US20020098243A1 - Polymerizable organosilicon nanocapsules - Google Patents

Polymerizable organosilicon nanocapsules Download PDF

Info

Publication number
US20020098243A1
US20020098243A1 US09/970,991 US97099101A US2002098243A1 US 20020098243 A1 US20020098243 A1 US 20020098243A1 US 97099101 A US97099101 A US 97099101A US 2002098243 A1 US2002098243 A1 US 2002098243A1
Authority
US
United States
Prior art keywords
group
synthetic resin
propoxy
groups
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/970,991
Inventor
Roland Edelmann
Jaroslaw Monkiewicz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10100633A external-priority patent/DE10100633A1/en
Application filed by Degussa GmbH filed Critical Degussa GmbH
Assigned to DEGUSSA AG reassignment DEGUSSA AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EDELMANN, ROLAND, MONKIEWICZ, JAROSLAW
Publication of US20020098243A1 publication Critical patent/US20020098243A1/en
Priority to US11/258,025 priority Critical patent/US8043701B2/en
Assigned to EVONIK DEGUSSA GMBH reassignment EVONIK DEGUSSA GMBH CHANGE ADDRESS Assignors: EVONIK DEGUSSA GMBH
Assigned to DEGUSSA GMBH reassignment DEGUSSA GMBH CHANGE OF ENTITY Assignors: DEGUSSA AG
Assigned to EVONIK DEGUSSA GMBH reassignment EVONIK DEGUSSA GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DEGUSSA GMBH
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]

Definitions

  • the present invention relates to polymerizable organosilicon nanocapsules having a core and an organosilicon shell, processes for preparing, and uses of same. Such compounds are particularly suited for use in scratch-resistant coatings.
  • sol or gel particles or of metal or semimetal oxides can be modified by treatment with a hydrolyzable organosilane or organosiloxane, which generally involves the attachment of just a single-ply silane layer to the oxide or sol gel particle.
  • Oxides or sol or gel particles treated in this way examples being inorganic pigments or fillers, may be incorporated into a polymer matrix, films, coating compositions and coatings producible therewith. In general, however, the scratch resistance of such polymer systems is low.
  • DE 198 46 660 discloses nanoscale, surface-modified oxide or mixed-oxide particles enveloped by organosilicon groups bonded covalently to the oxide particle, the organofunctional groups being described as reactive groups and normally being oriented outward, so that by means of polymerization they are bound into the polymer matrix with the polymer material when the prepolymer is cured.
  • the process of preparing such coating compositions is complicated, since the organosilane and the oxide component are incorporated separately into the prepolymer.
  • Hydrolyzable silane components having ethylenically unsaturated organic groups are usually high-priced starting materials, however.
  • DYNASYLAN® MEMO tends to react in the presence of even slight traces of a polymerization initiator or radiation with the undesirable result that the viscosity of a corresponding formulation may rise drastically.
  • stabilizers must be added. It is therefore often difficult to master the handling of the starting materials and the preparation of such coating systems.
  • a nanoscale core A which includes:
  • an organosilicon shell B which includes:
  • R is a vinyl or allyl group
  • x is a number from 0 to 20;
  • Another embodiment of the present invention provides a coated article, which includes the above composition in contact with a substrate.
  • Another embodiment of the present invention provides a polymerizable organosilicon nanocapsule prepared by a process, which includes reacting:
  • (iii) optionally, at least one monomeric and/or oligomeric silicic ester which carries at least one selected from the group including methoxy, ethoxy, n-propoxy, i-propoxy group, and combinations thereof and has an average degree of oligomerization of from 1 to 50, and
  • the groups R′ and R′′ are identical or different and are each independently selected from the group including a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, chloroalkyl, bromoalkyl, iodoalkyl, isocyanoalkyl, cyanoalkyl, fluoroalkyl, perfluoroalkyl, alkenyl, aryl, acylalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, sulfane, mercaptoalkyl, thiacyamidoalkyl, glycidyloxyalkyl, aminoalkyl, diaminoalkyl, triaminoalkyl, carbonatoalkyl or ureidoalkyl group, the respective alkylene groups containing 1 to 6 carbon atoms, Y is a methoxy, ethoxy, i-propoxy, n-propoxy or 2-
  • each silicon atom independently carries at least one functionality selected from the group including alkyl, fluoroalkyl, cyanoalkyl, isocyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxyalkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl, alkoxy, and combinations thereof, and remaining free valences of the silicon atoms in the siloxane are satisfied by methoxy or ethoxy or hydroxyl groups, and
  • methoxy or ethoxy or hydroxyl groups mixing and then adding at least one nanoscale oxide and/or mixed oxide (KA—O) particle of at least one metal or semimetal selected from the group including main groups 2 to 6, of the Periodic Table of the Elements, transition groups 1 to 8 of the Periodic Table of the Elements, lanthanides, and mixtures thereof with thorough mixing, and
  • KA—O nanoscale oxide and/or mixed oxide
  • a monomeric and/or oligomeric silicic ester which carries methoxy, ethoxy, or i- and/or n-propoxy groups and has an average degree of oligomerization of from 1 to 50, preferably from 2 to 10, with particular preference from 3 to 5, and
  • an organofunctional siloxane whose functionalities are identical or different and in which each silicon atom in the siloxane carries a functionality selected from the group including alkyl, which is linear, branched or cyclic with 1 to 20 carbon atoms, preferably 1 to 16 carbon atoms, fluoroalkyl, cyanoalkyl, isocyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxy alkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl and alkoxy, preferably methoxy, ethoxy, n-propoxy or i-propoxy, and the remaining free valences of the silicon atoms in the siloxane are satisfied
  • the groups R′ and R′′ are identical or different and are each a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, preferably 1 to 16 carbon atoms, a chloroalkyl, bromoalkyl, iodoalkyl, isocyanoalkyl, cyanoalkyl, fluoroalkyl or perfluoroalkyl, alkenyl, aryl, acylalkyl, acryloyloxyalkyl, methacryl-oyloxyalkyl, sulfane, mercaptoalkyl, thiacyamidoalkyl, glycidyloxyalkyl, aminoalkyl, diaminoalkyl, triaminoalkyl, carbonatoalkyl or ureidoalkyl group, the respective alkylene groups containing 1 to 6 carbon atoms, R′′ is preferably a methyl, Y is a methoxy,
  • a curable synthetic resin or a precursor of a curable synthetic resin i.e., a liquid prepolymer or a mixture of corresponding prepolymers, for example, an acrylate, methacrylate, epoxide, polyurethane and/or unsaturated polyester.
  • a curable synthetic resin or a precursor of a curable synthetic resin i.e., a liquid prepolymer or a mixture of corresponding prepolymers, for example, an acrylate, methacrylate, epoxide, polyurethane and/or unsaturated polyester.
  • organosilane containing a reactive, polymerizable organofunctional group such as a vinyl group or allyl group or a group as may be inferred from DE 198 46 660 and DE 198 46 659 (the entire contents of each of which being hereby incorporated by reference), and at least one hydrolyzable group, preferably methoxy, ethoxy, i- or n-propoxy or 2-methoxyethoxy, or at least one hydroxyl group, together if desired with abovementioned components (iii) to (v), is first introduced into a liquid, curable synthetic resin or a precursor of a synthetic resin, together with a catalyst, wetting agents if desired, and water the system is mixed and only then is the component (i) added, with thorough mixing, and hydrolysis alcohol formed is stripped from
  • the present process is surprising and advantageous in that it is thereby possible, simply and economically, to obtain a coating composition for scratch-resistant coatings which includes polymerizable organosilicon nanocapsules, possesses a comparatively low viscosity, and is homogeneous, it being possible for the coating composition to contain a particularly high proportion of polymerizable organosilicon nanoparticles.
  • the reaction takes place suitably in the presence of defined amounts of water. It is preferred to use from 0.5 to 6 mol of water, with particular preference from 0.5 to 4 mol of water, with very particular preference from 1 to 1.5 mol of water, per mole of a hydrolyzable, Si-bonded group of the organosilicon components. These ranges include 0.75, 1.1, 1.8, 2, 2.5, 3, 4.5 and 5 mol of water. The use of a catalyst and of a wetting agent is preferred.
  • the product substantially includes nanoscale oxide or mixed-oxide particles, with a complete and multilayer organosilicon shell, referred to as polymerizable organosilicon nanocapsules, which are obtained directly, advantageously, in fine dispersion in a curable synthetic resin or a precursor of a curable synthetic resin, and the comparatively low-viscosity product mixture may be used as it is or as a basis for coating materials for the scratch-resistant coating of surfaces.
  • polymerizable organosilicon nanocapsules which are obtained directly, advantageously, in fine dispersion in a curable synthetic resin or a precursor of a curable synthetic resin, and the comparatively low-viscosity product mixture may be used as it is or as a basis for coating materials for the scratch-resistant coating of surfaces.
  • the organosilicon shell in the nanocapsule of the present invention may be covalently bonded to the core, or it may be in contact with the core but not covalently bonded to the core. Preferably, at least one covalent bond is present between the shell and the core.
  • the nanocapsules may be present in compositions as either a bonded type or a non-bonded type or may be present as a mixture of bonded and non-bonded types.
  • the organosilicon shell may completely or partially cover the core, independently of the bonding or non-bonding nature of the nanocapsule. Preferably, the organosilicon shell completely or substantially completely covers the core.
  • the nanocapsule may be present in compositions as only the completely covered or as only the partially covered or mixtures of completely covered and partially covered. Preferably, the nanocapsules are present as mixtures of both completely and partially covered types.
  • a solvent-free, comparatively low-viscosity coating material or a composition containing polymerizable organosilicon nanocapsules of the invention is accessible simply, directly, and economically.
  • the coating of a substrate with the present composition is generally comparatively easy owing to the low viscosity of the composition.
  • the coating is preferably cured photochemically by UV irradiation or by irradiation with electron beams.
  • the irradiation is normally conducted at a temperature of from 10 to 60° C., advantageously at ambient temperature. This range includes 15, 20, 25, 30, 40 and 50° C.
  • Articles or substrates coated in accordance with the invention are generally notable for outstanding scratch resistance in accordance with DIN 53 799 (hard metal balls) and for good abrasion resistance (DIN 52 347), the entire contents of each of which being incorporated by reference.
  • the present invention accordingly provides a process for preparing a composition based on a curable synthetic resin or precursor of a curable synthetic resin and containing polymerizable organosilicon nanocapsules by introducing and heating the curable synthetic resin or its precursor, adding catalyst, wetting agent if desired, and defined amounts of water, adding at least one organosilicon component of the general formula III
  • R 1 is an alkenyl group having 2 to 18 carbon atoms, an aryl, alkylaryl, an arylalkyl, an acylalkyl, an aminoalkyl, a diaminoalkyl, a triaminoalkyl, an alkyloxyalkyl, an acylalkyl, a cyanoalkyl, an isocyanoalkyl, a glycidyloxyalkyl, an acyloxyalky, an acryloyloxyalkyl, a mercaptoalkyl, a polysulfide-alkyl or a methacryloyloxyalkyl group, and R 2 possesses the same definition as listed for R 1 or is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, preferably 1 to 16 carbon atoms, which is unsubstituted or substituted, and
  • a monomeric and/or oligomeric silicic ester which carries methoxy, ethoxy, n-propoxy or i-propoxy groups and has an average degree of oligomerization of from 1 to 50, and
  • an organofunctional siloxane whose functionalities are identical or different and in which each silicon atom in the siloxane carries a functionality from the group including alkyl, which is linear, branched or cyclic with 1 to 16 carbon atoms, fluoroalkyl, cyanoalkyl, isocyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxyalkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl and alkoxy, preferably methoxy or ethoxy, and the remaining free valences of the silicon atoms in the siloxane are satisfied by methoxy or ethoxy or hydroxyl groups, mixing the system and then adding at least one nanoscale oxide
  • Another preferred embodiment of the present invention provides polymerizable organosilicon nanocapsules including a nanoscale core A, which includes at least one oxide and/or. mixed oxide (KA—O) of at least one metal or semimetal from main groups 2 to 6 or transition groups 1 to 8 of the Periodic Table of the Elements, or of the lanthanides, and an organosilicon shell B, wherein the organosilicon shell B includes at least one organosilicon constituent of the general formula Ia
  • R is a vinyl or allyl group and x is a number from 0 to 20, the remaining free valences of Si being satisfied by SiO—, and/or —Z and the free valences of Si′ being satisfied by SiO—, —R and/or —Z, the groups Z being identical or different and being hydroxyl and/or alkoxy radicals, and each Si and Si′ of the shell B carrying not more than one group R,
  • organosilicon shell B is bonded to the core A (KA—O) via one or more covalent linkages to give the general formula Ib
  • R is a vinyl or allyl group and x is a number from 0 to 20, preferably from 1 to 15, with particular preference from 2 to 10, the remaining free valences of Si being satisfied by (KA—O)—, SiO—, and/or —Z and the free valences of Si′ being satisfied by (KA—O)—, SiO—, —R and/or —Z, the groups Z being identical or different and being hydroxyl and/or alkoxy radicals, and each Si and Si′ of the shell B carrying not more than one group R.
  • the range of 0 to 20 for x includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.
  • the Si and Si′ are tetravalent silicons.
  • Preferred alkoxy radicals of the groups Z are those with a linear, cyclic or branched alkyl radical having 1 to 18 carbon atoms, and particular preference is given to methoxy, ethoxy, i- or n-propoxy groups.
  • main groups 2 to 6 refers to groups IIa, IIIa, IVa, Va and VIa, respectively; and the term, “transition groups 1 to 8” refers to groups Ib, IIb, IIIb, IVb, Vb, VIb, VIb and VIII, respectively; and lanthanides refer to any of elements 57-71.
  • the weight ratio between core A and shell B is preferably from 1:1 to 4:1. This range includes all values and subranges therebetween, including 1.5:1, 2:1, 2.5:1, 3:1, and 3.5:1.
  • the core A of the polymerizable organosilicon nanocapsules of the invention preferably includes at least one oxide and/or mixed oxide (KA—O), including oxide hydroxides, selected from the group the elements Si, Al, Ti and/or Zr, for example, SiO 2 , such as pyrogenically prepared silica, silicates, Al 2 O 3 , aluminum hydroxide, alumosilicates, TiO 2 , titanates, ZrO 2 or zirconates. Mixtures are possible.
  • KA—O oxide and/or mixed oxide
  • polymerizable organosilicon nanocapsules of the invention preferably have an average diameter of from 10 to 400 nm, with particular preference from 20 to 100 nm. These ranges include 30, 40, 50, 60, 70, 80, 90, 200 and 300 nm.
  • Another preferred embodiment of the present invention provides polymerizable organosilicon nanocapsules obtainable by reacting
  • a monomeric and/or oligomeric silicic ester which carries methoxy, ethoxy, or n- and/or i-propoxy groups and has an average degree of oligomerization of from 1 to 50, for example, tetramethoxysilane, tetraethoxysilane, such as DYNASIL®A, tetrapropoxysilane, such as DYNASIL®P, or an oligomeric ethyl silicate, such as DYNASIL®40, and
  • an organofunctional siloxane whose functionalities are identical or different and in which each silicon atom in the siloxane carries a functionality selected from the group including alkyl, which is linear, branched or cyclic with 1 to 20 carbon atoms, fluoroalkyl, cyanoalkyl, iso-cyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxyalkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl and alkoxy, preferably methoxy or ethoxy, and the remaining free valences of the silicon atoms in the siloxane are satisfied by methoxy or ethoxy or hydroxyl groups, preference being given to those si
  • the groups R′ and R′′ are identical or different and are each a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a chloroalkyl, bromoalkyl, iodoalkyl, isocyanoalkyl, cyanoalkyl, fluoroalkyl or perfluoroalkyl, alkenyl, aryl, acylalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, sulfane, mercaptoalkyl, thiacyamidoalkyl, glycidyloxyalkyl, aminoalkyl, diaminoalkyl, triaminoalkyl, carbonatoalkyl or ureidoalkyl group, the respective alkylene groups containing 1 to 6 carbon atoms, R′′ is preferably a methyl, Y is a methoxy, ethoxy, i-propoxy,
  • Another preferred embodiment of the present invention provides a process for preparing polymerizable organosilicon nanocapsules, which includes reacting
  • a monomeric and/or oligomeric silicic ester which carries methoxy, ethoxy, or n- and/or i-propoxy groups and has an average degree of oligomerization of from 1 to 50, preferably from 2 to 10, with particular preference from 3 to 5, and
  • an organofunctional siloxane whose functionalities are identical or different and in which each silicon atom in the siloxane carries a functionality selected from the group including alkyl, which is linear, branched or cyclic with 1 to 20 carbon atoms, fluoroalkyl, cyanoalkyl, isocyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxyalkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl and alkoxy, preferably methoxy or ethoxy, and the remaining free valences of the silicon atoms in the siloxane are satisfied by methoxy or ethoxy or hydroxyl groups, and
  • the groups R′ and R′′ are identical or different and are each a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a chloroalkyl, bromoalkyl, iodoalkyl, isocyanoalkyl, cyanoalkyl, fluoroalkyl or perfluoroalkyl, alkenyl, aryl, acryloyloxyalkyl, methacryloyloxyalkyl, sulfane, mercaptoalkyl, thiacyamidoalkyl, glycidyloxyalkyl, aminoalkyl, diaminoalkyl, triaminoalkyl, carbonatoalkyl or ureidoalkyl group, the respective alkylene groups containing 1 to 6 carbon atoms, R′′ is preferably a methyl, Y is a methoxy, ethoxy, i-propoxy, n-propoxy or 2-me
  • methyltrimethoxysilane DYNASYLAN® MTMS
  • methyl triethoxysilane DYNASYLAN® MTES
  • propyltrimethoxysilane DYNASYLAN® PTMO
  • propyltriethoxysilane DYNASYLAN® PTEO
  • i-butyltrimethoxysilane DYNASYLAN® IBTMO
  • i-butyltriethoxysilane DYNASYLAN® IBTEO
  • octyltrimethoxysilane DYNASYLAN® OCTMO
  • octyltriethoxysilane DYNASYLAN® OCTEO
  • hexadecyltrimethoxysilane DYNASYLAN® 9116)
  • hexadecyltriethoxysilane DYNASYLAN(® 9216)
  • a preferable procedure involves introducing the generally liquid components of the prepolymer and heating them, adding a defined amount of water, catalyst if desired, wetting agent if desired, and the organosilicon components (ii) to (v), and subsequently introducing the oxide component (i) with thorough mixing.
  • the synthetic resin components, catalyst, wetting aids, water and the organosilicon components, and further auxiliaries if desired are suitably first of all combined and mixed and only then is the oxide component (KA—O) added, a component mixture obtained by this preparation procedure being notable, inter alia and in particular, for good processing properties.
  • KA—O nanoscale oxide and/or mixed oxide
  • nanoscale oxide and/or mixed oxide having an average particle diameter of from 1 to 100 nm, with particular preference from 5 to 50 nm, and with very particular preference from 10 to 40 nm. These ranges include 2, 5, 15, 20, 25, 30, 45, 50, 60, 70, 80 and 90 nm.
  • the oxides and/or mixed oxides may possess a BET surface area of from 40 to 400 m 2 /g, preferably from 60 to 250 m 2 /g, with particular preference from 80 to 250 m 2 /g. These ranges include 50, 70, 90, 100, 150, 175, 200, 300 and 350 m 2 /g.
  • nanoscale oxides or mixed oxides it is possible for example—but not exclusively—to employ pyrogenic silica, which may have been modified by further fractions of metal or semimetal, such as aluminum, titanium, iron or zirconium.
  • oxide component (i) and at least one silane-based component especially (ii), (iii), (iv) and/or (v), in a weight ratio of from 4:1 to 1: 1, with particular preference from 3.5:1 to 1.5: 1, with very particular preference from 3:1 to 2:1. These ranges include 3.25:1, 2.25:1, and 1.25:1.
  • the preferable liquid and/or curable synthetic resin or precursor of a liquid, curable synthetic resin, i.e., a prepolymer or a mixture of prepolymers, used in the process of the invention includes, for example, acrylates, methacrylates, epoxides, epoxy resins, polyurethanes, polyurethane resins, unsaturated polyesters, unsaturated polyester resins, epoxy acrylates, polyester acrylates, urethane acrylates, silicone acrylates, polyfunctional monomeric acrylates, such as trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate, pentaerythritol triacrylate, ethoxylated pentaerythritol tetraacrylate, alkoxylated tetraacrylates, ditrimethylolpropane tetraacrylates,
  • the reaction of the invention takes place in general in the presence of a well-defined amount of water.
  • the reaction of the invention is preferably conducted in the presence of a catalyst.
  • a particularly suitable catalyst is an acid, preferably malefic anhydride, malefic acid, acidic acid, acidic anhydride, glycolic acid, citric acid, methanesulfonic acid or phosphoric acid. Mixtures are possible.
  • reaction is preferably conducted in the presence of sodium dodecyl sulfate.
  • the reaction is preferably conducted at a temperature in the range from 30 to 100° C., more preferably at a temperature in the range from 50 to 80° C. This range includes 40, 45, 55, 60, 70, 75 and 90° C.
  • Hydrolysis and condensation in the reaction of the invention generally produces an alcohol, which is preferably removed from the reaction system during the reaction and/or afterward.
  • the removal of the alcohol formed during the reaction may be carried out by distillation, appropriately under reduced pressure.
  • the amount of alcohol in the product mixture, i.e., in the composition obtained by the reaction of the invention is reduced to ⁇ 2% by weight, preferably to from 0.01 to 1% by weight, with particular preference to from 0.1 to by weight, so as to give, advantageously, a solvent-free composition, i.e., a solvent-free coating material base or a solvent-free coating material.
  • compositions of the invention may be used to outstanding effect for the scratch-resistant coating of substrates.
  • the present invention accordingly also provides a composition based on a curable synthetic resin and including polymerizable organosilicon nanocapsules of the invention or prepared in accordance with the invention.
  • the present invention further provides a composition or a coating material based on a curable synthetic resin and obtainable as described herein.
  • Further components may appropriately be added to the composition of the invention or to the coating material of the invention, examples being initiators for the photochemical curing, Darocur® 1173, Lucirin® TPO-L, coatings stabilizers, such as HALS compounds, Tinuvins, and also antioxidants, such as Irganox®.
  • Additives of this kind are generally employed in amounts of from 0.1 to 5% by weight, preferably from 2 to 3% by weight, based on the formulation or coating material.
  • the introduction of further components into the coating system is suitably accompanied by thorough mixing.
  • the formulations and coating materials of the invention are preferably notable for a comparatively low viscosity of from 500 to 1000 mPa s. This range includes 600, 700, 800 and 900 mPa s.
  • the behavior of the systems is generally dilatent.
  • the liquid used in the process of the invention preferably includes one or more selected from the group including alcohol, methanol, ethanol, propanol, and/or the further components discussed above and below.
  • the invention also provides for the use of a composition of the invention as a coating material or as the basis for the preparation of a coating composition or coating material, especially for systems for scratch-resistant coating.
  • composition of the invention or of a coating material of the invention generally takes place by application to a substrate.
  • customary coating techniques such as roller application, knifecoating, dipping, flow coating, pouring, spraying or brushing, for example.
  • the formulation of the invention or the coating material may be applied uniformly to sheetlike substrates, such as paper, metal foils or polymer films, using a roll applicator, and then cured.
  • the coating may suitably be cured at ambient temperature, i.e., coating temperature, by means of a W or electron beam process (EBC), which is environment-friendly since there is no solvent.
  • EBC electron beam process
  • Photochemical curing is suitably performed under inert gas: under nitrogen or argon, for example.
  • the coating may be cured by means of W irradiation, using monochromatic or polychromatic UV lamps with a wavelength of from 150 to 400 nm.
  • monochromatic or polychromatic UV lamps with a wavelength of from 150 to 400 nm.
  • ambient temperature between 10 and 60° C., for example.
  • the O 2 content is suitably ⁇ 200 ppm.
  • compositions and coating materials of the invention it is possible in a particularly advantageous manner to produce coatings of outstanding scratch resistance.
  • coatings of the invention also possess good abrasion resistance.
  • the determination of scratch hardness or scratch resistance is carried out here, in general, in accordance with DIN 53 799 using a hard metal ball.
  • the abrasion can be effected, for example, in accordance with DIN 52 347 using coated faceplates.
  • the present invention accordingly likewise provides a process for producing a scratch-resistant coating, which includes applying a composition of the invention or a coating material of the invention to a ground or substrate and subjecting it to preferably photochemical curing.
  • curing may be effected by chemical means, oxidatively, for example, using, for example, peroxide and an elevated temperature.
  • the present invention further provides scratch-resistant coatings obtainable by applying a composition of the invention or a coating material of the invention as described herein.
  • Coatings of the invention preferably have a thickness of from 1 to 100 ⁇ m, with particular preference from 2 to 40 ⁇ m, and with very particular preference from 5 to 15 ⁇ m. These ranges include 10, 20, 30, 50, 60, 70, 80 and 90 ⁇ m.
  • metals such as aluminum, iron, steel, brass, copper, silver, magnesium, nonferrous metal alloys, wood, paper, board, textiles, stone products, plastics, thermoplastics, polycarbonate, glass, and ceramic
  • top coating a protective coating, known as top coating, as is employed, for example, as a clearcoat system in the automobile industry.
  • Decorative paper of the invention for example, is used for a simultaneously cost-effective, scratch-resistant and optically advantageous surface design of furniture.
  • An especially preferred embodiment of the present invention provides a polymerizable organosilicon nanocapsule, which includes:
  • a nanoscale core A which includes:
  • an organosilicon shell B which includes:
  • R is a vinyl or allyl group
  • x is a number from 0 to 20;
  • Si and Si′ are each tetravalent silicons
  • each Si and Si′ in the shell B have not more than one R group attatched thereto;
  • organosilicon compound of the shell B is attached to said KA—O core A (KA—O) by one or more covalent linkages having the formula Ib
  • R is a vinyl or allyl group
  • x is a number from 0 to 20;
  • each Si and Si′ in the shell B have not more than one R group attatched directly thereto.
  • the coating materials of examples 1 to 3 are applied by hand to square PVC plates (edge length 10 cm, thickness 2 mm) using a coating bar with a gap height of 50 ⁇ m and are cured in a low-energy electron accelerator (140 keV) with a dose of 50 kGy.
  • the residual oxygen content in the accelerator was ⁇ 200 ppm.
  • the same procedure is carried out using Sartomer 494 (comparative example).
  • the specimens are tested for their scratch hardness in accordance with DIN 53 799 using a hard metal ball (diameter 1 mm).
  • the specimens are also tested for abrasion resistance in accordance with DIN 52 347 and ASTM D-1044.

Abstract

The present invention provides a polymerizable organosilicon nanocapsule, which includes:
a nanoscale core A, which includes:
at least one particle comprising at least one oxide or mixed oxide, KA—O, of at least one metal or semimetal selected from the group including main groups 2 to 6 of the Periodic Table, transition groups 1 to 8 of the Periodic Table, lanthanides, and mixtures thereof; and
an organosilicon shell B, which includes:
at least one organosilicon compound having the formula (Ia):
(Si′O—)xSi—R  (Ia)
 wherein R is a vinyl or allyl group;
 wherein x is a number from 0 to 20;
 wherein remaining free valences of Si are each independently (KA—O)—, SiO— or —Z;
 wherein remaining free valences of Si′ are each independently (KA—O)—, SiO—, —R, or
 wherein the Z's are each independently hydroxyl or alkoxy radicals; and
 wherein each Si and Si′ in the shell B have not more than one R group attatched thereto.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to polymerizable organosilicon nanocapsules having a core and an organosilicon shell, processes for preparing, and uses of same. Such compounds are particularly suited for use in scratch-resistant coatings. [0002]
  • 2. Discussion of the Background [0003]
  • It is known that the surface properties of sol or gel particles or of metal or semimetal oxides can be modified by treatment with a hydrolyzable organosilane or organosiloxane, which generally involves the attachment of just a single-ply silane layer to the oxide or sol gel particle. Oxides or sol or gel particles treated in this way, examples being inorganic pigments or fillers, may be incorporated into a polymer matrix, films, coating compositions and coatings producible therewith. In general, however, the scratch resistance of such polymer systems is low. [0004]
  • DE 198 46 660 discloses nanoscale, surface-modified oxide or mixed-oxide particles enveloped by organosilicon groups bonded covalently to the oxide particle, the organofunctional groups being described as reactive groups and normally being oriented outward, so that by means of polymerization they are bound into the polymer matrix with the polymer material when the prepolymer is cured. The process of preparing such coating compositions is complicated, since the organosilane and the oxide component are incorporated separately into the prepolymer. [0005]
  • DE 198 46 659 possesses the same priority as DE 198 46 660 and relates to a laminate provided with a scratch-resistant synthetic-resin layer which likewise contains nanoscale, surface-modified oxide particles. DE 198 46 659 teaches specifically the use of acryloyloxyalkylsilanes to produce a shell around nanoscale oxide particles that possess reactive, radiation-crosslinkable groups. The preparation of the coating composition in this case is likewise via a time-consuming reaction of a nanoscale silica with 3-methacryloyloxypropyltrimethoxysilane (DYNASYLAN® MEMO) in an acrylate formulation in the presence of water, an acid, and a wetting agent. Again, the components must be brought together separately and in a specific sequence. [0006]
  • Hydrolyzable silane components having ethylenically unsaturated organic groups are usually high-priced starting materials, however. In addition, DYNASYLAN® MEMO tends to react in the presence of even slight traces of a polymerization initiator or radiation with the undesirable result that the viscosity of a corresponding formulation may rise drastically. To avoid the unwanted polymerization, stabilizers must be added. It is therefore often difficult to master the handling of the starting materials and the preparation of such coating systems. [0007]
  • The coating compositions described above are frequently of high viscosity, and usually contain only a small fraction of oxide particles, which impacts the scratch resistance of the subsequent coating. It is difficult to apply such highly viscous coating compositions to a substrate, especially when the substrate in question is thin and can be destroyed by tearing. The scratch resistance of coatings obtainable in this way is in need of improvement, and with such highly viscous systems, a specific, complex application apparatus is required. In many cases, solvents are added to coating compositions of such high viscosity, but this undesirably leads to an increase in the organic emissions (VOC problem; VOC=volatile organic compounds). [0008]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide polymerizable organosilicon-modified nanoparticles and a process for their production. [0009]
  • Another object is to provide a process for preparing coating compositions for scratch-resistant coatings in as simple and economic a manner as possible. [0010]
  • Another object of the invention is to provide articles with a corresponding scratch-resistant synthetic-resin coating. [0011]
  • These and other objects have now been achieved by the present invention, the first embodiment of which provides a polymerizable organosilicon nanocapsule, which includes: [0012]
  • a nanoscale core A, which includes: [0013]
  • at least one particle including at least one oxide or mixed oxide, KA—O, of at least one metal or semimetal selected from the group including main groups 2 to 6 of the Periodic Table, transition groups 1 to 8 of the Periodic Table, lanthanides, and mixtures thereof; and [0014]
  • an organosilicon shell B, which includes: [0015]
  • at least one organosilicon compound having the formula (Ia): [0016]
  • (Si′O—)xSi—R  (Ia)
  • wherein R is a vinyl or allyl group; [0017]  
  • wherein x is a number from 0 to 20; [0018]  
  • wherein remaining free valences of Si are each independently (KA—O)—, SiO— or —Z; [0019]  
  • wherein remaining free valences of Si′ are each independently (KA—O)—, SiO—, —R, or —Z; [0020]  
  • wherein the Z's are each independently hydroxyl or alkoxy radicals; and [0021]  
  • wherein each Si and Si′ in the shell B have not more than one R group attatched thereto. [0022]  
  • Another embodiment of the present invention provides a composition, which includes the above nanocapsule and at least one selected from the group including a liquid, curable synthetic resin, a precursor of a synthetic resin, and a mixture thereof. [0023]
  • Another embodiment of the present invention provides a process, which includes applying the above composition to a substrate. [0024]
  • Another embodiment of the present invention provides a composition, which includes the above nanocapsule and a cured resin, wherein said cured resin includes at least one selected from the group including acrylate, methacrylate, epoxide, epoxy resin, polyurethane, polyurethane resin, unsaturated polyester, unsaturated polyester resin, epoxy acrylate, polyester acrylate, urethane acrylate, silicone acrylate, and mixtures thereof. [0025]
  • Another embodiment of the present invention provides a coated article, which includes the above composition in contact with a substrate. [0026]
  • Another embodiment of the present invention provides a polymerizable organosilicon nanocapsule prepared by a process, which includes reacting: [0027]
  • (i) at least one nanoscale oxide and/or mixed oxide (KA—O) particle of at least one metal or semimetal selected from the group including main groups two to six of the Periodic Table of the Elements, transition groups one to eight of the Periodic Table of the Elements, lanthanides, and combinations thereof, with [0028]
  • (ii) at least one vinyltrialkoxysilane and/or allyltrialkoxysilane, alkoxy being a methoxy, ethoxy, n-propoxy or i-propoxy group, and [0029]
  • (iii) optionally, at least one monomeric and/or oligomeric silicic ester which carries at least one selected from the group including methoxy, ethoxy, n-propoxy, i-propoxy group, and combinations thereof and has an average degree of oligomerization of from 1 to 50, and [0030]
  • (iv) optionally, at least one organofunctional siloxane whose functionalities are identical or different and in which each silicon atom independently carries at least one functionality selected from the group including alkyl, fluoroalkyl, cyanoalkyl, isocyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxyalkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl, alkoxy, and combinations thereof, and remaining free valences of the silicon atoms in the siloxane are satisfied by methoxy or ethoxy or hydroxyl groups, and [0031]
  • (v) optionally, a further organofunctional silane having the formula II: [0032]
  • R′SR″RSiY(4-s-r)  (II),
  • in which the groups R′ and R″ are identical or different and are each independently selected from the group including a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, chloroalkyl, bromoalkyl, iodoalkyl, isocyanoalkyl, cyanoalkyl, fluoroalkyl, perfluoroalkyl, alkenyl, aryl, acylalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, sulfane, mercaptoalkyl, thiacyamidoalkyl, glycidyloxyalkyl, aminoalkyl, diaminoalkyl, triaminoalkyl, carbonatoalkyl or ureidoalkyl group, the respective alkylene groups containing 1 to 6 carbon atoms, Y is a methoxy, ethoxy, i-propoxy, n-propoxy or 2-methoxyethoxy group, s is 1 or 2 or 3, and r is 0 or 1 or 2, subject to the proviso that (s+r)≦3, [0033]  
  • wherein the reacting is carried out in situ in a liquid, a curable synthetic resin or a precursor of a synthetic resin. [0034]  
  • Another embodiment of the present invention provides a process for preparing a polymerizable organosilicon nanocapsule, which includes reacting: [0035]
  • (i) at least one nanoscale oxide and/or mixed oxide (KA—O) particle of at least one metal or semimetal selected from the group including main groups two to six of the Periodic Table of the Elements, transition groups one to eight of the Periodic Table of the Elements, lanthanides, and combinations thereof, with [0036]
  • (ii) at least one vinyltrialkoxysilane and/or allyltrialkoxysilane, alkoxy being a methoxy, ethoxy, n-propoxy or i-propoxy group, and [0037]
  • (iii) optionally, at least one monomeric and/or oligomeric silicic ester which carries at least one selected from the group including methoxy, ethoxy, n-propoxy, i-propoxy group, and combinations thereof and has an average degree of oligomerization of from 1 to 50, and [0038]
  • (iv) optionally, at least one organofunctional siloxane whose functionalities are identical or different and in which each silicon atom independently carries at least one functionality selected from the group including alkyl, fluoroalkyl, cyanoalkyl, isocyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxyalkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl, alkoxy, and combinations thereof, and remaining free valences of the silicon atoms in the siloxane are satisfied by methoxy or ethoxy or hydroxyl groups, and [0039]
  • (v) optionally, a further organofunctional silane having the formula II: [0040]
  • R′sR″rSiY(4-s-r)  (II),
  • in which the groups R′ and R″ are identical or different and are each independently selected from the group including a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, chloroalkyl, bromoalkyl, iodoalkyl, isocyanoalkyl, cyanoalkyl, fluoroalkyl, perfluoroalkyl, alkenyl, aryl, acylalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, sulfane, mercaptoalkyl, thiacyamidoalkyl, glycidyloxyalkyl, aminoalkyl, diaminoalkyl, triaminoalkyl, carbonatoalkyl or ureidoalkyl group, the respective alkylene groups containing 1 to 6 carbon atoms, Y is a methoxy, ethoxy, i-propoxy, n-propoxy or 2-methoxyethoxy group, s is 1 or 2 or 3, and r is 0 or 1 or 2, subject to the proviso that (s+r)≦3, [0041]  
  • wherein the reacting is carried out in situ in a liquid, a curable synthetic resin or a precursor of a synthetic resin. [0042]  
  • Another embodiment of the present invention provides a process for preparing a composition based on a curable synthetic resin and including polymerizable organosilicon nanocapsules, the process including: [0043]
  • heating the curable synthetic resin or a precursor of the curable synthetic resin, [0044]
  • adding catalyst, optionally, a wetting agent and water, [0045]
  • adding at least one organosilicon component of the formula III: [0046]
  • R1R2 nSiX3-n  (III),
  • where the groups R[0047]   1 and R2 are identical or different, R1 is an alkenyl group having 2 to 18 carbon atoms, an aryl, alkylaryl, an arylalkyl, an acylalkyl, an aminoalkyl, a diaminoalkyl, a triaminoalkyl, an alkyloxyalkyl, an acylalkyl, a cyanoalkyl, an isocyanoalkyl, a glycidyloxyalkyl, an acyloxyalky, an acryloyloxyalkyl, a mercaptoalkyl, a polysulfide-alkyl or a methacryloyloxyalkyl group, and R2 possesses the same definition as R1 or is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, which is unsubstituted or substituted, and
  • optionally, a monomeric and/or oligomeric silicic ester which carries at least one selected from the group including methoxy, ethoxy, n-propoxy, i-propoxy group and combinations thereof and has an average degree of oligomerization of from 1 to 50, and [0048]  
  • optionally, an organofunctional siloxane whose functionalities are identical or different and in which each silicon atom in the siloxane carries at least one functionality selected from the group including alkyl, fluoroalkyl, cyanoalkyl, isocyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxyalkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl, alkoxy, methoxy, ethoxy, and combinations thereof, and remaining free valences of the silicon atoms in the siloxane are satisfied by [0049]  
  • methoxy or ethoxy or hydroxyl groups, mixing and then adding at least one nanoscale oxide and/or mixed oxide (KA—O) particle of at least one metal or semimetal selected from the group including main groups 2 to 6, of the Periodic Table of the Elements, transition groups 1 to 8 of the Periodic Table of the Elements, lanthanides, and mixtures thereof with thorough mixing, and [0050]  
  • removing alcohol formed by hydrolysis and/or condensation. [0051]  
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Various other objects, features and attendant advantages of the present invention will be more fully appreciated as the same becomes better understood from the following detailed description of the preferred embodiments of the invention. [0052]
  • It has surprisingly now been found that polymerizable organosilicon nanocapsules may be obtained in a simple and economic way by reacting: [0053]
  • (i) at least one nanoscale oxide and/or mixed oxide (KA—O) of at least one metal or semimetal of main groups two to six or transition groups one to eight of the Periodic Table of the Elements, or of the lanthanides, with [0054]
  • (ii) vinyltrialkoxysilane and/or allyltrialkoxysilane, alkoxy preferably being a methoxy, ethoxy, n-propoxy or i-propoxy group, and [0055]
  • (iii) if desired, a monomeric and/or oligomeric silicic ester which carries methoxy, ethoxy, or i- and/or n-propoxy groups and has an average degree of oligomerization of from 1 to 50, preferably from 2 to 10, with particular preference from 3 to 5, and [0056]
  • (iv) if desired, an organofunctional siloxane whose functionalities are identical or different and in which each silicon atom in the siloxane carries a functionality selected from the group including alkyl, which is linear, branched or cyclic with 1 to 20 carbon atoms, preferably 1 to 16 carbon atoms, fluoroalkyl, cyanoalkyl, isocyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxy alkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl and alkoxy, preferably methoxy, ethoxy, n-propoxy or i-propoxy, and the remaining free valences of the silicon atoms in the siloxane are satisfied by methoxy or ethoxy or hydroxyl groups, and [0057]
  • (v) if desired, a further organofunctional silane of the general formula II [0058]
  • R′sR″rSiY(4-s-r)  (II),
  • in which the groups R′ and R″ are identical or different and are each a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, preferably 1 to 16 carbon atoms, a chloroalkyl, bromoalkyl, iodoalkyl, isocyanoalkyl, cyanoalkyl, fluoroalkyl or perfluoroalkyl, alkenyl, aryl, acylalkyl, acryloyloxyalkyl, methacryl-oyloxyalkyl, sulfane, mercaptoalkyl, thiacyamidoalkyl, glycidyloxyalkyl, aminoalkyl, diaminoalkyl, triaminoalkyl, carbonatoalkyl or ureidoalkyl group, the respective alkylene groups containing 1 to 6 carbon atoms, R″ is preferably a methyl, Y is a methoxy, ethoxy, i-propoxy, n-propoxy or 2-methoxyethoxy group, and s is 1 or 2 or 3 and r is 0 or 1 or 2, subject to the proviso that (s+r)≦3, [0059]  
  • in situ in a curable synthetic resin or a precursor of a curable synthetic resin, i.e., a liquid prepolymer or a mixture of corresponding prepolymers, for example, an acrylate, methacrylate, epoxide, polyurethane and/or unsaturated polyester. In accordance with this procedure, the polymerizable organosilicon nanocapsules are obtained, advantageously, simultaneously incorporated homogeneously into the prepolymer. [0060]
  • Further, it has surprisingly been found that the following reaction for the preparation in situ of a polymerizable coating composition that contains organosilicon nanocapsules may be conducted in a particularly advantageous way if an organosilane containing a reactive, polymerizable organofunctional group, such as a vinyl group or allyl group or a group as may be inferred from DE 198 46 660 and DE 198 46 659 (the entire contents of each of which being hereby incorporated by reference), and at least one hydrolyzable group, preferably methoxy, ethoxy, i- or n-propoxy or 2-methoxyethoxy, or at least one hydroxyl group, together if desired with abovementioned components (iii) to (v), is first introduced into a liquid, curable synthetic resin or a precursor of a synthetic resin, together with a catalyst, wetting agents if desired, and water the system is mixed and only then is the component (i) added, with thorough mixing, and hydrolysis alcohol formed is stripped from the system, i.e., in such a way that in the present process, in contrast to the teaching of DE 198 46 659 and DE 198 46 660, the organosilicon components and the oxide component are not incorporated alternately or separately into the prepolymer. [0061]
  • The present process is surprising and advantageous in that it is thereby possible, simply and economically, to obtain a coating composition for scratch-resistant coatings which includes polymerizable organosilicon nanocapsules, possesses a comparatively low viscosity, and is homogeneous, it being possible for the coating composition to contain a particularly high proportion of polymerizable organosilicon nanoparticles. [0062]
  • In general, in this process, hydrolyzable groups of the organosilicon components hydrolyze and/or condense with one another and envelop the oxide nanoparticles (KA—O). If appropriate, the hydrolyzable groups or hydroxyl groups may condense with hydroxyl groups present on the surface of the oxide nanoparticles (KA—O), or with free valences of organosilicon components of the shell B, to form a covalent linkage. It should be highlighted that, in particular, vinyl trimethoxysilane (DYNASYLAN® VTMO) exhibits a hydrolysis behavior, i.e., preparation behavior, which is again significantly improved over that of vinyl triethoxysilane (DYNASYLAN® VTEO). [0063]
  • In the case of the present process, the reaction takes place suitably in the presence of defined amounts of water. It is preferred to use from 0.5 to 6 mol of water, with particular preference from 0.5 to 4 mol of water, with very particular preference from 1 to 1.5 mol of water, per mole of a hydrolyzable, Si-bonded group of the organosilicon components. These ranges include 0.75, 1.1, 1.8, 2, 2.5, 3, 4.5 and 5 mol of water. The use of a catalyst and of a wetting agent is preferred. [0064]
  • In particular it is possible in the case of the present process, through the use of vinyl trimethoxysilane or vinyltriethoxysilane, to obtain coating compositions having high solids contents, high transparency, and good processing properties. [0065]
  • In general in the case of dilatant coating systems of this kind, the target viscosity is up to 2500 mPa s. Preferably, solvent-free coating compositions of the invention possess a viscosity of >500 to 2000 mPa s, with particular preference from 800 to 1000 mPa s. These ranges include 600, 700, 900, 1100, 1500, 1800, 2000, and 2300 mPa s. In this case the amounts of polymerizable nanoscale capsules in coating compositions of the invention are suitably between 5 and 60% by weight, which range includes 10, 20, 30, 40 and 50% by weight. [0066]
  • Preferably, in the case of the present process, the product substantially includes nanoscale oxide or mixed-oxide particles, with a complete and multilayer organosilicon shell, referred to as polymerizable organosilicon nanocapsules, which are obtained directly, advantageously, in fine dispersion in a curable synthetic resin or a precursor of a curable synthetic resin, and the comparatively low-viscosity product mixture may be used as it is or as a basis for coating materials for the scratch-resistant coating of surfaces. [0067]
  • The organosilicon shell in the nanocapsule of the present invention may be covalently bonded to the core, or it may be in contact with the core but not covalently bonded to the core. Preferably, at least one covalent bond is present between the shell and the core. The nanocapsules may be present in compositions as either a bonded type or a non-bonded type or may be present as a mixture of bonded and non-bonded types. [0068]
  • The organosilicon shell may completely or partially cover the core, independently of the bonding or non-bonding nature of the nanocapsule. Preferably, the organosilicon shell completely or substantially completely covers the core. The nanocapsule may be present in compositions as only the completely covered or as only the partially covered or mixtures of completely covered and partially covered. Preferably, the nanocapsules are present as mixtures of both completely and partially covered types. [0069]
  • Coating materials or coating compositions of the invention may optionally contain as further components initiators for the photochemical curing and/or UV curing, such as Darocur® 1173, Lucirin® TPO-L, stabilizers, such as HALS compounds, Tinuvins, and also antioxidants, such as Irganox®. [0070]
  • By means of the present preparation method, a solvent-free, comparatively low-viscosity coating material or a composition containing polymerizable organosilicon nanocapsules of the invention is accessible simply, directly, and economically. [0071]
  • The coating of a substrate with the present composition is generally comparatively easy owing to the low viscosity of the composition. [0072]
  • Preferably, the present, comparatively low-viscosity composition, or the coating material, may be provided with an unexpectedly high proportion of organosilicon nanocapsules, it being possible to incorporate up to 60% by weight oxide or mixed-oxide content, based on the coating composition, into the system. This range includes 10, 20, 30, 40 and 50% by weight. [0073]
  • The coating is preferably cured photochemically by UV irradiation or by irradiation with electron beams. The irradiation is normally conducted at a temperature of from 10 to 60° C., advantageously at ambient temperature. This range includes 15, 20, 25, 30, 40 and 50° C. [0074]
  • Articles or substrates coated in accordance with the invention are generally notable for outstanding scratch resistance in accordance with DIN 53 799 (hard metal balls) and for good abrasion resistance (DIN 52 347), the entire contents of each of which being incorporated by reference. [0075]
  • Accordingly it is possible, especially with coating compositions of the invention that include vinyl- or allyl-functional organosilicon nanocapsules, to achieve excellent scratch resistance. [0076]
  • Preferably, the present invention accordingly provides a process for preparing a composition based on a curable synthetic resin or precursor of a curable synthetic resin and containing polymerizable organosilicon nanocapsules by introducing and heating the curable synthetic resin or its precursor, adding catalyst, wetting agent if desired, and defined amounts of water, adding at least one organosilicon component of the general formula III [0077]
  • R1R2 nSiX3-n  (III),
  • where the groups R[0078] 1 and R2 are identical or different, R1 is an alkenyl group having 2 to 18 carbon atoms, an aryl, alkylaryl, an arylalkyl, an acylalkyl, an aminoalkyl, a diaminoalkyl, a triaminoalkyl, an alkyloxyalkyl, an acylalkyl, a cyanoalkyl, an isocyanoalkyl, a glycidyloxyalkyl, an acyloxyalky, an acryloyloxyalkyl, a mercaptoalkyl, a polysulfide-alkyl or a methacryloyloxyalkyl group, and R2 possesses the same definition as listed for R1 or is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, preferably 1 to 16 carbon atoms, which is unsubstituted or substituted, and
  • if desired, a monomeric and/or oligomeric silicic ester which carries methoxy, ethoxy, n-propoxy or i-propoxy groups and has an average degree of oligomerization of from 1 to 50, and [0079]
  • if desired, an organofunctional siloxane whose functionalities are identical or different and in which each silicon atom in the siloxane carries a functionality from the group including alkyl, which is linear, branched or cyclic with 1 to 16 carbon atoms, fluoroalkyl, cyanoalkyl, isocyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxyalkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl and alkoxy, preferably methoxy or ethoxy, and the remaining free valences of the silicon atoms in the siloxane are satisfied by methoxy or ethoxy or hydroxyl groups, mixing the system and then adding at least one nanoscale oxide and/or mixed oxide (KA—O) of at least one metal or semimetal from main groups 2 to 6 or transition groups 1 to 8 of the Periodic Table of the Elements, or of the lanthanides, with thorough mixing, in the course of which process the alcohol formed by hydrolysis and/or condensation is removed from the system. [0080]
  • Another preferred embodiment of the present invention provides polymerizable organosilicon nanocapsules including a nanoscale core A, which includes at least one oxide and/or. mixed oxide (KA—O) of at least one metal or semimetal from main groups 2 to 6 or transition groups 1 to 8 of the Periodic Table of the Elements, or of the lanthanides, and an organosilicon shell B, wherein the organosilicon shell B includes at least one organosilicon constituent of the general formula Ia [0081]
  • (Si′O—)xSi—R  (Ia),
  • in which R is a vinyl or allyl group and x is a number from 0 to 20, the remaining free valences of Si being satisfied by SiO—, and/or —Z and the free valences of Si′ being satisfied by SiO—, —R and/or —Z, the groups Z being identical or different and being hydroxyl and/or alkoxy radicals, and each Si and Si′ of the shell B carrying not more than one group R, [0082]
  • and/or wherein the organosilicon shell B is bonded to the core A (KA—O) via one or more covalent linkages to give the general formula Ib [0083]
  • (KA—O)—{(Si′O—)xSi—R}  (Ib)
  • in which R is a vinyl or allyl group and x is a number from 0 to 20, preferably from 1 to 15, with particular preference from 2 to 10, the remaining free valences of Si being satisfied by (KA—O)—, SiO—, and/or —Z and the free valences of Si′ being satisfied by (KA—O)—, SiO—, —R and/or —Z, the groups Z being identical or different and being hydroxyl and/or alkoxy radicals, and each Si and Si′ of the shell B carrying not more than one group R. [0084]  
  • In the compounds having the formula (Ia) and/or (Ib), the range of 0 to 20 for x includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19. [0085]
  • Preferably, in the compounds of formulas (Ia) and/or (Ib), the Si and Si′ are tetravalent silicons. [0086]
  • Preferred alkoxy radicals of the groups Z are those with a linear, cyclic or branched alkyl radical having 1 to 18 carbon atoms, and particular preference is given to methoxy, ethoxy, i- or n-propoxy groups. [0087]
  • Referring to the Periodic Table, of which the version disclosed in The Merck Index, 11[0088] th ed., Merck & Co. 1989 is hereby incorporated in its entirety by reference, the term, “main groups 2 to 6” refers to groups IIa, IIIa, IVa, Va and VIa, respectively; and the term, “transition groups 1 to 8” refers to groups Ib, IIb, IIIb, IVb, Vb, VIb, VIb and VIII, respectively; and lanthanides refer to any of elements 57-71.
  • Thus, in the case of organosilicon nanocapsules of the invention, the weight ratio between core A and shell B is preferably from 1:1 to 4:1. This range includes all values and subranges therebetween, including 1.5:1, 2:1, 2.5:1, 3:1, and 3.5:1. [0089]
  • The core A of the polymerizable organosilicon nanocapsules of the invention preferably includes at least one oxide and/or mixed oxide (KA—O), including oxide hydroxides, selected from the group the elements Si, Al, Ti and/or Zr, for example, SiO[0090] 2, such as pyrogenically prepared silica, silicates, Al2O3, aluminum hydroxide, alumosilicates, TiO2, titanates, ZrO2 or zirconates. Mixtures are possible.
  • Including the shell B, polymerizable organosilicon nanocapsules of the invention preferably have an average diameter of from 10 to 400 nm, with particular preference from 20 to 100 nm. These ranges include 30, 40, 50, 60, 70, 80, 90, 200 and 300 nm. [0091]
  • Another preferred embodiment of the present invention provides polymerizable organosilicon nanocapsules obtainable by reacting [0092]
  • (i) at least one nanoscale oxide and/or mixed oxide (KA—O) of at least one metal or semimetal from main groups two to six or transition groups one to eight of the Periodic Table of the Elements, or of the lanthanides, with [0093]
  • (ii) vinyltrialkoxysilane and/or allyltrialkoxysilane, alkoxy being a methoxy, ethoxy, n-propoxy or i-propoxy group, and [0094]
  • (iii) if desired, a monomeric and/or oligomeric silicic ester which carries methoxy, ethoxy, or n- and/or i-propoxy groups and has an average degree of oligomerization of from 1 to 50, for example, tetramethoxysilane, tetraethoxysilane, such as DYNASIL®A, tetrapropoxysilane, such as DYNASIL®P, or an oligomeric ethyl silicate, such as DYNASIL®40, and [0095]
  • (iv) if desired, an organofunctional siloxane whose functionalities are identical or different and in which each silicon atom in the siloxane carries a functionality selected from the group including alkyl, which is linear, branched or cyclic with 1 to 20 carbon atoms, fluoroalkyl, cyanoalkyl, iso-cyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxyalkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl and alkoxy, preferably methoxy or ethoxy, and the remaining free valences of the silicon atoms in the siloxane are satisfied by methoxy or ethoxy or hydroxyl groups, preference being given to those siloxanes having an average degree of oligomerization of from 1 to 20, preferably having an average degree of oligomerization of from 2 to 10, as may be preferably found in the German patent applications 199 55 047.6, [0096]
    199 61 972.7, EP 0 518 057, EP 0 590 270,
    EP 0 716 127, EP 0 716 128, EP 0 760 372,
    EP 0 814 110, EP 0 832 911, EP 0 846 717,
    EP 0 846 716, EP 0 846 715, EP 0 953 591,
    EP 0 955 344, EP 0 960 921, EP 0 978 525,
    EP 0 930 342, EP 0 997 469, EP 1 031 593, and
    EP 0 075 697, (the entire contents of each of which being hereby
    incorporated by reference)
  • and [0097]
  • (v) if desired, a further organofunctional silane of the general formula II [0098]
  • R′sR″rSiY(4-s-r)  (II),
  • in which the groups R′ and R″ are identical or different and are each a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a chloroalkyl, bromoalkyl, iodoalkyl, isocyanoalkyl, cyanoalkyl, fluoroalkyl or perfluoroalkyl, alkenyl, aryl, acylalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, sulfane, mercaptoalkyl, thiacyamidoalkyl, glycidyloxyalkyl, aminoalkyl, diaminoalkyl, triaminoalkyl, carbonatoalkyl or ureidoalkyl group, the respective alkylene groups containing 1 to 6 carbon atoms, R″ is preferably a methyl, Y is a methoxy, ethoxy, i-propoxy, n-propoxy or 2-methoxyethoxy group, and s is 1 or 2 or 3 and r is 0 or 1 or 2, subject to the proviso (s+r)≦3, [0099]
  • in situ in a substantially liquid, curable synthetic resin or a precursor of a synthetic resin. [0100]
  • Furthermore, an object of the present invention is a process for the production of polymerizable silicon-organic nanocapsules as well as for the production of a composition containing polymerizable silicon-organic nanocapsules. The polymerizable silicon-organic nanocapsules are particularly suitable in the production, in situ, of a fluid, curable synthetic resin, or in a precursor stage of a synthetic resin. The synthetic resin composition which contains the polymerizable silicon-organic nanocapsules can be used as a coating agent or as a paint or paint base for the production of scratch-resistant coatings on a substrate. The present invention also contemplates a substrate coated with the synthetic resin. [0101]
  • Another preferred embodiment of the present invention provides a process for preparing polymerizable organosilicon nanocapsules, which includes reacting [0102]
  • (i) at least one nanoscale oxide and/or mixed oxide (KA—O) and at least one metal or semimetal from main groups two to six or transition groups one to eight of the Periodic Table of the Elements, or of the lanthanides, with [0103]
  • (ii) vinyltrialkoxysilane and/or allyltrialkoxysilane, alkoxy being a methoxy, ethoxy, n-propoxy or i-propoxy group, and [0104]
  • (iii) if desired, a monomeric and/or oligomeric silicic ester which carries methoxy, ethoxy, or n- and/or i-propoxy groups and has an average degree of oligomerization of from 1 to 50, preferably from 2 to 10, with particular preference from 3 to 5, and [0105]
  • (iv) if desired, an organofunctional siloxane whose functionalities are identical or different and in which each silicon atom in the siloxane carries a functionality selected from the group including alkyl, which is linear, branched or cyclic with 1 to 20 carbon atoms, fluoroalkyl, cyanoalkyl, isocyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxyalkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl and alkoxy, preferably methoxy or ethoxy, and the remaining free valences of the silicon atoms in the siloxane are satisfied by methoxy or ethoxy or hydroxyl groups, and [0106]
  • (v) if desired, a further organofunctional silane of the general formula II [0107]
  • R′sR″rSiY(4-s-r)  (II),
  • in which the groups R′ and R″ are identical or different and are each a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a chloroalkyl, bromoalkyl, iodoalkyl, isocyanoalkyl, cyanoalkyl, fluoroalkyl or perfluoroalkyl, alkenyl, aryl, acryloyloxyalkyl, methacryloyloxyalkyl, sulfane, mercaptoalkyl, thiacyamidoalkyl, glycidyloxyalkyl, aminoalkyl, diaminoalkyl, triaminoalkyl, carbonatoalkyl or ureidoalkyl group, the respective alkylene groups containing 1 to 6 carbon atoms, R″ is preferably a methyl, Y is a methoxy, ethoxy, i-propoxy, n-propoxy or 2-methoxyethoxy group, and s is 1 or 2 or 3 and r is 0 or 1 or 2, subject to the proviso (s+r)≦3, [0108]  
  • in situ in a substantially liquid, curable synthetic resin or a precursor of a synthetic resin. [0109]
  • The following compounds may be employed in particular, but not exclusively, as organofunctional silanes as per (v): methyltrimethoxysilane (DYNASYLAN® MTMS), methyl triethoxysilane (DYNASYLAN® MTES), propyltrimethoxysilane (DYNASYLAN® PTMO), propyltriethoxysilane (DYNASYLAN® PTEO), i-butyltrimethoxysilane (DYNASYLAN® IBTMO), i-butyltriethoxysilane (DYNASYLAN® IBTEO), octyltrimethoxysilane (DYNASYLAN® OCTMO), octyltriethoxysilane (DYNASYLAN® OCTEO), hexadecyltrimethoxysilane (DYNASYLAN® 9116), hexadecyltriethoxysilane (DYNASYLAN(® 9216), 3-chloropropyltrialkoxysilanes, 3-bromopropylalkoxysilanes, 3-iodopropylalkoxysilanes, 3-chloropropyltrichlorosilanes, 3-chloropropylmethyldialkoxy-silanes, 3-chloropropylmethyldichlorosilanes, 3-chloropropyldimethylalkoxysilanes, 3-chloropropyldimethylchlorosilanes, 3-aminopropylmethyldialkoxysilanes, 3-aminopropyltrialkoxysilane, including 3-aminopropyltrimethoxysilane (DYNASYLAN® AMMO), 3-aminopropyltriethoxysilane (DYNASYLAN® AMEO), N-(n-butyl)-3-aminopropyltrimethoxysilane (DYNASYLAN® 1189), n-aminoethyl-3-aminopropylmethyldimethoxysilane (DYNASYLAN® 1411), 3-aminopropylmethyldiethoxysilane (DYNASYLAN® 1505), N-aminoethyl-3-aminopropylmethyldialkoxysilane, N-aminoethyl-3-aminopropyltrimethoxysilane (DYNASYLAN® DAMO), triamino-functional propyltrimethoxysilane (DYNASYLAN® TRIAMO), including {N-aminoethyl-N′-(3-tri-alkoxysilylpropyl)}ethylenediamines and also {N-aminoethyl-N-(3-trialkoxysilylpropyl)}ethylenediamines, triamino-functional propylmethyldialkoxysilanes, 3-(4,5-dihydroimidazolyl)propyltriethoxysilane (DYNASYLAN® IMEO), 3-methacryloyloxypropylalkoxysilanes, 3-methacryloyloxypropyltrimethoxysilane (DYNASYLAN® MEMO), 3-methacryloyloxyisobutyltrialkoxysilanes, 3-glycidyloxypropyltrialkoxysilanes, 3-glycidyloxypropyltrimethoxysilane (DYNASYLAN® GLYMO), 3 glycidyloxypropyltriethoxysilane (DYNASYLAN® GLYEO), 3-mercaptopropylalkoxysilanes, 3-mercaptopropyltrimethoxysilane (DYNASYLAN® MTMO), vinyltrialkoxysilanes, including vinyltrimethoxysilane (DYNASYLAN® VTMO), vinyltriethoxysilane (DYNASIL®VTEO), vinyltris(2-methoxyethoxy)silane (DYNASYLAN® VTMOEO), perfluoroalkyltrialkoxysilanes, fluoroalkyltrialkoxysilanes, including tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane (DYNASYLAN® F 8261), tridecafluorooctylmethyldialkoxysilanes, trimethylchlorosilane, triethylchlorosilane, (H[0110] 5CO)3Si(CH2)3—S4—(CH2)3Si(OC2H5)3 1,4-bis (3-triethoxysilylpropyl) tetrasulfane (Si-69), (H5C2O)3Si (CH2)3—NCS 3-thiacyamidopropyltriethoxysilane (Si-264), (H5C2O)3Si(CH2)3—S2—(CH2)3Si(OC2H5)3 1,2-bis (3-triethoxysilylpropyl) disulfane (Si-266), 3-cyanopropyltrialkoxysilanes, including 3-cyanopropyltrimethoxysilane, N,N′,N″-tris(trimethoxysilylpropyl) triisocyanurate, 3-{methoxy(polyethyleneglycidyl)}propyltrialkoxysilanes, allyltrialkoxysilanes, allymethyldialkoxysilane, allyldimethylakoxysilane, 3-methacryloyloxy-2-methylpropyltrialkoxysilanes, 3-amino-2-methylpropyltrialkoxysilanes, (cyclohex-3-enyl)-ethyltrialkoxysilanes, N-(3-trialkoxysilylpropyl)alkyl carbamates, 3-azidopropyltrialkoxysilanes, 4-(2-trialkoxysilylethyl)-1,2-epoxycyclohexanes, bis(3-alkoxysilylpropyl)amines, tris(3-alkoxysilylpropyl)amines, 3-acryloyloxypropyl-trialkoxysilanes, including 3-acryloyloxymethyl-dialkoxysilane, 3-acryloyloxydimethylalkoxysilane, with methoxy, ethoxy, 2-methoxyethoxy, propoxy or acetoxy advantageously standing for one of the abovementioned alkoxy groups.
