US20020096764A1 - Semiconductor device having bump electrode - Google Patents

Semiconductor device having bump electrode Download PDF

Info

Publication number
US20020096764A1
US20020096764A1 US09/764,313 US76431301A US2002096764A1 US 20020096764 A1 US20020096764 A1 US 20020096764A1 US 76431301 A US76431301 A US 76431301A US 2002096764 A1 US2002096764 A1 US 2002096764A1
Authority
US
United States
Prior art keywords
layer
copper
contact pad
semiconductor device
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/764,313
Other versions
US6452270B1 (en
Inventor
Min-Lung Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Semiconductor Engineering Inc
Original Assignee
Advanced Semiconductor Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to TW089121621A priority Critical patent/TW449813B/en
Application filed by Advanced Semiconductor Engineering Inc filed Critical Advanced Semiconductor Engineering Inc
Priority to US09/764,313 priority patent/US6452270B1/en
Assigned to ADVANCED SEMICONDUCTOR ENGINEERING INC. reassignment ADVANCED SEMICONDUCTOR ENGINEERING INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, MIN-LUNG
Publication of US20020096764A1 publication Critical patent/US20020096764A1/en
Application granted granted Critical
Publication of US6452270B1 publication Critical patent/US6452270B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02123Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body inside the bonding area
    • H01L2224/02125Reinforcing structures
    • H01L2224/02126Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02123Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body inside the bonding area
    • H01L2224/0215Material of the auxiliary member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05024Disposition the internal layer being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • H01L2224/05572Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13024Disposition the bump connector being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13116Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Definitions

  • This invention relates to electronic assembly technology and more specifically to solder bump interconnections for mounting chip with copper I/O pads to an interconnection substrate.
  • CSP chip scale packages
  • flip chips both of them greatly reduce the amount of board real estate required when compared to the alternative ball grid array (BGA) and quad flat pack (QFP).
  • BGA ball grid array
  • QFP quad flat pack
  • a CSP is 20 percent larger than the die itself, while the flip chip has been described as the ultimate package precisely because it has no package.
  • the bare die itself is attached to the substrate by means of solder bumps directly attached to the die.
  • Flip-chip bumping technology typically comprises (a) forming an under bump metallurgy (UBM) on bonding pads of the chip, and (b) forming metal bumps on the UBM.
  • UBM consists of three metal layers, including: (a) adhesion layer (formed of Al or Cr) for purposes of providing a good adhesion to Al pad and passivation layer; (b) barrier layer (formed of NiV or TiW) for preventing contact pads on the chip and the bump electrode from reacting with each other to generate an intermetallic compound (which is harmful to the reliability of chip); and (c) wetting layer (formed of Ni, Cu, Mo or Pt) wherein that kind of metals provide a higher wetting power to solder thereby allowing for proper wetting of solder during solder-reflow process.
  • the metal bump is made of conductive material (such as metal high melting point solder alloys, low melting point solder alloys, gold, nickel or copper), depending on the characteristics needed in the to-be-formed flip-chip
  • FIG. 1 is a cross sectional view of a conventional semiconductor having a bump electrode.
  • An aluminum contact pad 110 is formed on a substrate 120 of a semiconductor integrated circuit.
  • a passivation film 130 serving as an insulation film, is formed on the entire surface of the substrate 120 .
  • a passivation opening section which is formed at a predetermined position, is formed to expose the aluminum contact pad 110 .
  • the semiconductor device 100 has a UBM 140 consisting of three metal layers, including: (a) aluminum layer 140 a used as the adhesion layer; (b) nickel-vanadium layer 140 b used as the barrier layer; and (c) copper layer 140 c used as the wetting layer.
  • the UBM 140 is not applicable to chip with copper contact pads because of poor aluminum-to-copper adhesion. Therefore, the semiconductor industry develops a semiconductor device 200 (see FIG. 2) wherein the UBM 240 consists of two metal layers, including: (a) titanium layer 240 a used as the adhesion layer and the barrier layer; and (b) copper layer 240 b used as the wetting layer.
  • the titanium layer has a good adhesion to both of the passivation layer 130 and the copper contact pad 210 , it has a disadvantage of poor electric conductivity as compared to a copper layer.
  • the present invention therefore seeks to provide an under bump metallurgy which overcomes, or at least reduces the above-mentioned problems of the prior art.
  • UBM under bump metallurgy
  • the UBM of the present invention is applied to a chip with copper contact pads in order to form a semiconductor device having bump electrodes.
  • the chip comprises a substrate and at least one copper contact pad on the substrate.
  • a passivation layer is formed over the substrate and has an opening positioned over the al least one copper contact pad.
  • the UBM includes a titanium layer, a first copper layer, a nickel-vanadium layer and a second copper layer.
  • the titanium layer forms a closed-loop surrounding the opening of the dielectric layer.
  • the first copper layer is formed over the titanium layer and the opening of the dielectric layer such that the first copper layer directly contacts the copper contact pad.
  • the nickel-vanadium layer is formed on the first copper layer and the second copper layer is formed on the nickel-vanadium layer.
  • a metal bump is provided on the UBM over the copper contact pad thereby forming a bump electrode. Consequently, the semiconductor device of the present invention can be directly mounted to a interconnection substrate by means of bump electrodes directly attached thereon.
  • the UBM of the present invention is characterized by using the titanium layer with a closed-loop shape as the adhesion layer to significantly increase the adhesion between the UBM and the passivation layer, and using the first copper layer, which is directly contacted with the copper contact pad, to provide a better electrical performance.
  • the present invention further provides a semiconductor device having a structure that permits rearrangement of contact pads.
  • the semiconductor device comprises a substrate having a copper contact pad formed thereon; a first dielectric layer formed over the substrate, the first dielectric layer having a first opening positioned over the copper contact pad; a multi-layered lead having a first end portion connected to the copper contact pad through the first opening and a second end portion extending on the first dielectric layer; a second dielectric layer formed over the multi-layered lead and the first dielectric layer, the second dielectric layer having a blind-via formed corresponding to the second end portion of the multi-layered lead; a conductive pad formed over the blind-via; and a metal bump provided on the conductive pad.
  • the multi-layered lead includes a first titanium layer on the first dielectric layer, a copper layer on the first titanium layer and a second titanium layer on the copper layer wherein the first titanium layer has a second opening corresponding to the first opening and the copper layer directly contacts the copper contact pad through the second opening and the first opening.
  • FIG. 1 is a schematic sectional view of a conventional semiconductor device having a bump electrode
  • FIG. 2 is a schematic sectional view of another conventional semiconductor device having a bump electrode
  • FIGS. 3 - 6 illustrate in cross-section major steps of formation of the UBM in accordance with the present invention
  • FIG. 7 is a schematic sectional view of a portion of a semiconductor device having a bump electrode in accordance with a preferred embodiment of the present invention.
  • FIG. 8 is a schematic sectional view of a portion of a semiconductor device having a bump electrode in accordance with another preferred embodiment of the present invention.
  • a semiconductor device include a substrate 310 , a copper contact pad 320 , and a dielectric layer such as passivation layer 330 .
  • the substrate 310 may comprise a layer of a semiconducting material such as silicon, gallium arsenide, silicon carbide, diamond, or other substrate materials known to those having skill in the art.
  • the passivation layer 330 is preferably a polyimide layer but can alternately be a silicon dioxide layer, a silicon nitride layer, or layers of other passivation materials known to those having skill in the art.
  • the passivation layer 330 preferably covers the top edge portion of the copper contact pad 320 opposite the substrate, leaving the central surface portion of the copper contact pad 320 exposed from the passivation layer 330 .
  • the UBM 340 in accordance with the present invention includes a titanium layer 340 a, a first copper layer 340 b, a nickel-vanadium layer 340 c and a second copper layer 340 d.
  • the titanium layer 340 a is provided on the passivation layer 330 to form a closed-loop surrounding the opening 330 a of the dielectric layer 330 .
  • the first copper layer 340 b is formed over the titanium layer 340 a and the opening 330 a of the dielectric layer 330 such that the first copper layer 340 b directly contacts the copper contact pad 320 .
  • the nickel-vanadium layer 340 c is formed on the first copper layer 340 b and the second copper layer 340 d is formed on the nickel-vanadium layer 340 c.
  • the UBM 340 of the present invention chooses the titanium layer 340 a as adhesion layer, due to good adhesion of titanium to the passivation layer 330 , to obtain a better adhesion between the first copper layer 340 b and the passivation layer 330 . Since the titanium layer 340 a is formed as a closed-loop surrounding the opening 330 a of the dielectric layer 330 , the first cooper layer 340 a is allowed to directly contacts the copper pad thereby providing a better electrical performance. Furthermore, the UBM 340 utilizing the nickel-vanadium layer 340 b as the barrier layer and utilizing the second copper layer 340 d as the wetting layer.
  • the semiconductor device shown in FIG. 7 further comprises a solder bump 350 provided on the UBM 340 over the copper contact pad 320 to act as a bump electrode. Consequently, the semiconductor device of the present invention can be directly mounted to a interconnection substrate by means of the bump electrodes directly attached thereon.
  • solder compositions used to form the solder bump 350 includes (a) high melting point solder alloys such as 5Sn/95Pb or 3Sn/97Pb and (b) lower melting point solder alloys such as 63Sn/37Pb or 40Sn/60Pb. Bumping process is typically accomplished by vapor deposition, electroplating or printing.
  • the solder bump 350 may be replaced with a gold bump.
  • the gold bump comprises at least about 90 weight percentage of Au deposited on the UBM 340 by means including electroplating or evaporative lift-off.
  • a subtractive process may be used to form the UBM 340 in accordance with the present invention.
  • a titanium layer 340 a is sputtered to deposit across the passivation layer 330 including the exposed surface portions of the copper contact pad 320 .
  • the titanium layer 340 a is selectively etched to form a titanium opening corresponding to the passivation layer opening 330 a.
  • solder is electrodeposited on the photoresist opening section to obtain the solder bump 350 ; thereafter, the remaining photoresist is stripped.
  • the UBM layers are etched with the solder bump 350 as a mask, and then a reflow step is proceeded.
  • FIG. 8 shows a portion of a semiconductor device 400 having a bump electrode in accordance with another embodiment of the present invention.
  • the semiconductor device 400 is a package with I/O redistribution implemented at the wafer level.
  • the semiconductor device 400 mainly comprises a multi-layered lead 440 having a first end portion connected to the copper contact pad 320 through the passivation opening 330 a and a second end portion extending on the passivation layer 330 .
  • the multi-layered lead 440 includes a first titanium layer 440 a on the passivation layer 330 , a copper layer 440 b on the first titanium layer 440 a and a second titanium layer 440 c on the copper layer 440 b .
  • the first titanium layer 440 a has a opening corresponding to the passivation opening 330 a.
  • the copper layer 440 b directly contacts the copper contact pad 320 through the opening of the first titanium layer 440 a and the opening 330 a thereby providing a better electrical performance. It could be understood that the multi-layered lead 440 is a part of a desired trace pattern to redistribute the copper contact pads 320 into a desired format.
  • a dielectric layer 450 preferably formed by a polyimide, is formed over the multi-layered lead 440 and the passivation layer 330 .
  • the dielectric layer 450 has a photo-defined blind-via 450 a formed corresponding to the second end portion (away from the copper contact pad 320 ) of the multi-layered lead 440 .
  • a conductive pad 460 is formed over the blind-via 450 a .
  • the conductive pad 460 comprises a nickel-vanadium layer 460 a formed over the blind-via 450 a and a copper layer 460 b formed on the nickel-vanadium layer 450 a .
  • a solder bump 470 is provided on the copper layer 460 b . Alternatively, the solder bump 470 may be replaced with a gold bump.

Abstract

A semiconductor device having bump electrodes mainly comprises a specialized under bump metallurgy (UBM) applied to a chip with copper contact pads. Typically, the chip comprises a substrate and at least one copper contact pad on the substrate. A passivation layer is formed over the substrate and has an opening positioned over the al least one copper contact pad. The UBM includes a titanium layer, a first copper layer, a nickel-vanadium layer and a second copper layer. The titanium layer forms a closed-loop surrounding the opening of the dielectric layer. The first copper layer is formed over the titanium layer and the opening of the dielectric layer such that the first copper layer directly contacts the copper contact pad. The nickel-vanadium layer is formed on the first copper layer and the second copper layer is formed on the nickel-vanadium layer. A metal bump is provided on the UBM over the copper contact pad thereby forming a bump electrode. The UBM of the present invention is characterized by using the titanium layer with a closed-loop shape as the adhesion layer to significantly increase the adhesion between the UBM and the passivation layer, and using the first copper layer, which is directly contacted with the copper contact pad, to provide a better electrical performance.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention relates to electronic assembly technology and more specifically to solder bump interconnections for mounting chip with copper I/O pads to an interconnection substrate. [0002]
  • 2. Description of the Related Art [0003]
  • As chips continued to decrease in size, pure copper circuits had undeniable advantages that the traditional aluminum interconnects could not match. Copper wires conduct electricity with about 40 percent less resistance than aluminum. That translates into a speedup of as much as 15 percent in microprocessors that contain copper wires. Furthermore, copper wires are also far less vulnerable than those made of aluminum to electromigration, the movement of individual atoms through a wire, caused by high electric currents, which creates voids and ultimately breaks the wires. Most important, the widths of copper wires can be squeezed down to the 0.2-micron range from the current 0.35-micron widths—a reduction far more difficult for aluminum. Because the conventional aluminum alloys can't conduct electricity well enough, or withstand the higher current densities needed to make these circuits switch faster when wires with very small dimensions is used. Gradually, chip with copper interconnects will substitute for chip with traditional aluminum interconnects. [0004]
  • Moreover, as electronic devices have become more smaller and thinner, the velocity and the complexity of IC chip become more and more higher. Accordingly, a need has arisen for higher package efficiency. Demand for miniaturization is the primary catalyst driving the usage of advanced packages such as chip scale packages (CSP) and flip chips. Both of them greatly reduce the amount of board real estate required when compared to the alternative ball grid array (BGA) and quad flat pack (QFP). Typically, a CSP is 20 percent larger than the die itself, while the flip chip has been described as the ultimate package precisely because it has no package. The bare die itself is attached to the substrate by means of solder bumps directly attached to the die. [0005]
  • Flip-chip bumping technology typically comprises (a) forming an under bump metallurgy (UBM) on bonding pads of the chip, and (b) forming metal bumps on the UBM. Typically, UBM consists of three metal layers, including: (a) adhesion layer (formed of Al or Cr) for purposes of providing a good adhesion to Al pad and passivation layer; (b) barrier layer (formed of NiV or TiW) for preventing contact pads on the chip and the bump electrode from reacting with each other to generate an intermetallic compound (which is harmful to the reliability of chip); and (c) wetting layer (formed of Ni, Cu, Mo or Pt) wherein that kind of metals provide a higher wetting power to solder thereby allowing for proper wetting of solder during solder-reflow process. Typically, the metal bump is made of conductive material (such as metal high melting point solder alloys, low melting point solder alloys, gold, nickel or copper), depending on the characteristics needed in the to-be-formed flip-chip. [0006]
  • FIG. 1 is a cross sectional view of a conventional semiconductor having a bump electrode. An [0007] aluminum contact pad 110 is formed on a substrate 120 of a semiconductor integrated circuit. A passivation film 130, serving as an insulation film, is formed on the entire surface of the substrate 120. A passivation opening section which is formed at a predetermined position, is formed to expose the aluminum contact pad 110. The semiconductor device 100 has a UBM 140 consisting of three metal layers, including: (a) aluminum layer 140 a used as the adhesion layer; (b) nickel-vanadium layer 140 b used as the barrier layer; and (c) copper layer 140 c used as the wetting layer.
  • However, the UBM [0008] 140 is not applicable to chip with copper contact pads because of poor aluminum-to-copper adhesion. Therefore, the semiconductor industry develops a semiconductor device 200 (see FIG. 2) wherein the UBM 240 consists of two metal layers, including: (a) titanium layer 240 a used as the adhesion layer and the barrier layer; and (b) copper layer 240 b used as the wetting layer. Although the titanium layer has a good adhesion to both of the passivation layer 130 and the copper contact pad 210, it has a disadvantage of poor electric conductivity as compared to a copper layer.
  • The present invention therefore seeks to provide an under bump metallurgy which overcomes, or at least reduces the above-mentioned problems of the prior art. [0009]
  • SUMMARY OF THE INVENTION
  • It is a primary object of the present invention to provide an under bump metallurgy (UBM) adapted for chip with copper contact pads wherein the UBM is capable of providing a better electrical performance. [0010]
  • It is another object of the present invention, by integrating the UBM of the present invention with I/O distribution, to provide a semiconductor device having a structure that permits rearrangement of contact pads and provides a better electrical performance. [0011]
  • The UBM of the present invention is applied to a chip with copper contact pads in order to form a semiconductor device having bump electrodes. Typically, the chip comprises a substrate and at least one copper contact pad on the substrate. A passivation layer is formed over the substrate and has an opening positioned over the al least one copper contact pad. The UBM includes a titanium layer, a first copper layer, a nickel-vanadium layer and a second copper layer. The titanium layer forms a closed-loop surrounding the opening of the dielectric layer. The first copper layer is formed over the titanium layer and the opening of the dielectric layer such that the first copper layer directly contacts the copper contact pad. The nickel-vanadium layer is formed on the first copper layer and the second copper layer is formed on the nickel-vanadium layer. A metal bump is provided on the UBM over the copper contact pad thereby forming a bump electrode. Consequently, the semiconductor device of the present invention can be directly mounted to a interconnection substrate by means of bump electrodes directly attached thereon. [0012]
  • The UBM of the present invention is characterized by using the titanium layer with a closed-loop shape as the adhesion layer to significantly increase the adhesion between the UBM and the passivation layer, and using the first copper layer, which is directly contacted with the copper contact pad, to provide a better electrical performance. [0013]
  • The present invention further provides a semiconductor device having a structure that permits rearrangement of contact pads. The semiconductor device comprises a substrate having a copper contact pad formed thereon; a first dielectric layer formed over the substrate, the first dielectric layer having a first opening positioned over the copper contact pad; a multi-layered lead having a first end portion connected to the copper contact pad through the first opening and a second end portion extending on the first dielectric layer; a second dielectric layer formed over the multi-layered lead and the first dielectric layer, the second dielectric layer having a blind-via formed corresponding to the second end portion of the multi-layered lead; a conductive pad formed over the blind-via; and a metal bump provided on the conductive pad. The multi-layered lead includes a first titanium layer on the first dielectric layer, a copper layer on the first titanium layer and a second titanium layer on the copper layer wherein the first titanium layer has a second opening corresponding to the first opening and the copper layer directly contacts the copper contact pad through the second opening and the first opening.[0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects, advantages, and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings. [0015]
  • FIG. 1 is a schematic sectional view of a conventional semiconductor device having a bump electrode; [0016]
  • FIG. 2 is a schematic sectional view of another conventional semiconductor device having a bump electrode; [0017]
  • FIGS. [0018] 3-6 illustrate in cross-section major steps of formation of the UBM in accordance with the present invention;
  • FIG. 7 is a schematic sectional view of a portion of a semiconductor device having a bump electrode in accordance with a preferred embodiment of the present invention; and [0019]
  • FIG. 8 is a schematic sectional view of a portion of a semiconductor device having a bump electrode in accordance with another preferred embodiment of the present invention.[0020]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • As shown in FIG. 7, a semiconductor device include a [0021] substrate 310, a copper contact pad 320, and a dielectric layer such as passivation layer 330. The substrate 310 may comprise a layer of a semiconducting material such as silicon, gallium arsenide, silicon carbide, diamond, or other substrate materials known to those having skill in the art. The passivation layer 330 is preferably a polyimide layer but can alternately be a silicon dioxide layer, a silicon nitride layer, or layers of other passivation materials known to those having skill in the art. As shown, the passivation layer 330 preferably covers the top edge portion of the copper contact pad 320 opposite the substrate, leaving the central surface portion of the copper contact pad 320 exposed from the passivation layer 330. The UBM 340 in accordance with the present invention includes a titanium layer 340 a, a first copper layer 340 b, a nickel-vanadium layer 340 c and a second copper layer 340 d. The titanium layer 340 a is provided on the passivation layer 330 to form a closed-loop surrounding the opening 330 a of the dielectric layer 330. The first copper layer 340 b is formed over the titanium layer 340 a and the opening 330 a of the dielectric layer 330 such that the first copper layer 340 b directly contacts the copper contact pad 320. The nickel-vanadium layer 340 c is formed on the first copper layer 340 b and the second copper layer 340 d is formed on the nickel-vanadium layer 340 c.
  • The [0022] UBM 340 of the present invention chooses the titanium layer 340 a as adhesion layer, due to good adhesion of titanium to the passivation layer 330, to obtain a better adhesion between the first copper layer 340 b and the passivation layer 330. Since the titanium layer 340 a is formed as a closed-loop surrounding the opening 330 a of the dielectric layer 330, the first cooper layer 340 a is allowed to directly contacts the copper pad thereby providing a better electrical performance. Furthermore, the UBM 340 utilizing the nickel-vanadium layer 340 b as the barrier layer and utilizing the second copper layer 340 d as the wetting layer.
  • The semiconductor device shown in FIG. 7 further comprises a [0023] solder bump 350 provided on the UBM 340 over the copper contact pad 320 to act as a bump electrode. Consequently, the semiconductor device of the present invention can be directly mounted to a interconnection substrate by means of the bump electrodes directly attached thereon. Typically, there are two kinds of solder compositions used to form the solder bump 350. They includes (a) high melting point solder alloys such as 5Sn/95Pb or 3Sn/97Pb and (b) lower melting point solder alloys such as 63Sn/37Pb or 40Sn/60Pb. Bumping process is typically accomplished by vapor deposition, electroplating or printing. Alternatively, the solder bump 350 may be replaced with a gold bump. Typically, the gold bump comprises at least about 90 weight percentage of Au deposited on the UBM 340 by means including electroplating or evaporative lift-off.
  • A subtractive process may be used to form the [0024] UBM 340 in accordance with the present invention.
  • Referring to FIG. 3, a [0025] titanium layer 340 a is sputtered to deposit across the passivation layer 330 including the exposed surface portions of the copper contact pad 320.
  • Referring to FIG. 4, the [0026] titanium layer 340 a is selectively etched to form a titanium opening corresponding to the passivation layer opening 330 a.
  • Referring to FIG. 5, other metal layers of the UBM [0027] 340 (including the first copper layer 340 b, the nickel-vanadium layer 340 c and the second copper layer 340 d) are sputtered to deposit on the titanium layer 340 a and the central surface portion of the copper contact pad 320 exposed from the passivation layer 330 and the titanium layer 340 a.
  • Referring to FIG. 6, after applying a layer of photoresist and patterning the photoresist layer, solder is electrodeposited on the photoresist opening section to obtain the [0028] solder bump 350; thereafter, the remaining photoresist is stripped.
  • Referring to FIG. 7, the UBM layers are etched with the [0029] solder bump 350 as a mask, and then a reflow step is proceeded.
  • FIG. 8 shows a portion of a [0030] semiconductor device 400 having a bump electrode in accordance with another embodiment of the present invention. The semiconductor device 400 is a package with I/O redistribution implemented at the wafer level. The semiconductor device 400 mainly comprises a multi-layered lead 440 having a first end portion connected to the copper contact pad 320 through the passivation opening 330a and a second end portion extending on the passivation layer 330. The multi-layered lead 440 includes a first titanium layer 440 a on the passivation layer 330, a copper layer 440 b on the first titanium layer 440 a and a second titanium layer 440 c on the copper layer 440 b. The first titanium layer 440 a has a opening corresponding to the passivation opening 330 a. The copper layer 440 b directly contacts the copper contact pad 320 through the opening of the first titanium layer 440 a and the opening 330 a thereby providing a better electrical performance. It could be understood that the multi-layered lead 440 is a part of a desired trace pattern to redistribute the copper contact pads 320 into a desired format.
  • A [0031] dielectric layer 450, preferably formed by a polyimide, is formed over the multi-layered lead 440 and the passivation layer 330. The dielectric layer 450 has a photo-defined blind-via 450 a formed corresponding to the second end portion (away from the copper contact pad 320) of the multi-layered lead 440. A conductive pad 460 is formed over the blind-via 450 a. Preferably, the conductive pad 460 comprises a nickel-vanadium layer 460 a formed over the blind-via 450 a and a copper layer 460 b formed on the nickel-vanadium layer 450 a. A solder bump 470 is provided on the copper layer 460 b. Alternatively, the solder bump 470 may be replaced with a gold bump.
  • Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed. [0032]

Claims (9)

What is claimed is:
1. A semiconductor device having a bump electrode comprising:
a substrate having a copper contact pad;
a dielectric layer formed over the substrate, the dielectric layer having an opening positioned over the copper contact pad;
a titanium layer on the dielectric layer wherein the titanium layer forms a closed-loop surrounding the opening of the dielectric layer;
a first copper layer formed over the titanium layer and the opening of the dielectric layer such that the first copper layer directly contacts the copper contact pad;
a nickel-vanadium layer formed on the first copper layer;
a second copper layer formed on the nickel-vanadium layer; and
a metal bump provided on the second copper layer.
2. The semiconductor device as claimed in claim 1, wherein the dielectric layer is a passivation layer.
3. The semiconductor device as claimed in claim 1, wherein the metal bump is a gold bump.
4. The semiconductor device as claimed in claim 1, wherein the metal bump is a solder bump.
5. A semiconductor device having a bump electrode comprising:
a substrate having a copper contact pad;
a first dielectric layer formed over the substrate, the first dielectric layer having a first opening positioned over the copper contact pad;
a multi-layered lead having a first end portion connected to the copper contact pad through the first opening and a second end portion extending on the first dielectric layer;
the multi-layered lead including a first titanium layer on the first dielectric layer, a copper layer on the first titanium layer and a second titanium layer on the copper layer wherein the first titanium layer has a second opening corresponding to the first opening and the copper layer directly contacts the copper contact pad through the second opening and the first opening;
a second dielectric layer formed over the multi-layered lead and the first dielectric layer, the second dielectric layer having a blind-via formed corresponding to the second end portion of the multi-layered lead;
a conductive pad formed over the blind-via; and
a metal bump provided on the conductive pad.
6. The semiconductor device as claimed in claim 5, wherein the first dielectric layer is a passivation layer.
7. The semiconductor device as claimed in claim 5, wherein the conductive pad comprises a nickel-vanadium layer formed over the blind-via and a copper layer formed on the nickel-vanadium layer.
8. The semiconductor device as claimed in claim 5, wherein the metal bump is a gold bump.
9. The semiconductor device as claimed in claim 5, wherein the metal bump is a solder bump.
US09/764,313 2000-10-13 2001-01-19 Semiconductor device having bump electrode Expired - Lifetime US6452270B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW089121621A TW449813B (en) 2000-10-13 2000-10-13 Semiconductor device with bump electrode
US09/764,313 US6452270B1 (en) 2000-10-13 2001-01-19 Semiconductor device having bump electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW089121621A TW449813B (en) 2000-10-13 2000-10-13 Semiconductor device with bump electrode
US09/764,313 US6452270B1 (en) 2000-10-13 2001-01-19 Semiconductor device having bump electrode

Publications (2)

Publication Number Publication Date
US20020096764A1 true US20020096764A1 (en) 2002-07-25
US6452270B1 US6452270B1 (en) 2002-09-17

Family

ID=26666915

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/764,313 Expired - Lifetime US6452270B1 (en) 2000-10-13 2001-01-19 Semiconductor device having bump electrode

Country Status (2)

Country Link
US (1) US6452270B1 (en)
TW (1) TW449813B (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030057559A1 (en) * 2001-09-27 2003-03-27 Mis J. Daniel Methods of forming metallurgy structures for wire and solder bonding
US6596619B1 (en) * 2002-05-17 2003-07-22 Taiwan Semiconductor Manufacturing Company Method for fabricating an under bump metallization structure
US20040157450A1 (en) * 2001-12-21 2004-08-12 Bojkov Christo P. Waferlevel method for direct bumping on copper pads in integrated circuits
US20040183195A1 (en) * 2003-03-20 2004-09-23 Min-Lung Huang [under bump metallurgy layer]
US20040262760A1 (en) * 2003-06-30 2004-12-30 Advanced Semiconductor Engineering, Inc. Under bump metallization structure of a semiconductor wafer
US20050009317A1 (en) * 2003-06-30 2005-01-13 Advanced Semiconductor Engineering, Inc. Bumping process
US20050051896A1 (en) * 2003-07-30 2005-03-10 Martin Reiss Arrangement for improving module reliability
US20050093150A1 (en) * 2001-07-25 2005-05-05 Rohm Co., Ltd. Semiconductor device and method of manufacturing the same
US20050215045A1 (en) * 2004-03-10 2005-09-29 Rinne Glenn A Methods of forming bumps using barrier layers as etch masks and related structures
US20060057772A1 (en) * 2004-04-09 2006-03-16 Advanced Semiconductor Engineering, Inc. Method for forming a redistribution layer in a wafer structure
US20070020906A1 (en) * 2005-07-21 2007-01-25 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming high reliability bump structure
US20070069320A1 (en) * 2005-08-19 2007-03-29 Samsung Electronics Co., Ltd. Wiring structure of a semiconductor package and method of manufacturing the same, and wafer level package having the wiring structure and method of manufacturing the same
WO2007046062A2 (en) * 2005-10-19 2007-04-26 Nxp B.V. Redistribution layer for wafer-level chip scale package and method therefor
US20080017984A1 (en) * 2006-07-21 2008-01-24 International Business Machines Corporation Blm structure for application to copper pad
US20080157392A1 (en) * 2006-12-29 2008-07-03 Andrew Yeohi Methods of forming stepped bumps and structures formed thereby
US20080169558A1 (en) * 2007-01-15 2008-07-17 Chipmos Technologies (Bermuda) Ltd. Redistribution circuit structure and manufacturing method thereof
CN100435298C (en) * 2005-12-19 2008-11-19 南茂科技股份有限公司 Wafer structure and bumping manufacturing process
CN100448005C (en) * 2005-06-21 2008-12-31 天水华天科技股份有限公司 Photoelectric integrative infrared receiver and packaging method
US20090133682A1 (en) * 2004-07-16 2009-05-28 Kee Action Sports I Llc Variable pneumatic sear for paintball gun
US7579694B2 (en) * 2003-02-18 2009-08-25 Unitive International Limited Electronic devices including offset conductive bumps
US20090224375A1 (en) * 2008-03-05 2009-09-10 Nec Electronics Corporation Semiconductor device and semiconductor device manufacturing method
US7839000B2 (en) 2002-06-25 2010-11-23 Unitive International Limited Solder structures including barrier layers with nickel and/or copper
US7879715B2 (en) 2002-06-25 2011-02-01 Unitive International Limited Methods of forming electronic structures including conductive shunt layers and related structures
US20120049372A1 (en) * 2010-08-27 2012-03-01 Roman Hamerski Top tri-metal system for silicon power semiconductor devices
US20120146212A1 (en) * 2010-12-08 2012-06-14 International Business Machines Corporation Solder bump connections
US20120261608A1 (en) * 2009-12-15 2012-10-18 Mitsubishi Gas Chemical Company, Inc. Etchant and method for manufacturing semiconductor device using same
KR101224728B1 (en) 2010-05-20 2013-01-21 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Substrate Contact Opening
GB2496701A (en) * 2011-11-18 2013-05-22 Cambridge Silicon Radio Ltd Under bump capacitors in wafer level chip scale packaging
US20150325541A1 (en) * 2007-06-15 2015-11-12 Rohm Co., Ltd. Semiconductor Device
US20160133807A1 (en) * 2014-11-10 2016-05-12 Seok Min Hwang Semiconductor device, semiconductor device package, and lightning apparatus
CN106847783A (en) * 2017-01-19 2017-06-13 通富微电子股份有限公司 Make the method and bump packaging structure of bump packaging structure
US11407635B2 (en) * 2017-06-23 2022-08-09 Robert Bosch Gmbh Bonding pad layer system, gas sensor and method for manufacturing a gas sensor

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6642136B1 (en) 2001-09-17 2003-11-04 Megic Corporation Method of making a low fabrication cost, high performance, high reliability chip scale package
US8021976B2 (en) 2002-10-15 2011-09-20 Megica Corporation Method of wire bonding over active area of a semiconductor circuit
JP2001223460A (en) * 2000-02-08 2001-08-17 Fujitsu Ltd Packaging circuit board and its manufacturing method
JP2002057252A (en) * 2000-08-07 2002-02-22 Hitachi Ltd Semiconductor device and method of manufacturing the same
US6815324B2 (en) 2001-02-15 2004-11-09 Megic Corporation Reliable metal bumps on top of I/O pads after removal of test probe marks
TWI313507B (en) 2002-10-25 2009-08-11 Megica Corporatio Method for assembling chips
US7902679B2 (en) 2001-03-05 2011-03-08 Megica Corporation Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump
US6818545B2 (en) * 2001-03-05 2004-11-16 Megic Corporation Low fabrication cost, fine pitch and high reliability solder bump
US6737353B2 (en) * 2001-06-19 2004-05-18 Advanced Semiconductor Engineering, Inc. Semiconductor device having bump electrodes
US6667230B2 (en) * 2001-07-12 2003-12-23 Taiwan Semiconductor Manufacturing Co., Ltd. Passivation and planarization process for flip chip packages
JP2003031576A (en) * 2001-07-17 2003-01-31 Nec Corp Semiconductor element and manufacturing method therefor
KR100426897B1 (en) * 2001-08-21 2004-04-30 주식회사 네패스 Fabrication and structure of solder terminal for flip chip packaging
US7099293B2 (en) 2002-05-01 2006-08-29 Stmicroelectronics, Inc. Buffer-less de-skewing for symbol combination in a CDMA demodulator
US6853076B2 (en) * 2001-09-21 2005-02-08 Intel Corporation Copper-containing C4 ball-limiting metallurgy stack for enhanced reliability of packaged structures and method of making same
TWI243439B (en) * 2001-12-31 2005-11-11 Advanced Semiconductor Eng Bumping process
TWI245402B (en) 2002-01-07 2005-12-11 Megic Corp Rod soldering structure and manufacturing process thereof
US6756294B1 (en) * 2002-01-30 2004-06-29 Taiwan Semiconductor Manufacturing Company Method for improving bump reliability for flip chip devices
TW533521B (en) * 2002-02-27 2003-05-21 Advanced Semiconductor Eng Solder ball process
KR100476301B1 (en) * 2002-07-27 2005-03-15 한국과학기술원 Fabrication Method of multilayer UBM by Electroplating for Flip chip Interconnections
US6762503B2 (en) * 2002-08-29 2004-07-13 Micron Technology, Inc. Innovative solder ball pad structure to ease design rule, methods of fabricating same and substrates, electronic device assemblies and systems employing same
US6897141B2 (en) * 2002-10-23 2005-05-24 Ocube Digital Co., Ltd. Solder terminal and fabricating method thereof
TW578217B (en) * 2002-10-25 2004-03-01 Advanced Semiconductor Eng Under-bump-metallurgy layer
US6881654B2 (en) * 2002-10-31 2005-04-19 United Electronics Corp. Solder bump structure and laser repair process for memory device
TWI229930B (en) * 2003-06-09 2005-03-21 Advanced Semiconductor Eng Chip structure
US7081372B2 (en) * 2003-07-09 2006-07-25 Chartered Semiconductor Manufacturing Ltd. Aluminum cap with electroless nickel/immersion gold
US7470997B2 (en) * 2003-07-23 2008-12-30 Megica Corporation Wirebond pad for semiconductor chip or wafer
TWI220308B (en) * 2003-08-07 2004-08-11 Advanced Semiconductor Eng Under bump metallurgic layer
US20060209497A1 (en) * 2003-10-03 2006-09-21 Kazuhiko Ooi Pad structure of wiring board and wiring board
US20050072834A1 (en) * 2003-10-06 2005-04-07 Kejun Zeng Connection site coating method and solder joints
US7091124B2 (en) 2003-11-13 2006-08-15 Micron Technology, Inc. Methods for forming vias in microelectronic devices, and methods for packaging microelectronic devices
US8084866B2 (en) 2003-12-10 2011-12-27 Micron Technology, Inc. Microelectronic devices and methods for filling vias in microelectronic devices
US7095116B1 (en) * 2003-12-01 2006-08-22 National Semiconductor Corporation Aluminum-free under bump metallization structure
US7273803B2 (en) * 2003-12-01 2007-09-25 International Business Machines Corporation Ball limiting metallurgy, interconnection structure including the same, and method of forming an interconnection structure
TWI254995B (en) * 2004-01-30 2006-05-11 Phoenix Prec Technology Corp Presolder structure formed on semiconductor package substrate and method for fabricating the same
DE102004009296B4 (en) * 2004-02-26 2011-01-27 Siemens Ag Method for producing an arrangement of an electrical component
US7064446B2 (en) * 2004-03-29 2006-06-20 Intel Corporation Under bump metallization layer to enable use of high tin content solder bumps
CN1333450C (en) * 2004-04-15 2007-08-22 全懋精密科技股份有限公司 Electric connection end structure of embedded chip and its producing method
US20050247894A1 (en) 2004-05-05 2005-11-10 Watkins Charles M Systems and methods for forming apertures in microfeature workpieces
US7232754B2 (en) 2004-06-29 2007-06-19 Micron Technology, Inc. Microelectronic devices and methods for forming interconnects in microelectronic devices
US8067837B2 (en) 2004-09-20 2011-11-29 Megica Corporation Metallization structure over passivation layer for IC chip
US7429494B2 (en) * 2004-08-24 2008-09-30 Micron Technology, Inc. Microelectronic imagers with optical devices having integral reference features and methods for manufacturing such microelectronic imagers
SG120200A1 (en) 2004-08-27 2006-03-28 Micron Technology Inc Slanted vias for electrical circuits on circuit boards and other substrates
US7300857B2 (en) 2004-09-02 2007-11-27 Micron Technology, Inc. Through-wafer interconnects for photoimager and memory wafers
CN100336215C (en) * 2004-09-30 2007-09-05 江阴长电先进封装有限公司 Micron level chip packing structure
WO2007001429A2 (en) * 2004-10-25 2007-01-04 The Reagents Of The University Of California Stacked layer electrode for organic electronic devices
US7271482B2 (en) 2004-12-30 2007-09-18 Micron Technology, Inc. Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods
US7282433B2 (en) * 2005-01-10 2007-10-16 Micron Technology, Inc. Interconnect structures with bond-pads and methods of forming bump sites on bond-pads
US8294279B2 (en) 2005-01-25 2012-10-23 Megica Corporation Chip package with dam bar restricting flow of underfill
US7416980B2 (en) * 2005-03-11 2008-08-26 Intel Corporation Forming a barrier layer in interconnect joints and structures formed thereby
CN100428414C (en) * 2005-04-15 2008-10-22 中芯国际集成电路制造(上海)有限公司 Method for forming low-stress multi-layer metallized structure and leadless solder end electrode
US7795134B2 (en) 2005-06-28 2010-09-14 Micron Technology, Inc. Conductive interconnect structures and formation methods using supercritical fluids
US20060290001A1 (en) * 2005-06-28 2006-12-28 Micron Technology, Inc. Interconnect vias and associated methods of formation
KR100606654B1 (en) * 2005-08-01 2006-08-01 삼성전자주식회사 Semiconductor package having ferrite shielding structure for reducing electromagnetic interference, and fabrication method thereof
US20070045812A1 (en) * 2005-08-31 2007-03-01 Micron Technology, Inc. Microfeature assemblies including interconnect structures and methods for forming such interconnect structures
US7863187B2 (en) 2005-09-01 2011-01-04 Micron Technology, Inc. Microfeature workpieces and methods for forming interconnects in microfeature workpieces
US8059658B1 (en) 2005-12-23 2011-11-15 Extreme Networks, Inc. Method and system for automatic expansion and contraction of IP host forwarding database
US7932615B2 (en) 2006-02-08 2011-04-26 Amkor Technology, Inc. Electronic devices including solder bumps on compliant dielectric layers
US7674701B2 (en) 2006-02-08 2010-03-09 Amkor Technology, Inc. Methods of forming metal layers using multi-layer lift-off patterns
US7749899B2 (en) 2006-06-01 2010-07-06 Micron Technology, Inc. Microelectronic workpieces and methods and systems for forming interconnects in microelectronic workpieces
US7629249B2 (en) 2006-08-28 2009-12-08 Micron Technology, Inc. Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods
US7902643B2 (en) 2006-08-31 2011-03-08 Micron Technology, Inc. Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods
US8124490B2 (en) 2006-12-21 2012-02-28 Stats Chippac, Ltd. Semiconductor device and method of forming passive devices
TW200836276A (en) * 2007-02-16 2008-09-01 Chipmos Technologies Inc Conductive structure for a semiconductor integrated circuit and method for forming the same
US7812461B2 (en) 2007-03-27 2010-10-12 Micron Technology, Inc. Method and apparatus providing integrated circuit having redistribution layer with recessed connectors
US8344505B2 (en) 2007-08-29 2013-01-01 Ati Technologies Ulc Wafer level packaging of semiconductor chips
SG150410A1 (en) 2007-08-31 2009-03-30 Micron Technology Inc Partitioned through-layer via and associated systems and methods
US7884015B2 (en) 2007-12-06 2011-02-08 Micron Technology, Inc. Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods
JP5361264B2 (en) 2008-07-04 2013-12-04 ローム株式会社 Semiconductor device
TWI479617B (en) * 2009-03-16 2015-04-01 Winbond Electronics Corp Semiconductor structure and method of fabricating the same
US8072067B2 (en) * 2009-05-06 2011-12-06 Winbond Electronics Corp. Semiconductor structure
JP2011222738A (en) * 2010-04-09 2011-11-04 Renesas Electronics Corp Method of manufacturing semiconductor device
TW201640590A (en) * 2015-05-04 2016-11-16 矽品精密工業股份有限公司 Electronic package structure and the manufacture thereof
KR102601553B1 (en) * 2016-12-08 2023-11-15 삼성전자주식회사 Semiconductor light emitting device
KR102420586B1 (en) 2017-07-24 2022-07-13 삼성전자주식회사 Semiconductor devices, semiconductor packages, and method of manufacturing the Semiconductor devices

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514751A (en) * 1982-12-23 1985-04-30 International Business Machines Corporation Compressively stresses titanium metallurgy for contacting passivated semiconductor devices
US5376584A (en) * 1992-12-31 1994-12-27 International Business Machines Corporation Process of making pad structure for solder ball limiting metallurgy having reduced edge stress
JP3361881B2 (en) * 1994-04-28 2003-01-07 株式会社東芝 Semiconductor device and manufacturing method thereof
US6111317A (en) * 1996-01-18 2000-08-29 Kabushiki Kaisha Toshiba Flip-chip connection type semiconductor integrated circuit device
US5903058A (en) * 1996-07-17 1999-05-11 Micron Technology, Inc. Conductive bumps on die for flip chip application
JPH10135270A (en) * 1996-10-31 1998-05-22 Casio Comput Co Ltd Semiconductor device and manufacture thereof
US6441487B2 (en) * 1997-10-20 2002-08-27 Flip Chip Technologies, L.L.C. Chip scale package using large ductile solder balls
US6075290A (en) 1998-02-26 2000-06-13 National Semiconductor Corporation Surface mount die: wafer level chip-scale package and process for making the same

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795128B2 (en) * 2001-07-25 2010-09-14 Rohm Co., Ltd. Method of manufacturing a semiconductor device having an enhanced electrode pad structure
US20050093150A1 (en) * 2001-07-25 2005-05-05 Rohm Co., Ltd. Semiconductor device and method of manufacturing the same
US20040206801A1 (en) * 2001-09-27 2004-10-21 Mis J. Daniel Electronic devices including metallurgy structures for wire and solder bonding
US6762122B2 (en) * 2001-09-27 2004-07-13 Unitivie International Limited Methods of forming metallurgy structures for wire and solder bonding
US7665652B2 (en) * 2001-09-27 2010-02-23 Unitive International Limited Electronic devices including metallurgy structures for wire and solder bonding
US20030057559A1 (en) * 2001-09-27 2003-03-27 Mis J. Daniel Methods of forming metallurgy structures for wire and solder bonding
US20040157450A1 (en) * 2001-12-21 2004-08-12 Bojkov Christo P. Waferlevel method for direct bumping on copper pads in integrated circuits
US6770958B2 (en) * 2002-05-17 2004-08-03 Taiwan Semiconductor Manufacturing Company Under bump metallization structure
US6596619B1 (en) * 2002-05-17 2003-07-22 Taiwan Semiconductor Manufacturing Company Method for fabricating an under bump metallization structure
US8294269B2 (en) 2002-06-25 2012-10-23 Unitive International Electronic structures including conductive layers comprising copper and having a thickness of at least 0.5 micrometers
US7879715B2 (en) 2002-06-25 2011-02-01 Unitive International Limited Methods of forming electronic structures including conductive shunt layers and related structures
US7839000B2 (en) 2002-06-25 2010-11-23 Unitive International Limited Solder structures including barrier layers with nickel and/or copper
US7579694B2 (en) * 2003-02-18 2009-08-25 Unitive International Limited Electronic devices including offset conductive bumps
US20040183195A1 (en) * 2003-03-20 2004-09-23 Min-Lung Huang [under bump metallurgy layer]
US20040262760A1 (en) * 2003-06-30 2004-12-30 Advanced Semiconductor Engineering, Inc. Under bump metallization structure of a semiconductor wafer
US20050009317A1 (en) * 2003-06-30 2005-01-13 Advanced Semiconductor Engineering, Inc. Bumping process
US7223683B2 (en) * 2003-06-30 2007-05-29 Advanced Semiconductor Engineering, Inc. Wafer level bumping process
US20050051896A1 (en) * 2003-07-30 2005-03-10 Martin Reiss Arrangement for improving module reliability
US8487432B2 (en) 2004-03-10 2013-07-16 Amkor Technology, Inc. Electronic structures including barrier layers and/or oxidation barriers defining lips and related methods
US7834454B2 (en) 2004-03-10 2010-11-16 Unitive International Limited Electronic structures including barrier layers defining lips
US20110037171A1 (en) * 2004-03-10 2011-02-17 Rinne Glenn A Electronic Structures Including Barrier Layers and/or Oxidation Barriers Defining Lips and Related Methods
US7427557B2 (en) 2004-03-10 2008-09-23 Unitive International Limited Methods of forming bumps using barrier layers as etch masks
US20050215045A1 (en) * 2004-03-10 2005-09-29 Rinne Glenn A Methods of forming bumps using barrier layers as etch masks and related structures
US20080308931A1 (en) * 2004-03-10 2008-12-18 Unitive International Limited Electronic Structures Including Barrier Layers Defining Lips
US20070182011A1 (en) * 2004-04-09 2007-08-09 Min-Lung Huang Method for forming a redistribution layer in a wafer structure
US7220618B2 (en) * 2004-04-09 2007-05-22 Advanced Semiconductor Engineering Inc. Method for forming a redistribution layer in a wafer structure
US20060057772A1 (en) * 2004-04-09 2006-03-16 Advanced Semiconductor Engineering, Inc. Method for forming a redistribution layer in a wafer structure
US7420274B2 (en) 2004-04-09 2008-09-02 Advanced Semiconductor Engineering, Inc. Method for forming a redistribution layer in a wafer structure
US20090133682A1 (en) * 2004-07-16 2009-05-28 Kee Action Sports I Llc Variable pneumatic sear for paintball gun
US8176908B2 (en) 2004-07-16 2012-05-15 Kee Action Sports I Llc Variable pneumatic sear for paintball gun
CN100448005C (en) * 2005-06-21 2008-12-31 天水华天科技股份有限公司 Photoelectric integrative infrared receiver and packaging method
US20070020906A1 (en) * 2005-07-21 2007-01-25 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming high reliability bump structure
US7364998B2 (en) * 2005-07-21 2008-04-29 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming high reliability bump structure
US20070069320A1 (en) * 2005-08-19 2007-03-29 Samsung Electronics Co., Ltd. Wiring structure of a semiconductor package and method of manufacturing the same, and wafer level package having the wiring structure and method of manufacturing the same
US20090072397A1 (en) * 2005-10-19 2009-03-19 Nxp B.V. Redistribution layer for wafer-level chip scale package and method therefor
WO2007046062A2 (en) * 2005-10-19 2007-04-26 Nxp B.V. Redistribution layer for wafer-level chip scale package and method therefor
US7709954B2 (en) 2005-10-19 2010-05-04 Nxp B.V. Redistribution layer for wafer-level chip scale package and method therefor
WO2007046062A3 (en) * 2005-10-19 2007-07-05 Nxp Bv Redistribution layer for wafer-level chip scale package and method therefor
CN100435298C (en) * 2005-12-19 2008-11-19 南茂科技股份有限公司 Wafer structure and bumping manufacturing process
US7923836B2 (en) * 2006-07-21 2011-04-12 International Business Machines Corporation BLM structure for application to copper pad
US20080017984A1 (en) * 2006-07-21 2008-01-24 International Business Machines Corporation Blm structure for application to copper pad
US20080157392A1 (en) * 2006-12-29 2008-07-03 Andrew Yeohi Methods of forming stepped bumps and structures formed thereby
US20080169558A1 (en) * 2007-01-15 2008-07-17 Chipmos Technologies (Bermuda) Ltd. Redistribution circuit structure and manufacturing method thereof
US7498251B2 (en) * 2007-01-15 2009-03-03 Chipmos Technologies (Bermuda) Ltd. Redistribution circuit structure
US10032739B2 (en) 2007-06-15 2018-07-24 Rohm Co., Ltd. Semiconductor device
US20150325541A1 (en) * 2007-06-15 2015-11-12 Rohm Co., Ltd. Semiconductor Device
US9466583B2 (en) * 2007-06-15 2016-10-11 Rohm Co., Ltd. Semiconductor device
US11037897B2 (en) 2007-06-15 2021-06-15 Rohm Co., Ltd. Semiconductor device
US10510700B2 (en) 2007-06-15 2019-12-17 Rohm Co., Ltd. Semiconductor device
US9685419B2 (en) 2007-06-15 2017-06-20 Rohm Co., Ltd. Semiconductor device
US20090224375A1 (en) * 2008-03-05 2009-09-10 Nec Electronics Corporation Semiconductor device and semiconductor device manufacturing method
US7936075B2 (en) * 2008-03-05 2011-05-03 Renesas Electronics Corporation Semiconductor device and semiconductor device manufacturing method
US20120261608A1 (en) * 2009-12-15 2012-10-18 Mitsubishi Gas Chemical Company, Inc. Etchant and method for manufacturing semiconductor device using same
US8900478B2 (en) * 2009-12-15 2014-12-02 Mitsubishi Gas Chemical Company, Inc. Etchant and method for manufacturing semiconductor device using same
KR101224728B1 (en) 2010-05-20 2013-01-21 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Substrate Contact Opening
US8698306B2 (en) 2010-05-20 2014-04-15 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate contact opening
US9275964B2 (en) 2010-05-20 2016-03-01 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate contact opening
US8426971B2 (en) * 2010-08-27 2013-04-23 Diodes FabTech, Inc. Top tri-metal system for silicon power semiconductor devices
US20120049372A1 (en) * 2010-08-27 2012-03-01 Roman Hamerski Top tri-metal system for silicon power semiconductor devices
US8778792B2 (en) 2010-12-08 2014-07-15 International Business Machines Corporation Solder bump connections
US20120146212A1 (en) * 2010-12-08 2012-06-14 International Business Machines Corporation Solder bump connections
US8492892B2 (en) * 2010-12-08 2013-07-23 International Business Machines Corporation Solder bump connections
GB2496701A (en) * 2011-11-18 2013-05-22 Cambridge Silicon Radio Ltd Under bump capacitors in wafer level chip scale packaging
US8710658B2 (en) 2011-11-18 2014-04-29 Cambridge Silicon Radio Limited Under bump passive components in wafer level packaging
US20170110639A1 (en) * 2014-11-10 2017-04-20 Samsung Electronics Co., Ltd. Semiconductor device, semiconductor device package, and lightning apparatus
US9583687B2 (en) * 2014-11-10 2017-02-28 Samsung Electronics Co., Ltd. Semiconductor device, semiconductor device package, and lightning apparatus
US9899584B2 (en) * 2014-11-10 2018-02-20 Samsung Electronics Co., Ltd. Semiconductor device and package including solder bumps with strengthened intermetallic compound
KR20160056330A (en) * 2014-11-10 2016-05-20 삼성전자주식회사 Semiconductor device, semiconductor device package and lighting apparatus
CN105591016A (en) * 2014-11-10 2016-05-18 三星电子株式会社 Interconnection bump, semiconductor device, semiconductor device package, and lightning apparatus
US20160133807A1 (en) * 2014-11-10 2016-05-12 Seok Min Hwang Semiconductor device, semiconductor device package, and lightning apparatus
KR102307062B1 (en) 2014-11-10 2021-10-05 삼성전자주식회사 Semiconductor device, semiconductor device package and lighting apparatus
CN106847783A (en) * 2017-01-19 2017-06-13 通富微电子股份有限公司 Make the method and bump packaging structure of bump packaging structure
US11407635B2 (en) * 2017-06-23 2022-08-09 Robert Bosch Gmbh Bonding pad layer system, gas sensor and method for manufacturing a gas sensor

Also Published As

Publication number Publication date
US6452270B1 (en) 2002-09-17
TW449813B (en) 2001-08-11

Similar Documents

Publication Publication Date Title
US6452270B1 (en) Semiconductor device having bump electrode
US20020086520A1 (en) Semiconductor device having bump electrode
US8487432B2 (en) Electronic structures including barrier layers and/or oxidation barriers defining lips and related methods
US6417089B1 (en) Method of forming solder bumps with reduced undercutting of under bump metallurgy (UBM)
US6841872B1 (en) Semiconductor package and fabrication method thereof
US6762117B2 (en) Method of fabricating metal redistribution layer having solderable pads and wire bondable pads
US7338889B2 (en) Method of improving copper interconnects of semiconductor devices for bonding
US7056818B2 (en) Semiconductor device with under bump metallurgy and method for fabricating the same
US7034402B1 (en) Device with segmented ball limiting metallurgy
US6251501B1 (en) Surface mount circuit device and solder bumping method therefor
US6375062B1 (en) Surface bumping method and structure formed thereby
US20040040855A1 (en) Method for low-cost redistribution and under-bump metallization for flip-chip and wafer-level BGA silicon device packages
US6348399B1 (en) Method of making chip scale package
US7755190B2 (en) Electronic device including a nickel-palladium alloy layer
US20070114662A1 (en) Interconnecting element between semiconductor chip and circuit support and method
KR100818902B1 (en) Method and apparatus for manufacturing an interconnect structure
CN1315158C (en) Method for selective electroplating of semiconductor device i/o pads
US20050045697A1 (en) Wafer-level chip scale package
US10199345B2 (en) Method of fabricating substrate structure
US20020163069A1 (en) Method for forming wafer level package having serpentine-shaped electrode along scribe line and package formed
US6429046B1 (en) Flip chip device and method of manufacture
US6692629B1 (en) Flip-chip bumbing method for fabricating solder bumps on semiconductor wafer
US6956293B2 (en) Semiconductor device
US20060160267A1 (en) Under bump metallurgy in integrated circuits
US20040262760A1 (en) Under bump metallization structure of a semiconductor wafer

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED SEMICONDUCTOR ENGINEERING INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUANG, MIN-LUNG;REEL/FRAME:011487/0305

Effective date: 20010103

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12