US20020120323A1 - Implant delivery system with interlock - Google Patents

Implant delivery system with interlock Download PDF

Info

Publication number
US20020120323A1
US20020120323A1 US09/954,555 US95455501A US2002120323A1 US 20020120323 A1 US20020120323 A1 US 20020120323A1 US 95455501 A US95455501 A US 95455501A US 2002120323 A1 US2002120323 A1 US 2002120323A1
Authority
US
United States
Prior art keywords
implant
interlock
delivery system
sheath
stent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/954,555
Inventor
Paul Thompson
Nathan Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ev3 Peripheral Inc
Original Assignee
Intratherapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intratherapeutics Inc filed Critical Intratherapeutics Inc
Priority to US09/954,555 priority Critical patent/US20020120323A1/en
Assigned to INTRATHERAPEUTICS, INC. reassignment INTRATHERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, NATHAN T., THOMPSON, PAUL J.
Priority to AT02704340T priority patent/ATE464024T1/en
Priority to DE60235968T priority patent/DE60235968D1/en
Priority to ES02704340T priority patent/ES2344629T3/en
Priority to PCT/US2002/003153 priority patent/WO2002067782A2/en
Priority to AU2002238030A priority patent/AU2002238030A1/en
Priority to EP02704340.5A priority patent/EP1365707B2/en
Publication of US20020120323A1 publication Critical patent/US20020120323A1/en
Assigned to EV3 PERIPHERAL, INC. reassignment EV3 PERIPHERAL, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SULZER INTRATHERAPEUTICS, INC.
Assigned to SULZER INTRA THERAPEUTICS, INC. reassignment SULZER INTRA THERAPEUTICS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: INTRA THERAPEUTICS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9517Instruments specially adapted for placement or removal of stents or stent-grafts handle assemblies therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91591Locking connectors, e.g. using male-female connections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • A61F2002/9583Means for holding the stent on the balloon, e.g. using protrusions, adhesives or an outer sleeve
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • A61F2002/9665Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod with additional retaining means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives

Definitions

  • This invention pertains to a system for delivering an implant to a site in a body lumen. More particularly, this invention pertains to a delivery system for a self-expandable implant such as a stent.
  • Stents are widely used for supporting a lumen structure in a patient's body.
  • stents may be used to maintain patency of a coronary artery, other blood vessels or other body lumen.
  • Stents are commonly metal, tubular structures. Stents are passed through a body lumen in a collapsed state. At the point of an obstruction or other deployment site in the body lumen, the stent is expanded to an expanded diameter to support the lumen at the deployment site.
  • stents are open-celled tubes that are expanded by inflatable balloons at the deployment site. This type of stent is often referred to as a “balloon expandable” stent. Other stents are so-called “self-expanding” stents. Self-expanding stents do not use balloons to cause the expansion of the stent.
  • An example of a self-expanding stent is a tube (e.g., a coil tube or an open-celled tube) made of an elastically deformable material (e.g., a superelastic material such a nitinol).
  • This type of stent is secured to a stent delivery device under tension in a collapsed state. At the deployment site, the stent is released so that internal tension within the stent causes the stent to self-expand to its enlarged diameter.
  • Other self-expanding stents are made of so-called shape-memory metals. Such shape-memory stents experience a phase change at the elevated temperature of the human body. The phase change results in expansion from a collapsed state to an enlarged state.
  • a delivery technique for elastically deformable stents is to mount the collapsed stent on a distal end of a stent delivery system.
  • a stent delivery system Such a system would include an outer tubular member and an inner tubular member.
  • the inner and outer tubular members are axially slideable relative to one another.
  • the stent (in the collapsed state) is mounted surrounding the inner tubular member at its distal end.
  • the outer tubular member also called the outer sheath
  • a guide wire Prior to advancing the stent delivery system through the body lumen, a guide wire is first passed through the body lumen to the deployment site.
  • the inner tube of the delivery system is hollow throughout its length such that it can be advanced over the guide wire to the deployment site.
  • the combined structure i.e., stent mounted on stent delivery system
  • the deployment system may include radiopaque markers to permit a physician to visualize positioning of the stent under fluoroscopy prior to deployment.
  • the outer sheath is retracted to expose the stent.
  • the exposed stent is now free to self-expand within the body lumen.
  • the inner tube is free to pass through the stent such that the delivery system can be removed through the body lumen leaving the stent in place at the deployment site.
  • the stent may prematurely deploy as the outer tube is retracted. Namely, with the outer tube partially retracted, the exposed portion of the stent may expand resulting in the remainder of the stent being squeezed out of the outer tube. This can result in the stent being propelled distally beyond a desired deployment site. Also, once the stent is partially unsheathed, it is sometimes determined that the stent placement needs to be adjusted. With existing systems, this is difficult since the stent has a tendency to force itself out of the sheath thereby making adjustments difficult. What is needed is a system that retains the stent on the catheter even when a majority of the stent has been exposed by retraction of the sheath. What is also needed is a system that allows a stent to be re-sheathed even after a majority of the stent has been exposed by retraction of the sheath.
  • One embodiment of the present invention relates to an implant delivery system that provides enhanced placement control of the implant.
  • FIG. 1 is a side elevation view of a stent delivery system according to the present invention
  • FIG. 2A is an enlarged cross-sectional view of detail A of FIG. 1 with the stent in a compressed orientation
  • FIG. 2B is an enlarged cross-sectional view of detail A of FIG. 1 with the stent in a deployed (i.e., expanded) orientation;
  • FIG. 3 is an enlarged cross-sectional view of detail B of FIG. 1;
  • FIG. 4 is an enlarged cross-sectional view of detail C
  • FIG. 5 is a cross-sectional view of the inner and outer tubular members of the stent delivery system of FIG. 1 taken along section line 5 - 5 of FIG. 3;
  • FIG. 6A is a plan view of a first stent having an interlock structure that interlocks with an interlock structure of a mating collar, the stent and the collar are shown cut longitudinally and laid flat with an axial separation between the stent proximal end and the mating collar;
  • FIG. 6B is the view of FIG. 6A with the stent proximal end and mating collar shown interlocked;
  • FIG. 6C is an end view of the stent of FIGS. 6A and 6B in its tubular configuration
  • FIG. 7 is a laid flat, plan view of a second stent having an interlock structure that interlocks with an interlock structure of a mating collar, the collar includes rotational positioning indicators;
  • FIG. 8 is a laid flat, plan view of a third stent having an interlock structure that interlocks with an interlock structure of a mating collar, the collar includes rotational positioning notches;
  • FIG. 9 is a laid flat, plan view of a fourth stent having an interlock structure that interlocks with an interlock structure of a mating collar, the stent and the collar include a rotational alignment key and keyway;
  • FIG. 10 is a laid flat, plan view of a fifth stent having an interlock structure that interlocks with an interlock structure of a mating collar;
  • FIG. 11 is a laid flat, plan view of a sixth stent having an interlock structure that interlocks with an interlock structure of a mating collar;
  • FIG. 12 is a laid flat, plan view of a seventh stent having an interlock structure that interlocks with rectangular posts formed on an inner body of a catheter;
  • FIG. 13 is a laid flat, plan view of a eighth stent having an interlock structure that interlocks with an interlock structure of a mating collar;
  • FIG. 14A is a laid flat, plan view of a ninth stent having an interlock structure that interlocks with outwardly projecting line-like projections formed on the inner body of a catheter;
  • FIG. 14B shows the stent of FIG. 14A interlocked with the line-like projections
  • FIG. 15A is a laid flat, plan view of a tenth stent having an interlock structure that interlocks with outwardly projecting posts formed on the inner body of a catheter;
  • FIG. 15B shows the stent of FIG. 15A interlocked with the posts
  • FIGS. 16A and 16B show another delivery system that is an embodiment of the present invention.
  • a stent delivery system 10 is shown.
  • the stent delivery system 10 is for delivery of a stent 12 to a deployment site in a body lumen of a patient's body.
  • the stent 12 may be a self-expanding stent having a construction such as that shown in U.S. Pat. No. 6,132,461.
  • the stent can be made of a superelastic metal such as nitinol, or the like.
  • the stent 12 may also be a coil stent or any other self-expanding stent.
  • the stent 12 includes a proximal end 12 a and a distal end 12 b .
  • Another representative stent is shown in U.S. patent application Ser. No. 09/765,725, filed Jan. 18, 2001 and entitled STENT, which is hereby incorporated by reference.
  • the stent 12 is carried on the stent delivery system 10 in a collapsed (or reduced diameter) state as shown in FIG. 2A.
  • the stent 12 Upon release of the stent 12 from the stent delivery system 10 (as will be described), the stent 12 expands to an enlarged diameter (see FIG. 2B) to abut against the walls of the patient's lumen in order to support patency of the lumen.
  • the stent delivery system 10 includes an inner tubular member 14 (i.e., also referred to as an elongated member) and an outer tubular member 16 . Both of the inner and outer tubular members 14 and 16 extend from proximal ends 14 a , 16 a to distal ends 14 b , 16 b.
  • the outer tubular member 16 is sized to be axially advanced through the patient's body lumen.
  • the tubular member 16 is preferably sufficiently long for the distal end 16 b to be placed near the deployment site in the patient's body lumen with the proximal end 16 a remaining external to the patient's body for manipulation by an operator.
  • the outer tubular member 16 (also referred to as a sheath) may be a braid-reinforced polyester of tubular construction to resist kinking and to transmit axial forces along the length of the sheath 16 .
  • the outer tubular member 16 may be of widely varying construction to permit varying degrees of flexibility of the outer tubular member 16 along its length.
  • the proximal end 16 a of the outer tubular member 16 is bonded to a manifold housing 20 .
  • the manifold housing 20 is threadedly connected to a lock housing 22 .
  • a strain relief jacket 24 is connected to the manifold housing 20 and surrounds the outer tubular member 16 to provide strain relief for the outer tubular member 16 .
  • the inner tubular member 14 is preferably formed of nylon but may be constructed of any suitable material. As shown in FIG. 2B, the inner tubular member 14 defines a stent attachment location 26 (i.e., a stent mounting location). The inner tubular member 14 also includes markers 27 , 28 that are attached to an outer surface of the inner tubular member 14 (e.g., by techniques such as adhesive, heat fusion, interference fit, fasteners, intermediate members or other techniques). The attachment location 26 is positioned between the markers 27 , 28 . The radiopaque markers 27 , 28 permit a physician to accurately determine the position of the stent attachment location 26 within the patient's lumen under fluoroscopic visualization.
  • At least one of the markers 27 , 28 forms a collar including a geometry that interlocks with the stent 12 to prevent axial movement of the stent 12 relative to the inner tubular member during transport and deployment of the stent 12 .
  • Materials for making the radiopaque marker should have a density suitable for visualization through fluoroscopic techniques. Exemplary materials comprise tanalum, platinum, gold, tungsten and alloys of such metals.
  • the markers can be coated with a radiopaque material or filled with a radiopaque filler.
  • a tapered and flexible distal tip member 30 is secured to the distal end 14 b of the inner tubular member 14 .
  • the highly flexible distal tip member 30 permits advancement of the stent deployment system 10 through the patient's lumen and minimizes trauma to the walls of the patient's lumen.
  • the inner tubular member 14 preferably extends completely through the stent 12 when the stent 12 is mounted at the attachment location 26 .
  • the inner tube 14 passes through both the manifold housing 20 and lock housing 22 .
  • a stainless steel jacket 32 surrounds and is bonded to the inner tubular member 14 .
  • a port housing 34 is bonded to the stainless steel jacket 32 .
  • the port housing 34 has a tapered bore 36 aligned with an inner lumen 38 of the tubular member 14 .
  • the inner lumen 38 extends completely through the inner tubular member 14 so that the entire delivery system 10 can be passed over a guide wire (not shown) initially positioned within the patient's lumen.
  • Opposing surfaces of the inner and outer tubular members 14 and 16 define a first lumen 40 (best seen in FIG. 5).
  • splines 18 can be provided between the inner and outer tubular members 14 and 16 .
  • the manifold housing 20 carries an admission port 42 for injecting a contrast media into the interior of the manifold housing 20 .
  • the interior of the manifold housing 20 is in fluid flow communication with the first lumen 40 .
  • Discharge ports 41 are formed through the outer tubular member 16 to permit contrast media to flow from the first lumen 40 into the patient's body lumen.
  • an O-ring 44 surrounds the stainless steel jacket 32 between the manifold housing 20 and lock housing 22 .
  • the O-ring 44 compresses against the stainless steel jacket 32 in sealing engagement to prevent contrast media from flowing in any path other than through the first lumen 40 .
  • the lock housing 22 carries a threaded locking member (or lock nut) 46 which can be turned to abut the stainless steel jacket 32 .
  • the lock nut 46 can be released to free the stainless steel jacket to move axially. According, when the lock nut 46 engages the jacket 32 , the jacket 32 (and attached inner tubular member 14 ) cannot move relative to the lock housing 22 , manifold housing 20 or the outer tubular member 16 . Upon release of the lock nut 46 , the inner tubular member 14 and outer tubular member 16 are free to slide axially relative to one another between a transport position and a deploy position.
  • First and second handles 48 , 50 are secured to the lock housing 22 and jacket 32 , respectively.
  • the handles 48 , 50 are spaced apart and the distal end of the outer tubular member 16 forms a sheath that covers the stent attachment location 26 to prevent premature deployment of the stent 12 .
  • the handle 48 is pulled rearwardly toward the handle 50
  • the outer tubular member 16 slides rearwardly or proximally relative to the inner tubular member 14 .
  • the outer tubular member 16 slides rearwardly a distance sufficient to fully expose the stent attachment location 26 and permit the stent 12 to freely expand toward its fully expanded diameter (see FIG. 2B). After such expansion, the stent delivery system can be proximally withdrawn through the expanded stent and removed.
  • the first handle 48 is rotatably mounted on a flange 22 a of the lock housing 22 .
  • the first handle 48 surrounds the stainless steel jacket 32 and is freely rotatable about the longitudinal axis of the jacket 32 and freely rotatable about the flange 22 a .
  • the first handle 48 is axially affixed to the lock housing 22 such that axial forces applied to the first handle 48 are transmitted through the lock housing 22 and manifold housing 20 to the outer tubular member 16 to axially move the outer tubular 16 .
  • rotary action of the first handle 48 about the axis of the stainless steel jacket 32 is not transmitted to the housings 20 , 22 or to the outer tubular member 16 by reason of the free rotation of the first handle 48 on flange 22 a.
  • the second handle 50 is mounted on an anchor 52 that is bonded to the stainless steel jacket 32 through any suitable means (such as by use of adhesives).
  • the anchor 52 includes a flange 52 a that is radial to the axis of the stainless steel jacket 32 .
  • the second handle 50 is mounted on the flange 52 a and is free to rotate on the anchor 52 about the axis of the stainless steel jacket 32 .
  • axial forces applied to the handle 50 are transmitted to the stainless steel jacket 32 which, being bonded to the inner tubular member 14 , results in axial movement of the inner tubular member 14 .
  • the free rotation of the handles 48 , 50 results in ease of use for a physician who may position his or her hands as desired without fear of interfering with any axial positioning of the inner and outer tubular members 14 , 16 .
  • the spacing between the handles 48 , 50 is equal to the stroke between the transport position and the deploy position of the tubular members 14 , 16 .
  • This relative axial positioning can be fixed by engaging the lock nut 46 .
  • contrast media can be injected through the admission port 42 into the chamber 40 with the contrast media flowing out of the side ports 41 into the body lumen to permit visualization under fluoroscopy.
  • the positioning of the second handle 50 on the stainless steel jacket 32 can be selected at time of assembly so that a spacing S (see FIG. 1) between the handles 48 , 50 corresponds to the length of the stent 12 carried on the stent deployment system.
  • the spacing S is about 10 millimeters longer than the deployed length of the stent.
  • a concern with existing delivery systems for self-expanding stents is control of stent delivery.
  • self-expanding stents have a tendency to propel themselves axially outwardly from their restraining sheaths before the sheaths have been completely retracted.
  • control of stent placement is compromised since the stent may overshoot the desired deployment site.
  • subsequent adjustment of the stent deployment location can be difficult because re-sheathing typically cannot be readily accomplished.
  • the delivery system 10 is preferably equipped with an interlock configuration that constrains relative axial movement between the stent 12 and the inner tube 14 until after the sheath 16 has been fully retracted.
  • a first interlock geometry e.g., male interlock structures 82 as shown in FIG. 2A
  • a second interlock geometry e.g., female interlock structures 84 as shown in FIG. 2A
  • the interlock geometries remain interlocked to constrain axial movement of the stent 12 until after the sheath has been retracted beyond a predetermined location (e.g., the proximal-most end 12 a of the stent 12 ).
  • a predetermined location e.g., the proximal-most end 12 a of the stent 12 .
  • the interlock geometry of the stent 12 is allowed to expand.
  • the interlock geometry of the stent disengages from the interlock geometry of the marker 27 thereby allowing the inner tube 14 of the catheter to be moved axially relative to the stent without interference from the interlock geometries.
  • FIGS. 6A and 6B illustrate the proximal end 12 a of the stent 12 in relation to the marker 27 located at the proximal end of the attachment location 26 .
  • the stent 12 and the marker 27 have been cut longitudinally and laid flat.
  • the stent 12 has a length L and a circumference C.
  • the marker 27 and the stent 12 are shown disengaged from one another.
  • marker 27 and the stent 12 are shown interlocked.
  • the stent is in the reduced diameter configuration.
  • the stents depicted in FIGS. 7 - 15 B are shown in the reduced diameter orientation.
  • the stent 12 includes a plurality of struts 86 (i.e., reinforcing members). At least some of the struts 86 have free terminal ends that define the proximal and distal ends 12 a and 12 b of the stent 12 .
  • Male interlock structures 82 i.e., keys
  • the male interlock structures 82 include enlargements in the form of circular projections.
  • the circular projections include interlock portions 88 that project outwardly from the struts 86 in a circumferential direction (i.e., in a direction coinciding with the circumference C of the stent 12 ).
  • the interlock portions 88 include interlock surfaces 90 that face in an axial direction.
  • face in an axial direction will be understood to mean that least a vector component of the surface 90 is perpendicular with respect to a longitudinal axis AA of the stent 12 .
  • the surface 90 need not be completely perpendicular relative to the longitudinal axis of the stent 12 to be construed as facing in an axial direction.
  • a surface aligned at oblique angle relative to the longitudinal axis of the stent 12 shall also be construed as facing in an axial direction since such surface has a vector component that is perpendicular relative to the longitudinal axis of the stent.
  • the male interlock structures 82 are preferably positioned within a region defined between an inner diameter D 1 and an outer diameter D 2 of the stent 12 . This is preferably true regardless of whether the stent 12 is in the expanded diameter orientation or the reduced diameter orientation.
  • at least portions of the interlock surfaces 90 are located within 5 millimeters of the proximal end 12 a of the stent 12 . More preferably, at least portions of the interlock surfaces 90 are located within 3 millimeters of the proximal end 12 a of the stent 12 . Most preferably, at least portions of the interlock surfaces 90 are located within 2 millimeters of the proximal end 12 a of the stent 12 .
  • the stent 12 includes a lumen reinforcing structure including a plurality of struts 13 adapted to define open cells 15 (best shown in FIG. 2B) when the stent 12 is deployed.
  • the male interlock structures 82 are located within 5 millimeter of the struts 13 that define the open cells 15 . More preferably, the male interlock structures 82 are located within 4, 3 or 2 millimeters of the struts 13 that define the open cells 15 . Most preferably, the male interlock structures 82 are located within 1 millimeter of the struts 13 that define the open cells 15 .
  • the male interlock structures 82 are located relatively close to the structure defining the open cells 15 , during deployment of the stent 12 , the male interlock structures 82 will expand radially outwardly simultaneously with the radial expansion of at least a portion of the cell defining structure.
  • the interlock structures 82 are preferably maintained generally within a boundary defined by the inner and outer diameters of the cell defining portion of the stent, and preferably the interlock structures 82 are not biased or angled radially outwardly relative to the cell defining portion.
  • the marker 27 has an axial distal edge 29 facing the proximal end 12 a of stent 12 .
  • Female interlock structures 84 i.e., sockets, openings, keyways, etc.
  • the female interlock structures 84 are configured to have a complimentary mating geometry with respect to the male interlock structures 82 of the stent 12 .
  • the female interlock structures 84 are shown having generally rounded or circular shapes.
  • Each of the female interlock structures 84 includes interlock surfaces 92 that face in an axial direction.
  • the geometry of the female interlock structures 84 is selected to mate with the predetermined geometry of the stent proximal end 12 a such that the stent 12 and the marker 27 can be axially coupled or interlocked when the stent 12 is compressed at the mounting location 26 .
  • the interlock surfaces 90 and 92 oppose and circumferentially overlap one another (see FIG. 6B) such that the stent is restricted from distal movement relative to the marker 27 .
  • the stent 12 and collar 27 are rotary coupled such that the stent 12 and collar 27 are restricted from relative rotary motion (i.e., about axis X-X) when the stent 12 is in the collapsed state.
  • the predetermined stent geometry of the interlock structures 82 and the complementary mating geometry of the collar 27 do not restrict relative radial motion. Namely, as the self-expanding stent 12 expands radially, the male interlock structures 82 are free to radially move out of the female interlock structures 84 . After such motion, the stent 12 is no longer coupled to the collar 27 and the stent 12 and collar 27 are free to move axially, radially or transversely to one another.
  • the mating features of the stent 12 and collar 27 prevent premature discharge of the stent 12 from a stent attachment location 26 .
  • the sheath distal end 16 b exposes the distal end 12 b of the stent 12 .
  • the exposed distal end 12 b of the stent 12 is free for limited expansion restrained by the remainder of the stent 12 being covered by the sheath 16 and by the attachment of the stent proximal end 12 a to the proximal marker 27 .
  • the proximal end 12 a of the stent 12 cannot expand and cannot axially move away from the collar 27 . Accordingly, the stent 12 is not released from the attachment location 26 until the physician has fully retracted the sheath 16 with the sheath distal end 16 b retracted proximal to the proximal end of stent attachment location 26 .
  • the sheath distal end 16 b is provided with a marker 16 b ′ (shown in FIGS. 2A and 2B) to permit visualization of the relative position of the sheath distal end 12 b and the markers 27 , 28 of the stent attachment location 26 .
  • the physician has greater control of the release of the stent 12 . More accurate stent positioning is attained. As long as even a small portion of the sheath 16 is not fully retracted (e.g., at least 1 mm extends distally to the proximal end 12 a of the stent 12 ) the axial position of the stent 12 can be adjusted by advancing or retracting the inner tubular member 14 . Also, as long as a small portion of the sheath 16 remains covered by the sheath 16 (e.g., at least 1 mm), the stent 12 can be readily re-sheathed by moving the sheath 16 in a distal direction.
  • the female and male interlock structures 82 and 84 have complementary mating geometries. It will be appreciated that in alternative embodiments, the female and male interlock structures need not have complementary/identical shapes. Instead, to provide an interlock, it is only necessary for a portion of the male interlock to be received in the female interlock such that mechanical interference or overlap between the interlocks prevents the interlocks from being axially separated. This can be accomplished without having identical mating shapes.
  • the interlock structure 84 of the inner tube 14 is provided on the proximal marker 27 . It will be appreciated that the interlock structure 84 need not be the same element as the marker but could be a separate part. As a separate part, the interlock structure could be integrally formed/connected with the exterior of the inner tube 14 , connected to the outer surface of the inner tube by conventional techniques (e.g., adhesive, fasteners, fusion bonding, etc.), or be connected to the outer surface of the inner tube 14 by one or more intermediate members. Further, the embodiment of FIGS. 6A and 6B shows that the interlock between the stent 12 and the tube 14 is provided at the proximal end 12 a of the stent 12 b .
  • the interlock between the inner tube 14 and the stent 12 can be provided at the distal end 12 b of the stent 12 (e.g., for a distally retractable sheath).
  • the embodiment of FIGS. 6A and 6B shows interlock structures provided at all of the proximal ends of the struts 86
  • the invention is not so limited.
  • only some of the struts 86 may include interlock structures.
  • it may be desirable to use only one interlock structure at the end of the stent 12 it is preferable to use at least two separate/discrete interlock structures uniformly spaced about the circumference of the stent. It is more preferable to use at least 4 separate/discrete interlock structures that are preferably uniformly spaced about the circumference of the stent.
  • the collar 27 may be provided with indicia to indicate to a physician the position of the collar 27 (and hence the stent 12 ) when the combination is in a patient's vessel and is being visualized under fluoroscopy.
  • the indicia is shown as cutouts 15 in the collar 27 .
  • FIG. 7 shows a collar 27 ′ having indicia in the form of proximal projections 15 ′ off of the proximal edge of the collar 27 ′.
  • FIG. 8 shows a collar 27 ′ having indicia in the form of triangular notches 15 ′ defined at the proximal edge of the collar 27 ′.
  • the indicia 15 , 15 ′ and 15 ′′ are spaced apart circumferentially on their respective collars 27 , 27 ′ and 27 ′′ so that the indicia are 180 degrees apart.
  • the pattern and shape of the male interlock structures 82 and the female interlock structures 84 are symmetrical about the stent axis X-X.
  • the stent 12 can be affixed to the collar 27 in any one of a plurality of rotary alignments about axis X-X.
  • FIG. 9 illustrates an embodiment of a collar 127 and stent 112 where the symmetrical pattern is interrupted.
  • a single unique key 117 is provided (which, in the example shown, has a square geometry compared to the circular geometry of remaining male interlock structures 182 ).
  • the collar 127 has a unique keyway 117 a to mate with the unique key 117 .
  • the stent 112 can only be affixed to the collar 127 in one rotary alignment.
  • a non-symmetrical stent feature e.g., an opening for placement at a bifurcation in a vessel
  • the indicia or, if desired, a single indicia can be provided on the collar. Therefore, a physician can easily visualize the position of any non-symmetrical stent feature.
  • FIG. 10 illustrates an embodiment of a stent 212 and radiopaque collar 227 having another interlock configuration.
  • the collar 227 has circumferential slots 228 for assisting in adhesively bonding the collar 227 to the outer surface of the inner tube 14 .
  • the stent 212 has proximal and distal ends 212 a and 212 b .
  • the stent also includes proximal end struts 286 a having free ends at which male interlock structures 282 are formed.
  • the male interlock structures 282 are formed by notches cut into the proximal end struts 286 a .
  • the male interlock structures 282 include axially facing interlock surfaces 290 that face in a distal direction.
  • the surfaces 290 are located within 5 millimeters of the proximal end 212 a of the stent 212 , and within 1, 2, 3, 4 or 5 millimeters of a cell defining portion of the stent.
  • the collar 227 includes female interlock structures 284 in the form of sockets.
  • the sockets are partially defined by projections adapted to fit within the notches cut into the proximal end struts 286 a .
  • the projections define axially facing interlock surfaces 292 that face in a proximal direction.
  • FIG. 11 illustrates an embodiment of a stent 312 and radiopaque collar 327 having another interlock configuration.
  • the collar 327 has circumferential slots 328 for assisting in adhesively bonding the collar 327 to the outer surface of the inner tube 14 .
  • the stent 312 has proximal and distal ends 312 a and 312 b .
  • the stent also includes proximal end struts 386 a having free ends at which male interlock structures 382 are formed.
  • the male interlock structures 382 are formed by enlarged heads (i.e., protuberances or keys) located at the ends of the end struts 386 a .
  • the male interlock structures 382 include axially facing interlock surfaces 390 that face in a distal direction. Preferably, the surfaces 390 are located within 5 millimeters of the proximal end 312 a of the stent 312 , and within 1, 2, 3, 4 or 5 millimeters of a cell defining region of the stent.
  • the collar 327 includes female interlock structures 384 in the form of sockets.
  • the female interlock structures 384 include axially facing interlock surfaces 392 that face in a proximal direction.
  • FIG. 12 illustrates an embodiment of a stent 412 including female interlock structures 484 .
  • the female interlock structures 484 preferably include distally facing interlock surfaces 492 located within 5 mm of a proximal end 412 a of the stent 412 and within 1, 2, 3, 4 or 5 millimeters of a cell defining region of the stent.
  • the female interlock structures 484 are sized to receive male interlock structures 482 in the form of rectangular posts.
  • the posts are connected to the outer surface of the inner tube 14 (e.g., integrally or otherwise).
  • the posts define proximally facing interlock surfaces 490 .
  • FIG. 13 illustrates an embodiment of a stent 512 including male interlock structures 582 in the form of hooks.
  • the male interlock structures 582 preferably include distally facing interlock surfaces 590 located within 5 mm of a proximal end 512 a of the stent 512 and within 1, 2, 3, 4 or 5 millimeters of a cell defining region of the stent.
  • the male interlock structures 582 are sized to fit within female interlock structures 584 defined by a collar 527 .
  • the female interlock structures 584 define proximally facing interlock surfaces 592 . When the female and male interlock structures 584 and 582 are coupled, the surfaces 590 and 592 engage each other to prevent distal movement of the stent 512 relative to the collar 527 .
  • FIGS. 14A and 14B illustrate an embodiment of a stent 612 including female interlock structures 684 in the form of longitudinal slots between or within struts.
  • the female interlock structures 684 preferably include distally facing interlock surfaces 692 (e.g., defined by the proximal ends of the slots) located within 5 mm of a proximal end 612 a of the stent 612 and within 1, 2, 3, 4 or 5 millimeters of a cell defining region of the stent.
  • the female interlock structures 684 are sized to receive male interlock structures 682 in the form of linear posts.
  • the posts are connected to the outer surface of the inner tube 14 (e.g., integrally or otherwise).
  • the posts define proximally facing interlock surfaces 690 (e.g., at the proximal ends of the posts).
  • the surfaces 690 and 692 engage each other to prevent distal movement of the stent 612 relative to the posts.
  • FIGS. 15A and 15B illustrate an embodiment of a stent 712 including female interlock structures 784 in the form of circular openings defined through enlarged strut ends of the stent 712 .
  • the female interlock structures 784 preferably include distally facing interlock surfaces 792 located within 5 mm of a proximal end 712 a of the stent 712 and within 1, 2, 3, 4 or 5 millimeters of a cell defining region of the stent.
  • the female interlock structures 784 are sized to receive male interlock structures 782 in the form of cylindrical posts or pins.
  • the posts are connected to the outer surface of the inner tube 14 (e.g., integrally or otherwise).
  • the posts define proximally facing interlock surfaces 790 .
  • the surfaces 790 and 792 engage each other to prevent distal movement of the stent 712 relative to the posts.
  • FIGS. 16A and 16B show a stent delivery system 10 ′ that is another embodiment of the present invention.
  • the delivery system 10 ′ includes an inner member 14 ′ and an outer sheath 16 ′.
  • the inner member 14 ′ includes a flexible distal tip 30 ′ and a stent mounting location 26 ′.
  • Proximal and distal markers 27 ′ and 28 ′ are located on opposite sides of the mounting location 26 ′.
  • the proximal marker 27 ′ includes interlock structures in the form of receivers 84 ′ or receptacles.
  • the receivers 84 ′ are adapted to receive and interlock with interlock structures in the form of enlargements 82 ′ provided at the proximal end of self expanding stent 12 ′.
  • the enlargements 82 ′ are preferably within 1, 2, 3, 4 or 5 millimeters of cell defining structures 83 ′ of the stent 12 ′.
  • the various embodiments of the present invention have related to stents and stent delivery systems, the scope of the present invention is not so limited.
  • the various aspects of the present invention are also applicable to systems for delivering other types of self-expandable implants.
  • other types of self-expanding implants include anastomosis devices, blood filters, grafts, vena cava filters, percutaneous valves, or other devices.
  • the interlocks of the present invention include anastomosis devices, blood filters, grafts, vena cava filters, percutaneous valves, or other devices.
  • the interlocks of the present invention While it is preferred for the interlocks of the present invention to be within 5 millimeters of an end of their corresponding implant to enhance deployment control, larger spacings could be used for certain applications. Similarly, while it is preferred for the interlocks to be within 5, 4, 3, 2 or 1 millimeters of cell defining regions of the stents, other spacings could be used in certain alternative embodiments.

Abstract

An implant delivery system is disclosed. The delivery system includes an elongated member having an implant mounting location. A self-expandable implant is mounted at the implant mounting location. The implant is held in a compressed orientation by a retractable sheath. An interlock structure prevents the implant from deploying prematurely as the sheath is retracted.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. patent application Ser. No. 09/795,047 entitled Implant Delivery System with Interlock, that was filed on Feb. 26, 2001.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of Invention [0002]
  • This invention pertains to a system for delivering an implant to a site in a body lumen. More particularly, this invention pertains to a delivery system for a self-expandable implant such as a stent. [0003]
  • 2. Description of the Prior Art [0004]
  • Stents are widely used for supporting a lumen structure in a patient's body. For example, stents may be used to maintain patency of a coronary artery, other blood vessels or other body lumen. [0005]
  • Stents are commonly metal, tubular structures. Stents are passed through a body lumen in a collapsed state. At the point of an obstruction or other deployment site in the body lumen, the stent is expanded to an expanded diameter to support the lumen at the deployment site. [0006]
  • In certain designs, stents are open-celled tubes that are expanded by inflatable balloons at the deployment site. This type of stent is often referred to as a “balloon expandable” stent. Other stents are so-called “self-expanding” stents. Self-expanding stents do not use balloons to cause the expansion of the stent. An example of a self-expanding stent is a tube (e.g., a coil tube or an open-celled tube) made of an elastically deformable material (e.g., a superelastic material such a nitinol). This type of stent is secured to a stent delivery device under tension in a collapsed state. At the deployment site, the stent is released so that internal tension within the stent causes the stent to self-expand to its enlarged diameter. Other self-expanding stents are made of so-called shape-memory metals. Such shape-memory stents experience a phase change at the elevated temperature of the human body. The phase change results in expansion from a collapsed state to an enlarged state. [0007]
  • A delivery technique for elastically deformable stents is to mount the collapsed stent on a distal end of a stent delivery system. Such a system would include an outer tubular member and an inner tubular member. The inner and outer tubular members are axially slideable relative to one another. The stent (in the collapsed state) is mounted surrounding the inner tubular member at its distal end. The outer tubular member (also called the outer sheath) surrounds the stent at the distal end. [0008]
  • Prior to advancing the stent delivery system through the body lumen, a guide wire is first passed through the body lumen to the deployment site. The inner tube of the delivery system is hollow throughout its length such that it can be advanced over the guide wire to the deployment site. [0009]
  • The combined structure (i.e., stent mounted on stent delivery system) is passed through the patient's lumen until the distal end of the delivery system arrives at the deployment site within the body lumen. The deployment system may include radiopaque markers to permit a physician to visualize positioning of the stent under fluoroscopy prior to deployment. [0010]
  • At the deployment site, the outer sheath is retracted to expose the stent. The exposed stent is now free to self-expand within the body lumen. Following expansion of the stent, the inner tube is free to pass through the stent such that the delivery system can be removed through the body lumen leaving the stent in place at the deployment site. [0011]
  • In prior art devices, the stent may prematurely deploy as the outer tube is retracted. Namely, with the outer tube partially retracted, the exposed portion of the stent may expand resulting in the remainder of the stent being squeezed out of the outer tube. This can result in the stent being propelled distally beyond a desired deployment site. Also, once the stent is partially unsheathed, it is sometimes determined that the stent placement needs to be adjusted. With existing systems, this is difficult since the stent has a tendency to force itself out of the sheath thereby making adjustments difficult. What is needed is a system that retains the stent on the catheter even when a majority of the stent has been exposed by retraction of the sheath. What is also needed is a system that allows a stent to be re-sheathed even after a majority of the stent has been exposed by retraction of the sheath. [0012]
  • SUMMARY OF THE INVENTION
  • One embodiment of the present invention relates to an implant delivery system that provides enhanced placement control of the implant. [0013]
  • A variety of advantages of the invention will be set forth in part in the description that follows, and in part will be apparent from the description, or may be learned by practicing the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.[0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side elevation view of a stent delivery system according to the present invention; [0015]
  • FIG. 2A is an enlarged cross-sectional view of detail A of FIG. 1 with the stent in a compressed orientation; [0016]
  • FIG. 2B is an enlarged cross-sectional view of detail A of FIG. 1 with the stent in a deployed (i.e., expanded) orientation; [0017]
  • FIG. 3 is an enlarged cross-sectional view of detail B of FIG. 1; [0018]
  • FIG. 4 is an enlarged cross-sectional view of detail C; [0019]
  • FIG. 5 is a cross-sectional view of the inner and outer tubular members of the stent delivery system of FIG. 1 taken along section line [0020] 5-5 of FIG. 3;
  • FIG. 6A is a plan view of a first stent having an interlock structure that interlocks with an interlock structure of a mating collar, the stent and the collar are shown cut longitudinally and laid flat with an axial separation between the stent proximal end and the mating collar; [0021]
  • FIG. 6B is the view of FIG. 6A with the stent proximal end and mating collar shown interlocked; [0022]
  • FIG. 6C is an end view of the stent of FIGS. 6A and 6B in its tubular configuration; [0023]
  • FIG. 7 is a laid flat, plan view of a second stent having an interlock structure that interlocks with an interlock structure of a mating collar, the collar includes rotational positioning indicators; [0024]
  • FIG. 8 is a laid flat, plan view of a third stent having an interlock structure that interlocks with an interlock structure of a mating collar, the collar includes rotational positioning notches; [0025]
  • FIG. 9 is a laid flat, plan view of a fourth stent having an interlock structure that interlocks with an interlock structure of a mating collar, the stent and the collar include a rotational alignment key and keyway; [0026]
  • FIG. 10 is a laid flat, plan view of a fifth stent having an interlock structure that interlocks with an interlock structure of a mating collar; [0027]
  • FIG. 11 is a laid flat, plan view of a sixth stent having an interlock structure that interlocks with an interlock structure of a mating collar; [0028]
  • FIG. 12 is a laid flat, plan view of a seventh stent having an interlock structure that interlocks with rectangular posts formed on an inner body of a catheter; [0029]
  • FIG. 13 is a laid flat, plan view of a eighth stent having an interlock structure that interlocks with an interlock structure of a mating collar; [0030]
  • FIG. 14A is a laid flat, plan view of a ninth stent having an interlock structure that interlocks with outwardly projecting line-like projections formed on the inner body of a catheter; [0031]
  • FIG. 14B shows the stent of FIG. 14A interlocked with the line-like projections; [0032]
  • FIG. 15A is a laid flat, plan view of a tenth stent having an interlock structure that interlocks with outwardly projecting posts formed on the inner body of a catheter; [0033]
  • FIG. 15B shows the stent of FIG. 15A interlocked with the posts; and [0034]
  • FIGS. 16A and 16B show another delivery system that is an embodiment of the present invention.[0035]
  • DETAILED DESCRIPTION
  • With reference now to the various drawing figures in which identical elements are numbered identically throughout, a description of a preferred embodiment of the present invention will now be provided. [0036]
  • With initial references to FIGS. [0037] 1-4, a stent delivery system 10 is shown. The stent delivery system 10 is for delivery of a stent 12 to a deployment site in a body lumen of a patient's body. By way of non-limiting, representative example, the stent 12 may be a self-expanding stent having a construction such as that shown in U.S. Pat. No. 6,132,461. In one non-limiting embodiment, the stent can be made of a superelastic metal such as nitinol, or the like. The stent 12 may also be a coil stent or any other self-expanding stent. The stent 12 includes a proximal end 12 a and a distal end 12 b. Another representative stent is shown in U.S. patent application Ser. No. 09/765,725, filed Jan. 18, 2001 and entitled STENT, which is hereby incorporated by reference.
  • The [0038] stent 12 is carried on the stent delivery system 10 in a collapsed (or reduced diameter) state as shown in FIG. 2A. Upon release of the stent 12 from the stent delivery system 10 (as will be described), the stent 12 expands to an enlarged diameter (see FIG. 2B) to abut against the walls of the patient's lumen in order to support patency of the lumen.
  • The [0039] stent delivery system 10 includes an inner tubular member 14 (i.e., also referred to as an elongated member) and an outer tubular member 16. Both of the inner and outer tubular members 14 and 16 extend from proximal ends 14 a, 16 a to distal ends 14 b, 16 b.
  • The outer [0040] tubular member 16 is sized to be axially advanced through the patient's body lumen. The tubular member 16 is preferably sufficiently long for the distal end 16 b to be placed near the deployment site in the patient's body lumen with the proximal end 16 a remaining external to the patient's body for manipulation by an operator. By way of example, the outer tubular member 16 (also referred to as a sheath) may be a braid-reinforced polyester of tubular construction to resist kinking and to transmit axial forces along the length of the sheath 16. The outer tubular member 16 may be of widely varying construction to permit varying degrees of flexibility of the outer tubular member 16 along its length.
  • As shown in FIG. 3, the [0041] proximal end 16 a of the outer tubular member 16 is bonded to a manifold housing 20. The manifold housing 20 is threadedly connected to a lock housing 22. A strain relief jacket 24 is connected to the manifold housing 20 and surrounds the outer tubular member 16 to provide strain relief for the outer tubular member 16.
  • The [0042] inner tubular member 14 is preferably formed of nylon but may be constructed of any suitable material. As shown in FIG. 2B, the inner tubular member 14 defines a stent attachment location 26 (i.e., a stent mounting location). The inner tubular member 14 also includes markers 27, 28 that are attached to an outer surface of the inner tubular member 14 (e.g., by techniques such as adhesive, heat fusion, interference fit, fasteners, intermediate members or other techniques). The attachment location 26 is positioned between the markers 27, 28. The radiopaque markers 27, 28 permit a physician to accurately determine the position of the stent attachment location 26 within the patient's lumen under fluoroscopic visualization. As will be described later in the specification, in some embodiments, at least one of the markers 27, 28 forms a collar including a geometry that interlocks with the stent 12 to prevent axial movement of the stent 12 relative to the inner tubular member during transport and deployment of the stent 12. Materials for making the radiopaque marker should have a density suitable for visualization through fluoroscopic techniques. Exemplary materials comprise tanalum, platinum, gold, tungsten and alloys of such metals. In some embodiments, the markers can be coated with a radiopaque material or filled with a radiopaque filler.
  • A tapered and flexible [0043] distal tip member 30 is secured to the distal end 14 b of the inner tubular member 14. The highly flexible distal tip member 30 permits advancement of the stent deployment system 10 through the patient's lumen and minimizes trauma to the walls of the patient's lumen. As shown in FIG. 2B, the inner tubular member 14 preferably extends completely through the stent 12 when the stent 12 is mounted at the attachment location 26.
  • As best shown in FIGS. 3 and 4, the [0044] inner tube 14 passes through both the manifold housing 20 and lock housing 22. A stainless steel jacket 32 surrounds and is bonded to the inner tubular member 14.
  • At the inner tube [0045] proximal end 14 a, a port housing 34 is bonded to the stainless steel jacket 32. The port housing 34 has a tapered bore 36 aligned with an inner lumen 38 of the tubular member 14. The inner lumen 38 extends completely through the inner tubular member 14 so that the entire delivery system 10 can be passed over a guide wire (not shown) initially positioned within the patient's lumen. Opposing surfaces of the inner and outer tubular members 14 and 16, define a first lumen 40 (best seen in FIG. 5). As described in U.S. patent application Ser. No. 09/765,719 filed on Jan. 18, 2001 and entitled STENT DELIVERY SYSTEM WITH SPACER MEMBER, which is hereby incorporated by reference, splines 18 can be provided between the inner and outer tubular members 14 and 16.
  • As shown in FIG. 3, the [0046] manifold housing 20 carries an admission port 42 for injecting a contrast media into the interior of the manifold housing 20. The interior of the manifold housing 20 is in fluid flow communication with the first lumen 40. Discharge ports 41 (shown in FIGS. 2A and 2B) are formed through the outer tubular member 16 to permit contrast media to flow from the first lumen 40 into the patient's body lumen.
  • As shown in FIG. 3, an O-[0047] ring 44 surrounds the stainless steel jacket 32 between the manifold housing 20 and lock housing 22. Upon threaded connection of the manifold housing 20 to the lock housing 22, the O-ring 44 compresses against the stainless steel jacket 32 in sealing engagement to prevent contrast media from flowing in any path other than through the first lumen 40.
  • As shown in FIGS. 1 and 3, the [0048] lock housing 22 carries a threaded locking member (or lock nut) 46 which can be turned to abut the stainless steel jacket 32. The lock nut 46 can be released to free the stainless steel jacket to move axially. According, when the lock nut 46 engages the jacket 32, the jacket 32 (and attached inner tubular member 14) cannot move relative to the lock housing 22, manifold housing 20 or the outer tubular member 16. Upon release of the lock nut 46, the inner tubular member 14 and outer tubular member 16 are free to slide axially relative to one another between a transport position and a deploy position.
  • First and [0049] second handles 48, 50 are secured to the lock housing 22 and jacket 32, respectively. In the transport position (shown in FIG. 2A), the handles 48, 50 are spaced apart and the distal end of the outer tubular member 16 forms a sheath that covers the stent attachment location 26 to prevent premature deployment of the stent 12. When the handle 48 is pulled rearwardly toward the handle 50, the outer tubular member 16 slides rearwardly or proximally relative to the inner tubular member 14. Preferably, the outer tubular member 16 slides rearwardly a distance sufficient to fully expose the stent attachment location 26 and permit the stent 12 to freely expand toward its fully expanded diameter (see FIG. 2B). After such expansion, the stent delivery system can be proximally withdrawn through the expanded stent and removed.
  • As shown in FIG. 3, the [0050] first handle 48 is rotatably mounted on a flange 22 a of the lock housing 22. The first handle 48 surrounds the stainless steel jacket 32 and is freely rotatable about the longitudinal axis of the jacket 32 and freely rotatable about the flange 22 a. The first handle 48 is axially affixed to the lock housing 22 such that axial forces applied to the first handle 48 are transmitted through the lock housing 22 and manifold housing 20 to the outer tubular member 16 to axially move the outer tubular 16. However, rotary action of the first handle 48 about the axis of the stainless steel jacket 32 is not transmitted to the housings 20, 22 or to the outer tubular member 16 by reason of the free rotation of the first handle 48 on flange 22 a.
  • As shown in FIG. 4, the [0051] second handle 50 is mounted on an anchor 52 that is bonded to the stainless steel jacket 32 through any suitable means (such as by use of adhesives). The anchor 52 includes a flange 52 a that is radial to the axis of the stainless steel jacket 32. The second handle 50 is mounted on the flange 52 a and is free to rotate on the anchor 52 about the axis of the stainless steel jacket 32. However, axial forces applied to the handle 50 are transmitted to the stainless steel jacket 32 which, being bonded to the inner tubular member 14, results in axial movement of the inner tubular member 14.
  • With the handle construction described above, relative axial movement between the [0052] handles 48, 50 results in relative axial movement between the inner and outer tubular members 14, 16. Rotational movement of either of the handles 48, 50 does not affect rotational positioning of the inner or outer tubular members 14, 16 and does not affect axial positioning of the inner and outer tubes 14, 16.
  • The free rotation of the [0053] handles 48, 50 results in ease of use for a physician who may position his or her hands as desired without fear of interfering with any axial positioning of the inner and outer tubular members 14, 16. The spacing between the handles 48, 50 is equal to the stroke between the transport position and the deploy position of the tubular members 14, 16. As a result, the spacing permits the operator to have ready visual indication of the relative axial positioning between the inner and outer tubular members 14, 16. This relative axial positioning can be fixed by engaging the lock nut 46. In any such positioning, contrast media can be injected through the admission port 42 into the chamber 40 with the contrast media flowing out of the side ports 41 into the body lumen to permit visualization under fluoroscopy.
  • With stent deployment systems having premounted stents of various axial lengths, the positioning of the [0054] second handle 50 on the stainless steel jacket 32 can be selected at time of assembly so that a spacing S (see FIG. 1) between the handles 48, 50 corresponds to the length of the stent 12 carried on the stent deployment system. For example, in a preferred embodiment, the spacing S is about 10 millimeters longer than the deployed length of the stent. Accordingly, the user will know that the outer tubular member 16 has been fully retracted when the handles 48, 50 have been pushed completely together to completely release the stent 12. Also, the freely rotatable handles 48, 50 are easy to hold from any angle without slippage. The lock nut 46 ensures that the stent 12 will not deploy prematurely.
  • A concern with existing delivery systems for self-expanding stents is control of stent delivery. For example, due to their elastic characteristics, self-expanding stents have a tendency to propel themselves axially outwardly from their restraining sheaths before the sheaths have been completely retracted. When this occurs, control of stent placement is compromised since the stent may overshoot the desired deployment site. Further, once the stent has been completely deployed, subsequent adjustment of the stent deployment location can be difficult because re-sheathing typically cannot be readily accomplished. [0055]
  • To address the above concerns, the [0056] delivery system 10 is preferably equipped with an interlock configuration that constrains relative axial movement between the stent 12 and the inner tube 14 until after the sheath 16 has been fully retracted. For example, when the stent 12 is mounted on the inner tube 14 and restrained in the compressed orientation by the sheath 16 as shown in FIG. 2A, a first interlock geometry (e.g., male interlock structures 82 as shown in FIG. 2A) located at the proximal end of the stent 12 interlocks with a second interlock geometry (e.g., female interlock structures 84 as shown in FIG. 2A) defined by the proximal marker 27 (also referred to as a collar). The interlock geometries remain interlocked to constrain axial movement of the stent 12 until after the sheath has been retracted beyond a predetermined location (e.g., the proximal-most end 12 a of the stent 12). When the sheath 12 has been retracted beyond the predetermined location, the interlock geometry of the stent 12 is allowed to expand. As the interlock geometry of the stent expands, the interlock geometry of the stent disengages from the interlock geometry of the marker 27 thereby allowing the inner tube 14 of the catheter to be moved axially relative to the stent without interference from the interlock geometries.
  • FIGS. 6A and 6B illustrate the [0057] proximal end 12 a of the stent 12 in relation to the marker 27 located at the proximal end of the attachment location 26. In FIGS. 6A and 6B, the stent 12 and the marker 27 have been cut longitudinally and laid flat. The stent 12 has a length L and a circumference C. In FIG. 6A, the marker 27 and the stent 12 are shown disengaged from one another. In FIG. 6B marker 27 and the stent 12 are shown interlocked. In both FIGS. 6A and 6B, the stent is in the reduced diameter configuration. Similarly, the stents depicted in FIGS. 7-15B are shown in the reduced diameter orientation.
  • Referring to FIG. 6A, the [0058] stent 12 includes a plurality of struts 86 (i.e., reinforcing members). At least some of the struts 86 have free terminal ends that define the proximal and distal ends 12 a and 12 b of the stent 12. Male interlock structures 82 (i.e., keys) are provided at the free terminal ends of the struts 86. As shown in FIG. 6A, the male interlock structures 82 include enlargements in the form of circular projections. The circular projections include interlock portions 88 that project outwardly from the struts 86 in a circumferential direction (i.e., in a direction coinciding with the circumference C of the stent 12). The interlock portions 88 include interlock surfaces 90 that face in an axial direction. The phrase “face in an axial direction” will be understood to mean that least a vector component of the surface 90 is perpendicular with respect to a longitudinal axis AA of the stent 12. Thus, the surface 90 need not be completely perpendicular relative to the longitudinal axis of the stent 12 to be construed as facing in an axial direction. In other words, a surface aligned at oblique angle relative to the longitudinal axis of the stent 12 shall also be construed as facing in an axial direction since such surface has a vector component that is perpendicular relative to the longitudinal axis of the stent.
  • As best shown schematically in FIG. 6C, the [0059] male interlock structures 82 are preferably positioned within a region defined between an inner diameter D1 and an outer diameter D2 of the stent 12. This is preferably true regardless of whether the stent 12 is in the expanded diameter orientation or the reduced diameter orientation. Preferably, at least portions of the interlock surfaces 90 are located within 5 millimeters of the proximal end 12 a of the stent 12. More preferably, at least portions of the interlock surfaces 90 are located within 3 millimeters of the proximal end 12 a of the stent 12. Most preferably, at least portions of the interlock surfaces 90 are located within 2 millimeters of the proximal end 12 a of the stent 12.
  • Referring to FIG. 6A, the [0060] stent 12 includes a lumen reinforcing structure including a plurality of struts 13 adapted to define open cells 15 (best shown in FIG. 2B) when the stent 12 is deployed. Preferably, the male interlock structures 82 are located within 5 millimeter of the struts 13 that define the open cells 15. More preferably, the male interlock structures 82 are located within 4, 3 or 2 millimeters of the struts 13 that define the open cells 15. Most preferably, the male interlock structures 82 are located within 1 millimeter of the struts 13 that define the open cells 15. Because the male interlock structures 82 are located relatively close to the structure defining the open cells 15, during deployment of the stent 12, the male interlock structures 82 will expand radially outwardly simultaneously with the radial expansion of at least a portion of the cell defining structure. When the stent 12 is expanded, the interlock structures 82 are preferably maintained generally within a boundary defined by the inner and outer diameters of the cell defining portion of the stent, and preferably the interlock structures 82 are not biased or angled radially outwardly relative to the cell defining portion.
  • Still referring to FIGS. 6A and 6B, the [0061] marker 27 has an axial distal edge 29 facing the proximal end 12 a of stent 12. Female interlock structures 84 (i.e., sockets, openings, keyways, etc.) are defined by the marker 27 adjacent the edge 29. The female interlock structures 84 are configured to have a complimentary mating geometry with respect to the male interlock structures 82 of the stent 12. For example, similar to the male interlock structures 82, the female interlock structures 84 are shown having generally rounded or circular shapes. Each of the female interlock structures 84 includes interlock surfaces 92 that face in an axial direction.
  • The geometry of the [0062] female interlock structures 84 is selected to mate with the predetermined geometry of the stent proximal end 12 a such that the stent 12 and the marker 27 can be axially coupled or interlocked when the stent 12 is compressed at the mounting location 26. When the male and female interlock structures 82 and 84 are interlocked, the interlock surfaces 90 and 92 oppose and circumferentially overlap one another (see FIG. 6B) such that the stent is restricted from distal movement relative to the marker 27.
  • With the specific embodiment shown, the [0063] stent 12 and collar 27 are rotary coupled such that the stent 12 and collar 27 are restricted from relative rotary motion (i.e., about axis X-X) when the stent 12 is in the collapsed state. The predetermined stent geometry of the interlock structures 82 and the complementary mating geometry of the collar 27 do not restrict relative radial motion. Namely, as the self-expanding stent 12 expands radially, the male interlock structures 82 are free to radially move out of the female interlock structures 84. After such motion, the stent 12 is no longer coupled to the collar 27 and the stent 12 and collar 27 are free to move axially, radially or transversely to one another.
  • With the embodiment thus described, the mating features of the [0064] stent 12 and collar 27 prevent premature discharge of the stent 12 from a stent attachment location 26. As the outer sheath 16 is retracted, the sheath distal end 16 b exposes the distal end 12 b of the stent 12. At this point, the exposed distal end 12 b of the stent 12 is free for limited expansion restrained by the remainder of the stent 12 being covered by the sheath 16 and by the attachment of the stent proximal end 12 a to the proximal marker 27.
  • Further retraction of the [0065] sheath 16, permits still further expansion of the stent 12. As the sheath distal end 12 b approaches the stent proximal end 12 a, the expansion of the stent material tends to urge the stent 12 to squeeze out of the small portion of the sheath 16 now covering the stent 12. However, this propensity is overcome by the attachment of the stent proximal end 12 a to the collar 27 since any such ejection of the stent 12 would require axial separation of the stent 12 and collar 27. Such movement is prevented by the male interlock structures 82 and the female interlock structures 84.
  • Therefore, as long any portion of the [0066] sheath 16 overlies the male and female interlock structures 82 and 84, the proximal end 12 a of the stent 12 cannot expand and cannot axially move away from the collar 27. Accordingly, the stent 12 is not released from the attachment location 26 until the physician has fully retracted the sheath 16 with the sheath distal end 16 b retracted proximal to the proximal end of stent attachment location 26. The sheath distal end 16 b is provided with a marker 16 b′ (shown in FIGS. 2A and 2B) to permit visualization of the relative position of the sheath distal end 12 b and the markers 27, 28 of the stent attachment location 26.
  • With the structure and operation thus described, the physician has greater control of the release of the [0067] stent 12. More accurate stent positioning is attained. As long as even a small portion of the sheath 16 is not fully retracted (e.g., at least 1 mm extends distally to the proximal end 12 a of the stent 12) the axial position of the stent 12 can be adjusted by advancing or retracting the inner tubular member 14. Also, as long as a small portion of the sheath 16 remains covered by the sheath 16 (e.g., at least 1 mm), the stent 12 can be readily re-sheathed by moving the sheath 16 in a distal direction.
  • In the embodiment of FIGS. 6A and 6B, the female and [0068] male interlock structures 82 and 84 have complementary mating geometries. It will be appreciated that in alternative embodiments, the female and male interlock structures need not have complementary/identical shapes. Instead, to provide an interlock, it is only necessary for a portion of the male interlock to be received in the female interlock such that mechanical interference or overlap between the interlocks prevents the interlocks from being axially separated. This can be accomplished without having identical mating shapes.
  • As described above, the [0069] interlock structure 84 of the inner tube 14 is provided on the proximal marker 27. It will be appreciated that the interlock structure 84 need not be the same element as the marker but could be a separate part. As a separate part, the interlock structure could be integrally formed/connected with the exterior of the inner tube 14, connected to the outer surface of the inner tube by conventional techniques (e.g., adhesive, fasteners, fusion bonding, etc.), or be connected to the outer surface of the inner tube 14 by one or more intermediate members. Further, the embodiment of FIGS. 6A and 6B shows that the interlock between the stent 12 and the tube 14 is provided at the proximal end 12 a of the stent 12 b. It will be appreciated that for certain embodiments, the interlock between the inner tube 14 and the stent 12 can be provided at the distal end 12 b of the stent 12 (e.g., for a distally retractable sheath). Moreover, while the embodiment of FIGS. 6A and 6B shows interlock structures provided at all of the proximal ends of the struts 86, the invention is not so limited. For example, in some embodiments, only some of the struts 86 may include interlock structures. While in certain embodiments it may be desirable to use only one interlock structure at the end of the stent 12, it is preferable to use at least two separate/discrete interlock structures uniformly spaced about the circumference of the stent. It is more preferable to use at least 4 separate/discrete interlock structures that are preferably uniformly spaced about the circumference of the stent.
  • The [0070] collar 27 may be provided with indicia to indicate to a physician the position of the collar 27 (and hence the stent 12) when the combination is in a patient's vessel and is being visualized under fluoroscopy. In the embodiment of FIGS. 6A and 6B, the indicia is shown as cutouts 15 in the collar 27. FIG. 7 shows a collar 27′ having indicia in the form of proximal projections 15′ off of the proximal edge of the collar 27′. FIG. 8 shows a collar 27′ having indicia in the form of triangular notches 15′ defined at the proximal edge of the collar 27′. In the embodiments shown, the indicia 15, 15′ and 15″ are spaced apart circumferentially on their respective collars 27, 27′ and 27″ so that the indicia are 180 degrees apart.
  • In the embodiment of FIGS. 6A and 6B, the pattern and shape of the [0071] male interlock structures 82 and the female interlock structures 84 are symmetrical about the stent axis X-X. As a result, the stent 12 can be affixed to the collar 27 in any one of a plurality of rotary alignments about axis X-X.
  • FIG. 9 illustrates an embodiment of a [0072] collar 127 and stent 112 where the symmetrical pattern is interrupted. In the example of FIG. 9, a single unique key 117 is provided (which, in the example shown, has a square geometry compared to the circular geometry of remaining male interlock structures 182). Similarly, the collar 127 has a unique keyway 117 a to mate with the unique key 117. As a result, the stent 112 can only be affixed to the collar 127 in one rotary alignment.
  • In all of the above embodiments, once the position of a stent is fixed to a collar, a non-symmetrical stent feature (e.g., an opening for placement at a bifurcation in a vessel) can be aligned with the indicia (or, if desired, a single indicia can be provided on the collar). Therefore, a physician can easily visualize the position of any non-symmetrical stent feature. [0073]
  • FIG. 10 illustrates an embodiment of a [0074] stent 212 and radiopaque collar 227 having another interlock configuration. The collar 227 has circumferential slots 228 for assisting in adhesively bonding the collar 227 to the outer surface of the inner tube 14. The stent 212 has proximal and distal ends 212 a and 212 b. The stent also includes proximal end struts 286 a having free ends at which male interlock structures 282 are formed. The male interlock structures 282 are formed by notches cut into the proximal end struts 286 a. The male interlock structures 282 include axially facing interlock surfaces 290 that face in a distal direction. Preferably, the surfaces 290 are located within 5 millimeters of the proximal end 212 a of the stent 212, and within 1, 2, 3, 4 or 5 millimeters of a cell defining portion of the stent.
  • The [0075] collar 227 includes female interlock structures 284 in the form of sockets. The sockets are partially defined by projections adapted to fit within the notches cut into the proximal end struts 286 a. The projections define axially facing interlock surfaces 292 that face in a proximal direction. When the male and female interlock structures 282 and 284 are interlocked, the surfaces 290 and 292 oppose one another to prevent the male interlock structures 282 from being axially withdrawn from the female interlock structures 284.
  • FIG. 11 illustrates an embodiment of a [0076] stent 312 and radiopaque collar 327 having another interlock configuration. The collar 327 has circumferential slots 328 for assisting in adhesively bonding the collar 327 to the outer surface of the inner tube 14. The stent 312 has proximal and distal ends 312 a and 312 b. The stent also includes proximal end struts 386 a having free ends at which male interlock structures 382 are formed. The male interlock structures 382 are formed by enlarged heads (i.e., protuberances or keys) located at the ends of the end struts 386 a. The male interlock structures 382 include axially facing interlock surfaces 390 that face in a distal direction. Preferably, the surfaces 390 are located within 5 millimeters of the proximal end 312 a of the stent 312, and within 1, 2, 3, 4 or 5 millimeters of a cell defining region of the stent. The collar 327 includes female interlock structures 384 in the form of sockets. The female interlock structures 384 include axially facing interlock surfaces 392 that face in a proximal direction. When the male and female interlock structures 382 and 384 are interlocked, the surfaces 390 and 392 oppose one another to prevent the male interlock structures 382 from being axially withdrawn from the female interlock structures 384.
  • FIG. 12 illustrates an embodiment of a [0077] stent 412 including female interlock structures 484. The female interlock structures 484 preferably include distally facing interlock surfaces 492 located within 5 mm of a proximal end 412 a of the stent 412 and within 1, 2, 3, 4 or 5 millimeters of a cell defining region of the stent. The female interlock structures 484 are sized to receive male interlock structures 482 in the form of rectangular posts. Preferably, the posts are connected to the outer surface of the inner tube 14 (e.g., integrally or otherwise). The posts define proximally facing interlock surfaces 490. When the female and male interlock structures 484 and 482 are coupled, the surfaces 490 and 492 engage each other to prevent distal movement of the stent 412 relative to the posts.
  • FIG. 13 illustrates an embodiment of a [0078] stent 512 including male interlock structures 582 in the form of hooks. The male interlock structures 582 preferably include distally facing interlock surfaces 590 located within 5 mm of a proximal end 512 a of the stent 512 and within 1, 2, 3, 4 or 5 millimeters of a cell defining region of the stent. The male interlock structures 582 are sized to fit within female interlock structures 584 defined by a collar 527. The female interlock structures 584 define proximally facing interlock surfaces 592. When the female and male interlock structures 584 and 582 are coupled, the surfaces 590 and 592 engage each other to prevent distal movement of the stent 512 relative to the collar 527.
  • FIGS. 14A and 14B illustrate an embodiment of a [0079] stent 612 including female interlock structures 684 in the form of longitudinal slots between or within struts. The female interlock structures 684 preferably include distally facing interlock surfaces 692 (e.g., defined by the proximal ends of the slots) located within 5 mm of a proximal end 612 a of the stent 612 and within 1, 2, 3, 4 or 5 millimeters of a cell defining region of the stent. The female interlock structures 684 are sized to receive male interlock structures 682 in the form of linear posts. Preferably, the posts are connected to the outer surface of the inner tube 14 (e.g., integrally or otherwise). The posts define proximally facing interlock surfaces 690 (e.g., at the proximal ends of the posts). When the female and male interlock structures 684 and 682 are coupled as shown in FIG. 14B, the surfaces 690 and 692 engage each other to prevent distal movement of the stent 612 relative to the posts.
  • FIGS. 15A and 15B illustrate an embodiment of a [0080] stent 712 including female interlock structures 784 in the form of circular openings defined through enlarged strut ends of the stent 712. The female interlock structures 784 preferably include distally facing interlock surfaces 792 located within 5 mm of a proximal end 712 a of the stent 712 and within 1, 2, 3, 4 or 5 millimeters of a cell defining region of the stent. The female interlock structures 784 are sized to receive male interlock structures 782 in the form of cylindrical posts or pins. Preferably, the posts are connected to the outer surface of the inner tube 14 (e.g., integrally or otherwise). The posts define proximally facing interlock surfaces 790. When the female and male interlock structures 784 and 782 are coupled as shown in FIG. 15B, the surfaces 790 and 792 engage each other to prevent distal movement of the stent 712 relative to the posts.
  • FIGS. 16A and 16B show a [0081] stent delivery system 10′ that is another embodiment of the present invention. The delivery system 10′ includes an inner member 14′ and an outer sheath 16′. The inner member 14′ includes a flexible distal tip 30′ and a stent mounting location 26′. Proximal and distal markers 27′ and 28′ are located on opposite sides of the mounting location 26′. The proximal marker 27′ includes interlock structures in the form of receivers 84′ or receptacles. The receivers 84′ are adapted to receive and interlock with interlock structures in the form of enlargements 82′ provided at the proximal end of self expanding stent 12′. The enlargements 82′ are preferably within 1, 2, 3, 4 or 5 millimeters of cell defining structures 83′ of the stent 12′.
  • While the various embodiments of the present invention have related to stents and stent delivery systems, the scope of the present invention is not so limited. For example, while particularly suited for stent delivery systems, it will be appreciated that the various aspects of the present invention are also applicable to systems for delivering other types of self-expandable implants. By way of non-limiting example, other types of self-expanding implants include anastomosis devices, blood filters, grafts, vena cava filters, percutaneous valves, or other devices. Also, while it is preferred for the interlocks of the present invention to be within 5 millimeters of an end of their corresponding implant to enhance deployment control, larger spacings could be used for certain applications. Similarly, while it is preferred for the interlocks to be within 5, 4, 3, 2 or 1 millimeters of cell defining regions of the stents, other spacings could be used in certain alternative embodiments. [0082]
  • It has been shown how the objects of the invention have been attained in a preferred manner. Modifications and equivalents of the disclosed concepts are intended to be included within the scope of the claims. [0083]

Claims (43)

What is claimed is:
1. An implant delivery system comprising:
a catheter including an elongated member having an implant mounting location;
an expandable implant mounted on the elongated body at the implant mounting location, the implant being expandable from a compressed orientation to an expanded orientation, the implant including first and second ends;
a sheath mounted on the elongated member, the sheath being positionable in a transport position in which the sheath covers the implant mounted at the implant mounting location, the sheath also being positionable in a deploy position in which the implant is exposed;
the implant including a first interlock structure and the elongated body including a second interlock structure, the first and second interlock structures interlocking to constrain axial movement of the implant relative to the elongated member when the implant is at least partially within the sheath, and the first and second interlock structures not constraining radial expansion of the implant;
one of the first and second interlock structures including a male interlock structure and the other of the first and second interlock structures including a female interlock structure adapted to receive the male interlock structure when the implant is in the compressed orientation;
the implant including a cell defining region; and
at least a portion of the first interlock structure being positioned within 5 millimeters of the first end of the implant and within 5 millimeters of the cell defining region of the implant.
2. The implant delivery system of claim 1, wherein the implant comprises a stent.
3. The implant delivery system of claim 1, wherein at least a portion of the first interlock structure is positioned within 2 millimeters of the first end of the implant.
4. The implant delivery system of claim 1, wherein the elongated body includes a radiopaque marker positioned adjacent to the implant mounting location, and wherein the marker defines the second interlock structure.
5. The implant delivery system of claim 1, wherein the first end of the implant is a proximal end of the implant.
6. The implant delivery system of claim 1, wherein the implant includes a plurality of separate first interlock structures having at least portions positioned within 5 millimeters of the first end, and wherein the elongated body includes a plurality of second interlock structures for interlocking with the first interlock structures.
7. The implant delivery system of claim 1, wherein the first interlock structure is the male interlock structure and the second interlock structure is the female interlock structure.
8. The implant delivery system of claim 7, wherein the male interlock structure includes an enlargement positioned at the first end of the implant.
9. The implant delivery system of claim 8, wherein the implant includes a plurality of enlargements at the first end of the implant.
10. The implant delivery system of claim 8, wherein the male interlock structure includes a circumferential projection positioned at the first end of the implant.
11. The implant delivery system of claim 10, wherein the implant includes a plurality of the circumferential projections at the first end of the implant.
12. The implant delivery system of claim 1, wherein the first interlock structure is the female interlock structure and the second interlock structure is the male interlock structure.
13. The implant delivery system of claim 12, wherein the implant includes struts, and the female interlock structure includes a post opening defined through at least one of the struts.
14. The implant delivery system of claim 13, wherein the implant includes a plurality of the post openings.
15. The implant delivery system of claim 13, wherein the implant includes struts, and the female interlock structure includes an opening between the struts.
16. The implant delivery system of claim 1, wherein the first interlock structure is within 2 millimeters of the cell defining region of the implant.
17. The implant delivery system of claim 1, wherein the first interlock structure is within 1 millimeter of the cell defining region of the implant.
18. The implant delivery system of claim 1, wherein the elongated member extends completely through the implant.
19. The implant delivery system of claim 1, wherein the cell defining region of the implant includes a boundary defined by an inner diameter and an outer diameter of the implant, and wherein the first interlock structure stays generally within the boundary after the implant has been deployed.
20. The implant delivery system of claim 1, wherein the first interlock structure is not radially outwardly biased relative to the cell defining region of the implant.
21. An implant delivery system comprising:
a catheter including an elongated member having an implant mounting location;
an expandable implant mounted on the elongated body at the implant mounting location, the implant being expandable from a compressed orientation to an expanded orientation, the implant including first and second ends;
a sheath mounted on the elongated member, the sheath being positionable in a transport position in which the sheath covers the implant mounted at the implant mounting location, the sheath also being positionable in a deploy position in which the implant is exposed;
the implant including a cell defining region, the implant also including a plurality of struts at least some of which have terminal ends defining the first end of the implant, the implant also including at least two enlargements positioned at the terminal ends of the struts, the enlargements being located within 5 millimeters of the cell defining region of the implant; and
the elongated body including receptacles that receive the enlargements to constrain axial movement of the implant relative to the elongated member when the implant is at least partially within the sheath.
22. The implant delivery system of claim 21, wherein the elongated body includes a radiopaque marker positioned adjacent to the implant mounting location, and wherein the marker defines the receptacles.
23. The implant delivery system of claim 21, wherein the first end of the implant is a proximal end of the implant.
24. The implant delivery system of claim 21, wherein the enlargements are within 2 millimeters of the cell defining region of the implant.
25. The implant delivery system of claim 21, wherein the enlargements are within 1 millimeter of the cell defining region of the implant.
26. The implant delivery system of claim 21, wherein the elongated member extends completely through the implant.
27. The implant delivery system of claim 21, wherein the cell defining region of the implant includes a boundary defined by an inner diameter and an outer diameter of the implant, and wherein the enlargements stay generally within the boundary after the implant has been deployed.
28. The implant delivery system of claim 21, wherein the enlargements are not radially outwardly biased relative to the cell defining region of the implant.
29. An implant delivery system comprising:
a catheter including an elongated member having an implant mounting location;
an expandable implant mounted on the elongated body at the implant mounting location, the implant being expandable from a compressed orientation to an expanded orientation, the implant including first and second ends;
a sheath mounted on the elongated member, the sheath being positionable in a transport position in which the sheath covers the implant mounted at the implant mounting location, the sheath also being positionable in a deploy position in which the implant is exposed;
the implant including a cell defining region and first and second ends, the implant also including at least two female male interlock structures positioned within 5 millimeters of the first end of the implant and within 5 millimeters of the cell defining region of the implant; and
the elongated body including male interlock structures that are received within the female interlock structures to constrain axial movement of the implant relative to the elongated member when the implant is at least partially within the sheath, the male and female interlock structures not constraining radial expansion of the implant.
30. The implant delivery system of claim 29, wherein the elongated body includes a radiopaque marker positioned adjacent to the implant mounting location, and wherein the marker includes the male interlock structures.
31. The implant delivery system of claim 29, wherein the first end of the implant is a proximal end of the implant.
32. The implant delivery system of claim 29, wherein the female interlock structures are within 2 millimeters of the cell defining region of the implant.
33. The implant delivery system of claim 29, wherein the female interlock structures are within 1 millimeter of the cell defining region of the implant.
34. The implant delivery system of claim 29, wherein the elongated member extends completely through the implant.
35. An implant delivery system comprising:
a catheter including an elongated member having an implant mounting location;
an expandable implant mounted on the elongated body at the implant mounting location, the implant being expandable from a compressed orientation to an expanded orientation, the implant including first and second ends;
a sheath mounted on the elongated member, the sheath being positionable in a transport position in which the sheath covers the implant mounted at the implant mounting location, the sheath also being positionable in a deploy position in which the implant is exposed;
a marker attached to the elongated member, the marker including structure that interlocks with the implant to constrain axial movement of the implant relative to the elongated member when the implant is at least partially within the sheath.
36. An implant delivery system comprising:
a catheter including an elongated member having an implant mounting location;
an expandable implant mounted on the elongated body at the implant mounting location, the implant being expandable from a compressed orientation to an expanded orientation, the implant including first and second ends;
a sheath mounted on the elongated member, the sheath being positionable in a transport position in which the sheath covers the implant mounted at the implant mounting location, the sheath also being positionable in a deploy position in which the implant is exposed;
the implant including a first interlock structure and the elongated body including a second interlock structure, the first and second interlock structures interlocking to constrain axial movement of the implant relative to the elongated member when the implant is at least partially within the sheath, and the first and second interlock structures not constraining radial expansion of the implant;
one of the first and second interlock structures including a male interlock structure and the other of the first and second interlock structures including a female interlock structure adapted to receive the male interlock structure when the implant is in the compressed orientation; and
at least a portion of the first interlock structure being positioned within 5 millimeters of the first end of the implant, and the elongated member extending through the implant at the implant mounting location.
37. The implant delivery system of claim 36, wherein at least a portion of the first interlock structure is positioned within 2 millimeters of the first end of the implant.
38. An implant delivery system comprising:
a catheter including an elongated member having an implant mounting location;
an expandable implant mounted on the elongated body at the implant mounting location, the implant being expandable from a compressed orientation to an expanded orientation, the implant including first and second ends;
a sheath mounted on the elongated member, the sheath being positionable in a transport position in which the sheath covers the implant mounted at the implant mounting location, the sheath also being positionable in a deploy position in which the implant is exposed;
the implant including a first interlock structure and the elongated body including a second interlock structure, the first and second interlock structures interlocking to constrain axial movement of the implant relative to the elongated member when the implant is at least partially within the sheath, and the first and second interlock structures not constraining radial expansion of the implant;
one of the first and second interlock structures including a male interlock structure and the other of the first and second interlock structures including a female interlock structure adapted to receive the male interlock structure when the implant is in the compressed orientation;
the implant including a cell defining region that includes a boundary defined by an inner diameter and an outer diameter of the implant, the first interlock structure being configured to stay generally within the boundary after the implant has been deployed; and
at least a portion of the first interlock structure being positioned within 5 millimeters of the first end of the implant.
39. The implant delivery system of claim 38, wherein at least a portion of the first interlock structure is positioned within 2 millimeters of the first end of the implant.
40. A method for deploying a self-expandable implant with a deployment system, the deployment system including a sheath for holding the implant in a compressed orientation, the implant including first and second ends, the implant also including an interlock surface positioned between inner and outer diameters of the implant, the interlock surface being located within 5 millimeters of the first end of the implant, the method comprising:
generating relative movement between the implant and the sheath to expose the implant;
engaging the interlock surface with a retainer as the implant is exposed to prevent the implant from prematurely exiting the sheath; and
after the implant has been exposed beyond the interlock surface, disengaging the interlock surface from the retainer by self-expanding the implant, wherein the interlock surface disengages from the retainer simultaneous with the expansion of a cell defining portion of the implant.
41. The method of claim 40, wherein the implant is a stent.
42. The method of claim 40, wherein the interlock surface is within 2 millimeters of the first end of the implant.
43. The method of claim 40, wherein the first end of the implant is a proximal end of the implant and the second end of the implant is a distal end of the implant.
US09/954,555 2001-02-26 2001-09-17 Implant delivery system with interlock Abandoned US20020120323A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09/954,555 US20020120323A1 (en) 2001-02-26 2001-09-17 Implant delivery system with interlock
EP02704340.5A EP1365707B2 (en) 2001-02-26 2002-02-01 Implant delivery system with interlock
PCT/US2002/003153 WO2002067782A2 (en) 2001-02-26 2002-02-01 Implant delivery system with interlock
DE60235968T DE60235968D1 (en) 2001-02-26 2002-02-01 Vascular support introduction system with locking device
ES02704340T ES2344629T3 (en) 2001-02-26 2002-02-01 IMPLANT PLACEMENT SYSTEM WITH COUPLING DEVICE.
AT02704340T ATE464024T1 (en) 2001-02-26 2002-02-01 VESSEL SUPPORT INSERTION SYSTEM WITH BLOCKING DEVICE
AU2002238030A AU2002238030A1 (en) 2001-02-26 2002-02-01 Implant delivery system with interlock

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/795,047 US6623518B2 (en) 2001-02-26 2001-02-26 Implant delivery system with interlock
US09/954,555 US20020120323A1 (en) 2001-02-26 2001-09-17 Implant delivery system with interlock

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/795,047 Continuation-In-Part US6623518B2 (en) 2001-02-26 2001-02-26 Implant delivery system with interlock

Publications (1)

Publication Number Publication Date
US20020120323A1 true US20020120323A1 (en) 2002-08-29

Family

ID=25164512

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/795,047 Expired - Lifetime US6623518B2 (en) 2001-02-26 2001-02-26 Implant delivery system with interlock
US09/954,555 Abandoned US20020120323A1 (en) 2001-02-26 2001-09-17 Implant delivery system with interlock

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/795,047 Expired - Lifetime US6623518B2 (en) 2001-02-26 2001-02-26 Implant delivery system with interlock

Country Status (6)

Country Link
US (2) US6623518B2 (en)
EP (1) EP2198805B1 (en)
AT (1) ATE464024T1 (en)
AU (1) AU2002238030A1 (en)
DE (1) DE60235968D1 (en)
ES (2) ES2344629T3 (en)

Cited By (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030045901A1 (en) * 2001-09-06 2003-03-06 Nmt Medical, Inc. Flexible delivery system
US20040093017A1 (en) * 2002-11-06 2004-05-13 Nmt Medical, Inc. Medical devices utilizing modified shape memory alloy
US20040181256A1 (en) * 2003-03-14 2004-09-16 Glaser Erik N. Collet-based delivery system
US20040188304A1 (en) * 2002-12-31 2004-09-30 Bonnette Michael J. Packaging system with oxygen sensor
US20040204749A1 (en) * 2003-04-11 2004-10-14 Richard Gunderson Stent delivery system with securement and deployment accuracy
US20040267346A1 (en) * 2003-06-30 2004-12-30 Shelso Susan I. Stent grip and system for use therewith
US20040267348A1 (en) * 2003-04-11 2004-12-30 Gunderson Richard C. Medical device delivery systems
US6936058B2 (en) 2000-10-18 2005-08-30 Nmt Medical, Inc. Over-the-wire interlock attachment/detachment mechanism
US20050222662A1 (en) * 2002-11-01 2005-10-06 Ev3 Peripheral, Inc. Implant delivery system with marker interlock
US20060020321A1 (en) * 2004-07-26 2006-01-26 Cook Incorporated Stent delivery system allowing controlled release of a stent
US20060025845A1 (en) * 2002-09-23 2006-02-02 Angeli Escamilla Expandable stent with markers and stent delivery system
US20060085057A1 (en) * 2004-10-14 2006-04-20 Cardiomind Delivery guide member based stent anti-jumping technologies
US20060184225A1 (en) * 2005-02-11 2006-08-17 Medtronic Vascular, Inc. Force distributing system for delivering a self-expanding stent
US20080300667A1 (en) * 2007-05-31 2008-12-04 Bay Street Medical System for delivering a stent
JP2009514594A (en) * 2005-11-02 2009-04-09 カーディオマインド, インコーポレイテッド Twist-down implant delivery technology
US20090306760A1 (en) * 2008-06-06 2009-12-10 Bay Street Medical Prosthesis and delivery system
US7651521B2 (en) 2004-03-02 2010-01-26 Cardiomind, Inc. Corewire actuated delivery system with fixed distal stent-carrying extension
US7658747B2 (en) 2003-03-12 2010-02-09 Nmt Medical, Inc. Medical device for manipulation of a medical implant
US7666203B2 (en) 2003-11-06 2010-02-23 Nmt Medical, Inc. Transseptal puncture apparatus
US7678123B2 (en) 2003-07-14 2010-03-16 Nmt Medical, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US7678132B2 (en) 2001-09-06 2010-03-16 Ovalis, Inc. Systems and methods for treating septal defects
US7691112B2 (en) 2003-09-11 2010-04-06 Nmt Medical, Inc. Devices, systems, and methods for suturing tissue
US7699884B2 (en) 2006-03-22 2010-04-20 Cardiomind, Inc. Method of stenting with minimal diameter guided delivery systems
US7704275B2 (en) 2007-01-26 2010-04-27 Reva Medical, Inc. Circumferentially nested expandable device
US7704268B2 (en) 2004-05-07 2010-04-27 Nmt Medical, Inc. Closure device with hinges
US7722662B2 (en) 1998-02-17 2010-05-25 Reva Medical, Inc. Expandable stent with sliding and locking radial elements
US20100137979A1 (en) * 2006-09-19 2010-06-03 Yosi Tuval Sinus-engaging Valve Fixation Member
US7740640B2 (en) 2001-09-06 2010-06-22 Ovalis, Inc. Clip apparatus for closing septal defects and methods of use
US20100161605A1 (en) * 2008-12-23 2010-06-24 Yahoo! Inc. Context transfer in search advertising
US20100174362A1 (en) * 2007-04-13 2010-07-08 Helmut Straubinger Medical Device for Treating A Heart Valve Insufficiency or Stenosis
US7763065B2 (en) 2004-07-21 2010-07-27 Reva Medical, Inc. Balloon expandable crush-recoverable stent device
US7766820B2 (en) 2002-10-25 2010-08-03 Nmt Medical, Inc. Expandable sheath tubing
US7785361B2 (en) 2003-03-26 2010-08-31 Julian Nikolchev Implant delivery technologies
US7842053B2 (en) 2004-05-06 2010-11-30 Nmt Medical, Inc. Double coil occluder
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
US7862602B2 (en) 2005-11-02 2011-01-04 Biosensors International Group, Ltd Indirect-release electrolytic implant delivery systems
US7867250B2 (en) 2001-12-19 2011-01-11 Nmt Medical, Inc. Septal occluder and associated methods
US7871419B2 (en) 2004-03-03 2011-01-18 Nmt Medical, Inc. Delivery/recovery system for septal occluder
US7914574B2 (en) 2005-08-02 2011-03-29 Reva Medical, Inc. Axially nested slide and lock expandable device
US7947071B2 (en) 2008-10-10 2011-05-24 Reva Medical, Inc. Expandable slide and lock stent
US7963952B2 (en) 2003-08-19 2011-06-21 Wright Jr John A Expandable sheath tubing
US7967840B2 (en) 2001-12-19 2011-06-28 Nmt Medical, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
US7988690B2 (en) 2004-01-30 2011-08-02 W.L. Gore & Associates, Inc. Welding systems useful for closure of cardiac openings
US7988721B2 (en) 2007-11-30 2011-08-02 Reva Medical, Inc. Axially-radially nested expandable device
US8016869B2 (en) 2003-03-26 2011-09-13 Biosensors International Group, Ltd. Guidewire-less stent delivery methods
US20110264189A1 (en) * 2008-05-12 2011-10-27 Hexacath Implantable medical device having a means for positioning it at the precise site of a branching of a blood vessel such as a coronary artery
US20110288626A1 (en) * 2010-05-20 2011-11-24 Helmut Straubinger Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US20110295216A1 (en) * 2010-05-27 2011-12-01 Medtronic Vascular Galway Limited Catheter Assembly With Prosthesis Crimping and Prosthesis Retaining Accessories
US8070826B2 (en) 2001-09-07 2011-12-06 Ovalis, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US20120016469A1 (en) * 2003-12-23 2012-01-19 Sadra Medical Inc. Methods and Apparatus for Endovascularly Replacing a Heart Valve
US20120078350A1 (en) * 2010-07-15 2012-03-29 St. Jude Medical, Inc. Retainers for transcatheter heart valve delivery systems
US8147534B2 (en) 2005-05-25 2012-04-03 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US20120083829A1 (en) * 2010-02-26 2012-04-05 ProMed, Inc. System and method for vessel access closure
US8157853B2 (en) * 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8257389B2 (en) 2004-05-07 2012-09-04 W.L. Gore & Associates, Inc. Catching mechanisms for tubular septal occluder
US8262694B2 (en) 2004-01-30 2012-09-11 W.L. Gore & Associates, Inc. Devices, systems, and methods for closure of cardiac openings
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8277500B2 (en) 2004-12-17 2012-10-02 Reva Medical, Inc. Slide-and-lock stent
US8277480B2 (en) 2005-03-18 2012-10-02 W.L. Gore & Associates, Inc. Catch member for PFO occluder
US8292910B2 (en) 2003-11-06 2012-10-23 Pressure Products Medical Supplies, Inc. Transseptal puncture apparatus
US8308760B2 (en) 2004-05-06 2012-11-13 W.L. Gore & Associates, Inc. Delivery systems and methods for PFO closure device with two anchors
US8361110B2 (en) 2004-04-26 2013-01-29 W.L. Gore & Associates, Inc. Heart-shaped PFO closure device
US8382825B2 (en) 2004-05-25 2013-02-26 Covidien Lp Flexible vascular occluding device
US8394119B2 (en) 2006-02-22 2013-03-12 Covidien Lp Stents having radiopaque mesh
US8398701B2 (en) 2004-05-25 2013-03-19 Covidien Lp Flexible vascular occluding device
US20130079864A1 (en) * 2011-09-27 2013-03-28 Codman & Shurtleff, Inc. Distal detachment mechanisms for vascular devices
US8480706B2 (en) 2003-07-14 2013-07-09 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US8523936B2 (en) 2010-04-10 2013-09-03 Reva Medical, Inc. Expandable slide and lock stent
US20130245745A1 (en) * 2012-03-16 2013-09-19 Microvention, Inc. Stent and stent delivery device
US8551135B2 (en) 2006-03-31 2013-10-08 W.L. Gore & Associates, Inc. Screw catch mechanism for PFO occluder and method of use
US20130267848A1 (en) * 2010-06-30 2013-10-10 Muffin Incorporated Percutaneous, ultrasound-guided introduction of medical devices
US8562668B2 (en) 2006-06-16 2013-10-22 Covidien Lp Implant having high fatigue resistance, delivery system, and method of use
US20130289698A1 (en) * 2010-09-17 2013-10-31 St. Jude Medical, Cardiology Division, Inc. Retainers for transcatheter heart valve delivery systems
US8579936B2 (en) 2005-07-05 2013-11-12 ProMed, Inc. Centering of delivery devices with respect to a septal defect
US8597226B2 (en) 1998-09-10 2013-12-03 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US8617234B2 (en) 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device
US8623067B2 (en) 2004-05-25 2014-01-07 Covidien Lp Methods and apparatus for luminal stenting
US8641748B2 (en) 2002-02-28 2014-02-04 Bay Street Medical, Inc. Guidewire loaded stent for delivery through a catheter
US8652193B2 (en) 2005-05-09 2014-02-18 Angiomed Gmbh & Co. Medizintechnik Kg Implant delivery device
US8657870B2 (en) 2009-06-26 2014-02-25 Biosensors International Group, Ltd. Implant delivery apparatus and methods with electrolytic release
US8753362B2 (en) 2003-12-09 2014-06-17 W.L. Gore & Associates, Inc. Double spiral patent foramen ovale closure clamp
US8764848B2 (en) 2004-09-24 2014-07-01 W.L. Gore & Associates, Inc. Occluder device double securement system for delivery/recovery of such occluder device
US8784448B2 (en) 2002-06-05 2014-07-22 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with radial and circumferential support
US20140236275A1 (en) * 2001-01-18 2014-08-21 Covidien Lp Catheter system with spacer member
US8814947B2 (en) 2006-03-31 2014-08-26 W.L. Gore & Associates, Inc. Deformable flap catch mechanism for occluder device
US8828049B2 (en) 2004-04-09 2014-09-09 W.L. Gore & Associates, Inc. Split ends closure device and methods of use
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US20140288629A1 (en) * 2011-11-11 2014-09-25 Medigroup Gmbh Arrangement for implanting stent elements in or around a hollow organ
US8864811B2 (en) 2010-06-08 2014-10-21 Veniti, Inc. Bi-directional stent delivery system
US8870913B2 (en) 2006-03-31 2014-10-28 W.L. Gore & Associates, Inc. Catch system with locking cap for patent foramen ovale (PFO) occluder
US9005242B2 (en) 2007-04-05 2015-04-14 W.L. Gore & Associates, Inc. Septal closure device with centering mechanism
US9017373B2 (en) 2002-12-09 2015-04-28 W.L. Gore & Associates, Inc. Septal closure devices
US9084603B2 (en) 2005-12-22 2015-07-21 W.L. Gore & Associates, Inc. Catch members for occluder devices
JP2015521916A (en) * 2012-06-29 2015-08-03 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド System that facilitates release of foldable stent from delivery device
US9114001B2 (en) 2012-10-30 2015-08-25 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US9138562B2 (en) 2007-04-18 2015-09-22 W.L. Gore & Associates, Inc. Flexible catheter system
US9149378B2 (en) 2005-08-02 2015-10-06 Reva Medical, Inc. Axially nested slide and lock expandable device
US9149358B2 (en) * 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US9157174B2 (en) 2013-02-05 2015-10-13 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9216014B2 (en) 2002-06-03 2015-12-22 W.L. Gore & Associates, Inc. Device with biological tissue scaffold for percutaneous closure of an intracardiac defect and methods thereof
US9233014B2 (en) 2010-09-24 2016-01-12 Veniti, Inc. Stent with support braces
US9233015B2 (en) 2012-06-15 2016-01-12 Trivascular, Inc. Endovascular delivery system with an improved radiopaque marker scheme
US9241695B2 (en) 2002-03-25 2016-01-26 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure clips
US9295551B2 (en) 2007-04-13 2016-03-29 Jenavalve Technology Gmbh Methods of implanting an endoprosthesis
US9301864B2 (en) 2010-06-08 2016-04-05 Veniti, Inc. Bi-directional stent delivery system
US9370422B2 (en) 2011-07-28 2016-06-21 St. Jude Medical, Inc. Expandable radiopaque marker for transcatheter aortic valve implantation
US9408732B2 (en) 2013-03-14 2016-08-09 Reva Medical, Inc. Reduced-profile slide and lock stent
US9439788B2 (en) * 2004-06-28 2016-09-13 Abbott Cardiovascular Systems Inc. Stent locking element and a method of securing a stent on a delivery system
US20160270914A1 (en) * 2015-03-20 2016-09-22 St. Jude Medical, Cardiology Division, Inc. Mitral valve loading tool
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9474517B2 (en) 2008-03-07 2016-10-25 W. L. Gore & Associates, Inc. Heart occlusion devices
US9480561B2 (en) 2012-06-26 2016-11-01 St. Jude Medical, Cardiology Division, Inc. Apparatus and method for aortic protection and TAVI planar alignment
US9510947B2 (en) 2011-10-21 2016-12-06 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient
US20170007429A1 (en) * 2006-07-10 2017-01-12 C.R. Bard, Inc. Tubular Metal Prosthesis and Method of Making It
US20170007402A1 (en) * 2014-02-18 2017-01-12 Medtentia International Ltd Oy Medical Device for a Cardiac Valve Implant
US20170049568A1 (en) * 2010-05-20 2017-02-23 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US20170065414A1 (en) * 2003-12-23 2017-03-09 Boston Scientific Scimed, Inc. Medical devices and delivery systems for delivering medical devices
US20170079820A1 (en) * 2015-09-18 2017-03-23 Microvention, Inc. Pushable Implant Delivery System
US9649211B2 (en) 2009-11-04 2017-05-16 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
US20170172581A1 (en) * 2006-04-07 2017-06-22 Penumbra, Inc. Aneursym occlusion system and method
US9770232B2 (en) 2011-08-12 2017-09-26 W. L. Gore & Associates, Inc. Heart occlusion devices
US20170312107A1 (en) * 2008-01-30 2017-11-02 Boston Scientific Scimed, Inc. Medical systems and related method
US9808230B2 (en) 2014-06-06 2017-11-07 W. L. Gore & Associates, Inc. Sealing device and delivery system
US20180000619A1 (en) * 2015-01-29 2018-01-04 Intact Vascular, Inc. Delivery device and method of delivery
US9861346B2 (en) 2003-07-14 2018-01-09 W. L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with linearly elongating petals
US9867694B2 (en) 2013-08-30 2018-01-16 Jenavalve Technology Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US9878127B2 (en) 2012-05-16 2018-01-30 Jenavalve Technology, Inc. Catheter delivery system for heart valve prosthesis
US20180085218A1 (en) * 2013-03-01 2018-03-29 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve replacement
US9943426B2 (en) * 2015-07-15 2018-04-17 Elixir Medical Corporation Uncaging stent
US9943427B2 (en) 2012-11-06 2018-04-17 Covidien Lp Shaped occluding devices and methods of using the same
US10004618B2 (en) 2004-05-25 2018-06-26 Covidien Lp Methods and apparatus for luminal stenting
US10022250B2 (en) 2007-12-12 2018-07-17 Intact Vascular, Inc. Deployment device for placement of multiple intraluminal surgical staples
US10087503B2 (en) 2011-08-03 2018-10-02 The Curators Of The University Of Missouri Method for separation of chemically pure Os from metal mixtures
US10092427B2 (en) 2009-11-04 2018-10-09 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US10117762B2 (en) 2007-12-12 2018-11-06 Intact Vascular, Inc. Endoluminal device and method
US10130470B2 (en) 2010-08-17 2018-11-20 St. Jude Medical, Llc Sleeve for facilitating movement of a transfemoral catheter
US10137013B2 (en) 2010-05-29 2018-11-27 Intact Vascular, Inc. Endoluminal device and method
US10166127B2 (en) 2007-12-12 2019-01-01 Intact Vascular, Inc. Endoluminal device and method
US10182931B2 (en) 2015-09-18 2019-01-22 Microvention, Inc. Releasable delivery system
US10188533B2 (en) 2007-12-12 2019-01-29 Intact Vascular, Inc. Minimal surface area contact device for holding plaque to blood vessel wall
US10245167B2 (en) 2015-01-29 2019-04-02 Intact Vascular, Inc. Delivery device and method of delivery
US10271973B2 (en) 2011-06-03 2019-04-30 Intact Vascular, Inc. Endovascular implant
US10278839B2 (en) 2007-12-12 2019-05-07 Intact Vascular, Inc. Endovascular impant
US10398550B2 (en) 2013-09-12 2019-09-03 St. Jude Medical, Cardiology Division, Inc. Atraumatic interface in an implant delivery device
US10624740B2 (en) 2016-05-13 2020-04-21 St. Jude Medical, Cardiology Division, Inc. Mitral valve delivery device
US10667907B2 (en) 2016-05-13 2020-06-02 St. Jude Medical, Cardiology Division, Inc. Systems and methods for device implantation
US10687967B2 (en) * 2007-04-09 2020-06-23 Covidien Lp Stretchable stent and delivery system
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US10792025B2 (en) 2009-06-22 2020-10-06 W. L. Gore & Associates, Inc. Sealing device and delivery system
US10799374B2 (en) 2007-12-12 2020-10-13 Intact Vascular, Inc. Device and method for tacking plaque to blood vessel wall
US10806437B2 (en) 2009-06-22 2020-10-20 W. L. Gore & Associates, Inc. Sealing device and delivery system
US10828019B2 (en) 2013-01-18 2020-11-10 W.L. Gore & Associates, Inc. Sealing device and delivery system
US10849770B2 (en) 2006-05-17 2020-12-01 C. R. Bard, Inc. Bend-capable tubular prosthesis
US10856982B2 (en) 2017-09-19 2020-12-08 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve delivery system
US10898356B2 (en) 2015-01-29 2021-01-26 Intact Vascular, Inc. Delivery device and method of delivery
US10905578B2 (en) 2017-02-02 2021-02-02 C. R. Bard, Inc. Short stent
US10918505B2 (en) 2016-05-16 2021-02-16 Elixir Medical Corporation Uncaging stent
US10932931B2 (en) 2018-03-13 2021-03-02 Medtronic Vascular, Inc. Medical device delivery system including a support member
US10993824B2 (en) 2016-01-01 2021-05-04 Intact Vascular, Inc. Delivery device and method of delivery
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US11259919B2 (en) 2008-01-24 2022-03-01 Medtronic, Inc. Stents for prosthetic heart valves
US11285002B2 (en) 2003-12-23 2022-03-29 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a heart valve
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US11419591B2 (en) * 2017-07-13 2022-08-23 Lifetech Scientific (Shenzhen) Co. Ltd. Occluder pushing device and transport system
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US11660218B2 (en) 2017-07-26 2023-05-30 Intact Vascular, Inc. Delivery device and method of delivery
US20230338175A1 (en) * 2022-04-26 2023-10-26 Accumedical Beijing Ltd. Repositionable intracranial stent with retrieval mechanism
US11844913B2 (en) 2012-03-23 2023-12-19 Boston Scientific Medical Device Limited Transseptal puncture apparatus and method for using the same

Families Citing this family (355)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506469A (en) 2000-08-18 2004-03-04 アトリテック, インコーポレイテッド Expandable implantable device for filtering blood flow from the atrial appendage
US6623518B2 (en) * 2001-02-26 2003-09-23 Ev3 Peripheral, Inc. Implant delivery system with interlock
US8197535B2 (en) * 2001-06-19 2012-06-12 Cordis Corporation Low profile improved radiopacity intraluminal medical device
DE60236093D1 (en) * 2001-07-26 2010-06-02 Merit Medical Systems Inc REMOVABLE STENT
EP1300120A1 (en) * 2001-10-08 2003-04-09 Jomed Nv Stent delivery system
US8518096B2 (en) * 2002-09-03 2013-08-27 Lifeshield Sciences Llc Elephant trunk thoracic endograft and delivery system
US20040093066A1 (en) * 2002-09-26 2004-05-13 Durcan Jonathan P. Balloon expandable stent
US7223283B2 (en) * 2002-10-09 2007-05-29 Boston Scientific Scimed, Inc. Stent with improved flexibility
US7331986B2 (en) * 2002-10-09 2008-02-19 Boston Scientific Scimed, Inc. Intraluminal medical device having improved visibility
US7637942B2 (en) 2002-11-05 2009-12-29 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
US7875068B2 (en) * 2002-11-05 2011-01-25 Merit Medical Systems, Inc. Removable biliary stent
US7959671B2 (en) 2002-11-05 2011-06-14 Merit Medical Systems, Inc. Differential covering and coating methods
US7695446B2 (en) 2002-12-02 2010-04-13 Gi Dynamics, Inc. Methods of treatment using a bariatric sleeve
US7025791B2 (en) 2002-12-02 2006-04-11 Gi Dynamics, Inc. Bariatric sleeve
US7766973B2 (en) 2005-01-19 2010-08-03 Gi Dynamics, Inc. Eversion resistant sleeves
US7122058B2 (en) 2002-12-02 2006-10-17 Gi Dynamics, Inc. Anti-obesity devices
US7678068B2 (en) 2002-12-02 2010-03-16 Gi Dynamics, Inc. Atraumatic delivery devices
US7608114B2 (en) 2002-12-02 2009-10-27 Gi Dynamics, Inc. Bariatric sleeve
US7235093B2 (en) * 2003-05-20 2007-06-26 Boston Scientific Scimed, Inc. Mechanism to improve stent securement
ES2364555T3 (en) 2003-05-23 2011-09-06 Boston Scientific Limited CANNULAS WITH INCORPORATED LOOP TERMINATIONS.
EP1637176B1 (en) * 2003-05-23 2016-01-06 Kabushikikaisha Igaki Iryo Sekkei Stent supplying device
WO2005032410A2 (en) * 2003-09-30 2005-04-14 Alveolus Inc. Removable stent
US7175654B2 (en) * 2003-10-16 2007-02-13 Cordis Corporation Stent design having stent segments which uncouple upon deployment
US20050085897A1 (en) * 2003-10-17 2005-04-21 Craig Bonsignore Stent design having independent stent segments which uncouple upon deployment
WO2005060882A1 (en) 2003-12-09 2005-07-07 Gi Dynamics, Inc. Apparatus to be anchored within the gastrointestinal tract and anchoring method
US8057420B2 (en) 2003-12-09 2011-11-15 Gi Dynamics, Inc. Gastrointestinal implant with drawstring
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
EP2526895B1 (en) 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7988724B2 (en) * 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US7162030B2 (en) * 2003-12-23 2007-01-09 Nokia Corporation Communication device with rotating housing
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US7824443B2 (en) * 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
US7824442B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US7887574B2 (en) * 2003-12-23 2011-02-15 Scimed Life Systems, Inc. Stent delivery catheter
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US7468070B2 (en) 2004-01-23 2008-12-23 Boston Scientific Scimed, Inc. Stent delivery catheter
JP2007535342A (en) 2004-03-11 2007-12-06 パーキュテイニアス カルディオバスキュラー ソリューションズ ピー・ティー・ワイ リミテッド Percutaneous prosthetic heart valve
DE102004012981B4 (en) * 2004-03-16 2009-01-02 Alveolus Inc. stent
ATE506042T1 (en) 2004-07-09 2011-05-15 Gi Dynamics Inc DEVICES FOR PLACEMENT OF A GASTROINTESTINAL SLEEVE
US7240516B2 (en) * 2004-08-03 2007-07-10 Medtronic Vascular, Inc. Flexible resheathable stent design
US7815591B2 (en) 2004-09-17 2010-10-19 Gi Dynamics, Inc. Atraumatic gastrointestinal anchor
US7658757B2 (en) * 2004-10-08 2010-02-09 Boston Scientific Scimed, Inc. Endoprosthesis delivery system
US8337543B2 (en) 2004-11-05 2012-12-25 Boston Scientific Scimed, Inc. Prosthesis anchoring and deploying device
US7771382B2 (en) 2005-01-19 2010-08-10 Gi Dynamics, Inc. Resistive anti-obesity devices
US20060241687A1 (en) * 2005-03-16 2006-10-26 Glaser Erik N Septal occluder with pivot arms and articulating joints
US20060217760A1 (en) * 2005-03-17 2006-09-28 Widomski David R Multi-strand septal occluder
US8372113B2 (en) * 2005-03-24 2013-02-12 W.L. Gore & Associates, Inc. Curved arm intracardiac occluder
US8114142B2 (en) * 2005-03-30 2012-02-14 Boston Scientific Scimed, Inc. Catheter
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US20070118207A1 (en) * 2005-05-04 2007-05-24 Aga Medical Corporation System for controlled delivery of stents and grafts
US20060253184A1 (en) * 2005-05-04 2006-11-09 Kurt Amplatz System for the controlled delivery of stents and grafts
WO2006124549A1 (en) 2005-05-12 2006-11-23 Ev3, Inc. Implant delivery system with interlocked rx port orientation
US20060271158A1 (en) * 2005-05-26 2006-11-30 Boston Scientific Scimed, Inc. Positional locking endoluminal device system
US7976488B2 (en) 2005-06-08 2011-07-12 Gi Dynamics, Inc. Gastrointestinal anchor compliance
US9352133B2 (en) 2005-06-09 2016-05-31 Boston Scientific Scimed, Inc. Balloon catheters with increased column strength
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
DE102005051849B4 (en) 2005-10-28 2010-01-21 JenaValve Technology Inc., Wilmington Device for implantation and attachment of heart valve prostheses
DE102005053393A1 (en) * 2005-11-09 2007-05-10 Biotronik Vi Patent Ag Application system for a stent
AU2006315812B2 (en) 2005-11-10 2013-03-28 Cardiaq Valve Technologies, Inc. Balloon-expandable, self-expanding, vascular prosthesis connecting stent
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US20070156223A1 (en) * 2005-12-30 2007-07-05 Dennis Vaughan Stent delivery system with improved delivery force distribution
US8235969B2 (en) * 2006-03-06 2012-08-07 Boston Scientific Scimed, Inc. Medical device shaft designs
US7819836B2 (en) 2006-06-23 2010-10-26 Gi Dynamics, Inc. Resistive anti-obesity devices
EP2037848A1 (en) * 2006-07-07 2009-03-25 Boston Scientific Limited Endoprosthesis delivery system with stent holder
US8414637B2 (en) * 2006-09-08 2013-04-09 Boston Scientific Scimed, Inc. Stent
JP2010504820A (en) * 2006-09-28 2010-02-18 クック・インコーポレイテッド Apparatus and method for repairing a thoracic aortic aneurysm
US8801647B2 (en) 2007-02-22 2014-08-12 Gi Dynamics, Inc. Use of a gastrointestinal sleeve to treat bariatric surgery fistulas and leaks
US8512392B2 (en) * 2007-03-09 2013-08-20 Boston Scientific Scimed, Inc. Stent design with struts of various angles and stiffness
US7810223B2 (en) * 2007-05-16 2010-10-12 Boston Scientific Scimed, Inc. Method of attaching radiopaque markers to intraluminal medical devices, and devices formed using the same
AU2008269018B2 (en) 2007-06-26 2014-07-31 St. Jude Medical, Inc. Apparatus and methods for implanting collapsible/expandable prosthetic heart valves
ES2913223T3 (en) 2007-07-18 2022-06-01 Silk Road Medical Inc Systems for establishing retrograde carotid arterial blood flow
US8858490B2 (en) 2007-07-18 2014-10-14 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
JP5419875B2 (en) 2007-08-24 2014-02-19 セント ジュード メディカル インコーポレイテッド Artificial aortic heart valve
EP4309627A2 (en) 2007-09-26 2024-01-24 St. Jude Medical, LLC Collapsible prosthetic heart valves
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US8784481B2 (en) * 2007-09-28 2014-07-22 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
EP2240121B1 (en) * 2008-01-16 2019-05-22 St. Jude Medical, Inc. Delivery and retrieval systems for collapsible/expandable prosthetic heart valves
US8114116B2 (en) * 2008-01-18 2012-02-14 Cook Medical Technologies Llc Introduction catheter set for a self-expandable implant
US9089422B2 (en) * 2008-01-24 2015-07-28 Medtronic, Inc. Markers for prosthetic heart valves
JP2011510796A (en) 2008-02-05 2011-04-07 シルク・ロード・メディカル・インコーポレイテッド Intervention catheter system and method
WO2009111241A2 (en) * 2008-02-29 2009-09-11 The Florida International University Board Of Trustees Catheter deliverable artificial multi-leaflet heart valve prosthesis and intravascular delivery system for a catheter deliverable heart valve prosthesis
US8333003B2 (en) 2008-05-19 2012-12-18 Boston Scientific Scimed, Inc. Bifurcation stent crimping systems and methods
JP5134729B2 (en) 2008-07-01 2013-01-30 エンドロジックス、インク Catheter system
US8414639B2 (en) * 2008-07-08 2013-04-09 Boston Scientific Scimed, Inc. Closed-cell flexible stent hybrid
JP5379852B2 (en) 2008-07-15 2013-12-25 セント ジュード メディカル インコーポレイテッド Collapsible and re-expandable prosthetic heart valve cuff design and complementary technology application
EP2379129B1 (en) 2008-12-23 2017-09-13 Silk Road Medical, Inc. Methods and systems for treatment of acute ischemic stroke
EP2400924B1 (en) 2009-02-27 2017-06-28 St. Jude Medical, Inc. Prosthetic heart valve
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US10420665B2 (en) 2010-06-13 2019-09-24 W. L. Gore & Associates, Inc. Intragastric device for treating obesity
US8628554B2 (en) 2010-06-13 2014-01-14 Virender K. Sharma Intragastric device for treating obesity
US10010439B2 (en) 2010-06-13 2018-07-03 Synerz Medical, Inc. Intragastric device for treating obesity
US9526648B2 (en) 2010-06-13 2016-12-27 Synerz Medical, Inc. Intragastric device for treating obesity
US9795476B2 (en) 2010-06-17 2017-10-24 St. Jude Medical, Llc Collapsible heart valve with angled frame
US20110319902A1 (en) * 2010-06-26 2011-12-29 Scott Epstein Catheter delivery system
US10751206B2 (en) 2010-06-26 2020-08-25 Scott M. Epstein Catheter or stent delivery system
DE102010025305B4 (en) * 2010-06-28 2019-10-02 Admedes Schuessler Gmbh Implant for implanting in the human body and method of making the same
US9247942B2 (en) 2010-06-29 2016-02-02 Artventive Medical Group, Inc. Reversible tubal contraceptive device
WO2012002944A1 (en) 2010-06-29 2012-01-05 Artventive Medical Group, Inc. Reducing flow through a tubular structure
US9039759B2 (en) 2010-08-24 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Repositioning of prosthetic heart valve and deployment
EP2608741A2 (en) 2010-08-24 2013-07-03 St. Jude Medical, Inc. Staged deployment devices and methods for transcatheter heart valve delivery systems
EP2613737B2 (en) 2010-09-10 2023-03-15 Symetis SA Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
AU2011302640B2 (en) 2010-09-17 2014-11-06 St. Jude Medical, Cardiology Division, Inc. Staged deployment devices and methods for transcatheter heart valve delivery
EP2616008B1 (en) 2010-09-17 2018-10-24 St. Jude Medical, Cardiology Division, Inc. Assembly for loading a self-expanding collapsible heart valve
JP2013540484A (en) 2010-09-20 2013-11-07 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Valve leaflet mounting device in foldable artificial valve
USD652926S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Forked end
USD660967S1 (en) 2010-09-20 2012-05-29 St. Jude Medical, Inc. Surgical stent
USD653341S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical stent
USD660432S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Commissure point
USD684692S1 (en) 2010-09-20 2013-06-18 St. Jude Medical, Inc. Forked ends
USD653343S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical cuff
USD654169S1 (en) 2010-09-20 2012-02-14 St. Jude Medical Inc. Forked ends
USD654170S1 (en) 2010-09-20 2012-02-14 St. Jude Medical, Inc. Stent connections
USD652927S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Surgical stent
USD648854S1 (en) 2010-09-20 2011-11-15 St. Jude Medical, Inc. Commissure points
USD653342S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Stent connections
USD660433S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Surgical stent assembly
EP2618784B1 (en) 2010-09-23 2016-05-25 Edwards Lifesciences CardiAQ LLC Replacement heart valves and delivery devices
US9149277B2 (en) 2010-10-18 2015-10-06 Artventive Medical Group, Inc. Expandable device delivery
US9775982B2 (en) 2010-12-29 2017-10-03 Medtronic, Inc. Implantable medical device fixation
US10112045B2 (en) 2010-12-29 2018-10-30 Medtronic, Inc. Implantable medical device fixation
EP2658484A1 (en) 2010-12-30 2013-11-06 Boston Scientific Scimed, Inc. Multi stage opening stent designs
US8932343B2 (en) 2011-02-01 2015-01-13 St. Jude Medical, Cardiology Division, Inc. Blunt ended stent for prosthetic heart valve
US9486348B2 (en) * 2011-02-01 2016-11-08 S. Jude Medical, Cardiology Division, Inc. Vascular delivery system and method
US9717593B2 (en) 2011-02-01 2017-08-01 St. Jude Medical, Cardiology Division, Inc. Leaflet suturing to commissure points for prosthetic heart valve
EP3501456A1 (en) 2011-02-02 2019-06-26 St. Jude Medical, LLC System for loading a collapsible heart valve
CN105232195B (en) 2011-03-01 2018-06-08 恩朵罗杰克斯股份有限公司 Delivery catheter system
JP2014511247A (en) 2011-03-03 2014-05-15 ボストン サイエンティフィック サイムド,インコーポレイテッド Low strain high strength stent
WO2012119037A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Stent with reduced profile
EP4119095A1 (en) 2011-03-21 2023-01-18 Cephea Valve Technologies, Inc. Disk-based valve apparatus
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
CA2835893C (en) 2011-07-12 2019-03-19 Boston Scientific Scimed, Inc. Coupling system for medical devices
US8893370B2 (en) 2011-07-28 2014-11-25 St. Jude Medical, Cardiology Division, Inc. System for loading a collapsible heart valve
WO2013016519A2 (en) 2011-07-28 2013-01-31 St. Jude Medical, Cardiology Division, Inc. System for loading a collapsible heart valve
EP2739217B1 (en) 2011-08-05 2022-07-20 Route 92 Medical, Inc. Systems for treatment of acute ischemic stroke
US10779855B2 (en) 2011-08-05 2020-09-22 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US9060860B2 (en) 2011-08-18 2015-06-23 St. Jude Medical, Cardiology Division, Inc. Devices and methods for transcatheter heart valve delivery
US9131926B2 (en) 2011-11-10 2015-09-15 Boston Scientific Scimed, Inc. Direct connect flush system
US8940014B2 (en) 2011-11-15 2015-01-27 Boston Scientific Scimed, Inc. Bond between components of a medical device
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
US9510945B2 (en) 2011-12-20 2016-12-06 Boston Scientific Scimed Inc. Medical device handle
WO2013112547A1 (en) 2012-01-25 2013-08-01 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US10028854B2 (en) * 2012-02-02 2018-07-24 Covidien Lp Stent retaining systems
US9339197B2 (en) 2012-03-26 2016-05-17 Medtronic, Inc. Intravascular implantable medical device introduction
US9220906B2 (en) 2012-03-26 2015-12-29 Medtronic, Inc. Tethered implantable medical device deployment
US9717421B2 (en) 2012-03-26 2017-08-01 Medtronic, Inc. Implantable medical device delivery catheter with tether
US9833625B2 (en) 2012-03-26 2017-12-05 Medtronic, Inc. Implantable medical device delivery with inner and outer sheaths
US10485435B2 (en) 2012-03-26 2019-11-26 Medtronic, Inc. Pass-through implantable medical device delivery catheter with removeable distal tip
US9854982B2 (en) 2012-03-26 2018-01-02 Medtronic, Inc. Implantable medical device deployment within a vessel
US9532871B2 (en) 2012-05-04 2017-01-03 St. Jude Medical, Cardiology Division, Inc. Delivery system deflection mechanism
US9277990B2 (en) 2012-05-04 2016-03-08 St. Jude Medical, Cardiology Division, Inc. Hypotube shaft with articulation mechanism
EP2676642A1 (en) 2012-06-18 2013-12-25 Biotronik AG Release device for releasing a medical implant from a catheter
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
US9554902B2 (en) 2012-06-28 2017-01-31 St. Jude Medical, Cardiology Division, Inc. Leaflet in configuration for function in various shapes and sizes
US9289292B2 (en) 2012-06-28 2016-03-22 St. Jude Medical, Cardiology Division, Inc. Valve cuff support
US9615920B2 (en) 2012-06-29 2017-04-11 St. Jude Medical, Cardiology Divisions, Inc. Commissure attachment feature for prosthetic heart valve
US20140005776A1 (en) 2012-06-29 2014-01-02 St. Jude Medical, Cardiology Division, Inc. Leaflet attachment for function in various shapes and sizes
US9241791B2 (en) 2012-06-29 2016-01-26 St. Jude Medical, Cardiology Division, Inc. Valve assembly for crimp profile
US10004597B2 (en) 2012-07-03 2018-06-26 St. Jude Medical, Cardiology Division, Inc. Stent and implantable valve incorporating same
US9808342B2 (en) 2012-07-03 2017-11-07 St. Jude Medical, Cardiology Division, Inc. Balloon sizing device and method of positioning a prosthetic heart valve
US9801721B2 (en) 2012-10-12 2017-10-31 St. Jude Medical, Cardiology Division, Inc. Sizing device and method of positioning a prosthetic heart valve
US10524909B2 (en) 2012-10-12 2020-01-07 St. Jude Medical, Cardiology Division, Inc. Retaining cage to permit resheathing of a tavi aortic-first transapical system
US9295549B2 (en) 2012-10-12 2016-03-29 St. Jude Medical, Cardiology Division, Inc. Valve holder and loading integration
US9687373B2 (en) * 2012-12-21 2017-06-27 Cook Medical Technologies Llc Systems and methods for securing and releasing a portion of a stent
EP2941296B1 (en) * 2013-01-03 2019-05-15 Donald K. Jones Detachable coil release system and handle assembly
US9655719B2 (en) 2013-01-29 2017-05-23 St. Jude Medical, Cardiology Division, Inc. Surgical heart valve flexible stent frame stiffener
US9314163B2 (en) 2013-01-29 2016-04-19 St. Jude Medical, Cardiology Division, Inc. Tissue sensing device for sutureless valve selection
US9387073B2 (en) 2013-01-29 2016-07-12 St. Jude Medical, Cardiology Division, Inc. Delivery device distal sheath connector
US9186238B2 (en) 2013-01-29 2015-11-17 St. Jude Medical, Cardiology Division, Inc. Aortic great vessel protection
US9095344B2 (en) 2013-02-05 2015-08-04 Artventive Medical Group, Inc. Methods and apparatuses for blood vessel occlusion
US8984733B2 (en) 2013-02-05 2015-03-24 Artventive Medical Group, Inc. Bodily lumen occlusion
WO2014130160A1 (en) 2013-02-21 2014-08-28 St. Jude Medical, Cardiology Division, Inc. Transapical passive articulation delivery system design
US9901470B2 (en) 2013-03-01 2018-02-27 St. Jude Medical, Cardiology Division, Inc. Methods of repositioning a transcatheter heart valve after full deployment
US9119713B2 (en) 2013-03-11 2015-09-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve replacement
WO2014143126A1 (en) 2013-03-12 2014-09-18 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US10314698B2 (en) 2013-03-12 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Thermally-activated biocompatible foam occlusion device for self-expanding heart valves
US10271949B2 (en) 2013-03-12 2019-04-30 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US9636222B2 (en) 2013-03-12 2017-05-02 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak protection
US9339274B2 (en) 2013-03-12 2016-05-17 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US9398951B2 (en) 2013-03-12 2016-07-26 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US9326856B2 (en) 2013-03-14 2016-05-03 St. Jude Medical, Cardiology Division, Inc. Cuff configurations for prosthetic heart valve
US9131982B2 (en) 2013-03-14 2015-09-15 St. Jude Medical, Cardiology Division, Inc. Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations
US9259335B2 (en) 2013-03-15 2016-02-16 Covidien Lp Stent
US9180031B2 (en) 2013-03-15 2015-11-10 Covidien Lp Stent with varying radius between struts
WO2014162398A1 (en) * 2013-04-01 2014-10-09 テルモ株式会社 Biological indwelling object delivery system
US9636116B2 (en) 2013-06-14 2017-05-02 Artventive Medical Group, Inc. Implantable luminal devices
US9737306B2 (en) 2013-06-14 2017-08-22 Artventive Medical Group, Inc. Implantable luminal devices
US9737308B2 (en) 2013-06-14 2017-08-22 Artventive Medical Group, Inc. Catheter-assisted tumor treatment
US10149968B2 (en) 2013-06-14 2018-12-11 Artventive Medical Group, Inc. Catheter-assisted tumor treatment
EP3010431B1 (en) 2013-06-18 2019-10-30 St. Jude Medical, Cardiology Division, Inc. Transapical introducer
US10321991B2 (en) 2013-06-19 2019-06-18 St. Jude Medical, Cardiology Division, Inc. Collapsible valve having paravalvular leak protection
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
CN105899150B (en) 2013-07-31 2018-07-27 Neuvt 有限公司 Method and apparatus for Endovascular Embolization
US10071243B2 (en) 2013-07-31 2018-09-11 Medtronic, Inc. Fixation for implantable medical devices
US10010328B2 (en) 2013-07-31 2018-07-03 NeuVT Limited Endovascular occlusion device with hemodynamically enhanced sealing and anchoring
US9480850B2 (en) 2013-08-16 2016-11-01 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker and retrieval device
US10842993B2 (en) 2013-08-16 2020-11-24 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices
US9492674B2 (en) 2013-08-16 2016-11-15 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
ES2652306T3 (en) 2013-08-16 2018-02-01 Cardiac Pacemakers, Inc. Lead-free cardiac stimulation device
EP3338856B1 (en) 2013-08-16 2021-08-04 Cardiac Pacemakers, Inc. Delivery devices for leadless cardiac devices
CN105744987B (en) 2013-08-16 2019-01-15 心脏起搏器股份公司 Leadless cardiac pacemaker and fetch equipment
US10722723B2 (en) 2013-08-16 2020-07-28 Cardiac Pacemakers, Inc. Delivery devices and methods for leadless cardiac devices
US9393427B2 (en) 2013-08-16 2016-07-19 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
DE102013014523A1 (en) * 2013-09-03 2015-03-05 Phenox Gmbh Insertion and detachment system for implants
USD730521S1 (en) 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
USD730520S1 (en) 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
US9867611B2 (en) 2013-09-05 2018-01-16 St. Jude Medical, Cardiology Division, Inc. Anchoring studs for transcatheter valve implantation
EP3043745B1 (en) 2013-09-12 2020-10-21 St. Jude Medical, Cardiology Division, Inc. Stent designs for prosthetic heart valves
US9566153B2 (en) 2013-09-12 2017-02-14 St. Jude Medical, Cardiology Division, Inc. Alignment of an implantable medical device
US9406129B2 (en) 2013-10-10 2016-08-02 Medtronic, Inc. Method and system for ranking instruments
US9700409B2 (en) 2013-11-06 2017-07-11 St. Jude Medical, Cardiology Division, Inc. Reduced profile prosthetic heart valve
US9913715B2 (en) 2013-11-06 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
EP2870946B1 (en) 2013-11-06 2018-10-31 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
US9549818B2 (en) 2013-11-12 2017-01-24 St. Jude Medical, Cardiology Division, Inc. Pneumatically power-assisted tavi delivery system
EP3071149B1 (en) 2013-11-19 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Sealing structures for paravalvular leak protection
US10314693B2 (en) 2013-11-27 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Cuff stitching reinforcement
US9597185B2 (en) 2013-12-19 2017-03-21 St. Jude Medical, Cardiology Division, Inc. Leaflet-cuff attachments for prosthetic heart valve
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
US9943408B2 (en) 2014-01-08 2018-04-17 St. Jude Medical, Cardiology Division, Inc. Basket delivery system
US9820852B2 (en) 2014-01-24 2017-11-21 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (PVL) reduction—active channel filling cuff designs
US20150209141A1 (en) 2014-01-24 2015-07-30 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (pvl) reduction-passive channel filling cuff designs
US10292711B2 (en) 2014-02-07 2019-05-21 St. Jude Medical, Cardiology Division, Inc. Mitral valve treatment device having left atrial appendage closure
EP2904967A1 (en) 2014-02-07 2015-08-12 St. Jude Medical, Cardiology Division, Inc. System and method for assessing dimensions and eccentricity of valve annulus for trans-catheter valve implantation
AU2015231788B2 (en) 2014-03-18 2019-05-16 St. Jude Medical, Cardiology Division, Inc. Mitral valve replacement toggle cell securement
EP2921140A1 (en) 2014-03-18 2015-09-23 St. Jude Medical, Cardiology Division, Inc. Percutaneous valve anchoring for a prosthetic aortic valve
US9610157B2 (en) 2014-03-21 2017-04-04 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation
US9241699B1 (en) 2014-09-04 2016-01-26 Silk Road Medical, Inc. Methods and devices for transcarotid access
CA2941398C (en) 2014-03-26 2018-05-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve stent frames
US10143551B2 (en) 2014-03-31 2018-12-04 St. Jude Medical, Cardiology Division, Inc. Paravalvular sealing via extended cuff mechanisms
US10226332B2 (en) 2014-04-14 2019-03-12 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation in prosthetic heart valves
US10016292B2 (en) 2014-04-18 2018-07-10 Covidien Lp Stent delivery system
US10004467B2 (en) 2014-04-25 2018-06-26 Medtronic, Inc. Guidance system for localization and cannulation of the coronary sinus
WO2015168155A1 (en) 2014-04-29 2015-11-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with retrieval features
US10080887B2 (en) 2014-04-29 2018-09-25 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices including tissue engagement verification
US10363043B2 (en) 2014-05-01 2019-07-30 Artventive Medical Group, Inc. Treatment of incompetent vessels
EP3142604B1 (en) 2014-05-16 2024-01-10 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve with paravalvular leak sealing ring
EP3142605A1 (en) 2014-05-16 2017-03-22 St. Jude Medical, Cardiology Division, Inc. Stent assembly for use in prosthetic heart valves
ES2795358T3 (en) 2014-05-16 2020-11-23 St Jude Medical Cardiology Div Inc Subannular sealing for paravalvular leak protection
EP3145450B1 (en) 2014-05-22 2019-07-17 St. Jude Medical, Cardiology Division, Inc. Stents with anchoring sections
EP2954875B1 (en) 2014-06-10 2017-11-15 St. Jude Medical, Cardiology Division, Inc. Stent cell bridge for cuff attachment
US11027104B2 (en) 2014-09-04 2021-06-08 Silk Road Medical, Inc. Methods and devices for transcarotid access
EP3009104B1 (en) 2014-10-14 2019-11-20 St. Jude Medical, Cardiology Division, Inc. Flexible catheter and methods of forming same
US9668818B2 (en) 2014-10-15 2017-06-06 Medtronic, Inc. Method and system to select an instrument for lead stabilization
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
US9827124B2 (en) * 2014-12-05 2017-11-28 Cook Medical Technologies Llc Magnetic handle assembly for prosthesis delivery device
EP3229736B1 (en) 2014-12-09 2024-01-10 Cephea Valve Technologies, Inc. Replacement cardiac valves and method of manufacture
WO2016115375A1 (en) 2015-01-16 2016-07-21 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
WO2016126524A1 (en) 2015-02-03 2016-08-11 Boston Scientific Scimed, Inc. Prosthetic heart valve having tubular seal
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
ES2770321T3 (en) 2015-02-04 2020-07-01 Route 92 Medical Inc Rapid Aspiration Thrombectomy System
US11065019B1 (en) 2015-02-04 2021-07-20 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US10314699B2 (en) 2015-03-13 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Recapturable valve-graft combination and related methods
US9962260B2 (en) 2015-03-24 2018-05-08 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
WO2016154172A2 (en) 2015-03-24 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
EP3280359A1 (en) 2015-04-07 2018-02-14 St. Jude Medical, Cardiology Division, Inc. System and method for intraprocedural assessment of geometry and compliance of valve annulus for trans-catheter valve implantation
EP3294220B1 (en) 2015-05-14 2023-12-06 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
AU2016262564B2 (en) 2015-05-14 2020-11-05 Cephea Valve Technologies, Inc. Replacement mitral valves
EP3307207A1 (en) 2015-06-12 2018-04-18 St. Jude Medical, Cardiology Division, Inc. Heart valve repair and replacement
US11129737B2 (en) 2015-06-30 2021-09-28 Endologix Llc Locking assembly for coupling guidewire to delivery system
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
JP6600068B2 (en) 2015-07-16 2019-10-30 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Non-sutured prosthetic heart valve
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10779940B2 (en) 2015-09-03 2020-09-22 Boston Scientific Scimed, Inc. Medical device handle
US10850064B2 (en) 2015-09-03 2020-12-01 St. Jude Medical, Cardiology Division, Inc. Introducer sheath having expandable portions
US10500046B2 (en) 2015-12-14 2019-12-10 Medtronic, Inc. Delivery system having retractable wires as a coupling mechanism and a deployment mechanism for a self-expanding prosthesis
US10463853B2 (en) 2016-01-21 2019-11-05 Medtronic, Inc. Interventional medical systems
US10099050B2 (en) 2016-01-21 2018-10-16 Medtronic, Inc. Interventional medical devices, device systems, and fixation components thereof
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10813644B2 (en) 2016-04-01 2020-10-27 Artventive Medical Group, Inc. Occlusive implant and delivery system
US10779980B2 (en) 2016-04-27 2020-09-22 Synerz Medical, Inc. Intragastric device for treating obesity
EP3454785B1 (en) 2016-05-13 2021-11-17 St. Jude Medical, Cardiology Division, Inc. Heart valve with stent having varying cell densities
US10245136B2 (en) 2016-05-13 2019-04-02 Boston Scientific Scimed Inc. Containment vessel with implant sheathing guide
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US10350062B2 (en) 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
EP3503846B1 (en) 2016-08-26 2021-12-01 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
EP3512466B1 (en) 2016-09-15 2020-07-29 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
EP3531977A1 (en) 2016-10-28 2019-09-04 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
US10258488B2 (en) 2016-11-14 2019-04-16 Covidien Lp Stent
US10905572B2 (en) 2016-11-14 2021-02-02 Covidien Lp Stent
US10449069B2 (en) 2016-11-14 2019-10-22 Covidien Lp Stent
US10758352B2 (en) 2016-12-02 2020-09-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with two modes of actuation
EP3547964A1 (en) 2016-12-02 2019-10-09 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with transverse wheel actuation
AU2018203053B2 (en) 2017-01-23 2020-03-05 Cephea Valve Technologies, Inc. Replacement mitral valves
CR20190381A (en) 2017-01-23 2019-09-27 Cephea Valve Tech Inc Replacement mitral valves
WO2018160790A1 (en) 2017-03-03 2018-09-07 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve design
EP3592291A1 (en) 2017-03-10 2020-01-15 St. Jude Medical, Cardiology Division, Inc. Transseptal mitral valve delivery system
EP3595586A1 (en) 2017-03-16 2020-01-22 St. Jude Medical, Cardiology Division, Inc. Retainers for transcatheter heart valve delivery systems
EP3618768A1 (en) 2017-05-05 2020-03-11 St. Jude Medical, Cardiology Division, Inc. Introducer sheath having expandable portions
EP3624739A1 (en) 2017-05-15 2020-03-25 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with wheel actuation
USD875250S1 (en) 2017-05-15 2020-02-11 St. Jude Medical, Cardiology Division, Inc. Stent having tapered aortic struts
USD875935S1 (en) 2017-05-15 2020-02-18 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
USD889653S1 (en) 2017-05-15 2020-07-07 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
EP3634311A1 (en) 2017-06-08 2020-04-15 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
EP3654883A1 (en) 2017-07-18 2020-05-27 St. Jude Medical, Cardiology Division, Inc. Flushable loading base
WO2019028161A1 (en) 2017-08-01 2019-02-07 Boston Scientific Scimed, Inc. Medical implant locking mechanism
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11382751B2 (en) 2017-10-24 2022-07-12 St. Jude Medical, Cardiology Division, Inc. Self-expandable filler for mitigating paravalvular leak
US11006939B2 (en) 2017-12-08 2021-05-18 Tendyne Holdings, Inc. Introducer sheath with seal and methods of using the same
EP3740160A2 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Inductance mode deployment sensors for transcatheter valve system
WO2019144071A1 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
WO2019147846A2 (en) 2018-01-25 2019-08-01 Edwards Lifesciences Corporation Delivery system for aided replacement valve recapture and repositioning post- deployment
EP3749252A1 (en) 2018-02-07 2020-12-16 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
US10898326B2 (en) 2018-02-20 2021-01-26 St. Jude Medical, Cardiology Division, Inc. Crimping heart valve with nitinol braid
EP3758651B1 (en) 2018-02-26 2022-12-07 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
EP3768369A1 (en) 2018-03-23 2021-01-27 Medtronic, Inc. Av synchronous vfa cardiac therapy
WO2019183514A1 (en) 2018-03-23 2019-09-26 Medtronic, Inc. Vfa cardiac therapy for tachycardia
CN111902187A (en) 2018-03-23 2020-11-06 美敦力公司 VFA cardiac resynchronization therapy
US11813413B2 (en) 2018-03-27 2023-11-14 St. Jude Medical, Cardiology Division, Inc. Radiopaque outer cuff for transcatheter valve
CN112399836A (en) 2018-05-15 2021-02-23 波士顿科学国际有限公司 Replacement heart valve commissure assemblies
US11607523B2 (en) 2018-05-17 2023-03-21 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
EP3852679A1 (en) 2018-09-20 2021-07-28 St. Jude Medical, Cardiology Division, Inc. Attachment of leaflets to prosthetic heart valve
EP3856331A1 (en) 2018-09-26 2021-08-04 Medtronic, Inc. Capture in ventricle-from-atrium cardiac therapy
US10874850B2 (en) 2018-09-28 2020-12-29 Medtronic, Inc. Impedance-based verification for delivery of implantable medical devices
US11364117B2 (en) 2018-10-15 2022-06-21 St. Jude Medical, Cardiology Division, Inc. Braid connections for prosthetic heart valves
US11464658B2 (en) 2018-10-25 2022-10-11 Medtronic Vascular, Inc. Implantable medical device with cavitation features
EP3893804A1 (en) 2018-12-10 2021-10-20 St. Jude Medical, Cardiology Division, Inc. Prosthetic tricuspid valve replacement design
WO2020123486A1 (en) 2018-12-10 2020-06-18 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11273030B2 (en) 2018-12-26 2022-03-15 St. Jude Medical, Cardiology Division, Inc. Elevated outer cuff for reducing paravalvular leakage and increasing stent fatigue life
US11426200B2 (en) 2018-12-28 2022-08-30 St. Jude Medical, Cardiology Division, Inc. Operating handle for selective deflection or rotation of a catheter
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11759632B2 (en) 2019-03-28 2023-09-19 Medtronic, Inc. Fixation components for implantable medical devices
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11331475B2 (en) 2019-05-07 2022-05-17 Medtronic, Inc. Tether assemblies for medical device delivery systems
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
EP4003230A1 (en) 2019-07-31 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Alternate stent caf design for tavr
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation
WO2022245435A1 (en) * 2021-05-20 2022-11-24 Cook Medical Technologies Llc Self expanding stent and method of loading same into a catheter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824041A (en) * 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US20020055767A1 (en) * 2000-10-18 2002-05-09 Forde Sean T. Over-the-wire interlock attachment/detachment mechanism
US6623518B2 (en) * 2001-02-26 2003-09-23 Ev3 Peripheral, Inc. Implant delivery system with interlock
US6776791B1 (en) * 1998-04-01 2004-08-17 Endovascular Technologies, Inc. Stent and method and device for packing of same

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0556940A1 (en) 1986-02-24 1993-08-25 Robert E. Fischell Intravascular stent
US4913141A (en) 1988-10-25 1990-04-03 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
EP0408245B1 (en) 1989-07-13 1994-03-02 American Medical Systems, Inc. Stent placement instrument
US5591172A (en) 1991-06-14 1997-01-07 Ams Medinvent S.A. Transluminal implantation device
US5817102A (en) * 1992-05-08 1998-10-06 Schneider (Usa) Inc. Apparatus for delivering and deploying a stent
USD380831S (en) * 1992-08-06 1997-07-08 William Cook Europe A/S Implantable self-expanding stent
DE59206251D1 (en) 1992-10-31 1996-06-13 Schneider Europ Ag Arrangement for implanting self-expanding endoprostheses
US5480423A (en) 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
EP0657147B1 (en) * 1993-11-04 1999-08-04 C.R. Bard, Inc. Non-migrating vascular prosthesis
US5683451A (en) 1994-06-08 1997-11-04 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal prostheses
IL115755A0 (en) 1994-10-27 1996-01-19 Medinol Ltd X-ray visible stent
EP0788332B1 (en) 1994-10-27 2000-11-08 Boston Scientific Limited Stent delivery device
USD380266S (en) * 1994-12-30 1997-06-24 Cook Incorporated Implantable, actively expandable stent
GB9522332D0 (en) * 1995-11-01 1996-01-03 Biocompatibles Ltd Braided stent
ES2131253T3 (en) 1995-11-14 1999-07-16 Schneider Europ Gmbh DEVICE FOR THE IMPLEMENTATION OF AN ENDOPROTESIS.
US6077295A (en) 1996-07-15 2000-06-20 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system
US5741327A (en) * 1997-05-06 1998-04-21 Global Therapeutics, Inc. Surgical stent featuring radiopaque markers
US6004328A (en) 1997-06-19 1999-12-21 Solar; Ronald J. Radially expandable intraluminal stent and delivery catheter therefore and method of using the same
US6132461A (en) 1998-03-27 2000-10-17 Intratherapeutics, Inc. Stent with dual support structure
US6132460A (en) 1998-03-27 2000-10-17 Intratherapeutics, Inc. Stent
US6290731B1 (en) 1998-03-30 2001-09-18 Cordis Corporation Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm
US6120522A (en) 1998-08-27 2000-09-19 Scimed Life Systems, Inc. Self-expanding stent delivery catheter
US6214036B1 (en) 1998-11-09 2001-04-10 Cordis Corporation Stent which is easily recaptured and repositioned within the body
US6315790B1 (en) 1999-06-07 2001-11-13 Scimed Life Systems, Inc. Radiopaque marker bands
US6280412B1 (en) * 1999-06-17 2001-08-28 Scimed Life Systems, Inc. Stent securement by balloon modification
US6270525B1 (en) 1999-09-23 2001-08-07 Cordis Corporation Precursor stent gasket for receiving bilateral grafts having controlled contralateral guidewire access
DE10026307A1 (en) 2000-05-26 2001-11-29 Variomed Ag Balzers Stent, positioning element and insertion catheter
US6843802B1 (en) 2000-11-16 2005-01-18 Cordis Corporation Delivery apparatus for a self expanding retractable stent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824041A (en) * 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US6776791B1 (en) * 1998-04-01 2004-08-17 Endovascular Technologies, Inc. Stent and method and device for packing of same
US20020055767A1 (en) * 2000-10-18 2002-05-09 Forde Sean T. Over-the-wire interlock attachment/detachment mechanism
US6623518B2 (en) * 2001-02-26 2003-09-23 Ev3 Peripheral, Inc. Implant delivery system with interlock

Cited By (366)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722662B2 (en) 1998-02-17 2010-05-25 Reva Medical, Inc. Expandable stent with sliding and locking radial elements
US8597226B2 (en) 1998-09-10 2013-12-03 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US8398694B2 (en) 2000-10-18 2013-03-19 W.L. Gore & Associates, Inc. Over-the-wire interlock attachment/detachment mechanism
US6936058B2 (en) 2000-10-18 2005-08-30 Nmt Medical, Inc. Over-the-wire interlock attachment/detachment mechanism
US9463006B2 (en) 2000-10-18 2016-10-11 W.L. Gore & Associates, Inc. Over-the-wire interlock attachment/detachment mechanism
US20140236275A1 (en) * 2001-01-18 2014-08-21 Covidien Lp Catheter system with spacer member
US7686828B2 (en) 2001-09-06 2010-03-30 Ovalis, Inc. Systems and methods for treating septal defects
US8758401B2 (en) 2001-09-06 2014-06-24 ProMed, Inc. Systems and methods for treating septal defects
US20030045901A1 (en) * 2001-09-06 2003-03-06 Nmt Medical, Inc. Flexible delivery system
US7740640B2 (en) 2001-09-06 2010-06-22 Ovalis, Inc. Clip apparatus for closing septal defects and methods of use
US7678132B2 (en) 2001-09-06 2010-03-16 Ovalis, Inc. Systems and methods for treating septal defects
US8070826B2 (en) 2001-09-07 2011-12-06 Ovalis, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US8747483B2 (en) 2001-09-07 2014-06-10 ProMed, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US7867250B2 (en) 2001-12-19 2011-01-11 Nmt Medical, Inc. Septal occluder and associated methods
US8758403B2 (en) 2001-12-19 2014-06-24 W.L. Gore & Associates, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
US7967840B2 (en) 2001-12-19 2011-06-28 Nmt Medical, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
US8696728B2 (en) 2002-02-28 2014-04-15 Bay Street Medical, Inc. Guidewire loaded stent for delivery through a catheter
US9114038B2 (en) 2002-02-28 2015-08-25 Back Bay Medical Inc. Method of delivering a stent
US8641748B2 (en) 2002-02-28 2014-02-04 Bay Street Medical, Inc. Guidewire loaded stent for delivery through a catheter
US9241695B2 (en) 2002-03-25 2016-01-26 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure clips
US9216014B2 (en) 2002-06-03 2015-12-22 W.L. Gore & Associates, Inc. Device with biological tissue scaffold for percutaneous closure of an intracardiac defect and methods thereof
US9028527B2 (en) 2002-06-05 2015-05-12 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with radial and circumferential support
US8784448B2 (en) 2002-06-05 2014-07-22 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with radial and circumferential support
US20060025845A1 (en) * 2002-09-23 2006-02-02 Angeli Escamilla Expandable stent with markers and stent delivery system
US20060095213A1 (en) * 2002-09-23 2006-05-04 Angeli Escamilla Expandable stent and delivery system
US20060089703A1 (en) * 2002-09-23 2006-04-27 Angeli Escamilla Expandable stent and delivery system
US7309351B2 (en) 2002-09-23 2007-12-18 Cordis Neurovascular, Inc. Expandable stent with markers and stent delivery system
US7766820B2 (en) 2002-10-25 2010-08-03 Nmt Medical, Inc. Expandable sheath tubing
US9597212B2 (en) * 2002-11-01 2017-03-21 Covidien Lp Implant delivery system with marker interlock
US20050222662A1 (en) * 2002-11-01 2005-10-06 Ev3 Peripheral, Inc. Implant delivery system with marker interlock
US20140316508A1 (en) * 2002-11-01 2014-10-23 Covidien Lp Implant delivery system with marker interlock
US20040093017A1 (en) * 2002-11-06 2004-05-13 Nmt Medical, Inc. Medical devices utilizing modified shape memory alloy
US9017373B2 (en) 2002-12-09 2015-04-28 W.L. Gore & Associates, Inc. Septal closure devices
US20040188304A1 (en) * 2002-12-31 2004-09-30 Bonnette Michael J. Packaging system with oxygen sensor
US7658747B2 (en) 2003-03-12 2010-02-09 Nmt Medical, Inc. Medical device for manipulation of a medical implant
US20040181256A1 (en) * 2003-03-14 2004-09-16 Glaser Erik N. Collet-based delivery system
US8016869B2 (en) 2003-03-26 2011-09-13 Biosensors International Group, Ltd. Guidewire-less stent delivery methods
US7771463B2 (en) * 2003-03-26 2010-08-10 Ton Dai T Twist-down implant delivery technologies
US7785361B2 (en) 2003-03-26 2010-08-31 Julian Nikolchev Implant delivery technologies
US7473271B2 (en) 2003-04-11 2009-01-06 Boston Scientific Scimed, Inc. Stent delivery system with securement and deployment accuracy
US20040267348A1 (en) * 2003-04-11 2004-12-30 Gunderson Richard C. Medical device delivery systems
JP4796488B2 (en) * 2003-04-11 2011-10-19 ボストン サイエンティフィック リミテッド Medical instrument transport system
JP2006522668A (en) * 2003-04-11 2006-10-05 ボストン サイエンティフィック リミテッド Medical instrument transport system
WO2004091446A3 (en) * 2003-04-11 2004-12-02 Scimed Life Systems Inc Medical device delivery systems
US20040204749A1 (en) * 2003-04-11 2004-10-14 Richard Gunderson Stent delivery system with securement and deployment accuracy
US20040267346A1 (en) * 2003-06-30 2004-12-30 Shelso Susan I. Stent grip and system for use therewith
US7470282B2 (en) 2003-06-30 2008-12-30 Boston Scientific Scimed, Inc. Stent grip and system for use therewith
US8172891B2 (en) 2003-06-30 2012-05-08 Boston Scientific Scimed, Inc. Stent grip and systems for use therewith
US20090105803A1 (en) * 2003-06-30 2009-04-23 Boston Scientific Scimed, Inc. Stent grip and systems for use therewith
US9149263B2 (en) 2003-07-14 2015-10-06 W. L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US8480706B2 (en) 2003-07-14 2013-07-09 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US9861346B2 (en) 2003-07-14 2018-01-09 W. L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with linearly elongating petals
US11375988B2 (en) 2003-07-14 2022-07-05 W. L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with linearly elongating petals
US7678123B2 (en) 2003-07-14 2010-03-16 Nmt Medical, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US9326759B2 (en) 2003-07-14 2016-05-03 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US7963952B2 (en) 2003-08-19 2011-06-21 Wright Jr John A Expandable sheath tubing
US7691112B2 (en) 2003-09-11 2010-04-06 Nmt Medical, Inc. Devices, systems, and methods for suturing tissue
US8157829B2 (en) 2003-11-06 2012-04-17 Pressure Products Medical Supplies, Inc. Transseptal puncture apparatus
US7666203B2 (en) 2003-11-06 2010-02-23 Nmt Medical, Inc. Transseptal puncture apparatus
US8292910B2 (en) 2003-11-06 2012-10-23 Pressure Products Medical Supplies, Inc. Transseptal puncture apparatus
US8992556B2 (en) 2003-11-06 2015-03-31 Pressure Products Medical Supplies, Inc. Transseptal puncture apparatus
US8753362B2 (en) 2003-12-09 2014-06-17 W.L. Gore & Associates, Inc. Double spiral patent foramen ovale closure clamp
US20170065414A1 (en) * 2003-12-23 2017-03-09 Boston Scientific Scimed, Inc. Medical devices and delivery systems for delivering medical devices
US10772724B2 (en) * 2003-12-23 2020-09-15 Boston Scientific Scimed, Inc. Medical devices and delivery systems for delivering medical devices
US20120016469A1 (en) * 2003-12-23 2012-01-19 Sadra Medical Inc. Methods and Apparatus for Endovascularly Replacing a Heart Valve
US8858620B2 (en) * 2003-12-23 2014-10-14 Sadra Medical Inc. Methods and apparatus for endovascularly replacing a heart valve
US20170056172A1 (en) * 2003-12-23 2017-03-02 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a heart valve
US10413412B2 (en) 2003-12-23 2019-09-17 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a heart valve
US9956075B2 (en) * 2003-12-23 2018-05-01 Boston Scientific Scimed Inc. Methods and apparatus for endovascularly replacing a heart valve
US11285002B2 (en) 2003-12-23 2022-03-29 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7988690B2 (en) 2004-01-30 2011-08-02 W.L. Gore & Associates, Inc. Welding systems useful for closure of cardiac openings
US8361111B2 (en) 2004-01-30 2013-01-29 W.L. Gore & Associates, Inc. Devices, systems and methods for closure of cardiac openings
US8262694B2 (en) 2004-01-30 2012-09-11 W.L. Gore & Associates, Inc. Devices, systems, and methods for closure of cardiac openings
US7651521B2 (en) 2004-03-02 2010-01-26 Cardiomind, Inc. Corewire actuated delivery system with fixed distal stent-carrying extension
US7871419B2 (en) 2004-03-03 2011-01-18 Nmt Medical, Inc. Delivery/recovery system for septal occluder
US8945158B2 (en) 2004-03-03 2015-02-03 W.L. Gore & Associates, Inc. Delivery/recovery system for septal occluder
US8568431B2 (en) 2004-03-03 2013-10-29 W.L. Gore & Associates, Inc. Delivery/recovery system for septal occluder
US8828049B2 (en) 2004-04-09 2014-09-09 W.L. Gore & Associates, Inc. Split ends closure device and methods of use
US20050228478A1 (en) * 2004-04-09 2005-10-13 Heidner Matthew C Medical device delivery systems
US9066826B2 (en) 2004-04-09 2015-06-30 Boston Scientific Scimed, Inc. Medical device delivery systems
US9737427B2 (en) 2004-04-09 2017-08-22 Boston Scientific Scimed, Inc. Medical device delivery systems
US8361110B2 (en) 2004-04-26 2013-01-29 W.L. Gore & Associates, Inc. Heart-shaped PFO closure device
US7842053B2 (en) 2004-05-06 2010-11-30 Nmt Medical, Inc. Double coil occluder
US8308760B2 (en) 2004-05-06 2012-11-13 W.L. Gore & Associates, Inc. Delivery systems and methods for PFO closure device with two anchors
US8568447B2 (en) 2004-05-06 2013-10-29 W.L. Gore & Associates, Inc. Delivery systems and methods for PFO closure device with two anchors
US8257389B2 (en) 2004-05-07 2012-09-04 W.L. Gore & Associates, Inc. Catching mechanisms for tubular septal occluder
US7704268B2 (en) 2004-05-07 2010-04-27 Nmt Medical, Inc. Closure device with hinges
US8480709B2 (en) 2004-05-07 2013-07-09 W.L. Gore & Associates, Inc. Catching mechanisms for tubular septal occluder
US9545247B2 (en) 2004-05-07 2017-01-17 W.L. Gore & Associates, Inc. Catching mechanisms for tubular septal occluder
US9125659B2 (en) 2004-05-25 2015-09-08 Covidien Lp Flexible vascular occluding device
US8623067B2 (en) 2004-05-25 2014-01-07 Covidien Lp Methods and apparatus for luminal stenting
US9295568B2 (en) 2004-05-25 2016-03-29 Covidien Lp Methods and apparatus for luminal stenting
US8382825B2 (en) 2004-05-25 2013-02-26 Covidien Lp Flexible vascular occluding device
US11771433B2 (en) 2004-05-25 2023-10-03 Covidien Lp Flexible vascular occluding device
US9393021B2 (en) 2004-05-25 2016-07-19 Covidien Lp Flexible vascular occluding device
US9801744B2 (en) 2004-05-25 2017-10-31 Covidien Lp Methods and apparatus for luminal stenting
US9050205B2 (en) 2004-05-25 2015-06-09 Covidien Lp Methods and apparatus for luminal stenting
US10918389B2 (en) 2004-05-25 2021-02-16 Covidien Lp Flexible vascular occluding device
US8617234B2 (en) 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device
US9855047B2 (en) 2004-05-25 2018-01-02 Covidien Lp Flexible vascular occluding device
US8628564B2 (en) 2004-05-25 2014-01-14 Covidien Lp Methods and apparatus for luminal stenting
US10004618B2 (en) 2004-05-25 2018-06-26 Covidien Lp Methods and apparatus for luminal stenting
US8398701B2 (en) 2004-05-25 2013-03-19 Covidien Lp Flexible vascular occluding device
US10765542B2 (en) 2004-05-25 2020-09-08 Covidien Lp Methods and apparatus for luminal stenting
US9439788B2 (en) * 2004-06-28 2016-09-13 Abbott Cardiovascular Systems Inc. Stent locking element and a method of securing a stent on a delivery system
US8512394B2 (en) 2004-07-21 2013-08-20 Reva Medical Inc. Balloon expandable crush-recoverable stent device
US7763065B2 (en) 2004-07-21 2010-07-27 Reva Medical, Inc. Balloon expandable crush-recoverable stent device
US7303580B2 (en) 2004-07-26 2007-12-04 Cook Incorporated Stent delivery system allowing controlled release of a stent
US20060020321A1 (en) * 2004-07-26 2006-01-26 Cook Incorporated Stent delivery system allowing controlled release of a stent
US8764848B2 (en) 2004-09-24 2014-07-01 W.L. Gore & Associates, Inc. Occluder device double securement system for delivery/recovery of such occluder device
US20060085057A1 (en) * 2004-10-14 2006-04-20 Cardiomind Delivery guide member based stent anti-jumping technologies
US8277500B2 (en) 2004-12-17 2012-10-02 Reva Medical, Inc. Slide-and-lock stent
US8292944B2 (en) 2004-12-17 2012-10-23 Reva Medical, Inc. Slide-and-lock stent
US9173751B2 (en) 2004-12-17 2015-11-03 Reva Medical, Inc. Slide-and-lock stent
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US20060184225A1 (en) * 2005-02-11 2006-08-17 Medtronic Vascular, Inc. Force distributing system for delivering a self-expanding stent
US8277480B2 (en) 2005-03-18 2012-10-02 W.L. Gore & Associates, Inc. Catch member for PFO occluder
US8430907B2 (en) 2005-03-18 2013-04-30 W.L. Gore & Associates, Inc. Catch member for PFO occluder
US8636765B2 (en) 2005-03-18 2014-01-28 W.L. Gore & Associates, Inc. Catch member for PFO occluder
US8652193B2 (en) 2005-05-09 2014-02-18 Angiomed Gmbh & Co. Medizintechnik Kg Implant delivery device
US9381104B2 (en) 2005-05-25 2016-07-05 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US10322018B2 (en) 2005-05-25 2019-06-18 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US10064747B2 (en) 2005-05-25 2018-09-04 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US9204983B2 (en) 2005-05-25 2015-12-08 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US9095343B2 (en) 2005-05-25 2015-08-04 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US8257421B2 (en) 2005-05-25 2012-09-04 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8236042B2 (en) 2005-05-25 2012-08-07 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8147534B2 (en) 2005-05-25 2012-04-03 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US9198666B2 (en) 2005-05-25 2015-12-01 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US8579936B2 (en) 2005-07-05 2013-11-12 ProMed, Inc. Centering of delivery devices with respect to a septal defect
US8617235B2 (en) 2005-08-02 2013-12-31 Reva Medical, Inc. Axially nested slide and lock expandable device
US9149378B2 (en) 2005-08-02 2015-10-06 Reva Medical, Inc. Axially nested slide and lock expandable device
US7914574B2 (en) 2005-08-02 2011-03-29 Reva Medical, Inc. Axially nested slide and lock expandable device
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
US7862602B2 (en) 2005-11-02 2011-01-04 Biosensors International Group, Ltd Indirect-release electrolytic implant delivery systems
US8900285B2 (en) 2005-11-02 2014-12-02 Biosensors International Group, Ltd. Covering electrolytic restraint implant delivery systems
US8579954B2 (en) 2005-11-02 2013-11-12 Biosensors International Group, Ltd. Untwisting restraint implant delivery system
JP2009514594A (en) * 2005-11-02 2009-04-09 カーディオマインド, インコーポレイテッド Twist-down implant delivery technology
US8273116B2 (en) 2005-11-02 2012-09-25 Biosensors International Group, Ltd. Indirect-release electrolytic implant delivery systems
US8974509B2 (en) 2005-11-02 2015-03-10 Biosensors International Group, Ltd. Pass-through restraint electrolytic implant delivery systems
US9084603B2 (en) 2005-12-22 2015-07-21 W.L. Gore & Associates, Inc. Catch members for occluder devices
US10433988B2 (en) 2006-02-22 2019-10-08 Covidien Lp Stents having radiopaque mesh
US9610181B2 (en) 2006-02-22 2017-04-04 Covidien Lp Stents having radiopaque mesh
US8394119B2 (en) 2006-02-22 2013-03-12 Covidien Lp Stents having radiopaque mesh
US11382777B2 (en) 2006-02-22 2022-07-12 Covidien Lp Stents having radiopaque mesh
US9320590B2 (en) 2006-02-22 2016-04-26 Covidien Lp Stents having radiopaque mesh
US7699884B2 (en) 2006-03-22 2010-04-20 Cardiomind, Inc. Method of stenting with minimal diameter guided delivery systems
US8551135B2 (en) 2006-03-31 2013-10-08 W.L. Gore & Associates, Inc. Screw catch mechanism for PFO occluder and method of use
US8814947B2 (en) 2006-03-31 2014-08-26 W.L. Gore & Associates, Inc. Deformable flap catch mechanism for occluder device
US8870913B2 (en) 2006-03-31 2014-10-28 W.L. Gore & Associates, Inc. Catch system with locking cap for patent foramen ovale (PFO) occluder
US20170172581A1 (en) * 2006-04-07 2017-06-22 Penumbra, Inc. Aneursym occlusion system and method
US10849770B2 (en) 2006-05-17 2020-12-01 C. R. Bard, Inc. Bend-capable tubular prosthesis
US9629734B2 (en) 2006-06-16 2017-04-25 Covidien Lp Implant having high fatigue resistance, delivery system, and method of use
US8562668B2 (en) 2006-06-16 2013-10-22 Covidien Lp Implant having high fatigue resistance, delivery system, and method of use
US20170007429A1 (en) * 2006-07-10 2017-01-12 C.R. Bard, Inc. Tubular Metal Prosthesis and Method of Making It
US8747460B2 (en) 2006-09-19 2014-06-10 Medtronic Ventor Technologies Ltd. Methods for implanting a valve prothesis
US11304801B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US20100137979A1 (en) * 2006-09-19 2010-06-03 Yosi Tuval Sinus-engaging Valve Fixation Member
US11304802B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8771345B2 (en) 2006-09-19 2014-07-08 Medtronic Ventor Technologies Ltd. Valve prosthesis fixation techniques using sandwiching
US9138312B2 (en) 2006-09-19 2015-09-22 Medtronic Ventor Technologies Ltd. Valve prostheses
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US9642704B2 (en) * 2006-09-19 2017-05-09 Medtronic Ventor Technologies Ltd. Catheter for implanting a valve prosthesis
US8771346B2 (en) 2006-09-19 2014-07-08 Medtronic Ventor Technologies Ltd. Valve prosthetic fixation techniques using sandwiching
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US8172894B2 (en) 2007-01-26 2012-05-08 Reva Medical, Inc. Circumferentially nested expandable device
US8540762B2 (en) 2007-01-26 2013-09-24 Reva Medical, Inc. Circumferentially nested expandable device
US7704275B2 (en) 2007-01-26 2010-04-27 Reva Medical, Inc. Circumferentially nested expandable device
US9005242B2 (en) 2007-04-05 2015-04-14 W.L. Gore & Associates, Inc. Septal closure device with centering mechanism
US9949728B2 (en) 2007-04-05 2018-04-24 W.L. Gore & Associates, Inc. Septal closure device with centering mechanism
US10485525B2 (en) 2007-04-05 2019-11-26 W.L. Gore & Associates, Inc. Septal closure device with centering mechanism
US10687967B2 (en) * 2007-04-09 2020-06-23 Covidien Lp Stretchable stent and delivery system
US9445896B2 (en) * 2007-04-13 2016-09-20 Jenavalve Technology, Inc. Methods for treating a heart valve insufficiency or stenosis
US9138315B2 (en) * 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
US9295551B2 (en) 2007-04-13 2016-03-29 Jenavalve Technology Gmbh Methods of implanting an endoprosthesis
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US20100174362A1 (en) * 2007-04-13 2010-07-08 Helmut Straubinger Medical Device for Treating A Heart Valve Insufficiency or Stenosis
US9138562B2 (en) 2007-04-18 2015-09-22 W.L. Gore & Associates, Inc. Flexible catheter system
US20080300667A1 (en) * 2007-05-31 2008-12-04 Bay Street Medical System for delivering a stent
US9314354B2 (en) 2007-11-30 2016-04-19 Reva Medical, Inc. Axially-radially nested expandable device
US7988721B2 (en) 2007-11-30 2011-08-02 Reva Medical, Inc. Axially-radially nested expandable device
US8460363B2 (en) 2007-11-30 2013-06-11 Reva Medical, Inc. Axially-radially nested expandable device
US10278839B2 (en) 2007-12-12 2019-05-07 Intact Vascular, Inc. Endovascular impant
US10299945B2 (en) 2007-12-12 2019-05-28 Intact Vascular, Inc. Method of treating atherosclerotic occlusive disease
US10022250B2 (en) 2007-12-12 2018-07-17 Intact Vascular, Inc. Deployment device for placement of multiple intraluminal surgical staples
US10188533B2 (en) 2007-12-12 2019-01-29 Intact Vascular, Inc. Minimal surface area contact device for holding plaque to blood vessel wall
US10660771B2 (en) 2007-12-12 2020-05-26 Intact Vacsular, Inc. Deployment device for placement of multiple intraluminal surgical staples
US10835395B2 (en) 2007-12-12 2020-11-17 Intact Vascular, Inc. Method of treating atherosclerotic occlusive disease
US10166127B2 (en) 2007-12-12 2019-01-01 Intact Vascular, Inc. Endoluminal device and method
US10117762B2 (en) 2007-12-12 2018-11-06 Intact Vascular, Inc. Endoluminal device and method
US10799374B2 (en) 2007-12-12 2020-10-13 Intact Vascular, Inc. Device and method for tacking plaque to blood vessel wall
US8685077B2 (en) 2008-01-24 2014-04-01 Medtronics, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US11083573B2 (en) 2008-01-24 2021-08-10 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US11607311B2 (en) 2008-01-24 2023-03-21 Medtronic, Inc. Stents for prosthetic heart valves
US8157853B2 (en) * 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US11259919B2 (en) 2008-01-24 2022-03-01 Medtronic, Inc. Stents for prosthetic heart valves
US11786367B2 (en) 2008-01-24 2023-10-17 Medtronic, Inc. Stents for prosthetic heart valves
US9149358B2 (en) * 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US8157852B2 (en) * 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US11284999B2 (en) 2008-01-24 2022-03-29 Medtronic, Inc. Stents for prosthetic heart valves
US20170312107A1 (en) * 2008-01-30 2017-11-02 Boston Scientific Scimed, Inc. Medical systems and related method
US10695202B2 (en) * 2008-01-30 2020-06-30 Boston Scientific Scimed, Inc. Medical systems and related method
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11154398B2 (en) 2008-02-26 2021-10-26 JenaValve Technology. Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10278705B2 (en) 2008-03-07 2019-05-07 W. L. Gore & Associates, Inc. Heart occlusion devices
US9474517B2 (en) 2008-03-07 2016-10-25 W. L. Gore & Associates, Inc. Heart occlusion devices
US20110264189A1 (en) * 2008-05-12 2011-10-27 Hexacath Implantable medical device having a means for positioning it at the precise site of a branching of a blood vessel such as a coronary artery
US9186265B2 (en) * 2008-05-12 2015-11-17 Hexacath Implantable medical device having a means for positioning it at the precise site of a branching of a blood vessel such as a coronary artery
US11707371B2 (en) 2008-05-13 2023-07-25 Covidien Lp Braid implant delivery systems
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
US10610389B2 (en) 2008-05-13 2020-04-07 Covidien Lp Braid implant delivery systems
US20090306761A1 (en) * 2008-06-06 2009-12-10 Bay Street Medical Prosthesis and delivery system
US20090306760A1 (en) * 2008-06-06 2009-12-10 Bay Street Medical Prosthesis and delivery system
US8876876B2 (en) 2008-06-06 2014-11-04 Back Bay Medical Inc. Prosthesis and delivery system
WO2009149457A1 (en) * 2008-06-06 2009-12-10 Bay Street Medical, Inc. Prosthesis and delivery system
US9066827B2 (en) 2008-10-10 2015-06-30 Reva Medical, Inc. Expandable slide and lock stent
US8545547B2 (en) 2008-10-10 2013-10-01 Reva Medical Inc. Expandable slide and lock stent
US7947071B2 (en) 2008-10-10 2011-05-24 Reva Medical, Inc. Expandable slide and lock stent
US20100161605A1 (en) * 2008-12-23 2010-06-24 Yahoo! Inc. Context transfer in search advertising
US8636760B2 (en) 2009-04-20 2014-01-28 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US10888443B2 (en) 2009-06-11 2021-01-12 Intact Vascular, Inc. Device for holding plaque to blood vessel wall
US10779971B2 (en) 2009-06-11 2020-09-22 Intact Vascular, Inc. Endovascular implant
US11596391B2 (en) 2009-06-22 2023-03-07 W. L. Gore & Associates, Inc. Sealing device and delivery system
US10806437B2 (en) 2009-06-22 2020-10-20 W. L. Gore & Associates, Inc. Sealing device and delivery system
US11589853B2 (en) 2009-06-22 2023-02-28 W. L. Gore & Associates, Inc. Sealing device and delivery system
US11564672B2 (en) 2009-06-22 2023-01-31 W. L. Gore & Associates, Inc. Sealing device and delivery system
US10792025B2 (en) 2009-06-22 2020-10-06 W. L. Gore & Associates, Inc. Sealing device and delivery system
US8657870B2 (en) 2009-06-26 2014-02-25 Biosensors International Group, Ltd. Implant delivery apparatus and methods with electrolytic release
US10092427B2 (en) 2009-11-04 2018-10-09 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US10744012B2 (en) 2009-11-04 2020-08-18 Boston Scientific Scimed, Inc. Alternating circumferential bridge stent design and methods for use thereof
US9649211B2 (en) 2009-11-04 2017-05-16 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US9439635B2 (en) * 2010-02-26 2016-09-13 ProMed, Inc. Method for vessel access closure
US20120083829A1 (en) * 2010-02-26 2012-04-05 ProMed, Inc. System and method for vessel access closure
US9452068B2 (en) 2010-04-10 2016-09-27 Reva Medical, Inc. Expandable slide and lock stent
US8523936B2 (en) 2010-04-10 2013-09-03 Reva Medical, Inc. Expandable slide and lock stent
US11278406B2 (en) * 2010-05-20 2022-03-22 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US10856978B2 (en) * 2010-05-20 2020-12-08 Jenavalve Technology, Inc. Catheter system
US11147669B2 (en) * 2010-05-20 2021-10-19 Jenavalve Technology, Inc. Catheter system for introducing an expandable stent into the body of a patient
CN103096844A (en) * 2010-05-20 2013-05-08 耶拿阀门科技公司 Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US9597182B2 (en) * 2010-05-20 2017-03-21 Jenavalve Technology Inc. Catheter system for introducing an expandable stent into the body of a patient
US10307251B2 (en) 2010-05-20 2019-06-04 Jenavalve Technology, Inc. Catheter system for introducing an expandable stent into the body of a patient
US20170049568A1 (en) * 2010-05-20 2017-02-23 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US20110288626A1 (en) * 2010-05-20 2011-11-24 Helmut Straubinger Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US20130178930A1 (en) * 2010-05-20 2013-07-11 Helmut Straubinger Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US11589987B2 (en) 2010-05-27 2023-02-28 Medtronic Vascular Galway Unlimited Company Catheter assembly with prosthesis crimping and prosthesis retaining accessories
US10278816B2 (en) 2010-05-27 2019-05-07 Medtronic Vascular Galway Catheter assembly with prosthesis crimping and prosthesis retaining accessories
US20110295216A1 (en) * 2010-05-27 2011-12-01 Medtronic Vascular Galway Limited Catheter Assembly With Prosthesis Crimping and Prosthesis Retaining Accessories
US9387077B2 (en) * 2010-05-27 2016-07-12 Medtronic Vascular Galway Catheter assembly with prosthesis crimping and prosthesis retaining accessories
US11432925B2 (en) 2010-05-27 2022-09-06 Medtronic Vascular Galway Unlimited Company Catheter assembly with prosthesis crimping and prosthesis retaining accessories
US10779968B2 (en) 2010-05-29 2020-09-22 Intact Vascular, Inc. Endoluminal device and method
US10137013B2 (en) 2010-05-29 2018-11-27 Intact Vascular, Inc. Endoluminal device and method
EP3597257A1 (en) 2010-06-08 2020-01-22 Boston Scientific Scimed Inc. Bi-directional stent delivery system
US9301864B2 (en) 2010-06-08 2016-04-05 Veniti, Inc. Bi-directional stent delivery system
US8864811B2 (en) 2010-06-08 2014-10-21 Veniti, Inc. Bi-directional stent delivery system
US9314360B2 (en) 2010-06-08 2016-04-19 Veniti, Inc. Bi-directional stent delivery system
US20130267848A1 (en) * 2010-06-30 2013-10-10 Muffin Incorporated Percutaneous, ultrasound-guided introduction of medical devices
US10111645B2 (en) * 2010-06-30 2018-10-30 Muffin Incorporated Percutaneous, ultrasound-guided introduction of medical devices
US20120078350A1 (en) * 2010-07-15 2012-03-29 St. Jude Medical, Inc. Retainers for transcatheter heart valve delivery systems
JP2013534452A (en) * 2010-07-15 2013-09-05 セント・ジュード・メディカル,インコーポレイテッド Retainer for transcatheter heart valve delivery system
US9119717B2 (en) * 2010-07-15 2015-09-01 St. Jude Medical, Inc. Retainers for transcatheter heart valve delivery systems
US10130470B2 (en) 2010-08-17 2018-11-20 St. Jude Medical, Llc Sleeve for facilitating movement of a transfemoral catheter
US10799351B2 (en) * 2010-09-17 2020-10-13 St. Jude Medical, Cardiology Division, Inc. Retainers for transcatheter heart valve delivery systems
US20130289698A1 (en) * 2010-09-17 2013-10-31 St. Jude Medical, Cardiology Division, Inc. Retainers for transcatheter heart valve delivery systems
US9439795B2 (en) * 2010-09-17 2016-09-13 St. Jude Medical, Cardiology Division, Inc. Retainers for transcatheter heart valve delivery systems
US20160374805A1 (en) * 2010-09-17 2016-12-29 St. Jude Medical, Cardiology Division, Inc. Retainers for transcatheter heart valve delivery systems
US9233014B2 (en) 2010-09-24 2016-01-12 Veniti, Inc. Stent with support braces
US10959866B2 (en) 2010-09-24 2021-03-30 Boston Scientific Scimed, Inc. Stent with support braces
US10271973B2 (en) 2011-06-03 2019-04-30 Intact Vascular, Inc. Endovascular implant
US10779969B2 (en) 2011-06-03 2020-09-22 Intact Vascular, Inc. Endovascular implant and deployment devices
US10390977B2 (en) 2011-06-03 2019-08-27 Intact Vascular, Inc. Endovascular implant
US10285831B2 (en) 2011-06-03 2019-05-14 Intact Vascular, Inc. Endovascular implant
US9370422B2 (en) 2011-07-28 2016-06-21 St. Jude Medical, Inc. Expandable radiopaque marker for transcatheter aortic valve implantation
US10028830B2 (en) 2011-07-28 2018-07-24 St. Jude Medical, Llc Expandable radiopaque marker for transcatheter aortic valve implantation
US10087503B2 (en) 2011-08-03 2018-10-02 The Curators Of The University Of Missouri Method for separation of chemically pure Os from metal mixtures
US9770232B2 (en) 2011-08-12 2017-09-26 W. L. Gore & Associates, Inc. Heart occlusion devices
US8734500B2 (en) * 2011-09-27 2014-05-27 DePuy Synthes Products, LLC Distal detachment mechanisms for vascular devices
US20130079864A1 (en) * 2011-09-27 2013-03-28 Codman & Shurtleff, Inc. Distal detachment mechanisms for vascular devices
US9510947B2 (en) 2011-10-21 2016-12-06 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient
US20140288629A1 (en) * 2011-11-11 2014-09-25 Medigroup Gmbh Arrangement for implanting stent elements in or around a hollow organ
US10245168B2 (en) * 2011-11-11 2019-04-02 Medigroup Gmbh Arrangement for implanting stent elements in or around a hollow organ
US9439791B2 (en) * 2012-03-16 2016-09-13 Microvention, Inc. Stent and stent delivery device
US10543113B2 (en) 2012-03-16 2020-01-28 Terumo Corporation Stent and stent delivery device
US20130245745A1 (en) * 2012-03-16 2013-09-19 Microvention, Inc. Stent and stent delivery device
US10335297B2 (en) 2012-03-16 2019-07-02 Terumo Corporation Stent and stent delivery device
US11564819B2 (en) 2012-03-16 2023-01-31 Terumo Corporation Stent and stent delivery device
US10765540B2 (en) 2012-03-16 2020-09-08 Terumo Corporation Stent and stent delivery device
US11844913B2 (en) 2012-03-23 2023-12-19 Boston Scientific Medical Device Limited Transseptal puncture apparatus and method for using the same
US9878127B2 (en) 2012-05-16 2018-01-30 Jenavalve Technology, Inc. Catheter delivery system for heart valve prosthesis
US11013626B2 (en) 2012-06-15 2021-05-25 Trivascular, Inc. Endovascular delivery system with an improved radiopaque marker scheme
US9233015B2 (en) 2012-06-15 2016-01-12 Trivascular, Inc. Endovascular delivery system with an improved radiopaque marker scheme
US10034787B2 (en) 2012-06-15 2018-07-31 Trivascular, Inc. Endovascular delivery system with an improved radiopaque marker scheme
US10441418B2 (en) 2012-06-26 2019-10-15 St. Jude Medical, Cardiology Division, Inc. Apparatus and method for aortic protection and tavi planar alignment
US9480561B2 (en) 2012-06-26 2016-11-01 St. Jude Medical, Cardiology Division, Inc. Apparatus and method for aortic protection and TAVI planar alignment
EP2866738B2 (en) 2012-06-29 2019-06-05 St. Jude Medical, Cardiology Division, Inc. System to assist in the release of a collapsible stent from a delivery device
EP2866738B1 (en) 2012-06-29 2016-08-17 St. Jude Medical, Cardiology Division, Inc. System to assist in the release of a collapsible stent from a delivery device
US11026789B2 (en) 2012-06-29 2021-06-08 St. Jude Medical, Cardiology Division, Inc. System to assist in the release of a collapsible stent from a delivery device
US11612483B2 (en) 2012-06-29 2023-03-28 St. Jude Medical, Cardiology Division, Ine. System to assist in the release of a collapsible stent from a delivery device
JP2019022665A (en) * 2012-06-29 2019-02-14 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド System to assist in release of collapsible stent from delivery device
JP2015521916A (en) * 2012-06-29 2015-08-03 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド System that facilitates release of foldable stent from delivery device
US9918837B2 (en) 2012-06-29 2018-03-20 St. Jude Medical, Cardiology Division, Inc. System to assist in the release of a collapsible stent from a delivery device
US9877856B2 (en) 2012-07-18 2018-01-30 Covidien Lp Methods and apparatus for luminal stenting
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9907643B2 (en) 2012-10-30 2018-03-06 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US9114001B2 (en) 2012-10-30 2015-08-25 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US9301831B2 (en) 2012-10-30 2016-04-05 Covidien Lp Methods for attaining a predetermined porosity of a vascular device
US10952878B2 (en) 2012-10-31 2021-03-23 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US10206798B2 (en) 2012-10-31 2019-02-19 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9943427B2 (en) 2012-11-06 2018-04-17 Covidien Lp Shaped occluding devices and methods of using the same
US11771408B2 (en) 2013-01-18 2023-10-03 W. L. Gore & Associates, Inc. Sealing device and delivery system
US10828019B2 (en) 2013-01-18 2020-11-10 W.L. Gore & Associates, Inc. Sealing device and delivery system
US9157174B2 (en) 2013-02-05 2015-10-13 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
US9561122B2 (en) 2013-02-05 2017-02-07 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
US10864076B2 (en) * 2013-03-01 2020-12-15 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve replacement
US20180085218A1 (en) * 2013-03-01 2018-03-29 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve replacement
US9408732B2 (en) 2013-03-14 2016-08-09 Reva Medical, Inc. Reduced-profile slide and lock stent
US10433954B2 (en) 2013-08-30 2019-10-08 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US9867694B2 (en) 2013-08-30 2018-01-16 Jenavalve Technology Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US10398550B2 (en) 2013-09-12 2019-09-03 St. Jude Medical, Cardiology Division, Inc. Atraumatic interface in an implant delivery device
US11813163B2 (en) * 2014-02-18 2023-11-14 HVR Canlio Oy Medical device for a cardiac valve implant
US10512541B2 (en) * 2014-02-18 2019-12-24 Medtentia International Ltd. Oy Medical device for a cardiac valve implant
US20170007402A1 (en) * 2014-02-18 2017-01-12 Medtentia International Ltd Oy Medical Device for a Cardiac Valve Implant
US20220323218A1 (en) * 2014-02-18 2022-10-13 Medtentia International Ltd Oy Medical Device for a Cardiac Valve Implant
US11369471B2 (en) * 2014-02-18 2022-06-28 Medtentia International Ltd Oy Medical device for cardiac valve implant
US10368853B2 (en) 2014-06-06 2019-08-06 W. L. Gore & Associates, Inc. Sealing device and delivery system
US9808230B2 (en) 2014-06-06 2017-11-07 W. L. Gore & Associates, Inc. Sealing device and delivery system
US11298116B2 (en) 2014-06-06 2022-04-12 W. L. Gore & Associates, Inc. Sealing device and delivery system
US20180000619A1 (en) * 2015-01-29 2018-01-04 Intact Vascular, Inc. Delivery device and method of delivery
US11304836B2 (en) 2015-01-29 2022-04-19 Intact Vascular, Inc. Delivery device and method of delivery
US10245167B2 (en) 2015-01-29 2019-04-02 Intact Vascular, Inc. Delivery device and method of delivery
US10898356B2 (en) 2015-01-29 2021-01-26 Intact Vascular, Inc. Delivery device and method of delivery
US10531954B2 (en) * 2015-03-20 2020-01-14 St. Jude Medical, Cardiology Division, Inc. Mitral valve loading tool
US20160270914A1 (en) * 2015-03-20 2016-09-22 St. Jude Medical, Cardiology Division, Inc. Mitral valve loading tool
US11369470B2 (en) 2015-03-20 2022-06-28 St. Jude Medical, Cardiology Division, Inc. Mitral valve loading tool
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US9943426B2 (en) * 2015-07-15 2018-04-17 Elixir Medical Corporation Uncaging stent
US10182931B2 (en) 2015-09-18 2019-01-22 Microvention, Inc. Releasable delivery system
US10322020B2 (en) * 2015-09-18 2019-06-18 Terumo Corporation Pushable implant delivery system
US20170079820A1 (en) * 2015-09-18 2017-03-23 Microvention, Inc. Pushable Implant Delivery System
US11931277B2 (en) 2015-09-18 2024-03-19 Microvention, Inc. Releasable delivery system
US11000394B2 (en) 2015-09-18 2021-05-11 Microvention, Inc. Releasable delivery system
US11141300B2 (en) 2015-09-18 2021-10-12 Terumo Corporation Pushable implant delivery system
US10993824B2 (en) 2016-01-01 2021-05-04 Intact Vascular, Inc. Delivery device and method of delivery
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11337806B2 (en) 2016-05-13 2022-05-24 St. Jude Medical, Cardiology Division, Inc. Mitral valve delivery device
US10624740B2 (en) 2016-05-13 2020-04-21 St. Jude Medical, Cardiology Division, Inc. Mitral valve delivery device
US10667907B2 (en) 2016-05-13 2020-06-02 St. Jude Medical, Cardiology Division, Inc. Systems and methods for device implantation
US10918505B2 (en) 2016-05-16 2021-02-16 Elixir Medical Corporation Uncaging stent
US10786374B2 (en) 2016-05-16 2020-09-29 Elixir Medical Corporation Uncaging stent
US11622872B2 (en) 2016-05-16 2023-04-11 Elixir Medical Corporation Uncaging stent
US10076431B2 (en) 2016-05-16 2018-09-18 Elixir Medical Corporation Uncaging stent
US10271976B2 (en) 2016-05-16 2019-04-30 Elixir Medical Corporation Uncaging stent
US10383750B1 (en) 2016-05-16 2019-08-20 Elixir Medical Corporation Uncaging stent
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US10905578B2 (en) 2017-02-02 2021-02-02 C. R. Bard, Inc. Short stent
US11419591B2 (en) * 2017-07-13 2022-08-23 Lifetech Scientific (Shenzhen) Co. Ltd. Occluder pushing device and transport system
US11660218B2 (en) 2017-07-26 2023-05-30 Intact Vascular, Inc. Delivery device and method of delivery
US10856982B2 (en) 2017-09-19 2020-12-08 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve delivery system
US10932931B2 (en) 2018-03-13 2021-03-02 Medtronic Vascular, Inc. Medical device delivery system including a support member
US20230338175A1 (en) * 2022-04-26 2023-10-26 Accumedical Beijing Ltd. Repositionable intracranial stent with retrieval mechanism

Also Published As

Publication number Publication date
AU2002238030A1 (en) 2002-09-12
EP2198805B1 (en) 2017-09-06
EP2198805A1 (en) 2010-06-23
ATE464024T1 (en) 2010-04-15
US6623518B2 (en) 2003-09-23
DE60235968D1 (en) 2010-05-27
US20020120322A1 (en) 2002-08-29
ES2344629T3 (en) 2010-09-02
ES2647950T3 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
EP2198805B1 (en) Implant delivery system with interlock
EP1365707B1 (en) Implant delivery system with interlock
US9597212B2 (en) Implant delivery system with marker interlock
US11083608B2 (en) Stent retaining systems
US6623491B2 (en) Stent delivery system with spacer member
US6749627B2 (en) Grip for stent delivery system
EP1385450B1 (en) Catheter system with spacer member
US9839539B2 (en) Bow stent
AU2014202279A1 (en) Stent retaining systems

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTRATHERAPEUTICS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THOMPSON, PAUL J.;LEE, NATHAN T.;REEL/FRAME:012181/0669

Effective date: 20010914

AS Assignment

Owner name: SULZER INTRA THERAPEUTICS, INC., MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:INTRA THERAPEUTICS, INC.;REEL/FRAME:014337/0413

Effective date: 20010201

Owner name: EV3 PERIPHERAL, INC., MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SULZER INTRATHERAPEUTICS, INC.;REEL/FRAME:014327/0092

Effective date: 20021227

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION