US20020088998A1 - Three-dimensional memory array and method of fabrication - Google Patents

Three-dimensional memory array and method of fabrication Download PDF

Info

Publication number
US20020088998A1
US20020088998A1 US09/814,727 US81472701A US2002088998A1 US 20020088998 A1 US20020088998 A1 US 20020088998A1 US 81472701 A US81472701 A US 81472701A US 2002088998 A1 US2002088998 A1 US 2002088998A1
Authority
US
United States
Prior art keywords
layer
silicon
rail
stacks
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/814,727
Other versions
US6420215B1 (en
Inventor
N. Knall
Mark Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SanDisk Technologies LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/814,727 priority Critical patent/US6420215B1/en
Assigned to MATRIX SEMICONDUCTOR, INC. reassignment MATRIX SEMICONDUCTOR, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOHNSON, MARK, KNALL, N. JOHAN
Priority to EP01937191A priority patent/EP1284017A4/en
Priority to AU2001262953A priority patent/AU2001262953A1/en
Priority to PCT/US2001/013575 priority patent/WO2001084553A2/en
Priority to MYPI20012022A priority patent/MY131836A/en
Priority to TW090110326A priority patent/TW507368B/en
Priority to US09/897,705 priority patent/US6631085B2/en
Priority to US09/927,642 priority patent/US6888750B2/en
Assigned to VENTURE LENDING & LEASING III, INC., AS AGENT reassignment VENTURE LENDING & LEASING III, INC., AS AGENT SECURITY AGREEMENT Assignors: MATRIX SEMICONDUCTOR, INC.
Priority to US10/153,999 priority patent/US6653712B2/en
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY AGREEMENT Assignors: MATRIX SEMICONDUCTOR, INC.
Publication of US20020088998A1 publication Critical patent/US20020088998A1/en
Application granted granted Critical
Publication of US6420215B1 publication Critical patent/US6420215B1/en
Priority to US10/253,076 priority patent/US6767816B2/en
Priority to US10/253,074 priority patent/US6754102B2/en
Priority to US10/253,051 priority patent/US6784517B2/en
Priority to US10/306,887 priority patent/US6856572B2/en
Priority to US10/610,804 priority patent/US8575719B2/en
Priority to US10/689,187 priority patent/US20040089917A1/en
Priority to US10/805,147 priority patent/US7091529B2/en
Priority to US10/809,146 priority patent/US6816410B2/en
Assigned to MATRIX SEMICONDUCTOR, INC. reassignment MATRIX SEMICONDUCTOR, INC. RELEASE Assignors: SILICON VALLEY BANK
Assigned to SANDISK 3D LLC reassignment SANDISK 3D LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: MATRIX SEMICONDUCTOR, INC.
Assigned to SANDISK 3D LLC reassignment SANDISK 3D LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SILICON VALLEY BANK
Assigned to SANDISK 3D LLC reassignment SANDISK 3D LLC CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECTIVE MERGER TO ADD PAGES TO THE MERGER DOCUMENT PREVIOUSLY RECORDED PREVIOUSLY RECORDED ON REEL 017544 FRAME 0769. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER. Assignors: MATRIX SEMICONDUCTOR, INC.
Assigned to SANDISK TECHNOLOGIES INC. reassignment SANDISK TECHNOLOGIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SANDISK 3D LLC.
Assigned to SANDISK TECHNOLOGIES INC. reassignment SANDISK TECHNOLOGIES INC. CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT LISTED PATENT NUMBER 8853569 TO THE CORRECT PATENT NUMBER 8883569 PREVIOUSLY RECORDED ON REEL 038300 FRAME 0665. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: SANDISK 3D LLC
Assigned to SANDISK TECHNOLOGIES LLC reassignment SANDISK TECHNOLOGIES LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SANDISK TECHNOLOGIES INC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/102Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components
    • H01L27/1021Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components including diodes only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8221Three dimensional integrated circuits stacked in different levels

Definitions

  • the invention relates to the field of vertically stacked field programmable non-volatile memory and method of fabrication.
  • Each level includes a plurality of spaced-apart first lines extending in one direction which are vertically separated from a plurality of parallel spaced-apart second lines in a second direction, for example, extending perpendicular to the first line.
  • Cells are disposed between the first lines and second lines at the intersections of these lines.
  • the present invention departs from the structures shown in these patents and uses “rail-stacks” as will be described later.
  • the invented memory employs antifuses where a diode is formed upon programming a particular bit.
  • a Novel High - Density Low - Cost Diode Programmable Read Only Memory by de Graaf, Woerlee, Hart, Lifka, de Vreede, Janssen, Sluijs and Paulzen, IEDM -96, beginning at page 189 and U.S. Pat. Nos. 4,876,220; 4,881,114 and 4,543,594.
  • a multi-level memory array disposed above a substrate is disclosed.
  • a first plurality of spaced-apart rail-stacks disposed at a first height and/or a first direction are fabricated above the substrate.
  • Each rail-stack includes a first conductor and a first semiconductor layer extending substantially the entire length of the first conductor.
  • a second plurality of spaced-apart rail-stacks are disposed above the first rail-stacks and run in a second direction different than the first direction.
  • An insulating layer is formed between the first rail-stack and the second conductors which is capable of being selectively breached by passing a current between one of the first and one of the second conductors to program the array.
  • FIG. 1 is a perspective view of a cut-away portion of the invented array.
  • FIGS. 2 A- 2 H illustrate some of the steps used to fabricate one embodiment of the invented memory.
  • FIG. 2A is a cross-sectional elevation view of an antifuse and semiconductor layer formed during the fabrication of the invented array.
  • FIG. 2B illustrates the structure of FIG. 2A after an additional semiconductor layer has been formed.
  • FIG. 2C illustrates the structure of FIG. 2B after a conductive layer is formed.
  • FIG. 2E illustrates the structure of FIG. 2D after a masking and etching step.
  • FIG. 2F illustrates the structure of FIG. 2E after open spaces left from the etching step have been filled.
  • FIG. 2G illustrates the structure of FIG. 2F after a planarization step.
  • FIG. 2H illustrates the structure of FIG. 2G after another antifuse layer is formed.
  • FIG. 3 is a cross-sectional elevation view of one embodiment of the present invented array.
  • FIG. 4 is a cross-sectional elevation view of a second embodiment of the invented array.
  • FIG. 5 is a cross-sectional elevation view of a third embodiment of the invented array.
  • FIG. 6 is a cross-sectional elevation view of another embodiment of the invented array.
  • FIG. 7 is a cross-sectional elevation view of an embodiment employing rails.
  • a three-dimensional memory array which is field programmable is described.
  • numerous specific details are set forth such as specific materials and layer thicknesses. It will be apparent, however, to one skilled in the art that the present invention may be practiced without these details. In other instances, well-known circuits and fabrication techniques have not been set forth in detail in order not to unnecessarily obscure the present invention.
  • the invented memory array is fabricated on several levels and, for instance, may have eight levels of storage. Each level includes partially or completely a first plurality of parallel spaced-apart rail-stacks running in a first direction and a second plurality of rail-stacks or conductors (depending on the embodiment) running in a second direction.
  • a rail-stack may be shared by two levels of storage. Generally, the first rail-stacks run perpendicular to the second conductors/rail-stacks and hence form a right angle at their intersections.
  • rail-stack 16 is shown at one height and a half rail-stack 18 is shown at a second height above the first height.
  • half rail-stacks are disposed between rail-stack 16 and a substrate 10 . These lower half rail-stacks run in the same direction as the half rail-stack 18 . A bit is stored at the intersection of rail-stacks and, for instance, a “cell” is present between the rail-stacks and layers shown within the bracket 17 and another within the bracket 19 . Each of these brackets span a memory level.
  • the array is fabricated on a substrate 10 which may be an ordinary monocrystaline silicon substrate.
  • Decoding circuitry, sensing circuits, and programming circuits are fabricated in one embodiment within the substrate 10 under the memory array using, for instance, ordinary MOS fabrication techniques. (These circuits may also be fabricated above the substrate.)
  • Vias are used to connect conductors within the rail-stacks to the substrate to allow access to each rail-stack in order to program data into the array and to read data from the array.
  • the circuitry within the substrate 10 may select rail-stack 16 and the rail stack 18 in order to either program or read a bit associated with the intersection of these rail-stacks. (In the case of the embodiments of FIG. 5 some conductors are not part of rail-stacks; these conductors are also coupled to the substrate circuits.)
  • a conductive layer 14 is formed on the substrate.
  • conductive layers are used within the rail-stacks and these layers and the resultant conductors may be fabricated from elemental metals such as tungsten, tantalum, aluminum, copper or metal alloys may be used such as MoW.
  • Metal suicides may also be used such as TiSi 2 , CoSi 2 or a conductive compound such as TiN, WC may be used.
  • a highly doped semiconductor layer such as silicon is also suitable. Multiple layer structures may be used selecting one or more of the above.
  • a layer of semiconductor material such as silicon is formed over the conductive layer.
  • This is typically a polysilicon layer; however, an amorphous layer may be used.
  • Other semiconductor materials may be used such as Ge, GaAs, etc.
  • this semiconductor layer is highly doped and, as will be seen, forms one-half a diode.
  • half rail-stacks are formed. These rail-stacks are “half” or partial rail-stacks since they are approximately half the thickness of the rail-stacks used in subsequent levels.
  • a material for the antifuses used to program the array is deposited shown as layer 20 .
  • the layer 20 is a dielectric such as silicon dioxide which is deposited by chemical vapor deposition (CVD) in a blanket deposition over the half rail-stacks and over the dielectric fill, filling the space between the rail-stacks.
  • the layer 20 is grown on the upper surface of the silicon layer 15 and only exists on the rail-stacks. Growth of the anti-fuse can be achieved by a number of methods. Such methods include hot steam oxidation, dry thermal oxidation, plasma-oxidation, wet-chemical oxidation and electrochemical oxidation.
  • Materials that can be used for the anti-fuse layer, and that can be grown and or deposited include; silicon dioxide, silicon nitride, silicon oxynitride, amorphous carbon and other insulating materials or combinations of materials. (Also an undoped layer of silicon may be used for the antifuse layer.)
  • a full set of memory array rail-stacks is formed on the layer 20 .
  • This comprises first the deposition of a lightly doped silicon layer 21 doped with a conductivity type dopant opposite to that used for the silicon layer 15 , a heavily doped silicon layer 22 doped also opposite to the layer 15 , a conductive layer 23 and a heavily doped silicon layer 24 doped with the same conductivity type dopant as layers 21 and 22 .
  • the rail-stacks shown in FIG. 1, such as rail-stack 16 are formed. These rail-stacks are, as illustrated, in a direction perpendicular to the rail-stacks above and below them.
  • the spaces between the rail-stacks after they are defined are filled with a dielectric such as silicon dioxide.
  • a dielectric such as silicon dioxide.
  • the rail-stacks and fill are planarized by CMP.
  • spin-on-glass (SOG) is used to fill the voids.
  • chemical planarization can be used such as, for example, plasma etching.
  • Other fill and planarization methods can be used.
  • another antifuse layer 26 is formed, for instance, from a dielectric such as silicon dioxide.
  • FIG. 1 Now another layer of rail-stacks are defined and only half rail-stacks are shown in FIG. 1 at this upper level.
  • This half rail-stack comprises a silicon layer 28 doped with a conductivity type dopant opposite to that of layer 24 . This is a lightly doped layer.
  • Another silicon layer 30 is formed on layer 28 and this layer is doped with the same conductivity type dopant as layer 28 , however, it is more heavily doped. Then a conductive layer 31 is formed above the layer 30 .
  • Half rail-stacks are used at the very upper-most level of the array and at the very lowest level of the array. In between the half rail-stacks a number of full rail-stacks, such as rail-stack 16 , are used throughout the array.
  • the silicon layers disposed on the conductive layers extend the entire length of the rail-stacks in the embodiment of FIG. 1 and are uninterrupted except possibly where vias are used to provide a conductive path to the substrate 10 .
  • FIG. 1 a path 32 is illustrated from a lower conductor in level 17 to an upper conductor in this level found in the rail-stack 18 .
  • This path is accessed in one embodiment through decoding circuitry in the substrate for both programming and reading of data into and from the array for one bit.
  • a relatively high write voltage 5-20V is applied between the conductors.
  • This relatively high voltage causes a breach in the layer 26 creating a diode. Without this high voltage, the layer 26 remains an insulator.
  • diodes can be selectively formed so as to program the array. It is currently preferred that the write voltage be applied with a polarity such that the more positive voltage is applied to the rail-stack that constitutes the anode of the diode that is created by the breach of layer 21 . It is also possible to program using a reverse-biasing potential.
  • a voltage lower than that for programming is used. This voltage is applied so as to forward-bias the diode of the cell being accessed and thus allowing a sense amplifier to determine whether or not the layer 26 is intact between the rail-stacks. Note that “sneak” or parasitic paths in the array which would interfere with the sensing will include a reverse-biased diode.
  • FIG. 3 In the cross-section elevation view of FIG. 3, one embodiment is illustrated which corresponds to the embodiment shown in FIG. 1.
  • the half rail-stacks of FIG. 1 are not illustrated.
  • Three complete levels 35 , 36 and 37 of the array are illustrated in FIG. 3.
  • Below layer 38 of FIG. 3 other rail-stacks or half rail-stack are used.
  • Also above layer 65 a full or half rail-stack is used.
  • the rail-stack 3 comprising layers 38 through 41 includes a lightly doped n-layer 38 , a heavily doped n+ layer 39 , a conductor layer 40 and n+ layer 41 .
  • An antifuse layer 42 which for the embodiment of FIG. 3 is a blanket deposition covers all of the rail-stacks formed below layer 42 as well as the fill filling the voids between the rails.
  • the layer 42 is a deposited silicon dioxide layer in one embodiment.
  • n+ layers sandwich the conductor layer 40 . These highly doped layers provide ohmic transitions to prevent unintended Schottky diode formation.
  • the layers above and below conductor 40 are not symmetrical for the embodiment illustrated in that an n ⁇ layer 38 is used below the conductor 40 and not above the conductor 40 . Only a single lightly doped layer (in conjunction with a heavily doped layer) is needed to define a diode; the thickness of this lightly doped layer is important in controlling the break-down voltage and resistance of the diode so formed.
  • the layer 41 , a heavily doped semiconductor layer, and the fill are planarized after the rail-stacks are defined and then a blanket deposition of the antifuse layer 42 is formed on the layer 41 . (The lines 43 in FIG. 3 are used to indicate that the antifuse layer 42 and like layers are not etched with the rail-stack below it and thus extend over the entire array for the illustrated embodiment.)
  • Rail-stacks 4 comprising layers 44 , 45 , 46 and 47 are formed on the antifuse layer 42 .
  • Layer 44 is lightly doped with a p-type dopant for the embodiment illustrated followed by a p+layer 45 , a conductive layer 46 and a p+layer 47 .
  • these layers are deposited, they are masked and etched to define the rail-stacks.
  • the voids between these rail-stacks, such as void 50 are filled with a dielectric.
  • the fill dielectric is planarized along with a portion of p+ layer 47 . Planarization is done at this point in the fabrication since there is generally poor control over the thickness and contour of the fill. The fill tends to build up on the rail-stacks when a non-spin-on type deposition is used. This is followed by a blanket deposition of layer 51 .
  • path 66 As shown by the path 66 , when a large enough voltage is applied between conductors 46 and 54 , the antifuse layer 51 , at the intersection of layers 47 and 52 , is breached creating a diode at the intersection. As mentioned, this is selectively done throughout the array to program the array.
  • the conductor 54 is therefore a bit line for the “cells” above and below it, for instance path 67 indicates another possible current path for another “cell” where the conductor 54 is again a bit line during sensing.
  • planarization for this embodiment always occurs on a heavily doped layer such as layer 47 and layer 55 .
  • the lightly doped layers are always formed on relatively planar surfaces, consequently their thickness can be more easily controlled. This, as mentioned, allows the characteristics of the diode (once the intermediate antifuse layer is breached) to be more reliably controlled.
  • FIGS. 2 A- 2 H The process flow for forming rail-stack 5 of FIG. 3 is illustrated in FIGS. 2 A- 2 H. It will be apparent that the rail-stacks for the other embodiment (FIGS. 4 and 5) are similarly processed.
  • an antifuse layer 51 is deposited. This typically is 50-200 ⁇ of silicon dioxide which can be deposited with any one of very well-known processes. Following this, a silicon layer 52 is deposited which is typically 1000-4000 ⁇ thick and formed with a CVD process where a phosphorous dopant is deposited along with the deposition of for instance, the polysilicon semiconductor material or where the dopant is ion implanted following the deposition of the layer. This layer is doped to a level of, for example, 1 ⁇ 10 17 /cm 3 , but can be doped to a level in a range from 1 ⁇ 10 15 /cm 3 to 1 ⁇ 10 19 /cm 3 .
  • an n+ layer 53 is deposited again using CVD.
  • This layer may be approximately 300-3000 ⁇ thick and in one embodiment is doped to a level of >10 19/ cm 3 .
  • layers 52 and 53 are often shown such as layers 52 and 53 , with different doping. These layers may be formed with one deposition and using ion implantation steps at two different energy levels to obtain the two doping levels. Also, these differently doped layers may be formed by introducing different amounts of dopant in a diffusion process as a layer is formed.
  • a conductive layer which may be 500-1500 ⁇ thick is formed using any one of numerous well-known thin film deposition process such as sputtering.
  • a refractory metal may be used or a silicide of a refractory metal.
  • aluminum or copper can be used, or more simply the heavily doped silicon can be the conductor.
  • Ti and TiN layers are formed on the silicon layer and the wafer is heated to form a silicide. For instance, a Ti layer of 250 ⁇ and a TiN layer of 70 ⁇ are heated at 600° C. for one minute to form the silicide.
  • next another semiconductor layer of, for instance, polysilicon approximately 1500-2000 ⁇ thick is formed again doped to a level of >10 19 /cm 3 . This is shown as layer 55 in FIG. 2D; after planarization its thickness is between 300 ⁇ and 2000 ⁇ thick.
  • a masking and etching step is now used to define rail-stacks, such as rail-stacks 69 , 70 and 71 shown in FIG. 2E. Note that when comparing this view to the view of rail-stack 5 of FIG. 3, the view in FIG. 2E is taken from the side and consequently shows the individual rail-stacks.
  • An ordinary masking and etching step for instance using plasma etching, may be used.
  • Etchants can be used that stop on the antifuse layer thus preventing this layer from being etched away.
  • layer 51 can be considered an etchant stop layer depending on the specific etchants used.
  • the spaces between the rail-stacks are filled with a dielectric such as formed with a HDPCVD process.
  • Chemical-mechanical polishing is then employed to planarize the upper surface of the rail-stacks shown in FIG. 2F in one embodiment.
  • Chemical etching can also be used as mentioned with certain dielectrics. This planarization can reduce the thickness of the layer 55 to approximately 500 ⁇ , thus this layer ends up being of approximately the same thickness as the layer 53 .
  • another antifuse layer 56 is formed on the planarized surface 75 . Since the layer 56 is deposited over all the rail-stacks and the filler material and remains unetched, it forms a barrier to the migration of the materials subsequently deposited that might make their way along the sides of the rail-stacks such as along path 79 . Thus the layer 56 helps prevent the parasitic paths and potential shorts that may occur with prior art memories.
  • each level where the antifuse layer is in fact grown from a semiconductor layer it is possible also to fabricate each level where the antifuse layer is in fact grown from a semiconductor layer. For instance, an oxidation step may be used to grow a silicon dioxide layer from layers 41 , 47 , 55 and 64 . This grown layer would then be in lieu of the antifuse layers shown in FIG. 3.
  • the rail-stacks and rails for the embodiment of FIG. 7 are connected to circuitry in the substrate such as decoders, sense amps and like peripheral circuits. Vias for providing these connections are discussed in copending application Ser. No. 09,746,341, entitled “Contact and Via Structure and Method of Fabrication.”
  • each rail-stack begins with a conductor such as layer 80 of FIG. 4.
  • An n+ semiconductor layer 81 and an n ⁇ layer 82 are formed on layer 80 .
  • a layer of antifuse material 83 is formed.
  • a p+ layer 84 of semiconductor material is deposited (e.g., silicon with boron dopant) on the antifuse.
  • the antifuse layer 83 is etched as well as layers 80 , 81 , 82 and 84 .
  • This comprises a conductor layer 85 , p+ layer 86 , p ⁇ layer 87 , antifuse layer 88 and n+ layer 89 . Again masking and etching occur. This etching also etches the exposed regions of layer 84 which does not appear in the view of FIG. 4, but this will be apparent shortly when region 95 of the next stack is discussed. Now filling and planarization occurs and the next layer of rail-stacks are formed shown as rail-stack 4 . As illustrated, this comprises a conductive layer 90 , n+ layer 91 , n ⁇ layer 92 , antifuse layer 93 , and p+ layer 94 . Once again masking, etching, filling and planarization occur.
  • etching must occur on one layer of the rail-stack immediately below the rail-stack being defined. For instance, when rail-stack 4 is etched the layer 89 of rail-stack 3 is etched away where it is not covered by rail-stack 4 as shown by region 95 . This etching is used to remove all of the semiconductor material between the adjacent conductors and consequently prevent a path, such as path 96 shown in FIG. 4. This etching also occurs to layer 84 which, as mentioned, is not seen in FIG. 4. In this connection the antifuse layer 88 can be used as an etchant stop, although this is not necessary. No harm is done if etching does occur through the layer 88 since the antifuse layer is only needed at the intersections of the rail-stacks.
  • the order of the n and p doped layers alternate with each successive rail-stack.
  • the rail-stacks at any given level include both p and n layers.
  • the rail-stacks are doped with either an n type or p type dopant but not both.
  • alternate levels of rail-stacks running in a first direction and intermediate layers of conductors are running in a second direction are used.
  • the conductors 3 , 5 and 7 run in a first direction whereas the rail-stacks 4 and 6 run in a second direction.
  • each of the rail-stacks is symmetrical about a conductor such as conductor 109 of rail-stack 4 .
  • the conductor is sandwiched between two n+layers 108 and 110 . More lightly doped outer layers 107 and 111 are disposed on these more heavily doped layers.
  • the conductors such as conductors 105
  • the conductors are first formed, for instance, on the substrate. The spaces between these conductors may be filled and planarization may occur. Then an antifuse layer 106 , n ⁇ layer 107 , n+ layer 108 , conductive layer 109 , n+ layer 110 and n ⁇ layer 111 are deposited. Rail-stacks are then defined by masking and etching. The voids between the rail-stacks are then filled with a dielectric. Then planarization of the filling material and the upper surface of layer 111 is performed. Following this, antifuse layer 112 is deposited over the entire array. Now additional conductors are formed such as conductors 113 . Each level in this array is between a metallic conductor such as conductor 105 , and a sandwich conductor such as conductor 109 . Thus there are four memory levels shown in FIG. 5, levels 100 , 101 , 102 and 103 .
  • the conductors such as conductors 105 and 113 must be of a suitable material to allow formation of a Schottky diode.
  • a suitable material for instance, aluminum and some refractory metal or silicides may be used.
  • Some of the embodiments discussed above use both p ⁇ n+ and p+n ⁇ diode types. In some processes, one of these diode types may exhibit more leakage than the other. Consequently, it may be desirable to have, for these processes, an array with only a single diode type. More specifically, assume a process has higher leakage for diodes which are p ⁇ n+ type than the same process has for diodes of the p+n ⁇ type.
  • FIG. 6 illustrates an array embodiment where, if the antifuse layer is breached, all the diodes will be p+n ⁇ type, that is, there will be no diodes with a p ⁇ n+junction.
  • the first rail-stack 120 comprises:
  • Rail-stack 121 comprises: an n ⁇ semiconductor layer 129 of, for instance, 2,000 ⁇ thick; an n+ semiconductor layer 130 of, for example, 500 ⁇ thick; a conductor 131 of, for instance, 500 ⁇ thick; an n+ semiconductor layer 132 of, for instance, 500 ⁇ thick; and an n ⁇ semiconductor layer 133 of, for example, 2,000 ⁇ thick.
  • the rail-stack 122 has the same layering as the rail-stack 120 .
  • the semiconductor layers may be formed using polysilicon or an amorphous silicon.
  • the conductors may be a highly doped silicon or a metal, metal alloy, silicide or combinations thereof.
  • the dielectric fill in the spaces between the rail-stacks is also used as discussed for the earlier embodiments.
  • the diodes between the conductors 126 and 131 are all p+n ⁇ type, and similarly, the diodes in the next level between the conductors 131 and 140 are again all p+n ⁇ type.
  • the rail-stacks shown are used throughout the memory array so that the entire array has only p+n ⁇ type diodes in its memory cells.
  • the diodes in the illustrated rail-stacks of FIG. 6 are forward biased towards the conductor 131 and the conductor 141 . If need be for a particular application, the diodes can be oriented identically, that is, with all their anodes (or cathodes) pointing upwardly. This can be obtained for the p+n ⁇ type diodes by having both a p+ doped and n ⁇ doped semiconductor layer in each of the rail-stacks.
  • layer 132 and 133 would be replaced with a p+ layer and layer 142 would be replaced with n ⁇ and n+ layers. This still maintains only one type of diode (p+n ⁇ ) throughout the array.
  • FIG. 6 shows that after the antifuse is breached, only p+ n diodes will be created, an array with only p ⁇ n+ type diodes can be fabricated by replacing the p+ layers with an n+ layer and replacing the n+ and n ⁇ layers with p+ and players. Also, the array can have the anodes (or cathodes) vertically aligned as discussed above for the p+n ⁇ type diodes.
  • planarization occurs on an n ⁇ layer, for example, the n ⁇ layer 133 is planarized before the formation of the anti-fuse layer. For this reason, layer 133 is somewhat thicker. More care is required in the polishing of the n ⁇ layer 133 to assure uniformity across the wafer and the resultant uniform diode characteristics.
  • a “hard” mask may be used such as described in co-pending application Ser. No. 09/746,469, filed by N. Johan Knall and James M. Cleeves, and titled Methods Of Fonning Nonvolatile Memory Devices Utilizing A Hard Mask assigned to the assignee of the present application.
  • One result of having thicker n ⁇ layers is that the rail-stack 121 is thicker than the rail-stacks 120 and 122 .
  • FIG. 7 Another array embodiment which results in single type diode junction is shown in FIG. 7.
  • This embodiment employs rails of a uniformly doped semiconductor material rather than the rail-stacks previously discussed, which comprise layers. More specifically, as shown in FIG. 7, rails 150 of, for example, a polysilicon doped with a p ⁇ type dopant are defined from a layer of polysilicon.
  • an n ⁇ type polysilicon layer is formed and orthogonal rails 151 and 152 are photolithographically formed. Then, following a filling step, and a planarization step, another anti-fuse layer 153 is formed. Next, p ⁇ type polysilicon rails 156 are formed and an anti-fuse layer 155 is formed on these rails as shown in FIG. 7.
  • Each of the polysilicon rails or lines 150 , 151 , 152 , and 156 and like lines at other levels are connected to circuitry in a substrate.
  • Each of the rails is both a conductor and one-half a diode for cells. For instance, a cell is formed between rail 156 and rail 151 , and another cell between rail 156 and rail 152 . Likewise, cells are formed between the rail 150 and each of the rails 151 and 152 .
  • the semiconductor rails are less conductive than metal conductors previously discussed, and consequently, the rails will have more resistance. This for instance, will increase the access time of the cells, particularly in a large array.
  • the conductivity of the rails can be improved by increasing the concentration of the p type and n type dopants. However, when this is done, the leakage current increases.
  • the diodes associated with each of the cells are the same; specifically the p and n type dopant concentrations for each diode is the same.
  • a conductor is shared by two levels.
  • An array may be fabricated where there are two conductors for each level that are not shared with other levels.
  • a dielectric may be used to separate each such level.
  • a shared conductor may have diodes point-in from above and point-out from below. This requires different driving circuitry in the substrate.
  • All the above embodiment have benefits over the prior art three-dimensional memories.
  • One advantage is that the diodes are formed by breaching an antifuse layer. This results in diodes with very small junction areas. The resultant low-leakage diodes improves the performance of the array. Additionally, etching is not as deep as with the prior art three-dimensional memories. Difficulties with stringers where individual pillars were used in the prior art is eliminated with some of the above embodiments.
  • the different embodiments provide numerous material choices and “post-write diode” choices.

Abstract

A multi-level memory array is described employing rail-stacks. The rail-stacks include a conductor and semiconductor layers. The rail-stacks are generally separated by an insulating layer used to form antifuses. In one embodiment, one-half the diode is located in one rail-stack and the other half in the other rail-stack.

Description

  • This is a continuation-in-part application of Ser. No. 09/560,626 filed Apr. 28, 2000, entitled Three-Dimensional Memory Array and Method of Fabrication.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The invention relates to the field of vertically stacked field programmable non-volatile memory and method of fabrication. [0003]
  • 2. Prior Art [0004]
  • Recently there has been an interest in fabricating memories having memory cells disposed at numerous levels above a substrate. Each level includes a plurality of spaced-apart first lines extending in one direction which are vertically separated from a plurality of parallel spaced-apart second lines in a second direction, for example, extending perpendicular to the first line. Cells are disposed between the first lines and second lines at the intersections of these lines. These memories are described in U.S. Pat. Nos. 5,835,396 and 6,034,882. [0005]
  • As will be seen, the present invention departs from the structures shown in these patents and uses “rail-stacks” as will be described later. The invented memory employs antifuses where a diode is formed upon programming a particular bit. In this connection see, “[0006] A Novel High-Density Low-Cost Diode Programmable Read Only Memory,” by de Graaf, Woerlee, Hart, Lifka, de Vreede, Janssen, Sluijs and Paulzen, IEDM-96, beginning at page 189 and U.S. Pat. Nos. 4,876,220; 4,881,114 and 4,543,594.
  • SUMMARY OF THE INVENTION
  • A multi-level memory array disposed above a substrate is disclosed. A first plurality of spaced-apart rail-stacks disposed at a first height and/or a first direction are fabricated above the substrate. Each rail-stack includes a first conductor and a first semiconductor layer extending substantially the entire length of the first conductor. A second plurality of spaced-apart rail-stacks are disposed above the first rail-stacks and run in a second direction different than the first direction. An insulating layer is formed between the first rail-stack and the second conductors which is capable of being selectively breached by passing a current between one of the first and one of the second conductors to program the array. [0007]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a cut-away portion of the invented array. [0008]
  • FIGS. [0009] 2A-2H illustrate some of the steps used to fabricate one embodiment of the invented memory.
  • FIG. 2A is a cross-sectional elevation view of an antifuse and semiconductor layer formed during the fabrication of the invented array. [0010]
  • FIG. 2B illustrates the structure of FIG. 2A after an additional semiconductor layer has been formed. [0011]
  • FIG. 2C illustrates the structure of FIG. 2B after a conductive layer is formed. [0012]
  • FIG. 2D illustrates the structure of FIG. 2C after an additional semiconductor layer has been formed. [0013]
  • FIG. 2E illustrates the structure of FIG. 2D after a masking and etching step. [0014]
  • FIG. 2F illustrates the structure of FIG. 2E after open spaces left from the etching step have been filled. [0015]
  • FIG. 2G illustrates the structure of FIG. 2F after a planarization step. [0016]
  • FIG. 2H illustrates the structure of FIG. 2G after another antifuse layer is formed. [0017]
  • FIG. 3 is a cross-sectional elevation view of one embodiment of the present invented array. [0018]
  • FIG. 4 is a cross-sectional elevation view of a second embodiment of the invented array. [0019]
  • FIG. 5 is a cross-sectional elevation view of a third embodiment of the invented array. [0020]
  • FIG. 6 is a cross-sectional elevation view of another embodiment of the invented array. [0021]
  • FIG. 7 is a cross-sectional elevation view of an embodiment employing rails. [0022]
  • DETAILED DESCRIPTION OF THE PRESENT INVENTION
  • A three-dimensional memory array which is field programmable is described. In the following description, numerous specific details are set forth such as specific materials and layer thicknesses. It will be apparent, however, to one skilled in the art that the present invention may be practiced without these details. In other instances, well-known circuits and fabrication techniques have not been set forth in detail in order not to unnecessarily obscure the present invention. [0023]
  • Overview of the Structure of the Invented Memory Array
  • The invented memory array is fabricated on several levels and, for instance, may have eight levels of storage. Each level includes partially or completely a first plurality of parallel spaced-apart rail-stacks running in a first direction and a second plurality of rail-stacks or conductors (depending on the embodiment) running in a second direction. A rail-stack may be shared by two levels of storage. Generally, the first rail-stacks run perpendicular to the second conductors/rail-stacks and hence form a right angle at their intersections. [0024]
  • The use of rail-stacks is a departure from prior art three-dimensional memories where conductors alone were used in lieu of rail-stacks, and where discrete cells (e.g., pillars) were formed at the intersections of the lines. As will be seen, a bit is stored at each of the intersections of rail-stacks. However, there is no apparent individual memory cell at the intersections, rather memory cells are defined by the rail-stacks and intermediate layers. This makes it easier to fabricate the invented array as will be seen. When the array is fabricated all the bits are in the zero (or one) state and after programming, the programmed bits are in the one (or zero) state. [0025]
  • In the embodiment of FIG. 1, several rail-stacks are illustrated in the partial cross-section of the invented array. For instance, rail-[0026] stack 16 is shown at one height and a half rail-stack 18 is shown at a second height above the first height.
  • Also, half rail-stacks are disposed between rail-[0027] stack 16 and a substrate 10. These lower half rail-stacks run in the same direction as the half rail-stack 18. A bit is stored at the intersection of rail-stacks and, for instance, a “cell” is present between the rail-stacks and layers shown within the bracket 17 and another within the bracket 19. Each of these brackets span a memory level.
  • The array is fabricated on a [0028] substrate 10 which may be an ordinary monocrystaline silicon substrate. Decoding circuitry, sensing circuits, and programming circuits are fabricated in one embodiment within the substrate 10 under the memory array using, for instance, ordinary MOS fabrication techniques. (These circuits may also be fabricated above the substrate.) Vias are used to connect conductors within the rail-stacks to the substrate to allow access to each rail-stack in order to program data into the array and to read data from the array. For instance, the circuitry within the substrate 10 may select rail-stack 16 and the rail stack 18 in order to either program or read a bit associated with the intersection of these rail-stacks. (In the case of the embodiments of FIG. 5 some conductors are not part of rail-stacks; these conductors are also coupled to the substrate circuits.)
  • As shown in FIG. 1, an insulating [0029] layer 12 is formed over the substrate in order that the array may be fabricated above the substrate. This layer may be planarized with, for instance, chemical-mechanical polishing (CMP) to provide a flat surface upon which the array may be fabricated.
  • Following this, a [0030] conductive layer 14 is formed on the substrate. As will be seen, conductive layers are used within the rail-stacks and these layers and the resultant conductors may be fabricated from elemental metals such as tungsten, tantalum, aluminum, copper or metal alloys may be used such as MoW. Metal suicides may also be used such as TiSi2, CoSi2 or a conductive compound such as TiN, WC may be used. A highly doped semiconductor layer such as silicon is also suitable. Multiple layer structures may be used selecting one or more of the above.
  • Following the deposition of a conductive layer, a layer of semiconductor material (layer [0031] 15) such as silicon is formed over the conductive layer. This is typically a polysilicon layer; however, an amorphous layer may be used. Other semiconductor materials may be used such as Ge, GaAs, etc. In the embodiment of FIG. 1 this semiconductor layer is highly doped and, as will be seen, forms one-half a diode. After masking and etching steps, half rail-stacks are formed. These rail-stacks are “half” or partial rail-stacks since they are approximately half the thickness of the rail-stacks used in subsequent levels.
  • Following this, in the embodiment of FIG. 1, a material for the antifuses used to program the array is deposited shown as [0032] layer 20. In one embodiment, the layer 20 is a dielectric such as silicon dioxide which is deposited by chemical vapor deposition (CVD) in a blanket deposition over the half rail-stacks and over the dielectric fill, filling the space between the rail-stacks. In another embodiment the layer 20 is grown on the upper surface of the silicon layer 15 and only exists on the rail-stacks. Growth of the anti-fuse can be achieved by a number of methods. Such methods include hot steam oxidation, dry thermal oxidation, plasma-oxidation, wet-chemical oxidation and electrochemical oxidation. Materials that can be used for the anti-fuse layer, and that can be grown and or deposited, include; silicon dioxide, silicon nitride, silicon oxynitride, amorphous carbon and other insulating materials or combinations of materials. (Also an undoped layer of silicon may be used for the antifuse layer.)
  • Now a full set of memory array rail-stacks is formed on the [0033] layer 20. This comprises first the deposition of a lightly doped silicon layer 21 doped with a conductivity type dopant opposite to that used for the silicon layer 15, a heavily doped silicon layer 22 doped also opposite to the layer 15, a conductive layer 23 and a heavily doped silicon layer 24 doped with the same conductivity type dopant as layers 21 and 22. After masking and etching, the rail-stacks shown in FIG. 1, such as rail-stack 16 are formed. These rail-stacks are, as illustrated, in a direction perpendicular to the rail-stacks above and below them.
  • While not shown in FIG. 1 but as will be described later, the spaces between the rail-stacks after they are defined, are filled with a dielectric such as silicon dioxide. Then the rail-stacks and fill are planarized by CMP. In another embodiment spin-on-glass (SOG) is used to fill the voids. In this case chemical planarization can be used such as, for example, plasma etching. Other fill and planarization methods can be used. [0034]
  • After formation of the rail-stacks another [0035] antifuse layer 26 is formed, for instance, from a dielectric such as silicon dioxide.
  • Now another layer of rail-stacks are defined and only half rail-stacks are shown in FIG. 1 at this upper level. This half rail-stack comprises a [0036] silicon layer 28 doped with a conductivity type dopant opposite to that of layer 24. This is a lightly doped layer. Another silicon layer 30 is formed on layer 28 and this layer is doped with the same conductivity type dopant as layer 28, however, it is more heavily doped. Then a conductive layer 31 is formed above the layer 30.
  • Half rail-stacks are used at the very upper-most level of the array and at the very lowest level of the array. In between the half rail-stacks a number of full rail-stacks, such as rail-[0037] stack 16, are used throughout the array.
  • It should be noted that the silicon layers disposed on the conductive layers extend the entire length of the rail-stacks in the embodiment of FIG. 1 and are uninterrupted except possibly where vias are used to provide a conductive path to the [0038] substrate 10.
  • In FIG. 1 a [0039] path 32 is illustrated from a lower conductor in level 17 to an upper conductor in this level found in the rail-stack 18. This path is accessed in one embodiment through decoding circuitry in the substrate for both programming and reading of data into and from the array for one bit.
  • For instance, to program the bit, a relatively high write voltage, 5-20V is applied between the conductors. This relatively high voltage causes a breach in the [0040] layer 26 creating a diode. Without this high voltage, the layer 26 remains an insulator. Thus, by selecting pairs of conductors, diodes can be selectively formed so as to program the array. It is currently preferred that the write voltage be applied with a polarity such that the more positive voltage is applied to the rail-stack that constitutes the anode of the diode that is created by the breach of layer 21. It is also possible to program using a reverse-biasing potential.
  • To sense the data programmed into the array, a voltage lower than that for programming is used. This voltage is applied so as to forward-bias the diode of the cell being accessed and thus allowing a sense amplifier to determine whether or not the [0041] layer 26 is intact between the rail-stacks. Note that “sneak” or parasitic paths in the array which would interfere with the sensing will include a reverse-biased diode.
  • Embodiment of FIG. 3
  • In the cross-section elevation view of FIG. 3, one embodiment is illustrated which corresponds to the embodiment shown in FIG. 1. In FIG. 3 the half rail-stacks of FIG. 1 are not illustrated. Three [0042] complete levels 35, 36 and 37 of the array are illustrated in FIG. 3. Below layer 38 of FIG. 3 other rail-stacks or half rail-stack are used. Also above layer 65, a full or half rail-stack is used.
  • The rail-[0043] stack 3 comprising layers 38 through 41 includes a lightly doped n-layer 38, a heavily doped n+ layer 39, a conductor layer 40 and n+ layer 41. The fabrication of these rail-stacks will be discussed in more detail in conjunction with FIG. 2A through FIG. 2G. An antifuse layer 42 which for the embodiment of FIG. 3 is a blanket deposition covers all of the rail-stacks formed below layer 42 as well as the fill filling the voids between the rails. As mentioned, the layer 42 is a deposited silicon dioxide layer in one embodiment.
  • It should be noted that n+ layers sandwich the [0044] conductor layer 40. These highly doped layers provide ohmic transitions to prevent unintended Schottky diode formation.
  • The layers above and below [0045] conductor 40 are not symmetrical for the embodiment illustrated in that an n− layer 38 is used below the conductor 40 and not above the conductor 40. Only a single lightly doped layer (in conjunction with a heavily doped layer) is needed to define a diode; the thickness of this lightly doped layer is important in controlling the break-down voltage and resistance of the diode so formed. The layer 41, a heavily doped semiconductor layer, and the fill are planarized after the rail-stacks are defined and then a blanket deposition of the antifuse layer 42 is formed on the layer 41. (The lines 43 in FIG. 3 are used to indicate that the antifuse layer 42 and like layers are not etched with the rail-stack below it and thus extend over the entire array for the illustrated embodiment.)
  • One advantage to the [0046] layer 42 and the other like layers in the structure, such as layers 51, 56 and 65, is that since they are an unbroken deposition, sidewall leakage (into the rail-stacks below) will be minimized, limiting electrical problems during reading and writing. When subsequent conductive material is deposited, it is unable to reach the sides of the rail-stacks below it because of this blanket deposition of the antifuse layer. For instance, path 49 which would allow silicon from layer 52 to cause a parasitic path does not exist because of the unbroken blanket deposition of the antifuse layer 51.
  • Rail-[0047] stacks 4 comprising layers 44, 45, 46 and 47 are formed on the antifuse layer 42. Layer 44 is lightly doped with a p-type dopant for the embodiment illustrated followed by a p+layer 45, a conductive layer 46 and a p+layer 47. After these layers are deposited, they are masked and etched to define the rail-stacks. Then the voids between these rail-stacks, such as void 50, are filled with a dielectric. The fill dielectric is planarized along with a portion of p+ layer 47. Planarization is done at this point in the fabrication since there is generally poor control over the thickness and contour of the fill. The fill tends to build up on the rail-stacks when a non-spin-on type deposition is used. This is followed by a blanket deposition of layer 51.
  • The process is now repeated this time beginning with an n− [0048] layer 52 followed by an n+ layer 53, a conductive layer 54 and n+ layer 55. Again after defining the rail-stacks 5, the voids are filled and the surface is planarized. Another antifuse layer 56 is deposited.
  • The process is repeated for the rail-[0049] stacks 6 this time beginning with a p− layer 61, p+ layer 62, conductive layer 63, p+ layer 64. Again after defining the rail-stacks, filling the void 60 and then planarizing, another antifuse layer 65 is deposited.
  • As shown by the [0050] path 66, when a large enough voltage is applied between conductors 46 and 54, the antifuse layer 51, at the intersection of layers 47 and 52, is breached creating a diode at the intersection. As mentioned, this is selectively done throughout the array to program the array. The conductor 54 is therefore a bit line for the “cells” above and below it, for instance path 67 indicates another possible current path for another “cell” where the conductor 54 is again a bit line during sensing.
  • It should be noted that with the reversal of the p− and n− layers at each successive rail-stack, planarization for this embodiment always occurs on a heavily doped layer such as [0051] layer 47 and layer 55. Moreover, the lightly doped layers are always formed on relatively planar surfaces, consequently their thickness can be more easily controlled. This, as mentioned, allows the characteristics of the diode (once the intermediate antifuse layer is breached) to be more reliably controlled.
  • Processing Flow for the Embodiment of FIG. 3
  • The process flow for forming rail-[0052] stack 5 of FIG. 3 is illustrated in FIGS. 2A-2H. It will be apparent that the rail-stacks for the other embodiment (FIGS. 4 and 5) are similarly processed.
  • First, as shown in FIG. 2A an [0053] antifuse layer 51 is deposited. This typically is 50-200 Å of silicon dioxide which can be deposited with any one of very well-known processes. Following this, a silicon layer 52 is deposited which is typically 1000-4000 Å thick and formed with a CVD process where a phosphorous dopant is deposited along with the deposition of for instance, the polysilicon semiconductor material or where the dopant is ion implanted following the deposition of the layer. This layer is doped to a level of, for example, 1×1017/cm3, but can be doped to a level in a range from 1×1015/cm3 to 1×1019/cm3.
  • Now, as shown in FIG. 2B, an [0054] n+ layer 53 is deposited again using CVD.
  • This layer may be approximately 300-3000 Å thick and in one embodiment is doped to a level of >10[0055] 19/cm3.
  • Throughout this application two adjacent silicon layers are often shown such as [0056] layers 52 and 53, with different doping. These layers may be formed with one deposition and using ion implantation steps at two different energy levels to obtain the two doping levels. Also, these differently doped layers may be formed by introducing different amounts of dopant in a diffusion process as a layer is formed.
  • A conductive layer which may be 500-1500 Å thick is formed using any one of numerous well-known thin film deposition process such as sputtering. A refractory metal may be used or a silicide of a refractory metal. Also as mentioned aluminum or copper can be used, or more simply the heavily doped silicon can be the conductor. In one embodiment, Ti and TiN layers are formed on the silicon layer and the wafer is heated to form a silicide. For instance, a Ti layer of 250 Å and a TiN layer of 70 Å are heated at 600° C. for one minute to form the silicide. [0057]
  • Next another semiconductor layer of, for instance, polysilicon approximately 1500-2000 Å thick is formed again doped to a level of >10[0058] 19/cm3. This is shown as layer 55 in FIG. 2D; after planarization its thickness is between 300 Å and 2000 Å thick.
  • A masking and etching step is now used to define rail-stacks, such as rail-[0059] stacks 69, 70 and 71 shown in FIG. 2E. Note that when comparing this view to the view of rail-stack 5 of FIG. 3, the view in FIG. 2E is taken from the side and consequently shows the individual rail-stacks. An ordinary masking and etching step for instance using plasma etching, may be used. Etchants can be used that stop on the antifuse layer thus preventing this layer from being etched away. Thus, layer 51 can be considered an etchant stop layer depending on the specific etchants used.
  • Now as shown in FIG. 2F, the spaces between the rail-stacks are filled with a dielectric such as formed with a HDPCVD process. [0060]
  • Chemical-mechanical polishing is then employed to planarize the upper surface of the rail-stacks shown in FIG. 2F in one embodiment. Chemical etching can also be used as mentioned with certain dielectrics. This planarization can reduce the thickness of the [0061] layer 55 to approximately 500 Å, thus this layer ends up being of approximately the same thickness as the layer 53.
  • Next as shown in FIG. 2H another [0062] antifuse layer 56 is formed on the planarized surface 75. Since the layer 56 is deposited over all the rail-stacks and the filler material and remains unetched, it forms a barrier to the migration of the materials subsequently deposited that might make their way along the sides of the rail-stacks such as along path 79. Thus the layer 56 helps prevent the parasitic paths and potential shorts that may occur with prior art memories.
  • It should be noted that in FIG. 3 while the antifuse layer is shown as a blanket layer covering the rail-stacks and fill, it is possible also to fabricate each level where the antifuse layer is in fact grown from a semiconductor layer. For instance, an oxidation step may be used to grow a silicon dioxide layer from [0063] layers 41, 47, 55 and 64. This grown layer would then be in lieu of the antifuse layers shown in FIG. 3.
  • In all the embodiments, the rail-stacks and rails for the embodiment of FIG. 7 are connected to circuitry in the substrate such as decoders, sense amps and like peripheral circuits. Vias for providing these connections are discussed in copending application Ser. No. 09,746,341, entitled “Contact and Via Structure and Method of Fabrication.”[0064]
  • The Embodiment of FIG. 4
  • For the embodiment of FIG. 4 each rail-stack begins with a conductor such as [0065] layer 80 of FIG. 4. An n+ semiconductor layer 81 and an n− layer 82 are formed on layer 80. Next a layer of antifuse material 83 is formed. Then a p+ layer 84 of semiconductor material is deposited (e.g., silicon with boron dopant) on the antifuse. When the rail-stacks are formed, for instance for rail-stack 2 of FIG. 4, the antifuse layer 83 is etched as well as layers 80, 81, 82 and 84.
  • The voids between the rail stacks are now filled and planarization is done, planarizing the fill with the upper surface of the [0066] layer 84. Following the completion of the rail-stack 2 the next rail-stacks are formed shown as rail-stacks 3 in FIG. 4.
  • This comprises a [0067] conductor layer 85, p+ layer 86, p− layer 87, antifuse layer 88 and n+ layer 89. Again masking and etching occur. This etching also etches the exposed regions of layer 84 which does not appear in the view of FIG. 4, but this will be apparent shortly when region 95 of the next stack is discussed. Now filling and planarization occurs and the next layer of rail-stacks are formed shown as rail-stack 4. As illustrated, this comprises a conductive layer 90, n+ layer 91, n− layer 92, antifuse layer 93, and p+ layer 94. Once again masking, etching, filling and planarization occur.
  • Unlike the embodiment of FIG. 3, when rail-stacks at any particular height are formed, etching must occur on one layer of the rail-stack immediately below the rail-stack being defined. For instance, when rail-[0068] stack 4 is etched the layer 89 of rail-stack 3 is etched away where it is not covered by rail-stack 4 as shown by region 95. This etching is used to remove all of the semiconductor material between the adjacent conductors and consequently prevent a path, such as path 96 shown in FIG. 4. This etching also occurs to layer 84 which, as mentioned, is not seen in FIG. 4. In this connection the antifuse layer 88 can be used as an etchant stop, although this is not necessary. No harm is done if etching does occur through the layer 88 since the antifuse layer is only needed at the intersections of the rail-stacks.
  • Note the etching of the [0069] region 95 is done in alignment with overlying rail-stacks and consequently no additional masking is required.
  • As was the case with the earlier embodiment, the order of the n and p doped layers alternate with each successive rail-stack. Moreover, the rail-stacks at any given level include both p and n layers. In contrast, for the embodiment of FIG. 3, at any particular level, the rail-stacks are doped with either an n type or p type dopant but not both. [0070]
  • Embodiment of FIG. 5
  • In the embodiment of FIG. 5, alternate levels of rail-stacks running in a first direction and intermediate layers of conductors are running in a second direction are used. For instance as shown in FIG. 5, the [0071] conductors 3, 5 and 7 run in a first direction whereas the rail- stacks 4 and 6 run in a second direction.
  • In this embodiment each of the rail-stacks is symmetrical about a conductor such as [0072] conductor 109 of rail-stack 4. The conductor is sandwiched between two n+layers 108 and 110. More lightly doped outer layers 107 and 111 are disposed on these more heavily doped layers.
  • In fabrication the conductors such as [0073] conductors 105, are first formed, for instance, on the substrate. The spaces between these conductors may be filled and planarization may occur. Then an antifuse layer 106, n− layer 107, n+ layer 108, conductive layer 109, n+ layer 110 and n− layer 111 are deposited. Rail-stacks are then defined by masking and etching. The voids between the rail-stacks are then filled with a dielectric. Then planarization of the filling material and the upper surface of layer 111 is performed. Following this, antifuse layer 112 is deposited over the entire array. Now additional conductors are formed such as conductors 113. Each level in this array is between a metallic conductor such as conductor 105, and a sandwich conductor such as conductor 109. Thus there are four memory levels shown in FIG. 5, levels 100, 101, 102 and 103.
  • Programming in this array causes the formation of Schottky diodes. [0074]
  • Consequently, the conductors such as [0075] conductors 105 and 113 must be of a suitable material to allow formation of a Schottky diode. For instance, aluminum and some refractory metal or silicides may be used.
  • EMBODIMENTS WITH SINGLE TYPE PN DIODES
  • Some of the embodiments discussed above use both p−n+ and p+n− diode types. In some processes, one of these diode types may exhibit more leakage than the other. Consequently, it may be desirable to have, for these processes, an array with only a single diode type. More specifically, assume a process has higher leakage for diodes which are p−n+ type than the same process has for diodes of the p+n− type. FIG. 6 illustrates an array embodiment where, if the antifuse layer is breached, all the diodes will be p+n− type, that is, there will be no diodes with a p−n+junction. [0076]
  • In FIG. 6, three rail-[0077] stacks 120, 121, and 122 are illustrated which will create only a single type diode specifically, p+n−. The first rail-stack 120 comprises:
  • a p+semiconductor layer [0078] 25 of, for instance, 1,000 Å thick; a conductor 126 of, for example, 500 Å thick; a p+ layer 127 of, for example, 1,000 Å thick; and a anti-fuse layer 128 of approximately 30 Åthick. These layers may be formed as discussed above. Rail-stack 121 comprises: an n− semiconductor layer 129 of, for instance, 2,000 Å thick; an n+ semiconductor layer 130 of, for example, 500 Å thick; a conductor 131 of, for instance, 500 Åthick; an n+ semiconductor layer 132 of, for instance, 500 Å thick; and an n− semiconductor layer 133 of, for example, 2,000 Å thick. The rail-stack 122 has the same layering as the rail-stack 120.
  • As discussed above, the semiconductor layers may be formed using polysilicon or an amorphous silicon. The conductors may be a highly doped silicon or a metal, metal alloy, silicide or combinations thereof. The dielectric fill in the spaces between the rail-stacks is also used as discussed for the earlier embodiments. [0079]
  • As can be seen from FIG. 6, if the antifuse layer is breached, the diodes between the [0080] conductors 126 and 131 are all p+n− type, and similarly, the diodes in the next level between the conductors 131 and 140 are again all p+n− type. The rail-stacks shown are used throughout the memory array so that the entire array has only p+n− type diodes in its memory cells.
  • The diodes in the illustrated rail-stacks of FIG. 6 are forward biased towards the [0081] conductor 131 and the conductor 141. If need be for a particular application, the diodes can be oriented identically, that is, with all their anodes (or cathodes) pointing upwardly. This can be obtained for the p+n− type diodes by having both a p+ doped and n− doped semiconductor layer in each of the rail-stacks.
  • For instance, [0082] layer 132 and 133 would be replaced with a p+ layer and layer 142 would be replaced with n− and n+ layers. This still maintains only one type of diode (p+n−) throughout the array.
  • While FIG. 6 shows that after the antifuse is breached, only p+ n diodes will be created, an array with only p−n+ type diodes can be fabricated by replacing the p+ layers with an n+ layer and replacing the n+ and n− layers with p+ and players. Also, the array can have the anodes (or cathodes) vertically aligned as discussed above for the p+n− type diodes. [0083]
  • It should be noted that for the embodiment of FIG. 6, planarization occurs on an n− layer, for example, the n− [0084] layer 133 is planarized before the formation of the anti-fuse layer. For this reason, layer 133 is somewhat thicker. More care is required in the polishing of the n− layer 133 to assure uniformity across the wafer and the resultant uniform diode characteristics. In this connection, a “hard” mask may be used such as described in co-pending application Ser. No. 09/746,469, filed by N. Johan Knall and James M. Cleeves, and titled Methods Of Fonning Nonvolatile Memory Devices Utilizing A Hard Mask assigned to the assignee of the present application. One result of having thicker n− layers is that the rail-stack 121 is thicker than the rail- stacks 120 and 122.
  • Another array embodiment which results in single type diode junction is shown in FIG. 7. This embodiment employs rails of a uniformly doped semiconductor material rather than the rail-stacks previously discussed, which comprise layers. More specifically, as shown in FIG. 7, rails [0085] 150 of, for example, a polysilicon doped with a p− type dopant are defined from a layer of polysilicon.
  • The spaces between these rails, as previously done with the rail-stacks, are filled with a dielectric. Then planarization occurs. An [0086] anti-fuse layer 154 is grown on, or deposited onto, the rails 150.
  • Now, an n− type polysilicon layer is formed and [0087] orthogonal rails 151 and 152 are photolithographically formed. Then, following a filling step, and a planarization step, another anti-fuse layer 153 is formed. Next, p− type polysilicon rails 156 are formed and an anti-fuse layer 155 is formed on these rails as shown in FIG. 7.
  • Each of the polysilicon rails or [0088] lines 150, 151, 152, and 156 and like lines at other levels are connected to circuitry in a substrate. Each of the rails is both a conductor and one-half a diode for cells. For instance, a cell is formed between rail 156 and rail 151, and another cell between rail 156 and rail 152. Likewise, cells are formed between the rail 150 and each of the rails 151 and 152.
  • The advantage to the embodiment of FIG. 7 is its ease of fabrication. [0089]
  • Typically, the semiconductor rails are less conductive than metal conductors previously discussed, and consequently, the rails will have more resistance. This for instance, will increase the access time of the cells, particularly in a large array. The conductivity of the rails can be improved by increasing the concentration of the p type and n type dopants. However, when this is done, the leakage current increases. [0090]
  • For any given array, decreased resistance can be traded-off for increased leakage and vice-versa. It is contemplated that this embodiment will typically be used in a relatively small array where high-speed access is not critical. [0091]
  • As can be seen from FIG. 7, after the antifuse is breached, the diodes associated with each of the cells are the same; specifically the p and n type dopant concentrations for each diode is the same. [0092]
  • Other Embodiments [0093]
  • In the above description a conductor is shared by two levels. An array may be fabricated where there are two conductors for each level that are not shared with other levels. A dielectric may be used to separate each such level. Also while above diodes on alternate levels “point” in the same direction for some embodiments, this is not necessary. For instance, a shared conductor may have diodes point-in from above and point-out from below. This requires different driving circuitry in the substrate. [0094]
  • All the above embodiment have benefits over the prior art three-dimensional memories. One advantage is that the diodes are formed by breaching an antifuse layer. This results in diodes with very small junction areas. The resultant low-leakage diodes improves the performance of the array. Additionally, etching is not as deep as with the prior art three-dimensional memories. Difficulties with stringers where individual pillars were used in the prior art is eliminated with some of the above embodiments. The different embodiments provide numerous material choices and “post-write diode” choices. [0095]
  • Thus a three-dimensional memory array has been described using rail-stacks (and for one embodiment rails) which simplifies processing and provides better performance over prior art three-dimensional arrays. [0096]

Claims (111)

What is claimed is:
1. A memory array disposed above a substrate comprising:
a first plurality of spaced-apart rail-stacks disposed at a first height in a first direction above the substrate, each rail-stack including a first conductor and a first semiconductor layer extending substantially the entire length of the first conductor;
a second plurality of spaced-apart conductors disposed above the first height and in a second direction different than the first direction, and
an insulating layer disposed between the first rail-stack and the second conductors which is capable of being selectively breached by passing a current between one of the first and one of the second conductors to program the array.
2. The array defined by claim 1 wherein the first semiconductor layer is a silicon layer.
3. The array defined by claim 2 wherein the first and second conductors are perpendicular to one another.
4. The array defined by claim 3 wherein the first silicon layer is more heavily doped adjacent to the first conductor than it is at its surface spaced-apart from the first conductor.
5. The array defined by claim 4 wherein the second conductors have a second silicon layer disposed on the second conductors extending substantially the entire length of the second conductors.
6. The array defined by claim 4 wherein the insulating layer is on the surface of the first silicon layer spaced-apart from the first conductor.
7. The array defined by claim 6 wherein the second conductors are on the insulating layer.
8. The array defined by claim 7 wherein the silicon is doped with an n− type dopant.
9. The array defined by claim 8 wherein Schottky diodes are formed to program the array.
10. The array defined by claim 1 wherein the insulating layer is substantially continuous between the first plurality of rail-stacks and the second plurality of conductors.
11. The array defined by claim 1 wherein the insulating layer provides a physical barrier between the first plurality of rail-stacks and the second plurality of conductors.
12. A memory array disposed above a substrate comprising:
a first plurality of parallel spaced-apart rail-stacks disposed above the substrate running in a first direction;
a second plurality of parallel spaced-apart rail-stacks disposed above the first rail-stacks, the second plurality of rail-stacks running in a second direction different than the first direction such that a projection of the second rail-stack on the first rail-stack define intersections with the first plurality of rail-stacks; and
a layer of low conducting material separating the first plurality of rail-stacks from the second plurality of rail-stacks, the layer of low conducting material at each intersection of the first and second rail-stacks separating a first conductivity type doped semiconductor material in one of the first rail-stacks from a second conductivity type doped semiconductor material in one of the second rail-stacks.
13. The memory array defined by claim 12 wherein the semiconductor material is silicon.
14. The memory array defined by claim 12 wherein the layer of low conducting material provides a physical barrier between the first and second plurality of rail-stacks, substantially minimizing sidewall leakage.
15. The memory array defined by claim 13 wherein the passage of a current equal to or greater than a predetermined threshold from one of the first rail-stacks to one of the second rail-stacks causes a diode to form at the intersection of these rail-stacks.
16. The memory array defined by claim 15 wherein the silicon on one side of each intersection is more lightly doped than the silicon on the opposite side of each intersection.
17. The memory array defined by claim 16 wherein the side of the intersection having the more lightly doped silicon includes a more heavily doped silicon region between the more lightly doped silicon and its respective conductor.
18. The memory array defined by claim 11 or 17 wherein the low conducting material comprises silicon dioxide.
19. The memory array defined by claim 11 or 17 wherein the low conducting material layer comprises silicon nitride.
20. The memory array defined by claim 11 or 17 wherein the low conducting material layer comprises undoped silicon.
21. The memory array defined by claim 11 or 17 wherein the first and second rail-stacks include a conductor comprising a metal or a metallic compound.
22. The memory array defined by claim 21 wherein each conductor is sandwiched between silicon in a multi-level array.
23. The memory array defined by claim 12 wherein the layer of low conductivity material is grown from a semiconductor layer.
24. In a multi-level memory having alternate levels of first spaced-apart conductors extending in one direction and second spaced-apart conductors in the other levels extending in a second direction, an improvement wherein each first conductor includes:
a first layer of a first conductivity type doped semiconductor material disposed on one side of the conductor over substantially its entire length;
a second layer of the first conductivity type doped semiconductor material disposed on the opposite side of the conductor over substantially its entire length;
a third layer of the first conductivity type doped semiconductor material disposed on the second layer over substantially its entire length, the third layer being more lightly doped than the second layer; and
a dielectric disposed on the third layer.
25. The memory defined by claim 24 wherein the semiconductor material is silicon.
26. The memory defined by claim 25 wherein the dielectric is grown from the semiconductor material.
27. The memory defined by claim 26 wherein the dielectric is silicon dioxide.
28. The memory defined by claim 25 wherein the dielectric is silicon nitride.
29. The memory defined by claim 25 wherein the dielectric extends substantially continuously between the levels.
30. The memory defined by claim 24 wherein the memory is programmed by forming Schottky diodes at selected intersections of the first and second conductors.
31. The memory defined by claim 24 or 25 wherein a second dielectric is disposed on the first layer.
32. The memory defined by claim 24 wherein each second conductor includes:
a fourth layer of a second conductivity type doped semiconductor material disposed on one side of the second conductor over substantially its entire length;
a fifth layer of a second conductivity type doped semiconductor material disposed on the opposite side of the second conductor over substantially its entire length;
a sixth layer of the second conductivity type doped semiconductor material disposed on the fifth layer over substantially its entire length, the sixth layer being more lightly doped than the fifth layer; and
a third dielectric disposed on the sixth layer.
33. The memory defined by claim 32 wherein the second conductivity type doped material is doped silicon.
34. In a multi-level memory having alternate levels of first spaced-apart conductors extending in one direction and second spaced-apart conductors in the other levels extending in a second direction, an improvement wherein each first conductor includes:
a first layer of a first conductivity type doped semiconductor material disposed on one side of the first conductor over substantially its entire length;
a second layer of the first conductivity type doped semiconductor material disposed on the first layer over substantially its entire length, the second layer being more lightly doped than the first layer; and
a first dielectric layer disposed on the second layer.
35. The memory defined by claim 34 wherein the semiconductor material is silicon.
36. The memory of claim 35 wherein the second conductors include:
a third layer of silicon doped with a second conductivity type dopant extending over substantially its entire length; and
a second dielectric layer disposed on the third layer.
37. The memory defined by claim 38 wherein additional silicon layers are disposed on the first and second dielectric.
38. The array defined by claim 34 wherein p+n− diodes are formed at all levels of the array where programming occurs.
39. The array defined by claim 34 wherein p-n+diodes are formed at all levels of the array where programming occurs.
40. The memory defined by claim 38 wherein the first dielectric layer at each level is silicon dioxide.
41. The memory defined by claim 40 wherein each dielectric layer is substantially continuous at each level.
42. The memory defined by claim 40 wherein the dielectric layer is grown from silicon.
43. The memory defined by claim 41 wherein the dielectric layer is blanket deposited.
44. The memory defined by claim 38 or 39 wherein the first dielectric layer at each level is silicon nitride.
45. A multi-level non-volatile memory array comprising:
a plurality of first rail-stacks disposed at a first and third level running generally in a first direction above a substrate, each rail-stack comprising first conductors sandwiched between layers of silicon;
a plurality of second rail-stacks disposed at a second and fourth level above the substrate and running in a second direction, each of the second rail-stacks comprising second conductors sandwiched between layers of silicon, and
a plurality of layers of dielectric each disposed respectively between successive levels of the first and second rail-stacks which are capable of being selectively breached to program the array.
46. The array defined by claim 45 wherein the layers of silicon on the first conductors are doped with a first conductivity type dopant and wherein the layers of silicon on the second conductor are doped with a second conductivity type dopant.
47. The array defined by claim 45 wherein the layers of dielectric are blanket deposited.
48. The array defined by claim 45 wherein the layers of dielectric are grown on the silicon.
49. The array defined by claim 45 where the layers of dielectric are substantially continuous, forming a physical barrier between levels of rail-stacks.
50. The array defined by claim 45 wherein the layers of silicon on at least one side of the first conductors are more heavily doped adjacent to the first conductor than they are further from the first conductor.
51. The array defined by claim 50 wherein p+n− diodes are formed at all levels of the array where programming occurs.
52. The array defined by claim 38 wherein p−n+ diodes are formed at all levels of the array where programming occurs.
53. The array defined by claim 46 wherein the layers of silicon on at least one side of the second conductors are more heavily doped adjacent to the second conductors than they are further from the second conductors.
54. The array defined by claim 50, 52, or 53 wherein the layer of dielectric comprises silicon dioxide.
55. The array defined by claim 50, 52, or 53 wherein the layer of dielectric comprises silicon nitride.
56. The array defined by claim 50 or 52 wherein the first rail-stacks and second rail-stacks form right angles.
57. A multi-level non-volatile memory array comprising:
a plurality of first rail-stacks disposed at a first and third level running generally in a first direction above a substrate, each rail-stack comprising first conductors sandwiched between layers of silicon;
a plurality of second rail-stacks disposed at a second and fourth level above the substrate and running in a second direction, each of the second rail-stacks comprising second conductors sandwiched between layers of silicon, and
a plurality of dielectric regions disposed between levels of the first and second rail-stacks which are capable of being selectively breached to program the array.
58. The array defined by claim 57 wherein the dielectric regions are grown from one of the layers of silicon.
59. The array defined by claim 57 or 58 wherein p−n+ diodes are formed between each of the first and second rail-stacks where programming occurs.
60. The array defined by claim 57 or 58 wherein p+n− diodes are formed between each of the first and second rail-stacks where programming occurs.
61. In a multi-level memory having alternate levels of first spaced-apart conductors extending in one direction and second spaced-apart conductors in the other levels extending in a second direction, an improvement wherein each of the first conductors includes:
a first layer of a first conductivity type doped semiconductor material disposed on one side of the first conductor over substantially its entire length;
a second layer of the first conductivity type doped semiconductor material disposed on the opposite side of the first conductor over substantially its entire length;
a third layer of the first conductivity type doped semiconductor material disposed on the first layer over substantially its entire length, the third layer being more lightly doped than the first layer;
a fourth layer of the first conductivity type doped semiconductor material disposed on the second layer over substantially its entire length, the fourth layer being more lightly doped than the second layer;
a first dielectric layer disposed on the third layer.
62. The memory of claim 61 wherein the dielectric layer is formed on the third layer by blanket deposition.
63. The memory of claim 61 wherein the dielectric layer is grown on the third layer.
64. The memory of claim 61 wherein the dielectric layer is substantially continuous over and at least two spaced-apart conductors extending in the one direction at least two spaced-apart conductors extending in the second direction.
65. The memory defined by claim 61 wherein each second conductor includes:
a fifth layer of a second conductivity type doped material disposed on one side of the second conductor over substantially its entire length;
a sixth layer of the second conductivity type doped material disposed on the opposite side of the second conductor over substantially its entire length;
a second dielectric layer disposed on the sixth layer.
66. The memory defined by claim 61 or 65 where the projection of the intersection of the first and second conductors at each level defines a p+n− diode.
67. The memory defined in claim 61 or 65 wherein at the projection of the intersection of the first and second conductors at each level defines a p+n− diode.
68. The memory defined by claim 61 wherein the semiconductor material is silicon.
69. The memory defined by claim 63 which the semiconductor material is silicon.
70. The memory defined by claim 68 wherein the dielectric of silicon dioxide.
71. The memory defined by claim 69 wherein the dielectric is silicon nitride.
72. A three dimensional memory array comprising:
a plurality of first spaced-apart parallel semiconductor rails doped with a first conductivity type dopant the first rails being disposed in a first direction and disposed at even levels in the array;
a plurality of second spaced-apart parallel semiconductor rails doped with a second conductivity type dopant, the second rails being disposed in a second direction different from the first direction and disposed as odd levels in the array; and
an anti-fuse layer separating at least the intersections of the first and second rails at each level.
73. The array defined by claim 72 wherein the first semiconductor rails are uniformly doped silicon rails.
74. The array defined by claim 73 wherein the second semiconductor rails are uniformly doped silicon rails.
75. The array defined by claim 72 wherein the antifuse layer is substantially continuous across the array.
76. The array defined by claim 73 or 74 wherein the antifuse material is a grown silicon dioxide layer.
77. The array defined by claim 72 or 74 wherein the antifuse material is a deposited silicon dioxide layer.
78. The array defined by claim 72 or 74 wherein the antifuse material is silicon nitride.
79. The array defined by claim 72 or 74 wherein the array is fabricated on a semiconductor substrate and each of the rails is coupled to circuitry in the substrate.
80. A multi-level non-volatile memory array comprising:
a plurality of first rail-stacks disposed at a first and third level running generally in a first direction above a substrate, each rail-stack comprising first conductors sandwiched between layers of silicon;
a plurality of second rail-stacks being thicker than the first rail-stack, disposed at a second and fourth level above the substrate and running in a second direction, each of the second rail-stacks comprising second conductors sandwiched between layers of silicon, and
a plurality of layers of dielectric each disposed respectively between successive levels of the first and second rail-stacks which are capable of being selectively breached to program the array.
81. The array defined by claim 80 wherein the layers of silicon on the first conductors are doped with a first conductivity type dopant and wherein the layers of silicon on the second conductor are doped with a second conductivity type dopant.
82. The array defined by claim 81 wherein the layers of silicon on at least one side of the first conductors are more heavily doped adjacent to the first conductor than they are further from the first conductor.
83. The array defined by claim 80 wherein p+n− diodes are formed at all levels of the array where programming occurs.
84. The array defined by claim 80 wherein p−n+ diodes are formed at all levels of the array where programming occurs.
85. The array defined by claim 80, 83, or 84 wherein the layer of dielectric comprises silicon dioxide.
86. The array defined by claim 80, 83, or 84 wherein the layer of dielectric comprises silicon nitride.
87. The array defined by claim 80, 83, or 84 wherein the first rail-stacks and second rail-stacks form right angles.
88. A method for fabricating a multi-level memory array comprising the steps of:
depositing a metal layer;
forming at least one layer of silicon on the metal layer where the silicon is doped with a first conductivity type dopant;
masking and etching the silicon and metal layers to define a plurality of parallel, spaced-apart rail-stacks;
filling the space between the rail-stacks with a dielectric material;
planarizing the silicon layer and the dielectric material to form a planarized surface, and
forming a layer of material for an antifuse on the planarized surface.
89. The method defined by claim 88 wherein the layer of antifuse material comprises a dielectric.
90. The method defined by claim 88 wherein the layer of antifuse metal comprises undoped silicon.
91. The method defined by claim 88 wherein the layer of antifuse material is grown on the rail-stacks.
92. The method defined by claim 88 wherein the layer of antifuse material is a blanket deposition on the rail-stacks and filling material.
93. The method defined by claim 89 wherein the silicon layer comprises a first silicon heavily doped with an n-type dopant and a second layer more lightly doped with the n-type dopant.
94. The method defined by claim 89 wherein the silicon layer is a heavily doped layer.
95. The method defined by claim 94 wherein the antifuse layer is approximately 80-200 Å thick and comprises silicon dioxide.
96. A method for fabricating a multi-level memory array comprising the steps of:
forming a metal layer;
forming a first silicon layer heavily doped with a first conductivity type dopant on the metal layer;
depositing a second silicon layer on the first silicon layer, the second silicon layer being more lightly doped than the first layer with the first conductivity type dopant;
forming a layer of an antifuse material on the second silicon layer;
depositing a third silicon layer on the layer of antifuse material heavily doped with a second conductivity type dopant;
defining spaced-apart rail-stacks from the conductive layer, first and second silicon layers, the layer of antifuse material and third silicon layer;
filling space between the rail-stacks with a dielectric, and
planarizing the upper surface of the dielectric fill and the third silicon layer.
97. The method of claim 96 including repeating the steps of claim 49 to form second lines disposed above the first lines and generally perpendicular to the first lines.
98. The method defined by claim 97 including additionally etching through the third silicon layer of the first lines in alignment with the second lines.
99. A method for fabricating a multi-level memory array comprising the steps of:
forming a conductor layer;
forming a first silicon layer doped with a first conductivity type dopant on the conductive layer;
forming a second silicon layer on the first silicon layer, the second silicon layer being more lightly doped than the first layer with the first conductivity type dopant;
forming a layer of an antifuse material on the second silicon layer;
forming a third silicon layer on the layer of antifuse material doped with a second conductivity type dopant;
defining spaced-apart first rail-stacks from the conductive layer, the first and second silicon layers, the layer of antifuse material and the third silicon layer;
filling between the first rail-stacks with a dielectric, and
planarizing the upper surface of the dielectric fill and the third silicon layer.
100. The method defined by claim 99 wherein the layer of antifuse material is an oxide grown on the second silicon layer.
101. The method defined by claim 100 wherein the layer of antifuse material is a deposited dielectric.
102. The method of claim 99 including repeating the steps of claim 75 to form second rail-stacks disposed above the first rail-stacks perpendicular to the first rail-stacks.
103. The method defined by claim 102 including additionally etching through the third silicon layer of the first rail-stacks in alignment with the second rail-stacks.
104. A method for fabricating a multi-level memory array comprising the steps of:
forming a first silicon layer lightly doped with a first conductivity type dopant;
forming a second silicon layer more heavily doped than the first layer with the first conductivity type dopant;
depositing a conductive layer on the second silicon layer;
depositing a third silicon layer heavily doped with a second conductivity type dopant;
etching the first, second and third silicon layers and conductive layers to define a plurality of parallel, spaced-apart rail-stacks;
filling the space between the rail-stacks with a dielectric material;
planarizing the third silicon layer and the dielectric filling material, and
depositing a layer of an antifuse material on the planarized surface.
105. The method defined by claim 104 wherein the conductive layer is approximately 500-1,500 Å thick.
106. The method defined in claim 104 wherein the first silicon layer is 1000-4000 Å thick.
107. The method defined in claim 102 wherein the second silicon layer is approximately 300-3000 Å thick.
108. The method defined in claim 102 wherein the third silicon layer is approximately 300-2000 Å thick after planarization.
109. The method defined by claim 102 wherein the antifuse layer is a silicon dioxide layer with a thickness of approximately <200 Å thick.
110. The method defined by claim 102 wherein the antifuse layer is a grown silicon dioxide layer grown from the third silicon layer.
111. The method defined by claim 102 wherein the antifuse layer is a silicon nitride layer.
US09/814,727 2000-04-28 2001-03-21 Three-dimensional memory array and method of fabrication Expired - Lifetime US6420215B1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
US09/814,727 US6420215B1 (en) 2000-04-28 2001-03-21 Three-dimensional memory array and method of fabrication
EP01937191A EP1284017A4 (en) 2000-04-28 2001-04-25 Three-dimensional memory array and method of fabrication
AU2001262953A AU2001262953A1 (en) 2000-04-28 2001-04-25 Three-dimensional memory array and method of fabrication
PCT/US2001/013575 WO2001084553A2 (en) 2000-04-28 2001-04-25 Three-dimensional memory array and method of fabrication
MYPI20012022A MY131836A (en) 2000-04-28 2001-04-28 Three-dimensional memory array and method of fabrication
TW090110326A TW507368B (en) 2000-04-28 2001-05-22 Three-dimensional memory array and method of fabrication
US09/897,705 US6631085B2 (en) 2000-04-28 2001-06-29 Three-dimensional memory array incorporating serial chain diode stack
US09/927,642 US6888750B2 (en) 2000-04-28 2001-08-13 Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US10/153,999 US6653712B2 (en) 2000-04-28 2002-05-22 Three-dimensional memory array and method of fabrication
US10/253,051 US6784517B2 (en) 2000-04-28 2002-09-24 Three-dimensional memory array incorporating serial chain diode stack
US10/253,076 US6767816B2 (en) 2000-04-28 2002-09-24 Method for making a three-dimensional memory array incorporating serial chain diode stack
US10/253,074 US6754102B2 (en) 2000-04-28 2002-09-24 Method for programming a three-dimensional memory array incorporating serial chain diode stack
US10/306,887 US6856572B2 (en) 2000-04-28 2002-11-27 Multi-headed decoder structure utilizing memory array line driver with dual purpose driver device
US10/610,804 US8575719B2 (en) 2000-04-28 2003-06-30 Silicon nitride antifuse for use in diode-antifuse memory arrays
US10/689,187 US20040089917A1 (en) 2000-04-28 2003-10-20 Three-dimensional memory array and method of fabrication
US10/805,147 US7091529B2 (en) 2000-04-28 2004-03-19 Three-dimensional memory array and method of fabrication
US10/809,146 US6816410B2 (en) 2000-04-28 2004-03-25 Method for programming a three-dimensional memory array incorporating serial chain diode stack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56062600A 2000-04-28 2000-04-28
US09/814,727 US6420215B1 (en) 2000-04-28 2001-03-21 Three-dimensional memory array and method of fabrication

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US56062600A Continuation-In-Part 2000-04-28 2000-04-28
US56062600A Continuation 2000-04-28 2000-04-28

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US09/897,705 Continuation-In-Part US6631085B2 (en) 2000-04-28 2001-06-29 Three-dimensional memory array incorporating serial chain diode stack
US09/896,814 Continuation-In-Part US6567287B2 (en) 2000-04-28 2001-06-29 Memory device with row and column decoder circuits arranged in a checkerboard pattern under a plurality of memory arrays
US09/927,642 Continuation-In-Part US6888750B2 (en) 2000-04-28 2001-08-13 Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US10/153,999 Division US6653712B2 (en) 2000-04-28 2002-05-22 Three-dimensional memory array and method of fabrication

Publications (2)

Publication Number Publication Date
US20020088998A1 true US20020088998A1 (en) 2002-07-11
US6420215B1 US6420215B1 (en) 2002-07-16

Family

ID=46277427

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/814,727 Expired - Lifetime US6420215B1 (en) 2000-04-28 2001-03-21 Three-dimensional memory array and method of fabrication

Country Status (2)

Country Link
US (1) US6420215B1 (en)
MY (1) MY131836A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683365B1 (en) 2002-08-01 2004-01-27 Micron Technology, Inc. Edge intensive antifuse device structure
US20040026317A1 (en) * 2002-08-07 2004-02-12 Hubenthal Ronald R. Wastewater solids removal methods
EP1400848A1 (en) * 2002-09-17 2004-03-24 Hewlett-Packard Development Company, L.P. Circuitry with embossed portions
US20040129999A1 (en) * 2002-12-30 2004-07-08 Jung Kyung Yun Semiconductor device and method of manufacturing the same
US20040217441A1 (en) * 2000-12-28 2004-11-04 Gunther Lehmann Area efficient stacking of antifuses in semiconductor device
US20060197180A1 (en) * 2003-06-24 2006-09-07 Erh-Kun Lai Three-dimensional memory structure and manufacturing method thereof
US7329565B2 (en) * 2002-03-13 2008-02-12 Sanddisk 3D Llc Silicide-silicon oxide-semiconductor antifuse device and method of making
WO2008064172A2 (en) * 2006-11-17 2008-05-29 Qualcomm Incorporated Content addressable memory
US20090166682A1 (en) * 2007-12-31 2009-07-02 Scheuerlein Roy E Methods and apparatus for forming memory lines and vias in three dimensional memory arrays using dual damascene process and imprint lithography
WO2009085078A1 (en) 2007-12-27 2009-07-09 Sandisk 3D Llc Three-dimensional hexagonal matrix memory array and method of manufacturing the same
JP2010010688A (en) * 2008-06-26 2010-01-14 Samsung Electronics Co Ltd Non-volatile memory element, and method of manufacturing the same
US20200004914A1 (en) * 2018-06-28 2020-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit structure, layout diagram method, and system
CN111261612A (en) * 2018-12-02 2020-06-09 南亚科技股份有限公司 Semiconductor structure

Families Citing this family (577)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157314B2 (en) 1998-11-16 2007-01-02 Sandisk Corporation Vertically stacked field programmable nonvolatile memory and method of fabrication
US6856572B2 (en) * 2000-04-28 2005-02-15 Matrix Semiconductor, Inc. Multi-headed decoder structure utilizing memory array line driver with dual purpose driver device
US6631085B2 (en) * 2000-04-28 2003-10-07 Matrix Semiconductor, Inc. Three-dimensional memory array incorporating serial chain diode stack
US8575719B2 (en) 2000-04-28 2013-11-05 Sandisk 3D Llc Silicon nitride antifuse for use in diode-antifuse memory arrays
US6711043B2 (en) 2000-08-14 2004-03-23 Matrix Semiconductor, Inc. Three-dimensional memory cache system
US6765813B2 (en) * 2000-08-14 2004-07-20 Matrix Semiconductor, Inc. Integrated systems using vertically-stacked three-dimensional memory cells
US6541312B2 (en) * 2000-12-22 2003-04-01 Matrix Semiconductor, Inc. Formation of antifuse structure in a three dimensional memory
US6649451B1 (en) * 2001-02-02 2003-11-18 Matrix Semiconductor, Inc. Structure and method for wafer comprising dielectric and semiconductor
US7177181B1 (en) * 2001-03-21 2007-02-13 Sandisk 3D Llc Current sensing method and apparatus particularly useful for a memory array of cells having diode-like characteristics
US6618295B2 (en) 2001-03-21 2003-09-09 Matrix Semiconductor, Inc. Method and apparatus for biasing selected and unselected array lines when writing a memory array
US6897514B2 (en) * 2001-03-28 2005-05-24 Matrix Semiconductor, Inc. Two mask floating gate EEPROM and method of making
US7424201B2 (en) * 2001-03-30 2008-09-09 Sandisk 3D Llc Method for field-programming a solid-state memory device with a digital media file
US6704235B2 (en) * 2001-07-30 2004-03-09 Matrix Semiconductor, Inc. Anti-fuse memory cell with asymmetric breakdown voltage
US6525953B1 (en) * 2001-08-13 2003-02-25 Matrix Semiconductor, Inc. Vertically-stacked, field-programmable, nonvolatile memory and method of fabrication
US7459763B1 (en) 2001-10-02 2008-12-02 Actel Corporation Reprogrammable metal-to-metal antifuse employing carbon-containing antifuse material
US20030062596A1 (en) * 2001-10-02 2003-04-03 Actel Corporation Metal-to-metal antifuse employing carbon-containing antifuse material
US7067850B2 (en) * 2001-10-16 2006-06-27 Midwest Research Institute Stacked switchable element and diode combination
US6624485B2 (en) 2001-11-05 2003-09-23 Matrix Semiconductor, Inc. Three-dimensional, mask-programmed read only memory
US7219271B2 (en) 2001-12-14 2007-05-15 Sandisk 3D Llc Memory device and method for redundancy/self-repair
US7038248B2 (en) 2002-02-15 2006-05-02 Sandisk Corporation Diverse band gap energy level semiconductor device
US20040108573A1 (en) * 2002-03-13 2004-06-10 Matrix Semiconductor, Inc. Use in semiconductor devices of dielectric antifuses grown on silicide
US6778421B2 (en) * 2002-03-14 2004-08-17 Hewlett-Packard Development Company, Lp. Memory device array having a pair of magnetic bits sharing a common conductor line
US7081377B2 (en) * 2002-06-27 2006-07-25 Sandisk 3D Llc Three-dimensional memory
US6768661B2 (en) * 2002-06-27 2004-07-27 Matrix Semiconductor, Inc. Multiple-mode memory and method for forming same
US6952043B2 (en) * 2002-06-27 2005-10-04 Matrix Semiconductor, Inc. Electrically isolated pillars in active devices
US6864503B2 (en) * 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US20070076509A1 (en) * 2002-08-28 2007-04-05 Guobiao Zhang Three-Dimensional Mask-Programmable Read-Only Memory
US6859410B2 (en) 2002-11-27 2005-02-22 Matrix Semiconductor, Inc. Tree decoder structure particularly well-suited to interfacing array lines having extremely small layout pitch
US6954394B2 (en) * 2002-11-27 2005-10-11 Matrix Semiconductor, Inc. Integrated circuit and method for selecting a set of memory-cell-layer-dependent or temperature-dependent operating conditions
US7176064B2 (en) * 2003-12-03 2007-02-13 Sandisk 3D Llc Memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide
WO2004061851A2 (en) 2002-12-19 2004-07-22 Matrix Semiconductor, Inc An improved method for making high-density nonvolatile memory
US7800933B2 (en) * 2005-09-28 2010-09-21 Sandisk 3D Llc Method for using a memory cell comprising switchable semiconductor memory element with trimmable resistance
US7767499B2 (en) * 2002-12-19 2010-08-03 Sandisk 3D Llc Method to form upward pointing p-i-n diodes having large and uniform current
US20050226067A1 (en) 2002-12-19 2005-10-13 Matrix Semiconductor, Inc. Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US8637366B2 (en) 2002-12-19 2014-01-28 Sandisk 3D Llc Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states
US7285464B2 (en) 2002-12-19 2007-10-23 Sandisk 3D Llc Nonvolatile memory cell comprising a reduced height vertical diode
US7660181B2 (en) * 2002-12-19 2010-02-09 Sandisk 3D Llc Method of making non-volatile memory cell with embedded antifuse
US8008700B2 (en) * 2002-12-19 2011-08-30 Sandisk 3D Llc Non-volatile memory cell with embedded antifuse
US7618850B2 (en) * 2002-12-19 2009-11-17 Sandisk 3D Llc Method of making a diode read/write memory cell in a programmed state
US7800932B2 (en) * 2005-09-28 2010-09-21 Sandisk 3D Llc Memory cell comprising switchable semiconductor memory element with trimmable resistance
US20070164388A1 (en) * 2002-12-19 2007-07-19 Sandisk 3D Llc Memory cell comprising a diode fabricated in a low resistivity, programmed state
US6946719B2 (en) * 2003-12-03 2005-09-20 Matrix Semiconductor, Inc Semiconductor device including junction diode contacting contact-antifuse unit comprising silicide
US7505321B2 (en) * 2002-12-31 2009-03-17 Sandisk 3D Llc Programmable memory array structure incorporating series-connected transistor strings and methods for fabrication and operation of same
US7005350B2 (en) * 2002-12-31 2006-02-28 Matrix Semiconductor, Inc. Method for fabricating programmable memory array structures incorporating series-connected transistor strings
WO2004061861A2 (en) * 2002-12-31 2004-07-22 Matrix Semiconductor, Inc. Nand memory array incorporating capacitance boosting of channel regions in unselected memory cells and method for operation of same
US7233522B2 (en) * 2002-12-31 2007-06-19 Sandisk 3D Llc NAND memory array incorporating capacitance boosting of channel regions in unselected memory cells and method for operation of same
US7383476B2 (en) * 2003-02-11 2008-06-03 Sandisk 3D Llc System architecture and method for three-dimensional memory
US6868022B2 (en) * 2003-03-28 2005-03-15 Matrix Semiconductor, Inc. Redundant memory structure using bad bit pointers
US7233024B2 (en) * 2003-03-31 2007-06-19 Sandisk 3D Llc Three-dimensional memory device incorporating segmented bit line memory array
US6879505B2 (en) * 2003-03-31 2005-04-12 Matrix Semiconductor, Inc. Word line arrangement having multi-layer word line segments for three-dimensional memory array
US6822903B2 (en) * 2003-03-31 2004-11-23 Matrix Semiconductor, Inc. Apparatus and method for disturb-free programming of passive element memory cells
US6815077B1 (en) 2003-05-20 2004-11-09 Matrix Semiconductor, Inc. Low temperature, low-resistivity heavily doped p-type polysilicon deposition
US7243203B2 (en) * 2003-06-13 2007-07-10 Sandisk 3D Llc Pipeline circuit for low latency memory
TW594934B (en) * 2003-07-09 2004-06-21 Taiwan Semiconductor Mfg Method of fabricating a semiconductor memory
US7132350B2 (en) * 2003-07-21 2006-11-07 Macronix International Co., Ltd. Method for manufacturing a programmable eraseless memory
CN1320633C (en) * 2003-07-22 2007-06-06 台湾积体电路制造股份有限公司 Structure and producing method of back-fuse type memory assembly
US7057958B2 (en) * 2003-09-30 2006-06-06 Sandisk Corporation Method and system for temperature compensation for memory cells with temperature-dependent behavior
US7177183B2 (en) 2003-09-30 2007-02-13 Sandisk 3D Llc Multiple twin cell non-volatile memory array and logic block structure and method therefor
US20050110113A1 (en) * 2003-11-24 2005-05-26 Taiwan Semiconductor Manufacturing Co., Ltd. Anti-fuse structure employing metal silicide/doped polysilicon laminate
US7682920B2 (en) * 2003-12-03 2010-03-23 Sandisk 3D Llc Method for making a p-i-n diode crystallized adjacent to a silicide in series with a dielectric antifuse
US8018024B2 (en) 2003-12-03 2011-09-13 Sandisk 3D Llc P-i-n diode crystallized adjacent to a silicide in series with a dielectric antifuse
US20050128807A1 (en) * 2003-12-05 2005-06-16 En-Hsing Chen Nand memory array incorporating multiple series selection devices and method for operation of same
US7221588B2 (en) * 2003-12-05 2007-05-22 Sandisk 3D Llc Memory array incorporating memory cells arranged in NAND strings
US7023739B2 (en) * 2003-12-05 2006-04-04 Matrix Semiconductor, Inc. NAND memory array incorporating multiple write pulse programming of individual memory cells and method for operation of same
US6951780B1 (en) * 2003-12-18 2005-10-04 Matrix Semiconductor, Inc. Selective oxidation of silicon in diode, TFT, and monolithic three dimensional memory arrays
US20060171200A1 (en) 2004-02-06 2006-08-03 Unity Semiconductor Corporation Memory using mixed valence conductive oxides
US7082052B2 (en) 2004-02-06 2006-07-25 Unity Semiconductor Corporation Multi-resistive state element with reactive metal
US20070204122A1 (en) * 2004-04-04 2007-08-30 Guobiao Zhang Multimedia Three-Dimensional Memory (M3DM) System
US20060067117A1 (en) * 2004-09-29 2006-03-30 Matrix Semiconductor, Inc. Fuse memory cell comprising a diode, the diode serving as the fuse element
US7566974B2 (en) * 2004-09-29 2009-07-28 Sandisk 3D, Llc Doped polysilicon via connecting polysilicon layers
US20060108667A1 (en) * 2004-11-22 2006-05-25 Macronix International Co., Ltd. Method for manufacturing a small pin on integrated circuits or other devices
US7220983B2 (en) * 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
US7218570B2 (en) * 2004-12-17 2007-05-15 Sandisk 3D Llc Apparatus and method for memory operations using address-dependent conditions
US7277336B2 (en) * 2004-12-28 2007-10-02 Sandisk 3D Llc Method and apparatus for improving yield in semiconductor devices by guaranteeing health of redundancy information
US7298665B2 (en) * 2004-12-30 2007-11-20 Sandisk 3D Llc Dual-mode decoder circuit, integrated circuit memory array incorporating same, and related methods of operation
US8378382B2 (en) * 2004-12-30 2013-02-19 Macronix International Co., Ltd. High aspect-ratio PN-junction and method for manufacturing the same
US7286439B2 (en) 2004-12-30 2007-10-23 Sandisk 3D Llc Apparatus and method for hierarchical decoding of dense memory arrays using multiple levels of multiple-headed decoders
US8482052B2 (en) * 2005-01-03 2013-07-09 Macronix International Co., Ltd. Silicon on insulator and thin film transistor bandgap engineered split gate memory
US7709334B2 (en) 2005-12-09 2010-05-04 Macronix International Co., Ltd. Stacked non-volatile memory device and methods for fabricating the same
US7307268B2 (en) 2005-01-19 2007-12-11 Sandisk Corporation Structure and method for biasing phase change memory array for reliable writing
US7259038B2 (en) * 2005-01-19 2007-08-21 Sandisk Corporation Forming nonvolatile phase change memory cell having a reduced thermal contact area
US7517796B2 (en) * 2005-02-17 2009-04-14 Sandisk 3D Llc Method for patterning submicron pillars
US8937292B2 (en) 2011-08-15 2015-01-20 Unity Semiconductor Corporation Vertical cross point arrays for ultra high density memory applications
US8270193B2 (en) 2010-01-29 2012-09-18 Unity Semiconductor Corporation Local bit lines and methods of selecting the same to access memory elements in cross-point arrays
US8565003B2 (en) 2011-06-28 2013-10-22 Unity Semiconductor Corporation Multilayer cross-point memory array having reduced disturb susceptibility
US20130082232A1 (en) 2011-09-30 2013-04-04 Unity Semiconductor Corporation Multi Layered Conductive Metal Oxide Structures And Methods For Facilitating Enhanced Performance Characteristics Of Two Terminal Memory Cells
US8559209B2 (en) 2011-06-10 2013-10-15 Unity Semiconductor Corporation Array voltage regulating technique to enable data operations on large cross-point memory arrays with resistive memory elements
US7272052B2 (en) * 2005-03-31 2007-09-18 Sandisk 3D Llc Decoding circuit for non-binary groups of memory line drivers
US7142471B2 (en) * 2005-03-31 2006-11-28 Sandisk 3D Llc Method and apparatus for incorporating block redundancy in a memory array
US7054219B1 (en) 2005-03-31 2006-05-30 Matrix Semiconductor, Inc. Transistor layout configuration for tight-pitched memory array lines
US7359279B2 (en) * 2005-03-31 2008-04-15 Sandisk 3D Llc Integrated circuit memory array configuration including decoding compatibility with partial implementation of multiple memory layers
US7812404B2 (en) * 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US7598512B2 (en) * 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
US7534647B2 (en) 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US7514367B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US7321130B2 (en) 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US7514288B2 (en) * 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US7696503B2 (en) * 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US8237140B2 (en) * 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7212454B2 (en) * 2005-06-22 2007-05-01 Sandisk 3D Llc Method and apparatus for programming a memory array
US7304888B2 (en) * 2005-07-01 2007-12-04 Sandisk 3D Llc Reverse-bias method for writing memory cells in a memory array
US20070069241A1 (en) * 2005-07-01 2007-03-29 Matrix Semiconductor, Inc. Memory with high dielectric constant antifuses and method for using at low voltage
US7453755B2 (en) * 2005-07-01 2008-11-18 Sandisk 3D Llc Memory cell with high-K antifuse for reverse bias programming
US7633128B2 (en) * 2005-07-15 2009-12-15 Guobiao Zhang N-ary mask-programmable memory
US7821080B2 (en) * 2005-07-15 2010-10-26 Guobiao Zhang N-ary three-dimensional mask-programmable read-only memory
US7755129B2 (en) * 2005-08-15 2010-07-13 Macronix International Co., Ltd. Systems and methods for memory structure comprising a PPROM and an embedded flash memory
US7420242B2 (en) 2005-08-31 2008-09-02 Macronix International Co., Ltd. Stacked bit line dual word line nonvolatile memory
US7631245B2 (en) * 2005-09-26 2009-12-08 Sandisk Il Ltd. NAND flash memory controller exporting a NAND interface
US8291295B2 (en) * 2005-09-26 2012-10-16 Sandisk Il Ltd. NAND flash memory controller exporting a NAND interface
US7800934B2 (en) * 2005-09-28 2010-09-21 Sandisk 3D Llc Programming methods to increase window for reverse write 3D cell
US20070111429A1 (en) * 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7397060B2 (en) * 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US7450411B2 (en) 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7394088B2 (en) * 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7786460B2 (en) * 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7479649B2 (en) * 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
CN100524878C (en) * 2005-11-21 2009-08-05 旺宏电子股份有限公司 Programmable resistor material storage array with air insulating unit
US7829876B2 (en) * 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7507986B2 (en) 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7599217B2 (en) 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7688619B2 (en) * 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7521364B2 (en) 2005-12-02 2009-04-21 Macronix Internation Co., Ltd. Surface topology improvement method for plug surface areas
US7605079B2 (en) * 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) * 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7531825B2 (en) * 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) * 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7560337B2 (en) 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7741636B2 (en) * 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US20070158632A1 (en) * 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7595218B2 (en) * 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7825396B2 (en) * 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7432206B2 (en) * 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) * 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7956358B2 (en) * 2006-02-07 2011-06-07 Macronix International Co., Ltd. I-shaped phase change memory cell with thermal isolation
US7910907B2 (en) * 2006-03-15 2011-03-22 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
US7829875B2 (en) * 2006-03-31 2010-11-09 Sandisk 3D Llc Nonvolatile rewritable memory cell comprising a resistivity-switching oxide or nitride and an antifuse
US7808810B2 (en) * 2006-03-31 2010-10-05 Sandisk 3D Llc Multilevel nonvolatile memory cell comprising a resistivity-switching oxide or nitride and an antifuse
US7554144B2 (en) * 2006-04-17 2009-06-30 Macronix International Co., Ltd. Memory device and manufacturing method
US7928421B2 (en) 2006-04-21 2011-04-19 Macronix International Co., Ltd. Phase change memory cell with vacuum spacer
US8129706B2 (en) * 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory
US20070260615A1 (en) * 2006-05-08 2007-11-08 Eran Shen Media with Pluggable Codec
US9680686B2 (en) * 2006-05-08 2017-06-13 Sandisk Technologies Llc Media with pluggable codec methods
US7608848B2 (en) * 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US7423300B2 (en) 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
US7283414B1 (en) 2006-05-24 2007-10-16 Sandisk 3D Llc Method for improving the precision of a temperature-sensor circuit
US7732800B2 (en) * 2006-05-30 2010-06-08 Macronix International Co., Ltd. Resistor random access memory cell with L-shaped electrode
US7820997B2 (en) * 2006-05-30 2010-10-26 Macronix International Co., Ltd. Resistor random access memory cell with reduced active area and reduced contact areas
US7696506B2 (en) 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
US20080017890A1 (en) * 2006-06-30 2008-01-24 Sandisk 3D Llc Highly dense monolithic three dimensional memory array and method for forming
US7785920B2 (en) * 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US7486537B2 (en) * 2006-07-31 2009-02-03 Sandisk 3D Llc Method for using a mixed-use memory array with different data states
US7596050B2 (en) * 2006-07-31 2009-09-29 Sandisk 3D Llc Method for using a hierarchical bit line bias bus for block selectable memory array
US7554832B2 (en) * 2006-07-31 2009-06-30 Sandisk 3D Llc Passive element memory array incorporating reversible polarity word line and bit line decoders
US8279704B2 (en) * 2006-07-31 2012-10-02 Sandisk 3D Llc Decoder circuitry providing forward and reverse modes of memory array operation and method for biasing same
WO2008016421A2 (en) * 2006-07-31 2008-02-07 Sandisk 3D Llc Mixed-use memory array with different data states and method for use therewith
US20080025069A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Mixed-use memory array with different data states
US7499304B2 (en) * 2006-07-31 2009-03-03 Sandisk 3D Llc Systems for high bandwidth one time field-programmable memory
US7463536B2 (en) * 2006-07-31 2008-12-09 Sandisk 3D Llc Memory array incorporating two data busses for memory array block selection
US7522448B2 (en) * 2006-07-31 2009-04-21 Sandisk 3D Llc Controlled pulse operations in non-volatile memory
US7542338B2 (en) * 2006-07-31 2009-06-02 Sandisk 3D Llc Method for reading a multi-level passive element memory cell array
US7499355B2 (en) * 2006-07-31 2009-03-03 Sandisk 3D Llc High bandwidth one time field-programmable memory
US7499366B2 (en) * 2006-07-31 2009-03-03 Sandisk 3D Llc Method for using dual data-dependent busses for coupling read/write circuits to a memory array
US7495947B2 (en) * 2006-07-31 2009-02-24 Sandisk 3D Llc Reverse bias trim operations in non-volatile memory
US7542337B2 (en) * 2006-07-31 2009-06-02 Sandisk 3D Llc Apparatus for reading a multi-level passive element memory cell array
US7463546B2 (en) * 2006-07-31 2008-12-09 Sandisk 3D Llc Method for using a passive element memory array incorporating reversible polarity word line and bit line decoders
US7450414B2 (en) * 2006-07-31 2008-11-11 Sandisk 3D Llc Method for using a mixed-use memory array
US7492630B2 (en) * 2006-07-31 2009-02-17 Sandisk 3D Llc Systems for reverse bias trim operations in non-volatile memory
US7633828B2 (en) * 2006-07-31 2009-12-15 Sandisk 3D Llc Hierarchical bit line bias bus for block selectable memory array
US20080023790A1 (en) * 2006-07-31 2008-01-31 Scheuerlein Roy E Mixed-use memory array
US7486587B2 (en) * 2006-07-31 2009-02-03 Sandisk 3D Llc Dual data-dependent busses for coupling read/write circuits to a memory array
US7719874B2 (en) * 2006-07-31 2010-05-18 Sandisk 3D Llc Systems for controlled pulse operations in non-volatile memory
US7570523B2 (en) * 2006-07-31 2009-08-04 Sandisk 3D Llc Method for using two data busses for memory array block selection
US7442603B2 (en) * 2006-08-16 2008-10-28 Macronix International Co., Ltd. Self-aligned structure and method for confining a melting point in a resistor random access memory
US20080046630A1 (en) * 2006-08-21 2008-02-21 Sandisk Il Ltd. NAND flash memory controller exporting a logical sector-based interface
US20080046641A1 (en) * 2006-08-21 2008-02-21 Sandisk Il Ltd. NAND flash memory controller exporting a logical sector-based interface
US7772581B2 (en) * 2006-09-11 2010-08-10 Macronix International Co., Ltd. Memory device having wide area phase change element and small electrode contact area
US7391045B2 (en) * 2006-09-18 2008-06-24 Ovonyx, Inc. Three-dimensional phase-change memory
US7473986B2 (en) * 2006-09-22 2009-01-06 Taiwan Semiconductor Manufacturing Co., Ltd. Positive-intrinsic-negative (PIN) diode semiconductor devices and fabrication methods thereof
US7504653B2 (en) * 2006-10-04 2009-03-17 Macronix International Co., Ltd. Memory cell device with circumferentially-extending memory element
US7678620B2 (en) * 2006-10-05 2010-03-16 Freescale Semiconductor, Inc. Antifuse one time programmable memory array and method of manufacture
US7599231B2 (en) * 2006-10-11 2009-10-06 Atmel Corporation Adaptive regulator for idle state in a charge pump circuit of a memory device
US7510929B2 (en) * 2006-10-18 2009-03-31 Macronix International Co., Ltd. Method for making memory cell device
US7863655B2 (en) 2006-10-24 2011-01-04 Macronix International Co., Ltd. Phase change memory cells with dual access devices
US20080094885A1 (en) * 2006-10-24 2008-04-24 Macronix International Co., Ltd. Bistable Resistance Random Access Memory Structures with Multiple Memory Layers and Multilevel Memory States
US7388771B2 (en) 2006-10-24 2008-06-17 Macronix International Co., Ltd. Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states
US7527985B2 (en) * 2006-10-24 2009-05-05 Macronix International Co., Ltd. Method for manufacturing a resistor random access memory with reduced active area and reduced contact areas
KR20080042548A (en) * 2006-11-10 2008-05-15 삼성전자주식회사 Hinge module and electronic equipment havint the same
US8067762B2 (en) 2006-11-16 2011-11-29 Macronix International Co., Ltd. Resistance random access memory structure for enhanced retention
US7952901B2 (en) * 2007-08-09 2011-05-31 Qualcomm Incorporated Content addressable memory
US20080137400A1 (en) * 2006-12-06 2008-06-12 Macronix International Co., Ltd. Phase Change Memory Cell with Thermal Barrier and Method for Fabricating the Same
US7476587B2 (en) * 2006-12-06 2009-01-13 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US7682868B2 (en) 2006-12-06 2010-03-23 Macronix International Co., Ltd. Method for making a keyhole opening during the manufacture of a memory cell
WO2008070191A2 (en) 2006-12-06 2008-06-12 Fusion Multisystems, Inc. (Dba Fusion-Io) Apparatus, system, and method for a reconfigurable baseboard management controller
US7473576B2 (en) * 2006-12-06 2009-01-06 Macronix International Co., Ltd. Method for making a self-converged void and bottom electrode for memory cell
US7697316B2 (en) * 2006-12-07 2010-04-13 Macronix International Co., Ltd. Multi-level cell resistance random access memory with metal oxides
US7903447B2 (en) * 2006-12-13 2011-03-08 Macronix International Co., Ltd. Method, apparatus and computer program product for read before programming process on programmable resistive memory cell
US8344347B2 (en) * 2006-12-15 2013-01-01 Macronix International Co., Ltd. Multi-layer electrode structure
US7718989B2 (en) 2006-12-28 2010-05-18 Macronix International Co., Ltd. Resistor random access memory cell device
US7477093B2 (en) * 2006-12-31 2009-01-13 Sandisk 3D Llc Multiple polarity reversible charge pump circuit
US7525869B2 (en) * 2006-12-31 2009-04-28 Sandisk 3D Llc Method for using a reversible polarity decoder circuit
US7495500B2 (en) * 2006-12-31 2009-02-24 Sandisk 3D Llc Method for using a multiple polarity reversible charge pump circuit
US7542370B2 (en) * 2006-12-31 2009-06-02 Sandisk 3D Llc Reversible polarity decoder circuit
US7515461B2 (en) * 2007-01-05 2009-04-07 Macronix International Co., Ltd. Current compliant sensing architecture for multilevel phase change memory
US7433226B2 (en) 2007-01-09 2008-10-07 Macronix International Co., Ltd. Method, apparatus and computer program product for read before programming process on multiple programmable resistive memory cell
US7440315B2 (en) 2007-01-09 2008-10-21 Macronix International Co., Ltd. Method, apparatus and computer program product for stepped reset programming process on programmable resistive memory cell
US7667220B2 (en) * 2007-01-19 2010-02-23 Macronix International Co., Ltd. Multilevel-cell memory structures employing multi-memory with tungsten oxides and manufacturing method
US7663135B2 (en) 2007-01-31 2010-02-16 Macronix International Co., Ltd. Memory cell having a side electrode contact
US7535756B2 (en) 2007-01-31 2009-05-19 Macronix International Co., Ltd. Method to tighten set distribution for PCRAM
US7619311B2 (en) 2007-02-02 2009-11-17 Macronix International Co., Ltd. Memory cell device with coplanar electrode surface and method
US7701759B2 (en) * 2007-02-05 2010-04-20 Macronix International Co., Ltd. Memory cell device and programming methods
US7483292B2 (en) * 2007-02-07 2009-01-27 Macronix International Co., Ltd. Memory cell with separate read and program paths
US7463512B2 (en) * 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
US8138028B2 (en) * 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
US7884343B2 (en) 2007-02-14 2011-02-08 Macronix International Co., Ltd. Phase change memory cell with filled sidewall memory element and method for fabricating the same
US7619237B2 (en) * 2007-02-21 2009-11-17 Macronix International Co., Ltd. Programmable resistive memory cell with self-forming gap
US8008643B2 (en) * 2007-02-21 2011-08-30 Macronix International Co., Ltd. Phase change memory cell with heater and method for fabricating the same
US7956344B2 (en) * 2007-02-27 2011-06-07 Macronix International Co., Ltd. Memory cell with memory element contacting ring-shaped upper end of bottom electrode
US7586773B2 (en) 2007-03-27 2009-09-08 Sandisk 3D Llc Large array of upward pointing p-i-n diodes having large and uniform current
US7629253B2 (en) * 2007-03-30 2009-12-08 Sandisk 3D Llc Method for implementing diffusion barrier in 3D memory
US8124971B2 (en) * 2007-03-30 2012-02-28 Sandisk 3D Llc Implementation of diffusion barrier in 3D memory
US7554406B2 (en) 2007-03-31 2009-06-30 Sandisk 3D Llc Spatially distributed amplifier circuit
US7558140B2 (en) * 2007-03-31 2009-07-07 Sandisk 3D Llc Method for using a spatially distributed amplifier circuit
US7786461B2 (en) 2007-04-03 2010-08-31 Macronix International Co., Ltd. Memory structure with reduced-size memory element between memory material portions
US8610098B2 (en) 2007-04-06 2013-12-17 Macronix International Co., Ltd. Phase change memory bridge cell with diode isolation device
US7629247B2 (en) 2007-04-12 2009-12-08 Sandisk 3D Llc Method of fabricating a self-aligning damascene memory structure
US7755076B2 (en) * 2007-04-17 2010-07-13 Macronix International Co., Ltd. 4F2 self align side wall active phase change memory
US7569844B2 (en) * 2007-04-17 2009-08-04 Macronix International Co., Ltd. Memory cell sidewall contacting side electrode
US7483316B2 (en) * 2007-04-24 2009-01-27 Macronix International Co., Ltd. Method and apparatus for refreshing programmable resistive memory
US7958390B2 (en) * 2007-05-15 2011-06-07 Sandisk Corporation Memory device for repairing a neighborhood of rows in a memory array using a patch table
US7966518B2 (en) * 2007-05-15 2011-06-21 Sandisk Corporation Method for repairing a neighborhood of rows in a memory array using a patch table
US8072791B2 (en) * 2007-06-25 2011-12-06 Sandisk 3D Llc Method of making nonvolatile memory device containing carbon or nitrogen doped diode
US7830697B2 (en) * 2007-06-25 2010-11-09 Sandisk 3D Llc High forward current diodes for reverse write 3D cell
US7684226B2 (en) * 2007-06-25 2010-03-23 Sandisk 3D Llc Method of making high forward current diodes for reverse write 3D cell
US8102694B2 (en) * 2007-06-25 2012-01-24 Sandisk 3D Llc Nonvolatile memory device containing carbon or nitrogen doped diode
US7800939B2 (en) * 2007-06-29 2010-09-21 Sandisk 3D Llc Method of making 3D R/W cell with reduced reverse leakage
US7932167B2 (en) * 2007-06-29 2011-04-26 International Business Machines Corporation Phase change memory cell with vertical transistor
US7759666B2 (en) * 2007-06-29 2010-07-20 Sandisk 3D Llc 3D R/W cell with reduced reverse leakage
US7773446B2 (en) 2007-06-29 2010-08-10 Sandisk 3D Llc Methods and apparatus for extending the effective thermal operating range of a memory
US8513637B2 (en) 2007-07-13 2013-08-20 Macronix International Co., Ltd. 4F2 self align fin bottom electrodes FET drive phase change memory
US7777215B2 (en) * 2007-07-20 2010-08-17 Macronix International Co., Ltd. Resistive memory structure with buffer layer
US7884342B2 (en) * 2007-07-31 2011-02-08 Macronix International Co., Ltd. Phase change memory bridge cell
US7729161B2 (en) * 2007-08-02 2010-06-01 Macronix International Co., Ltd. Phase change memory with dual word lines and source lines and method of operating same
US9018615B2 (en) 2007-08-03 2015-04-28 Macronix International Co., Ltd. Resistor random access memory structure having a defined small area of electrical contact
US7642125B2 (en) 2007-09-14 2010-01-05 Macronix International Co., Ltd. Phase change memory cell in via array with self-aligned, self-converged bottom electrode and method for manufacturing
US8178386B2 (en) 2007-09-14 2012-05-15 Macronix International Co., Ltd. Phase change memory cell array with self-converged bottom electrode and method for manufacturing
US7846782B2 (en) 2007-09-28 2010-12-07 Sandisk 3D Llc Diode array and method of making thereof
US20090086521A1 (en) * 2007-09-28 2009-04-02 Herner S Brad Multiple antifuse memory cells and methods to form, program, and sense the same
US7551473B2 (en) * 2007-10-12 2009-06-23 Macronix International Co., Ltd. Programmable resistive memory with diode structure
US7919766B2 (en) 2007-10-22 2011-04-05 Macronix International Co., Ltd. Method for making self aligning pillar memory cell device
US20090113116A1 (en) * 2007-10-30 2009-04-30 Thompson E Earle Digital content kiosk and methods for use therewith
US7804083B2 (en) * 2007-11-14 2010-09-28 Macronix International Co., Ltd. Phase change memory cell including a thermal protect bottom electrode and manufacturing methods
US7646631B2 (en) 2007-12-07 2010-01-12 Macronix International Co., Ltd. Phase change memory cell having interface structures with essentially equal thermal impedances and manufacturing methods
US7759201B2 (en) * 2007-12-17 2010-07-20 Sandisk 3D Llc Method for fabricating pitch-doubling pillar structures
US7887999B2 (en) * 2007-12-27 2011-02-15 Sandisk 3D Llc Method of making a pillar pattern using triple or quadruple exposure
US20100301449A1 (en) * 2007-12-31 2010-12-02 Sandisk 3D Llc Methods and apparatus for forming line and pillar structures for three dimensional memory arrays using a double subtractive process and imprint lithography
US7639527B2 (en) 2008-01-07 2009-12-29 Macronix International Co., Ltd. Phase change memory dynamic resistance test and manufacturing methods
US7906392B2 (en) * 2008-01-15 2011-03-15 Sandisk 3D Llc Pillar devices and methods of making thereof
US7879643B2 (en) 2008-01-18 2011-02-01 Macronix International Co., Ltd. Memory cell with memory element contacting an inverted T-shaped bottom electrode
US7879645B2 (en) 2008-01-28 2011-02-01 Macronix International Co., Ltd. Fill-in etching free pore device
US8158965B2 (en) 2008-02-05 2012-04-17 Macronix International Co., Ltd. Heating center PCRAM structure and methods for making
US8084842B2 (en) 2008-03-25 2011-12-27 Macronix International Co., Ltd. Thermally stabilized electrode structure
US8030634B2 (en) 2008-03-31 2011-10-04 Macronix International Co., Ltd. Memory array with diode driver and method for fabricating the same
US7825398B2 (en) 2008-04-07 2010-11-02 Macronix International Co., Ltd. Memory cell having improved mechanical stability
US7812335B2 (en) * 2008-04-11 2010-10-12 Sandisk 3D Llc Sidewall structured switchable resistor cell
US7830698B2 (en) * 2008-04-11 2010-11-09 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US7791057B2 (en) 2008-04-22 2010-09-07 Macronix International Co., Ltd. Memory cell having a buried phase change region and method for fabricating the same
US7786015B2 (en) * 2008-04-28 2010-08-31 Sandisk 3D Llc Method for fabricating self-aligned complementary pillar structures and wiring
US8450835B2 (en) * 2008-04-29 2013-05-28 Sandisk 3D Llc Reverse leakage reduction and vertical height shrinking of diode with halo doping
US8077505B2 (en) 2008-05-07 2011-12-13 Macronix International Co., Ltd. Bipolar switching of phase change device
US7701750B2 (en) 2008-05-08 2010-04-20 Macronix International Co., Ltd. Phase change device having two or more substantial amorphous regions in high resistance state
US8415651B2 (en) 2008-06-12 2013-04-09 Macronix International Co., Ltd. Phase change memory cell having top and bottom sidewall contacts
US8154005B2 (en) * 2008-06-13 2012-04-10 Sandisk 3D Llc Non-volatile memory arrays comprising rail stacks with a shared diode component portion for diodes of electrically isolated pillars
US7944728B2 (en) * 2008-12-19 2011-05-17 Sandisk 3D Llc Programming a memory cell with a diode in series by applying reverse bias
US8134857B2 (en) 2008-06-27 2012-03-13 Macronix International Co., Ltd. Methods for high speed reading operation of phase change memory and device employing same
US7781269B2 (en) * 2008-06-30 2010-08-24 Sandisk 3D Llc Triangle two dimensional complementary patterning of pillars
US8014185B2 (en) * 2008-07-09 2011-09-06 Sandisk 3D Llc Multiple series passive element matrix cell for three-dimensional arrays
US7733685B2 (en) * 2008-07-09 2010-06-08 Sandisk 3D Llc Cross point memory cell with distributed diodes and method of making same
US7579232B1 (en) 2008-07-11 2009-08-25 Sandisk 3D Llc Method of making a nonvolatile memory device including forming a pillar shaped semiconductor device and a shadow mask
US7932506B2 (en) 2008-07-22 2011-04-26 Macronix International Co., Ltd. Fully self-aligned pore-type memory cell having diode access device
US7903457B2 (en) 2008-08-19 2011-03-08 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
US8130528B2 (en) * 2008-08-25 2012-03-06 Sandisk 3D Llc Memory system with sectional data lines
US8151023B2 (en) * 2008-08-26 2012-04-03 Sandisk Il Ltd. Hybrid storage of documents
US8072793B2 (en) * 2008-09-04 2011-12-06 Macronix International Co., Ltd. High density resistance based semiconductor device
US7943515B2 (en) * 2008-09-09 2011-05-17 Sandisk 3D Llc Shared masks for x-lines and shared masks for y-lines for fabrication of 3D memory arrays
US7719913B2 (en) 2008-09-12 2010-05-18 Macronix International Co., Ltd. Sensing circuit for PCRAM applications
KR101424138B1 (en) * 2008-09-19 2014-08-04 삼성전자주식회사 Non-volatile memory device and method of fabricating the same
US8324605B2 (en) 2008-10-02 2012-12-04 Macronix International Co., Ltd. Dielectric mesh isolated phase change structure for phase change memory
US7920407B2 (en) 2008-10-06 2011-04-05 Sandisk 3D, Llc Set and reset detection circuits for reversible resistance switching memory material
US8027209B2 (en) 2008-10-06 2011-09-27 Sandisk 3D, Llc Continuous programming of non-volatile memory
US7897954B2 (en) 2008-10-10 2011-03-01 Macronix International Co., Ltd. Dielectric-sandwiched pillar memory device
JP5193796B2 (en) 2008-10-21 2013-05-08 株式会社東芝 Three-dimensional stacked nonvolatile semiconductor memory
US8036014B2 (en) 2008-11-06 2011-10-11 Macronix International Co., Ltd. Phase change memory program method without over-reset
US8664689B2 (en) 2008-11-07 2014-03-04 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline plug and single-crystal semiconductor regions
US8907316B2 (en) 2008-11-07 2014-12-09 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline and single crystal semiconductor regions
US8105867B2 (en) * 2008-11-18 2012-01-31 Sandisk 3D Llc Self-aligned three-dimensional non-volatile memory fabrication
US8193074B2 (en) * 2008-11-21 2012-06-05 Sandisk 3D Llc Integration of damascene type diodes and conductive wires for memory device
US8316201B2 (en) * 2008-12-18 2012-11-20 Sandisk Il Ltd. Methods for executing a command to write data from a source location to a destination location in a memory device
US7910407B2 (en) * 2008-12-19 2011-03-22 Sandisk 3D Llc Quad memory cell and method of making same
WO2010080437A2 (en) 2008-12-19 2010-07-15 Sandisk 3D Llc Quad memory cell and method of making same
US7923812B2 (en) * 2008-12-19 2011-04-12 Sandisk 3D Llc Quad memory cell and method of making same
US8120068B2 (en) * 2008-12-24 2012-02-21 Sandisk 3D Llc Three-dimensional memory structures having shared pillar memory cells
US7869270B2 (en) 2008-12-29 2011-01-11 Macronix International Co., Ltd. Set algorithm for phase change memory cell
US8089137B2 (en) 2009-01-07 2012-01-03 Macronix International Co., Ltd. Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method
US8107283B2 (en) 2009-01-12 2012-01-31 Macronix International Co., Ltd. Method for setting PCRAM devices
US8030635B2 (en) 2009-01-13 2011-10-04 Macronix International Co., Ltd. Polysilicon plug bipolar transistor for phase change memory
US8064247B2 (en) * 2009-01-14 2011-11-22 Macronix International Co., Ltd. Rewritable memory device based on segregation/re-absorption
US8933536B2 (en) 2009-01-22 2015-01-13 Macronix International Co., Ltd. Polysilicon pillar bipolar transistor with self-aligned memory element
US8270199B2 (en) 2009-04-03 2012-09-18 Sandisk 3D Llc Cross point non-volatile memory cell
US7978498B2 (en) * 2009-04-03 2011-07-12 Sandisk 3D, Llc Programming non-volatile storage element using current from other element
US8139391B2 (en) 2009-04-03 2012-03-20 Sandisk 3D Llc Multi-bit resistance-switching memory cell
US8395191B2 (en) 2009-10-12 2013-03-12 Monolithic 3D Inc. Semiconductor device and structure
US7986042B2 (en) 2009-04-14 2011-07-26 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8384426B2 (en) 2009-04-14 2013-02-26 Monolithic 3D Inc. Semiconductor device and structure
US9577642B2 (en) 2009-04-14 2017-02-21 Monolithic 3D Inc. Method to form a 3D semiconductor device
US8373439B2 (en) 2009-04-14 2013-02-12 Monolithic 3D Inc. 3D semiconductor device
US8258810B2 (en) 2010-09-30 2012-09-04 Monolithic 3D Inc. 3D semiconductor device
US8362800B2 (en) 2010-10-13 2013-01-29 Monolithic 3D Inc. 3D semiconductor device including field repairable logics
US8378715B2 (en) 2009-04-14 2013-02-19 Monolithic 3D Inc. Method to construct systems
US8362482B2 (en) 2009-04-14 2013-01-29 Monolithic 3D Inc. Semiconductor device and structure
US9509313B2 (en) 2009-04-14 2016-11-29 Monolithic 3D Inc. 3D semiconductor device
US8058137B1 (en) 2009-04-14 2011-11-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8427200B2 (en) 2009-04-14 2013-04-23 Monolithic 3D Inc. 3D semiconductor device
US9711407B2 (en) 2009-04-14 2017-07-18 Monolithic 3D Inc. Method of manufacturing a three dimensional integrated circuit by transfer of a mono-crystalline layer
US8669778B1 (en) 2009-04-14 2014-03-11 Monolithic 3D Inc. Method for design and manufacturing of a 3D semiconductor device
US8405420B2 (en) 2009-04-14 2013-03-26 Monolithic 3D Inc. System comprising a semiconductor device and structure
US8754533B2 (en) 2009-04-14 2014-06-17 Monolithic 3D Inc. Monolithic three-dimensional semiconductor device and structure
US8084760B2 (en) 2009-04-20 2011-12-27 Macronix International Co., Ltd. Ring-shaped electrode and manufacturing method for same
US8279650B2 (en) * 2009-04-20 2012-10-02 Sandisk 3D Llc Memory system with data line switching scheme
US7940554B2 (en) * 2009-04-24 2011-05-10 Sandisk 3D Llc Reduced complexity array line drivers for 3D matrix arrays
US8173987B2 (en) 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
US8097871B2 (en) 2009-04-30 2012-01-17 Macronix International Co., Ltd. Low operational current phase change memory structures
US7933139B2 (en) 2009-05-15 2011-04-26 Macronix International Co., Ltd. One-transistor, one-resistor, one-capacitor phase change memory
US7968876B2 (en) * 2009-05-22 2011-06-28 Macronix International Co., Ltd. Phase change memory cell having vertical channel access transistor
US8350316B2 (en) 2009-05-22 2013-01-08 Macronix International Co., Ltd. Phase change memory cells having vertical channel access transistor and memory plane
US8809829B2 (en) 2009-06-15 2014-08-19 Macronix International Co., Ltd. Phase change memory having stabilized microstructure and manufacturing method
US8154904B2 (en) 2009-06-19 2012-04-10 Sandisk 3D Llc Programming reversible resistance switching elements
US8406033B2 (en) * 2009-06-22 2013-03-26 Macronix International Co., Ltd. Memory device and method for sensing and fixing margin cells
US8363463B2 (en) * 2009-06-25 2013-01-29 Macronix International Co., Ltd. Phase change memory having one or more non-constant doping profiles
US8238149B2 (en) * 2009-06-25 2012-08-07 Macronix International Co., Ltd. Methods and apparatus for reducing defect bits in phase change memory
US7894254B2 (en) * 2009-07-15 2011-02-22 Macronix International Co., Ltd. Refresh circuitry for phase change memory
US8110822B2 (en) * 2009-07-15 2012-02-07 Macronix International Co., Ltd. Thermal protect PCRAM structure and methods for making
US8198619B2 (en) * 2009-07-15 2012-06-12 Macronix International Co., Ltd. Phase change memory cell structure
US8050109B2 (en) 2009-08-10 2011-11-01 Sandisk 3D Llc Semiconductor memory with improved memory block switching
US20110041039A1 (en) * 2009-08-11 2011-02-17 Eliyahou Harari Controller and Method for Interfacing Between a Host Controller in a Host and a Flash Memory Device
US20110040924A1 (en) * 2009-08-11 2011-02-17 Selinger Robert D Controller and Method for Detecting a Transmission Error Over a NAND Interface Using Error Detection Code
US20110041005A1 (en) 2009-08-11 2011-02-17 Selinger Robert D Controller and Method for Providing Read Status and Spare Block Management Information in a Flash Memory System
US20110049456A1 (en) * 2009-09-03 2011-03-03 Macronix International Co., Ltd. Phase change structure with composite doping for phase change memory
US8207064B2 (en) 2009-09-17 2012-06-26 Sandisk 3D Llc 3D polysilicon diode with low contact resistance and method for forming same
US8064248B2 (en) * 2009-09-17 2011-11-22 Macronix International Co., Ltd. 2T2R-1T1R mix mode phase change memory array
US10354995B2 (en) 2009-10-12 2019-07-16 Monolithic 3D Inc. Semiconductor memory device and structure
US11018133B2 (en) 2009-10-12 2021-05-25 Monolithic 3D Inc. 3D integrated circuit
US11374118B2 (en) 2009-10-12 2022-06-28 Monolithic 3D Inc. Method to form a 3D integrated circuit
US8476145B2 (en) 2010-10-13 2013-07-02 Monolithic 3D Inc. Method of fabricating a semiconductor device and structure
US10043781B2 (en) 2009-10-12 2018-08-07 Monolithic 3D Inc. 3D semiconductor device and structure
US8536023B2 (en) 2010-11-22 2013-09-17 Monolithic 3D Inc. Method of manufacturing a semiconductor device and structure
US8581349B1 (en) 2011-05-02 2013-11-12 Monolithic 3D Inc. 3D memory semiconductor device and structure
US8294159B2 (en) 2009-10-12 2012-10-23 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US9099424B1 (en) 2012-08-10 2015-08-04 Monolithic 3D Inc. Semiconductor system, device and structure with heat removal
US10366970B2 (en) 2009-10-12 2019-07-30 Monolithic 3D Inc. 3D semiconductor device and structure
US8450804B2 (en) 2011-03-06 2013-05-28 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US10157909B2 (en) 2009-10-12 2018-12-18 Monolithic 3D Inc. 3D semiconductor device and structure
US8742476B1 (en) 2012-11-27 2014-06-03 Monolithic 3D Inc. Semiconductor device and structure
US10388863B2 (en) 2009-10-12 2019-08-20 Monolithic 3D Inc. 3D memory device and structure
US10910364B2 (en) 2009-10-12 2021-02-02 Monolitaic 3D Inc. 3D semiconductor device
EP2488119B1 (en) 2009-10-14 2014-09-17 Skeletal Dynamics, LLC Internal joint stabilizer for a multi-axis joint, such as a carpo-metacarpal joint or the like
US8274130B2 (en) 2009-10-20 2012-09-25 Sandisk 3D Llc Punch-through diode steering element
US8178387B2 (en) * 2009-10-23 2012-05-15 Macronix International Co., Ltd. Methods for reducing recrystallization time for a phase change material
US8213243B2 (en) 2009-12-15 2012-07-03 Sandisk 3D Llc Program cycle skip
US8223525B2 (en) 2009-12-15 2012-07-17 Sandisk 3D Llc Page register outside array and sense amplifier interface
US8624293B2 (en) 2009-12-16 2014-01-07 Sandisk 3D Llc Carbon/tunneling-barrier/carbon diode
US8595411B2 (en) 2009-12-30 2013-11-26 Sandisk Technologies Inc. Method and controller for performing a sequence of commands
US8443263B2 (en) 2009-12-30 2013-05-14 Sandisk Technologies Inc. Method and controller for performing a copy-back operation
US8638584B2 (en) * 2010-02-02 2014-01-28 Unity Semiconductor Corporation Memory architectures and techniques to enhance throughput for cross-point arrays
US8461035B1 (en) 2010-09-30 2013-06-11 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8298875B1 (en) 2011-03-06 2012-10-30 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8373230B1 (en) 2010-10-13 2013-02-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US9099526B2 (en) 2010-02-16 2015-08-04 Monolithic 3D Inc. Integrated circuit device and structure
US8541819B1 (en) 2010-12-09 2013-09-24 Monolithic 3D Inc. Semiconductor device and structure
US8492886B2 (en) 2010-02-16 2013-07-23 Monolithic 3D Inc 3D integrated circuit with logic
US8026521B1 (en) 2010-10-11 2011-09-27 Monolithic 3D Inc. Semiconductor device and structure
TW201135731A (en) 2010-02-18 2011-10-16 Sandisk 3D Llc Step soft program for reversible resistivity-switching elements
US8686419B2 (en) 2010-02-23 2014-04-01 Sandisk 3D Llc Structure and fabrication method for resistance-change memory cell in 3-D memory
US8385102B2 (en) 2010-05-11 2013-02-26 Sandisk 3D Llc Alternating bipolar forming voltage for resistivity-switching elements
US8729521B2 (en) 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
US8564070B2 (en) 2010-05-24 2013-10-22 Chengdu Haicun Ip Technology Llc Large bit-per-cell three-dimensional mask-programmable read-only memory
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
US8520425B2 (en) 2010-06-18 2013-08-27 Sandisk 3D Llc Resistive random access memory with low current operation
US8724369B2 (en) 2010-06-18 2014-05-13 Sandisk 3D Llc Composition of memory cell with resistance-switching layers
US8395927B2 (en) 2010-06-18 2013-03-12 Sandisk 3D Llc Memory cell with resistance-switching layers including breakdown layer
US8642416B2 (en) 2010-07-30 2014-02-04 Monolithic 3D Inc. Method of forming three dimensional integrated circuit devices using layer transfer technique
US10217667B2 (en) 2011-06-28 2019-02-26 Monolithic 3D Inc. 3D semiconductor device, fabrication method and system
US9953925B2 (en) 2011-06-28 2018-04-24 Monolithic 3D Inc. Semiconductor system and device
US8901613B2 (en) 2011-03-06 2014-12-02 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US9219005B2 (en) 2011-06-28 2015-12-22 Monolithic 3D Inc. Semiconductor system and device
US8284589B2 (en) 2010-08-20 2012-10-09 Sandisk 3D Llc Single device driver circuit to control three-dimensional memory element array
JP5075959B2 (en) * 2010-09-14 2012-11-21 株式会社東芝 Resistance change memory
US8395935B2 (en) 2010-10-06 2013-03-12 Macronix International Co., Ltd. Cross-point self-aligned reduced cell size phase change memory
US8163581B1 (en) 2010-10-13 2012-04-24 Monolith IC 3D Semiconductor and optoelectronic devices
US10497713B2 (en) 2010-11-18 2019-12-03 Monolithic 3D Inc. 3D semiconductor memory device and structure
US8273610B2 (en) 2010-11-18 2012-09-25 Monolithic 3D Inc. Method of constructing a semiconductor device and structure
US11482440B2 (en) 2010-12-16 2022-10-25 Monolithic 3D Inc. 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits
US11315980B1 (en) 2010-10-11 2022-04-26 Monolithic 3D Inc. 3D semiconductor device and structure with transistors
US10896931B1 (en) 2010-10-11 2021-01-19 Monolithic 3D Inc. 3D semiconductor device and structure
US8114757B1 (en) 2010-10-11 2012-02-14 Monolithic 3D Inc. Semiconductor device and structure
US11227897B2 (en) 2010-10-11 2022-01-18 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US11257867B1 (en) 2010-10-11 2022-02-22 Monolithic 3D Inc. 3D semiconductor device and structure with oxide bonds
US11018191B1 (en) 2010-10-11 2021-05-25 Monolithic 3D Inc. 3D semiconductor device and structure
US11469271B2 (en) 2010-10-11 2022-10-11 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US11024673B1 (en) 2010-10-11 2021-06-01 Monolithic 3D Inc. 3D semiconductor device and structure
US10290682B2 (en) 2010-10-11 2019-05-14 Monolithic 3D Inc. 3D IC semiconductor device and structure with stacked memory
US11158674B2 (en) 2010-10-11 2021-10-26 Monolithic 3D Inc. Method to produce a 3D semiconductor device and structure
US11600667B1 (en) 2010-10-11 2023-03-07 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US11694922B2 (en) 2010-10-13 2023-07-04 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US10833108B2 (en) 2010-10-13 2020-11-10 Monolithic 3D Inc. 3D microdisplay device and structure
US11327227B2 (en) 2010-10-13 2022-05-10 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US11869915B2 (en) 2010-10-13 2024-01-09 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11855100B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11929372B2 (en) 2010-10-13 2024-03-12 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US10978501B1 (en) 2010-10-13 2021-04-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US10998374B1 (en) 2010-10-13 2021-05-04 Monolithic 3D Inc. Multilevel semiconductor device and structure
US9197804B1 (en) 2011-10-14 2015-11-24 Monolithic 3D Inc. Semiconductor and optoelectronic devices
US8283215B2 (en) 2010-10-13 2012-10-09 Monolithic 3D Inc. Semiconductor and optoelectronic devices
US11164898B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure
US8379458B1 (en) 2010-10-13 2013-02-19 Monolithic 3D Inc. Semiconductor device and structure
US11437368B2 (en) 2010-10-13 2022-09-06 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11855114B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11163112B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US11043523B1 (en) 2010-10-13 2021-06-22 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11063071B1 (en) 2010-10-13 2021-07-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US10943934B2 (en) 2010-10-13 2021-03-09 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11404466B2 (en) 2010-10-13 2022-08-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US10679977B2 (en) 2010-10-13 2020-06-09 Monolithic 3D Inc. 3D microdisplay device and structure
US11133344B2 (en) 2010-10-13 2021-09-28 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11605663B2 (en) 2010-10-13 2023-03-14 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US8497705B2 (en) 2010-11-09 2013-07-30 Macronix International Co., Ltd. Phase change device for interconnection of programmable logic device
KR101811308B1 (en) 2010-11-10 2017-12-27 삼성전자주식회사 Non-volatile memory device having resistance changeable element and method of forming the same
US8467238B2 (en) 2010-11-15 2013-06-18 Macronix International Co., Ltd. Dynamic pulse operation for phase change memory
US8462580B2 (en) 2010-11-17 2013-06-11 Sandisk 3D Llc Memory system with reversible resistivity-switching using pulses of alternatrie polarity
US8355271B2 (en) 2010-11-17 2013-01-15 Sandisk 3D Llc Memory system with reversible resistivity-switching using pulses of alternate polarity
US11121021B2 (en) 2010-11-18 2021-09-14 Monolithic 3D Inc. 3D semiconductor device and structure
US11107721B2 (en) 2010-11-18 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure with NAND logic
US11804396B2 (en) 2010-11-18 2023-10-31 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11735462B2 (en) 2010-11-18 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11569117B2 (en) 2010-11-18 2023-01-31 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11495484B2 (en) 2010-11-18 2022-11-08 Monolithic 3D Inc. 3D semiconductor devices and structures with at least two single-crystal layers
US11018042B1 (en) 2010-11-18 2021-05-25 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11355381B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11854857B1 (en) 2010-11-18 2023-12-26 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11094576B1 (en) 2010-11-18 2021-08-17 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11482439B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors
US11521888B2 (en) 2010-11-18 2022-12-06 Monolithic 3D Inc. 3D semiconductor device and structure with high-k metal gate transistors
US11211279B2 (en) 2010-11-18 2021-12-28 Monolithic 3D Inc. Method for processing a 3D integrated circuit and structure
US11901210B2 (en) 2010-11-18 2024-02-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11862503B2 (en) 2010-11-18 2024-01-02 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11508605B2 (en) 2010-11-18 2022-11-22 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11784082B2 (en) 2010-11-18 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11615977B2 (en) 2010-11-18 2023-03-28 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11923230B1 (en) 2010-11-18 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11164770B1 (en) 2010-11-18 2021-11-02 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US11443971B2 (en) 2010-11-18 2022-09-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11031275B2 (en) 2010-11-18 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11004719B1 (en) 2010-11-18 2021-05-11 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11610802B2 (en) 2010-11-18 2023-03-21 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes
US11482438B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11355380B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. Methods for producing 3D semiconductor memory device and structure utilizing alignment marks
US8819328B2 (en) 2010-12-30 2014-08-26 Sandisk Technologies Inc. Controller and method for performing background operations
US8553476B2 (en) 2011-03-03 2013-10-08 Sandisk 3D Llc Three dimensional memory system with page of data across word lines
US8374051B2 (en) 2011-03-03 2013-02-12 Sandisk 3D Llc Three dimensional memory system with column pipeline
US9053766B2 (en) 2011-03-03 2015-06-09 Sandisk 3D, Llc Three dimensional memory system with intelligent select circuit
US8975670B2 (en) 2011-03-06 2015-03-10 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US8934292B2 (en) 2011-03-18 2015-01-13 Sandisk 3D Llc Balanced method for programming multi-layer cell memories
US8699293B2 (en) 2011-04-27 2014-04-15 Sandisk 3D Llc Non-volatile storage system with dual block programming
US9117495B2 (en) 2011-06-10 2015-08-25 Unity Semiconductor Corporation Global bit line pre-charge circuit that compensates for process, operating voltage, and temperature variations
US10566056B2 (en) 2011-06-10 2020-02-18 Unity Semiconductor Corporation Global bit line pre-charge circuit that compensates for process, operating voltage, and temperature variations
US8891276B2 (en) 2011-06-10 2014-11-18 Unity Semiconductor Corporation Memory array with local bitlines and local-to-global bitline pass gates and gain stages
US8694719B2 (en) 2011-06-24 2014-04-08 Sandisk Technologies Inc. Controller, storage device, and method for power throttling memory operations
US10388568B2 (en) 2011-06-28 2019-08-20 Monolithic 3D Inc. 3D semiconductor device and system
US8866121B2 (en) 2011-07-29 2014-10-21 Sandisk 3D Llc Current-limiting layer and a current-reducing layer in a memory device
US9003102B2 (en) 2011-08-26 2015-04-07 Sandisk Technologies Inc. Controller with extended status register and method of use therewith
US8659001B2 (en) 2011-09-01 2014-02-25 Sandisk 3D Llc Defect gradient to boost nonvolatile memory performance
US8687399B2 (en) 2011-10-02 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US9029173B2 (en) 2011-10-18 2015-05-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8637413B2 (en) 2011-12-02 2014-01-28 Sandisk 3D Llc Nonvolatile resistive memory element with a passivated switching layer
US8987700B2 (en) 2011-12-02 2015-03-24 Macronix International Co., Ltd. Thermally confined electrode for programmable resistance memory
US8698119B2 (en) 2012-01-19 2014-04-15 Sandisk 3D Llc Nonvolatile memory device using a tunnel oxide as a current limiter element
US8686386B2 (en) 2012-02-17 2014-04-01 Sandisk 3D Llc Nonvolatile memory device using a varistor as a current limiter element
US9000557B2 (en) 2012-03-17 2015-04-07 Zvi Or-Bach Semiconductor device and structure
US11694944B1 (en) 2012-04-09 2023-07-04 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11735501B1 (en) 2012-04-09 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US8557632B1 (en) 2012-04-09 2013-10-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US10600888B2 (en) 2012-04-09 2020-03-24 Monolithic 3D Inc. 3D semiconductor device
US11476181B1 (en) 2012-04-09 2022-10-18 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11088050B2 (en) 2012-04-09 2021-08-10 Monolithic 3D Inc. 3D semiconductor device with isolation layers
US11594473B2 (en) 2012-04-09 2023-02-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11164811B2 (en) 2012-04-09 2021-11-02 Monolithic 3D Inc. 3D semiconductor device with isolation layers and oxide-to-oxide bonding
US11881443B2 (en) 2012-04-09 2024-01-23 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11616004B1 (en) 2012-04-09 2023-03-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11410912B2 (en) 2012-04-09 2022-08-09 Monolithic 3D Inc. 3D semiconductor device with vias and isolation layers
JP2013239622A (en) * 2012-05-16 2013-11-28 Toshiba Corp Nonvolatile semiconductor storage device and manufacturing method of the same
US8574929B1 (en) 2012-11-16 2013-11-05 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US8686428B1 (en) 2012-11-16 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US11784169B2 (en) 2012-12-22 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11063024B1 (en) 2012-12-22 2021-07-13 Monlithic 3D Inc. Method to form a 3D semiconductor device and structure
US11916045B2 (en) 2012-12-22 2024-02-27 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US8674470B1 (en) 2012-12-22 2014-03-18 Monolithic 3D Inc. Semiconductor device and structure
US11309292B2 (en) 2012-12-22 2022-04-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11018116B2 (en) 2012-12-22 2021-05-25 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11217565B2 (en) 2012-12-22 2022-01-04 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11430667B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US10600657B2 (en) 2012-12-29 2020-03-24 Monolithic 3D Inc 3D semiconductor device and structure
US10651054B2 (en) 2012-12-29 2020-05-12 Monolithic 3D Inc. 3D semiconductor device and structure
US9385058B1 (en) 2012-12-29 2016-07-05 Monolithic 3D Inc. Semiconductor device and structure
US11177140B2 (en) 2012-12-29 2021-11-16 Monolithic 3D Inc. 3D semiconductor device and structure
US10903089B1 (en) 2012-12-29 2021-01-26 Monolithic 3D Inc. 3D semiconductor device and structure
US9871034B1 (en) 2012-12-29 2018-01-16 Monolithic 3D Inc. Semiconductor device and structure
US11004694B1 (en) 2012-12-29 2021-05-11 Monolithic 3D Inc. 3D semiconductor device and structure
US10115663B2 (en) 2012-12-29 2018-10-30 Monolithic 3D Inc. 3D semiconductor device and structure
US10892169B2 (en) 2012-12-29 2021-01-12 Monolithic 3D Inc. 3D semiconductor device and structure
US11430668B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11087995B1 (en) 2012-12-29 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US20140241031A1 (en) 2013-02-28 2014-08-28 Sandisk 3D Llc Dielectric-based memory cells having multi-level one-time programmable and bi-level rewriteable operating modes and methods of forming the same
US9007810B2 (en) 2013-02-28 2015-04-14 Sandisk 3D Llc ReRAM forming with reset and iload compensation
US11869965B2 (en) 2013-03-11 2024-01-09 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US8902663B1 (en) 2013-03-11 2014-12-02 Monolithic 3D Inc. Method of maintaining a memory state
US10325651B2 (en) 2013-03-11 2019-06-18 Monolithic 3D Inc. 3D semiconductor device with stacked memory
US11398569B2 (en) 2013-03-12 2022-07-26 Monolithic 3D Inc. 3D semiconductor device and structure
US11923374B2 (en) 2013-03-12 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US10840239B2 (en) 2014-08-26 2020-11-17 Monolithic 3D Inc. 3D semiconductor device and structure
US11088130B2 (en) 2014-01-28 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US8994404B1 (en) 2013-03-12 2015-03-31 Monolithic 3D Inc. Semiconductor device and structure
US8947972B2 (en) 2013-03-15 2015-02-03 Sandisk 3D Llc Dynamic address grouping for parallel programming in non-volatile memory
US8947944B2 (en) 2013-03-15 2015-02-03 Sandisk 3D Llc Program cycle skip evaluation before write operations in non-volatile memory
US9117749B1 (en) 2013-03-15 2015-08-25 Monolithic 3D Inc. Semiconductor device and structure
US10224279B2 (en) 2013-03-15 2019-03-05 Monolithic 3D Inc. Semiconductor device and structure
US11487928B2 (en) 2013-04-15 2022-11-01 Monolithic 3D Inc. Automation for monolithic 3D devices
US11574109B1 (en) 2013-04-15 2023-02-07 Monolithic 3D Inc Automation methods for 3D integrated circuits and devices
US11030371B2 (en) 2013-04-15 2021-06-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US11341309B1 (en) 2013-04-15 2022-05-24 Monolithic 3D Inc. Automation for monolithic 3D devices
US9021414B1 (en) 2013-04-15 2015-04-28 Monolithic 3D Inc. Automation for monolithic 3D devices
US11720736B2 (en) 2013-04-15 2023-08-08 Monolithic 3D Inc. Automation methods for 3D integrated circuits and devices
US11270055B1 (en) 2013-04-15 2022-03-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US9336879B2 (en) 2014-01-24 2016-05-10 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
US11031394B1 (en) 2014-01-28 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure
US10297586B2 (en) 2015-03-09 2019-05-21 Monolithic 3D Inc. Methods for processing a 3D semiconductor device
US11107808B1 (en) 2014-01-28 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure
US9559113B2 (en) 2014-05-01 2017-01-31 Macronix International Co., Ltd. SSL/GSL gate oxide in 3D vertical channel NAND
US9159412B1 (en) 2014-07-15 2015-10-13 Macronix International Co., Ltd. Staggered write and verify for phase change memory
US11011507B1 (en) 2015-04-19 2021-05-18 Monolithic 3D Inc. 3D semiconductor device and structure
US11056468B1 (en) 2015-04-19 2021-07-06 Monolithic 3D Inc. 3D semiconductor device and structure
US10825779B2 (en) 2015-04-19 2020-11-03 Monolithic 3D Inc. 3D semiconductor device and structure
US10381328B2 (en) 2015-04-19 2019-08-13 Monolithic 3D Inc. Semiconductor device and structure
US9672906B2 (en) 2015-06-19 2017-06-06 Macronix International Co., Ltd. Phase change memory with inter-granular switching
US10515981B2 (en) 2015-09-21 2019-12-24 Monolithic 3D Inc. Multilevel semiconductor device and structure with memory
US10522225B1 (en) 2015-10-02 2019-12-31 Monolithic 3D Inc. Semiconductor device with non-volatile memory
US10418369B2 (en) 2015-10-24 2019-09-17 Monolithic 3D Inc. Multi-level semiconductor memory device and structure
US11114464B2 (en) 2015-10-24 2021-09-07 Monolithic 3D Inc. 3D semiconductor device and structure
US11296115B1 (en) 2015-10-24 2022-04-05 Monolithic 3D Inc. 3D semiconductor device and structure
US10847540B2 (en) 2015-10-24 2020-11-24 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11114427B2 (en) 2015-11-07 2021-09-07 Monolithic 3D Inc. 3D semiconductor processor and memory device and structure
US11930648B1 (en) 2016-10-10 2024-03-12 Monolithic 3D Inc. 3D memory devices and structures with metal layers
US11711928B2 (en) 2016-10-10 2023-07-25 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11251149B2 (en) 2016-10-10 2022-02-15 Monolithic 3D Inc. 3D memory device and structure
US11812620B2 (en) 2016-10-10 2023-11-07 Monolithic 3D Inc. 3D DRAM memory devices and structures with control circuits
US11869591B2 (en) 2016-10-10 2024-01-09 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11329059B1 (en) 2016-10-10 2022-05-10 Monolithic 3D Inc. 3D memory devices and structures with thinned single crystal substrates
US9806256B1 (en) 2016-10-21 2017-10-31 Sandisk Technologies Llc Resistive memory device having sidewall spacer electrode and method of making thereof
US10615225B2 (en) * 2018-08-22 2020-04-07 International Business Machines Corporation Multilayer back end of line (BEOL)-stackable cross-point memory array with complementary pass transistor selectors
US10892016B1 (en) 2019-04-08 2021-01-12 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11296106B2 (en) 2019-04-08 2022-04-05 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11763864B2 (en) 2019-04-08 2023-09-19 Monolithic 3D Inc. 3D memory semiconductor devices and structures with bit-line pillars
US11158652B1 (en) 2019-04-08 2021-10-26 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11018156B2 (en) 2019-04-08 2021-05-25 Monolithic 3D Inc. 3D memory semiconductor devices and structures

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2247279A1 (en) * 1972-09-27 1974-04-04 Siemens Ag PROCEDURES FOR CONTACTING AND / OR WIRING ELECTRICAL COMPONENTS
US4272880A (en) 1979-04-20 1981-06-16 Intel Corporation MOS/SOS Process
US4499557A (en) 1980-10-28 1985-02-12 Energy Conversion Devices, Inc. Programmable cell for use in programmable electronic arrays
US4442507A (en) 1981-02-23 1984-04-10 Burroughs Corporation Electrically programmable read-only memory stacked above a semiconductor substrate
DE3278799D1 (en) 1981-08-31 1988-08-25 Toshiba Kk Method for manufacturing three-dimensional semiconductor device
US4489478A (en) 1981-09-29 1984-12-25 Fujitsu Limited Process for producing a three-dimensional semiconductor device
US4543594A (en) 1982-09-07 1985-09-24 Intel Corporation Fusible link employing capacitor structure
US4881114A (en) 1986-05-16 1989-11-14 Actel Corporation Selectively formable vertical diode circuit element
US4876220A (en) 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
US5306935A (en) 1988-12-21 1994-04-26 Texas Instruments Incorporated Method of forming a nonvolatile stacked memory
US5070384A (en) 1990-04-12 1991-12-03 Actel Corporation Electrically programmable antifuse element incorporating a dielectric and amorphous silicon interlayer
US5427979A (en) 1993-10-18 1995-06-27 Vlsi Technology, Inc. Method for making multi-level antifuse structure
US5535156A (en) 1994-05-05 1996-07-09 California Institute Of Technology Transistorless, multistable current-mode memory cells and memory arrays and methods of reading and writing to the same
US5838530A (en) 1996-07-22 1998-11-17 Zhang; Guobiao Applications of protective ceramics
US5831325A (en) 1996-08-16 1998-11-03 Zhang; Guobiao Antifuse structures with improved manufacturability
US5835396A (en) 1996-10-17 1998-11-10 Zhang; Guobiao Three-dimensional read-only memory
US6034882A (en) 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040217441A1 (en) * 2000-12-28 2004-11-04 Gunther Lehmann Area efficient stacking of antifuses in semiconductor device
US7087975B2 (en) 2000-12-28 2006-08-08 Infineon Technologies Ag Area efficient stacking of antifuses in semiconductor device
US7915095B2 (en) 2002-03-13 2011-03-29 Sandisk 3D Llc Silicide-silicon oxide-semiconductor antifuse device and method of making
US7655509B2 (en) 2002-03-13 2010-02-02 Sandisk 3D Llc Silicide-silicon oxide-semiconductor antifuse device and method of making
US7329565B2 (en) * 2002-03-13 2008-02-12 Sanddisk 3D Llc Silicide-silicon oxide-semiconductor antifuse device and method of making
US7210224B2 (en) 2002-08-01 2007-05-01 Micron Technology, Inc. Method for forming an antifuse
US7269898B2 (en) 2002-08-01 2007-09-18 Micron Technology, Inc. Method for making an edge intensive antifuse
US20040021199A1 (en) * 2002-08-01 2004-02-05 Trivedi Jigish D. Edge intensive antifuse device structure
US20040188800A1 (en) * 2002-08-01 2004-09-30 Trivedi Jigish D. Edge intensive antifuse and method for making the same
US6740575B2 (en) * 2002-08-01 2004-05-25 Micron Technology, Inc. Method for forming an antifuse
US20040238917A1 (en) * 2002-08-01 2004-12-02 Trivedi Jigish D. Edge intensive antifuse and method for making the same
US20040238916A1 (en) * 2002-08-01 2004-12-02 Trivedi Jigish D. Edge intensive antifuse and method for making the same
US20050001285A1 (en) * 2002-08-01 2005-01-06 Trivedi Jigish D. Edge intensive antifuse and method for making the same
US20040023441A1 (en) * 2002-08-01 2004-02-05 Trivedi Jigish D. Edge intensive antifuse and method for making the same
US7057218B2 (en) 2002-08-01 2006-06-06 Micron Technology, Inc. Edge intensive antifuse
US7279772B2 (en) 2002-08-01 2007-10-09 Micron Technology, Inc. Edge intensive antifuse and method for making the same
US7235858B2 (en) 2002-08-01 2007-06-26 Micron Technology, Inc. Edge intensive antifuse and method for making the same
US20070022599A1 (en) * 2002-08-01 2007-02-01 Micron Technology, Inc. Edge intensive antifuse and method for making the same
US20070029639A1 (en) * 2002-08-01 2007-02-08 Trivedi Jigish D Edge intensive antifuse and method for making the same
US7189634B2 (en) 2002-08-01 2007-03-13 Micron Technology, Inc. Edge intensive antifuse
US6683365B1 (en) 2002-08-01 2004-01-27 Micron Technology, Inc. Edge intensive antifuse device structure
US20040026317A1 (en) * 2002-08-07 2004-02-12 Hubenthal Ronald R. Wastewater solids removal methods
US6793823B2 (en) 2002-08-07 2004-09-21 Aqua-Aerobics Systems, Inc. Wastewater solids removal methods
CN100340922C (en) * 2002-09-17 2007-10-03 惠普开发有限公司 Impression mask photoetching
EP1400848A1 (en) * 2002-09-17 2004-03-24 Hewlett-Packard Development Company, L.P. Circuitry with embossed portions
US6887792B2 (en) 2002-09-17 2005-05-03 Hewlett-Packard Development Company, L.P. Embossed mask lithography
US7649241B2 (en) * 2002-12-30 2010-01-19 Dongbu Electronics Co., Ltd. Semiconductor device and method of manufacturing the same
US20040129999A1 (en) * 2002-12-30 2004-07-08 Jung Kyung Yun Semiconductor device and method of manufacturing the same
US20060197180A1 (en) * 2003-06-24 2006-09-07 Erh-Kun Lai Three-dimensional memory structure and manufacturing method thereof
WO2008064172A2 (en) * 2006-11-17 2008-05-29 Qualcomm Incorporated Content addressable memory
WO2008064172A3 (en) * 2006-11-17 2009-01-08 Qualcomm Inc Content addressable memory
WO2009085078A1 (en) 2007-12-27 2009-07-09 Sandisk 3D Llc Three-dimensional hexagonal matrix memory array and method of manufacturing the same
CN101919046A (en) * 2007-12-31 2010-12-15 桑迪士克3D有限责任公司 Methods and apparatus for forming memory lines and vias in three dimensional memory arrays using dual damascene process and imprint lithography
US20090166682A1 (en) * 2007-12-31 2009-07-02 Scheuerlein Roy E Methods and apparatus for forming memory lines and vias in three dimensional memory arrays using dual damascene process and imprint lithography
US8466068B2 (en) 2007-12-31 2013-06-18 Sandisk 3D Llc Methods and apparatus for forming memory lines and vias in three dimensional memory arrays using dual damascene process and imprint lithography
JP2010010688A (en) * 2008-06-26 2010-01-14 Samsung Electronics Co Ltd Non-volatile memory element, and method of manufacturing the same
US20200004914A1 (en) * 2018-06-28 2020-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit structure, layout diagram method, and system
US10867102B2 (en) * 2018-06-28 2020-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Inverted pitch IC structure, layout method, and system
CN111261612A (en) * 2018-12-02 2020-06-09 南亚科技股份有限公司 Semiconductor structure
CN111261612B (en) * 2018-12-02 2021-11-30 南亚科技股份有限公司 Semiconductor structure

Also Published As

Publication number Publication date
MY131836A (en) 2007-09-28
US6420215B1 (en) 2002-07-16

Similar Documents

Publication Publication Date Title
US6653712B2 (en) Three-dimensional memory array and method of fabrication
US6420215B1 (en) Three-dimensional memory array and method of fabrication
US6664639B2 (en) Contact and via structure and method of fabrication
US7915095B2 (en) Silicide-silicon oxide-semiconductor antifuse device and method of making
US6972211B2 (en) Method of fabricating trench isolated cross-point memory array
US5840608A (en) High density ROM and a method of making the same
US7115967B2 (en) Three-dimensional memory
US7049678B2 (en) Diverse band gap energy level semiconductor device
US6624485B2 (en) Three-dimensional, mask-programmed read only memory
US8089059B2 (en) Programmable resistance memory element
US8183552B2 (en) Semiconductor memory device
US20090273022A1 (en) Conductive hard mask to protect patterned features during trench etch
US20020081851A1 (en) Method of forming nonvolatile memory device utilizing a hard mask
US7383476B2 (en) System architecture and method for three-dimensional memory
KR20080022085A (en) High-density nonvolatile memory array fabricated at low temperature comprising semiconductor diodes

Legal Events

Date Code Title Description
AS Assignment

Owner name: MATRIX SEMICONDUCTOR, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KNALL, N. JOHAN;JOHNSON, MARK;REEL/FRAME:011665/0346

Effective date: 20010321

AS Assignment

Owner name: VENTURE LENDING & LEASING III, INC., AS AGENT, CAL

Free format text: SECURITY AGREEMENT;ASSIGNOR:MATRIX SEMICONDUCTOR, INC.;REEL/FRAME:012831/0698

Effective date: 20020405

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:MATRIX SEMICONDUCTOR, INC.;REEL/FRAME:012994/0547

Effective date: 20020425

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: MATRIX SEMICONDUCTOR, INC., CALIFORNIA

Free format text: RELEASE;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:017649/0016

Effective date: 20060113

AS Assignment

Owner name: SANDISK 3D LLC,CALIFORNIA

Free format text: MERGER;ASSIGNOR:MATRIX SEMICONDUCTOR, INC.;REEL/FRAME:017544/0769

Effective date: 20051020

Owner name: SANDISK 3D LLC, CALIFORNIA

Free format text: MERGER;ASSIGNOR:MATRIX SEMICONDUCTOR, INC.;REEL/FRAME:017544/0769

Effective date: 20051020

AS Assignment

Owner name: SANDISK 3D LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:017718/0550

Effective date: 20060113

AS Assignment

Owner name: SANDISK 3D LLC, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECTIVE MERGER TO ADD PAGES TO THE MERGER DOCUMENT PREVIOUSLY RECORDED PREVIOUSLY RECORDED ON REEL 017544 FRAME 0769;ASSIGNOR:MATRIX SEMICONDUCTOR, INC.;REEL/FRAME:018950/0686

Effective date: 20051020

Owner name: SANDISK 3D LLC,CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECTIVE MERGER TO ADD PAGES TO THE MERGER DOCUMENT PREVIOUSLY RECORDED PREVIOUSLY RECORDED ON REEL 017544 FRAME 0769. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNOR:MATRIX SEMICONDUCTOR, INC.;REEL/FRAME:018950/0686

Effective date: 20051020

Owner name: SANDISK 3D LLC, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECTIVE MERGER TO ADD PAGES TO THE MERGER DOCUMENT PREVIOUSLY RECORDED PREVIOUSLY RECORDED ON REEL 017544 FRAME 0769. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNOR:MATRIX SEMICONDUCTOR, INC.;REEL/FRAME:018950/0686

Effective date: 20051020

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: SANDISK TECHNOLOGIES INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDISK 3D LLC.;REEL/FRAME:038300/0665

Effective date: 20160324

AS Assignment

Owner name: SANDISK TECHNOLOGIES INC., TEXAS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT LISTED PATENT NUMBER 8853569 TO THE CORRECT PATENT NUMBER 8883569 PREVIOUSLY RECORDED ON REEL 038300 FRAME 0665. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:SANDISK 3D LLC;REEL/FRAME:038520/0552

Effective date: 20160324

AS Assignment

Owner name: SANDISK TECHNOLOGIES LLC, TEXAS

Free format text: CHANGE OF NAME;ASSIGNOR:SANDISK TECHNOLOGIES INC;REEL/FRAME:038813/0004

Effective date: 20160516