  • In the process of the invention, a preferable procedure involves introducing the generally liquid components of the prepolymer and heating them, adding a defined amount of water, catalyst if desired, wetting agent if desired, and the organosilicon components (ii) to (v), and subsequently introducing the oxide component (i) with thorough mixing. Preferably, the synthetic resin components, catalyst, wetting aids, water and the organosilicon components, and further auxiliaries if desired, are suitably first of all combined and mixed and only then is the oxide component (KA—O) added, a component mixture obtained by this preparation procedure being notable, inter alia and in particular, for good processing properties. [0111]
  • In the process of the invention it is preferred to employ from 0.1 to 60% by weight, more preferably from 15 to 50% by weight, with particular preference from 20 to 45% by weight, with very particular preference from 25 to 40% by weight, in particular from 30 to 35% by weight, of nanoscale oxide and/or mixed oxide (KA—O), based on the composition. These ranges include 1, 5, 10, 12, 22, 32, 42, 52 and 55% by weight. [0112]
  • In the process of the invention it is preferred to employ a nanoscale oxide and/or mixed oxide (KA—O) having an average particle diameter of from 1 to 100 nm, with particular preference from 5 to 50 nm, and with very particular preference from 10 to 40 nm. These ranges include 2, 5, 15, 20, 25, 30, 45, 50, 60, 70, 80 and 90 nm. The oxides and/or mixed oxides may possess a BET surface area of from 40 to 400 m[0113] 2/g, preferably from 60 to 250 m2/g, with particular preference from 80 to 250 m2/g. These ranges include 50, 70, 90, 100, 150, 175, 200, 300 and 350 m2/g. As nanoscale oxides or mixed oxides it is possible for example—but not exclusively—to employ pyrogenic silica, which may have been modified by further fractions of metal or semimetal, such as aluminum, titanium, iron or zirconium.
  • It is further preferred to employ the oxide component (i) and at least one silane-based component, especially (ii), (iii), (iv) and/or (v), in a weight ratio of from 4:1 to 1: 1, with particular preference from 3.5:1 to 1.5: 1, with very particular preference from 3:1 to 2:1. These ranges include 3.25:1, 2.25:1, and 1.25:1. [0114]
  • The preferable liquid and/or curable synthetic resin or precursor of a liquid, curable synthetic resin, i.e., a prepolymer or a mixture of prepolymers, used in the process of the invention includes, for example, acrylates, methacrylates, epoxides, epoxy resins, polyurethanes, polyurethane resins, unsaturated polyesters, unsaturated polyester resins, epoxy acrylates, polyester acrylates, urethane acrylates, silicone acrylates, polyfunctional monomeric acrylates, such as trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate, pentaerythritol triacrylate, ethoxylated pentaerythritol tetraacrylate, alkoxylated tetraacrylates, ditrimethylolpropane tetraacrylates, 3,4-epoxycyclohexyl-1-methyl 3,4-epoxycyclohexane-1′-carboxylate, 1,6-hexanediol diacrylate—to name but a few examples—or mixtures of two or more of the aforementioned synthetic resins and/or prepolymers, examples being mixtures of monofunctional and/or bifunctional and/or polyfunctional monomeric, optionally low-viscosity acrylates. Mixtures are possible. [0115]
  • The reaction of the invention takes place in general in the presence of a well-defined amount of water. For this purpose it is preferred to employ from 1 to 6 mol of water per mole of Si of the organosilicon components. This range includes 1.1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 and 5.5 mol water. [0116]
  • The reaction of the invention is preferably conducted in the presence of a catalyst. A particularly suitable catalyst is an acid, preferably malefic anhydride, malefic acid, acidic acid, acidic anhydride, glycolic acid, citric acid, methanesulfonic acid or phosphoric acid. Mixtures are possible. [0117]
  • The use of a wetting agent may be helpful for the implementation of the reaction of the invention. Accordingly, the reaction is preferably conducted in the presence of sodium dodecyl sulfate. [0118]
  • In the process of the invention, the reaction is preferably conducted at a temperature in the range from 30 to 100° C., more preferably at a temperature in the range from 50 to 80° C. This range includes 40, 45, 55, 60, 70, 75 and 90° C. [0119]
  • Hydrolysis and condensation in the reaction of the invention generally produces an alcohol, which is preferably removed from the reaction system during the reaction and/or afterward. The removal of the alcohol formed during the reaction may be carried out by distillation, appropriately under reduced pressure. In general, the amount of alcohol in the product mixture, i.e., in the composition obtained by the reaction of the invention, is reduced to <2% by weight, preferably to from 0.01 to 1% by weight, with particular preference to from 0.1 to by weight, so as to give, advantageously, a solvent-free composition, i.e., a solvent-free coating material base or a solvent-free coating material. [0120]
  • Such compositions of the invention, directly or following the addition of further coating components, may be used to outstanding effect for the scratch-resistant coating of substrates. [0121]
  • The present invention accordingly also provides a composition based on a curable synthetic resin and including polymerizable organosilicon nanocapsules of the invention or prepared in accordance with the invention. [0122]
  • The present invention further provides a composition or a coating material based on a curable synthetic resin and obtainable as described herein. [0123]
  • Further components may appropriately be added to the composition of the invention or to the coating material of the invention, examples being initiators for the photochemical curing, Darocur® 1173, Lucirin® TPO-L, coatings stabilizers, such as HALS compounds, Tinuvins, and also antioxidants, such as Irganox®. Additives of this kind are generally employed in amounts of from 0.1 to 5% by weight, preferably from 2 to 3% by weight, based on the formulation or coating material. The introduction of further components into the coating system is suitably accompanied by thorough mixing. Advantageously, despite a large amount of polymerizable organosilicon nanocapsules, the formulations and coating materials of the invention are preferably notable for a comparatively low viscosity of from 500 to 1000 mPa s. This range includes 600, 700, 800 and 900 mPa s. The behavior of the systems is generally dilatent. [0124]
  • The liquid used in the process of the invention preferably includes one or more selected from the group including alcohol, methanol, ethanol, propanol, and/or the further components discussed above and below. [0125]
  • Accordingly, the invention also provides for the use of a composition of the invention as a coating material or as the basis for the preparation of a coating composition or coating material, especially for systems for scratch-resistant coating. [0126]
  • The application of the composition of the invention or of a coating material of the invention generally takes place by application to a substrate. For the coating of substrates it is possible to use the customary coating techniques, such as roller application, knifecoating, dipping, flow coating, pouring, spraying or brushing, for example. [0127]
  • By way of example, the formulation of the invention or the coating material may be applied uniformly to sheetlike substrates, such as paper, metal foils or polymer films, using a roll applicator, and then cured. The coating may suitably be cured at ambient temperature, i.e., coating temperature, by means of a W or electron beam process (EBC), which is environment-friendly since there is no solvent. [0128]
  • For electron beam curing, it is preferred to generate electrons having an energy of around 140 keV, the dose being from 30 to 60 kGy, preferably from 40 to 50 kGy. The residual ° 2 content is preferably <200 ppm. Photochemical curing is suitably performed under inert gas: under nitrogen or argon, for example. [0129]
  • Alternatively, the coating may be cured by means of W irradiation, using monochromatic or polychromatic UV lamps with a wavelength of from 150 to 400 nm. In the case of UV curing, as well, it is possible to operate at ambient temperature, between 10 and 60° C., for example. Here again, the O[0130] 2 content is suitably <200 ppm.
  • Accordingly, through the use of compositions and coating materials of the invention, it is possible in a particularly advantageous manner to produce coatings of outstanding scratch resistance. Moreover, coatings of the invention also possess good abrasion resistance. The determination of scratch hardness or scratch resistance is carried out here, in general, in accordance with DIN 53 799 using a hard metal ball. The abrasion can be effected, for example, in accordance with DIN 52 347 using coated faceplates. [0131]
  • The present invention accordingly likewise provides a process for producing a scratch-resistant coating, which includes applying a composition of the invention or a coating material of the invention to a ground or substrate and subjecting it to preferably photochemical curing. Alternatively, curing may be effected by chemical means, oxidatively, for example, using, for example, peroxide and an elevated temperature. [0132]
  • The present invention further provides scratch-resistant coatings obtainable by applying a composition of the invention or a coating material of the invention as described herein. [0133]
  • Coatings of the invention preferably have a thickness of from 1 to 100 μm, with particular preference from 2 to 40 μm, and with very particular preference from 5 to 15 μm. These ranges include 10, 20, 30, 50, 60, 70, 80 and 90 μm. [0134]
  • Accordingly it is possible in a particularly simple and economic way to furnish, for example, metals, such as aluminum, iron, steel, brass, copper, silver, magnesium, nonferrous metal alloys, wood, paper, board, textiles, stone products, plastics, thermoplastics, polycarbonate, glass, and ceramic, with a particularly scratch-resistant coating. The selection of the substantially solid substrate materials for coating is unrestricted. Such substrates may be furnished, for example, with a protective coating, known as top coating, as is employed, for example, as a clearcoat system in the automobile industry. [0135]
  • In particular it is possible by the present coating process to obtain, simply and economically, articles endowed with scratch resistance, such as decorative paper, aluminum foils, polycarbonate auto glazing, PVC window frames, doors, worktops, to name but a few. [0136]
  • Decorative paper of the invention, for example, is used for a simultaneously cost-effective, scratch-resistant and optically advantageous surface design of furniture. [0137]
  • Also provided by the present invention are articles having a coating of the invention, obtainable as described herein. In particular, the present invention provides a decorative paper obtainable as described herein. [0138]
  • An especially preferred embodiment of the present invention provides a polymerizable organosilicon nanocapsule, which includes: [0139]
  • a nanoscale core A, which includes: [0140]
  • at least one oxide or mixed oxide, KA—O, of at least one metal or semimetal selected selected from the group including an element from main groups 2 to 6 of the Periodic Table, an element from transition groups 1 to 8 of the Periodic Table, a lanthanide, and mixtures thereof; and [0141]
  • an organosilicon shell B, which includes: [0142]
  • at least one organosilicon compound having the formula (Ia): [0143]
  • (Si′O—)xSi—R  (Ia)
  • wherein R is a vinyl or allyl group; [0144]  
  • wherein x is a number from 0 to 20; [0145]  
  • wherein Si and Si′ are each tetravalent silicons; [0146]  
  • wherein remaining free valences of Si are each independently SiO— or —Z; [0147]  
  • wherein remaining free valences of Si′ are each independently SiO—, —R, or —Z; [0148]  
  • wherein the Z's are each independently hydroxyl or alkoxy radicals; [0149]  
  • and wherein each Si and Si′ in the shell B have not more than one R group attatched thereto; [0150]  
  • and wherein said organosilicon compound of the shell B is attached to said KA—O core A (KA—O) by one or more covalent linkages having the formula Ib [0151]  
  • (KA—O)—{(Si′O—)xSi—R}  (Ib)
  • wherein R is a vinyl or allyl group; [0152]  
  • wherein x is a number from 0 to 20; [0153]  
  • wherein the remaining free valences of Si are each independently KA—O, SiO— or —Z; [0154]  
  • wherein the remaining free valences of Si′ are each independently KA—O, SiO—, —R, or —Z; [0155]  
  • wherein the Z's are each independently hydroxyl or alkoxy radicals; [0156]  
  • and wherein each Si and Si′ in the shell B have not more than one R group attatched directly thereto.[0157]  
  • EXAMPLES
  • Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified. [0158]
  • Starting Materials: [0159]
    Particle core A
    BET surface area
    Average (DIN 66 131; in
    Raw Material particle size m2/g)
    Pyrogenic silica AEROSIL ® 200 14 nm 200 ± 20
    Shell B
    Raw material
    Vinyltrimethoxysilane DYNASYLAN ® VTMO
    Vinyltriethoxysilane DYNASYLAN ® VTEO
    3-Methacryloyloxypropyltrimethoxysilane DYNASYLAN ® MEMO
    Organic substrate/synthetic-resin component
    Ethoxylated pentaerythritol tetraacrylate Sartomer ® 494
    Auxiliaries
    Catalyst Maleic anhydride
    Wetting agent Sodium dodecyl sulfate
    Reactant Water
  • Example 1
  • 18.0 parts by weight of AEROSIL 200/9.0 parts by weight of DYNASYLAN VTMO/73.0 parts by weight of Sartomer 494: [0160]
  • 29.2 kg of Sartomer 494 (from Cray Valley) and 16 g of 4-hydroxyanisole are charged to a stirred vessel and heated to 65 to 70° C. To the heated acrylate there are added a solution of 0.15 kg of malefic anhydride and 0.072 kg of sodium dodecyl sulfate in 1.44 kg of water, and also over the course of 30 minutes 3.6 kg of DYNASYLAN VTMO. Subsequently, within the temperature range indicated above and with intensive stirring, 7.2 kg of AEROSIL 200 are metered in over the course of 1 to 2 hours. Stirring is continued for one hour at from 65 to 70° C. and methanol is removed from the system under reduced pressure. Finally, the batch is cooled to room temperature. [0161]
  • Example 2
  • 18.0 parts by weight of AEROSIL 200/11.6 parts by weight of DYNASYLAN VTEO/70.4 parts by weight of Sartomer 494: [0162]
  • 29.2 kg of Sartomer 494 (from Cray Valley) and 48 g of 4-hydroxyanisole are charged to a stirred vessel and heated to 65 to 70° C. To the heated acrylate there are added a solution of 0.15 kg of malefic anhydride and 0.075 kg of sodium dodecyl sulfate in 1.5 kg of water, and also over the course of 30 minutes 4.81 kg of DYNASYLAN VTEO. Subsequently, within the temperature range indicated above and with intensive stirring, 7.466 kg of AEROSIL 200 are metered in over the course of 1 hour. Stirring is continued for 3 hours at from 65 to 70° C. and ethanol is removed from the system under reduced pressure. Finally, the batch is cooled to room temperature. [0163]
  • Example 3
  • 18.0 parts by weight of AEROSIL 200/9.0 parts by weight of DYNASYLAN MEMO/73.0 parts by weight of Sartomer 494: [0164]
  • 29.2 kg of Sartomer 494 (from Cray Valley) and 16 g of 4-hydroxyanisole are charged to a stirred vessel and heated to 65 to 70° C. To the heated acrylate there are added a solution of 0.15 kg of malefic anhydride and 0.0262 kg of sodium dodecyl sulfate in 0.5246 kg of water, and also over the course of 30 minutes 3.6 kg of DYNASYLAN MEMO. Subsequently, within the temperature range indicated above and with intensive stirring, 7.2 kg of AEROSIL 200 are metered in over the course of 1 to 2 hours. Stirring is continued for 60 minutes at from 65 to 70° C. and methanol is removed from the system under reduced pressure. Finally, the batch is cooled to room temperature. [0165]
  • Use Examples [0166]
  • The coating materials of examples 1 to 3 are applied by hand to square PVC plates (edge length 10 cm, thickness 2 mm) using a coating bar with a gap height of 50 μm and are cured in a low-energy electron accelerator (140 keV) with a dose of 50 kGy. The residual oxygen content in the accelerator was <200 ppm. The same procedure is carried out using Sartomer 494 (comparative example). The specimens are tested for their scratch hardness in accordance with DIN 53 799 using a hard metal ball (diameter 1 mm). The specimens are also tested for abrasion resistance in accordance with DIN 52 347 and ASTM D-1044. The abrasion resistance was determined by measuring the light scattering (haze) after 100 and, respectively, 500 Taber revolutions (2 CS-10 abrasive wheels, covered with 5-42 emery paper, F=5.5±0.2 M, 3 individual measurements, arithmetic mean). The results of the tests are collated in Table 1. [0167]
    TABLE 1
    Properties of
    the coating
    Ratio of resin: (evaluation)
    SiO2:silane A: Scratch
    {parts by hardness {N}
    Examples Formulation weight} B: Haze {%}
    (DS VTMO) 29.2 kg Sartomer 494 73.0:18.0:9.0 A: 9.0 N (very
    Example 1 7.2 kg Aerosil 200 good)
    3.6 kg DS VTMO B: 2.9/6.4
    Maleic anhydride (good)
    (DS VTEO) 29.2 kg Sartomer 494 70.4:18.0:11.6 A: 8.5 N
    Example 2 7.466 kg Aerosil 200 (good)
    4.82 kg DS VTEO B: 3.5/7.9
    Maleic anhydride (still good)
    (DS MEMO) 29.2 kg Sartomer 494 73.0:18.0:9.0 A: 8.5 N
    Example 3 7.2 kg Aerosil 200 (good)
    3.6 kg DS MEMO B: 4.1/8.6
    Maleic anhydride (worse than
    Ex. 1 and 2)
    (Sartomer 494 100% Sartomer 494 100 A: 6.0 N (poor)
    on PVC) B: 20.3/61.4
    Comparative (very poor)
    Example
    PVC substrate A: 4.0 N
    (very poor)
    B: 101.2/127.5
    (very poor)
  • Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein. [0168]
  • This application is based on German patent applications 10049632.6, filed Oct. 5, 2000, and 10100633.0, filed Jan. 9, 2001, the entire contents of each of which are hereby incorporated by reference, the same as if set forth at length. [0169]

Claims (40)

1. A polymerizable organosilicon nanocapsule, comprising:
a nanoscale core A, which comprises:
at least one particle comprising at least one oxide or mixed oxide, KA—O, of at least one metal or semimetal selected from the group consisting of main groups 2 to 6 of the Periodic Table, transition groups 1 to 8 of the Periodic Table, lanthanides, and mixtures thereof; and
an organosilicon shell B, which comprises:
at least one organosilicon compound having the formula (Ia):
(Si′O—)xSi—R  (Ia)
 wherein R is a vinyl or allyl group;
 wherein x is a number from 0 to 20;
 wherein remaining free valences of Si are each independently (KA—O)—, SiO— or —Z;
 wherein remaining free valences of Si′ are each independently (KA—O)—, SiO—, —R, or
 wherein the Z's are each independently hydroxyl or alkoxy radicals; and
 wherein each Si and Si′ in the shell B have not more than one R group attatched thereto.
2. The nanocapsule according to claim 1, wherein said nanocapsule has the following formula (Ib):
(KA—O)—{(Si′O—)x(Si—R}  (Ib)
wherein R is a vinyl or allyl group;
wherein x is a number from 0 to 20;
wherein the remaining free valences of Si are each independently KA—O, SiO— or —Z;
wherein the remaining free valences of Si′ are each independently KA—O, SiO—, —R, or —Z;
wherein the Z's are each independently hydroxyl or alkoxy radicals;
and wherein each Si and Si′ in the shell B have not more than one R group attatched directly thereto.
3. The nanocapsule according to claim 1, wherein said organosilicon compound of the shell B is attached to said KA—O core A (KA—O) by one or more covalent linkages.
4. The nanocapsule according to claim 1, wherein the core A is an oxide and/or mixed oxide (KA—O) of an element selected from the group consisting of Si, Al, Ti and Zr.
5. The nanocapsule according to claim 1, wherein said nanocapsule has an average diameter of from 10 to 400 nm.
6. The nanocapsule according to claim 1, wherein the core A has an average particle diameter of from 1 to 100 nm.
7. The nanocapsule according to claim 1, wherein at least one of the free valencies of Si or Si′ or both in said shell is (KA—O).
8. The nanocapsule according to claim 1, wherein said shell is not covalently bonded to said core KA—O.
9. A composition, comprising the nanocapsule according to claim 1 and at least one selected from the group consisting of a liquid, a curable synthetic resin, a precursor of a synthetic resin, and a mixture thereof.
10. The composition according to claim 9, which is a coating composition or coating material.
11. The composition according to claim 9, wherein the curable synthetic resin or precursor of a curable synthetic resin comprises at least one selected from the group consisting of acrylate, methacrylate, epoxide, epoxy resin, polyurethane, polyurethane resin, unsaturated polyester, unsaturated polyester resin, epoxy acrylate, polyester acrylate, urethane acrylate, silicone acrylate, and mixtures thereof.
12. A process, which comprises applying the composition according to claim 9 to a substrate.
13. The process according to claim 12, further comprising subjecting the coated substrate to photochemical curing.
14. The process according to claim 12, which is a process for producing a scratch-resistant coating.
15. The process according to claim 13, wherein said photochemical curing comprises curing with UV radiation or electron beams at a temperature ranging from 10 to 60° C.
16. A composition, comprising the nanocapsule according to claim 1 and a cured resin, wherein said cured resin comprises at least one selected from the group consisting of acrylate, methacrylate, epoxide, epoxy resin, polyurethane, polyurethane resin, unsaturated polyester, unsaturated polyester resin, epoxy acrylate, polyester acrylate, urethane acrylate, silicone acrylate, and mixtures thereof.
17. The composition according to claim 16, wherein the core A has an SiO2 content of up to 60% by weight, based on the composition.
18. The composition according to claim 16, which is a scratch-resistant coating.
19. A coated article, comprising the composition according to claim 16 in contact with a substrate.
20. The coated article according to claim 19, wherein said substrate is selected from the group consisting of sheetlike substrate, paper, metal foil, polymer film, metal, aluminum, iron, steel, brass, copper, silver, magnesium, nonferrous metal alloy, wood, board, textile, stone, plastic, thermoplastic, polycarbonate, glass, ceramic and combinations thereof.
21. The coated article according to claim 19, which is selected from the group consisting of decorative paper, aluminum foil, polycarbonate auto glazing, PVC window frame, door, furniture, and worktop.
22. A polymerizable organosilicon nanocapsule prepared by a process, comprising reacting:
(i) at least one nanoscale oxide and/or mixed oxide (KA—O) particle of at least one metal or semimetal selected from the group consisting of main groups two to six of the Periodic Table of the Elements, transition groups one to eight of the Periodic Table of the Elements, lanthanides, and combinations thereof, with
(ii) at least one vinyltrialkoxysilane and/or allyltrialkoxysilane, alkoxy being a methoxy, ethoxy, n-propoxy or i-propoxy group, and
(iii) optionally, at least one monomeric and/or oligomeric silicic ester which carries at least one selected from the group consisting of methoxy, ethoxy, n-propoxy, i-propoxy group, and combinations thereof and has an average degree of oligomerization of from 1 to 50, and
(iv) optionally, at least one organofunctional siloxane whose functionalities are identical or different and in which each silicon atom independently carries at least one functionality selected from the group consisting of alkyl, fluoroalkyl, cyanoalkyl, isocyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxyalkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl, alkoxy, and combinations thereof, and remaining free valences of the silicon atoms in the siloxane are satisfied by methoxy or ethoxy or hydroxyl groups, and
(v) optionally, a further organofunctional silane having the formula II:
R′sR″rSiY(4-s-r)  (II),
 in which the groups R′ and R″ are identical or different and are each independently selected from the group consisting of a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, chloroalkyl, bromoalkyl, iodoalkyl, isocyanoalkyl, cyanoalkyl, fluoroalkyl, perfluoroalkyl, alkenyl, aryl, acylalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, sulfane, mercaptoalkyl, thiacyamidoalkyl, glycidyloxyalkyl, aminoalkyl, diaminoalkyl, triaminoalkyl, carbonatoalkyl or ureidoalkyl group, the respective alkylene groups containing 1 to 6 carbon atoms, Y is a methoxy, ethoxy, i-propoxy, n-propoxy or 2-methoxyethoxy group, s is 1 or 2 or 3, and r is 0 or 1 or 2, subject to the proviso that (s+r)≦3,
 wherein said reacting is carried out in situ in a liquid, a curable synthetic resin or a precursor of a synthetic resin.
23. The nanocapsule according to claim 22, wherein the nanoscale oxide and/or mixed oxide (KA—O) is an oxide and/or mixed oxide of an element selected from the group consisting of Si, Al, Ti and Zr.
24. The nanocapsule according to claim 22, which has an average diameter of from 110 to 400 nm.
25. The nanocapsule according to claim 22, wherein the curable synthetic resin or precursor of a curable synthetic resin comprises at least one selected from the group consisting of acrylate, methacrylate, epoxide, epoxy resin, polyurethane, polyurethane resin, unsaturated polyester, unsaturated polyester resin, epoxy acrylate, polyester acrylate, urethane acrylate, silicone acrylate, and mixtures thereof.
26. A process for preparing a polymerizable organosilicon nanocapsule, comprising reacting:
(i) at least one nanoscale oxide and/or mixed oxide (KA—O) particle of at least one metal or semimetal selected from the group consisting of main groups two to six of the Periodic Table of the Elements, transition groups one to eight of the Periodic Table of the Elements, lanthanides, and combinations thereof, with
(ii) at least one vinyltrialkoxysilane and/or allyltrialkoxysilane, alkoxy being a methoxy, ethoxy, n-propoxy or i-propoxy group, and (iii) optionally, at least one monomeric and/or oligomeric silicic ester which carries at least one selected from the group consisting of methoxy, ethoxy, n-propoxy, i-propoxy group, and combinations thereof and has an average degree of oligomerization of from 1 to 50, and
(iv) optionally, at least one organofunctional siloxane whose functionalities are identical or different and in which each silicon atom independently carries at least one functionality selected from the group consisting of alkyl, fluoroalkyl, cyanoalkyl, isocyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxyalkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl, alkoxy, and combinations thereof, and remaining free valences of the silicon atoms in the siloxane are satisfied by methoxy or ethoxy or hydroxyl groups, and
(v) optionally, a further organofunctional silane having the formula II:
R′sR″rSiY(4-s-r)  (II),
 in which the groups R′ and R″ are identical or different and are each independently selected from the group consisting of a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, chloroalkyl, bromoalkyl, iodoalkyl, isocyanoalkyl, cyanoalkyl, fluoroalkyl, perfluoroalkyl, alkenyl, aryl, acylalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, sulfane, mercaptoalkyl, thiacyamidoalkyl, glycidyloxyalkyl, aminoalkyl, diaminoalkyl, triaminoalkyl, carbonatoalkyl or ureidoalkyl group, the respective alkylene groups containing 1 to 6 carbon atoms, Y is a methoxy, ethoxy, i-propoxy, n-propoxy or 2-methoxyethoxy group, s is 1 or 2 or 3, and r is 0 or 1 or 2, subject to the proviso that (s+r)≦3,
 wherein said reacting is carried out in situ in a liquid, a curable synthetic resin or a precursor of a synthetic resin.
27. The process as claimed in claim 26, wherein the nanoscale oxide and/or mixed oxide (KA—O) has an average particle diameter of from 1 to 100 nm.
28. The process as claimed in claim 26, wherein the curable synthetic resin or precursor of a curable synthetic resin comprises at least one selected from the group consisting of acrylate, methacrylate, epoxide, epoxy resin, polyurethane, polyurethane resin, unsaturated polyester, unsaturated polyester resin, epoxy acrylate, polyester acrylate, urethane acrylate, silicone acrylate, and mixtures thereof.
29. The process as claimed in claim 26, wherein from 0.1 to 60% by weight of nanoscale oxide and/or mixed oxide (KA—O) is present, based on the weight of the synthetic resin.
30. The process as claimed in claim 26, wherein (i) and at least one selected from the group consisting of (ii), (iii), (iv) and (v) are employed in a weight ratio ranging from 4:1 to 1:1.
31. The process as claimed in claim 26, wherein the reaction is conducted in the presence of a catalyst.
32. The process as claimed in claim 26, wherein the reaction is conducted in the presence of water.
33. The process as claimed in claim 26, wherein the reaction is conducted in the presence of a wetting agent.
34. The process as claimed in claim 26, wherein the reaction is conducted at a temperature ranging from 30 to 100° C.
35. The process as claimed in claim 26, wherein
the curable synthetic resin or a precursor of a curable synthetic resin is introduced heated,
catalyst, optionally, a wetting agent and water are added,
components (ii) to (v) are introduced, and then
component (i) is added with mixing.
36. The process as claimed in claim 26, further comprising removing alcohol from the reaction system during the reaction, after the reaction, or both.
37. A process for preparing a composition based on a curable synthetic resin and comprising polymerizable organosilicon nanocapsules, the process comprising:
heating the curable synthetic resin or a precursor of the curable synthetic resin,
adding catalyst, optionally, a wetting agent and water,
adding at least one organosilicon component of the formula III:
R1R2 nSiX3-n  (III)
 where the groups R1 and R2 are identical or different, R1 is an alkenyl group having 2 to 18 carbon atoms, an aryl, alkylaryl, an arylalkyl, an acylalkyl, an aminoalkyl, a diaminoalkyl, a triaminoalkyl, an alkyloxyalkyl, an acylalkyl, a cyanoalkyl, an isocyanoalkyl, a glycidyloxyalkyl, an acyloxyalky, an acryloyloxyalkyl, a mercaptoalkyl, a polysulfide-alkyl or a methacryloyloxyalkyl group, and R2 possesses the same definition as R1 or is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, which is unsubstituted or substituted, and
 optionally, a monomeric and/or oligomeric silicic ester which carries at least one selected from the group consisting of methoxy, ethoxy, n-propoxy, i-propoxy group and combinations thereof and has an average degree of oligomerization of from 1 to 50, and
 optionally, an organofunctional siloxane whose functionalities are identical or different and in which each silicon atom in the siloxane carries at least one functionality selected from the group consisting of alkyl, fluoroalkyl, cyanoalkyl, isocyanoalkyl, alkenyl, aminoalkyl, diaminoalkyl, triaminoalkyl, alkoxyalkyl, hydroxyalkyl, acylalkyl, glycidyloxyalkyl, acryloyloxyalkyl, methacryloyloxyalkyl, mercaptoalkyl, ureidoalkyl, aryl, alkoxy, methoxy, ethoxy, and combinations thereof, and remaining free valences of the silicon atoms in the siloxane are satisfied by methoxy or ethoxy or hydroxyl groups,
 mixing and then adding at least one nanoscale oxide and/or mixed oxide (KA—O) particle of at least one metal or semimetal selected from the group consisting of main groups 2 to 6, of the Periodic Table of the Elements, transition groups 1 to 8 of the Periodic Table of the Elements, lanthanides, and mixtures thereof with thorough mixing, and
 removing alcohol formed by hydrolysis and/or condensation.
38. The process as claimed in claim 37, wherein the organosilicon component of the formula III is selected from the group consisting of 3-methacryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltriethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-methacryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxy-2-methylpropyltrimethoxysilane, 3-methacryloyloxy-2-methylpropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, and vinylmethyl diethoxysilane.
39. The process as claimed in claim 37, wherein a nanoscale silica is used as oxide component (KA—O).
40. The process as claimed in claim 37, wherein from 0.5 to 6 mol of water are used per mole of Si of the organosilicon component of the formula III.
US09/970,991 2000-10-05 2001-10-05 Polymerizable organosilicon nanocapsules Abandoned US20020098243A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/258,025 US8043701B2 (en) 2000-10-05 2005-10-26 Polymerizable organosilicon nanocapsules

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10049632 2000-10-05
DE10049632.6 2000-10-05
DE10100633A DE10100633A1 (en) 2000-10-05 2001-01-09 Polymerizable organosilicon nano-capsules, used as lacquer or scratch-proof coating composition, comprise nano-core containing main group II-VI, sub-group I-VIII and/or lanthanide metal(loid) (mixed) oxide(s) and organosilicon shell
DE10100633.0 2001-01-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/258,025 Division US8043701B2 (en) 2000-10-05 2005-10-26 Polymerizable organosilicon nanocapsules

Publications (1)

Publication Number Publication Date
US20020098243A1 true US20020098243A1 (en) 2002-07-25

Family

ID=26007286

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/970,991 Abandoned US20020098243A1 (en) 2000-10-05 2001-10-05 Polymerizable organosilicon nanocapsules
US11/258,025 Expired - Fee Related US8043701B2 (en) 2000-10-05 2005-10-26 Polymerizable organosilicon nanocapsules

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/258,025 Expired - Fee Related US8043701B2 (en) 2000-10-05 2005-10-26 Polymerizable organosilicon nanocapsules

Country Status (3)

Country Link
US (2) US20020098243A1 (en)
EP (1) EP1195416A3 (en)
JP (1) JP2002265870A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060063002A1 (en) * 2000-10-05 2006-03-23 Degussa Ag Polymerizable organosilicon nanocapsules
US20060155010A1 (en) * 2005-01-11 2006-07-13 Mclaughlin Joanne S Surface treatment of metallic fillers for organic resins
US20070099004A1 (en) * 2003-10-21 2007-05-03 Degussa Ag Composition for producing a barrier layer for gases
US20070110906A1 (en) * 2003-07-03 2007-05-17 Degussa Ag Silane formulation with high filler content
US20080058489A1 (en) * 2004-07-29 2008-03-06 Degussa Gmbh Aqueous Silane Nanocomposites
US20080103241A1 (en) * 2006-10-31 2008-05-01 Nidek Co., Ltd. Resin composition and production method thereof
US20080146743A1 (en) * 2005-01-05 2008-06-19 Wacker Chemie Ag Copolymers Containing Nanoparticles
US20080187673A1 (en) * 2005-02-03 2008-08-07 Degussa Gmbh Aqueous Emulsions of Functional Alkoxysilanes and Condensed Oligomers Thereof, Their Preparation and Use For Surface Treatment
US7446142B2 (en) 2001-08-16 2008-11-04 Basf Coatings Ag Thermal coating materials and coating materials that can be cured thermally and using actinic radiation and the use thereof
US20080287020A1 (en) * 2007-05-18 2008-11-20 Rudat Martin A Method and composition for treating fibrous substrates
US7470467B2 (en) 2005-08-25 2008-12-30 E.I. Du Pont De Nemours And Company Silica nanoparticles modified with organometallic compounds of zirconium and/or titanium
US20090005518A1 (en) * 2004-07-29 2009-01-01 Degussa Gmbh Block Condensates of Organofunctional Siloxanes, Their Preparation and Use, and Their Properties
US20090007818A1 (en) * 2006-03-20 2009-01-08 Evonik Degussa Gmbh Silanization of Wood Turnings and Fibers for Producing Wood-Plastic Composite Materials
US7700160B2 (en) 2005-08-25 2010-04-20 E.I. Du Pont De Nemours And Company Process for the production of a scratch resistant vehicle coating
US20100191001A1 (en) * 2007-08-14 2010-07-29 Evonik Degussa Gmbh Process for controlled hydrolysis and condensation of epoxy-functional organosilanes and the cocondensation thereof with further organofunctional alkoxysilanes
US20100209719A1 (en) * 2007-09-21 2010-08-19 Evonik Degussa Gmbh Residue-free, coat-forming, aqueous sealing system for metal surfaces, based on silane
US20100233494A1 (en) * 2009-03-11 2010-09-16 Xerox Corporation Self-releasing nanoparticle fillers in fusing members
US20110040031A1 (en) * 2008-04-18 2011-02-17 Nanoresins Ag Inorganic nanoparticles and polymer composite produced therefrom
US20110045723A1 (en) * 2008-05-19 2011-02-24 Evonik Degussa Gmbh Two-component composition for producing flexible polyurethane gelcoats
US20110071256A1 (en) * 2008-05-15 2011-03-24 Evonik Degussa Gmbh Coating composition
US20110144278A1 (en) * 2008-09-09 2011-06-16 Evonik Degussa Gmbh Silanol condensation catalysts for the cross-linking of filled and unfilled polymer compounds
US20110143147A1 (en) * 2004-07-29 2011-06-16 Degussa Gmbh Agent for providing substrates based on cellulose and/or starch with water repellent and simultaneously antifungal, antibacterial insect-repellent and antialgal properties
US20110144277A1 (en) * 2008-09-09 2011-06-16 Evonik Degussa Gmbh Use of silicon-containing precursor compounds of an organic acid as a catalyst for cross-linking filled and unfilled polymer compounds
US20110163461A1 (en) * 2008-05-15 2011-07-07 Evonik Degussa Gmbh Electronic packaging
US20110178238A1 (en) * 2007-08-14 2011-07-21 Evonik Degussa Gmbh Inorganically modified polyester binder preparation, process for production and use thereof
US8236918B2 (en) 2004-10-08 2012-08-07 Evonik Degussa Gmbh Polyether-functional siloxanes, polyether siloxane-containing compositions, methods for the production thereof and use thereof
AU2009202780B2 (en) * 2002-02-15 2013-04-18 Dentsply International Inc. Dental adhesive composition
US8431646B2 (en) 2007-04-20 2013-04-30 Evonik Degussa Gmbh Mixture containing organosilicon compound and use thereof
US8809412B2 (en) 2007-08-25 2014-08-19 Evonik Degussa Gmbh Radiation-curable formulations
US8975311B2 (en) 2010-12-06 2015-03-10 Valspar Sourcing, Inc. Radiation curable composite coating composition useful to form protective coatings
US9431619B2 (en) 2013-09-27 2016-08-30 Samsung Electronics Co., Ltd. Composition for insulator, insulator, and thin film transistor
US9988472B2 (en) 2015-08-31 2018-06-05 Samsung Electronics Co., Ltd. Composition, electronic device, and thin film transistor
US10358578B2 (en) 2015-05-29 2019-07-23 Samsung Electronics Co., Ltd. Insulating ink and insulator and thin film transistor and electronic device
US10522771B2 (en) 2014-12-01 2019-12-31 Samsung Electronics Co., Ltd. Composition, electronic device, and thin film transistor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50210398D1 (en) 2001-03-30 2007-08-16 Degussa Silicon organic nano-microhybrid systems or micro hybrid systems containing composition for scratch and abrasion resistant coatings
US7622514B2 (en) * 2005-05-09 2009-11-24 Sabic Innovative Plastics Ip B.V. Curable composition and article possessing protective layer obtained therefrom
DE102005043073A1 (en) * 2005-09-10 2007-03-15 Basf Coatings Ag Thermoplastic nanoparticles, process for their preparation and their use
US20090306277A1 (en) * 2006-08-29 2009-12-10 Goenner Emily S Resin systems including reactive surface-modified nanoparticles
WO2008030311A2 (en) * 2006-09-06 2008-03-13 Tronox Llc Improved process for the manufacture of organosilicon compound-treated pigment, and coating compositions employing the same
US20080113188A1 (en) * 2006-11-09 2008-05-15 Shah Pratik B Hydrophobic organic-inorganic hybrid silane coatings
DE102007060376B3 (en) * 2007-12-12 2009-04-23 Kronotec Ag Method for functionalizing corundum
US9963595B2 (en) 2011-05-18 2018-05-08 Axalta Coating Systems Ip Co., Llc Coating composition and method for producing powder coating
CN102220036B (en) * 2011-06-02 2013-07-03 北京化工大学 Method for preparing white carbon black modified by silane coupling agent
US8852333B2 (en) 2012-02-06 2014-10-07 Nano And Advanced Materials Institute Limited Multi-functional environmental coating composition with mesoporous silica nanomaterials
US20140302251A1 (en) * 2013-03-15 2014-10-09 The Sherwin-Williams Company Radiation polymerizable abrasion resistant aqueous coatings
JP6997915B2 (en) * 2016-03-29 2022-01-18 凸版印刷株式会社 Decorative sheet and manufacturing method of decorative sheet
CN108640805B (en) * 2018-05-04 2020-08-14 北京理工大学 Method for improving oxidation resistance of active Ti/2B nano powder material

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617327A (en) * 1983-11-19 1986-10-14 Bayer Aktiengesellschaft Inorganic-organic fillers for polymerizable compositions
US4624971A (en) * 1981-01-15 1986-11-25 Battelle Development Corporation Photo setting composition for coating substrates with an abrasion-resistant transparent or translucent film
US5808125A (en) * 1996-12-03 1998-09-15 Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions based on water, a process for their preparation and their use
US5847942A (en) * 1996-05-30 1998-12-08 Unitrode Corporation Controller for isolated boost converter with improved detection of RMS input voltage for distortion reduction and having load-dependent overlap conduction delay of shunt MOSFET
US5863509A (en) * 1996-12-03 1999-01-26 Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions
US5885341A (en) * 1996-09-26 1999-03-23 Huels Aktiengesellschaft Organopolysiloxane-containing, water-based compositions containing glycidal ether, acrylic and/or methacrylic functional groups, process for their preparation, and their use
US5932757A (en) * 1996-06-17 1999-08-03 Huls Aktiengesellschaft Mixture of oligomers of condensed alkylalkoxysilanes
US6100418A (en) * 1998-05-12 2000-08-08 Sivento Chemie Rheinfelden Gmbh Lessening residual halogen content and improving color number in alkoxysilanes or alkoxysilane-based compositions
US6133466A (en) * 1998-08-03 2000-10-17 Degussa-Huels Aktiengesellschaft Acryloxypropyl- or methacryloxypropyl-functional siloxane oligomers
US6166855A (en) * 1998-06-05 2000-12-26 Fuji Photo Film Co., Ltd. Anti-reflection film and display device having the same
US6177584B1 (en) * 1998-10-26 2001-01-23 Degussa-Huels Aktiengesellschaft Process for neutralizing and reducing residual halogen contents in alkoxysilanes or alkoxysilane-based compositions
US6239194B1 (en) * 1998-04-28 2001-05-29 Huels Aktiengesellschaft Surface-modified fillers, process for their preparation and their use
US6251989B1 (en) * 1998-05-26 2001-06-26 Degussa-Huels Aktiengesellschaft Oligomerized organopolysiloxane cocondensate, its production and its use for treatment of surfaces
US6255513B1 (en) * 1998-04-28 2001-07-03 Huels Aktiengesellschaft Stable compositions of water-soluble amino-and alkenyl-functional organosiloxanes, process for their preparation and their use
US6288936B1 (en) * 2000-06-30 2001-09-11 Fujitsu Limited Nonvolatile memory for storing multivalue data
US6361871B1 (en) * 1999-02-03 2002-03-26 Degussa Ag Composition of organofluorine-functional silanes and/or siloxanes, process for preparing it and its use
US6395858B1 (en) * 1998-10-27 2002-05-28 Degussa Ag Aminopropyl-functional siloxane oligomers
US6403228B1 (en) * 1999-06-25 2002-06-11 Degussa Ag Functional organylorganyloxysilanes on a carrier in cable compounds
US6462115B1 (en) * 1996-08-16 2002-10-08 Nippon Telegraph And Telephone Corporation Water repellent coating composition, method for preparing the same, and coating films and coated articles using the same
US6500883B1 (en) * 1999-12-22 2002-12-31 Degussa Ag Organosilane-and/or organosiloxane-containing agent for filled polyamide
US6528585B1 (en) * 1998-10-21 2003-03-04 Degussa Ag Cross-linkable polymers, method for the production thereof, and shaped bodies made of cross-linked polymers
US6534667B1 (en) * 1999-02-27 2003-03-18 Degussa- Ag Water-based composition of amino-functional silicon compounds

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3138835C2 (en) 1981-09-30 1986-12-18 Dynamit Nobel Ag, 5210 Troisdorf Process for the preparation of organosilane esters with polyols
JPS6273938A (en) * 1985-09-27 1987-04-04 日本ペイント株式会社 Corrosion-resistant coated laminate
US4822828A (en) * 1987-11-23 1989-04-18 Hoechst Celanese Corporation Radiation curable coating composition based on a silica/vinyl-functional silanol dispersion
NL8800748A (en) * 1988-03-25 1989-10-16 Stamicarbon COMPOSITION CONTAINING ULTRAVIOLET LIGHT-CURABLE UNSATURATED MONOMERS AND / OR OLIGOMERS, A PHOTO INITIATOR AND COLLOIDAL SILICA WITH AN ORGANOSILANE COMPOUND AND THE USE OF THIS COMPOSITION IN COATINGS.
JPH0264138A (en) * 1988-08-30 1990-03-05 Toyo Ink Mfg Co Ltd Polymerizable silica sol and curable coating composition using the silica sol
EP0437327A3 (en) * 1990-01-08 1991-10-23 Dow Corning Corporation Radiation curable abrasion resistant cyclic ether acrylate coating composition
JP2612635B2 (en) * 1990-07-17 1997-05-21 東洋インキ製造株式会社 Coating composition
EP0518057B1 (en) 1991-06-08 1998-07-29 Hüls Aktiengesellschaft Mixtures of linear and cyclic siloxane oligomers, their preparation and use
JP3197918B2 (en) * 1991-10-02 2001-08-13 三菱レイヨン株式会社 Coating composition and surface modification method of synthetic resin molded article
DE4233021A1 (en) 1992-10-01 1994-04-07 Huels Chemische Werke Ag Organosilane polycondensates
BE1008432A3 (en) * 1994-06-06 1996-05-07 Solvay Composition containing propylene polymer, method for obtaining and use.
DE4443824A1 (en) 1994-12-09 1996-06-13 Huels Chemische Werke Ag Organopolysiloxane-containing water-based compositions, processes for their preparation and their use
DE4443825A1 (en) 1994-12-09 1996-06-13 Huels Chemische Werke Ag Water-based organopolysiloxane-containing compositions, processes for their preparation and their use
DE19531144C2 (en) 1995-08-24 2003-08-28 Degussa Water-containing dissolutions of acrylic-functionalized organosilanes, processes for their preparation and their use
DE19613645A1 (en) * 1996-04-04 1997-10-09 Inst Neue Mat Gemein Gmbh Graded-structure optical components and method of making the same
DE19639783A1 (en) 1996-09-27 1998-04-02 Merck Patent Gmbh Modified pearlescent pigments for water-based paint systems
DE19649954A1 (en) * 1996-12-03 1998-06-04 Huels Chemische Werke Ag Fluoroalkyl-functional organosiloxane-containing compositions based on alcohol, process for their preparation and their use
US6713186B1 (en) * 1996-12-03 2004-03-30 Degussa Ag Fluoroalkyl-functional organosiloxane-containing compositions based on alcohol, a process for their preparation and their use
MY122234A (en) * 1997-05-13 2006-04-29 Inst Neue Mat Gemein Gmbh Nanostructured moulded bodies and layers and method for producing same
DE19719948A1 (en) 1997-05-13 1998-11-19 Inst Neue Mat Gemein Gmbh Production of nano-structured mouldings and coatings
FR2772777B1 (en) * 1997-12-23 2000-03-10 Clariant Chimie Sa SILICO-ACRYLIC COMPOSITIONS, PREPARATION METHOD AND APPLICATION FOR OBTAINING THERMALLY OR RADIATION CURABLE COATINGS
DE19802069A1 (en) 1998-01-21 1999-07-22 Huels Silicone Gmbh Amino-functional polyorganosiloxanes, their preparation and use
DE19846659C2 (en) 1998-10-09 2001-07-26 Wkp Wuerttembergische Kunststo Layer material and method for producing such
DE19846660A1 (en) * 1998-10-09 2000-04-13 Inst Oberflaechenmodifizierung Polymerizable metal oxide particles, e.g. useful in coating compositions, adhesives or sealants, comprise a metal oxide core functionalized with reactive groups
DE19932144A1 (en) * 1999-07-09 2001-01-11 Basf Ag Microcapsule preparations and washing and cleaning agents containing microcapsules
US6703186B1 (en) * 1999-08-11 2004-03-09 Mitsuboshi Belting Ltd. Method of forming a conductive pattern on a circuit board
DE19964309C2 (en) * 1999-11-15 2003-07-03 Degussa Triamino and fluoroalkyl functional organosiloxanes or mixtures thereof
DE19955047C2 (en) 1999-11-15 2003-07-03 Degussa Triamino and fluoroalkyl functional organosiloxanes
JP4457474B2 (en) * 2000-04-04 2010-04-28 ソニー株式会社 Information recording apparatus, information reproducing apparatus, information recording method, information reproducing method, information recording medium, and program providing medium
DE10049153A1 (en) * 2000-09-27 2002-04-11 Degussa Paint, varnish, pollutants, bioorganisms, oil, water, and / or dirt-repellent coating
EP1195417B1 (en) * 2000-10-05 2009-10-14 Evonik Degussa GmbH Silicone-organic nanocapsules
EP1195416A3 (en) * 2000-10-05 2005-12-28 Degussa AG Polymerisable silicone-organic nanocapsules
DE10100384A1 (en) * 2001-01-05 2002-07-11 Degussa Process for modifying the functionality of organofunctional substrate surfaces
DE50210398D1 (en) * 2001-03-30 2007-08-16 Degussa Silicon organic nano-microhybrid systems or micro hybrid systems containing composition for scratch and abrasion resistant coatings
DE10116007A1 (en) * 2001-03-30 2002-10-02 Degussa Device and method for producing essentially halogen-free trialkoxysilanes
EP1249470A3 (en) * 2001-03-30 2005-12-28 Degussa AG Highly filled pasty siliconorganic nano and/or microhybridcapsules containing composition for scratch and/or abrasion resistant coatings
DE10132942A1 (en) * 2001-07-06 2003-01-23 Degussa Siloxane oligomers, process for their preparation and their use
DE10141687A1 (en) * 2001-08-25 2003-03-06 Degussa Agent for coating surfaces containing silicon compounds
DE10151264A1 (en) * 2001-10-17 2003-04-30 Degussa Aminoalkylalkoxysiloxane-containing mixtures, their preparation and their use
DE10212523A1 (en) * 2002-03-21 2003-10-02 Degussa Air-drying, silane-containing coating agents

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624971A (en) * 1981-01-15 1986-11-25 Battelle Development Corporation Photo setting composition for coating substrates with an abrasion-resistant transparent or translucent film
US4617327A (en) * 1983-11-19 1986-10-14 Bayer Aktiengesellschaft Inorganic-organic fillers for polymerizable compositions
US5847942A (en) * 1996-05-30 1998-12-08 Unitrode Corporation Controller for isolated boost converter with improved detection of RMS input voltage for distortion reduction and having load-dependent overlap conduction delay of shunt MOSFET
US5932757A (en) * 1996-06-17 1999-08-03 Huls Aktiengesellschaft Mixture of oligomers of condensed alkylalkoxysilanes
US6462115B1 (en) * 1996-08-16 2002-10-08 Nippon Telegraph And Telephone Corporation Water repellent coating composition, method for preparing the same, and coating films and coated articles using the same
US5885341A (en) * 1996-09-26 1999-03-23 Huels Aktiengesellschaft Organopolysiloxane-containing, water-based compositions containing glycidal ether, acrylic and/or methacrylic functional groups, process for their preparation, and their use
US5808125A (en) * 1996-12-03 1998-09-15 Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions based on water, a process for their preparation and their use
US5863509A (en) * 1996-12-03 1999-01-26 Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions
US6054601A (en) * 1996-12-03 2000-04-25 Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions based on water, a process for their preparation and their use
US6288256B1 (en) * 1996-12-03 2001-09-11 Degussa-Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions based on water, a process for their preparation and their use
US6239194B1 (en) * 1998-04-28 2001-05-29 Huels Aktiengesellschaft Surface-modified fillers, process for their preparation and their use
US6255513B1 (en) * 1998-04-28 2001-07-03 Huels Aktiengesellschaft Stable compositions of water-soluble amino-and alkenyl-functional organosiloxanes, process for their preparation and their use
US6100418A (en) * 1998-05-12 2000-08-08 Sivento Chemie Rheinfelden Gmbh Lessening residual halogen content and improving color number in alkoxysilanes or alkoxysilane-based compositions
US6251989B1 (en) * 1998-05-26 2001-06-26 Degussa-Huels Aktiengesellschaft Oligomerized organopolysiloxane cocondensate, its production and its use for treatment of surfaces
US6166855A (en) * 1998-06-05 2000-12-26 Fuji Photo Film Co., Ltd. Anti-reflection film and display device having the same
US6133466A (en) * 1998-08-03 2000-10-17 Degussa-Huels Aktiengesellschaft Acryloxypropyl- or methacryloxypropyl-functional siloxane oligomers
US6528585B1 (en) * 1998-10-21 2003-03-04 Degussa Ag Cross-linkable polymers, method for the production thereof, and shaped bodies made of cross-linked polymers
US6177584B1 (en) * 1998-10-26 2001-01-23 Degussa-Huels Aktiengesellschaft Process for neutralizing and reducing residual halogen contents in alkoxysilanes or alkoxysilane-based compositions
US6395858B1 (en) * 1998-10-27 2002-05-28 Degussa Ag Aminopropyl-functional siloxane oligomers
US6361871B1 (en) * 1999-02-03 2002-03-26 Degussa Ag Composition of organofluorine-functional silanes and/or siloxanes, process for preparing it and its use
US6534667B1 (en) * 1999-02-27 2003-03-18 Degussa- Ag Water-based composition of amino-functional silicon compounds
US6403228B1 (en) * 1999-06-25 2002-06-11 Degussa Ag Functional organylorganyloxysilanes on a carrier in cable compounds
US6500883B1 (en) * 1999-12-22 2002-12-31 Degussa Ag Organosilane-and/or organosiloxane-containing agent for filled polyamide
US6288936B1 (en) * 2000-06-30 2001-09-11 Fujitsu Limited Nonvolatile memory for storing multivalue data

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043701B2 (en) 2000-10-05 2011-10-25 Evonik Degussa Gmbh Polymerizable organosilicon nanocapsules
US20060063002A1 (en) * 2000-10-05 2006-03-23 Degussa Ag Polymerizable organosilicon nanocapsules
US7446142B2 (en) 2001-08-16 2008-11-04 Basf Coatings Ag Thermal coating materials and coating materials that can be cured thermally and using actinic radiation and the use thereof
AU2009202780B2 (en) * 2002-02-15 2013-04-18 Dentsply International Inc. Dental adhesive composition
US8119730B2 (en) * 2003-07-03 2012-02-21 Evonik Degussa Gmbh Silane formulation with high filler content
US20070110906A1 (en) * 2003-07-03 2007-05-17 Degussa Ag Silane formulation with high filler content
US20070099004A1 (en) * 2003-10-21 2007-05-03 Degussa Ag Composition for producing a barrier layer for gases
US20090005518A1 (en) * 2004-07-29 2009-01-01 Degussa Gmbh Block Condensates of Organofunctional Siloxanes, Their Preparation and Use, and Their Properties
US8481165B2 (en) 2004-07-29 2013-07-09 Evonik Degussa Gmbh Agent for providing substrates based on cellulose and/or starch with water repellent and simultaneously antifungal, antibacterial insect-repellent and antialgal properties
US20110143147A1 (en) * 2004-07-29 2011-06-16 Degussa Gmbh Agent for providing substrates based on cellulose and/or starch with water repellent and simultaneously antifungal, antibacterial insect-repellent and antialgal properties
US8481654B2 (en) 2004-07-29 2013-07-09 Evonik Degussa Gmbh Aqueous silane nanocomposites
US20080058489A1 (en) * 2004-07-29 2008-03-06 Degussa Gmbh Aqueous Silane Nanocomposites
US8236918B2 (en) 2004-10-08 2012-08-07 Evonik Degussa Gmbh Polyether-functional siloxanes, polyether siloxane-containing compositions, methods for the production thereof and use thereof
US20080146743A1 (en) * 2005-01-05 2008-06-19 Wacker Chemie Ag Copolymers Containing Nanoparticles
US7674868B2 (en) 2005-01-05 2010-03-09 Wacker Chemie Ag Copolymers containing nanoparticles
EP1688457A1 (en) * 2005-01-11 2006-08-09 Northrop Grumman Corporation Surface treatment of metallic fillers for organic resins
US20060155010A1 (en) * 2005-01-11 2006-07-13 Mclaughlin Joanne S Surface treatment of metallic fillers for organic resins
US20080187673A1 (en) * 2005-02-03 2008-08-07 Degussa Gmbh Aqueous Emulsions of Functional Alkoxysilanes and Condensed Oligomers Thereof, Their Preparation and Use For Surface Treatment
US8795784B2 (en) 2005-02-03 2014-08-05 Evonik Degussa Gmbh Aqueous emulsions of functional alkoxysilanes and condensed oligomers thereof, their preparation and use for surface treatment
US7470467B2 (en) 2005-08-25 2008-12-30 E.I. Du Pont De Nemours And Company Silica nanoparticles modified with organometallic compounds of zirconium and/or titanium
US7700160B2 (en) 2005-08-25 2010-04-20 E.I. Du Pont De Nemours And Company Process for the production of a scratch resistant vehicle coating
US20090007818A1 (en) * 2006-03-20 2009-01-08 Evonik Degussa Gmbh Silanization of Wood Turnings and Fibers for Producing Wood-Plastic Composite Materials
US7868117B2 (en) 2006-10-31 2011-01-11 Nidek Co., Ltd. Resin composition and production method thereof
US20080103241A1 (en) * 2006-10-31 2008-05-01 Nidek Co., Ltd. Resin composition and production method thereof
EP1918323A3 (en) * 2006-10-31 2010-10-06 Nidek Co., Ltd. Resin composition and production method thereof
US8431646B2 (en) 2007-04-20 2013-04-30 Evonik Degussa Gmbh Mixture containing organosilicon compound and use thereof
US20080287020A1 (en) * 2007-05-18 2008-11-20 Rudat Martin A Method and composition for treating fibrous substrates
US8178630B2 (en) 2007-08-14 2012-05-15 Evonik Degussa Gmbh Inorganically modified polyester binder preparation, process for production and use thereof
US8394972B2 (en) 2007-08-14 2013-03-12 Evonik Degussa Gmbh Process for controlled hydrolysis and condensation of epoxy-functional organosilanes and the cocondensation thereof with further organofunctional alkoxysilanes
US20110178238A1 (en) * 2007-08-14 2011-07-21 Evonik Degussa Gmbh Inorganically modified polyester binder preparation, process for production and use thereof
US20100191001A1 (en) * 2007-08-14 2010-07-29 Evonik Degussa Gmbh Process for controlled hydrolysis and condensation of epoxy-functional organosilanes and the cocondensation thereof with further organofunctional alkoxysilanes
US8809412B2 (en) 2007-08-25 2014-08-19 Evonik Degussa Gmbh Radiation-curable formulations
US20100209719A1 (en) * 2007-09-21 2010-08-19 Evonik Degussa Gmbh Residue-free, coat-forming, aqueous sealing system for metal surfaces, based on silane
CN102007187B (en) * 2008-04-18 2013-11-20 创汉斯有限公司 Anorganic nanoparticles and polymer composites created with same
US9243130B2 (en) 2008-04-18 2016-01-26 Evonik Nanoresins Gmbh Inorganic nanoparticles and polymer composite produced therefrom
US20110040031A1 (en) * 2008-04-18 2011-02-17 Nanoresins Ag Inorganic nanoparticles and polymer composite produced therefrom
CN102007187A (en) * 2008-04-18 2011-04-06 纳米树脂股份公司 Anorganic nanoparticles and polymer composites created with same
US20110163461A1 (en) * 2008-05-15 2011-07-07 Evonik Degussa Gmbh Electronic packaging
US20110071256A1 (en) * 2008-05-15 2011-03-24 Evonik Degussa Gmbh Coating composition
US20110045723A1 (en) * 2008-05-19 2011-02-24 Evonik Degussa Gmbh Two-component composition for producing flexible polyurethane gelcoats
US20110144278A1 (en) * 2008-09-09 2011-06-16 Evonik Degussa Gmbh Silanol condensation catalysts for the cross-linking of filled and unfilled polymer compounds
US20110144277A1 (en) * 2008-09-09 2011-06-16 Evonik Degussa Gmbh Use of silicon-containing precursor compounds of an organic acid as a catalyst for cross-linking filled and unfilled polymer compounds
US9239558B2 (en) * 2009-03-11 2016-01-19 Xerox Corporation Self-releasing nanoparticle fillers in fusing members
US20100233494A1 (en) * 2009-03-11 2010-09-16 Xerox Corporation Self-releasing nanoparticle fillers in fusing members
US8975311B2 (en) 2010-12-06 2015-03-10 Valspar Sourcing, Inc. Radiation curable composite coating composition useful to form protective coatings
US9431619B2 (en) 2013-09-27 2016-08-30 Samsung Electronics Co., Ltd. Composition for insulator, insulator, and thin film transistor
US10522771B2 (en) 2014-12-01 2019-12-31 Samsung Electronics Co., Ltd. Composition, electronic device, and thin film transistor
US10879475B2 (en) 2014-12-01 2020-12-29 Samsung Electronics Co., Ltd. Composition, electronic device, and thin film transistor
US10358578B2 (en) 2015-05-29 2019-07-23 Samsung Electronics Co., Ltd. Insulating ink and insulator and thin film transistor and electronic device
US9988472B2 (en) 2015-08-31 2018-06-05 Samsung Electronics Co., Ltd. Composition, electronic device, and thin film transistor

Also Published As

Publication number Publication date
US20060063002A1 (en) 2006-03-23
JP2002265870A (en) 2002-09-18
EP1195416A3 (en) 2005-12-28
EP1195416A2 (en) 2002-04-10
US8043701B2 (en) 2011-10-25

Similar Documents

Publication Publication Date Title
US8043701B2 (en) Polymerizable organosilicon nanocapsules
US6689468B2 (en) Organosilicon nanocapsules
US6699586B2 (en) Organosilicon nano/microhybrid or microhybrid system composition for scratch and abrasion resistant coatings
US6830816B2 (en) Highly filled, pasty, composition containing silicoorganic nanohybrid and/or microhybrid capsules for scratch-resistant and/or abrasion-resistant coatings
Bauer et al. Trialkoxysilane grafting onto nanoparticles for the preparation of clear coat polyacrylate systems with excellent scratch performance
Bauer et al. Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting onto nanoparticles, 3. Effect of filler particles and grafting agents
US20070196658A1 (en) Curable composition containing surface-modified particles
Gläsel et al. Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting onto nanoparticles, 2 characterization of radiation‐cured polymeric nanocomposites
EP1678267B1 (en) Composition for producing a barrier layer for gases
DE10100384A1 (en) Process for modifying the functionality of organofunctional substrate surfaces
WO1996033243A1 (en) Coating resin composition
US20080242766A1 (en) Curable Composition Containing Surface-Modified Particles
JP2010215917A (en) Highly filled, pasty, composition containing silico-organic nanohybrid and/or microhybrid capsule for scratch-resistant and/or abrasion-resistant coating
DE10100633A1 (en) Polymerizable organosilicon nano-capsules, used as lacquer or scratch-proof coating composition, comprise nano-core containing main group II-VI, sub-group I-VIII and/or lanthanide metal(loid) (mixed) oxide(s) and organosilicon shell
JP5659605B2 (en) Decorative sheet and decorative steel sheet using the decorative sheet
DE10049628A1 (en) Organosilicon nano-capsules, used as lacquer or scratch-proof coating composition, consist of nano-core containing main group II-VI, sub-group I-VIII and/or lanthanide metal(loid) (mixed) oxide, and an organosilicon shell
DE10141690A1 (en) Nano-/micro- or micro-hybrid core/shell system e.g. for a scratch-/abrasion-resistant coating, comprises a core of oxide particles and a bonded organo-Si shell or lacquers
KR100838614B1 (en) Curable composition containing surface-modified particles
Bauera et al. Trialkoxysilane grafting onto nanoparticles for the preparation of clear coat polyacrylate systems with excellent scratch performance
CN101367964A (en) Organosilicon nano-capsule
WO2022169744A1 (en) Composition comprising organic functional alkoxysilanes and coating compositions comprising the same
Tauber et al. UV and electron beam crosslinked polyacrylate nanocomposites and their applications
Stojanović et al. Scratch and Abrasion Resistant Polymeric Nanocomposites–Preparation, Characterization and Applications
KR20070015935A (en) Curable composition containing surface-modified paricles

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEGUSSA AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EDELMANN, ROLAND;MONKIEWICZ, JAROSLAW;REEL/FRAME:012558/0243

Effective date: 20011210

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: EVONIK DEGUSSA GMBH,GERMANY

Free format text: CHANGE ADDRESS;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:023985/0296

Effective date: 20071031

Owner name: DEGUSSA GMBH,GERMANY

Free format text: CHANGE OF ENTITY;ASSIGNOR:DEGUSSA AG;REEL/FRAME:023998/0937

Effective date: 20070102

Owner name: EVONIK DEGUSSA GMBH, GERMANY

Free format text: CHANGE ADDRESS;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:023985/0296

Effective date: 20071031

Owner name: DEGUSSA GMBH, GERMANY

Free format text: CHANGE OF ENTITY;ASSIGNOR:DEGUSSA AG;REEL/FRAME:023998/0937

Effective date: 20070102

AS Assignment

Owner name: EVONIK DEGUSSA GMBH,GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:DEGUSSA GMBH;REEL/FRAME:024006/0127

Effective date: 20070912

Owner name: EVONIK DEGUSSA GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:DEGUSSA GMBH;REEL/FRAME:024006/0127

Effective date: 20070912