16 2003-10-09 Production of syringyl lignin in gymnosperms
US12/219,227 US7754869B2 (en) 1996-12-16 2008-07-17 Production of syringyl lignin in gymnosperms
US12/801,785 US8207399B2 (en) 1996-12-16 2010-06-24 Production of syringyl lignin in gymnosperms

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US3338196P 1996-12-16 1996-12-16
US08/991,677 US6252135B1 (en) 1996-12-16 1997-12-16 Production of syringyl lignin in gymnosperms
US09/796,256 US20020078477A1 (en) 1996-12-16 2001-02-28 Production of syringyl lignin in gymnosperms

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/991,677 Division US6252135B1 (en) 1996-12-16 1997-12-16 Production of syringyl lignin in gymnosperms

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/681,878 Continuation US7411059B2 (en) 1996-12-16 2003-10-09 Production of syringyl lignin in gymnosperms

Publications (1)

Publication Number Publication Date
US20020078477A1 true US20020078477A1 (en) 2002-06-20

Family

ID=25537449

Family Applications (5)

Application Number Title Priority Date Filing Date
US08/991,677 Expired - Lifetime US6252135B1 (en) 1996-12-16 1997-12-16 Production of syringyl lignin in gymnosperms
US09/796,256 Abandoned US20020078477A1 (en) 1996-12-16 2001-02-28 Production of syringyl lignin in gymnosperms
US10/681,878 Expired - Fee Related US7411059B2 (en) 1996-12-16 2003-10-09 Production of syringyl lignin in gymnosperms
US12/219,227 Expired - Fee Related US7754869B2 (en) 1996-12-16 2008-07-17 Production of syringyl lignin in gymnosperms
US12/801,785 Expired - Fee Related US8207399B2 (en) 1996-12-16 2010-06-24 Production of syringyl lignin in gymnosperms

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/991,677 Expired - Lifetime US6252135B1 (en) 1996-12-16 1997-12-16 Production of syringyl lignin in gymnosperms

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/681,878 Expired - Fee Related US7411059B2 (en) 1996-12-16 2003-10-09 Production of syringyl lignin in gymnosperms
US12/219,227 Expired - Fee Related US7754869B2 (en) 1996-12-16 2008-07-17 Production of syringyl lignin in gymnosperms
US12/801,785 Expired - Fee Related US8207399B2 (en) 1996-12-16 2010-06-24 Production of syringyl lignin in gymnosperms

Country Status (7)

Country Link
US (5) US6252135B1 (en)
AR (1) AR014127A1 (en)
BR (1) BR9813695B1 (en)
CA (1) CA2314883A1 (en)
NZ (1) NZ505153A (en)
WO (1) WO1999031243A1 (en)
ZA (1) ZA9811568B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020078474A1 (en) * 2000-09-05 2002-06-20 Board Of Control Of Michigan Technological University Genetic engineering of syringyl-enriched lignin in plants
US20050050585A1 (en) * 2000-09-05 2005-03-03 Board Of Control Of Michigan Technological University Genetic engineering of syringyl-enriched lignin in plants

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL339005A1 (en) 1997-08-27 2000-12-04 Pioneer Hi Bred Int Genes encoding enzymes of lignin synthesis track and their applications
EP1153134A1 (en) * 1999-02-01 2001-11-14 Cellfor Inc. Modification of lignin composition of gymnosperms
JP4070354B2 (en) * 1999-04-23 2008-04-02 三菱製紙株式会社 4-coumaric acid: CoA ligase cDNA, gene prepared using the cDNA, and transformed plant into which the gene has been introduced
AU2007203378B2 (en) 2000-06-14 2011-12-08 Agriculture Victoria Services Pty Ltd Modification of lignin biosynthesis (2)
AUPQ815400A0 (en) 2000-06-14 2000-07-06 Dairy Research And Development Corporation Modification of lignin biosynthesis
CA2419524A1 (en) 2000-08-16 2002-02-21 Purdue Research Foundation Genes encoding mutant p-coumarate 3-hydroxylase (c3h) and methods of use
US8921653B2 (en) 2001-06-14 2014-12-30 Agriculture Victoria Services Pty Ltd Modification of lignin biosynthesis
US20050150008A1 (en) * 2001-11-07 2005-07-07 Agrigenesis Biosciences Limited Compositions isolated from forage grasses and methods of use
NZ568813A (en) * 2001-11-07 2010-04-30 Genesis Res & Dev Corp Ltd Sucrose phosphate synthases isolated from the grasses lolium perenne and festuca arundinacea
US6909151B2 (en) * 2003-06-27 2005-06-21 Intel Corporation Nonplanar device with stress incorporation layer and method of fabrication
US7456338B2 (en) 2004-09-22 2008-11-25 Arborgen Llc Modification of plant lignin content
US7799906B1 (en) 2004-09-22 2010-09-21 Arborgen, Llc Compositions and methods for modulating lignin of a plant
US7402428B2 (en) 2004-09-22 2008-07-22 Arborgen, Llc Modification of plant lignin content
US8158853B2 (en) * 2005-10-14 2012-04-17 Nestec S. A. Polynucleotides encoding lignin biosynthetic pathway enzymes in coffee
CN101280315B (en) * 2008-05-20 2010-09-01 中国农业科学院油料作物研究所 Gene 4-CL for Chinese white poplar lignose monomer synthesis and application thereof
WO2012037107A1 (en) * 2010-09-14 2012-03-22 Board Of Trustees Of Michigan State University Compositions and methods for xylem-specific expression in plant cells
WO2014137312A1 (en) * 2013-03-04 2014-09-12 Arborgen Inc. Method for increasing wood density using transcription factor genes

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034322A (en) 1983-01-17 1991-07-23 Monsanto Company Chimeric genes suitable for expression in plant cells
US4801545A (en) 1983-05-19 1989-01-31 Plant Genetics, Inc. Enhanced somatic embryogenesis using maltose
US4886937A (en) 1985-05-20 1989-12-12 North Carolina State University Method for transforming pine
US4795855A (en) 1985-11-14 1989-01-03 Joanne Fillatti Transformation and foreign gene expression with woody species
US5107065A (en) 1986-03-28 1992-04-21 Calgene, Inc. Anti-sense regulation of gene expression in plant cells
US5034326A (en) 1989-10-23 1991-07-23 Weyerhaeuser Company Method for reproducing coniferous plants by somatic embryogenesis using adsorbent materials in the development stage media
US5294549A (en) 1989-03-09 1994-03-15 Weyerhaeuser Company Method for reproducing conifers by somatic embryogenesis using mixed growth hormones for embryo culture
US4957866A (en) 1989-03-09 1990-09-18 Weyerhaeuser Company Method for reproducing coniferous plants by somatic embryogenesis
US5036007A (en) 1989-03-09 1991-07-30 Weyerhaeuser Company Method for reproducing coniferous plants by somatic embryogenesis using abscisic acid and osmotic potential variation
US5236841A (en) 1989-03-09 1993-08-17 Gupta Pramod K Method for reproducing conifers by somatic embryogenesis using stepwise hormone adjustment
US5122466A (en) 1989-06-13 1992-06-16 North Carolina State University Ballistic transformation of conifers
US5187092A (en) * 1990-03-22 1993-02-16 Institute Of Paper Science And Technology, Inc. Somatic embryogenesis in gymnosperms
GB9109063D0 (en) * 1991-04-26 1991-06-12 Ici Plc Modification of lignin synthesis in plants
US5413930A (en) 1993-10-21 1995-05-09 Westvaco Corporation Method for regeneration of coniferous plants by somatic embryogenesis
US5457041A (en) 1994-03-25 1995-10-10 Science Applications International Corporation Needle array and method of introducing biological substances into living cells using the needle array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020078474A1 (en) * 2000-09-05 2002-06-20 Board Of Control Of Michigan Technological University Genetic engineering of syringyl-enriched lignin in plants
US6812377B2 (en) 2000-09-05 2004-11-02 Board Of Control Of Michigan Technological University Genetic engineering of syringyl-enriched lignin in plants
US20050050585A1 (en) * 2000-09-05 2005-03-03 Board Of Control Of Michigan Technological University Genetic engineering of syringyl-enriched lignin in plants
US7288696B2 (en) 2000-09-05 2007-10-30 Board Of Control Of Michigan Technological University Genetic engineering of syringyl-enriched lignin in plants

Also Published As

Publication number Publication date
AR014127A1 (en) 2001-02-07
US8207399B2 (en) 2012-06-26
US6252135B1 (en) 2001-06-26
BR9813695B1 (en) 2013-11-12
ZA9811568B (en) 1999-06-21
NZ505153A (en) 2002-12-20
US20110185453A1 (en) 2011-07-28
CA2314883A1 (en) 1999-06-24
WO1999031243A1 (en) 1999-06-24
BR9813695A (en) 2001-12-04
US7754869B2 (en) 2010-07-13
US20090106862A1 (en) 2009-04-23
US7411059B2 (en) 2008-08-12
US20050076403A1 (en) 2005-04-07

Similar Documents

Publication Publication Date Title
US8207399B2 (en) Production of syringyl lignin in gymnosperms
EP0929676B1 (en) Genetic sequences encoding flavonoid pathway enzymes and uses therefor
AU716369B2 (en) A method for regulation of plant lignin composition
US6610908B1 (en) Manipulation of lignin composition in plants using a tissue-specific promoter
US9752130B2 (en) Chalcone synthase dihyrdoflavonol 4-reductase and leucoanthocyanidine reductase from clover, medic ryegrass or fescue
JP3403196B2 (en) New plant genes
US20100287660A1 (en) Modification of Lignin Biosynthesis Via Sense Suppression
EP1305420B1 (en) Modification of fructan biosynthesis
WO2000058489A2 (en) Production of syringyl lignin in gymnosperms
AU2001265676B2 (en) Fructosyl transferase homologues from ryegrass (lolium) and fescue (festuca) species
Hu Isolation and characterization of p-coumarate: Coenzyme A ligase cDNAs and genes from quaking aspen (Populus tremuloides Michx)
Dharmawardhana A biochemical and molecular study of lignin biosynthesis
MXPA99000596A (en) Manipulation of lignin composition in plants using specific promoter of tej
AU2001265676A1 (en) Fructosyl transferase homologues from ryegrass (lolium) and fescue (festuca) species
AU3639900A (en) A method for regulation of plant lignin composition

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION